ENGINE CONTROL SYSTEM

Idle Speed/Ignition Timing/Idle Mixture Ratio

SECTION EC

G[

MA

EM

LC

EC

FE

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

CONTENTS

TROUBLE DIAGNOSIS - INDEX	9
Alphabetical Index	9
DTC No. Index	13
PRECAUTIONS	18
Supplemental Restraint System (SRS) "AIR	
BAG" and "SEAT BELT PRE-TENSIONER"	18
Precautions for On Board Diagnostic (OBD)	
System of Engine and A/T	18
Engine Fuel & Emission Control System	19
Precautions	20
Wiring Diagrams and Trouble Diagnosis	21
PREPARATION	22
Special Service Tools	
Commercial Service Tools	22
ENGINE AND EMISSION CONTROL OVERALL	
SYSTEM	24
Engine Control Component Parts Location	24
Circuit Diagram	28
System Diagram	29
Vacuum Hose Drawing	30
System Chart	31
ENGINE AND EMISSION BASIC CONTROL	
SYSTEM DESCRIPTION	
Multiport Fuel Injection (MFI) System	
Electronic Ignition (EI) System	34
Air Conditioning Cut Control	35
Fuel Cut Control (at no load & high engine	
speed)	
Evaporative Emission System	
On Board Refueling Vapor Recovery (ORVR)	
Positive Crankcase Ventilation	51
CAN Communication	
Automatic Speed Control Device (ASCD) System.	
BASIC SERVICE PROCEDURE	
Fuel Pressure Release	
Fuel Pressure Check	
Injector	
How to Check Idle Speed and Ignition Timing	58

Adjustment5	9
Accelerator Pedal Released Position Learning7	1
Throttle Valve Closed Position Learning7	1
Idle Air Volume Learning7	1
ON BOARD DIAGNOSTIC SYSTEM	
DESCRIPTION7	5
Introduction7	5
Two Trip Detection Logic7	5
Emission-related Diagnostic Information7	
Malfunction Indicator Lamp (MIL)9	0
OBD System Operation Chart9	
CONSULT-II9	9
Generic Scan Tool (GST)11	3
TROUBLE DIAGNOSIS - INTRODUCTION11	5
Introduction11	5
Work Flow11	7
TROUBLE DIAGNOSIS - BASIC INSPECTION11	9
Basic Inspection11	9
TROUBLE DIAGNOSIS - GENERAL	
DESCRIPTION12	4
DTC Inspection Priority Chart12	4
Fail-safe Chart12	5
Symptom Matrix Chart12	6
CONSULT-II Reference Value in Data Monitor	
Mode13	0
Major Sensor Reference Graph in Data Monitor	
Mode13	3
ECM Terminals and Reference Value13	6
TROUBLE DIAGNOSIS - SPECIFICATION VALUE14	7
Description14	7
Testing Condition14	7
Inspection Procedure14	7
Diagnostic Procedure14	8
TROUBLE DIAGNOSIS FOR INTERMITTENT	
INCIDENT 15	
Description15	1
Diagnostic Procedure15	
TROUBLE DIAGNOSIS FOR POWER SUPPLY15.	2

Main Power Supply and Ground Circuit		DTC P0107, P0108 ABSOLUTE PRESSURE	
DTC U1000, U1001 CAN COMMUNICATION LINE	159	SENSOR	
Description	159	Component Description	196
On Board Diagnosis Logic		On Board Diagnosis Logic	196
DTC Confirmation Procedure	159	DTC Confirmation Procedure	196
Wiring Diagram	160	Diagnostic Procedure	197
Diagnostic Procedure	161	DTC P0112, P0113 IAT SENSOR	198
DTC P0011, P0021 IVT CONTROL	162	Component Description	198
Description	162	On Board Diagnosis Logic	198
CONSULT-II Reference Value in Data Monitor		DTC Confirmation Procedure	198
Mode	162	Wiring Diagram	199
On Board Diagnosis Logic	163	Diagnostic Procedure	200
DTC Confirmation Procedure	163	DTC P0117, P0118 ECT SENSOR	202
Wiring Diagram	164	Component Description	202
Diagnostic Procedure	167	On Board Diagnosis Logic	202
Component Inspection	169	DTC Confirmation Procedure	203
DTC P0031, P0032, P0051, P0052 HO2S1		Wiring Diagram	204
HEATER	170	Diagnostic Procedure	205
Description	170	DTC P0125 ECT SENSOR	
CONSULT-II Reference Value in Data Monitor		Description	207
Mode	170	On Board Diagnosis Logic	207
On Board Diagnosis Logic		DTC Confirmation Procedure	
DTC Confirmation Procedure		Diagnostic Procedure	
Wiring Diagram		DTC P0127 IAT SENSOR	
Diagnostic Procedure		Component Description	
DTC P0037, P0038, P0057, P0058 HO2S2		On Board Diagnosis Logic	
HEATER	176	DTC Confirmation Procedure	
Description		Diagnostic Procedure	
CONSULT-II Reference Value in Data Monitor		DTC P0128 THERMOSTAT FUNCTION	
Mode	176	On Board Diagnosis Logic	
On Board Diagnosis Logic	176	DTC Confirmation Procedure	
DTC Confirmation Procedure		Diagnostic Procedure	
Wiring Diagram		DTC P0132, P0152 HO2S1	
Diagnostic Procedure		Component Description	
DTC P0101 MAF SENSOR		CONSULT-II Reference Value in Data Monitor	
Component Description		Mode	214
CONSULT-II Reference Value in Data Monitor		On Board Diagnosis Logic	
Mode	183	DTC Confirmation Procedure	
On Board Diagnosis Logic	183	Wiring Diagram	
DTC Confirmation Procedure		Diagnostic Procedure	
Overall Function Check		DTC P0133, P0153 HO2S1	
Wiring Diagram		Component Description	
Diagnostic Procedure		CONSULT-II Reference Value in Data Monitor	
DTC P0102, P0103 MAF SENSOR		Mode	222
Component Description		On Board Diagnosis Logic	
CONSULT-II Reference Value in Data Monitor		DTC Confirmation Procedure	
Mode	190	Overall Function Check	
On Board Diagnosis Logic		Wiring Diagram	
DTC Confirmation Procedure		Diagnostic Procedure	
Wiring Diagram		DTC P0134, P0154 HO2S1	
Diagnostic Procedure		Component Description	
= .~g~c		Component Decemptor,	20-

CONSULT-II Reference Value in Data Monitor		DTC Confirmation Procedure	285	
Mode	234	Wiring Diagram	286	@I
On Board Diagnosis Logic	234	Diagnostic Procedure	287	Gl
DTC Confirmation Procedure	235	Component Inspection	289	
Overall Function Check	236	DTC P0222, P0223 TP SENSOR	290	MA
Wiring Diagram	237	Component Description	290	UUUU 0
Diagnostic Procedure	239	CONSULT-II Reference Value in Data Monitor		
DTC P0138, P0158 HO2S2	243	Mode	290	EM
Component Description	243	On Board Diagnosis Logic	290	
CONSULT-II Reference Value in Data Monitor		DTC Confirmation Procedure	291	п О
Mode	243	Wiring Diagram	292	LC
On Board Diagnosis Logic	243	Diagnostic Procedure	293	
DTC Confirmation Procedure		Component Inspection		EC
Wiring Diagram	245	DTC P0226 APP SENSOR		EU
Diagnostic Procedure		Component Description	296	
DTC P0139, P0159 HO2S2		CONSULT-II Reference Value in Data Monitor		FE
Component Description		Mode	296	
CONSULT-II Reference Value in Data Monitor		On Board Diagnosis Logic		
Mode	251	DTC Confirmation Procedure		AT
On Board Diagnosis Logic		Wiring Diagram		
DTC Confirmation Procedure		Diagnostic Procedure		0.00
Overall Function Check		Component Inspection		$\mathbb{A}\mathbb{X}$
Wiring Diagram		DTC P0227, P0228 APP SENSOR		
Diagnostic Procedure		Component Description		SU
DTC P0171, P0174 FUEL INJECTION SYSTEM	200	CONSULT-II Reference Value in Data Monitor	000	90
FUNCTION	261	Mode	303	
On Board Diagnosis Logic		On Board Diagnosis Logic		BR
DTC Confirmation Procedure		DTC Confirmation Procedure		
Wiring Diagram		Wiring Diagram		
Diagnostic Procedure		Diagnostic Procedure		ST
DTC P0172, P0175 FUEL INJECTION SYSTEM	200	Component Inspection		
FUNCTION	260	DTC P0300 - P0306 MULTIPLE CYLINDER	000	50
On Board Diagnosis Logic		MISFIRE, NO. 1 - 6 CYLINDER MISFIRE	309	RS
DTC Confirmation Procedure		On Board Diagnosis Logic		
Wiring Diagram		DTC Confirmation Procedure		BT
Diagnostic Procedure		Diagnostic Procedure		
DTC P0181 FTT SENSOR		DTC P0327, P0328 KS		
Component Description		Component Description		HA
On Board Diagnosis Logic		On Board Diagnosis Logic		
DTC Confirmation Procedure		DTC Confirmation Procedure		
Diagnostic Procedure		Wiring Diagram		SC
DTC P0182, P0183 FTT SENSOR				
		Diagnostic Procedure DTC P0335 CKP SENSOR (POS)		
Component Description				EL
On Board Diagnosis Logic		Component Description CONSULT-II Reference Value in Data Monitor	322	
DTC Confirmation Procedure			200	
Wiring Diagram		Mode		משנו
Diagnostic Procedure		On Board Diagnosis Logic		
DTC P0221 TP SENSOR		DTC Confirmation Procedure		
CONSULT II Reference Value in Data Maritar	∠ŏ4	Wiring Diagram		
CONSULT-II Reference Value in Data Monitor	20.4	Diagnostic Procedure		
Mode		Component Inspection		
On Board Diagnosis Logic	∠ŏ4	DTC P0340, P0345 CMP SENSOR (PHASE)	329	

Component Description	329	On Board Diagnosis Logic	388
On Board Diagnosis Logic	329	DTC Confirmation Procedure	389
DTC Confirmation Procedure	329	Wiring Diagram	390
Wiring Diagram	331	Diagnostic Procedure	391
Diagnostic Procedure	334	DTC P0455 EVAP CONTROL SYSTEM (GROSS	
Component Inspection	337	LEAK)	397
DTC P0420, P0430 THREE WAY CATALYST		On Board Diagnosis Logic	397
FUNCTION	338	Possible Cause	397
On Board Diagnosis Logic	338	DTC Confirmation Procedure	398
DTC Confirmation Procedure	338	Diagnostic Procedure	399
Overall Function Check	339	DTC P0456 EVAP CONTROL SYSTEM	409
Diagnostic Procedure	339	On Board Diagnosis Logic	409
DTC P0441 EVAP CONTROL SYSTEM		DTC Confirmation Procedure	410
System Description	343	Overall Function Check	411
On Board Diagnosis Logic	343	Diagnostic Procedure	411
DTC Confirmation Procedure		DTC P0460 FUEL LEVEL SENSOR	
Overall Function Check	344	Component Description	424
Diagnostic Procedure	346	On Board Diagnostic Logic	424
DTC P0442 EVAP CONTROL SYSTEM		DTC Confirmation Procedure	
On Board Diagnosis Logic		Wiring Diagram	
DTC Confirmation Procedure		Diagnostic Procedure	
Diagnostic Procedure		DTC P0461 FUEL LEVEL SENSOR	
DTC P0444, P0445 EVAP CANISTER PURGE		Component Description	428
VOLUME CONTROL SOLENOID VALVE	368	On Board Diagnostic Logic	
Description		Overall Function Check	
CONSULT-II Reference Value in Data Monitor		DTC P0462, P0463 FUEL LEVEL SENSOR	
Mode	368	Component Description	
On Board Diagnosis Logic		On Board Diagnostic Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Wiring Diagram	370	Wiring Diagram	431
Diagnostic Procedure		Diagnostic Procedure	
DTC P0447 EVAP CANISTER VENT CONTROL		DTC P0500 VSS	
VALVE	375	Component Description	434
Component Description	375	On Board Diagnosis Logic	434
CONSULT-II Reference Value in Data Monitor		DTC Confirmation Procedure	434
Mode	375	Overall Function Check	435
On Board Diagnosis Logic	375	Wiring Diagram	436
DTC Confirmation Procedure	375	Diagnostic Procedure	
Wiring Diagram	377	DTC P0506 ISC SYSTEM	438
Diagnostic Procedure	378	Description	438
DTC P0452 EVAP SYSTEM PRESSURE SENSOF	R382	On Board Diagnosis Logic	438
Component Description	382	DTC Confirmation Procedure	438
CONSULT-II Reference Value in Data Monitor		Diagnostic Procedure	439
Mode	382	DTC P0507 ISC SYSTEM	440
On Board Diagnosis Logic	382	Description	440
DTC Confirmation Procedure	382	On Board Diagnosis Logic	440
Wiring Diagram	384	DTC Confirmation Procedure	440
Diagnostic Procedure	385	Diagnostic Procedure	441
DTC P0453 EVAP SYSTEM PRESSURE SENSOF		DTC P0550 PSP SENSOR	
Component Description	388	Component Description	442
CONSULT-II Reference Value in Data Monitor		CONSULT-II Reference Value in Data Monitor	
Mode	388	Mode	442

On Board Diagnosis Logic44	Diagnostic Procedure	476	
DTC Confirmation Procedure44	·		GI
Wiring Diagram44	DTC P1128 THROTTLE CONTROL MOTOR	479	
Diagnostic Procedure44	14 Component Description	479	
Component Inspection44	6 On Board Diagnosis Logic	479	MA
DTC P0605 ECM44	TO DTC Confirmation Procedure	479	0000
Component Description44	17 Wiring Diagram	480	
On Board Diagnosis Logic44	Procedure	481	EM
DTC Confirmation Procedure44	Component Inspection	483	
Diagnostic Procedure44	8 DTC P1143, P1163 HO2S1	484	
DTC P0650 MIL (CIRCUIT)44			LC
Component Description44		ז	
On Board Diagnosis Logic44	19 Mode	484	EC
DTC Confirmation Procedure44		484	EU
Wiring Diagram45			
Diagnostic Procedure45		486	FE
DTC P1065 ECM POWER SUPPLY (BACK UP)45			
Component Description45			
On Board Diagnosis Logic45			AT
DTC Confirmation Procedure45			
Wiring Diagram45		491	0.07
Diagnostic Procedure45			$\mathbb{A}\mathbb{X}$
DTC P1102 MAF SENSOR45			
Component Description45			SU
CONSULT-II Reference Value in Data Monitor	Diagnostic Procedure		90
Mode			
On Board Diagnosis Logic45			BR
DTC Confirmation Procedure45			
Wiring Diagram45		498	
Diagnostic Procedure46			ST
DTC P1121 ELECTRIC THROTTLE CONTROL	DTC Confirmation Procedure		
ACTUATOR46		400	50
Component Description46			RS
On Board Diagnosis Logic46			
DTC Confirmation Procedure46			BT
Diagnostic Procedure46			
DTC P1122 ELECTRIC THROTTLE CONTROL	CONSULT-II Reference Value in Data Monitor		
FUNCTION46			HA
			5 55 5
Description46 On Board Diagnosis Logic46			
DTC Confirmation Procedure			SC
Wiring Diagram			
Diagnostic Procedure			EL
Component Inspection			
DTC P1124, P1126 THROTTLE CONTROL	On Board Diagnosis Logic		
MOTOR RELAY			אשנו
Component Description			
CONSULT-II Reference Value in Data Monitor	Diagnostic Procedure		
Mode			
On Board Diagnosis Logic47			
DTC Confirmation Procedure	g g		
Wiring Diagram47	75 DTC Confirmation Procedure	520	

Diagnostic Procedure	521	Diagnostic Procedure	566
DTC P1212 VDC/TCS/ABS COMMUNICATION		DTC P1444 EVAP CANISTER PURGE VOLUME	
LINE	522	CONTROL SOLENOID VALVE	579
Description	522	Description	579
On Board Diagnosis Logic	522	CONSULT-II Reference Value in Data Monitor	
DTC Confirmation Procedure	522	Mode	579
Diagnostic Procedure	523	On Board Diagnosis Logic	580
DTC P1217 ENGINE OVER TEMPERATURE	524	DTC Confirmation Procedure	580
System Description	524	Wiring Diagram	582
CONSULT-II Reference Value in Data Monitor		Diagnostic Procedure	584
Mode	524	DTC P1446 EVAP CANISTER VENT CONTROL	
On Board Diagnosis Logic	525	VALVE	592
Overall Function Check	526	Component Description	592
Wiring Diagram	528	CONSULT-II Reference Value in Data Monitor	
Diagnostic Procedure		Mode	592
Main 12 Causes of Overheating		On Board Diagnosis Logic	592
DTC P1223, P1224 TP SENSOR		DTC Confirmation Procedure	
Component Description		Wiring Diagram	
CONSULT-II Reference Value in Data Monitor		Diagnostic Procedure	
Mode	542	DTC P1448 EVAP CANISTER VENT CONTROL	
On Board Diagnosis Logic	542	VALVE	600
DTC Confirmation Procedure		Component Description	
Wiring Diagram		CONSULT-II Reference Value in Data Monitor	
Diagnostic Procedure		Mode	600
Component Inspection		On Board Diagnosis Logic	
DTC P1225 TP SENSOR		DTC Confirmation Procedure	
Component Description		Overall Function Check	
On Board Diagnosis Logic		Wiring Diagram	
DTC Confirmation Procedure		Diagnostic Procedure	
Diagnostic Procedure		DTC P1456 EVAP CONTROL SYSTEM	
DTC P1226 TP SENSOR		On Board Diagnosis Logic	
Component Description		DTC Confirmation Procedure	
On Board Diagnosis Logic		Overall Function Check	
DTC Confirmation Procedure		Diagnostic Procedure	
Diagnostic Procedure		DTC P1464 FUEL LEVEL SENSOR	
DTC P1227, P1228 APP SENSOR		Component Description	
Component Description	552	On Board Diagnostic Logic	625
CONSULT-II Reference Value in Data Monitor		DTC Confirmation Procedure	
Mode	552	Wiring Diagram	
On Board Diagnosis Logic	552	Diagnostic Procedure	
DTC Confirmation Procedure		DTC P1490 VACUUM CUT VALVE BYPASS	
Wiring Diagram		VALVE	628
Diagnostic Procedure		Description	
Component Inspection		CONSULT-II Reference Value in Data Monitor	
DTC P1229 SENSOR POWER SUPPLY		Mode	628
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Wiring Diagram		Wiring Diagram	
Diagnostic Procedure		Diagnostic Procedure	
DTC P1442 EVAP CONTROL SYSTEM		DTC P1491 VACUUM CUT VALVE BYPASS	
On Board Diagnosis Logic		VALVE	634
DTC Confirmation Procedure		Description	

CONSULT-II Reference Value in Data Monitor		On Board Diagnosis Logic	681	
Mode	634	DTC Confirmation Procedure	681	
On Board Diagnosis Logic	635	Wiring Diagram	682	GI
DTC Confirmation Procedure	635	Diagnostic Procedure	683	
Overall Function Check	636	Component Inspection		MA
Wiring Diagram	637	VARIABLE INDUCTION AIR CONTROL SYSTEM		IIVII/~!
Diagnostic Procedure	638	(VIAS)	687	
DTC P1564 ASCD STEERING SWITCH	646	Description	687	EM
Component Description	646	Wiring Diagram		
CONSULT-II Reference Value in Data Monitor		Diagnostic Procedure	690	
Mode	646	IGNITION SIGNAL		LC
On Board Diagnosis Procedure	646	Component Description	695	
DTC Confirmation Procedure		Wiring Diagram		EC
Wiring Diagram		Diagnostic Procedure		EG
Diagnostic Procedure		INJECTOR		
Component Inspection		Component Description		FE
DTC P1572 ASCD BRAKE SWITCH		CONSULT-II Reference Value in Data Monitor		
Component Description		Mode	706	
CONSULT-II Reference Value in Data Monitor		Wiring Diagram		AT
Mode	653	Diagnostic Procedure		
On Board Diagnosis Procedure		START SIGNAL		
DTC Confirmation Procedure		CONSULT-II Reference Value in Data Monitor	12	$\mathbb{A}\mathbb{X}$
Wiring Diagram		Mode	712	
Diagnostic Procedure		Wiring Diagram		வா
Component Inspection		Diagnostic Procedure		SU
DTC P1574 ASCD VEHICLE SPEED SENSOR		FUEL PUMP		
				BR
Component Description		System Description		١١١١
On Board Diagnosis Procedure DTC Confirmation Procedure		Component Description CONSULT-II Reference Value in Data Monitor	7 10	
		Mode	716	ST
Wiring Diagram				
Diagnostic Procedure		Wiring Diagram		
DTC P1706 PNP SWITCH		Diagnostic Procedure ELECTRONIC CONTROLLED ENGINE MOUNT		RS
Component Description	6/1			
CONSULT-II Reference Value in Data Monitor	074	System Description	123	65
Mode		CONSULT-II Reference Value in Data Monitor	700	BT
On Board Diagnosis Logic		Mode		
DTC Confirmation Procedure		Wiring Diagram		HA
Overall Function Check		Diagnostic Procedure		11 11/~7
Wiring Diagram		REFRIGERANT PRESSURE SENSOR		
Diagnostic Procedure		Description		SC
DTC P1800 VIAS CONTROL SOLENOID VALVE		Wiring Diagram		
Component Description	676	Diagnostic Procedure		
CONSULT-II Reference Value in Data Monitor		ASCD BRAKE SWITCH		EL
Mode		Component Description	731	
On Board Diagnosis Logic		CONSULT-II Reference Value in Data Monitor		
DTC Confirmation Procedure		Mode	_	
Wiring Diagram		Wiring Diagram		
Diagnostic Procedure		Diagnostic Procedure		
DTC P1805 BRAKE SWITCH	681	ASCD INDICATOR LAMP	742	
Description	681	Component Description	742	
CONSULT-II Reference Value in Data Monitor		CONSULT-II Reference Value in Data Monitor		
Mode	681	Mode	742	

Wiring Diagram	743	Engine Coolant Temperature Sensor	751
Diagnostic Procedure		Heated Oxygen Sensor 1 Heater	751
ELECTRICAL LOAD SIGNAL	745	Fuel Pump	751
Wiring Diagram		Injector	751
Diagnostic Procedure		Calculated Load Value	751
DATA LINK CONNECTORS		Intake Air Temperature Sensor	751
Wiring Diagram	750	Heated Oxygen Sensor 2 Heater	752
SERVICE DATA AND SPECIFICATIONS (S		Fuel Tank Temperature Sensor	752
Fuel Pressure Regulator	751	Throttle Control Motor	752
Idle Speed and Ignition Timing	751	Crankshaft Position Sensor (POS)	752
Mass Air Flow Sensor		Camshaft Position Sensor (PHASE)	752

Alphabetical Index

NHEC0001

NOTE:

If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-159.

	DT			
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*3	Reference page	
Unable to access ECM	_	_	EC-125	
A/T 1ST GR FNCTN	P0731	0731	AT-133	-
A/T 2ND GR FNCTN	P0732	0732	AT-139	-
A/T 3RD GR FNCTN	P0733	0733	AT-145	-
A/T 4TH GR FNCTN	P0734	0734	AT-159	
A/T TCC S/V FNCTN	P0744	0744	AT-159	1
ABSL PRES SEN/CIRC	P0107	0107	EC-196	_
ABSL PRES SEN/CIRC	P0108	0108	EC-196	-
APP SEN 1/CIRC*5	P0227	0227	EC-303	-
APP SEN 1/CIRC*5	P0228	0228	EC-303	-
APP SEN 2/CIRC*5	P1227	1227	EC-552	_
APP SEN 2/CIRC*5	P1228	1228	EC-552	-
APP SENSOR*5	P0226	0226	EC-296	_
ASCD BRAKE SW	P1572	1572	EC-653	-
ASCD SW	P1564	1564	EC-646	_
ASCD VHL SPD SEN	P1574	1574	EC-666	-
ATF TEMP SEN/CIRC	P0710	0710	AT-111	-
BRAKE SW/CIRCUIT	P1805	1805	EC-681	-
CAN COMM CIRCUIT	U1000	1000*6	EC-159	-
CAN COMM CIRCUIT	U1001	1001*6	EC-159	_
CKP SEN/CIRCUIT	P0335	0335	EC-322	-
CLOSED LOOP-B1	P1148	1148	EC-518	_
CLOSED LOOP-B2	P1168	1168	EC-518	-
CMP SEN/CIRC-B1	P0340	0340	EC-329	_
CMP SEN/CIRC-B2	P0345	0345	EC-329	-
CTP LEARNING	P1225	1225	EC-548	_
CTP LEARNING	P1226	1226	EC-550	_
CYL 1 MISFIRE	P0301	0301	EC-309	_
CYL 2 MISFIRE	P0302	0302	EC-309	_
CYL 3 MISFIRE	P0303	0303	EC-309	_
CYL 4 MISFIRE	P0304	0304	EC-309	_
CYL 5 MISFIRE	P0305	0305	EC-309	_
CYL 6 MISFIRE	P0306	0306	EC-309	

	TD	DTC*1				
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*3	Reference page			
ECM	P0605	0605	EC-447			
ECM BACK UP/CIRCUIT	P1065	1065	EC-453			
ECT SEN/CIRC*5	P0117	0117	EC-202			
ECT SEN/CIRC*5	P0118	0118	EC-202			
ECT SENSOR	P0125	0125	EC-207			
ENG OVER TEMP	P1217	1217	EC-524			
ENGINE SPEED SIG	P0725	0725	AT-122			
ETC MOT	P1128	1128	EC-479			
ETC MOT PWR	P1124	1124	EC-473			
ETC MOT PWR*5	P1126	1126	EC-473			
ETC ACTR*5	P1121	1121	EC-463			
ETC FUNCTION/CIRC*5	P1122	1122	EC-465			
EVAP GROSS LEAK	P0455	0455	EC-397			
EVAP PURG FLOW/MON	P0441	0441	EC-343			
EVAP SMALL LEAK	P0442	0442	EC-353			
EVAP SMALL LEAK	P1442	1442	EC-564			
EVAP SYS PRES SEN	P0452	0452	EC-382			
EVAP SYS PRES SEN	P0453	0453	EC-388			
EVAP VERY SML LEAK	P0456	0456	EC-409			
EVAP VERY SML LEAK	P1456	1456	EC-609			
FTT SEN/CIRCUIT	P0182	0182	EC-279			
FTT SEN/CIRCUIT	P0183	0183	EC-279			
FTT SENSOR	P0181	0181	EC-276			
FUEL LEV SEN SLOSH	P0460	0460	EC-424			
FUEL LEVEL SENSOR	P0461	0461	EC-428			
FUEL LEVL SEN/CIRC	P0462	0462	EC-430			
FUEL LEVL SEN/CIRC	P0463	0463	EC-430			
FUEL LEVL SEN/CIRC	P1464	1464	EC-625			
FUEL SYS-LEAN-B1	P0171	0171	EC-261			
FUEL SYS-LEAN-B2	P0174	0174	EC-261			
FUEL SYS-RICH-B1	P0172	0172	EC-269			
FUEL SYS-RICH-B2	P0175	0175	EC-269			
HO2S1 (B1)	P0132	0132	EC-214			
HO2S1 (B1)	P0133	0133	EC-222			
HO2S1 (B1)	P0134	0134	EC-234			
HO2S1 (B1)	P1143	1143	EC-484			

	DT	DTC*1			
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*3	Reference page	6	
HO2S1 (B1)	P1144	1144	EC-491	G	
HO2S1 (B2)	P0152	0152	EC-214	M	
HO2S1 (B2)	P0153	0153	EC-222	UV	
HO2S1 (B2)	P0154	0154	EC-234	E	
HO2S1 (B2)	P1163	1163	EC-484		
HO2S1 (B2)	P1164	1164	EC-491		
HO2S1 HTR (B1)	P0031	0031	EC-170		
HO2S1 HTR (B1)	P0032	0032	EC-170	E	
HO2S1 HTR (B2)	P0051	0051	EC-170		
HO2S1 HTR (B2)	P0052	0052	EC-170		
HO2S2 (B1)	P0138	0138	EC-243		
HO2S2 (B1)	P0139	0139	EC-251	Æ	
HO2S2 (B1)	P1146	1146	EC-498		
HO2S2 (B1)	P1147	1147	EC-508		
HO2S2 (B2)	P0158	0158	EC-243		
HO2S2 (B2)	P0159	0159	EC-251	9	
HO2S2 (B2)	P1166	1166	EC-498		
HO2S2 (B2)	P1167	1167	EC-508		
HO2S2 HTR (B1)	P0037	0037	EC-176	6	
HO2S2 HTR (B1)	P0038	0038	EC-176	9	
HO2S2 HTR (B2)	P0057	0057	EC-176		
HO2S2 HTR (B2)	P0058	0058	EC-176	L	
IAT SEN/CIRCUIT	P0112	0112	EC-198		
IAT SEN/CIRCUIT	P0113	0113	EC-198		
IAT SENSOR	P0127	0127	EC-210	ŀ	
INT/V TIM CONT-B1	P0011	0011	EC-162	_	
INT/V TIM CONT-B2	P0021	0021	EC-162	9	
ISC SYSTEM	P0506	0506	EC-438		
ISC SYSTEM	P0507	0507	EC-440		
KNOCK SEN/CIRC-B1	P0327	0327	EC-317		
KNOCK SEN/CIRC-B1	P0328	0328	EC-317		
L/PRESS SOL/CIRC	P0745	0745	AT-169		
MAF SEN/CIRCUIT	P0101	0101	EC-183		
MAF SEN/CIRCUIT*5	P0102	0102	EC-190		
MAF SEN/CIRCUIT*5	P0103	0103	EC-190		
MAF SENSOR*5	P1102	1102	EC-457		

	DTC	C*1	
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*3	Reference page
MIL/CIRC	P0650	0650	EC-449
MULTI CYL MISFIRE	P0300	0300	EC-309
NATS MALFUNCTION	P1610-P1615	1610-1615	EL-370
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	No DTC	Flashing*4	EC-91
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	0000	_
O/R CLTCH SOL/CIRC	P1760	1760	AT-192
P-N POS SW/CIRCUIT	P1706	1706	EC-671
PNP SW/CIRC	P0705	0705	AT-105
PURG VOLUME CONT/V	P0444	0444	EC-368
PURG VOLUME CONT/V	P0445	0445	EC-368
PURG VOLUME CONT/V	P1444	1444	EC-579
PW ST P SEN/CIRC	P0550	0550	EC-442
SENSOR POWER/CIRC*5	P1229	1229	EC-558
SFT SOL A/CIRC*5	P0750	0750	AT-175
SFT SOL B/CIRC*5	P0755	0755	AT-180
TCC SOLENOID/CIRC	P0740	0740	AT-154
TCS/CIRC	P1212	1212	EC-522
TCS C/U FUNCTN	P1211	1211	EC-520
THERMSTAT FNCTN	P0128	0128	EC-212
TP SEN 1/CIRC*5	P0222	0222	EC-290
TP SEN 1/CIRC*5	P0223	0223	EC-290
TP SEN 2/CIRC*5	P1223	1223	EC-542
TP SEN 2/CIRC*5	P1224	1224	EC-542
TP SENSOR*5	P0221	0221	EC-284
TP SEN/CIRC A/T	P1705	1705	AT-185
TW CATALYST SYS-B1	P0420	0420	EC-338
TW CATALYST SYS-B2	P0430	0430	EC-338
VC/V BYPASS/V	P1490	1490	EC-628
VC CUT/V BYPASS/V	P1491	1491	EC-634
VEH SPD SEN/CIR AT*7	P0720	0720	AT-117
VEH SPEED SEN/CIRC*7	P0500	0500	EC-434
VENT CONTROL VALVE	P0447	0447	EC-375
VENT CONTROL VALVE	P1446	1446	EC-592
VENT CONTROL VALVE	P1448	1448	EC-600

	DTC*1			
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*3	Reference page	
VIAS S/V CIRC	P1800	1800	EC-676	

MA

LC

EC

- *1: 1st trip DTC No. is the same as DTC No.
- *2: These numbers are prescribed by SAE J2012.
- *3: In Diagnostic Test Mode II (Self-diagnostic results), these numbers are controlled by NISSAN.
- *4: When engine is running.
- *5: When the fail-safe operation occurs, the MIL illuminates.
- *6: The troubleshooting for this DTC needs CONSULT-II.
- *7: When fail-safe operations for both self-diagnoses occur at the same time, the MIL illuminates.

NOTE

Regarding I35 models, "B1" indicates bank 1, "B2" indicates bank 2.

DTC No. Index

IHEC1408

NOTE:

If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-159.

DT	C*1			
CONSULT-II GST*2	ECM*3	Items (CONSULT-II screen terms)	Reference page	AT
_	_	Unable to access ECM	EC-125	
No DTC	Flashing*4	NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	EC-91	— SU
P0000	0000	NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	_	- Br
U1000	1000*6	CAN COMM CIRCUIT	EC-159	— ST
U1001	1001*6	CAN COMM CIRCUIT	EC-159	_
P0011	0011	INT/V TIM CONT-B1	EC-162	— RS
P0021	0021	INT/V TIM CONT-B2	EC-162	
P0031	0031	HO2S1 HTR (B1)	EC-170	BT
P0032	0032	HO2S1 HTR (B1)	EC-170	
P0037	0037	HO2S2 HTR (B1)		HA
P0038	0038	HO2S2 HTR (B1) EC-1		_
P0051	0051	HO2S1 HTR (B2)	EC-170	— SC
P0052	0052	HO2S1 HTR (B2)	EC-170	_
P0057	0057	HO2S2 HTR (B2)	EC-176	
P0058	0058	HO2S2 HTR (B2)	EC-176	
P0101	0101	MAF SEN/CIRCUIT	EC-183	— [D]
P0102	0102	MAF SEN/CIRCUIT*5	EC-190	_
P0103	0103	MAF SEN/CIRCUIT*5	EC-190	_
P0107	0107	ABSL PRES SEN/CIRC	EC-196	_ _
P0108	0108	ABSL PRES SEN/CIRC	EC-196	_
P0112	0112	IAT SEN/CIRCUIT	EC-198	

DTC*1			
CONSULT-II GST*2	ECM*3	Items (CONSULT-II screen terms)	Reference page
P0113	0113	IAT SEN/CIRCUIT	EC-198
P0117	0117	ECT SEN/CIRC*5	EC-202
P0118	0118	ECT SEN/CIRC*5	EC-202
P0125	0125	ECT SENSOR	EC-207
P0127	0127	IAT SENSOR	EC-210
P0128	0128	THERMSTAT FNCTN	EC-212
P0132	0132	HO2S1 (B1)	EC-214
P0133	0133	HO2S1 (B1)	EC-222
P0134	0134	HO2S1 (B1)	EC-234
P0138	0138	HO2S2 (B1)	EC-243
P0139	0139	HO2S2 (B1)	EC-251
P0152	0152	HO2S1 (B2)	EC-214
P0153	0153	HO2S1 (B2)	EC-222
P0154	0154	HO2S1 (B2)	EC-234
P0158	0158	HO2S2 (B2)	EC-243
P0159	0159	HO2S2 (B2)	EC-251
P0171	0171	FUEL SYS-LEAN-B1	EC-261
P0172	0172	FUEL SYS-RICH-B1	EC-269
P0174	0174	FUEL SYS-LEAN-B2	EC-261
P0175	0175	FUEL SYS-RICH-B2	EC-269
P0181	0181	FTT SENSOR	EC-276
P0182	0182	FTT SEN/CIRCUIT	EC-279
P0183	0183	FTT SEN/CIRCUIT	EC-279
P0221	0221	TP SENSOR*5	EC-284
P0222	0222	TP SEN 1/CIRC*5	EC-290
P0223	0223	TP SEN 1/CIRC*5	EC-290
P0226	0226	APP SENSOR*5	EC-296
P0227	0227	APP SEN 1/CIRC*5	EC-303
P0228	0228	APP SEN 1/CIRC*5	EC-303
P0300	0300	MULTI CYL MISFIRE	EC-309
P0301	0301	CYL 1 MISFIRE	EC-309
P0302	0302	CYL 2 MISFIRE	EC-309
P0303	0303	CYL 3 MISFIRE	EC-309
P0304	0304	CYL 4 MISFIRE	EC-309
P0305	0305	CYL 5 MISFIRE	EC-309
P0306	0306	CYL 6 MISFIRE	EC-309

DTC*1			
CONSULT-II GST*2	ECM*3	Items (CONSULT-II screen terms)	Reference page
P0327	0327	KNOCK SEN/CIRC-B1	EC-317
P0328	0328	KNOCK SEN/CIRC-B1	EC-317
P0335	0335	CKP SEN/CIRCUIT	EC-322
P0340	0340	CMP SEN/CIRC-B1	EC-329
P0345	0345	CMP SEN/CIRC-B2	EC-329
P0420	0420	TW CATALYST SYS-B1	EC-338
P0430	0430	TW CATALYST SYS-B2	EC-338
P0441	0441	EVAP PURG FLOW/MON	EC-343
P0442	0442	EVAP SMALL LEAK	EC-353
P0444	0444	PURG VOLUME CONT/V	EC-368
P0445	0445	PURG VOLUME CONT/V	EC-368
P0447	0447	VENT CONTROL VALVE	EC-375
P0452	0452	EVAP SYS PRES SEN	EC-382
P0453	0453	EVAP SYS PRES SEN	EC-388
P0455	0455	EVAP GROSS LEAK	EC-397
P0456	0456	EVAP VERY SML LEAK	EC-409
P0460	0460	FUEL LEV SEN SLOSH	EC-424
P0461	0461	FUEL LEVEL SENSOR	EC-428
P0462	0462	FUEL LEVL SEN/CIRC	EC-430
P0463	0463	FUEL LEVL SEN/CIRC	EC-430
P0500	0500	VEH SPEED SEN/CIRC*7	EC-434
P0506	0506	ISC SYSTEM	EC-438
P0507	0507	ISC SYSTEM	EC-440
P0550	0550	PW ST P SEN/CIRC	EC-442
P0605	0605	ECM	EC-447
P0650	0650	MIL/CIRC	EC-449
P0705	0705	PNP SW/CIRC	AT-105
P0710	0710	ATF TEMP SEN/CIRC	AT-111
P0720	0720	VEH SPD SEN/CIR AT*7	AT-117
P0725	0725	ENGINE SPEED SIG	AT-122
P0731	0731	A/T 1ST GR FNCTN	AT-127
P0732	0732	A/T 2ND GR FNCTN	AT-133
P0733	0733	A/T 3RD GR FNCTN	AT-139
P0734	0734	A/T 4TH GR FNCTN	AT-145
P0740	0740	TCC SOLENOID/CIRC	AT-154
P0744	0744	A/T TCC S/V FNCTN	AT-159

DTC*1			
CONSULT-II GST*2	ECM*3	Items (CONSULT-II screen terms)	Reference page
P0745	0745	L/PRESS SOL/CIRC	AT-169
P0750	0750	SFT SOL A/CIRC*5	AT-175
P0755	0755	SFT SOL B/CIRC*5	AT-180
P1065	1065	ECM BACK UP/CIRCUIT	EC-453
P1102	1102	MAF SENSOR*5	EC-457
P1121	1121	ETC ACTR*5	EC-463
P1122	1122	ETC FUNCTION/CIRC*5	EC-465
P1124	1124	ETC MOT PWR	EC-473
P1126	1126	ETC MOT PWR*5	EC-473
P1128	1128	ETC MOT	EC-479
P1143	1143	HO2S1 (B1)	EC-484
P1144	1144	HO2S1 (B1)	EC-491
P1146	1146	HO2S2 (B1)	EC-498
P1147	1147	HO2S2 (B1)	EC-508
P1148	1148	CLOSED LOOP-B1	EC-518
P1163	1163	HO2S1 (B2)	EC-484
P1164	1164	HO2S1 (B2)	EC-491
P1166	1166	HO2S2 (B2)	EC-498
P1167	1167	HO2S2 (B2)	EC-508
P1168	1168	CLOSED LOOP-B2	EC-518
P1211	1211	TCS C/U FUNCTN	EC-520
P1212	1212	TCS/CIRC	EC-522
P1217	1217	ENG OVER TEMP	EC-524
P1223	1223	TP SEN 2/CIRC*5	EC-542
P1224	1224	TP SEN 2/CIRC*5	EC-542
P1225	1225	CTP LEARNING	EC-548
P1226	1226	CTP LEARNING	EC-550
P1227	1227	APP SEN 2/CIRC*5	EC-552
P1228	1228	APP SEN 2/CIRC*5	EC-552
P1229	1229	SENSOR POWER/CIRC*5	EC-558
P1442	1442	EVAP SMALL LEAK	EC-564
P1444	1444	PURG VOLUME CONT/V	EC-579
P1446	1446	VENT CONTROL VALVE	EC-592
P1448	1448	VENT CONTROL VALVE	EC-600
P1456	1456	EVAP VERY SML LEAK	EC-609
P1464	1464	FUEL LEVL SEN/CIRC	EC-625

GI

MA

EM

LC

EC

FE

AT

AX

SU

BR

ST

BT

HA

SC

EL

DTC*1			
CONSULT-II GST*2	ECM*3	Items (CONSULT-II screen terms)	Reference page
P1490	1490	VC/V BYPASS/V	EC-628
P1491	1491	VC CUT/V BYPASS/V	EC-634
P1564	1564	ASCD SW	EC-646
P1572	1572	ASCD BRAKE SW	EC-653
P1574	1574	ASCD VHL SPD SEN	EC-666
P1610-P1615	1610-1615	NATS MALFUNCTION	EL-370
P1705	1705	TP SEN/CIRC A/T	AT-185
P1706	1706	P-N POS SW/CIRCUIT	EC-671
P1760	1760	O/R CLTCH SOL/CIRC	AT-192
P1800	1800	VIAS S/V CIRC	EC-676
P1805	1805	BRAKE SW/CIRCUIT	EC-681

^{*1: 1}st trip DTC No. is the same as DTC No.

NOTE:

Regarding I35 models, "B1" indicates bank 1, "B2" indicates bank 2.

^{*2:} These numbers are prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), these numbers are controlled by NISSAN.

^{*4:} When engine is running.

^{*5:} When the fail-safe operation occurs, the MIL illuminates.

^{*6:} The troubleshooting for this DTC needs CONSULT-II.

^{*7:} When fail-safe operations for both self-diagnoses occur at the same time, the MIL illuminates.

Supplemental Restraint System (SRS) "AIR **BAG" and "SEAT BELT PRE-TENSIONER"**

The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER" used along with a seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. The SRS system composition which is available to INFINITI MODEL I35 is as follows:

- For a frontal collision
 - The Supplemental Restraint System consists of driver air bag module (located in the center of the steering wheel), front passenger air bag module (located on the instrument panel on passenger side), seat belt pre-tensioners, a diagnosis sensor unit, crash zone sensor, warning lamp, wiring harness and spiral cable.
- For a side collision
 - The Supplemental Restraint System consists of front side air bag module (located in the outer side of front seat), satellite sensor, diagnosis sensor unit (one of components of air bags for a frontal collision), wiring harness, warning lamp (one of components of air bags for a frontal collision).

Information necessary to service the system safely is included in the **RS section** of this Service Manual.

WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance should be performed by an authorized INFINITI dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the RS section.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow harness connector.

Precautions for On Board Diagnostic (OBD) System of Engine and A/T

The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the driver of a malfunction causing emission deterioration.

CAUTION:

- Be sure to turn the ignition switch OFF and disconnect the negative battery terminal before any repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves, etc. will cause the MIL to light up.
- Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease, dirt, bent terminals, etc.)
- Certain systems and components, especially those related to OBD, may use a new style slidelocking type harness connector. For description and how to disconnect, refer to EL-8, "HARNESS CONNECTOR (SLIDE-LOCKING TYPE)".
- Be sure to route and secure the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MIL to light up due to the short circuit.
- Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube may cause the MIL to light up due to the malfunction of the EVAP system or fuel injection system, etc.
- Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM or TCM (Transmission control module) before returning the vehicle to the customer.

Engine Fuel & Emission Control System

NHEC0004

GI

MA

LC

EC

AT

AX

SU

BT

HA

SC

EIL

BATTERY

- · Always use a 12 volt battery as power source.
- · Do not attempt to disconnect battery cables while engine is running.

ECM

forcibly.

WHEN STARTING

engine unnecessarily.

starting.

shutdown.

• Do not depress accelerator pedal when

• Immediately after starting, do not rev up

· Do not rev up engine just prior to

Do not disassemble ECM.

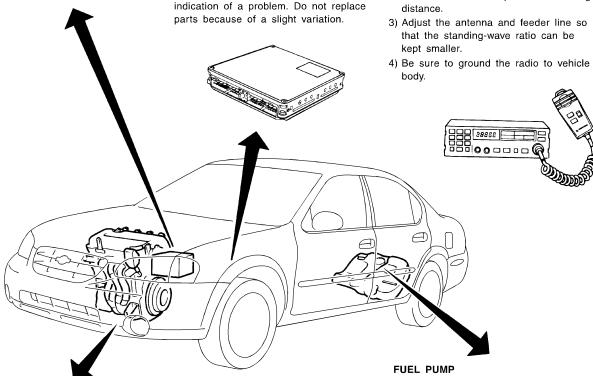
• Do not turn dignosis mode selector

If a battery terminal is disconnected,

the memory will return to the ECM

vary slightly when the terminal is

The ECM will now start to self-control


disconnected. However, this is not an

at its initial value. Engine operation can

WIRELESS EQUIPMENT

- When installing C.B. ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on its installation location.
- 1) Keep the antenna as far away as possible from the ECM.
- 2) Keep the antenna feeder line more than 20 cm (7.9 in) away from the harness of electronic controls. Do not let them run parallel for a long

distance.

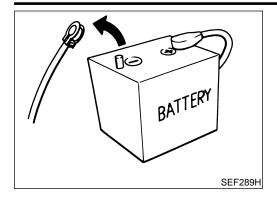
ENGINE CONTROL PARTS HANDLING

- · Handle mass air flow sensor carefully to avoid damage.
- · Do not disassemble mass air flow sensor.
- Do not clean mass air flow sensor with any type of detergent.
- Even a slight leak in the air intake system can cause serious problems.
- Do not shock or jar the camshaft position sensor or crankshaft position sensor.

- Do not operate fuel pump when there is no fuel in lines.
- · Tighten fuel hose clamps to the specified torque.

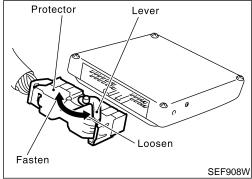
ECM HARNESS HANDLING

- · Securely connect ECM harness connectors.
- A poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs.
- at least 10 cm (3.9 in) away from adjacent harnesses to prevent an engine control system malfunction due to receiving external noise, degraded operation of ICs, etc.
- · Keep engine control system parts and harnesses dry.
- · Before removing parts, turn off ignition switch and then disconnect battery

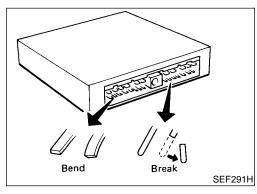


Keep engine control system harness

ground cable.

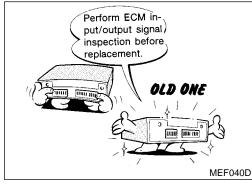

SFF242XD

ignition switch is turned off.

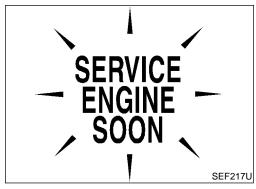


Precautions

Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect negative battery terminal. Failure to do so may damage the ECM because battery voltage is applied to ECM even if

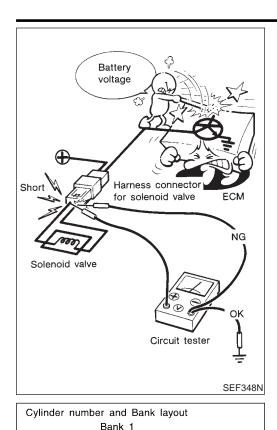


 When connecting ECM harness connector, fasten it securely with a lever as far as it will go as shown at left.



 When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).

Make sure that there are not any bends or breaks on ECM pin terminal, when connecting pin connectors.



Before replacing ECM, perform "ECM Terminals and Reference Value" inspection and make sure ECM functions properly. Refer to EC-136.

 After performing each TROUBLE DIAGNOSIS, perform "DTC Confirmation Procedure" or "Overall Function Check".

The DTC should not be displayed in the "DTC Confirmation Procedure" if the repair is completed. The "Overall Function Check" should be a good result if the repair is completed.

- When measuring ECM signals with a circuit tester, never allow the two tester probes to contact. Accidental contact of probes will cause a short circuit and
- Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

damage the ECM power transistor.

MA

LC

AT

AXRegarding model I35, "B1" indicates the bank 1 and "B2" indicates the bank 2 as shown in the figure.

SU

ST

Wiring Diagrams and Trouble Diagnosis

Bank 1 includes No. 1 cylinder.

When you read Wiring diagrams, refer to the following:

Bank 2

GI-11, "HOW TO READ WIRING DIAGRAMS"

Front

EL-11, "POWER SUPPLY ROUTING" for power distribution circuit

SEC893C

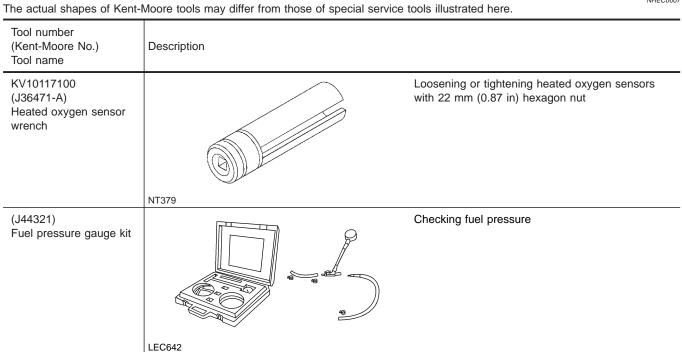
When you perform trouble diagnosis, refer to the following:

Crankshaft pulley

- GI-24, "HOW TO FOLLOW TEST GROUPS IN TROUBLE DIAGNOSES"
- GI-21, "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT"

NHEC0006

BT


HA

SC

EL

Special Service Tools

NHEC0007

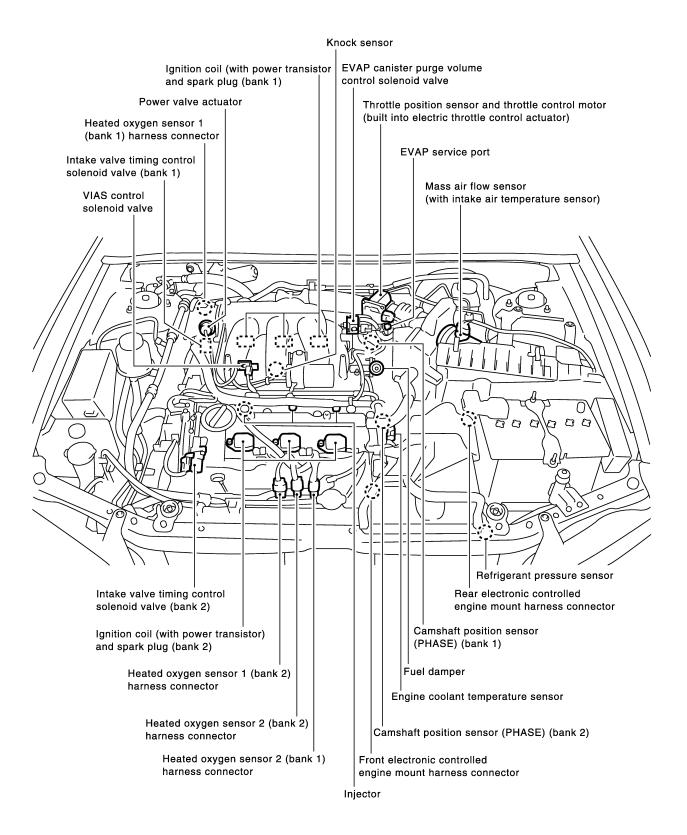
Commercial Service Tools

NHEC0008

Tool name (Kent-Moore No.)	Description	
Leak detector ie: (J41416)		Locating the EVAP leak
	NT703	
EVAP service port adapter ie: (J41413-OBD)		Applying positive pressure through EVAP service port
	NT704	
Fuel filler cap adapter ie: (MLR-8382)		Checking fuel tank vacuum relief valve opening pressure
	NT815	

BT

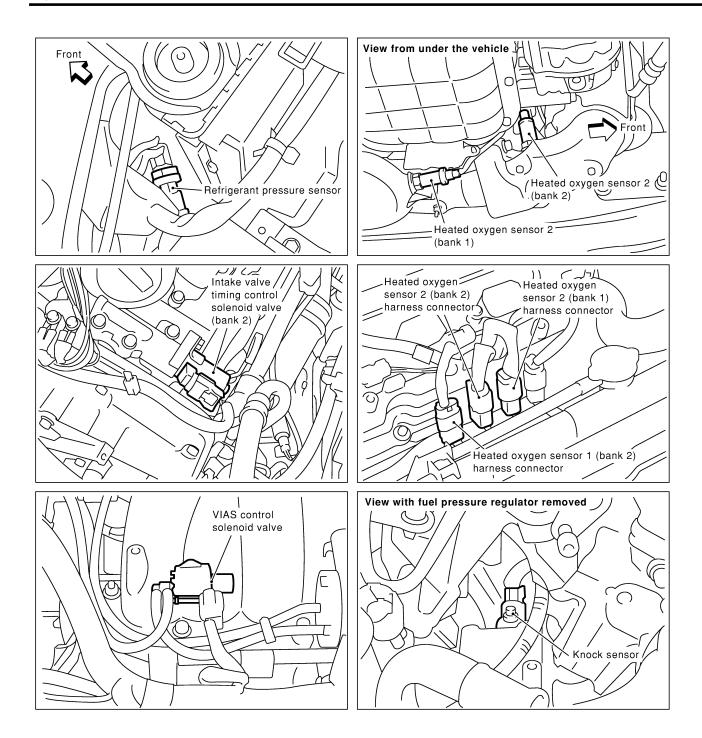
HA


SC

EL

		Commercial Service Tools (Cont'd)	•
Tool name (Kent-Moore No.)	Description		•
Socket wrench	19 mm (0.75 in) More than 32 mm (1.26 in)	Removing and installing engine coolant temperature sensor	G M
Oxygen sensor thread cleaner	NT705 a b	Reconditioning the exhaust system threads before installing a new oxygen sensor. Use with anti-	- L(
ie: (J-43897-18) (J-43897-12)	Mating surface shave cylinder	seize lubricant shown below. a: J-43897-18 18 mm diameter with pitch 1.5 mm, for Zirconia Oxygen Sensor b: J-43897-12 12 mm diameter with pitch 1.25 mm, for Titania Oxygen Sensor	
	Flutes ————————————————————————————————————		_ A1
Anti-seize lubricant ie: (Permatex TM 133AR or equivalent meeting MIL specification MIL-A-		Lubricating oxygen sensor thread cleaning tool when reconditioning exhaust system threads.	A
907)			SI
	NT779		B
			S
			R

Engine Control Component Parts Location


NHEC0009

Engine Control Component Parts Location (Cont'd)

SEC994C

SEC995C

Engine Control Component Parts Location (Cont'd)

GI

MA

EM

LC

EC

FE

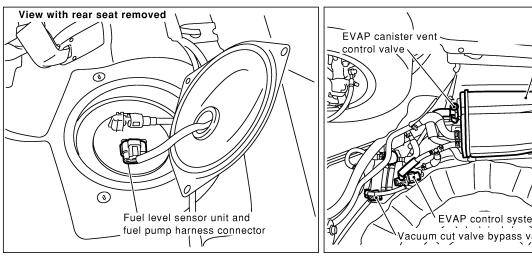
AT

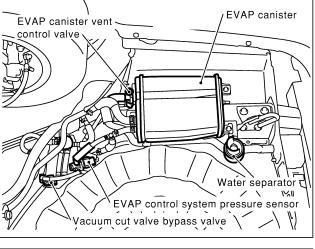
AX

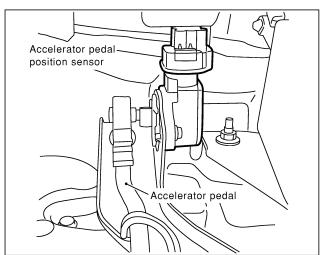
SU

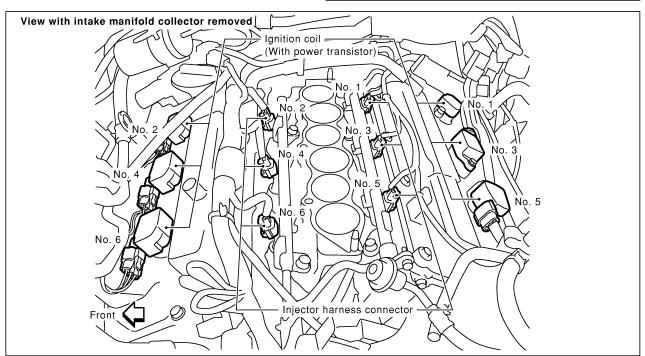
BR

ST

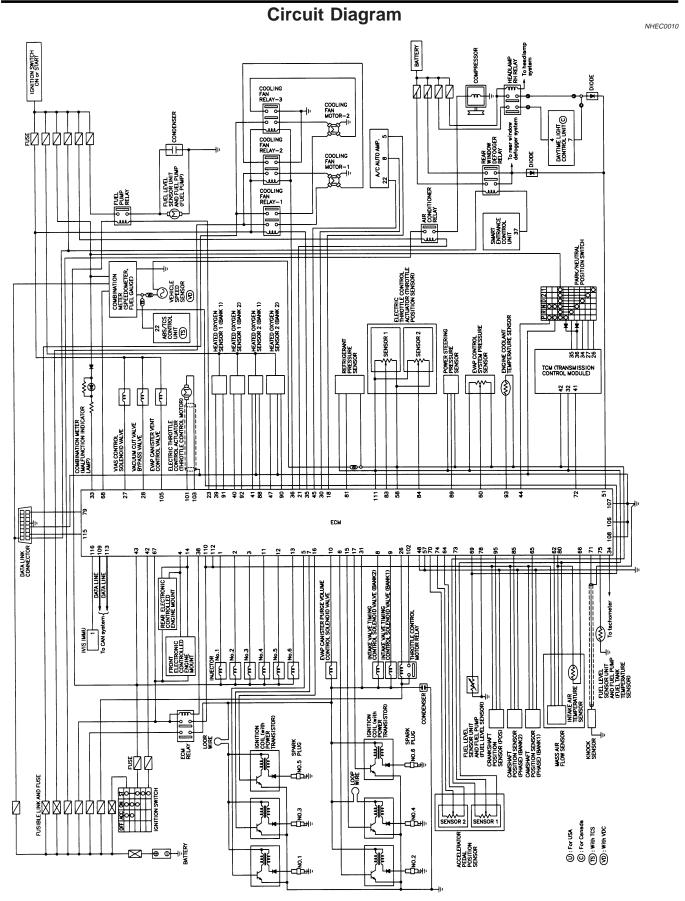

RS

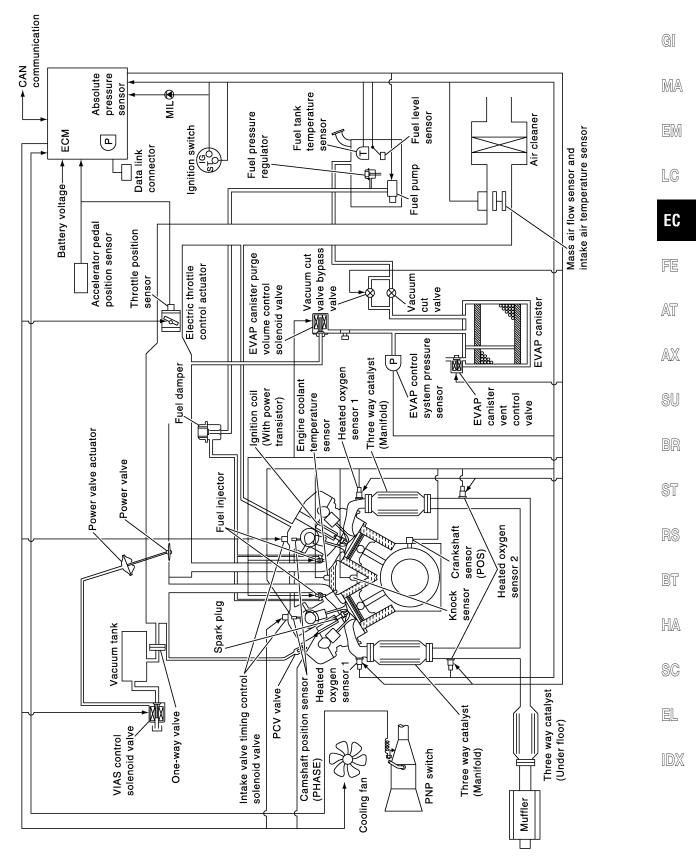

BT


HA


SC

EL

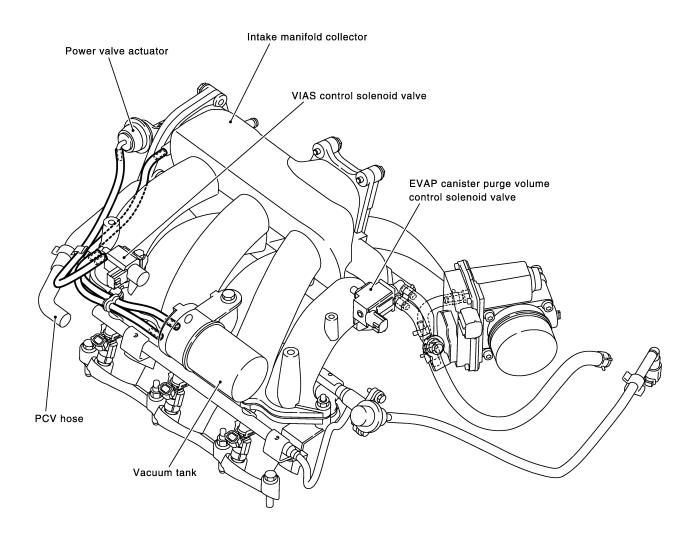




SEC996C

System Diagram

NHEC0011



SEC894C

Vacuum Hose Drawing

Refer to "System Diagram", EC-29 for Vacuum control system.

NHEC0012

NOTE:

Do not use soapy water or any type of solvent while installing vacuum hose or purge hose.

System Chart

GI

MA

EM

LC

EC

FE

AT

AX

SU

BR

ST

RS

BT

HA

SC

EL

System Chart				
Input (Sensor)	ECM Function	Output (Actuator)		
Camshaft position sensor (PHASE) Mass air flow sensor	Fuel injection & mixture ratio control	Injectors		
Engine coolant temperature sensorHeated oxygen sensor 1	Electronic ignition system	Power transistor		
Ignition switchThrottle position sensor	Fuel pump control	Fuel pump relay		
Accelerator pedal position sensorPark/neutral position (PNP) switch	On board diagnostic system	MIL (On the instrument panel)		
Air conditioner switchKnock sensor	ASCD vehicle speed control	Electric throttle control actuator		
Intake air temperature sensorAbsolute pressure sensor	Cooling fan control	Cooling fan relays		
EVAP control system pressure sensor*1Battery voltage	Power valve control	VIAS control solenoid valve		
Power steering pressure sensorVehicle speed (From combination meter)	Heated oxygen sensor 1 heater control	Heated oxygen sensor 1 heater		
Fuel tank temperature sensor*1Crankshaft position sensor (POS)	Heated oxygen sensor 2 heater control	Heated oxygen sensor 2 heater		
 Heated oxygen sensor 2*2 TCM (Transmission control module)*3 Refrigerant pressure sensor 	EVAP canister purge flow control	EVAP canister purge volume control solenoid valve		
Electrical loadFuel level sensor*1	Air conditioning cut control	Air conditioner relay		
ASCD steering switchASCD brake switchStop lamp switch	ON BOARD DIAGNOSIS for EVAP system	EVAP canister vent control valve Vacuum cut valve bypass valve		

^{*1:} These sensors are not used to control the engine system. They are used only for the on board diagnosis.

^{*2:} This sensor is not used to control the engine system under normal conditions.

^{*3:} The signals are sent to the ECM through CAN communication line.

Multiport Fuel Injection (MFI) System

Multiport Fuel Injection (MFI) System

DESCRIPTION Input/Output Signal Chart

NHEC0014

NHECO014SO

		ECM func-	NHEC0014S
Sensor	Input Signal to ECM	tion	Actuator
Crankshaft position sensor (POS)	Engine speed		
Camshaft position sensor (PHASE)	Piston position		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Heated oxygen sensor 1	Density of oxygen in exhaust gas		
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Accelerator pedal position		
Park/neutral position (PNP) switch	Gear position	Fuel injection & mix-	Injectors
Vehicle speed (From combination meter)	Vehicle speed	ture ratio	Injectors
Ignition switch	Start signal		
Air conditioner switch	Air conditioner operation		
Knock sensor	Engine knocking condition		
Battery	Battery voltage		
Absolute pressure sensor	Ambient air barometric pressure		
Power steering pressure sensor	Power steering operation		
Heated oxygen sensor 2*	Density of oxygen in exhaust gas		

^{*:} Under normal conditions, this sensor is not for engine control operation.

Basic Multiport Fuel Injection System

NHEC0014S02

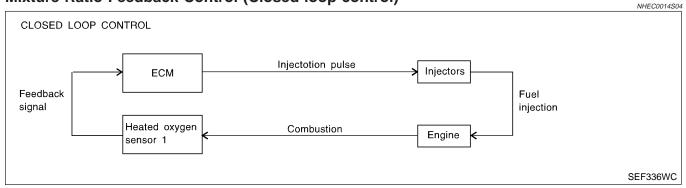
The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from both the crankshaft position sensor and the mass air flow sensor.

Various Fuel Injection Increase/Decrease Compensation

NHEC0014S03

In addition, the amount of fuel injected is compensated to improve engine performance under various operating conditions as listed below.

<Fuel increase>


- During warm-up
- When starting the engine
- During acceleration
- Hot-engine operation
- When selector lever is changed from "N" to "D"
- High-load, high-speed operation

<Fuel decrease>

- During deceleration
- During high engine speed operation

Multiport Fuel Injection (MFI) System (Cont'd)

Mixture Ratio Feedback Control (Closed loop control)

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The warm-up three way catalyst can then better reduce CO, HC and NOx emissions. This system uses a heated oxygen sensor 1 in the exhaust manifold to monitor if the engine operation is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about the heated oxygen sensor 1, refer to EC-234. This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition.

Heated oxygen sensor 2 is located downstream of the three way catalyst (manifold). Even if the switching characteristics of the heated oxygen sensor 1 shift, the air-fuel ratio is controlled to stoichiometric by the signal from the heated oxygen sensor 2.

Open Loop Control

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

- Deceleration and acceleration
- High-load, high-speed operation
- Malfunction of heated oxygen sensor 1 or its circuit
- Insufficient activation of heated oxygen sensor 1 at low engine coolant temperature
- High engine coolant temperature
- During warm-up
- After shifting from "N" to "D"
- When starting the engine

Mixture Ratio Self-learning Control

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from the heated oxygen sensor 1. This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both manufacturing differences (i.e., mass air flow sensor hot wire) and characteristic changes during operation (i.e., injector clogging) directly affect mixture ratio.

Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.

"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short term fuel trim and long term fuel trim.

"Short term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from the heated oxygen sensor 1 indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean.

"Long term fuel trim" is overall fuel compensation carried out long-term to compensate for continual deviation of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences, wear over time and changes in the usage environment.

EC

LC

GI

MA

=[5

AX

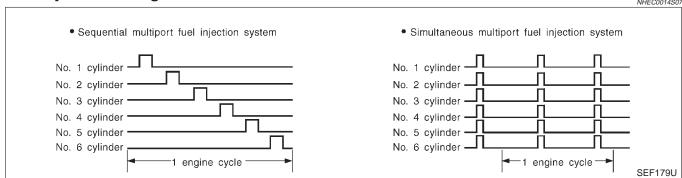
SU

BR

ST

RS

BT HA


SC

EL

Multiport Fuel Injection (MFI) System (Cont'd)

Fuel Injection Timing

NHEC0014S07

Two types of systems are used.

Sequential Multiport Fuel Injection System

NHEC0014S0701

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

Simultaneous Multiport Fuel Injection System

Fuel is injected simultaneously into all six cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.

The six injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

Fuel Shut-off

NHEC0014508

Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.

Electronic Ignition (EI) System

DESCRIPTION Input/Output Signal Chart

NHEC0015

NHFC0015S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator	
Crankshaft position sensor (POS)	Engine speed			
Camshaft position sensor (PHASE)	Piston position			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature]		
Throttle position sensor	Throttle position]	Power transistor	
Accelerator pedal position sensor	Accelerator pedal position	Ignition tim- ing control		
Vehicle speed (From combination meter)	Vehicle speed			
Ignition switch	Start signal			
Knock sensor	Engine knocking			
Park/neutral position (PNP) switch	Gear position			
Battery	Battery voltage			

Electronic Ignition (EI) System (Cont'd)

System Description

NHEC0015S02

MA

LC

The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the engine. The ignition timing data is stored in the ECM. This data forms the map shown.

EC

The ECM receives information such as the injection pulse width and camshaft position sensor signal. Computing this information, ignition signals are transmitted to the power transistor.

N: 1,800 rpm, Tp: 1.50 msec A °BTDC

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.

AT

AX

- At starting
- During warm-up
- At idle
- At low battery voltage
- **During** acceleration

SU

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

Air Conditioning Cut Control

DESCRIPTION Input/Output Signal Chart

NHFC0016

al to FOM	CCM function	A atriotor	
		NHEC0016S01	Ki8

Input Signal to ECM	ECM function	Actuator	
Air conditioner "ON" signal	Air conditioner cut control	Air conditioner relay	BT
Throttle valve opening angle			
Engine speed			HA
Engine coolant temperature			0.0
Start signal			SC
Vehicle speed			
Refrigerant pressure			EL
Power steering operation			. [D)
	Air conditioner "ON" signal Throttle valve opening angle Engine speed Engine coolant temperature Start signal Vehicle speed Refrigerant pressure	Air conditioner "ON" signal Throttle valve opening angle Engine speed Engine coolant temperature Start signal Vehicle speed Refrigerant pressure Air conditioner cut control	Air conditioner "ON" signal Throttle valve opening angle Engine speed Engine coolant temperature Start signal Vehicle speed Refrigerant pressure Air conditioner cut control

System Description

NHEC0016S02

This system improves engine operation when the air conditioner is used. Under the following conditions, the air conditioner is turned off.

- When the accelerator pedal is fully depressed.
- When cranking the engine.
- At high engine speeds.
- When the engine coolant temperature becomes excessively high.
- When operating power steering during low engine speed or low vehicle speed.

Air Conditioning Cut Control (Cont'd)

- When engine speed is excessively low.
- When refrigerant pressure is excessively low or high.

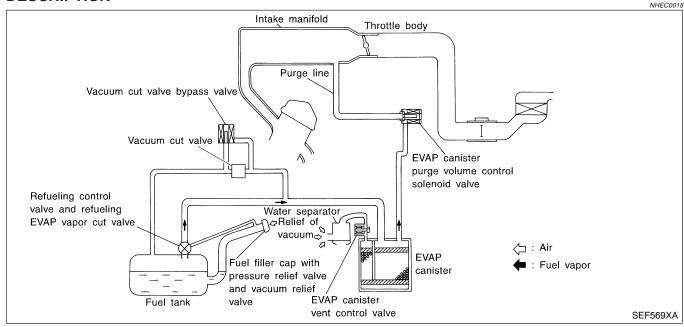
Fuel Cut Control (at no load & high engine speed)

DESCRIPTION Input/Output Signal Chart

NHEC0017

NHEC0017S01

			1111200011001	
Sensor	Input Signal to ECM	ECM func- tion	Actuator	
Vehicle speed (From combination meter)	Vehicle speed			
Park/neutral position (PNP) switch	Neutral position		Injectors	
Throttle position sensor	Throttle position	Fuel cut control		
Engine coolant temperature sensor	Engine coolant temperature			
Crankshaft position sensor (POS)	Engine speed			

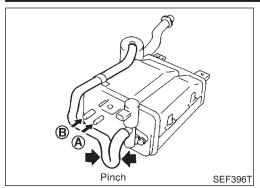

If the engine speed is above 1,800 rpm with no load (for example, in neutral and engine speed over 1,800 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed. Fuel cut will operate until the engine speed reaches 1,500 rpm, then fuel cut is cancelled.

NOTE

This function is different from deceleration control listed under "Multiport Fuel Injection (MFI) System", EC-32.

Evaporative Emission System

DESCRIPTION


The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.

The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the vapor is stored there when the engine is not operating or when refueling to the fuel tank.

The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the engine is operating. EVAP canister purge volume control solenoid valve is controlled by ECM. When the engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is proportionally regulated as the air flow increases.

EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating and idling.

Evaporative Emission System (Cont'd)

SEF397T

Spring

Pressure valve

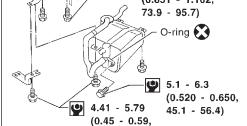
Vacuum valve

INSPECTION EVAP Canister

NHEC0019

NHEC0019S01

Check EVAP canister as follows:


- Pinch the fresh air hose.
- Blow air into port **A** and check that it flows freely out of port **B**.

MA

LC

8.34 - 10.80

39.1 - 51.2)

Plate

Gasket

Tightening Torque

NHEC0019S02

Tighten EVAP canister as shown in the figure.

Make sure new O-ring is installed properly between EVAP canister and EVAP canister vent control valve.

EC

AT

AX

SU

Fuel Tank Vacuum Relief Valve (Built into fuel filler cap)

Wipe clean valve housing.

Check valve opening pressure and vacuum.

Pressure:

15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 - 2.90 psi)

-0.48 psi)

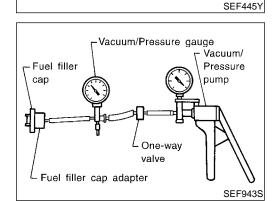
-6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm², -0.87 to

3. If out of specification, replace fuel filler cap as an assembly.

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

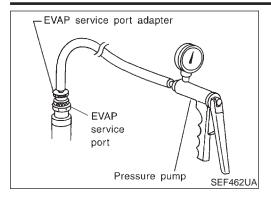
HA

SC

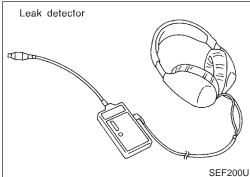

EL

Vacuum Cut Valve and Vacuum Cut Valve Bypass Valve Refer to EC-634.

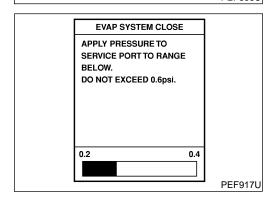
EVAP Canister Purge Volume Control Solenoid Valve Refer to EC-368.


Fuel Tank Temperature Sensor

NHEC0019S06


Refer to EC-279.

Evaporative Emission System (Cont'd)


Evap Service Port

Positive pressure is delivered to the EVAP system through the EVAP service port. If fuel vapor leakage in the EVAP system occurs, use a leak detector to locate the leak.

EVAP SYSTEM CLOSE

APPLY PRESSURE TO EVAP
SYSTEM FROM SERVICE
PORT USING HAND PUMP
WITH PRESSURE GAUGE AT
NEXT SCREEN.
NEVER USE COMPRESSED
AIR OR HIGH PRESSURE
PUMP!
DO NOT START ENGINE.
TOUCH START.

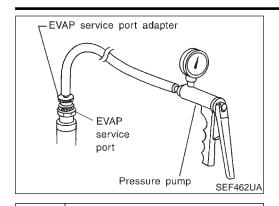
How to Detect Fuel Vapor Leakage

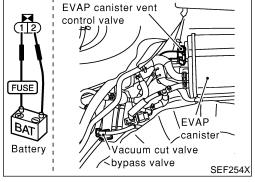
NHEC0019S08

CAUTION:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in EVAP system.

NOTE:


- Do not start engine.
- Improper installation of EVAP service port adapter to the EVAP service port may cause a leak.


(P) With CONSULT-II

NHEC0019S080

- 1) Attach the EVAP service port adapter securely to the EVAP service port.
- Also attach the pressure pump and hose to the EVAP service port adapter.
- 3) Turn ignition switch "ON".
- 4) Select the "EVAP SYSTEM CLOSE" of "WORK SUPPORT MODE" with CONSULT-II.
- 5) Touch "START". A bar graph (Pressure indicating display) will appear on the screen.
- Apply positive pressure to the EVAP system until the pressure indicator reaches the middle of the bar graph.
- 7) Remove EVAP service port adapter and hose with pressure pump.
- Locate the leak using a leak detector. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-40.

Evaporative Emission System (Cont'd)

⋈ Without CONSULT-II

- Attach the EVAP service port adapter securely to the EVAP service port.
- Also attach the pressure pump with pressure gauge to the EVAP service port adapter.
- Apply battery voltage to between the terminals of both EVAP canister vent control valve and vacuum cut valve bypass valve to make a closed EVAP system.
- To locate the leak, deliver positive pressure to the EVAP system until pressure gauge points reach 1.38 to 2.76 kPa (0.014 to 0.028 kg/cm², 0.2 to 0.4 psi).
- Remove EVAP service port adapter and hose with pressure pump.
- Locate the leak using a leak detector. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-40.

MA

LC

EC

FE

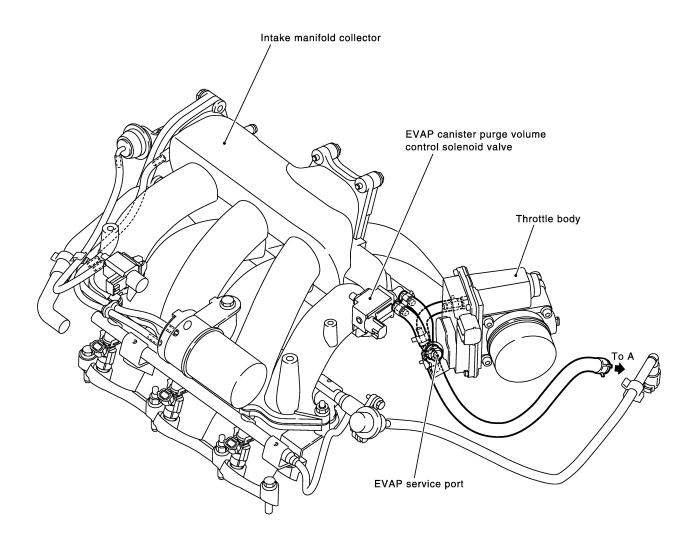
AT

AX

SU

ST

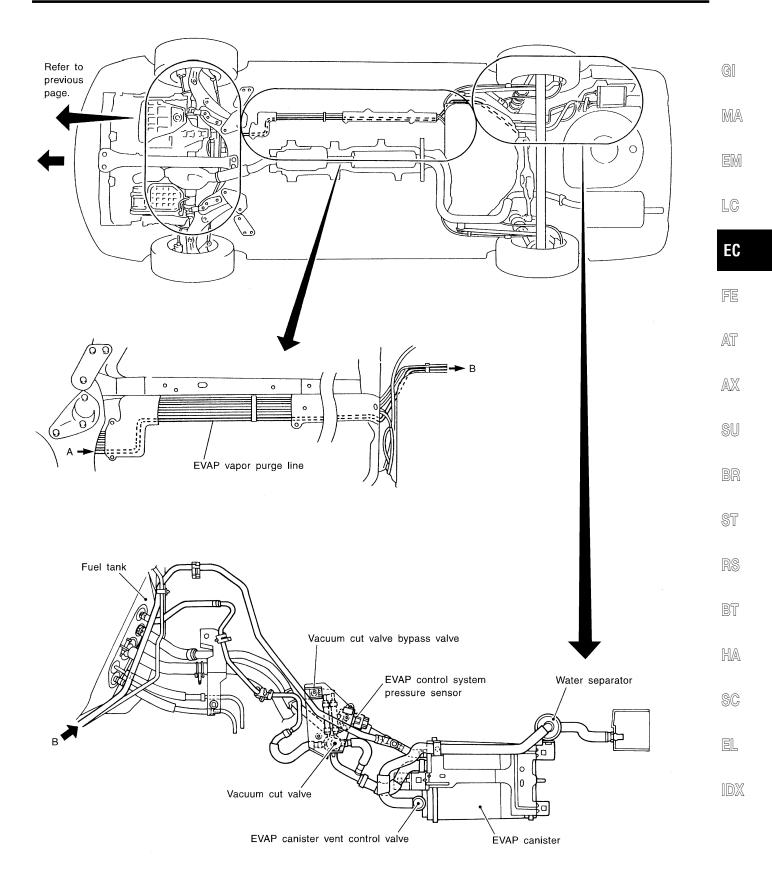
BT


HA

SC

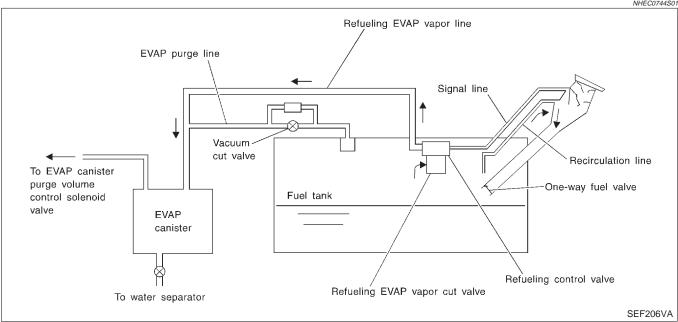
EL

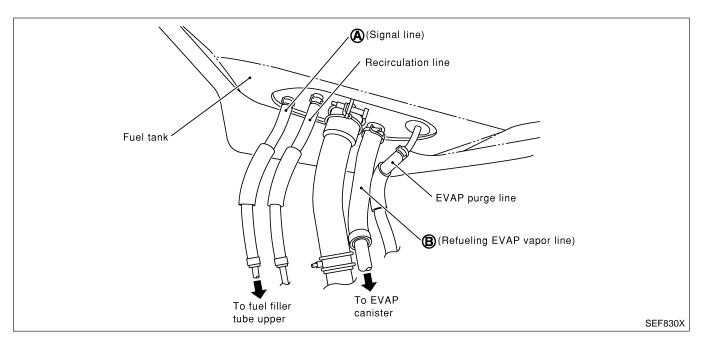
EVAPORATIVE EMISSION LINE DRAWING


NHEC0020

NOTE

Do not use soapy water or any type of solvent while installing vacuum hose or purge hose.


Evaporative Emission System (Cont'd)



SEF253XA

On Board Refueling Vapor Recovery (ORVR)

SYSTEM DESCRIPTION

From the beginning of refueling, the fuel tank pressure goes up. When the pressure reaches the setting value of the refueling control valve (RCV) opening pressure, the RCV is opened. After RCV opens, the air and vapor inside the fuel tank go through refueling EVAP vapor cut valve, RCV and refueling vapor line to the EVAP canister. The vapor is absorbed by the EVAP canister and the air is released to the atmosphere.

When the refueling has reached the full level of the fuel tank, the refueling EVAP vapor cut valve is closed and refueling is stopped because of auto shut-off. The vapor which was absorbed by the EVAP canister is purged during driving.

The RCV is always closed during driving and the evaporative emission control system is operated the same as conventional system.

WARNING.

When conducting inspections below, be sure to observe the following:

- Put a "CAUTION: INFLAMMABLE" sign in workshop.
- Do not smoke while servicing fuel system. Keep open flames and sparks away from work area.
- Be sure to furnish the workshop with a CO₂ fire extinguisher.

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CAUTION:

- Before removing fuel line parts, carry out the following procedures:
- a) Put drained fuel in an explosion-proof container and put lid on securely.
- b) Release fuel pressure from fuel line. Refer to "Fuel Pressure Release", EC-56.
- c) Disconnect battery ground cable.
- Always replace O-ring when the fuel gauge retainer is removed.
- Do not kink or twist hose and tube when they are installed.
- Do not tighten hose and clamps excessively to avoid damaging hoses.
- After installation, run engine and check for fuel leaks at connection.
- Do not attempt to top off the fuel tank after the fuel pump nozzle shuts off automatically. Continued refueling may cause fuel overflow, resulting in fuel spray and possibly a fire.

DIAGNOSTIC PROCEDURE

Symptom: Fuel Odor from EVAP Canister Is Strong.

NHEC0744S02

GI

MA

LC

EC

AT

AX

SU

ST

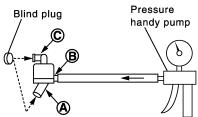
HA

SC

EL

1	1 CHECK EVAP CANISTER				
Remove EVAP canister with EVAP canister vent control valve attached. Weigh the EVAP canister with EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).					
	OK or NG				
OK	OK • GO TO 2.				
NG	NG GO TO 3.				

2	CHECK IF EVAP CA	NISTER SATURATED WITH WATER	
Does	s water drain from the E	'AP canister?	
		EVAP canister Water vent control valve	SEF596U
		Yes or No	
Yes	•	GO TO 3.	
No (\	With CONSULT-II)	GO TO 6.	
No (\	Without CONSULT-	GO TO 7.	


3	REPLACE EVAP CANISTER		
Replac	Replace EVAP canister with a new one.		
▶ GO TO 4.		GO TO 4.	

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CHECK WATER SEPARATOR

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that A and C are not clogged by blowing air into B with A, and then C plugged.

GO TO 5.

* (A) : Bottom hole (To atmosphere)

(B): Emergency tube (From EVAP canister)

(C): Inlet port (To member)

PBIB1032E

5. In case of NG in items 2 - 4, replace the parts.

NOTE:

OK

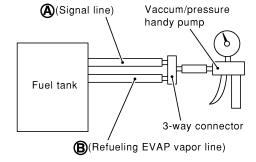
• Do not disassemble water separator.

OK	or	NG
----	----	----

NG	>	Replace water separator.
5	DETECT MALFUNCTIONING PART	

5	DETECT MALFUNCTIONING PART		
Check the EVAP hose between EVAP canister and water separator for clogging or poor connection.			
	Repair or replace EVAP hose.		

On Board Refueling Vapor Recovery (ORVR) (Cont'd)


CHECK REFUELING EVAP VAPOR CUT VALVE

With CONSULT-II

- 1. Remove fuel tank. Refer to FE-4, "FUEL SYSTEM".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel feed hose located on the fuel gauge retainer.
- b. Connect a spare fuel hose, one side to fuel gauge retainer where the hose was removed and the other side to a fuel container.
- c. Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.
 - Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

SEF968X

OK or NG		
ОК	•	GO TO 8.
NG	•	Replace refueling EVAP vapor cut valve with fuel tank.

GI

MA

LC

EC

FE

AT

AX

SU

BR

ST

D@

BT

HA

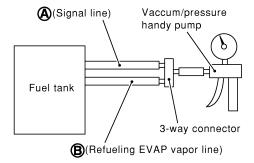
SC

EL

DW.

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CHECK REFUELING EVAP VAPOR CUT VALVE


⋈ Without CONSULT-II

- 1. Remove fuel tank. Refer to FE-4, "FUEL SYSTEM".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel gauge retainer.
- b. Drain fuel from the tank using a hand pump into a fuel container.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.

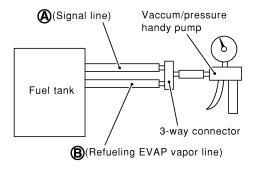
 Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

SEF968X

OK or NG

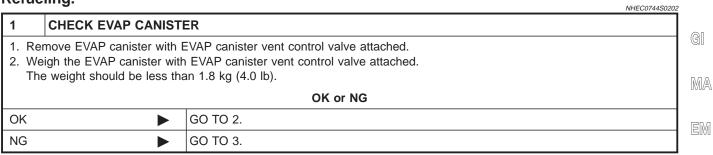

OK •	GO TO 8.	
NG ►	Replace refueling EVAP vapor cut valve with fuel tank.	

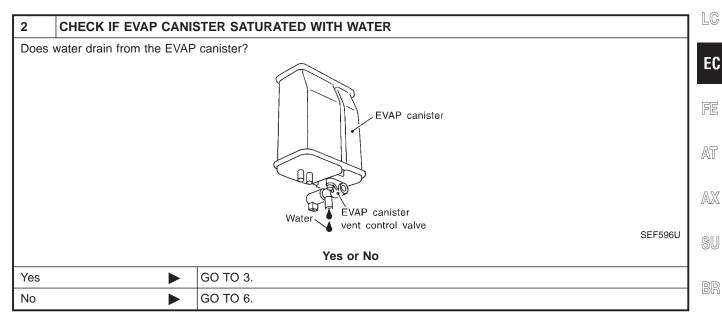
8 CHECK REFUELING CONTROL VALVE

- 1. Remove fuel filler cap.
- 2. Check air continuity between hose ends A and B.

Blow air into the hose end B. Air should flow freely into the fuel tank.

- 3. Blow air into hose end A and check there is no leakage.
- 4. Apply pressure to both hose ends A and B [20 kPa (150 mmHg, 5.91 inHg)] using a pressure pump and a suitable 3-way connector. Check that there is no leakage.


SEF968X


OK or NG

OK •	INSPECTION END	
NG ►	Replace refueling control valve with fuel tank.	

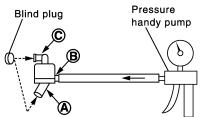
On Board Refueling Vapor Recovery (ORVR) (Cont'd)

Symptom: Cannot Refuel/Fuel Odor From The Fuel Filler Opening Is Strong While Refueling.

3	REPLACE EVAP CANISTER		
Replace EVAP canister with a new one.			
	>	GO TO 4.	

BT

HA


SC

EL

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CHECK WATER SEPARATOR

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that A and C are not clogged by blowing air into B with A, and then C plugged.

* (A) : Bottom hole (To atmosphere)

(B): Emergency tube (From EVAP canister)

(C): Inlet port (To member)

PBIB1032E

5. In case of NG in items 2 - 4, replace the parts.

NOTE:

• Do not disassemble water separator.

О	Κ	or	Ν	G
---	---	----	---	---

ОК	>	GO TO 5.
NG		Replace water separator.

5	DETECT MALFUNCTIONING PART		
Check	Check the EVAP hose between EVAP canister and water separator for clogging or poor connection.		
	Repair or replace EVAP hose.		

6	CHECK VENT HOSES AND VENT TUBES				
	Check hoses and tubes between EVAP canister and refueling control valve for clogging, kink, looseness and improper connection. OK or NG				
	OK OF NO				
OK	OK ► GO TO 7.				
		Repair or replace hoses and tubes.			

7	7 CHECK FILLER NECK TUBE			
Check signal line and recirculation line for clogging, dents and cracks.				
OK or NG				
ОК	OK ▶ GO TO 8.			
NG	•	Replace filler neck tube.		

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CHECK REFUELING CONTROL VALVE 1. Remove fuel filler cap. 2. Check air continuity between hose ends A and B. Blow air into the hose end B. Air should flow freely into the fuel tank. 3. Blow air into hose end A and check there is no leakage. 4. Apply pressure to both hose ends A and B [20 kPa (150 mmHg, 5.91 inHg)] using a pressure pump and a suitable 3-way connector. Check that there is no leakage. (Signal line) Vaccum/pressure handy pump Fuel tank 3-way connector (Refueling EVAP vapor line) SEF968X OK or NG OK (With CONSULT-II) GO TO 9.

9 CHECK REFUELING EVAP VAPOR CUT VALVE

With CONSULT-II

OK (Without CONSULT-

II)

NG

- 1. Remove fuel tank. Refer to FE-4, "FUEL SYSTEM".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel feed hose located on the fuel gauge retainer.
- b. Connect a spare fuel hose, one side to fuel gauge retainer where the hose was removed and the other side to a fuel container.
- c. Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-II.

GO TO 10.

3. Check refueling EVAP vapor cut valve for being stuck to close as follows.

Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.

Replace refueling control valve with fuel tank.

- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

SEF968X

OK or NG		
OK ►	GO TO 11.	
NG ►	Replace refueling EVAP vapor cut valve with fuel tank.	

EC-49

GI

MA

LC

C

FE

AT

SU

IU100

BT

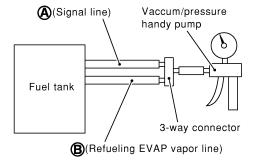
HA

SC

EL

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CHECK REFUELING EVAP VAPOR CUT VALVE


Without CONSULT-II

- 1. Remove fuel tank. Refer to FE-4, "FUEL SYSTEM".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel gauge retainer.
- b. Drain fuel from the tank using a hand pump into a fuel container.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.

 Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

SEF968X

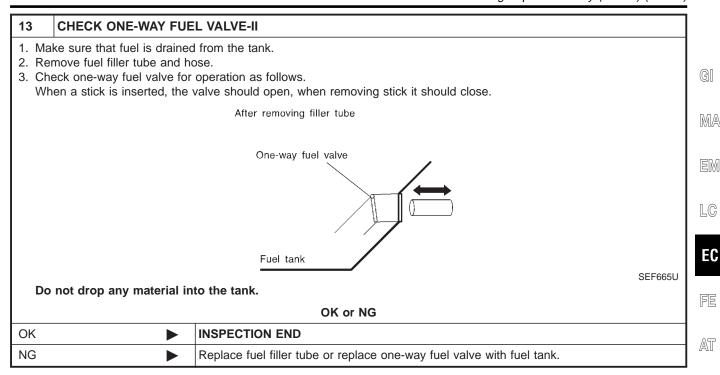
\sim	.,			_
()	ĸ	or	N	

OK •	GO TO 11.
NG ▶	Replace refueling EVAP vapor cut valve with fuel tank.

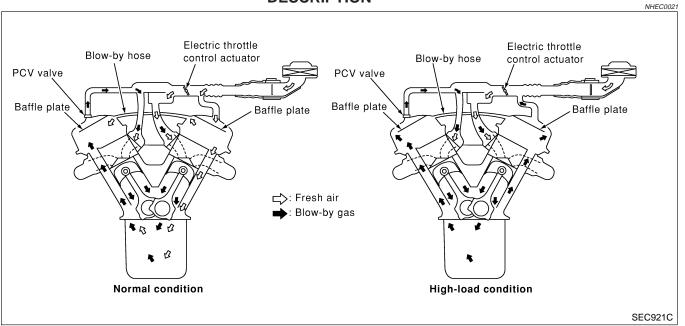
11	CHECK FUEL FILLER 1	ГИВЕ			
Check filler neck tube and hose connected to the fuel tank for clogging, dents and cracks.					
	OK or NG				
ОК	OK ▶ GO TO 12.				
NG	•	Replace fuel filler tube.			

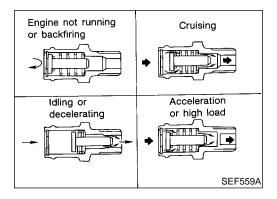
12	2 CHECK ONE-WAY FUEL VALVE-I			
Check one-way valve for clogging.				
	OK or NG			
ОК	OK ▶ GO TO 13.			
NG	NG Repair or replace one-way fuel valve with fuel tank.			

On Board Refueling Vapor Recovery (ORVR) (Cont'd)


AX

BT


HA


SC

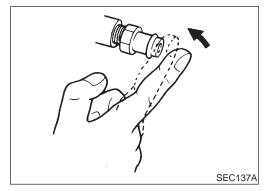
EL

Positive Crankcase Ventilation DESCRIPTION

This system returns blow-by gas to the intake manifold.

The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake manifold.

During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve.

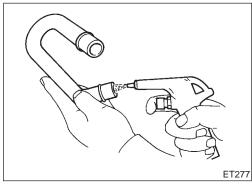

Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air.

The ventilating air is then drawn from the air inlet tubes into the crankcase. In this process the air passes through the hose connecting air inlet tubes to rocker cover.

Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve. The flow goes through the

hose connection in the reverse direction.

On vehicles with an excessively high blow-by, the valve does not meet the requirement. This is because some of the flow will go through the hose connection to the air inlet tubes under all conditions.



INSPECTION

PCV (Positive Crankcase Ventilation) Valve

NHEC0022

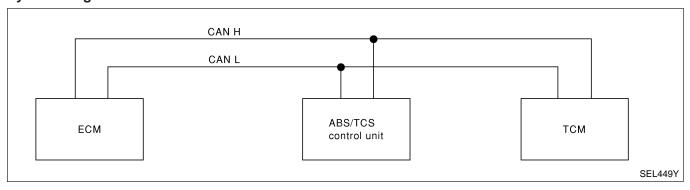
With engine running at idle, remove PCV valve from rocker cover. A properly working valve makes a hissing noise as air passes through it. A strong vacuum should be felt immediately when a finger is placed over valve inlet.

PCV Valve Ventilation Hose

NHEC0022502

- 1. Check hoses and hose connections for leaks.
- 2. Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.

CAN Communication


SYSTEM DESCRIPTION

NHEC1183

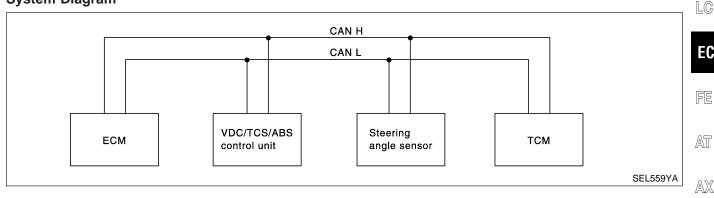
CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

For TCS Models System Diagram

NHEC1183S0102

CAN Communication (Cont'd)

Input/Output Signal Chart T: Transmit R: Receive


Signals	ECM	ABS/TCS control unit	TCM
Accelerator pedal position signal	Т	R	R
Output shaft revolution signal	R		Т
TCS self-diagnostic signal	R	Т	
ABS self-diagnostic signal	R	Т	

MA

For VDC Models **System Diagram**

EC

FE

AT

AX

Input/output Signal Chart T: Transmit R: Receive

@	ΠN
(6)	(U)
\sim	$\overline{}$

Signals	ECM	Steering angle sen- sor	VDC/TCS/ABS con- trol unit	ТСМ
Output shaft revolution signal	R			Т
VDC/TCS self-diagnostic signal	R		Т	
ABS self-diagnostic signal	R		Т	
Engine speed signal	Т		R	
Accelerator pedal position signal	Т		R	R
Steering angle sensor signal		Т	R	

BR

ST

RS

BT

Automatic Speed Control Device (ASCD) System

HA

DESCRIPTION Input/Output Signal Chart

TCM

NHEC1184

NHEC1184S01

Sensor Input signal to ECM		ECM function	Actuator	
ASCD brake switch	Brake pedal operation			
Stop lamp switch	Brake pedal operation		Electric throttle control actuator	
ASCD steering switch	ASCD steering switch operation	ASCD vehicle speed		
Park/Neutral position (PNP) switch	Gear position	control		
Combination meter Vehicle speed				

Power train revolution

Automatic Speed Control Device (ASCD) System (Cont'd)

Basic ASCD System

Refer to Owner's Manual for ASCD operating instructions.

NHEC1184S02

Automatic Speed Control Device (ASCD) allows a driver to keep vehicle at predetermined constant speed without depressing accelerator pedal. Driver can set vehicle speed in advance between approximately 40 km/h (25 MPH) and 144 km/h (89 MPH).

ECM controls throttle valve operating angle of electric throttle control actuator to regulate engine speed. Operation status of ASCD is indicated by CRUISE indicator and SET indicator in combination meter. If any malfunction occurs in ASCD system, it automatically deactivates control.

Set Operation

NHEC1184S0

Press ASCD CRUISE switch (Main switch). (Then CRUISE indicator in combination meter illuminates.)
When vehicle speed reaches a desired speed between approximately 40 km/h (25 MPH) and 144 km/h (89 MPH), press SET switch. (Then SET indicator in combination meter illuminates.)

Accel Operation

NHEC1184S04

If the RESUME/ACCEL switch is depressed during cruise control driving, increase the vehicle speed until the switch is released or vehicle speed reaches maximum speed controlled by the system. And then ASCD will keep the new set speed.

Cancel Operation

NHEC1184S05

When any of following conditions exist, cruise operation will be canceled.

- CANCEL switch is depressed.
- Brake pedal is depressed.
- A/T selector lever is shifted to P or N position.

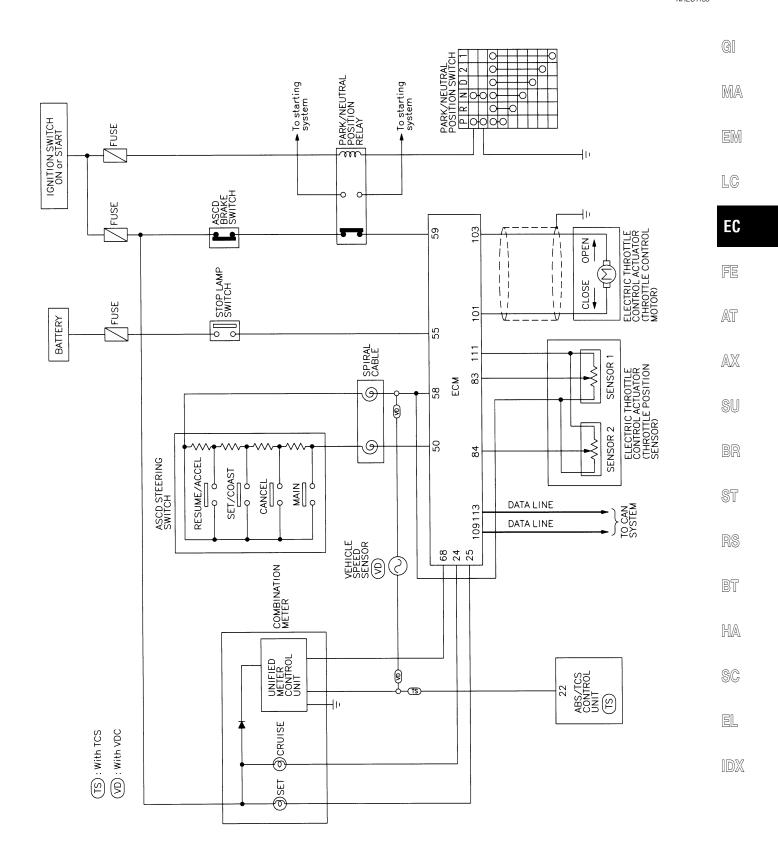
If MAIN switch is turned to OFF while ASCD is activated, all of ASCD operations will be canceled and vehicle speed memory will be erased.

Coast Operation

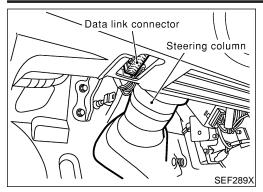
NHEC1184S06

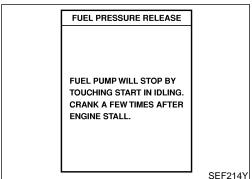
When the SET/COAST switch is depressed during cruise control driving, decrease vehicle set speed until the switch is released. And then ASCD will keep the new set speed.

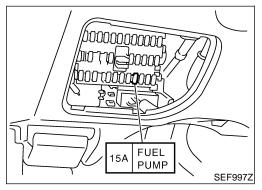
Resume Operation

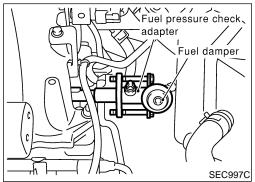

NHEC1184S0

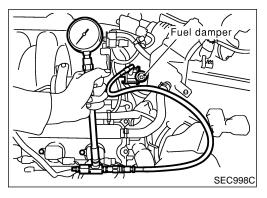
When the RESUME/ACCEL switch is depressed after cancel operation other than depressing MAIN switch is performed, vehicle speed will return to last set speed. To resume vehicle set speed, vehicle condition must meet following conditions.


- Brake pedal is released.
- A/T selector lever is in other than P and N position.
- Vehicle speed is greater than 40 km/h (25 MPH) and 144 km/h (89 MPH).


Automatic Speed Control Device (ASCD) System (Cont'd)


SYSTEM DIAGRAM




MEC892D

Fuel Pressure Release

Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger.

(P) WITH CONSULT-II

NHEC0023S01

- 1. Turn ignition switch "ON".
- Perform "FUEL PRESSURE RELEASE" in "WORK SUP-PORT" mode with CONSULT-II.
- Start engine.
- 4. After engine stalls, crank it two or three times to release all fuel pressure.
- 5. Turn ignition switch "OFF".

® WITHOUT CONSULT-II

NHFC0023S02

- Remove fuel pump fuse located in fuse box.
- Start engine.
- After engine stalls, crank it two or three times to release all fuel pressure.
- 4. Turn ignition switch "OFF".
- 5. Reinstall fuel pump fuse after servicing fuel system.

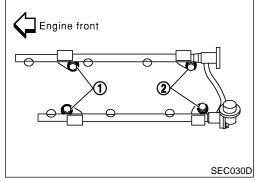
Fuel Pressure Check

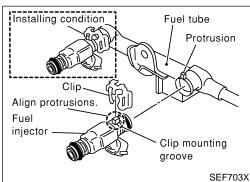
NHEC0024

- When reconnecting fuel line, always use new clamps.
- Make sure that clamp screw does not contact adjacent parts.
- Use a torque driver to tighten clamps.
- Use Pressure Gauge to check fuel pressure.
- 1. Release fuel pressure to zero.
- Disconnect fuel tube joint between fuel damper and injector tube and set fuel pressure check adapter (J44321).
- 3. Install pressure gauge to the fuel pressure check adapter as shown in the figure.
- Start engine and check for fuel leakage.
- Read the indication of fuel pressure gauge.

At idling: Approximately 350 kPa (3.57 kg/cm², 51 psi)

- 6. If results are unsatisfactory, go to next step.
- 7. Check the following.
- Fuel hoses and fuel tubes for clogging
- Fuel filter for clogging
- Fuel pump


Fuel pressure regulator for clogging If OK, replace fuel pressure regulator. If NG, repair or replace.



MA

EM

LC

Injector **REMOVAL AND INSTALLATION**

NHEC0026

Release fuel pressure to zero.

- Remove intake manifold collector. Refer to EM-21, "TIMING CHAIN".
- Remove fuel tube assemblies in numerical sequence as shown in the figure at left.
- Expand and remove clips securing fuel injectors.
- 5. Extract fuel injectors straight from fuel tubes.
- Be careful not to damage injector nozzles during removal.
- Do not bump or drop fuel injectors.
- Carefully install O-rings.
- Lubricate O-rings with a smear of engine oil.
- Be careful not to damage O-rings with service tools, finger nails or clips. Do not expand or twist O-rings.
- Discard old clips; replace with new ones.
- 7. Position clips in grooves on fuel injectors.
- Make sure that protrusions of fuel injectors are aligned with cutouts of clips after installation.

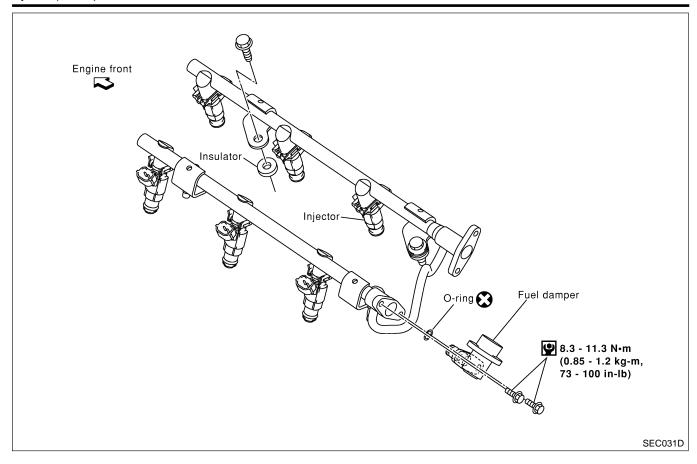
AT

EC

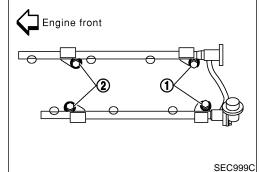
AX

SU

BR


ST

BT


HA

SC

EL

- 8. Align protrusions of fuel tubes with those of fuel injectors. Insert fuel injectors straight into fuel tubes.
- After properly inserting fuel injectors, check to make sure that fuel tube protrusions are engaged with those of fuel injectors, and that flanges of fuel tubes are engaged with clips.

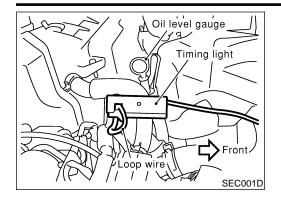
DATA MONITOR
MONITOR
NO DTC
ENG SPEED XXX rpm

SEF058Y

10. Tighten fuel tube assembly mounting nuts in numerical sequence (indicated in the figure at left) and in two stages.

11. Install all parts removed in reverse order of removal.

CAUTION:


After properly connecting fuel tube assembly to injector and fuel hose, check connection for fuel leakage.

How to Check Idle Speed and Ignition Timing IDLE SPEED

Using CONSULT-II

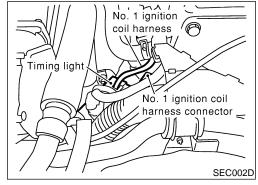
Check idle speed in "DATA MONITOR" mode with CONSULT-II.

How to Check Idle Speed and Ignition Timing (Cont'd)

IGNITION TIMING

Any of following two methods may be used.

- Method A
- a) Attach timing light to loop wire as shown.
- b) Check ignition timing.



NHEC0607S02

MA

EM

LC

Method B

a) Attach timing light to No. 1 ignition coil harness as shown.

EC

AT

Check ignition timing.

SU

BR

ST

0 1

BT

HA

SC

EL

NHEC0028

NHEC0028S01

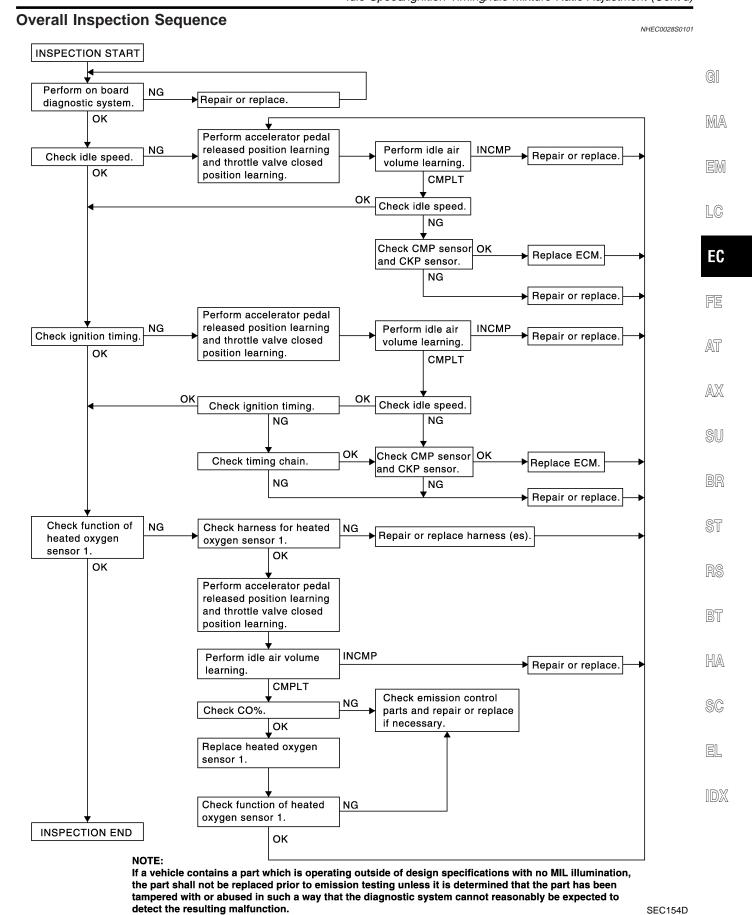
Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment

1) Make sure that the following parts are in good order.

Timing indicator

SEC004D

Battery

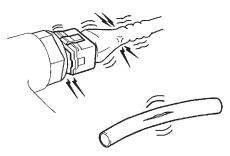

Ignition system

PREPARATION

- Engine oil and coolant levels
- Fuses
- ECM harness connector
- Vacuum hoses
- Air intake system (Oil filler cap, oil level gauge, etc.)
- Fuel pressure
- Engine compression
- Throttle valve
- Evaporative emission system
- 2) On air conditioner equipped models, checks should be carried out while the air conditioner is "OFF".
- 3) On automatic transmission equipped models, when checking idle rpm, ignition timing and mixture ratio, checks should be carried out while shift lever is in "N" position.
- 4) When measuring "CO" percentage, insert probe more than 40 cm (15.7 in) into tail pipe.
- 5) Turn off headlamps, heater blower, rear defogger.

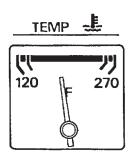
Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

- 6) Keep front wheels pointed straight ahead.
- 7) Make the check after the cooling fan has stopped.


Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

INSPECTION PROCEDURE

=NHEC0028S02


1 INSPECTION START

- 1. Check service records for any recent repairs that may indicate a related malfunction, or a current need for scheduled maintenance.
- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Wiring harness for improper connections, pinches and cut
- Vacuum hoses for splits, kinks and improper connections
- Hoses and ducts for leaks
- Air cleaner clogging
- Gasket

SEF983U

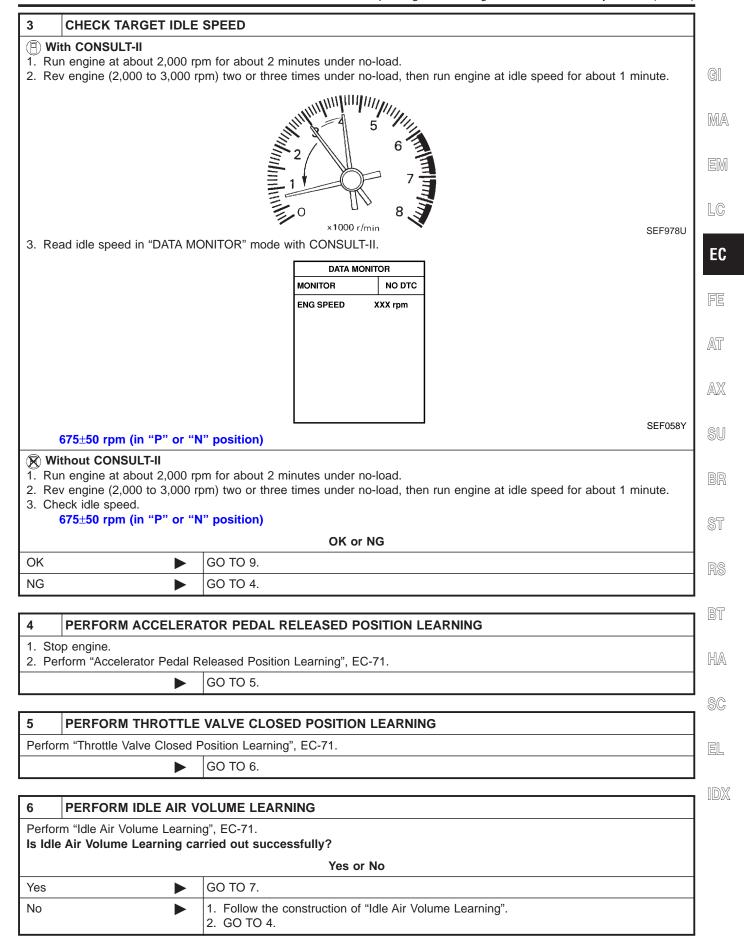
- 3. Confirm that electrical or mechanical loads are not applied.
- Headlamp switch is OFF.
- Air conditioner switch is OFF.
- Rear window defogger switch is OFF.
- Steering wheel is in the straight-ahead position, etc.
- 4. Start engine and warm it up until engine coolant temperature indicator points the middle of gauge. Ensure engine stays below 1,000 rpm.

SEF976U

5. Run engine at about 2,000 rpm for about 2 minutes under no-load.

SEF977U

6. Make sure that no DTC is displayed with CONSULT-II or GST.


OK	or	NG
----	----	----

OK •	GO TO 3.
NG ►	GO TO 2.

2 REPAIR OR REPLACE Repair or replace components as necessary according to corresponding "Diagnostic Procedure".

GO TO 3.

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

GO TO 8.

NG

7 CHECK TARGET IDLE SPEED AGAIN (a) With CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II. 675±50 rpm (in "P" or "N" position) (a) Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Check idle speed. 675±50 rpm (in "P" or "N" position) OK or NG OK

8	DETECT MALFUNCTIONING PART	
Check the following. • Check camshaft position sensor (PHASE) and circuit. Refer to "DTC P0340, P0345 CMP SENSOR (PHASE)", EC-329. • Check crankshaft position sensor (POS) and circuit. Refer to "DTC P0335 CKP SENSOR (POS)", EC-322.		
OK or NG		
OK	•	GO TO 9.
NG	>	 Repair or replace. GO TO 4.

9	CHECK ECM FUNCTIO	N
rare 2. Pei	 Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is the rarely the case.) Perform initialization of IVIS (NATS) system and registration of IVIS (NATS) ignition key IDs. Refer to IVIS (INFINITI VEHICLE IMMOBILIZER SYSTEM — NATS)", EC-90. 	
	•	GO TO 4.

10	CHECK IGNITION TIME	NG	
2. Ch	 Run engine at idle. Check ignition timing with a timing light. 15°±5° BTDC (in "P" or "N" position) 		
	OK or NG		
OK (W	/ith CONSULT-II)	GO TO 19.	
OK (W	/ithout CONSULT-	GO TO 20.	
NG	>	GO TO 11.	

11	PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING		
	Stop engine. Perform "Accelerator Pedal Released Position Learning", EC-71.		
	▶ GO TO 12.		

1	12 PERFORM THROTTLE VALVE CLOSED POSITION LEARNING		
Р	Perform "Throttle Valve Closed Position Learning", EC-71.		
	▶ GO TO 13.		

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

13 PERFORM IDLE A	R VOLUME LEARNING	<u> </u>
Perform "Idle Air Volume Le	arning", EC-71.	1
	g carried out successfully?	
	Yes or No	
Yes	► GO TO 14.	-
No	1. Follow the construction of "Idle Air Volume Learning".2. GO TO 4.	
14 CHECK TARGET II	DLE SPEED AGAIN]
	up to normal operating temperature. A MONITOR" mode with CONSULT-II. or "N" position)	
Without CONSULT-II 1. Start engine and warm it 2. Check idle speed. 675±50 rpm (in "P" of	up to normal operating temperature.	
o.o.oo ipiii (iii i	OK or NG	
OK I	► GO TO 15.	-
NG I	GO TO 17.	+
,		
 Check ignition timing with 15°±5° BTDC (in "P" 		
, ,	► GO TO 19.	_ [
OK (Without CONSULT- II)	► GO TO 20.	
NG J	► GO TO 16.	
		7
	HAIN INSTALLATION	[
Check timing chain installati	on. Refer to EM-21, "TIMING CHAIN".	
OK I	OK or NG GO TO 17.] [
NG I	1. Repair the timing chain installation.	(
	2. GO TO 4.	╛
17 DETECT MALFUNG	CTIONING PART	
	sensor (PHASE) and circuit. Refer to "DTC P0340, P0345 CMP SENSOR (PHASE)", EC-329. a sensor (POS) and circuit. Refer to "DTC P0335 CKP SENSOR (POS)", EC-322.	
	OK or NG	
OK J	► GO TO 18.	
NG J	1. Repair or replace.2. GO TO 4.	
		_

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

18 CHECK ECM FUNCTION

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is the rarely the case.)
- 2. Perform initialization of IVIS (NATS) system and registration of IVIS (NATS) ignition key IDs. Refer to "IVIS (INFINITI VEHICLE IMMOBILIZER SYSTEM NATS)", EC-90.

■ GO TO 4.

19 CHECK HEATED OXYGEN SENSOR 1 (BANK 1) SIGNAL

(P) With CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. See "HO2S1 MNTR (B1)" in "DATA MONITOR" mode.
- 3. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the monitor fluctuates between LEAN and RICH more than 5 times during 10 seconds.

DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED) HO2S1 MNTR (B1) HO2S1 MNTR (B2)	(XX rpm LEAN RICH	

PBIB0120E

1 time: RICH \rightarrow LEAN \rightarrow RICH

2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

OK or NG

OK •	>	GO TO 21.
NG (Monitor does not fluctuate.)	•	GO TO 23.
NG (Monitor fluctuates less than 5 times.)	•	GO TO 30.

20 CHECK HEATED OXYGEN SENSOR 1 (BANK 1) SIGNAL

Without CONSULT-II

- 1. Stop engine and set ECM to Self-diagnostic mode II (Heated oxygen sensor 1 monitor). Refer to "HOW TO SWITCH DIAGNOSTIC TEST MODE", EC-92.
- 2. Start engine and run it at about 2,000 rpm for about 2 minutes under no-load.
- 3. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the MIL comes on more than 5 times during 10 seconds.

OK or NG

OK	>	GO TO 22.
NG (MIL does not come on)	•	GO TO 23.
NG (MIL comes on less than 5 times)	>	GO TO 30.

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

CHECK HEATED OXYGEN SENSOR 1 (BANK 2) SIGNAL

(P) With CONSULT-II

- 1. See "HO2S1 MNTR (B2)" in "DATA MONITOR" mode.
- 2. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the monitor fluctuates between LEAN and RICH more than 5 times during 10 seconds.

DATA MONITOR			
MONITOR	NO DTC		
ENG SPEED 2 HO2S1 MNTR (B1)	XXX rpm LEAN		
HO2S1 MNTR (B2)	RICH		

PBIB0120E

1 time: RICH \rightarrow LEAN \rightarrow RICH

2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

OK or NG

ОК		INSPECTION END
NG (Monitor does not fluctuate.)	>	GO TO 24.
NG (Monitor fluctuates less than 5 times.)	>	GO TO 31.

22 CHECK HEATED OXYGEN SENSOR 1 (BANK 2) SIGNAL

Without CONSULT-II

- 1. Switch the monitored sensor from bank 1 to bank 2. Refer to "How to Switch Monitored Sensor from Bank 1 to Bank 2 or Vice Versa", EC-92.
- 2. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the MIL comes on more than 5 times during 10 seconds.

OK or NG

ОК		INSPECTION END
NG (MIL does not come on)	>	GO TO 24.
NG (MIL comes on less than 5 times)	•	GO TO 31.

CHECK HEATED OXYGEN SENSOR 1 (BANK 1) HARNESS

- 1. Turn ignition switch "OFF" and disconnect battery ground cable.
- 2. Disconnect ECM harness connector.
- 3. Disconnect heated oxygen sensor 1 (bank 1) harness connector.
- 4. Check harness continuity between ECM terminal 91 and heated oxygen sensor 1 (bank 1) terminal 1. Refer to "Wiring Diagram", EC-237

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 25.
•	 Repair or replace harness between ECM and heated oxygen sensor 1 (bank 1). GO TO 4.

MA

LC

EC

AT

AX

SU

HA

EL

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

24 CHECK HEATED OXYGEN SENSOR 1 (BANK 2) HARNESS

- 1. Turn ignition switch "OFF" and disconnect battery ground cable.
- 2. Disconnect ECM harness connector.
- 3. Disconnect heated oxygen sensor 1 (bank 2) harness connector.
- 4. Check harness continuity between ECM terminal 92 and heated oxygen sensor 1 (bank 2) terminal 1. Refer to "Wiring Diagram", EC-238.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 25.
· · · · · · · · · · · · · · · · · · ·	 Repair or replace harness between ECM and heated oxygen sensor 1 (bank 2). GO TO 4.

25	PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING		
	 Reconnect ECM harness connector. Perform "Accelerator pedal released position learning", EC-71. 		
>		GO TO 26.	

26	PERFORM THROTTLE VALVE CLOSED POSITION LEARNING		
Perfor	Perform "Throttle Valve Closed Position Learning", EC-71.		
▶ GO TO 27.			

27	PERFORM IDLE AIR VOLUME LEARNING		
	Perform "Idle Air Volume Learning", EC-71. Is Idle Air Volume Learning carried out successfully?		
			Yes or No
Yes (V	Vith CONSULT-II)		GO TO 28.
Yes (V II)	Vithout CONSULT-	•	GO TO 29.
No		•	 Follow the construction of "Idle Air Volume Learning". GO TO 4.

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

CHECK "CO" %

(P) With CONSULT-II

- 1. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge.
- 2. Turn ignition switch "OFF", wait at least 10 seconds and then turn "ON".
- 3. Select "ENG COOLANT TEMP" in "ACTIVE TEST" mode.
- 4. Set "ENG COOLANT TEMP" to 5°C (41°F) by touching "DWN" and "Qd".
- 5. Start engine and rev it (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed.
- 6. Check "CO" %.

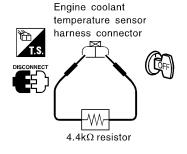
ACTIVE TEST		
ENG COOLANT TEMP	XXX °C	
MONITOR	3	
ENG SPEED	XXX rpm	
INJ PULSE-B1	XXX msec	
IGN TIMING	XXX BTDC	

SEF172Y

Idle CO: 0.7 - 9.9 % and engine runs smoothly.

OK or NG

OK ▶	GO TO 31.
NG •	GO TO 30.


29 CHECK "CO" %

(R) Without CONSULT-II

- 1. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge.
- 2. Turn ignition switch "OFF".
- 3. Disconnect engine coolant temperature sensor harness connector.
- 4. Connect a resistor (4.4 k Ω) between terminals of engine coolant temperature sensor harness connector.
- 5. Start engine and rev it (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed.
- 6. Check "CO" %.

Idle CO: 0.7 - 9.9 % and engine runs smoothly.

7. After checking "CO" %, turn ignition switch "OFF", disconnect the resistor from the terminals of engine coolant temperature sensor harness connector, and then connect engine coolant temperature sensor harness connector to engine coolant temperature sensor.

SEF982UA

OK	or	NG
\mathbf{v}	vı	146

OK •	GO TO 31.
NG ►	GO TO 30.

RECONNECT HEATED OXYGEN SENSOR 1 HARNESS CONNECTOR

- 1. Turn ignition switch "OFF".
- 2. Reconnect heated oxygen sensor 1 harness connector.

GO TO 34.

EC-69

MA

EM

AT

AX

HA

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

31	REPLACE HEATED OXYGEN SENSOR 1		
Stop engine. Replace heated oxygen sensor 1 on the malfunctioning bank.			
With C	ONSULT-II		GO TO 32.
Withou	it CONSULT-II		GO TO 33.

32 CHECK HEATED OXYGEN SENSOR 1 (BANK 1)/(BANK 2) SIGNAL

(P) With CONSULT-II

- 1. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge.
- 2. See "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode.
- 3. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the monitor fluctuates between LEAN and RICH more than 5 times during 10 seconds.

1 time: RICH \rightarrow LEAN \rightarrow RICH

2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

OK or NG

OK •	GO TO 4.
NG ►	GO TO 34.

33 CHECK HEATED OXYGEN SENSOR 1 (BANK 1)/(BANK 2) SIGNAL

(R) Without CONSULT-II

- 1. Set ECM to Self-diagnostic mode II (Heated oxygen sensor 1 monitor). Refer to "How to Switch Diagnostic Test Mode", EC-92.
- 2. Switch the monitored sensor to the malfunctioning bank. Refer to "How to Switch Monitored Sensor from Bank 1 to Bank 2 or Vice Versa", EC-92.
- 3. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the MIL comes on more than 5 times during 10 seconds.

OK or NG

OK •	GO TO 4.
NG •	GO TO 34.

34 DETECT MALFUNCTIONING PART

Check the following.

- Check mass air flow sensor and its circuit, and repair or replace if necessary. Refer to EC-190.
- Check injector and its circuit, and repair or replace if necessary. Refer to EC-706.
- Check engine coolant temperature sensor and its circuit, and repair or replace if necessary. Refer to EC-202.
- Check fuel pressure and repair or replace if necessary. Refer to EC-56.

OK or NG

OK •	GO TO 36.	
NG ►	 Repair or replace. GO TO 35. 	

35 ERASE UNNECESSARY DTC

After this inspection, unnecessary DTC might be displayed.

Erase the stored memory in ECM and TCM. Refer to "How to Erase Emission-related Diagnostic Information", EC-76 and AT-38.

▶ GO TO 4.

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

36	CHECK	FCM	FUNCTION
30	OILOIX	LOIN	1 011011011

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is the rarely the case.)
- 2. Perform initialization of IVIS (NATS) system and registration of IVIS (NATS) ignition key IDs. Refer to "IVIS (INFINITI VEHICLE IMMOBILIZER SYSTEM — NATS", EC-90.

GO TO 4.

Accelerator Pedal Released Position Learning

DESCRIPTION

NHEC1186S02

"Accelerator Pedal Released Position Learning" is an operation to learn the fully released position of the accelerator pedal by monitoring the accelerator pedal position sensor output signal. It must be performed each time harness connector of accelerator pedal position sensor or ECM is disconnected.

OPERATION PROCEDURE

Make sure that accelerator pedal is fully released.

- 2. Turn ignition switch "ON" and wait at least 2 seconds.
- 3. Turn ignition switch "OFF" wait at least 10 seconds.
- 4. Turn ignition switch "ON" and wait at least 2 seconds.
- 5. Turn ignition switch "OFF" wait at least 10 seconds.

Throttle Valve Closed Position Learning

NHEC1187

DESCRIPTION

"Throttle Valve Closed Position Learning" is an operation to learn the fully closed position of the throttle valve by monitorizing the throttle position sensor output signal. It must be performed each time harness connector of electric throttle control actuator or ECM is disconnected.

OPERATION PROCEDURE

NHEC1187S02

- 1. Turn ignition switch "ON".
- Turn ignition switch "OFF" wait at least 10 seconds. Make sure that throttle valve moves during above 10 seconds by confirming the operating sound.

Idle Air Volume Learning **DESCRIPTION**

NHEC1188

"Idle Air Volume Learning" is an operation to learn the idle air volume that keeps each engine within the specific range. It must be performed under any of the following conditions:

Each time electric throttle control actuator or ECM is replaced.

Idle speed or ignition timing is out of specification.

PREPARATION

Before performing "Idle Air Volume Learning", make sure that all of the following conditions are satisfied.

Learning will be cancelled if any of the following conditions are missed for even a moment.

Battery voltage: More than 12.9V (At idle)

- Engine coolant temperature: 70 99°C (158 210°F)
- PNP switch: ON
 - Electric load switch: OFF (Air conditioner, headlamp, rear window defogger)

On vehicles equipped with daytime light systems, set lighting switch to the 1st position to light only small lamps.

Steering wheel: Neutral (Straight-ahead position)

MA

EC

LC

AT

HA

SC

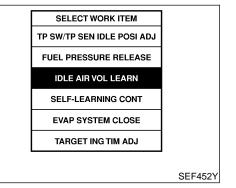
- Vehicle speed: Stopped
- Transmission: Warmed-up

For models with CONSULT-II, drive vehicle until "FLUID TEMP SE" in "DATA MONITOR" mode of "A/T" system indicates less than 0.9V.

For models without CONSULT-II, drive vehicle for 10 minutes.

OPERATION PROCEDURE

(P) With CONSULT-II


NHEC1188S03 NHEC1188S0301

NOTE:

Before perform "Idle Air Volume Learning", make sure that "Accelerator Pedal Released Position Learning" and "Throttle Valve Closed Position Learning" are completed.

If not, perform "Accelerator Pedal Released Position Learning", EC-71 and "Throttle Valve Closed Position Learning", EC-71.

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check that all items listed under the topic "PRE-CONDITION-ING" (previously mentioned) are in good order.

3. Select "IDLE AIR VOL LEARN" in "WORK SUPPORT" mode.

WORK SUPPORT

IDLE AIR VOL LEARN

MONITOR

ENG SPEED XXX rpm

START

SEF454Y

4. Touch "START" and wait 20 seconds.

WORK SUPPORT		
IDLE AIR VOL LEARN	CMPLT	
MONIT		
ENG SPEED	XXX rpm	
START		
		MBIB0238E

- Make sure that "CMPLT" is displayed on CONSULT-II screen. If "CMPLT" is not displayed, "Idle Air Volume Learning" will not be carried out successfully. In this case, find the cause of the incident by referring to the "Diagnostic Procedure" below.
- 6. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.

ITEM	SPECIFICATION
Idle speed	675±50 rpm (in "P" or "N" position)
Ignition timing	15±5° BTDC (in "P" or "N" position)

₩ithout CONSULT-II

NOTE:

NHEC1188S0302

- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.

NOTE:

MA

Before perform "Idle Air Volume Learning", make sure that "Accelerator Pedal Released Position Learning" and "Throttle Valve Closed Position Learning" are completed.

If not, perform "Accelerator Pedal Released Position Learning", EC-71 and "Throttle Valve Closed Position Learning", EC-71.

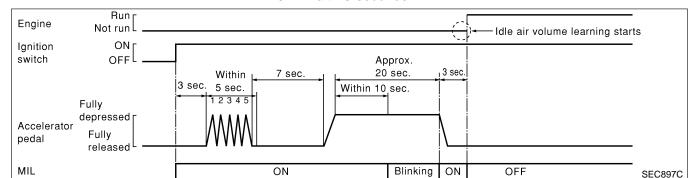
- Start engine and warm it up to normal operating temperature.
- Check that all items listed under the topic "PRE-CONDITION-ING" (previously mentioned) are in good order.

LC

EC

- Turn ignition switch "OFF" and wait at least 10 seconds.
- 4. Confirm that accelerator pedal is fully released, turn ignition switch "ON" and wait 3 seconds.

Repeat the following procedure guickly five times within 5 seconds.


- 1) Fully depress the accelerator pedal.
- Fully release the accelerator pedal.
 - Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 20 seconds until the MIL goes off.

Fully release the accelerator pedal within 3 seconds after the MIL goes off.

- 8. Start engine and let it idle.
- Wait 20 seconds.

ST

BT

HA

10. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.

SC

ITEM	SPECIFICATION
Idle speed	675±50 rpm (in "P" or "N" position)
Ignition timing	15±5° BTDC (in "P" or "N" position)

EL

11. If idle speed and ignition timing are not within the specification, the result will be incomplete. In this case, find the cause of the incident by referring to the "Diagnostic Procedure" below.

DIAGNOSTIC PROCEDURE

If idle air volume learning cannot be performed successfully, proceed as follows:

- Check that throttle valve is fully closed.
- Check PCV valve operation.

- 3. Check that downstream of throttle valve is free from air leakage.
- 4. When the above three items check out OK, engine component parts and their installation condition are questionable. Check and eliminate the cause of the incident. It is useful to perform EC-147, "TROUBLE DIAGNOSIS SPECIFICATION VALUE".
- 5. If any of the following conditions occur after the engine has started, eliminate the cause of the incident and perform "Idle air volume learning" all over again:
- Engine stalls.
- Erroneous idle.

Y. Applicable — Not applicable

Introduction

HEC0029

MA

LC

EC

AT

AX

SU

The ECM has an on board diagnostic system, which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

Emission-related diagnostic information	SAE Mode		
Diagnostic Trouble Code (DTC)	Mode 3 of SAE J1979		
Freeze Frame data	Mode 2 of SAE J1979		
System Readiness Test (SRT) code	Mode 1 of SAE J1979		
1st Trip Diagnostic Trouble Code (1st Trip DTC)	Mode 7 of SAE J1979		
1st Trip Freeze Frame data			
Test values and Test limits	Mode 6 of SAE J1979		
Calibration ID	Mode 9 of SAE J1979		

The above information can be checked using procedures listed in the table below.

					7. Applicable	Not applicable
	DTC	1st trip DTC	Freeze Frame data	1st trip Freeze Frame data	SRT code	Test value
CONSULT-II	Х	Х	X	X	Х	_
GST	Х	X*1	×	_	X	X
ECM	Х	X*2	_	_	_	_

^{*1: 1}st trip DTCs for self-diagnoses concerning SRT items cannot be shown on the GST display.

The malfunction indicator lamp (MIL) on the instrument panel lights up when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode. (Refer to EC-125.)

Two Trip Detection Logic

HEC0030

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the ECM memory. The MIL will not light up at this stage. <1st trip>

d

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in the ECM memory, and the MIL lights up. The MIL lights up at the same time when the DTC is stored. <2nd trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to light up or blink the MIL, and store DTC and Freeze Frame data, even in the 1st trip, as shown below.

DT

HA

SC

EL

 \mathbb{Z}

^{*2:} When DTC and 1st trip DTC simultaneously appear on the display, they cannot be clearly distinguished from each other.

Two Trip Detection Logic (Cont'd)

						X:	Applicable	—: Not Exit	
		MI	L		D-	тс	1st tri	1st trip DTC	
Items	1s	t trip	2nd	trip	1 04 4 4 1 1 1 1	On al trin	4 04 4 4 10 10	On al trin	
	Blinking	Lighting up	Blinking	Lighting up	1st trip displaying	2nd trip displaying	1st trip displaying	2nd trip displaying	
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0306 is being detected	х	_	_	_	_	_	х	_	
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0306 is being detected	_	_	Х	_	_	X	_	_	
Throttle control motor — DTC: P1128	_	X	_	_	Х	_	_	_	
Closed loop control — DTC: P1148, P1168	_	Х	_	_	Х	_	_	_	
Fail-safe items (Refer to EC-125.)	_	Х	_	_	X*1	_	X*1	_	
Except above	_	_	_	Х	_	Х	Х	_	

^{*1:} Except "ECM"

Emission-related Diagnostic Information

NUIFO0004

DTC AND 1ST TRIP DTC

NHEC0031501

NHEC0031S0101

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip DTC will not be displayed.

If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MIL will not light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory and the MIL lights up. In other words, the DTC is stored in the ECM memory and the MIL lights up when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MIL during the 1st trip, the DTC and 1st trip DTC are stored in the ECM memory.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-89.

For malfunctions in which 1st trip DTCs are displayed, refer to EC-85. These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-II.

1st trip DTC is specified in Mode 7 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a malfunction. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in "Work Flow" procedure Step II, refer to EC-117. Then perform "DTC Confirmation Procedure" or "Overall Function Check" to try to duplicate the malfunction. If the malfunction is duplicated, the item requires repair.

How to Read DTC and 1st Trip DTC

DTC and 1st trip DTC can be read by the following methods.

(P) With CONSULT-II

CONSULT-II or GST (Generic Scan Tool) Examples: P0117, P0340, P1065, etc.

These DTCs are prescribed by SAE J2012.

(CONSULT-II also displays the malfunctioning component or system.)

🙉 NO TOOLS

The number of blinks of the MIL in the Diagnostic Test Mode II (Self-Diagnostic Results) indicates the DTC. Example: 0117, 0340, 1065, etc.

• 1st trip DTC No. is the same as DTC No.

Emission-related Diagnostic Information (Cont'd)

 Output of a DTC indicates a malfunction. However, GST or the Diagnostic Test Mode II does not indicate whether the malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT-II can identify malfunction status as shown below. Therefore, using CONSULT-II (if available) is recommended.

A sample of CONSULT-II display for DTC and 1st trip DTC is shown below. DTC or 1st trip DTC of a malfunction is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-II. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be "0".

If a 1st trip DTC is stored in the ECM, the time data will be "[1t]".

	SELF DIAG RESULTS		SELF DIAG RESULTS SELF DIAG RESU		
	DTC RESULTS	TIME	DTC RESULTS	TIME	
DTC	MAF SEN/CIRCUIT [P0101]	0	MAF SEN/CIRCUIT [P0101]	T 1t	
display			у		
					SEC74

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

HEC0031S02

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed and absolute pressure at the moment a malfunction is detected.

Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data. The data, stored together with the DTC data, are called freeze frame data and displayed on CONSULT-II or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-II screen, not on the GST. For details, see EC-103.

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the following priorities to update the data.

Priority	Items				
1	Freeze frame data	Misfire — DTC: P0300 - P0306 Fuel Injection System Function — DTC: P0171, P0172, P0174, P0175			
2		Except the above items (Includes A/T related items)			
3	1st trip freeze frame da	ata			

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was stored in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is stored in the ECM memory, 1st trip freeze data is no longer stored (because only one freeze frame data or 1st trip freeze frame data can be stored in the ECM). If freeze frame data is stored in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-89.

SYSTEM READINESS TEST (SRT) CODE

System Readiness Test (SRT) code is specified in Mode 1 of SAE J1979.

As part of an enhanced emissions test for Inspection & Maintenance (I/M), certain states require the status of SRT be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

EM

MA

1 @

FC.

AT

AX

७∥

BT

HA

SG

EL

Emission-related Diagnostic Information (Cont'd)

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "INCMP", use the information in this Service Manual to set the SRT to "CMPLT".

In most cases the ECM will automatically complete its self-diagnosis cycle during normal usage, and the SRT status will indicate "CMPLT" for each application system. Once set as "CMPLT", the SRT status remains "CMPLT" until the self-diagnosis memory is erased.

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern; the SRT will indicate "INCMP" for these items.

NOTE:

The SRT will also indicate "INCMP" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

If, during the state emissions inspection, the SRT indicates "CMPLT" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "INCMP" for one or more of the SRT items the vehicle is returned to the customer untested.

NOTE:

If MIL is "ON" during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "CMPLT" for all test items. Therefore, it is important to check SRT ("CMPLT") and DTC (No DTCs) before the inspection.

SRT Item

The table below shows required self-diagnostic items to set the SRT to "CMPLT".

NHEC0031S0310

SRT item (CONSULT-II indica- tion)	Perfor- mance Pri- ority*	Required self-diagnostic items to set the SRT to "CMPLT"	Corresponding DTC No.
CATALYST	2	Three way catalyst function	P0420, P0430
EVAP SYSTEM	1	EVAP control system	P0442, P1442
	2	EVAP control system	P0456, P1456
	2	EVAP control system purge flow monitoring	P0441
HO2S	2	Heated oxygen sensor 1	P0132, P0152
		Heated oxygen sensor 1	P0133, P0153
		Heated oxygen sensor 1	P0134, P0154
		Heated oxygen sensor 1	P1143, P1163
		Heated oxygen sensor 1	P1144, P1164
		Heated oxygen sensor 2	P0138, P0158
		Heated oxygen sensor 2	P0139, P0159
		Heated oxygen sensor 2	P1146, P1166
		Heated oxygen sensor 2	P1147, P1167
HO2S HTR	2	Heated oxygen sensor 1 heater	P0031, P0032, P0051, P0052
		Heated oxygen sensor 2 heater	P0037, P0038, P0057, P0058

^{*:} If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure), one by one based on the priority for models with CONSULT-II.

Emission-related Diagnostic Information (Cont'd)

SRT Set Timing

SRT is set as "CMPLT" after self-diagnosis has been performed one or more times. Completion of SRT is done regardless of whether the result is OK or NG. The set timing is different between OK and NG results and is shown in the table below.

				Example			
Self-diagno	Self-diagnosis result		$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
All OK	Case 1	P0400	OK (1)	— (1)	OK (2)	— (2)	
		P0402	OK (1)	— (1)	— (1)	OK (2)	
		P1402	OK (1)	OK (2)	— (2)	— (2)	
		SRT of EGR	"CMPLT"	"CMPLT"	"CMPLT"	"CMPLT"	
	Case 2	P0400	OK (1)	— (1)	— (1)	— (1)	
		P0402	— (0)	— (0)	OK (1)	— (1)	
		P1402	OK (1)	OK (2)	— (2)	— (2)	
		SRT of EGR	"INCMP"	"INCMP"	"CMPLT"	"CMPLT"	
NG exists	Case 3	P0400	OK	ОК	_	_	
		P0402	_	_	_	_	
		P1402	NG	_	NG	NG (Consecutive NG)	
		(1st trip) DTC	1st trip DTC	_	1st trip DTC	DTC (= MIL "ON")	
		SRT of EGR	"INCMP"	"INCMP"	"INCMP"	"CMPLT"	

OK: Self-diagnosis is carried out and the result is OK.

NG: Self-diagnosis is carried out and the result is NG.

—: Self-diagnosis is not carried out.

When all SRT related self-diagnoses showed OK results in a single cycle (Ignition OFF-ON-OFF), the SRT will indicate "CMPLT". \rightarrow Case 1 above

When all SRT related self-diagnoses showed OK results through several different cycles, the SRT will indicate "CMPLT" at the time the respective self-diagnoses have at least one OK result. \rightarrow Case 2 above If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indicate "CMPLT". \rightarrow Case 3 above

The table above shows that the minimum number of cycles for setting SRT as "INCMP" is one (1) for each self-diagnosis (Case 1 & 2) or two (2) for one of self-diagnoses (Case 3). However, in preparation for the state emissions inspection, it is unnecessary of each self-diagnosis to be executed twice (Case 3) for the following reasons:

- The SRT will indicate "CMPLT" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "CMPLT" of the SRT only with OK self-diagnosis results.
- When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to "CMPLT" of SRT, the self-diagnosis memory must be erased from ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "INCMP".

NOTE:

SRT can be set as "CMPLT" together with the DTC(s). Therefore, DTC check must always be carried out prior to the state emission inspection even though the SRT indicates "CMPLT".

SRT Service Procedure

If a vehicle has failed the state emissions inspection due to one or more SRT items indicating "INCMP", review the flowchart diagnostic sequence on the next page.

GI

MA

FM

LC

EC

FE

AT

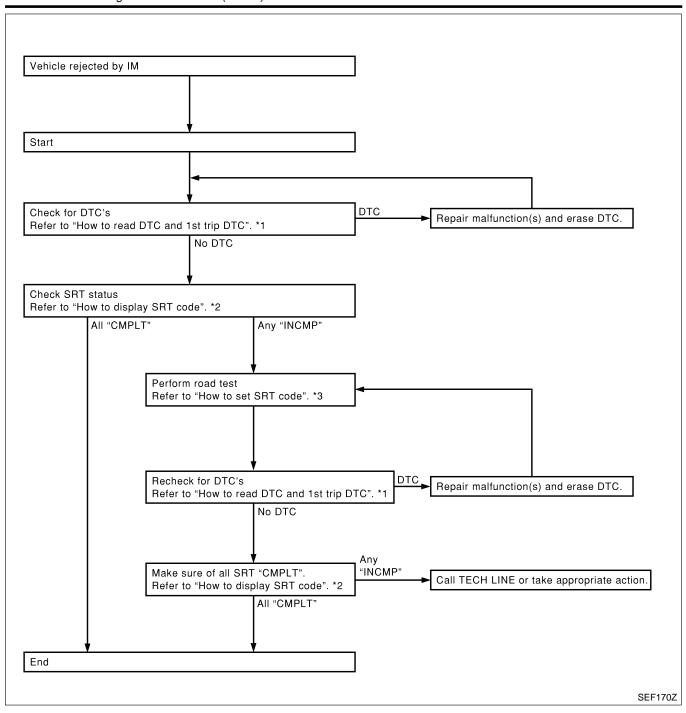
 $\mathbb{A}\mathbb{X}$

20

ST

RS

BT


HA

SC

EL

EL

Emission-related Diagnostic Information (Cont'd)

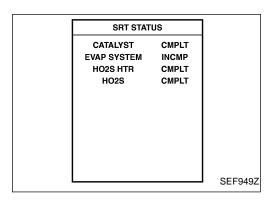
How to Display SRT Code

(A) With CONSULT-II

NHEC0031S0301

Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-II.

For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-II screen; for items whose SRT codes are not set, "INCMP" is displayed.


With GST

Selecting Mode 1 with GST (Generic Scan Tool)

A sample of CONSULT-II display for SRT code is shown below.

"INCMP" means the self-diagnosis is incomplete and SRT is not set. "CMPLT" means the self-diagnosis is complete and SRT is set.

Emission-related Diagnostic Information (Cont'd)

GI

MA

LC

How to Set SRT Code

To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

(P) With CONSULT-II

Perform corresponding DTC Confirmation Procedure one by one based on "Performance Priority" in the table on EC-78.

⋈ Without CONSULT-II

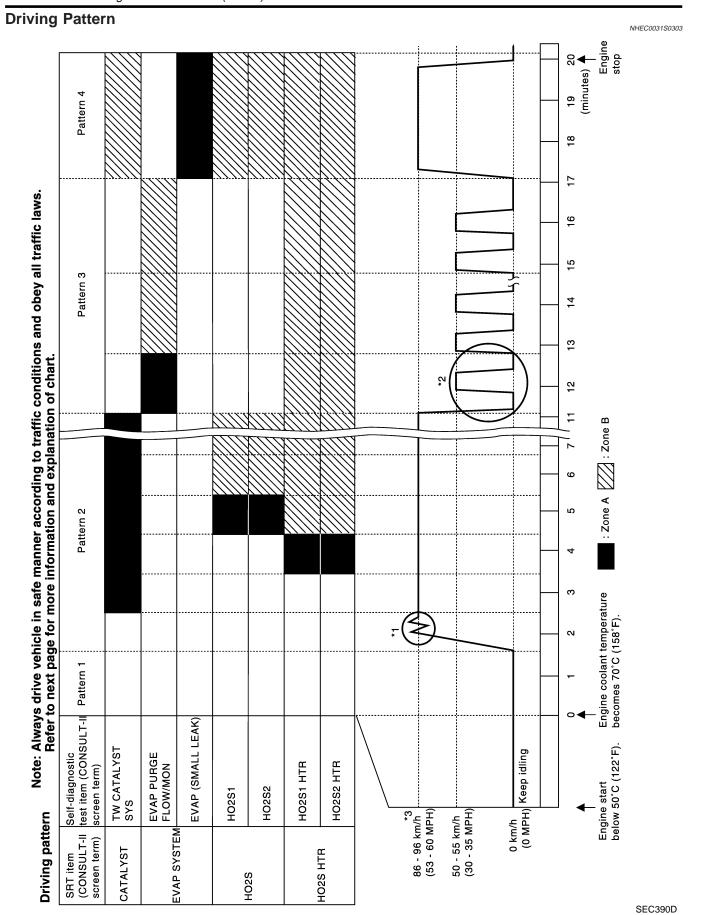
The most efficient driving pattern in which SRT codes can be properly set is explained on the next page. The driving pattern should be performed one or more times to set all SRT codes.

EC

AT

AX

SU


BR ST

BT

HA

SC

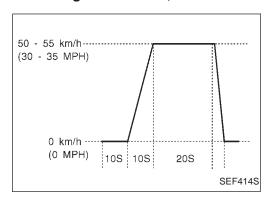
EL

Emission-related Diagnostic Information (Cont'd)

- The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.
 - Zone A refers to the range where the time required, for the diagnosis under normal conditions*, is the
 - Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.
- *: Normal conditions refer to the following:
- Sea level
- Flat road
- Ambient air temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions. Under different conditions [For example: ambient air temperature other than 20 - 30°C (68 - 86°F)], diagnosis may also be performed.

Pattern 1:

- The engine is started at the engine coolant temperature of -10 to 35°C (14 to 95°F) (where the voltage between the ECM terminal 93 and ground is 3.0 - 4.3V).
- The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminal 93 and ground is lower than 1.4V).
- The engine is started at the fuel tank temperature of warmer than 0°C (32°F) (where the voltage between the ECM terminal 75 and ground is less than 4.1V).


When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted. In this case, the time required for diagnosis may be extended.

Pattern 3:

The driving pattern outlined in *2 must be repeated at least 3 times.

Pattern 4:

- Tests are performed after the engine has been operated for at least 17 minutes.
- The accelerator pedal must be held very steady during steady-state driving.
- If the accelerator pedal is moved, the test must be conducted all over again.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Operate the vehicle in the following driving pattern.
- 1) Decelerate vehicle to 0 km/h (0 MPH) and let engine idle.
- 2) Repeat driving pattern shown below at least 10 times.
- During acceleration, hold the accelerator pedal as steady as possible.

*3: Checking the vehicle speed with GST is advised.

Suggested Transmission Gear Position

Set the selector lever in the "D" position with the overdrive switch turned ON.

TEST VALUE AND TEST LIMIT (GST ONLY — NOT APPLICABLE TO CONSULT-II)

The following is the information specified in Mode 6 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is "OK" or "NG" while being monitored by the ECM during self-diagnosis. The test limit is a reference value which is specified as the

MA

LC

EC

AT

AX

HA

SC

NHEC0031S04

Emission-related Diagnostic Information (Cont'd)

maximum or minimum value and is compared with the test value being monitored.

Items for which these data (test value and test limit) are displayed are the same as SRT code items (30 test items).

These data (test value and test limit) are specified by Test ID (TID) and Component ID (CID) and can be displayed on the GST screen.

X: Applicable —: Not applicable

				X: Applicable -	 Not applicable
ODT 14	O. K. Parametic tool items	Test value ((GST display)	T	A P C
SRT item	Self-diagnostic test item	TID	CID	Test limit	Application
CATALYST	Three way catalyst function (Bank 1)	01H	01H	Max.	Х
CATALYST	Three way catalyst function (Bank 2)	03H	02H	Max.	Х
EVAP SYSTEM	EVAP control system (Small leak)	05H	03H	Max.	×
EVAP STSTEM	EVAP control system purge flow monitoring	06H	83H	Min.	×
		09H	04H	Max.	Х
		0AH	84H	Min.	Х
	Heated oxygen sensor 1 (bank 1)	0BH	04H	Max.	Х
		0CH	04H	Max.	Х
		0DH	04H	Max.	Х
		11H	05H	Max.	Х
		12H	85H	Min.	Х
	Heated oxygen sensor 1 (bank 2)	13H	05H	Max.	Х
11000		14H	05H	Max.	Х
HO2S		15H	05H	Max.	Х
		19H	86H	Min.	Х
	Heated everyon concer 2 /heat 4)	1AH	86H	Min.	Х
	Heated oxygen sensor 2 (bank 1)	1BH	06H	Max.	Х
		1CH	06H	Max.	Х
		21H	87H	Min.	Х
	Heated engrap concer 2 /book 2)	22H	87H	Min.	Х
	Heated oxygen sensor 2 (bank 2)	23H	07H	Max.	Х
		24H	07H	Max.	Х
	Heated oxygen sensor 1 heater	29H	08H	Max.	Х
	(bank 1)	2AH	88H	Min.	Х
	Heated oxygen sensor 1 heater	2BH	09H	Max.	Х
LICAC LITE	(bank 2)	2CH	89H	Min.	Х
HO2S HTR	Heated oxygen sensor 2 heater	2DH	0AH	Max.	Х
	(bank 1)	2EH	8AH	Min.	Х
	Heated oxygen sensor 2 heater	2FH	0BH	Max.	Х
	(bank 2)	30H	8BH	Min.	Х

Emission-related Diagnostic Information (Cont'd)

EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS

X: Applicable —: Not applicable

	DTO+4					
Itomo	DTC*1		Test value/	1 at trip	Reference	@I
(CONSULT-II screen terms) CONSULT GST*2	ECM*3	SRT code	Test limit (GST only)	1st trip DTC*1	page	GI
CAN COMM CIRCUIT U1000	1000*6	_	_	Х	EC-159	MA
CAN COMM CIRCUIT U1001	1001*6	_	_	Х	EC-159	
NO DTC IS DETECTED. FURTHER TESTING P0000 MAY BE REQUIRED.	0000	_	_	_	_	
INT/V TIM CONT-B1 P0011	0011	_	_	Х	EC-162	LC
INT/V TIM CONT-B2 P0021	0021	_	_	Х	EC-162	EC
HO2S1 HTR (B1) P0031	0031	Х	Х	X*5	EC-170	EG
HO2S1 HTR (B1) P0032	0032	Х	Х	X*5	EC-170	FE
HO2S2 HTR (B1) P0037	0037	Х	Х	X*5	EC-176	
HO2S2 HTR (B1) P0038	0038	Х	Х	X*5	EC-176	AT
HO2S1 HTR (B2) P0051	0051	Х	Х	X*5	EC-170	
HO2S1 HTR (B2) P0052	0052	Х	Х	X*5	EC-170	AX
HO2S2 HTR (B2) P0057	0057	Х	Х	X*5	EC-176	
HO2S2 HTR (B2) P0058	0058	Х	Х	X*5	EC-176	SU
MAF SEN/CIRCUIT P0101	0101	_	_	Х	EC-183	
MAF SEN/CIRCUIT*8 P0102	0102	_	_	_	EC-190	BR
MAF SEN/CIRCUIT*8 P0103	0103	_	_	_	EC-190	
ABSL PRES SEN/CIRC P0107	0107	_	_	Х	EC-196	ST
ABSL PRES SEN/CIRC P0108	0108	_	_	Х	EC-196	
IAT SEN/CIRCUIT P0112	0112	_	_	Х	EC-198	RS
IAT SEN/CIRCUIT P0113	0113	_	_	Х	EC-198	
ECT SEN/CIRC*8 P0117	0117	_	_	_	EC-202	BT
ECT SEN/CIRC*8 P0118	0118	_	_	_	EC-202	
ECT SENSOR P0125	0125	_	_	Х	EC-207	HA
IAT SENSOR P0127	0127	_	_	Х	EC-210	@@
THERMSTAT FNCTN P0128	0128	_	_	Х	EC-212	SC
HO2S1 (B1) P0132	0132	Х	Х	X*5	EC-214	EL
HO2S1 (B1) P0133	0133	Х	Х	X*5	EC-222	
HO2S1 (B1) P0134	0134	Х	Х	X*5	EC-234	
HO2S2 (B1) P0138	0138	Х	Х	X*5	EC-243	
HO2S2 (B1) P0139	0139	Х	Х	X*5	EC-251	
HO2S1 (B2) P0152	0152	Х	Х	X*5	EC-214	
HO2S1 (B2) P0153	0153	Х	Х	X*5	EC-222	
HO2S1 (B2) P0154	0154	Х	Х	X*5	EC-234	
HO2S2 (B2) P0158	0158	Х	Х	X*5	EC-243	

Itama	DT	C*1		Test value/	1 at trip	Deference
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*3	SRT code	Test limit (GST only)	1st trip DTC*1	Reference page
HO2S2 (B2)	P0159	0159	Х	Х	X*5	EC-251
FUEL SYS-LEAN-B1	P0171	0171	_	_	Х	EC-261
FUEL SYS-RICH-B1	P0172	0172	_	_	Х	EC-269
FUEL SYS-LEAN-B2	P0174	0174	_	_	Х	EC-261
FUEL SYS-RICH-B2	P0175	0175	_	_	Х	EC-269
FTT SENSOR	P0181	0181	_	_	Х	EC-276
FTT SEN/CIRCUIT	P0182	0182	_	_	Х	EC-279
FTT SEN/CIRCUIT	P0183	0183	_	_	Х	EC-279
TP SENSOR*8	P0221	0221	_	_	_	EC-284
TP SEN 1/CIRC*8	P0222	0222	_	_	_	EC-290
TP SEN 1/CIRC*8	P0223	0223	_	_	_	EC-290
APP SENSOR*8	P0226	0226	_	_	_	EC-296
APP SEN 1/CIRC*8	P0227	0227	_	_	_	EC-303
APP SEN 1/CIRC*8	P0228	0228	_	_	_	EC-303
MULTI CYL MISFIRE	P0300	0300	_	_	Х	EC-309
CYL 1 MISFIRE	P0301	0301	_	_	Х	EC-309
CYL 2 MISFIRE	P0302	0302	_	_	Х	EC-309
CYL 3 MISFIRE	P0303	0303	_	_	Х	EC-309
CYL 4 MISFIRE	P0304	0304	_	_	Х	EC-309
CYL 5 MISFIRE	P0305	0305	_	_	Х	EC-309
CYL 6 MISFIRE	P0306	0306	_	_	Х	EC-309
KNOCK SEN/CIRC-B1	P0327	0327	_	_	_	EC-317
KNOCK SEN/CIRC-B1	P0328	0328	_	_	_	EC-317
CKP SEN/CIRCUIT	P0335	0335	_	_	Х	EC-322
CMP SEN/CIRCUIT	P0340	0340	_	_	Х	EC-329
CMP SEN/CIRC-B2	P0345	0345	_	_	Х	EC-329
TW CATALYST SYS-B1	P0420	0420	Х	Х	X*5	EC-338
TW CATALYST SYS-B2	P0430	0430	Х	Х	X*5	EC-338
EVAP PURG FLOW/MON	P0441	0441	Х	Х	X*5	EC-343
EVAP SMALL LEAK	P0442	0442	Х	Х	X*5	EC-353
PURG VOLUME CONT/V	P0444	0444	_	_	Х	EC-368
PURG VOLUME CONT/V	P0445	0445	_	_	Х	EC-368
VENT CONTROL VALVE	P0447	0447	_	_	Х	EC-375
EVAP SYS PRES SEN	P0452	0452	_	_	Х	EC-382
EVAP SYS PRES SEN	P0453	0453	_	_	Х	EC-388
EVAP GROSS LEAK	P0455	0455	_	Х	X*5	EC-397

Emission-related Diagnostic Information (Cont'd)

GI

MA

EM

LC

EC

FE

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

Itomo	DTO	C*1		Test value/	1 ot trip	Deference
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*3	SRT code	Test limit (GST only)	1st trip DTC*1	Reference page
EVAP VERY SML LEAK	P0456	0456	X*4	Х	X*5	EC-409
FUEL LEV SEN SLOSH	P0460	0460	_	_	Х	EC-424
FUEL LEVEL SENSOR	P0461	0461	_	_	Х	EC-428
FUEL LEVL SEN/CIRC	P0462	0462	_	_	Х	EC-430
FUEL LEVL SEN/CIRC	P0463	0463	_	_	Х	EC-430
VEH SPEED SEN/CIRC*7	P0500	0500	_	_	Х	EC-434
ISC SYSTEM	P0506	0506	_	_	Х	EC-438
ISC SYSTEM	P0507	0507	_	_	Х	EC-440
PW ST P SEN/CIRC	P0550	0550	_	_	Х	EC-442
ECM	P0605	0605	_	_	Х	EC-447
MIL/CIRC	P0650	0650	_	_	Х	EC-449
PNP SW/CIRC	P0705	0705	_	_	Х	AT-105
ATF TEMP SEN/CIRC	P0710	0710	_	_	Х	AT-111
VEH SPD SEN/CIR AT*7	P0720	0720	_	_	Х	AT-117
ENGINE SPEED SIG	P0725	0725	_	_	Х	AT-122
A/T 1ST GR FNCTN	P0731	0731	_	_	Х	AT-127
A/T 2ND GR FNCTN	P0732	0732	_	_	Х	AT-133
A/T 3RD GR FNCTN	P0733	0733	_	_	Х	AT-139
A/T 4TH GR FNCTN	P0734	0734	_	_	Х	AT-145
TCC SOLENOID/CIRC	P0740	0740	_	_	Х	AT-154
A/T TCC S/V FNCTN	P0744	0744	_	_	Х	AT-159
L/PRESS SOL/CIRC	P0745	0745	_	_	Х	AT-169
SFT SOL A/CIRC*8	P0750	0750	_	_	_	AT-175
SFT SOL B/CIRC*8	P0755	0755	_	_	_	AT-180
ECM BACK UP/CIRCUIT	P1065	1065	_	_	Х	EC-453
MAF SENSOR*8	P1102	1102	_	_	_	EC-457
ETC ACTR*8	P1121	1121	_	_	_	EC-463
ETC FUNCTION/CIRC*8	P1122	1122	_	_	_	EC-465
ETC MOT PWR	P1124	1124	_	_	Х	EC-473
ETC MOT PWR*8	P1126	1126	_	_	_	EC-473
ETC MOT	P1128	1128	_	_	_	EC-479
HO2S1 (B1)	P1143	1143	Х	Х	X*5	EC-484
HO2S1 (B1)	P1144	1144	Х	Х	X*5	EC-491
HO2S2 (B1)	P1146	1146	Х	Х	X*5	EC-498
HO2S2 (B1)	P1147	1147	Х	Х	X*5	EC-508
CLOSED LOOP-B1	P1148	1148	_	_	_	EC-518

Emission-related Diagnostic Information (Cont'd)

	DT	C*1		Test value/		
Items (CONSULT-II screen terms)	CONSULT-II GST*2	ECM*3	SRT code	Test limit (GST only)	1st trip DTC*1	Reference page
HO2S1 (B2)	P1163	1163	Х	Х	X*5	EC-484
HO2S1 (B2)	P1164	1164	Х	Х	X*5	EC-491
HO2S2 (B2)	P1166	1166	Х	Х	X*5	EC-498
HO2S2 (B2)	P1167	1167	Х	Х	X*5	EC-508
CLOSED LOOP-B2	P1168	1168	_	_	_	EC-518
TCS C/U FUNCTN	P1211	1211	_	_	Х	EC-520
TCS/CIRC	P1212	1212	_	_	Х	EC-522
ENG OVER TEMP	P1217	1217	_	_	Х	EC-524
TP SEN 2/CIRC*8	P1223	1223	_	_	_	EC-542
TP SEN 2/CIRC*8	P1224	1224	_	_	_	EC-542
CTP LEARNING	P1225	1225	_	_	Х	EC-548
CTP LEARNING	P1226	1226	_	_	Х	EC-550
APP SEN 2/CIRC*8	P1227	1227	_	_	_	EC-552
APP SEN 2/CIRC*8	P1228	1228	_	_	_	EC-552
SENSOR POWER/CIRC*8	P1229	1229	_	_	_	EC-558
EVAP SMALL LEAK	P1442	1442	Х	Х	X*5	EC-564
PURG VOLUME CONT/V	P1444	1444	_	_	Х	EC-579
VENT CONTROL VALVE	P1446	1446	_	_	Х	EC-592
VENT CONTROL VALVE	P1448	1448	_	_	Х	EC-600
EVAP VERY SML LEAK	P1456	1456	X*4	Х	X*5	EC-609
FUEL LEVL SEN/CIRC	P1464	1464	_	_	Х	EC-625
VC/V BYPASS/V	P1490	1490	_	_	Х	EC-628
VC CUT/V BYPASS/V	P1491	1491	_	_	Х	EC-634
ASCD SW	P1564	1564	_	_	Х	EC-646
ASCD BRAKE SW	P1572	1572	_	_	Х	EC-653
ASCD VHL SPD SEN	P1574	1574	_	_	Х	EC-666
NATS MALFUNCTION	P1610- P1615	1610-1615	_	_	Х	EL-370
TP SEN/CIRC A/T	P1705	1705	_	_	Х	AT-185
P-N POS SW/CIRCUIT	P1706	1706	_	_	Х	EC-671
O/R CLTCH SOL/CIRC	P1760	1760	_	_	Х	AT-192
VIAS S/V CIRC	P1800	1800	_	_	Х	EC-676
BRAKE SW/CIRCUIT	P1805	1805	_	_	Х	EC-681

^{*1: 1}st trip DTC No. is the same as DTC No.

^{*2:} These numbers are prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), these numbers are controlled by NISSAN.

^{*4:} SRT code will not be set if the self-diagnostic result is NG.

^{*5:} These are not displayed with GST.

^{*6:} The troubleshooting for this DTC needs CONSULT-II.

Emission-related Diagnostic Information (Cont'd)

- *7: When the fail-safe operations for both self-diagnoses occur at the same time, the MIL illuminates.
- *8: When the fail-safe operation occurs, the MIL illuminates.

NOTE:

Regarding I35 models, "-B1" indicates bank 1 and "-B2" indicates bank 2.

HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION

R How to Erace DTC (With CONCILLT II)

NHEC0031S06

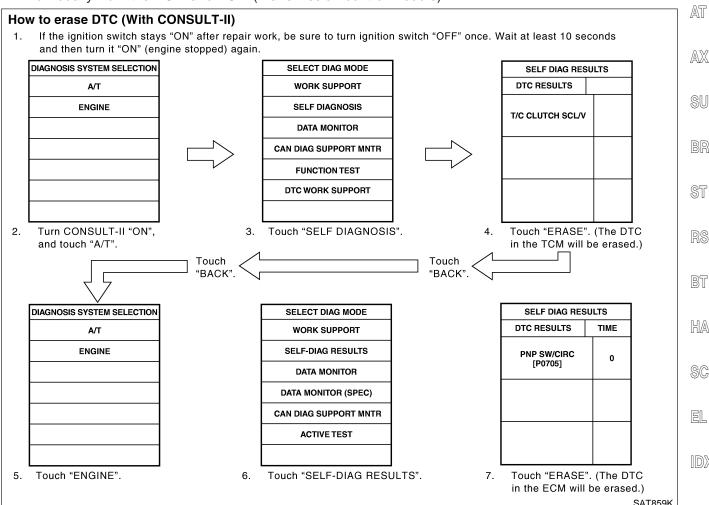
GI

MA

LC

EC

FE


How to Erase DTC (With CONSULT-II)

NHEC0031S0601

NOTE:

If the DTC is not for A/T related items (see EC-9), skip steps 2 through 4.

- 1. If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 10 seconds and then turn it "ON" (engine stopped) again.
- 2. Turn CONSULT-II "ON" and touch "A/T".
- 3. Touch "SELF-DIAG RESULTS".
- 4. Touch "ERASE". [The DTC in the TCM (Transmission control module) will be erased.] Then touch "BACK" twice.
- 5. Touch "ENGINE".
- Touch "SELF-DIAG RESULTS".
- 7. Touch "ERASE". (The DTC in the ECM will be erased.)
- If DTCs are displayed for both ECM and TCM (Transmission control module), they need to be erased
 individually from the ECM and TCM (Transmission control module).

The emission related diagnostic information in the ECM can be erased by selecting "ERASE" in the "SELF-DIAG RESULTS" mode with CONSULT-II.

If DTCs are displayed for both ECM and TCM (Transmission control module), they need to be erased individually from the ECM and TCM (Transmission control module).

Emission-related Diagnostic Information (Cont'd)

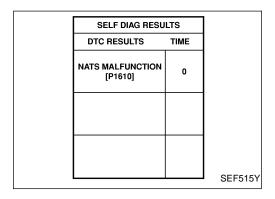
How to Erase DTC (With GST)

NOTE:

If the DTC is not for A/T related items (see EC-9), skip step 2.

- 1. If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 10 seconds and then turn it "ON" (engine stopped) again.
- 2. Perform "SELF-DIAGNOSTIC PROCEDURE (Without CONSULT-II)" in AT section titled "TROUBLE DIAGNOSIS", "Self-diagnosis". (The engine warm-up step can be skipped when performing the diagnosis only to erase the DTC.)
- 3. Select Mode 4 with GST (Generic Scan Tool).

The emission related diagnostic information in the ECM can be erased by selecting Mode 4 with GST.


- If the battery is disconnected, the emission-related diagnostic information will be lost after approx.
 24 hours.
- The following data are cleared when the ECM memory is erased.
- 1) Diagnostic trouble codes
- 2) 1st trip diagnostic trouble codes
- 3) Freeze frame data
- 4) 1st trip freeze frame data
- 5) System readiness test (SRT) codes
- 6) Test values
- 7) Others

Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

IVIS (INFINITI VEHICLE IMMOBILIZER SYSTEM — NATS)

NHEC0031S08

NHEC0031S0602

- If the security indicator lights up with the ignition switch in the "ON" position or "NATS MALFUNC-TION" is displayed on "SELF-DIAG RESULTS" screen, perform self-diagnostic results mode with CONSULT-II using NATS program card. Refer to "IVIS (Infiniti Vehicle Immobilizer System NATS)" EL-370.
- Confirm no self-diagnostic results of IVIS (NATS) is displayed before touching "ERASE" in "SELF-DIAG RESULTS" mode with CONSULT-II.
- When replacing ECM, initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs must be carried out with CONSULT-II using NATS program card.
 Therefore, be sure to receive all keys from vehicle owner. Regarding the procedures of IVIS (NATS) initialization and IVIS (NATS) ignition key ID registration, refer to CONSULT-II operation manual, IVIS/NVIS.

Malfunction Indicator Lamp (MIL)

NHEC1189

DESCRIPTION

NHEC1189S01

The MIL is located on the instrument panel.

- 1. The MIL will light up when the ignition switch is turned ON without the engine running. This is a bulb check.
- If the MIL does not light up, refer to "WARNING LAMPS", EL-149, or see DTC P0650 MIL (CIRCUIT), EC-449.
- 2. When the engine is started, the MIL should go off. If the MIL remains on, the on board diagnostic system has detected an engine system malfunction.

Malfunction Indicator Lamp (MIL) (Cont'd)

ON BOARD DIAGNOSTIC SYSTEM FUNCTION

The on board diagnostic system has the following four functions.

NHEC1189S02

Diagnostic Test Mode	KEY and ENG. Status	Function	Explanation of Function	
Mode I	Ignition switch in "ON" position Engine stopped	BULB CHECK	This function checks the MIL bulb for damage (blown, open circuit, etc.). If the MIL does not come on, check MIL circuit.	[}
	Engine running	MALFUNCTION WARNING	This is a usual driving condition. When a malfunction is detected twice in two consecutive driving cycles (two trip detection logic), the MIL will light up to inform the driver that a malfunction has been detected. The following malfunctions will light up or blink the MIL in the 1st trip. • "Misfire (Possible three way catalyst damage)"	
			 "Throttle control motor" "Closed loop control" Fail-safe mode	7
Mode II	Ignition switch in "ON" position	SELF-DIAGNOSTIC RESULTS	This function allows DTCs and 1st trip DTCs to be read.	-
	Engine stopped			
	Engine running	HEATED OXYGEN SENSOR 1 MONITOR	This function allows the fuel mixture condition (lean or rich), monitored by heated oxygen sensor 1, to be read.	-
III Flashing	without DTC			

MIL Flashing without DTC

If the ECM is in Diagnostic Test Mode II, MIL may flash when engine is running. In this case, check ECM diagnostic test mode. How to Switch Diagnostic Test Mode.

How to switch the diagnostic test (function) modes, and details of the above functions are described later. How to Switch Diagnostic Test Mode.

The following emission-related diagnostic information is cleared when the ECM memory is erased.

- 1. Diagnostic trouble codes
- 2. 1st trip diagnostic trouble codes
- 3. Freeze frame data
- 4. 1st trip freeze frame data
- 5. System readiness test (SRT) codes

EC-91

GI

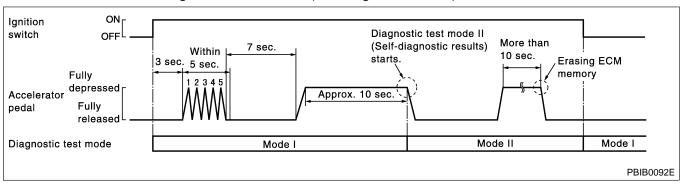
MA

LC

Malfunction Indicator Lamp (MIL) (Cont'd)

- Test values
- Others

HOW TO SWITCH DIAGNOSTIC TEST MODE

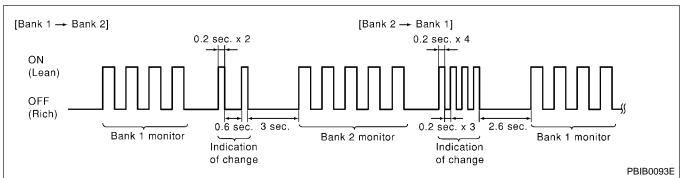

NHEC1189S03

- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.
- Always ECM returns to Diagnostic Test Mode I after ignition switch is turned "OFF".

How to Set Diagnostic Test Mode II (Self-diagnostic Results)

NHEC1189S0301

- 1. Confirm that accelerator pedal is fully released, turn ignition switch "ON" and wait 3 seconds.
- 2. Repeat the following procedure quickly five times within 5 seconds.
- Fully depress the accelerator pedal.
- 2) Fully release the accelerator pedal.
- 3. Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 10 seconds until the MIL starts blinking.
- 4. Fully release the accelerator pedal. ECM has entered to Diagnostic Test Mode II (Self-diagnostic results).



How to Set Diagnostic Test Mode II (Heated Oxygen Sensor 1 Monitor)

- Set the ECM in Diagnostic Test Mode II (Self-diagnostic results). Refer to How to Set Diagnostic Test Mode II (Self-diagnostic Results).
- 2. Start Engine.
 - ECM has entered to Diagnostic Test Mode II (Heated oxygen sensor 1 monitor).
 - ECM will start heated oxygen sensor 1 monitoring from the bank 1 sensor.

How to Set Diagnostic Switch Monitored Sensor from Bank 1 to Bank 2 or Vice versa

- Fully depress the accelerator pedal quickly and then release it immediately.
- 2. Make sure that monitoring sensor has changed by MIL blinking as follows.

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

- Set ECM in Diagnostic Test Mode II (Self-diagnostic results). Refer to How to Set Diagnostic Test Mode II (Self-diagnostic Results).
- Fully depress the accelerator pedal and keep it for more than 10 seconds. The emission-related diagnostic information has been erased from the backup memory in the ECM.

Malfunction Indicator Lamp (MIL) (Cont'd)

Indication

1110

3. Fully release the accelerator pedal, and confirm the DTC 0000 is displayed.

DIAGNOSTIC TEST MODE I — BULB CHECK

Example: DTC No. 1448 and 1110

0.6

ON

OFF

0.3

0.6

0.3

0.3

In this mode, the MIL on the instrument panel should stay ON. If it remains OFF, check the bulb. Refer to "WARNING LAMPS", EL-149 or see DTC P0650 MIL (CIRCUIT), EC-449.

DIAGNOSTIC TEST MODE I — MALFUNCTION WARNING

NHFC1189S05

MIL	Condition
ON	When the malfunction is detected or the ECM's CPU is malfunctioning.
OFF	No malfunction.

MA

These DTC numbers are clarified in Diagnostic Test Mode II (SELF-DIAGNOSTIC RESULTS)

Indication

1448

LC

DIAGNOSTIC TEST MODE II — SELF-DIAGNOSTIC RESULTS

NHEC1189S06

In this mode, the DTC and 1st trip DTC are indicated by the number of blinks of the MIL as shown below. The DTC and 1st trip DTC are displayed at the same time. If the MIL does not illuminate in diagnostic test mode I (Malfunction warning), all displayed items are 1st trip DTCs. If only one code is displayed when the MIL illuminates in diagnostic test mode II (SELF-DIAGNOSTIC RESULTS), it is a DTC; if two or more codes are displayed, they may be either DTCs or 1st trip DTCs. DTC No. is same as that of 1st trip DTC. These unidentified codes can be identified by using the CONSULT-II or GST. A DTC will be used as an example for how to read a code.

> Change of DTC number

> > 1.8

0.3

0.6

Unit: seconds

SEF952W

HA

A particular trouble code can be identified by the number of four-digit numeral flashes. The "zero" is indicated by the number of ten flashes. The length of time the 1,000th-digit numeral flashes on and off is 1.2 seconds consisting of an ON (0.6-second) - OFF (0.6-second) cycle.

SC

The 100th-digit numeral and lower digit numerals consist of a 0.3-second ON and 0.3-second OFF cycle. A change from one digit numeral to another occurs at an interval of 1.0-second OFF. In other words, the later numeral appears on the display 1.3 seconds after the former numeral has disappeared.

A change from one trouble code to another occurs at an interval of 1.8-second OFF.

In this way, all the detected malfunctions are classified by their DTC numbers. The DTC "0000" refers to no malfunction. (See "TROUBLE DIAGNOSIS — INDEX", EC-9.)

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

The DTC can be erased from the back up memory in the ECM by depressing accelerator pedal. Refer to How to Switch Diagnostic Test Mode.

- If the battery is disconnected, the DTC will be lost from the backup memory after approx 24 hours.
- Be careful not to erase the stored memory before starting trouble diagnoses.

Malfunction Indicator Lamp (MIL) (Cont'd)

DIAGNOSTIC TEST MODE II — HEATED OXYGEN SENSOR 1 MONITOR

NHEC1189S07

In this mode, the MIL displays the condition of the fuel mixture (lean or rich) which is monitored by the heated oxygen sensor 1.

MIL	Fuel mixture condition in the exhaust gas	Air fuel ratio feedback control condition		
ON	Lean	Closed loop gyatem		
OFF	Rich	Closed loop system		
*Remains ON or OFF	Any condition	Open loop system		

^{*:} Maintains conditions just before switching to open loop.

To check the heated oxygen sensor 1 function, start engine in the Diagnostic Test Mode II and warm it up until engine coolant temperature indicator points to the middle of the gauge.

Next run engine at about 2,000 rpm for about 2 minutes under no-load conditions. Then make sure that the MIL comes ON more than 5 times within 10 seconds with engine running at 2,000 rpm under no-load.

OBD System Operation Chart

NHEC0033

RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS

NHEC0033S01

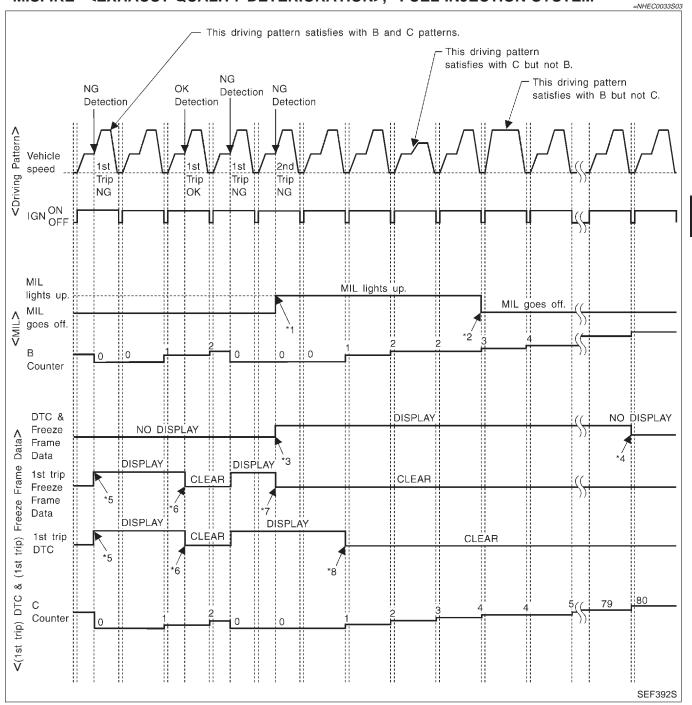
- When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MIL will come on. For details, refer to "Two Trip Detection Logic" on EC-75.
- The MIL will go off after the vehicle is driven 3 times with no malfunction. The drive is counted only when
 the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting,
 the counter will reset.
- The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern C) without the same malfunction recurring. The "TIME" in "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-II will count the number of times the vehicle is driven.
- The 1st trip DTC is not displayed when the self-diagnosis results in "OK" for the 2nd trip.

SUMMARY CHART

NHEC0033S02

Items	Fuel Injection System	Misfire	Other
MIL (goes off)	3 (pattern B)	3 (pattern B)	3 (pattern B)
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)

For details about patterns "B" and "C" under "Fuel Injection System" and "Misfire", see EC-96.


For details about patterns "A" and "B" under "Other", see EC-98.

^{*1:} Clear timing is at the moment OK is detected.

^{*2:} Clear timing is when the same malfunction is detected in the 2nd trip.

OBD System Operation Chart (Cont'd)

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR "MISFIRE" <EXHAUST QUALITY DETERIORATION>, "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *4: The DTC and the freeze frame
- data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction. (The DTC and the freeze frame data still remain in ECM.)
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *6: The 1st trip DTC and the 1st trip

- freeze frame data will be cleared at the moment OK is detected.
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.
- *8: 1st trip DTC will be cleared when vehicle is driven once (pattern C) without the same malfunction after DTC is stored in ECM.

e data will be cleared

HA

SC

MA

LC

EC

AT

AX

SU

OBD System Operation Chart (Cont'd)

EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern B>

NHEC0033S04

NHEC0033S0401

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunction.
- The MIL will go off when the B counter reaches 3. (*2 in "OBD SYSTEM OPERATION CHART")

<Driving Pattern C>

NHEC0033S0402

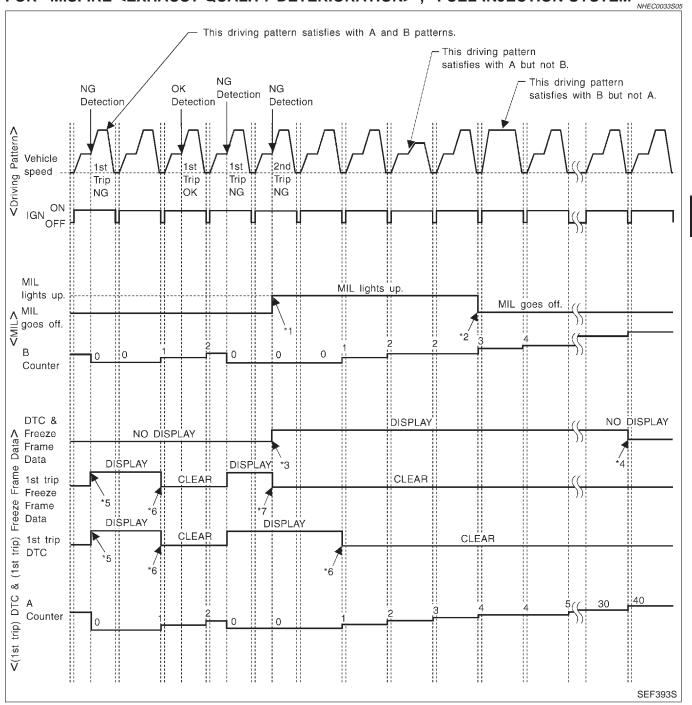
Driving pattern C means the vehicle operation as follows:

- The following conditions should be satisfied at the same time: Engine speed: (Engine speed in the freeze frame data) ±375 rpm Calculated load value: (Calculated load value in the freeze frame data) x (1±0.1) [%] Engine coolant temperature (T) condition:
- When the freeze frame data shows lower than 70°C (158°F), "T" should be lower than 70°C (158°F).
- When the freeze frame data shows higher than or equal to 70°C (158°F), "T" should be higher than or equal to 70°C (158°F).

Example:

If the stored freeze frame data is as follows:

Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F)


To be satisfied with driving pattern C, the vehicle should run under the following conditions:

Engine speed: 475 - 1,225 rpm, Calculated load value: 27 - 33%, Engine coolant temperature: more than 70°C (158°F)

- The C counter will be cleared when the malfunction is detected regardless of (1).
- The C counter will be counted up when (1) is satisfied without the same malfunction.
- The DTC will not be displayed after C counter reaches 80.
- The 1st trip DTC will be cleared when C counter is counted once without the same malfunction after DTC is stored in ECM.

OBD System Operation Chart (Cont'd)

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction. (The DTC and the freeze frame
 - data still remain in ECM.)
- *5: When a malfunction is detected for the first time, the 1st trip DTC
- and the 1st trip freeze frame data will be stored in ECM.
- *6: 1st trip DTC will be cleared after vehicle is driven once (pattern B) without the same malfunction.
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

G[

MA

EM

LC

EC

FE

AT

AX

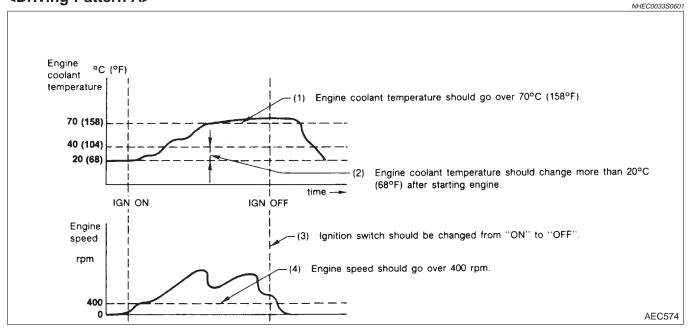
SU

ST

BT

HA

SC


EL

OBD System Operation Chart (Cont'd)

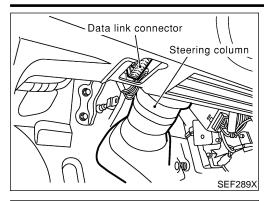
EXPLANATION FOR DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern A>

NHEC0033S06

- The A counter will be cleared when the malfunction is detected regardless of (1) (4).
- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

<Driving Pattern B>


NHEC0033S0602

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MIL will go off when the B counter reaches 3 (*2 in "OBD System Operation Chart", EC-94).

CONSULT-II

CONSULT-II

CONSULT-II INSPECTION PROCEDURE

=NHEC0034

NHEC0034S01

- Turn ignition switch OFF.
- 2. Connect CONSULT-II to data link connector, which is located under LH dash panel near the fuse box cover.

.00

MA

EM

CONSULT-II

START
SUB MODE

3. Turn ignition switch ON.

LC

4. Touch "START".

EC

FE

AT

AX

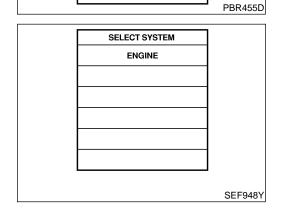
SU

ðkí

T

-

D@


-- 65

ration **b**

HA

SC

EL

Touch "ENGINE".

SELECT DIAG MODE

WORK SUPPORT

SELF-DIAG RESULTS

DATA MONITOR

DATA MONITOR (SPEC)

CAN DIAG SUPPORT MNTR

ACTIVE TEST

PBIB2308E

Perform each diagnostic test mode according to each service procedure.
 For further information, see the CONSULT-II Operation

Manual.

ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION

NHEC0034S02

					DI	AGNOSTIC	TEST MO	DE		
			WORK	1	GNOSTIC ULTS	DATA	DATA		DTC 8	
	ltem		WORK SUP- PORT	DTC*1	FREEZE FRAME DATA*2	MONI- TOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT
		Crankshaft position sensor (POS)		Х	х	Х	х			
		Camshaft position sensor (PHASE)		Х						
		Mass air flow sensor		Х		Х	Х			
		Engine coolant temperature sensor		Х	х	Х	Х	Х		
		Heated oxygen sensor 1		Х		X	Х		Х	Х
		Heated oxygen sensor 2		Х		X	Х		Х	Х
		Vehicle speed sensor		Х	Х	Х	Х			
		Accelerator pedal position sensor		Х		X	Х			
RTS		Throttle position sensor		Х		Х	Х			
PAI		Fuel tank temperature sensor		Х		Х	Х	Х		
ENGINE CONTROL COMPONENT PARTS		EVAP control system pressure sensor		х		Х	X			
OMP	5	Absolute pressure sensor		Х		X	Х			
) C	INPUT	Intake air temperature sensor		Х		X	Х			
ITRO		Knock sensor		Х						
CO		Refrigerant pressure sensor				Х	Х			
INE		Ignition switch (start signal)				X	Х			
ENG		Closed throttle position switch (accelerator pedal position sensor signal)				Х	Х			
		Air conditioner switch				Х	Х			
		Park/neutral position (PNP) switch		Х		Х	Х			
		Power steering pressure sensor		Х		Х	Х			
		Battery voltage				Х	Х			
		Load signal				Х	Х			
		Fuel level sensor		Х		Х	Х			
		ASCD steering switch		Х		Х	Х			
		ASCD brake switch		Х		Х	Х			

CONSULT-II (Cont'd)

G[

MA

EM

LC

EC

FE

AT

AX

SU

BR

ST

RS

BT

HA

SC

EL

		DIAGNOSTIC TEST MODE							
ltem		WORK SUP- PORT DTC*1 SELF-DIAGNOSTIC RESULTS FREEZE FRAME DATA*2				DATA		DTC & SRT CONFIRMATION	
				DATA MONI- TOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT	
	Injectors				Х	Х	Х		
	Power transistor (Ignition timing)				X	X	X		
	Throttle control motor relay		Х		X	Х			
OUTPUT	EVAP canister purge volume control solenoid valve		Х		Х	Х	Х		Х
	Air conditioner relay				X	X			
	Fuel pump relay	X			X	X	X		
5	Heated oxygen sensor 1 heater		X		X	X		X	
OUTPUT	Heated oxygen sensor 2 heater		Х		Х	Х		Х	
	EVAP canister vent control valve	Х	Х		Х	Х	Х		
5	Vacuum cut valve bypass valve	Х	Х		Х	Х	Х		Х
4	VIAS control solenoid valve		Х		Х	Х	Х		
	Intake valve timing control sole- noid valve		Х		Х	Х	Х		
	Electronic controlled engine mount				Х	Х	Х		
	Calculated load value			Х	Х	Х			

X: Applicable

^{*1:} This item includes 1st trip DTCs.

^{*2:} This mode includes 1st trip freeze frame data or freeze frame data. The items appear on CONSULT-II screen in freeze frame data mode only if a 1st trip DTC or DTC is detected. For details, refer to EC-77.

	FUNCTION =NHEC0034S03
Diagnostic test mode	Function
WORK SUPPORT	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-II unit.
SELF-DIAG RESULTS	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly.*1
DATA MONITOR	Input/Output data in the ECM can be read.
DATA MONITOR (SPEC)	Input/Output specification of the basic fuel schedule, AFM, A/F feedback control value and the other data monitor items can be read.
CAN diagnosis support monitor	The results of transmit/receive diagnosis of CAN communication can be read.
ACTIVE TEST	Diagnostic Test Mode in which CONSULT-II drives some actuators apart from the ECMs and also shifts some parameters in a specified range.
FUNCTION TEST	Conducted by CONSULT-II instead of a technician to determine whether each system is "OK" or "NG".
DTC & SRT CONFIRMA- TION	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.
ECM PART NUMBER	ECM part number can be read.

^{*1} The following emission-related diagnostic information is cleared when the ECM memory is erased.

- 1) Diagnostic trouble codes
- 2) 1st trip diagnostic trouble codes
- 3) Freeze frame data
- 4) 1st trip freeze frame data
- 5) System readiness test (SRT) codes
- 6) Test values
- 7) Others

CONSULT-II (Cont'd)

	WORK SUPPORT MODE	=NHEC0034S0
WORK ITEM	CONDITION	USAGE
FUEL PRESSURE RELEASE	FUEL PUMP WILL STOP BY TOUCHING "START" DURING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.	When releasing fuel pressure from fuel line
IDLE AIR VOL LEARN	THE IDLE AIR VOLUME THAT KEEPS THE ENGINE WITHIN THE SPECIFIED RANGE IS MEMORIZED IN ECM.	When learning the idle air volume
SELF-LEARNING CONT	THE COEFFICIENT OF SELF-LEARNING CONTROL MIXTURE RATIO RETURNS TO THE ORIGINAL COEFFICIENT.	When clearing the coefficient of self-learning control value
EVAP SYSTEM CLOSE	OPEN THE VACUUM CUT VALVE BYPASS VALVE AND CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN ORDER TO MAKE EVAP SYSTEM CLOSE UNDER THE FOLLOWING CONDITIONS. IGN SW "ON" ENGINE NOT RUNNING AMBIENT TEMPERATURE IS ABOVE 0°C (32°F). NO VACUUM AND NO HIGH PRESSURE IN EVAP SYSTEM TANK FUEL TEMP. IS MORE THAN 0°C (32°F). WITHIN 10 MINUTES AFTER STARTING "EVAP SYSTEM CLOSE" WHEN TRYING TO EXECUTE "EVAP SYSTEM CLOSE" UNDER THE CONDITION EXCEPT ABOVE, CONSULT-II WILL DISCONTINUE IT AND DISPLAY APPROPRIATE INSTRUCTION. NOTE: WHEN STARTING ENGINE, CONSULT-II MAY DISPLAY "BATTERY VOLTAGE IS LOW. CHARGE BATTERY", EVEN IN USING CHARGED BATTERY.	When detecting EVAP vapor leak point of EVAP system
TARGET IGN TIM ADJ*	• IDLE CONDITION	 When adjusting target ignition timing After adjustment, confirm target ignition timing with a timing light. If once the "TARGET IDLE RPM ADJ" has been done, the Idle Air Volume Learning procedure will not be completed.
TARGET IDLE RPM ADJ*	IDLE CONDITION	When setting target idle speed

SELF-DIAGNOSTIC MODE DTC and 1st Trip DTC

Regarding items of "DTC and 1st trip DTC", refer to "TROUBLE DIĂGNOŠIS — INDEX" (See EC-9.)

EL

Freeze Frame Data and 1st Trip Freeze Frame Data

Freeze frame data item*1	Description
DIAG TROUBLE CODE [PXXXX]	The engine control component part/control system has a trouble code, it is displayed as "PXXXX". (Refer to "TROUBLE DIAGNOSIS — INDEX", EC-9.)

Freeze frame data item*1	Description
FUEL SYS-B1*2	 "Fuel injection system status" at the moment a malfunction is detected is displayed. One mode in the following is displayed. "MODE 2": Open loop due to detected system malfunction
FUEL SYS-B2*2	"MODE 3": Open loop due to driving conditions (power enrichment, deceleration enrichment) "MODE 4": Closed loop - using oxygen sensor(s) as feedback for fuel control "MODE 5": Open loop - has not yet satisfied condition to go to closed loop
CAL/LD VALUE [%]	The calculated load value at the moment a malfunction is detected is displayed.
COOLANT TEMP [°C] or [°F]	The engine coolant temperature at the moment a malfunction is detected is displayed.
S-FUEL TRIM-B1 [%]	"Short-term fuel trim" at the moment a malfunction is detected is displayed. The short term fuel trim is displayed.
S-FUEL TRIM-B2 [%]	The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel schedule.
L-FUEL TRIM-B1 [%]	"Long-term fuel trim" at the moment a malfunction is detected is displayed. The least of the last of the las
L-FUEL TRIM-B2 [%]	The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule than short-term fuel trim.
ENGINE SPEED [rpm]	The engine speed at the moment a malfunction is detected is displayed.
VHCL SPEED [km/h] or [mph]	The vehicle speed at the moment a malfunction is detected is displayed.
B/FUEL SCHDL [msec]	The base fuel schedule at the moment a malfunction is detected is displayed.
INT/A TEMP SE [°C] or [°F]	The intake air temperature at the moment a malfunction is detected is displayed.

^{*1:} The items are the same as those of 1st trip freeze frame data.

^{*2:} Regarding I35, "B1" indicates bank 1 and "B2" indicates bank 2.

			DATA MONITOR MODE	=NHEC0034S06	
Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks	G[
ENG SPEED [rpm]	0	0	Indicates the engine speed computed from the signal of the crankshaft position sensor (POS) and camshaft position sensor (PHASE).	 Accuracy becomes poor if engine speed drops below the idle rpm. If the signal is interrupted while the engine is running, an abnormal value may be indicated. 	MA EM
MAS A/F SE-B1 [V]	0	0	The signal voltage of the mass air flow sensor is displayed.	When the engine is stopped, a certain value is indicated.	LG
COOLAN TEMP/S [°C] or [°F]	0	0	The engine coolant temperature (determined by the signal voltage of the engine coolant temperature sensor) is displayed.	When the engine coolant temperature sensor is open or short-circuited, ECM enters fail-safe mode. The engine coolant temperature determined by the ECM is displayed.	EC
HO2S1 (B1) [V]	0	0	The signal voltage of the heated oxygen		
HO2S1 (B2) [V]	0		sensor 1 is displayed.		AT
HO2S2 (B1) [V]	0		The signal voltage of the heated oxygen		
HO2S2 (B2) [V]	0		sensor 2 is displayed.		AX
HO2S1 MNTR (B1) [RICH/LEAN]	0	0	Display of heated oxygen sensor 1 signal during air-fuel ratio feedback control: RICH means the mixture became "rich", and control is being affected toward a	After turning ON the ignition switch, "RICH" is displayed until air-fuel mixture ratio feedback control begins.	SU
HO2S1 MNTR (B2) [RICH/LEAN]	0		leaner mixture. LEAN means the mixture became "lean", and control is being affected toward a rich mixture.	When the air-fuel ratio feedback is clamped, the value just before the clamping is displayed continuously.	BR ST
HO2S2 MNTR (B1) [RICH/LEAN]	0		Display of heated oxygen sensor 2 signal: RICH means the amount of oxygen after three way catalyst is relatively small.	When the engine is stopped, a cer-	
HO2S2 MNTR (B2) [RICH/LEAN]	0		LEAN means the amount of oxygen after three way catalyst is relatively large.	tain value is indicated.	RS
VHCL SPEED SE [km/h] or [mph]	0	0	The vehicle speed computed from the vehicle speed sensor signal is displayed.		BT
BATTERY VOLT [V]	0	0	The power supply voltage of ECM is displayed.		HA
ACCEL SEN 1 [V]	0	0	The accelerator pedal position sensor signal		SC
ACCEL SEN 2 [V]	0		voltage is displayed.		
THRTL SEN 1 [V]	0	0	The throttle position sensor signal voltage is		EL
THRTL SEN 2 [V]	0		displayed.		
FUEL T/TMP SE [°C] or [°F]	0		The fuel temperature judged from the tank fuel temperature sensor signal voltage is displayed.		IDX
INT/A TEMP SE [°C] or [°F]	0	0	The intake air temperature determined by the signal voltage of the intake air tempera- ture sensor is indicated.		
EVAP SYS PRES [V]	0		The signal voltage of EVAP control system pressure sensor is displayed.		

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
ABSOL PRES/SE [V]	0		The signal voltage of the absolute pressure sensor is displayed.	
FUEL LEVEL SE [V]	0		The signal voltage of the fuel level sensor is displayed.	
START SIGNAL [ON/OFF]	0	0	Indicates [ON/OFF] condition from the starter signal.	After starting the engine, [OFF] is displayed regardless of the starter signal.
CLSD THL POS [ON/OFF]	0	0	 Indicates idle position [ON/OFF] computed by ECM according to the accelerator pedal position sensor signal. 	
AIR COND SIG [ON/OFF]	0	0	 Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioner signal. 	
P/N POSI SW [ON/OFF]	0	0	Indicates [ON/OFF] condition from the park/ neutral position (PNP) switch signal.	
PW/ST SIGNAL [ON/OFF]	0	0	[ON/OFF] condition of the power steering system (determined by the power steering pressure sensor signal) is indicated.	
LOAD SIGNAL [ON/OFF]	0	0	 Indicates [ON/OFF] condition from the electrical load signal and/or lighting switch. ON rear defogger is operating and/or lighting switch is on. OFF rear defogger is not operating and lighting switch is not on. 	
IGNITION SW [ON/OFF]	0		Indicates [ON/OFF] condition from ignition switch.	
BRAKE SW [ON/OFF]			Indicates [ON/OFF] condition from the stop lamp switch signal.	
INJ PULSE-B1 [msec]		0	 Indicates the actual fuel injection pulse width compensated by ECM according to the input signals. 	When the engine is stopped, a certain computed value is indicated.
INJ PULSE-B2 [msec]				
B/FUEL SCHDL [msec]		0	"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	
IGN TIMING [BTDC]		0	Indicates the ignition timing computed by ECM according to the input signals.	When the engine is stopped, a certain value is indicated.
PURG VOL C/V [%]			 Indicates the EVAP canister purge volume control solenoid valve control value computed by the ECM according to the input signals. The opening becomes larger as the value increases. 	
A/F ALPHA-B1 [%]		0	The mean value of the air-fuel ratio feed- back correction factor per cycle is indicated.	 When the engine is stopped, a certain value is indicated. This data also includes the data for the air-fuel ratio learning control.
A/F ALPHA-B2 [%]		0		
AIR COND RLY [ON/OFF]		0	The air conditioner relay control condition (determined by ECM according to the input signal) is indicated.	

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
FUEL PUMP RLY [ON/OFF]		0	 Indicates the fuel pump relay control condition determined by ECM according to the input signals. 	
VENT CONT/V [ON/OFF]			The control condition of the EVAP canister vent control valve (determined by ECM according to the input signal) is indicated. ON Closed OFF Open	
HO2S1 HTR (B1) [ON/OFF]			Indicates [ON/OFF] condition of heated oxygen sensor 1 heater determined by ECM according to the input signals.	
HO2S1 HTR (B2) [ON/OFF]				
HO2S2 HTR (B1) [ON/OFF]			Indicates [ON/OFF] condition of heated oxygen sensor 2 heater determined by ECM according to the input signals.	
HO2S2 HTR (B2) [ON/OFF]				
VC/V BYPASS/V [ON/OFF]			The control condition of the vacuum cut valve bypass valve (determined by ECM according to the input signal) is indicated. ON Open OFF Closed	
CAL/LD VALUE [%]			"Calculated load value" indicates the value of the current airflow divided by peak airflow.	
MASS AIRFLOW [g·m/s]			Indicates the mass airflow computed by ECM according to the signal voltage of the mass airflow sensor.	
INT/V TIM (B1) [°CA]			Indicate [°CA] of intake camshaft advanced angle.	
INT/V TIM (B2) [°CA]				
INT/V SOL (B1) [%]			The control condition of the intake valve	
INT/V SOL (B2) [%]			timing control solenoid valve is indicated.	
TRVL AFTER MIL [km] or [Mile]			Distance traveled while MIL is activated	
VIAS S/V [ON/OFF]			 The control condition of the VIAS control solenoid valve (determined by ECM according to the input signal) is indicated. OFF VIAS control solenoid valve is not operating. ON VIAS control solenoid valve is operating. 	
IDL A/V LEARN			Display the condition of idle air volume learning YET Idle air volume learning has not been performed yet. CMPLT Idle air volume learning has already been performed successfully. INCMP Idle air volume learning has not been performed successfully.	

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
ENGINE MOUNT [IDLE/TRVL]			 The control condition of the electronic controlled engine mount (computed by ECM according to the input signals) is indicated. IDLE Idle condition TRVL Driving condition 	
COOLING FAN [HI/LOW/OFF]			Indicates the control condition of the cooling fan (determined by ECM according to the input signal). HIGH High speed operation LOW Low speed operation OFF Stop	
THRTL RELAY [ON/OFF]			Indicates the throttle control motor relay control condition determined by the ECM according to the input signals.	
AC PRESS SEN [V]			The signal voltage from the refrigerant pressure sensor is displayed.	
BRAKE SW 1 [ON/OFF]			Indicates [ON/OFF] condition from ASCD brake switch signal or park/neutral position relay signal	
BRAKE SW 2 [ON/OFF]			Indicates [ON/OFF] condition of stop lamp switch signal.	
MAIN SW [ON/OFF]			Indicates [ON/OFF] condition from CRUISE switch signal.	
CANCEL SW [ON/OFF]			Indicates [ON/OFF] condition from CANCEL switch signal.	
RESUME/ACC SW [ON/OFF]			Indicates [ON/OFF] condition from ACCEL/ RES switch signal.	
SET SW [ON/OFF]			Indicates [ON/OFF] condition from COAST/ SET switch signal.	
VHCL SPEED SE [km/h] or [mph]			The present vehicle speed computed from the vehicle speed signal sent from combina- tion meter is displayed.	
SET VHCL SPD [km/h] or [mph]			The preset vehicle speed is displayed.	
VHCL SPD CUT [NON/CUT]			Indicates the vehicle cruise condition. NONVehicle speed is maintained at the ASCD set speed. CUTVehicle speed decreased to excessively low compared with the ASCD set speed, and ASCD operation is cut off.	
LO SPEED CUT [NON/CUT]			Indicates the vehicle cruise condition. NONVehicle speed is maintained at the ASCD set speed. CUTVehicle speed decreased to excessively low compared with the ASCD set speed, and ASCD operation is cut off.	
AT OD MONITOR [ON/OFF]			Indicates [ON/OFF] condition of A/T O/D according to the input signal from the TCM.	
AT OD CANCEL [ON/OFF]			 Indicates [ON/OFF] condition of A/T OD cancel signal sent from the TCM. 	

CONSULT-II (Cont'd)

ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks	GI
		Indicates [ON/OFF] condition CRUISE lamp determined by the ECM according to the input signals.		M.
		 Indicates [ON/OFF] condition of SET lamp determined by the ECM according to the input signals. 		EM
			Pulse width, frequency or duty cycle measured by the pulse probe. Only "#" is displayed if item is.	LC
		Voltage, frequency, duty cycle or pulse	unable to be measured.	EC
		width measured by the probe.	ones. They are the same figures as	
			an actual piece of data which was iust previously measured.	FE
			, and provide any modern con-	
	INPUT SIG-	INPUT SIG-	INPUT SIG-NALS Indicates [ON/OFF] condition CRUISE lamp determined by the ECM according to the input signals. Indicates [ON/OFF] condition of SET lamp determined by the ECM according to the input signals.	INPUT SIGNALS Indicates [ON/OFF] condition CRUISE lamp determined by the ECM according to the input signals. Indicates [ON/OFF] condition of SET lamp determined by the ECM according to the input signals. Indicates [ON/OFF] condition of SET lamp determined by the ECM according to the input signals. Pulse width, frequency or duty cycle measured by the pulse probe. Only "#" is displayed if item is unable to be measured. Voltage, frequency, duty cycle or pulse width measured by the probe. Voltage, frequency, duty cycle or pulse width measured. Figures with "#"s are temporary ones. They are the same figures as

NOTE:

- Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.
- Regarding A33 model, "B1" indicates bank 1 and "B2" indicates bank 2.
- Bank 1 (B1) includes No. 1 cylinder.

DATA MONITOR (SPEC) MODE

NHEC0034S11

AX

BR

ST

BT

HA

SC

EL

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
MAS A/F SE-B1 [V]	0	0	The signal voltage of the mass air flow sensor specification is displayed.	When the engine is running, specification range is indicated.
B/FUEL SCHDL [msec]			"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	When the engine is running, specification range is indicated.
A/F ALPHA-B1 [%]		0	Indicates the mean value of the air-fuel ratio	When the engine is running, specification range is indicated.
A/F ALPHA-B2 [%]		0	feedback correction factor per cycle.	This data also includes the data for the air-fuel ratio learning control.
NOTE:				

- Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.
- Regarding A33 model, "B1" indicates bank 1 and "B2" indicates bank 2.

ACTIVE TEST MODE

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
FUEL INJECTION	 Engine: Return to the original trouble condition Change the amount of fuel injection using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connectorFuel injectorsHeated oxygen sensor
IGNITION TIMING	 Engine: Return to the original trouble condition Timing light: Set Retard the ignition timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Adjust initial ignition timing

CONSULT-II (Cont'd)

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
POWER BAL- ANCE	 Engine: After warming up, idle the engine. A/C switch "OFF" Shift lever "N" Cut off each injector signal one at a time using CONSULT-II. 	Engine runs rough or dies.	 Harness and connector Compression Injectors Power transistor Spark plugs Ignition coils
COOLING FAN	 Ignition switch: ON Turn the cooling fan "ON" and "OFF" using CONSULT-II. 	Cooling fan moves and stops.	Harness and connectorCooling fan motorCooling fan relay
ENG COOLANT TEMP	 Engine: Return to the original trouble condition Change the engine coolant temperature using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	 Harness and connector Engine coolant temperature sensor Fuel injectors
FUEL PUMP RELAY	Ignition switch: ON (Engine stopped) Turn the fuel pump relay "ON" and "OFF" using CONSULT-II and listen to operating sound.	Fuel pump relay makes the operating sound.	Harness and connector Fuel pump relay
VIAS SOL VALVE	 Ignition switch: ON Turn solenoid valve "ON" and "OFF" with CONSULT-II and listen for operating sound. 	Solenoid valve makes an operating sound.	Harness and connector Solenoid valve
ENGINE MOUNT-ING	 Engine: After warming up, run engine at idle speed. Gear position: "D" range (Vehicle stopped) Turn electronic controlled engine mount "IDLE" and "TRVL" with the CONSULT-II. 	Body vibration changes according to the electronic controlled engine mount condition.	Harness and connector Electronic controlled engine mount
PURG VOL CONT/V	 Engine: After warming up, run engine at 1,500 rpm. Change the EVAP canister purge volume control solenoid valve opening percent using CONSULT-II. 	Engine speed changes according to the opening percent.	Harness and connector Solenoid valve
FUEL/T TEMP SEN	Change the fuel tank temperature	using CONSULT-II.	
VENT CONTROL/V	Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" with the CONSULT-II and listen to operating sound.	Solenoid valve makes an operating sound.	Harness and connector Solenoid valve
VC/V BYPASS/V	Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" with the CONSULT-II and listen to operating sound.	Solenoid valve makes an operating sound.	Harness and connectorSolenoid valve
V/T ASSIGN ANGLE	 Engine: After warming up, hold engine speed at 2,500 rpm. Change the intake valve timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connector Intake valve timing control solenoid valve

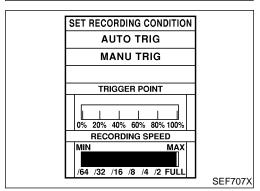
DTC & SRT CONFIRMATION MODE SRT STATUS Mode

NHEC0034S08

For details, refer to "SYSTEM READINESS TEST (SRT) CODE", EC-77.

CONSULT-II (Cont'd)

SRT Work Support Mode


This mode enables a technician to drive a vehicle to set the SRT while monitoring the SRT status.

DTC Work Support Mode

N	HF	COC	134	SO.	802

Test mode	Test item	Condition	Reference page	•
	PURGE FLOW P0441		EC-343	- M
	EVP SML LEAK P0442/P1442	1	EC-353	
EVAPORATIVE SYSTEM	EVP V/S LEAK P0456/P1456		EC-409, EC-609	- EN
	PURG VOL CN/V P1444	1	EC-579	П <i>(</i>
	VC CUT/V BP/V P1491	7	EC-634	- L(
	HO2S1 (B1) P0133	1	EC-222	E
	HO2S1 (B1) P0134		EC-234	
	HO2S1 (B1) P1143		EC-484	· FE
110004	HO2S1 (B1) P1144	Refer to corresponding	EC-491	
HO2S1	HO2S1 (B2) P0153	trouble diagnosis for DTC.	EC-222	A1
	HO2S1 (B2) P0154		EC-234	
	HO2S1 (B2) P1163		EC-484	
	HO2S1 (B2) P1164	7	EC-491	
	HO2S2 (B1) P0139	7	EC-251	- S[
	HO2S2 (B1) P1146	7	EC-498	
110000	HO2S2 (B1) P1147		EC-508	B
HO2S2	HO2S2 (B2) P0159	7	EC-251	
	HO2S2 (B2) P1166	7	EC-498	S
	HO2S2 (B2) P1167	7	EC-508	

DATA MONITOR	
Recording Data11% NO DTC	
ENG SPEED XXX rpm MAS A/F SE-B1 XXX V COOLAN TEMP/S XXX °C HO2S1 (B1) XXX V VHCL SPEED SE XXX km/h	
	SEF705Y

REAL TIME DIAGNOSIS IN DATA MONITOR MODE (RECORDING VEHICLE DATA)

CONSULT-II has two kinds of triggers and they can be selected by touching "SETTING" in "DATA MONITOR" mode.

"AUTO TRIG" (Automatic trigger):

The malfunction will be identified on the CONSULT-II screen in real time.

In other words, DTC/1st trip DTC and malfunction item will be displayed if the malfunction is detected by ECM.

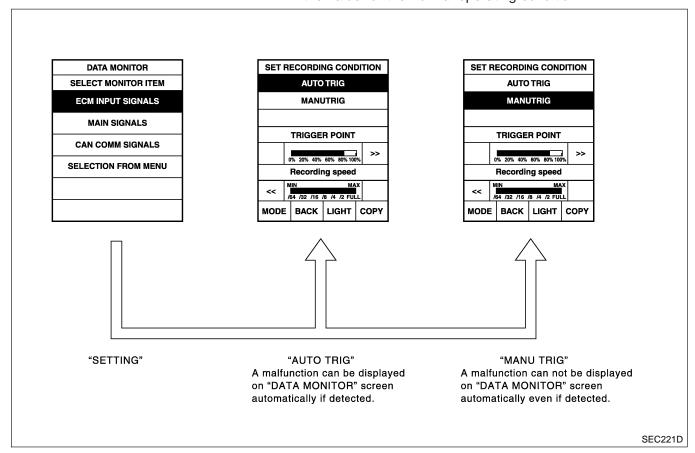
At the moment a malfunction is detected by ECM, "MONITOR" in "DATA MONITOR" screen is changed to "Recording Data ... xx%" as shown at left, and the data after the malfunction detection is recorded. Then when the percentage reached 100%, "REAL-TIME DIAG" screen is displayed. If "STOP" is touched on the screen during "Recording Data ... xx%", "REAL-TIME DIAG" screen is also displayed.

The recording time after the malfunction detection and the recording speed can be changed by "TRIGGER POINT" and "Recording Speed". Refer to CONSULT-II OPERATION MANUAL.

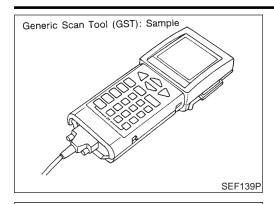
- "MANU TRIG" (Manual trigger):
- DTC/1st trip DTC and malfunction item will not be displayed

HA

BT


SC

automatically on CONSULT-II screen even though a malfunction is detected by ECM.


DATA MONITOR can be performed continuously even though a malfunction is detected.

Use these triggers as follows:

- 1) "AUTO TRIG"
- While trying to detect the DTC/1st trip DTC by performing the "DTC Confirmation Procedure", be sure to select to "DATA MONITOR (AUTO TRIG)" mode. You can confirm the malfunction at the moment it is detected.
- While narrowing down the possible causes, CONSULT-II should be set in "DATA MONITOR (AUTO TRIG)" mode, especially in case the incident is intermittent. When you are inspecting the circuit by gently shaking (or twisting) the suspicious connectors, components and harness in the "DTC Confirmation Procedure", the moment a malfunction is found the DTC/1st trip DTC will be displayed. (Refer to GI-21, "Incident Simulation Tests".)
- 2) "MANU TRIG"
- If the malfunction is displayed as soon as "DATA MONITOR" is selected, reset CONSULT-II to "MANU TRIG". By selecting "MANU TRIG" you can monitor and store the data. The data can be utilized for further diagnosis, such as a comparison with the value for the normal operating condition.

Generic Scan Tool (GST)

Data link connector

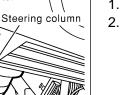
Generic Scan Tool (GST) DESCRIPTION

=NHEC0035

Generic Scan Tool (OBDII scan tool) complying with SAE J1978 has 8 different functions explained on the next page. ISO9141 is used as the protocol.

GI

The name "GST" or "Generic Scan Tool" is used in this service manual.


MA

EM

LC

GST INSPECTION PROCEDURE

NHEC0035S02

Turn ignition switch OFF.

2. Connect GST to data link connector, which is located under LH dash panel near the fuse box cover.

EC

AT

Turn ignition switch ON.

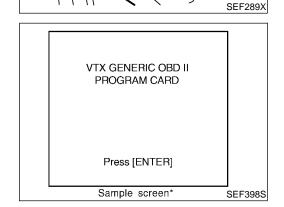
cedure.

AX

Enter the program according to instruction on the screen or in the operation manual.

SU

(*: Regarding GST screens in this section, sample screens are shown.)


5. Perform each diagnostic mode according to each service pro-

For further information, see the GST Operation Manual of the tool maker.

HA

SC

EL

OBD II FUNCTIONS

F0: DATA LIST

F1: FREEZE DATA

F2: DTCs

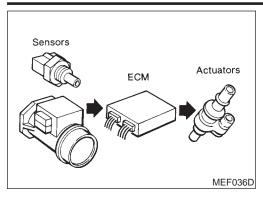
F3: SNAPSHOT

F4: CLEAR DIAG INFO F5: O2 TEST RESULTS

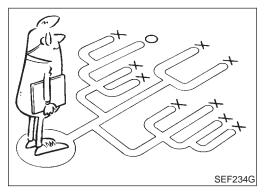
F6: READINESS TESTS

F7: ON BOARD TESTS

F8: EXPAND DIAG PROT


F9: UNIT CONVERSION

Sample screen*


SEF416S

Generic Scan Tool (GST) (Cont'd)

	FUNCTION		
D	iagnostic test mode	Function	
MODE 1	READINESS TESTS	This mode gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, and system status information.	
MODE 2	(FREEZE DATA)	This mode gains access to emission-related data value which were stored by ECM during the freeze frame. [For details, refer to "Freeze Frame Data" (EC-103).]	
MODE 3	DTCs	This mode gains access to emission-related power train trouble codes which were stored by ECM.	
MODE 4	CLEAR DIAG INFO	This mode can clear all emission-related diagnostic information. This includes: Clear number of diagnostic trouble codes (MODE 1) Clear diagnostic trouble codes (MODE 3) Clear trouble code for freeze frame data (MODE 1) Clear freeze frame data (MODE 2) Reset status of system monitoring test (MODE 1) Clear on board monitoring test results (MODE 6 and 7)	
MODE 6	(ON BOARD TESTS)	This mode accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.	
MODE 7	(ON BOARD TESTS)	This mode enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.	
MODE 8	_	This mode can close EVAP system in ignition switch "ON" position (Engine stopped). When this mode is performed, the following parts can be opened or closed. EVAP canister vent control valve open Vacuum cut valve bypass valve closed In the following conditions, this mode cannot function. Low ambient temperature Low battery voltage Engine running Ignition switch "OFF" Low fuel temperature Too much pressure is applied to EVAP system	
MODE 9	(CALIBRATION ID)	This mode enables the off-board test device to request specific vehicle information such as Vehicle Identification Number (VIN) and Calibration IDs.	

KEY POINTS

WHAT Vehicle & engine model
WHEN Date, Frequencies
WHERE Boad conditions

WHERE..... Road conditions
HOW Operating conditions,

Weather conditions, Symptoms

SEF907L

Introduction

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no malfunctions such as vacuum leaks, fouled spark plugs, or other malfunctions with the engine.

It is much more difficult to diagnose an incident that occurs intermittently rather than continuously. Most intermittent incidents are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.

A visual check only may not find the cause of the incidents. A road test with CONSULT-II (or GST) or a circuit tester connected should be performed. Follow the "Work Flow" on EC-117.

Before undertaking actual checks, take a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such incidents, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A "Diagnostic Worksheet" like the example on next page should be used.

Start your diagnosis by looking for "conventional" malfunctions first. This will help troubleshoot driveability malfunctions on an electronically controlled engine vehicle.

DIAGNOSTIC WORKSHEET

NHEC0036S01

There are many operating conditions that lead to the malfunction of engine components. A good grasp of such conditions can make trouble-shooting faster and more accurate.

In general, each customer feels differently about an incident. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one on the next page in order to organize all the information for troubleshooting.

Some conditions may cause the MIL to come on steady or blink and DTC to be detected. Examples:

Vehicle ran out of fuel, which caused the engine to misfire.

 Fuel filler cap was left off or incorrectly screwed on, allowing fuel to evaporate into the atmosphere.

MA

LC

EC

FE

AT

AX

SU

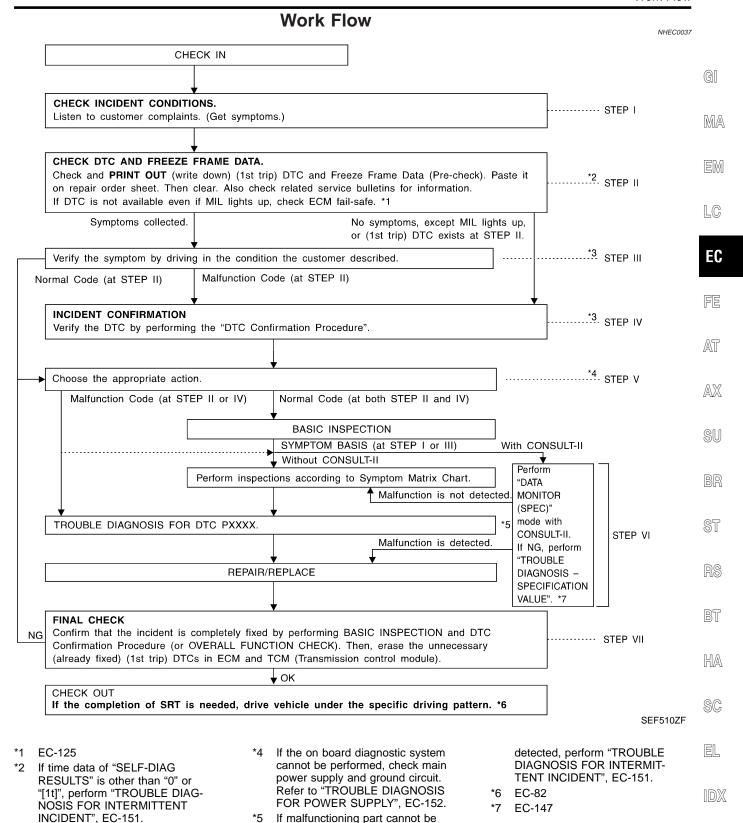
RS

BT HA

SC

DW.

TROUBLE DIAGNOSIS — INTRODUCTION


Introduction (Cont'd)

Worksheet Sample

NHEC0036S0101

Customer name MR/MS		Model & Year	VIN
Engine #		Trans.	Mileage
Incident Date		Manuf. Date	In Service Date
Fuel and fuel	filler cap	☐ Vehicle ran out of fuel causing misfire ☐ Fuel filler cap was left off or incorrectly	/ screwed on.
	☐ Startability	☐ Impossible to start ☐ No combustion ☐ Partial combustion ☐ Partial combustion affected by throttle position ☐ Partial combustion NOT affected by throttle position ☐ Possible but hard to start ☐ Others [
Symptoms	□ Idling	☐ No fast idle ☐ Unstable ☐ F☐ Others [High idle ☐ Low idle
	☐ Driveability	☐ Stumble ☐ Surge ☐ Knock☐ Intake backfire ☐ Exhaust backfi☐ Others [☐ Lack of power re]
	☐ Engine stall	☐ At the time of start ☐ While idling ☐ While accelerating ☐ While dece ☐ Just after stopping ☐ While loadi	lerating
Incident occur	rrence	☐ Just after delivery ☐ Recently ☐ In the morning ☐ At night ☐	☐ In the daytime
Frequency		☐ All the time ☐ Under certain cond	ditions
Weather cond	litions	☐ Not affected	
	Weather	☐ Fine ☐ Raining ☐ Snowing	☐ Others []
	Temperature	☐ Hot ☐ Warm ☐ Cool ☐] Cold □ Humid °F
		☐ Cold ☐ During warm-up ☐ /	After warm-up
Engine conditions		Engine speed0 2,000	4,000 6,000 8,000 rpm
Road conditions		☐ In town ☐ In suburbs ☐ Hig	hway 🔲 Off road (up/down)
Driving conditions		□ Not affected □ At starting □ While idling □ While accelerating □ While cruis □ While decelerating □ While turning Vehicle speed □ □ □ □ 0 10 20	-
Malfunction indicator lamp ☐ Turned on ☐ Not turned on			

MTBL0017

If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT",

EC-151.

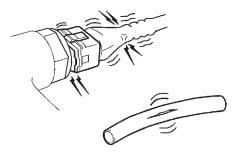
	DESCRIPTION FOR WORK FLOW NHEC0037S01
STEP	DESCRIPTION
STEP I	Get detailed information about the conditions and the environment when the incident/symptom occurred using the "DIAGNOSTIC WORK SHEET", EC-116.
STEP II	Before confirming the concern, check and write down (print out using CONSULT-II or GST) the (1st trip) DTC and the (1st trip) freeze frame data, then erase the DTC and the data. (Refer to EC-89.) The (1st trip) DTC and the (1st trip) freeze frame data can be used when duplicating the incident at STEP III & IV. If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151. Study the relationship between the cause, specified by (1st trip) DTC, and the symptom described by the customer. (The "Symptom Matrix Chart" will be useful. See EC-126.) Also check related service bulletins for information.
STEP III	Try to confirm the symptom and under what conditions the incident occurs. The "DIAGNOSTIC WORK SHEET" and the freeze frame data are useful to verify the incident. Connect CON-SULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151. If the malfunction code is detected, skip STEP IV and perform STEP V.
STEP IV	Try to detect the (1st trip) DTC by driving in (or performing) the "DTC Confirmation Procedure". Check and read the (1st trip) DTC and (1st trip) freeze frame data by using CONSULT-II or GST. During the (1st trip) DTC verification, be sure to connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151. In case the "DTC Confirmation Procedure" is not available, perform the "Overall Function Check" instead. The (1st trip) DTC cannot be displayed by this check, however, this simplified "check" is an effective alternative. The "NG" result of the "Overall Function Check" is the same as the (1st trip) DTC detection.
STEP V	Take the appropriate action based on the results of STEP I through IV. If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC PXXXX. If the normal code is indicated, proceed to the BASIC INSPECTION. (Refer to EC-119.) If CONSULT-II is available, perform "DATA MONITOR (SPEC)" mode with CONSULT-II and proceed to the "TROUBLE DIAGNOSIS — SPECIFICATION VALUE", EC-147. (If malfunction is detected, proceed to "REPAIR REPLACE".) Then perform inspections according to the Symptom Matrix Chart. (Refer to EC-126.)
STEP VI	Identify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the system for mechanical binding, loose connectors or wiring damage using (tracing) "Harness Layouts". Gently shake the related connectors, components or wiring harness with CONSULT-II set in "DATA MONITOR (AUTO TRIG)" mode. Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CONSULT-II. Refer to EC-130, 136. The "Diagnostic Procedure" in EC section contains a description based on open circuit inspection. A short circuit inspection is also required for the circuit check in the Diagnostic Procedure. For details, refer to GI-22, "Circuit Inspection". Repair or replace the malfunction parts. If malfunctioning part cannot be detected, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.
STEP VII	Once you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and circumstances which resulted in the customer's initial complaint. Perform the "DTC Confirmation Procedure" and confirm the normal code [DTC No. P0000] is detected. If the incident is still detected in the final check, perform STEP VI by using a different method from the previous one. Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) (1st trip) DTC in ECM and TCM (Transmission control module). (Refer to EC-89.)

Basic Inspection

Precaution:

NHEC0038

Perform Basic Inspection without electrical or mechanical loads applied;


Headlamp switch is OFF,

- Air conditioner switch is OFF,
- Rear window defogger switch is OFF,
- Steering wheel is in the straight-ahead position, etc.

1 INSPECTION START

1. Check service records for any recent repairs that may indicate a related malfunction, or a current need for scheduled maintenance.

- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Vacuum hoses for splits, kinks and improper connections
- Wiring for improper connections, pinches and cuts
- Air cleaner clogging
- Hoses and ducts for leaks

SEF983U

■ GO TO 2.

2	REPAIR OR REPLACE	
Repair	Repair or replace components as necessary according to corresponding "Diagnostic Procedure".	
▶ GO TO 3.		

GI

MA

LC

EC

FE

AT

AX

SU

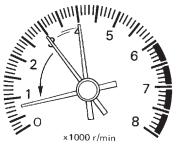
BR

ST

HA

SC

EL


 $\mathbb{N}^{\mathbb{N}}$

Basic Inspection (Cont'd)

3 CHECK TARGET IDLE SPEED

(II) With CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.

SEF978U

Read idle speed in "DATA MONITOR" mode with CONSULT-II.
 675±50 rpm (in "P" or "N" position)

DATA M	ONITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm

SEF058Y

Without CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.
- 3. Check idle speed.

675±50 rpm (in "P" or "N" position)

OK or NG

OK	GO TO 9.
NG	GO TO 4.

4	PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING
1. Sto	p engine.

2. Perform "Accelerator Pedal Released Position Learning", EC-71.

▶ GO TO 5.

5	PERFORM THROTTLE	VALVE CLOSED POSITION LEARNING
Perfor	m "Throttle Valve Closed P	osition Learning", EC-71.
	>	GO TO 6.

Basic Inspection (Cont'd)

	ir Volume Learnir	OLUME LEARNING na", EC-71.
		rried out successfully?
		Yes or No
Yes	>	GO TO 7.
No	>	Follow the construction of "Idle Air Volume Learning". GO TO 4.
7 CHECK	TARGET IDLE	SPEED AGAIN
2. Read idle sp	and warm it up t	to normal operating temperature. ONITOR" mode with CONSULT-II. "" position)
2. Check idle s	and warm it up topeed.	to normal operating temperature.
675±50 r	pm (in "P" or "N	
		OK or NG
OK	<u> </u>	GO TO 10.
NG	<u> </u>	GO TO 8.
Check the follo		DNING PART
8 DETEC Check the follo • Check cams	wing. haft position sens	ONING PART For (PHASE) and circuit. Refer to EC-329. INSORT (POS) and circuit. Refer to EC-322. OK or NG
8 DETEC Check the follo • Check camsl • Check crank	wing. haft position sens	ONING PART For (PHASE) and circuit. Refer to EC-329. For (POS) and circuit. Refer to EC-322. OK or NG GO TO 9.
8 DETEC Check the follo • Check camsl • Check crank	wing. haft position sens shaft position ser	ONING PART For (PHASE) and circuit. Refer to EC-329. INSORT (POS) and circuit. Refer to EC-322. OK or NG
8 DETEC Check the follor • Check camsl • Check crank	wing. haft position sens shaft position ser	ONING PART For (PHASE) and circuit. Refer to EC-329. For (POS) and circuit. Refer to EC-322. OK or NG GO TO 9. 1. Repair or replace. 2. GO TO 4.
8 DETEC Check the follo Check camsl Check crank OK NG CHECK	wing. haft position sens shaft position ser	ONING PART For (PHASE) and circuit. Refer to EC-329. Insor (POS) and circuit. Refer to EC-322. OK or NG GO TO 9. 1. Repair or replace. 2. GO TO 4.
8 DETEC Check the follo Check camsl Check crank OK NG CHECK 1. Substitute a rarely the ca 2. Perform initi	wing. haft position sens shaft position ser	ONING PART For (PHASE) and circuit. Refer to EC-329. For (POS) and circuit. Refer to EC-322. OK or NG GO TO 9. 1. Repair or replace. 2. GO TO 4.
8 DETEC Check the follo Check camsl Check crank OK NG CHECK 1. Substitute a rarely the ca 2. Perform initi	wing. haft position sens shaft position ser	ONING PART For (PHASE) and circuit. Refer to EC-329. Insor (POS) and circuit. Refer to EC-322. OK or NG GO TO 9. 1. Repair or replace. 2. GO TO 4. ON ON ON ON ON ON ON ON ON O
8 DETEC Check the follo Check camsl Check crank OK NG CHECK 1. Substitute a rarely the ca 2. Perform initi	wing. haft position sens shaft position ser	ONING PART For (PHASE) and circuit. Refer to EC-329. Insor (POS) and circuit. Refer to EC-322. OK or NG GO TO 9. 1. Repair or replace. 2. GO TO 4. ON ON ON ON ON ON ON ON ON O
8 DETEC Check the follor Check camsl Check crank OK NG CHECK 1. Substitute a rarely the ca 2. Perform initi VEHICLE IN	wing. haft position sens shaft position ser	DNING PART For (PHASE) and circuit. Refer to EC-329. Insor (POS) and circuit. Refer to EC-322. OK or NG GO TO 9. 1. Repair or replace. 2. GO TO 4. DN End ECM to check ECM function. (ECM may be the cause of a malfunction, but this is the example of the company of the com
8 DETEC Check the follor Check cams Check crank Check crank OK NG 9 CHECK 1. Substitute arrarely the car Perform initity VEHICLE IN 10 CHECK 1. Run engine Check ignitic	wing. haft position sens shaft position of IVIS (MMOBILIZER SYSTEM STATE OF THE POSITION SHAPE STATE OF THE POSITION SHAPE STATE OF THE POSITION SHAPE	DNING PART For (PHASE) and circuit. Refer to EC-329. Insor (POS) and circuit. Refer to EC-322. OK or NG GO TO 9. 1. Repair or replace. 2. GO TO 4. DN Dod ECM to check ECM function. (ECM may be the cause of a malfunction, but this is the NATS) system and registration of IVIS (NATS) ignition key IDs. Refer to "IVIS (INFINITI STEM — NATS)", EC-90. GO TO 4. NG Iming light.
8 DETEC Check the follor Check cams Check crank Check crank OK NG 9 CHECK 1. Substitute arrarely the car Perform initity VEHICLE IN 10 CHECK 1. Run engine Check ignitic	wing. haft position sens shaft position of IVIS (MMOBILIZER SYSTEM STATE OF THE	DNING PART For (PHASE) and circuit. Refer to EC-329. For (POS) and circuit. Refer to EC-322. OK or NG GO TO 9. 1. Repair or replace. 2. GO TO 4. DN DO ECM to check ECM function. (ECM may be the cause of a malfunction, but this is the NATS) system and registration of IVIS (NATS) ignition key IDs. Refer to "IVIS (INFINITI STEM — NATS)", EC-90. GO TO 4. NG Iming light.
8 DETEC Check the follor Check cams Check crank Check crank OK NG 9 CHECK 1. Substitute arrarely the car Perform initity VEHICLE IN 10 CHECK 1. Run engine Check ignitic	wing. haft position sens shaft position of IVIS (MMOBILIZER SYSTEM STATE OF THE	DNING PART For (PHASE) and circuit. Refer to EC-329. Issor (POS) and circuit. Refer to EC-322. OK or NG GO TO 9. 1. Repair or replace. 2. GO TO 4. DN Od ECM to check ECM function. (ECM may be the cause of a malfunction, but this is the NATS) system and registration of IVIS (NATS) ignition key IDs. Refer to "IVIS (INFINITISTEM — NATS)", EC-90. GO TO 4. NG iming light. IN" position)

2. Perform "Accelerator Pedal Released Position Learning", EC-71.

GO TO 12.

Basic Inspection (Cont'd)

12	PERFORM THROTTLE VALVE CLOSED POSITION LEARNING	
Perfor	Perform "Throttle Valve Closed Position Learning", EC-71.	
	▶ GO TO 13.	

13	PERFORM IDLE AIR VOLUME LEARNING	
	Refer to "Idle Air Volume Learning", EC-71. Is Idle Air Volume Learning carried out successfully?	
	Yes or No	
Yes	/es ▶ GO TO 14.	
No	No 1. Follow the construction of "Idle Air Volume Learning". 2. GO TO 4.	

14	14 CHECK TARGET IDLE SPEED AGAIN		
1. Sta	 With CONSULT-II Start engine and warm it up to normal operating temperature. Read idle speed in "DATA MONITOR" mode with CONSULT-II. 		
	675±50 rpm (in "P" or "N	" position)	
1. Sta 2. Ch	Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Check idle speed. 675±50 rpm (in "P" or "N" position)		
	OK or NG		
OK	OK ► GO TO 15.		
NG	NG		

15	5 CHECK IGNITION TIMING AGAIN	
2. Che	1. Run engine at idle. 2. Check ignition timing with a timing light. 15°±5° BTDC (in "P" or "N" position) OK or NG	
	5.7.5. NO	
OK	OK INSPECTION END	
NG	•	GO TO 16.

16	CHECK TIMING CHAIN	INSTALLATION
Check	timing chain installation. R	Refer to EM-21, "TIMING CHAIN".
		OK or NG
OK	>	GO TO 17.
NG	>	 Repair the timing chain installation. GO TO 4.

17	DETECT MALFUNCTIO	NING PART
• Ch		or (PHASE) and circuit. Refer to EC-329. sor (POS) and circuit. Refer to EC-322.
		OK or NG
OK	OK	
NG	NG 1. Repair or replace. 2. GO TO 4.	

Basic Inspection (Cont'd)

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of a malfunction, but this is the rarely the case.)
- 2. Perform initialization of IVIS (NATS) system and registration of IVIS (NATS) ignition key IDs. Refer to "IVIS (INFINITI VEHICLE IMMOBILIZER SYSTEM NATS)", EC-90.

► GO TO 4.

G[

MA

LC

EC

--

FE

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

DTC Inspection Priority Chart

DTC Inspection Priority Chart

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

Priority	Detected items (DTC)
1	 U1000, U1001 CAN communication line P0101, P0102, P0103, P1102 MAF sensor P0112, P0113, P0127 IAT sensor P0117, P0118, P0125 ECT sensor P0128 Thermostat function P0181, P0182, P0183 FTT sensor P0221, P0222, P0223, P1223, P1224, P1225, P1226, P1229 Throttle position sensor P0226, P0227, P0228, P1227, P1228 Accelerator pedal position sensor P0327, P0328 KS P0335 CKP sensor (POS) P0340, P0345 CMP sensor (PHASE) P0460, P0461, P0462, P0463, P1464 Fuel level sensor P0500 VSS P0605 ECM P0705 Park/Neutral position switch P1706 PNP switch
2	 P0031, P0032, P0051, P0052 HO2S1 heater P0037, P0038, P0057, P0058 HO2S2 heater P0107, P0108 Absolute pressure sensor P0132-P0134, P1143, P1144 and P0152-P0154, P1163, P1164 HO2S1 P0138, P0139, P1146, P1147 and P0158, P0159, P1166, P1167 HO2S2 P0441 EVAP control system purge flow monitoring P0444, P0445, P1444 EVAP canister purge volume control solenoid valve P0447, P1446, P1448 EVAP canister vent control valve P0452, P0453 EVAP control system pressure sensor P0550 Power steering pressure sensor P0650 MIL P0710, P0720, P0725, P0740, P0745, P0750, P1705, P1760 A/T related sensors, solenoid valves and switches P1065 ECM power supply P1122 Electric throttle control function P1217 Engine overtemperature (OVERHEAT) P1490, P1491 Vacuum cut valve bypass valve P1805 Brake switch
3	 P0011, P0021 Intake valve timing control P0171, P0172 and P0174, P0175 Fuel injection system function P0300-P0306 Misfire P0420, P0430 Three way catalyst function P0442, P0456, P1442, P1456 EVAP control system (SMALL LEAK, VERY SMALL LEAK) P0455 EVAP control system (GROSS LEAK) P0506, P0507 ISC system P0731-P0734, P0744 A/T function P1121 Electric throttle control actuator P1124, P1126 Throttle control motor relay P1128 Throttle control motor P1148, P1168 Closed loop control P1211 ABS/TCS communication line P1504 ASCD steering switch P1572 ASCD brake switch P1574 ASCD Vehicle speed sensor

Fail-safe Chart

Fail-safe Chart

When the DTC listed below is detected, the ECM enters the fail-safe mode and the MIL lights up.

=NHEC0040

DTC No.								
	Detected items	ngine operating condition in fail-safe mode						
P0102, P0103, P1102	Mass air flow sensor circuit	Engine speed will not rise more the	an 2,400 rpm due to the fuel cut.	- © -				
P0117, P0118	Engine coolant temperature sensor circuit	turning ignition switch "ON" or "STA	e determined by ECM based on the time after ART". oolant temperature decided by ECM.	- M - E				
		Condition	Engine coolant temperature decided (CONSULT-II display)	- [
		Just as ignition switch is turned ON or Start	40°C (104°F)					
		More than approx. 4 minutes after ignition ON or Start	80°C (176°F)	E				
		Except as shown above 40 - 80°C (104 - 176°F) (Depends on the time)						
		When the fail-safe system for engine coolant temperature sensor is activated, the cooling fan operates while engine is running.						
P0221, P0222, P0223, P1223, P1224	Throttle position sensor	The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees. The ECM regulates the opening speed of the throttle valve to be slower than the normal condition. So, the acceleration will be poor.						
P0226, P0227, P0228, P1227, P1228		opening in order for the idle position	peed of the throttle valve to be slower than the					
P1121	Electric throttle control actuator (ECM detect the throttle valve is stuck open.)	stops, the engine stalls.	s down gradually by fuel cut. After the vehicle	- E				
P1122	Electric throttle control function	ECM stops the electric throttle con at a fixed opening (approx. 5 degrees)	ntrol actuator control, throttle valve is maintained ees) by the return spring.	- R				
P1124, P1126	Throttle control relay	ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.						
P1128	Throttle control motor	ECM stops the electric throttle con at a fixed opening (approx. 5 degrees)	ntrol actuator control, throttle valve is maintained ees) by the return spring.	- -				
P1129	Sensor power supply	ECM stops the electric throttle con	atrol actuator control, throttle valve is maintained	- 1				

SC

EL

Symptom Matrix Chart SYSTEM — BASIC ENGINE CONTROL SYSTEM

NHEC0041

															NHEC0041S01
							S	YMPT	ОМ						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty	symptom code	AA	АВ	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Fuel	Fuel pump circuit	1	1	2	3	2		2	2			3		2	EC-716
	Fuel pressure regulator system	3	3	4	4	4	4	4	4	4		4			EC-56
	Injector circuit	1	1	2	3	2		2	2			2			EC-706
	Evaporative emission system														EC-36
Air	Positive crankcase ventilation system	3	3	4	4	4	4	4	4	4		4	1		EC-51
	Incorrect idle speed adjustment						1	1	1	1		1			EC-119
	Electric throttle control actuator	1	1	2	3	3	2	2	2	2		2		2	EC-463, 465, 473, 479
Ignition	Incorrect ignition timing adjustment	3	3	1	1	1		1	1			1]		EC-119
	Ignition circuit	1	1	2	2	2		2	2			2]		EC-695
Main power supply and ground circuit		2	2	3	3	3		3	2		2	3			EC-152
Air conditi	Air conditioner circuit			3	3	3	3	3	3	3				2	HA section
VDC/TCS	/ABS control unit			4											EC-520, 522

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

Symptom Matrix Chart (Cont'd)

							S	YMP1	ГОМ							•
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	DLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	
Warranty s	symptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА	_	F
Engine control	Crankshaft position sensor (POS) circuit	2	2												EC-322	. 🛚
	Camshaft position sensor (PHASE) circuit	3	2	-											EC-329	- <i>[</i> =
	Mass air flow sensor circuit	1			2								•		EC-183, 190, 457	- [
	Heated oxygen sensor 1 circuit														EC-214, 222, 234, 484, 491	. @
	Engine coolant temperature sensor circuit	1	1	2	3	2	3	2	2	3		2			EC-202, 207	
	Throttle position sensor circuit					-	2			2					EC-284, 290, 542, 548, 550	. @
	Accelerator pedal position sensor circuit	1		3		1	1	1	1	1					EC-296, 303, 552	
	Vehicle speed sensor circuit	1	2	3		3					1				EC-434	. [
	Knock sensor circuit	1		2	-		1					3			EC-317	
	ECM	2	2	3	3	3	3	3	3	3	3				EC-447, 125	
	Start signal circuit	2													EC-712	
	Park/Neutral position switch circuit			3		3						3			EC-671	
	Power steering pressure sensor circuit		2					3	3						EC-442	
	Electrical load signal circuit														EC-745	. [

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

Symptom Matrix Chart (Cont'd)

		S'	YST	EM	_	ENG	SIN	E M	ECH	ANI	CA	L &	ОТ	HE	NHEC0041S02
							S`	YMPT	ОМ						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference section
Warranty	symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Fuel	Fuel tank	5													FE section
	Fuel piping	L		5	5	5		5	5			5			
	Vapor lock		5												
	Valve deposit														
	Poor fuel (Heavy weight gasoline, Low octane)	5		5	5	5		5	5			5			_
Air	Air duct														
	Air cleaner														
	Air leakage from air duct (Mass air flow sensor — throttle body)	5	5	5	5	5	5	5	5	5		5			
	Air leakage from intake manifold/ Collector/Gasket														_
Cranking	Battery	4	4	4		4		4	4			4			
	Alternator circuit] "	1 1	1		1		1	1			1		1	EL section
	Starter circuit	3]					1			1		1
	Drive plate	6													EM section
	PNP switch	4													AT section

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

Symptom Matrix Chart (Cont'd)

												- ,			rix Chart (Cont'd)	
			1				S	/MPT	ОМ			1				
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference section	GI MA EM LC
Warranty sy	mptom code	AA	АВ	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА		FE
Engine	Cylinder head	- 5	5	5	5	5		5	5			5				
	Cylinder head gasket		5	3	5	5		5	5		4	3	3			AT
	Cylinder block															
	Piston												4			$\mathbb{A}\mathbb{X}$
	Piston ring	6	6	6	6	6		6	6			6				@III
	Connecting rod								Ü							SU
	Bearing														EM section	BR
	Crankshaft															
Valve mechanism	Timing chain															ST
momaniom	Camshaft															◎ Ⅱ
	Intake valve timing control	5	5	5	5	5		5	5			5				RS
	Intake valve												3			
	Exhaust valve															BT
Exhaust	Exhaust manifold/Tube/Muffler/ Gasket	5	5	5	5	5	5	5		5					FE section	
	Three way catalyst															HA
Lubrication	Oil pan/Oil strainer/Oil pump/Oil filter/Oil gallery	5	5	5	5	5		5	5			5			MA, EM, LC section	SC
	Oil level (Low)/Filthy oil														LC section	
Cooling	Radiator/Hose/Radiator filler cap															EL
	Thermostat									5						
	Water pump	5	5	5	5	5		5	5		4	5				
	Water gallery															
	Coolant level (low)/Contaminated coolant														MA section	

^{1 - 6:} The numbers refer to the order of inspection.

		SYMPTOM												
	HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference section
Warranty symptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА	
IVIS (INFINITI Vehicle Immobilizer System — NATS)	1	1												EC-90 or EL section

^{1 - 6:} The numbers refer to the order of inspection.

CONSULT-II Reference Value in Data Monitor Mode

NHEC0042

Remarks:

- Specification data are reference values.
- Specification data are output/input values which are detected or supplied by the ECM at the connector.
 - * Specification data may not be directly related to their components signals/values/operations.

i.e. Adjust ignition timing with a timing light before monitoring IGN TIMING, because the monitor may show the specification data in spite of the ignition timing not being adjusted to the specification data. This IGN TIMING monitors the data calculated by the ECM according to the signals input from the camshaft position sensor and other ignition timing related sensors.

MONITOR ITEM	CON	NDITION	SPECIFICATION			
ENG SPEED	Tachometer: Connect Run engine and compare tachon value.	neter indication with the CONSULT-II	Almost the same speed as the CONSULT-II value.			
MAS A/F SE-B1	Engine: After warming upAir conditioner switch: "OFF"	Idle	1.1 - 1.5V			
MAS AF SE-DI	Shift lever: "N"No-load	2,500 rpm	1.7 - 2.4V			
COOLAN TEMP/S	Engine: After warming up	: After warming up				
HO2S1 (B1) HO2S1 (B2)		Maintaining apping appeal at 2 000	0 - 0.3V ←→ Approx. 0.6 - 1.0V			
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.			
HO2S2 (B1) HO2S2 (B2)	Warm-up condition After keeping engine speed	Revving engine from idle to 3,000	0 - 0.3V ←→ Approx. 0.6 - 1.0V			
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	between 3,500 and 4,000 rpm for one minute and at idle for one minute under no load.	rpm quickly.	LEAN ←→ RICH			
VHCL SPEED SE	Turn drive wheels and compare s SULT-II value	Turn drive wheels and compare speedometer indication with the CON-SULT-II value				
BATTERY VOLT	Ignition switch: ON (Engine stopp)	11 - 14V				

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	COI	NDITION	SPECIFICATION	
	Ignition switch: ON	Accelerator pedal: Released	0.41 - 0.71V	
ACCEL SEN 1	(Engine stopped) ■ Shift lever: "D"	Accelerator pedal: Fully depressed	More than 3.7V	
	Ignition switch: ON	Accelerator pedal: Released	0.15 - 0.71V	
ACCEL SEN 2	(Engine stopped) ● Shift lever: "D"	Accelerator pedal: Fully depressed	More than 3.5V	
THRTL SEN 1	Ignition switch: ON	Accelerator pedal: Released	More than 0.36V	
THRTL SEN 2	(Engine stopped) ● Shift lever: "D"	Accelerator pedal: Fully depressed	Less than 4.75V	
START SIGNAL	Ignition switch: ON → START →	ON	$OFF \to ON \to OFF$	
CLSD THL POS	Ignition switch: ON	Accelerator pedal: Released	ON	
CLSD THE FOS	Shift lever: "D"	Accelerator pedal: Slightly depressed	OFF	
	 Engine: After warming up, idle 	Air conditioner switch: "OFF"	OFF	_ •
AIR COND SIG	the engine	Air conditioner switch: "ON" (Compressor operates.)	ON	
P/N POSI SW	Ignition switch: ON	Shift lever: "P" or "N"	ON	
F/N FOSI SVV	• Ignition Switch. ON	Except above	OFF	_
PW/ST SIGNAL	Engine: After warming up, idle the engine	Steering wheel in neutral position (forward direction)	OFF	
	the engine	The steering wheel is turned	ON	
IGNITION SW	• Ignition switch: $ON \rightarrow OFF \rightarrow O$	N	$ON \to OFF \to ON$	
INJ PULSE-B1	Engine: After warming up Air conditioner switch: "OFF"	Idle	2.0 - 3.0 msec	
INJ PULSE-B2	Shift lever: "N"No-load	2,000 rpm	1.9 - 2.9 msec	
B/FUEL SCHDL	Engine: After warming up Air conditioner switch: "OFF"	Idle	2.3 - 2.9 msec	
B/I OLL SCIIDL	Shift lever: "N"No-load	2,000 rpm	2.3 - 2.9 msec	
IGN TIMING	 Engine: After warming up Air conditioner switch: "OFF" 	Idle	13 - 18° BTDC	
	Shift lever: "N"No-load	2,000 rpm	25 - 45° BTDC	
		Rear window defogger switch is ON and/or lighting switch is in 2nd.	ON	
LOAD SIGNAL	Ignition switch: ON	Rear window defogger switch is OFF and lighting switch is OFF.	OFF	
PURG VOL C/V	Engine: After warming up Air conditioner switch: "OFF"	Idle	0 %	
	Shift lever: "N"No-load	2,000 rpm	_	
A/F ALPHA-B1 A/F ALPHA-B2	Engine: After warming up	Maintaining engine speed at 2,000 rpm	54 - 155%	
EVAP SYS PRES	Ignition switch: ON	Approx. 3.4V	_	
AIR COND RLY	Air conditioner switch: OFF → O	OFF → ON	_	
FUEL PUMP RLY	Ignition switch is turned to ON (0 Engine running or cranking	Operates for 1 seconds)	ON	
	Except as shown above	OFF		

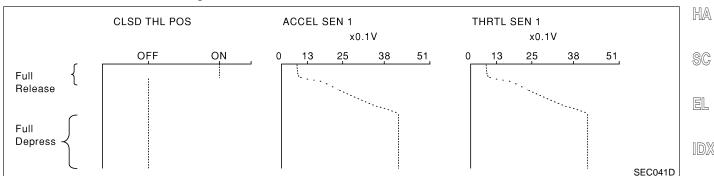
CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CON	IDITION	SPECIFICATION		
VENT CONT/V	Ignition switch: ON		OFF		
HO2S1 HTR (B1) HO2S1 HTR (B2)	Engine: After warming up Engine speed: Below 3,600 rpm		ON		
HO251 HTR (B2)	• Engine speed: Above 3,600 rpm		OFF		
HO2S2 HTR (B1) HO2S2 HTR (B2)	Engine: After warming up	n after the following conditions are met. een 3,500 and 4,000 rpm for one e under no load	ON		
	• Engine speed: Above 3,600 rpm		OFF		
VC/V BYPASS/V	Ignition switch: ON		OFF		
CAL/LD VALUE	Engine: After warming up Air conditioner switch: "OFF"	Idle	10 - 35%		
	Shift lever: "N"No-load	2,500 rpm	10 - 35%		
BRAKE SW	Ignition switch: ON	Brake pedal: Released	OFF		
BRAKE SW	• Ignition switch. ON	Brake pedal: Slightly depressed	ON		
MASS AIRFLOW	Engine: After warming upAir conditioner switch: "OFF"	Idle	2.0 - 6.0 g·m/s		
WAGO AIRT LOW	Shift lever: "N"No-load	2,500 rpm	7.0 - 20.0 g·m/s		
ABSOL PRES/SE	Ignition switch: ON		Approx. 4.4V		
VIAS S/V	- Engine: After warming up	1,800 - 3,600 rpm	ON		
VIAS S/V	Engine: After warming up	Except above conditions	OFF		
TRVL AFTER MIL	Ignition switch: ON	Vehicle has traveled after MIL has turned ON.	0 - 65,535 km (0 - 40,723 mile)		
	Ignition switch: ON (Engine stopp)	ped)	Approx. 0V		
AC PRESS SEN	Engine: Idle Air conditioner switch: OFF		1.0 - 4.0V		
INT/V TIM (B1)	Engine: After warming up Shift lever "N"	Idle	–5 - 5° CA		
INT/V TIM (B1)	Quickly depressed accelerator pedalNo-load	2,000 rpm	Approximately 0 - 30° CA		
INT/V SOL (B1)	Engine: After warming up Shift lever "N"	Idle	0 - 2%		
INT/V SOL (B2)	 Quickly depressed accelerator pedal No-load	2,000 rpm	Approximately 25 - 50%		
ENIONE MOUNT	Fraince Donneit	Idle	"IDLE"		
ENGINE MOUNT	Engine: Running	2,000 rpm	"TRVL"		
		Engine coolant temperature is 94°C (201°F) or less.	OFF		
COOLING FAN	After warming up engine, idle the engine.After conditioner switch: "OFF"	Engine coolant temperature is between 95°C (203°F) and 99°C (210°F).	LOW		
		Engine coolant temperature is 100°C (212°F) or more.	C HIGH		

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM		CONDITION	SPECIFICATION	
VHCL SPEED SE	Turn drive wheels and compare SULT-II value.	e speedometer indication with the CON-	Almost the same speed as the CONSULT-II value	– – G[
SET VHCL SPD	ASCD set condition.		The preset vehicle speed is displayed.	— (네
MAIN OW	Leaving and Market Child	CRUISE switch is depressed.	ON	_ M
MAIN SW	Ignition switch: ON	CRUISE switch is released.	OFF	_
OANOEL OW	Leave and the ON	CANCEL switch is depressed.	ON	
CANCEL SW	Ignition switch: ON	CANCEL switch is released.	OFF	—
DECLINE (A CC C)A/	Leave and the ON	ACCEL RES switch is depressed.	ON	– L(
RESUME/ACC SW	Ignition switch: ON	ACCEL RES switch is released.	OFF	
057.014	1 22 22 1 011	SET switch is depressed.	ON	- E
SET SW	Ignition switch: ON	SET switch is released.	OFF	– – Fi
DDAKE OWA	Leave and the ON	Brake pedal is depressed.	OFF	
BRAKE SW1	Ignition switch: ON	Brake pedal is released.	ON	_
DD ALCE OLAGO	1 22 22 1 011	Brake pedal is depressed.	ON	
BRAKE SW2	Ignition switch: ON	Brake pedal is released.	OFF	– AD
0011105 1 4440	1 22 22 22	CRUISE lamp is indicated.	ON	
CRUISE LAMP	Ignition switch: ON	CRUISE lamp is not indicated.	OFF	– Sl
		SET lamp is indicated.	ON	_
SET LAMP	Ignition switch: ON	SET lamp is not indicated.	OFF	– B[

Major Sensor Reference Graph in Data Monitor Mode

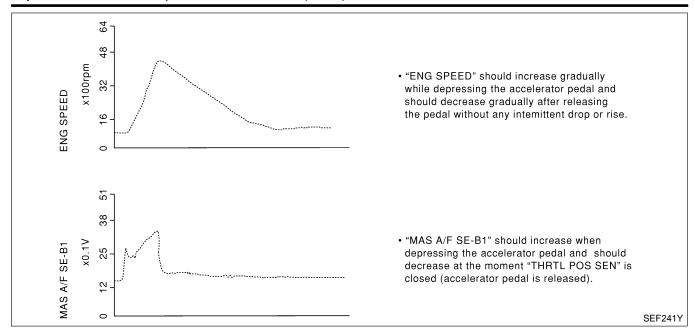

BT

The following are the major sensor reference graphs in "DATA MONITOR" mode.

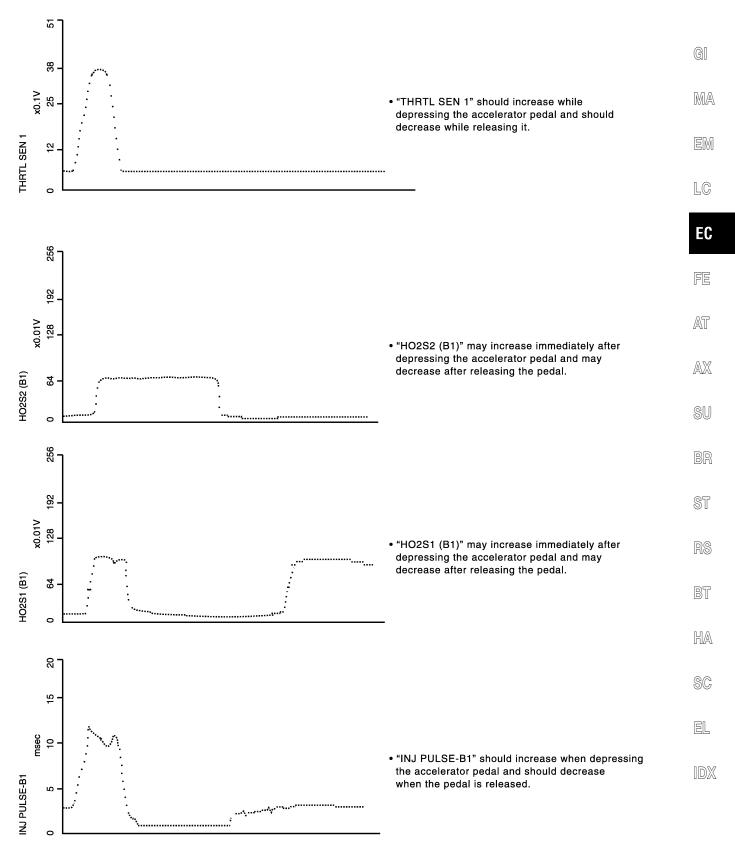
CLSD THL POS, ACCEL SEN1, THRTL SEN1

Below is the data for "CLSD THL POS", "ACCEL SEN1" and "THRTL SEN1" when depressing the accelerator pedal with the ignition switch "ON" and with selector lever in "D" position.

The signal of "ACCEL SEN1" and "THRTL SEN1" should rise gradually without any intermittent drop or rise after "CLSD THL POS" is changed from "ON" to "OFF".

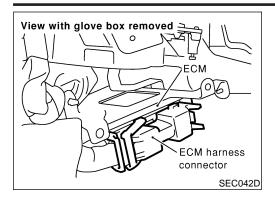


ENG SPEED, MAS A/F SE-B1, THRTL POS SEN, HO2S2 (B1), HO2S1 (B1), INJ PULSE-B1


Below is the data for "ENG SPEED", "MAS A/F SE-B1", "THRTL POS SEN", "HO2S2 (B1)", "HO2S1 (B1)" and "INJ PULSE-B1" when revving engine quickly up to 4,800 rpm under no load after warming up engine sufficiently.

Each value is for reference, the exact value may vary.

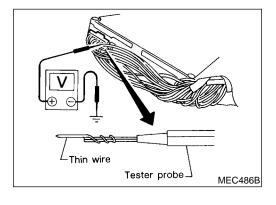
Major Sensor Reference Graph in Data Monitor Mode (Cont'd)



Major Sensor Reference Graph in Data Monitor Mode (Cont'd)

PBIB0668E

ECM Terminals and Reference Value



ECM Terminals and Reference Value PREPARATION

NHEC0044

NHEC0044S01 ECM is located behind the instrument lower cover. For this inspection, remove instrument lower cover.

Remove ECM harness protector.

- Perform all voltage measurements with the connector connected. Extend tester probe as shown to perform tests easily.
- Open harness securing clip to make testing easier.
- Use extreme care not to touch 2 pins at one time.
- Data is for comparison and may not be exact.

ECM HARNESS CONNECTOR TERMINAL LAYOUT

SEF970W

ECM INSPECTION TABLE

Specification data are reference values and are measured between each terminal and ground.

Pulse signal is measured by CONSULT-II.

Do not use ECM ground terminals when measuring the input/ output voltage. Doing so may result in damage to the ECM's transistor. Use ground other than the ECM terminals, such as the ground.

ECM Terminals and Reference Value (Cont'd)

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
1 2 3	R/B R/W R/Y	Injector No. 1 Injector No. 2 Injector No. 3	[Engine is running] ■ Warm-up condition ■ Idle speed	BATTERY VOLTAGE (11 - 14V)★ Indicate	GI MA EM
11 12 13	R/L L/W PU/R	Injector No. 4 Injector No. 5 Injector No. 6	[Engine is running] ■ Warm-up condition ■ Engine speed is 2,000 rpm.	BATTERY VOLTAGE (11 - 14V)* 10.0 V/Div 50 ms/Div SEC985C	EC FE
4	w	Electronic controlled engine mount-1	[Engine is running] ● Idle speed [Engine is running]	0 - 1V BATTERY VOLTAGE	AX
			Except the above	(11 - 14V)	SU
5	Y/R	Ignition signal No. 1	[Engine is running]Warm-up conditionIdle speed	0 - 0.2V★	BR ST
6 7	G/R L/R	Ignition signal No. 2 Ignition signal No. 3		SEC986C	RS
15 16 17	G/Y PU/W GY/R	Ignition signal No. 4 Ignition signal No. 5 Ignition signal No. 6	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm.	0.1 - 0.3V★	BT HA
				SEC987C	SC

EL

	IIIIais aria	· 		
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
8	G	Intake valve timing control solenoid valve	[Engine is running] ● Warm-up condition ● Idle speed	BATTERY VOLTAGE (11 - 14V)★
Ü		(bank 2)	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm.	7 - 12V★ 10.0 V/Dlv 2 ms/Dlv L SEC989C
9	L/W	Intake valve timing con-	[Engine is running]Warm-up conditionIdle speed	BATTERY VOLTAGE (11 - 14V)★ Indicate
y	LJVV	trol solenoid valve (bank 1)	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm.	7 - 12V★
40	DIVO	EVAP canister purge	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)★
10	PU/R	volume control solenoid - valve	[Engine is running] ● Engine speed is 2,000 rpm (More than 100 seconds after starting engine).	BATTERY VOLTAGE (11 - 14V)★ Indicate

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)		
14 W/R	W/D	Electronic controlled	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)	_ (
	engine mount-2	[Engine is running] • Except the above	0 - 1V			
18	PU/W	Engine coolant tem- perature sensor signal output	[Engine is running] ● Idle speed	0 - 12V Output voltage varies with engine coolant temperature.	[
21	B/R	Air conditioner relay	[Engine is running]Both A/C switch and blower switch are "ON" (Compressor is operating).	0 - 1.0V	[_ [
			[Engine is running] ■ A/C switch is "OFF".	BATTERY VOLTAGE (11 - 14V)		
23 B/P	B/P	/P Fuel pump relay	[Ignition switch "ON"] ● For 1 second after turning ignition switch "ON" [Engine is running]	0 - 1.5V	_ [_	
			[Ignition switch "ON"] ■ More than 1 second after turning ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)		
24 Y	Y	ASCD CRUISE lamp	[Ignition switch "ON"] • CRUISE switch is "ON".	ov	_	
			[Ignition switch "ON"] ● CRUISE switch is "OFF".	BATTERY VOLTAGE (11 - 14V)		
	R ASC	В	1005 057	[Engine is running]SET switch is "ON".ASCD control is operating.	ov	_
25		ASCD SET lamp	[Engine is running]SET or CRUISE switch is "OFF".ASCD control is not operating.	BATTERY VOLTAGE (11 - 14V)	- , 	
26 O/R	O/R	D/R Throttle control motor relay	[Ignition switch "OFF"]	BATTERY VOLTAGE (11 - 14V)	_	
			[Ignition switch "ON"]	0 - 1.0V	_	
		valve [Engine is running]		BATTERY VOLTAGE (11 - 14V)	_	
27	27 Y/G		• Engine speed is between 1,800 and 3,600	0 - 1.0V	(
28	OR/G	Vacuum cut valve bypass valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)	_	
30	PU	A/C cut signal	[Engine is running] • Air conditioner is operating.	0 - 0.5V		
31	R	Counter current return	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)	_	
			[Ignition switch "ON"]	0 - 1.0V	_	
33	LG/B	MIL	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)	_	

	1	Reference value (Cont	/	ı
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running] • Warm-up condition • Idle speed	7 - 8V
34	W/G	Tachometer	 [Engine is running] Warm-up condition Engine speed is 2,500 rpm. 	7 - 8V
35	BR/R	Cooling fan relay (LOW)	[Engine is running] • Cooling fan is operating.	0 - 1.0V
			[Engine is running]Cooling fan is not operating.	BATTERY VOLTAGE (11 - 14V)
36	LG	Cooling fan relay (HIGH)	[Engine is running]● Cooling fan is operating at high speed.	0 - 1.0V
			[Engine is running]● Cooling fan is not operating.	BATTERY VOLTAGE (11 - 14V)
38	W/B	ECM relay (Self shut-off)	[Engine is running] [Ignition switch "ON"] ● For a few seconds after turning ignition switch "OFF"	0 - 1.5V
			[Ignition switch "ON"] ■ A few seconds after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
39	OR/L	Heated oxygen sensor 1 heater (bank 1)	 [Engine is running] Warm-up condition Engine speed is below 3,600 rpm. 	Approximately 7V★
			[Engine is running] • Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)

				Tillinais and Reference value (Contu)		
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)		
40	R/L	Heated oxygen sensor 1 heater (bank 2)	[Engine is running] • Warm-up condition • Engine speed is below 3,600 rpm.	Approximately 7V★	GI MA EM	
			[Engine is running] ● Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)	LC	
41	P/B	Heated oxygen sensor 2 heater (bank 1)	 [Engine is running] Warm-up condition Engine speed is below 3,600 rpm. After keeping engine speed between 3,500 and 4,000 rpm for one minute and at idle for one minute 	0 - 1.0V	EC	
	2 House (bank 1)	[Ignition switch "ON"] ● Engine stopped [Engine is running]	Engine stopped	BATTERY VOLTAGE (11 - 14V)	AT AX	
42	BR/W	Start signal	[Ignition switch "ON"]	Approximately 0V		
	2.4		[Ignition switch "START"]	9 - 12V	SU	
40		Ignition switch	[Ignition switch "OFF"]	0V		
43	R		[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)	BR	
44	G/OR	PNP switch	[Ignition switch "ON"] ■ General position is "P" or "N".	Approximately 0V	ST	
	0,011	THE SWILLIAM	[Ignition switch "ON"] ■ Except the above gear position	BATTERY VOLTAGE (11 - 14V)	RS	
45	G/B	Air conditioner switch signal	[Engine is running] ■ Both A/C switch and blower switch are "ON".	Approximately 0V	BT	
			Signal	[Engine is running] • A/C switch is "OFF".	BATTERY VOLTAGE (11 - 14V)	HA
47	R/L	Heated oxygen sensor 2 heater (bank 2)	 [Engine is running] Warm-up condition Engine speed is below 3,600 rpm. After keeping engine speed between 3,500 and 4,000 rpm for one minute and at idle for one minute 	0 - 1.0V	SG EL	
			[Ignition switch "ON"] • Engine stopped [Engine is running] • Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)	IDX	
48	В	ECM ground	[Engine is running] ● Idle speed	Engine ground		

		•	•	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
	G/Y	ASCD steering switch	[Ignition switch "ON"] • ASCD steering switch is "OFF".	Approximately 4.0V
			[Ignition switch "ON"] • CRUISE switch is "ON".	Approximately 0V
50			[Ignition switch "ON"] • CANCEL switch is "ON".	Approximately 1.0V
			[Ignition switch "ON"] • ACCEL/RES switch is "ON".	Approximately 3.0V
			[Ignition switch "ON"] • COAST/SET switch is "ON".	Approximately 2.0V
51	W/G	Electrical load signal	[Engine is running] ■ Rear window defogger: ON ■ Hi-beam headlamp: ON	BATTERY VOLTAGE (11 - 14V)
			[Engine is running] • Electrical load: OFF	ov
55	R/G	Stop lamp switch	Brake pedal is depressed.	BATTERY VOLTAGE (11 - 14V)
			Brake pedal is released.	ov
57	В	ECM ground	[Engine is running] • Idle speed	Engine ground
58	В	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
	0.45	ASCD brake switch	[Ignition switch "ON"] • Gear position is except "P" or "N". • Brake pedal is depressed.	ov
59	G/B		[Ignition switch "ON"] • Gear position is except "P" or "N". • Brake pedal is released.	BATTERY VOLTAGE (11 - 14V)
60	W	EVAP control system pressure sensor	[Ignition switch "ON"]	Approximately 3.4V
	w	Mass air flow sensor	[Engine is running] • Warm-up condition • Idle speed	1.1 - 1.5V
62			[Engine is running] • Warm-up condition • Engine speed is 2,500 rpm.	1.7 - 2.4V
64	OR	Accelerator pedal position sensor 2 power supply	[Ignition switch "ON"]	Approximately 2.5V

				erminals and Reference value (Cont d)	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
	Camshaft position sen-	[Engine is running] • Warm-up condition • Idle speed	1.0 - 4.0V★ 1.0 - 4.0V★ 1.0 - 4.0V★ SEC033D		
65	Y	sor (PHASE) (bank 1)	[Engine is running] ● Engine speed is 2,000 rpm.	1.0 - 4.0V★ 1.0 -	EO
66	Y/G	Mass air flow sensor (Intake air temperature sensor)	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with intake air temperature.	AT
67	W/L	Power supply for ECM (Back-up)	[Ignition switch "OFF"]	BATTERY VOLTAGE (11 - 14V)	AX
			 [Engine is running] Jack-up front wheels In 1st gear position 10 km/h (6 MPH) 	Approximately 2.5V★	SU BF ST
68	P/L	Vehicle speed sensor	 [Engine is running] Jack-up front wheels In 2nd gear position 30 km/h (19 MPH) 	Approximately 2.5V★	RS BT
69	G	Fuel level sensor	[Ignition switch "ON"]	Approximately 0 - 4.8V Output voltage varies with fuel level.	SC
70	B/P	Accelerator pedal position sensor 2 ground	[Ignition switch "ON"]	Approximately 0V	
71	W	Knock sensor	[Engine is running] • Idle speed	Approximately 2.5V	
72	w	Accelerator pedal position sensor signal out-	[Engine is running] • Warm-up condition • Accelerator pedal released	Approximately 0.6V	
		put	[Ignition switch "ON"] • Accelerator pedal fully depressed	Approximately 4.0V	

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
73 W	10/	Accelerator pedal posi-	[Ignition switch "ON"] • Accelerator pedal released	0.41 - 0.71V
	VV	tion sensor 1	[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 3.7V
74	W/B	Accelerator pedal posi-	[Ignition switch "ON"] • Accelerator pedal released	0.08 - 0.48V
74	VV/B	tion sensor 2	[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 1.8V
75	P/L	Fuel tank temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with fuel tank temperature.
78	В	Fuel level sensor ground	[Engine is running] • Idle speed	Approximately 0V
80	В	Mass air flow sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
81	w	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower switch are "ON". (Compressor operates.) 	1.0 - 4.0V
00		Throttle position sensor 1	[Ignition switch "ON"] • Gear position is "D". • Accelerator pedal released	More than 0.36V
83	W		[Ignition switch "ON"] • Gear position is "D". • Accelerator pedal fully depressed	Less than 4.75V
0.4		Throttle position sensor 2	[Ignition switch "ON"] • Gear position is "D". • Accelerator pedal released	Less than 4.75V
84	L		[Ignition switch "ON"] • Gear position is "D". • Accelerator pedal fully depressed	More than 0.36V
05	R	Camshaft position sensor (PHASE) (bank 2)	[Engine is running] • Warm-up condition • Idle speed	1.0 - 4.0V★
85			[Engine is running] ● Engine speed is 2,000 rpm.	1.0 - 4.0V★ 1.0 -

TROUBLE DIAGNOSIS — GENERAL DESCRIPTION

ECM Terminals and Reference Value (Cont'd)

			ECIVI Te	erminais and Reference Value (Cont d)	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
88	w	Heated oxygen sensor 2 (bank 1)	 [Engine is running] Warm-up condition Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. After keeping engine speed between 3,500 and 4,000 rpm for one minute and at idle for one minute under no load 	0 - Approximately 1.0V	MA EM
89	G	Power steering pres-	[Engine is running] • Steering wheel is being turned.	0.5 - 4.0V	LC
09		sure sensor	[Engine is running]Steering wheel is not being turned.	0.4 - 0.8V	EC
90	w	Heated oxygen sensor 2 (bank 2)	 [Engine is running] Warm-up condition Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. After keeping engine speed between 3,500 and 4,000 rpm for one minute and at idle 	0 - Approximately 1.0V	FE AT
91	W	Heated oxygen sensor 1 (bank 1)	for one minute under no load [Engine is running] • Warm-up condition • Engine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)	
92	W	Heated oxygen sensor 1 (bank 2)	[Engine is running] • Warm-up condition • Engine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)	SU BR
93	Y	Engine coolant tem- perature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with engine coolant temperature.	ST
			[Engine is running] ● Idle speed	Approximately 2.4V★	RS BT HA
95	W	Crankshaft position sensor (POS)		SEC035D Approximately 2.3V★	ITIZAL
			[Engine is running] ● Engine speed is 2,000 rpm.	■5.0 V/Div 1 ms/Div [SC EL
				SEC036D	IDX

TROUBLE DIAGNOSIS — GENERAL DESCRIPTION

ECM Terminals and Reference Value (Cont'd)

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101	Y	Throttle control motor (Open)	[Ignition switch "ON"] • Engine stopped • Gear position is "D". • Accelerator pedal depressing	0 - 14V*
102	R	Throttle control motor	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
		relay	[Ignition switch "OFF"]	0 - 1.0V
103	BR	Throttle control motor (Close)	[Ignition switch "ON"] • Engine stopped • Shift lever position is "D". • Accelerator pedal releasing	0 - 14V★
105	OR/L	EVAP canister vent control valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
106 108	B B	ECM ground	[Engine is running] • Idle speed	Engine ground
107	В	Throttle control motor ground	[Ignition switch "ON"]	Approximately 0V
109	L	CAN communication line	[Ignition switch "ON"]	Approximately 2.6 - 3.2V Output voltage varies with the communication status.
110 112	R/G R/G	Power supply for ECM	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
111	R	Sensors' power supply	[Ignition switch "ON"]	Approximately 5V
113	R	CAN communication line	[Ignition switch "ON"]	Approximately 1.7 - 2.3V Output voltage varies with the com- munication status.
115	OR	Data link connector	[Ignition switch "ON"] • CONSULT-II or GST is disconnected.	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

TROUBLE DIAGNOSIS — SPECIFICATION VALUE

Description

Description

The specification (SP) value indicates the tolerance of the value that is displayed in "DATA MONITOR (SPEC)" mode of CONSULT-II during normal operation of the Engine Control System. When the value in "DATA MONITOR (SPEC)" mode is within the SP value, the Engine Control System is confirmed OK. When the value in "DATA MONITOR (SPEC)" mode is NOT within the SP value, the Engine Control System may have one or more malfunctions.

The SP value is used to detect malfunctions that may affect the Engine Control System, but will not light the MIL.

MA

The SP value will be displayed for the following three items:

B/FUEL SCHDL (The fuel injection pulse width programmed into ECM prior to any learned on board correction)

EM

- A/F ALPHA-B1/B2 (The mean value of air-fuel ratio feedback correction factor per cycle)
- MAS A/F SE-B1 (The signal voltage of the mass air flow sensor)

LC

EC

AT

SU

Testing Condition

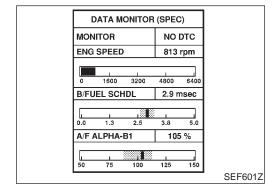
NHEC071

Vehicle driven distance: More than 5,000 km (3,107 miles)

Barometric pressure: 98.3 - 104.3 kPa (1.003 - 1.064 kg/cm², 14.25 - 15.12 psi)

Atmospheric temperature: 20 - 30°C (68 - 86°F)

• Engine coolant temperature: 75 - 95°C (167 - 203°F)


• Transmission: Warmed-up*1

Electrical load: Not applied*2

Engine speed: Idle

*1: After the engine is warmed up to normal operating temperature, drive vehicle until "FLUID TEMP SE" (A/T fluid temperature sensor signal) indicates less than 0.9V.

*2: Rear window defogger switch, air conditioner switch, lighting switch are "OFF". Cooling fans are not operating. Steering wheel is straight ahead.

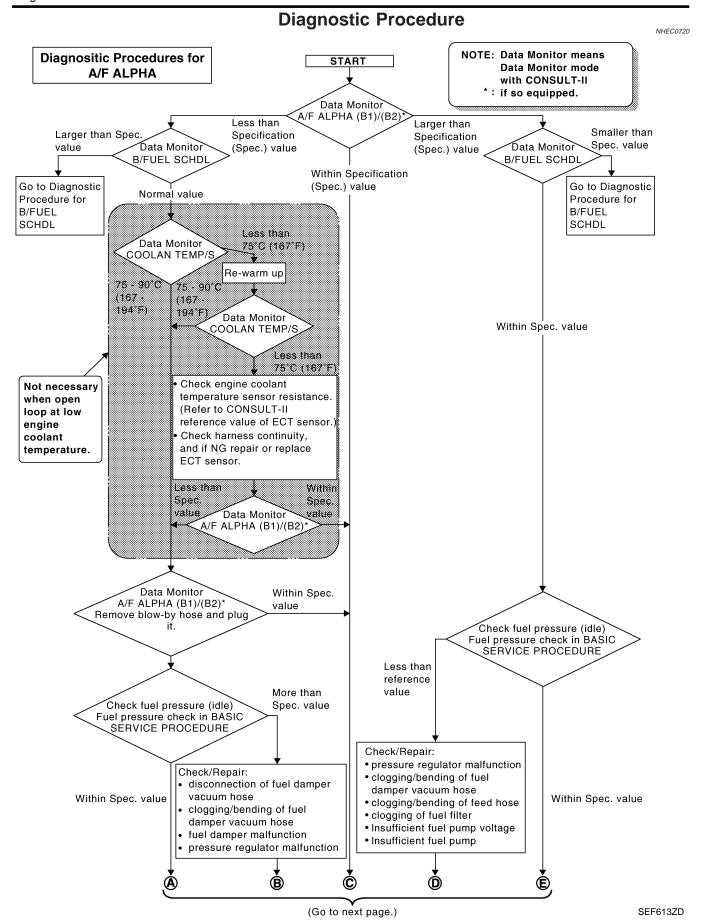
Inspection Procedure

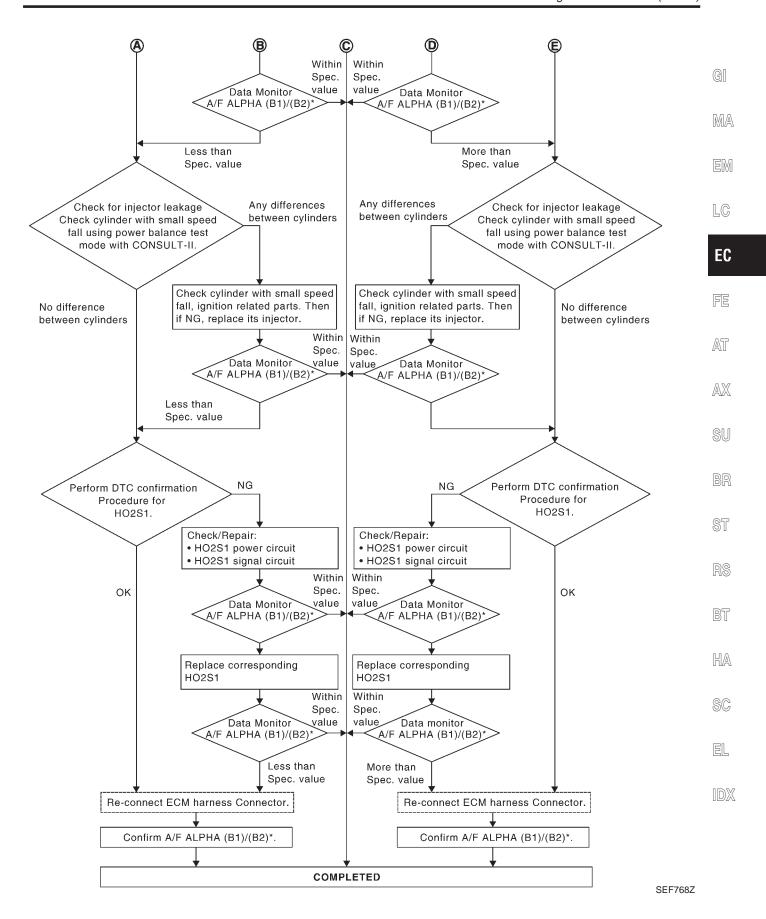
NOTE:

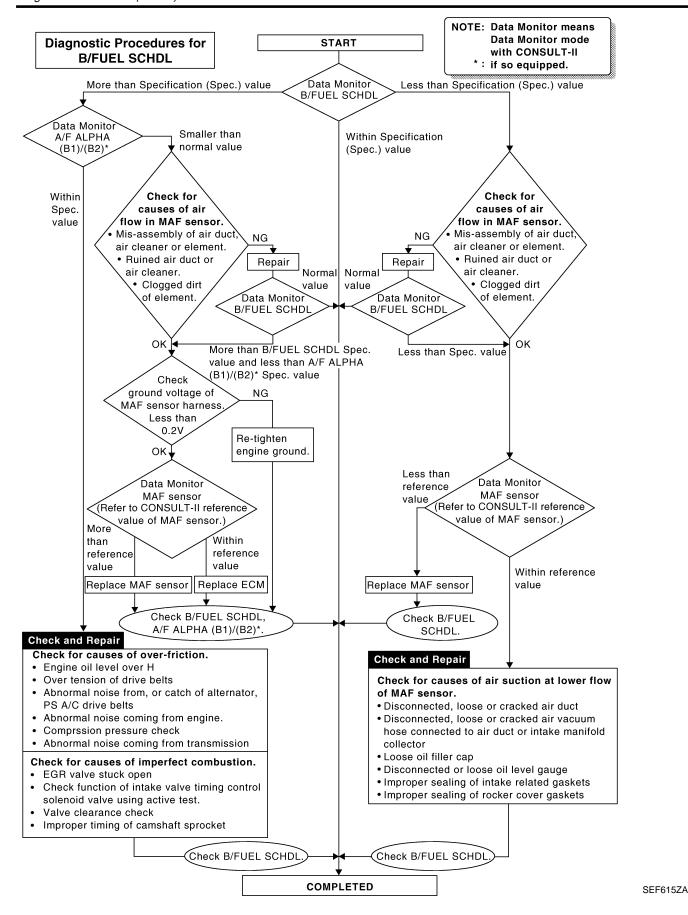
NHEC0719

Perform "DATA MONITOR (SPEC)" mode in maximum scale display.

ale dis- BT


HA


- 1. Perform "Basic Inspection", EC-119.
- 2. Confirm that the testing conditions indicated above are met.
- 3. Select "B/FUEL SCHDL", "A/F ALPHA-B1", "A/F ALPHA-B2" and "MAS A/F SE-B1" in "DATA MONITOR (SPEC)" mode with CONSULT-II.


with sc

- 4. Make sure that monitor items are within the SP value.
- 5. If NG, go to "Diagnostic Procedure", EC-148.

 $\mathbb{D}\mathbb{X}$

NHEC0045S01

Description

Intermittent incidents (I/I) may occur. In many cases, the malfunction resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on (1st trip) DTC visits. Realize also that the most frequent cause of I/I occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific problem area.

MA

COMMON I/I REPORT SITUATIONS

CHECK GROUND TERMINALS

Refer to GI-30, "GROUND INSPECTION".

Check ground terminals for corroding or loose connection.

GO TO 3.

Repair or replace.

2

OK

NG

STEP in Work Flow	Situation
II	The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other than "0" or "[1t]".
III	The symptom described by the customer does not recur.
IV (1st trip) DTC does not appear during the DTC Confirmation Procedure.	
VI	The Diagnostic Procedure for PXXXX does not indicate the problem area.

LC

EC

AT

AX

Diagnostic Procedure

NHEC0046

1	INSPECTION START					
Erase (1st trip) DTCs. Refer to "HOW TO ERASE EMISSION — RELATED INFORMATION", EC-89.						
•		GO TO 2.				

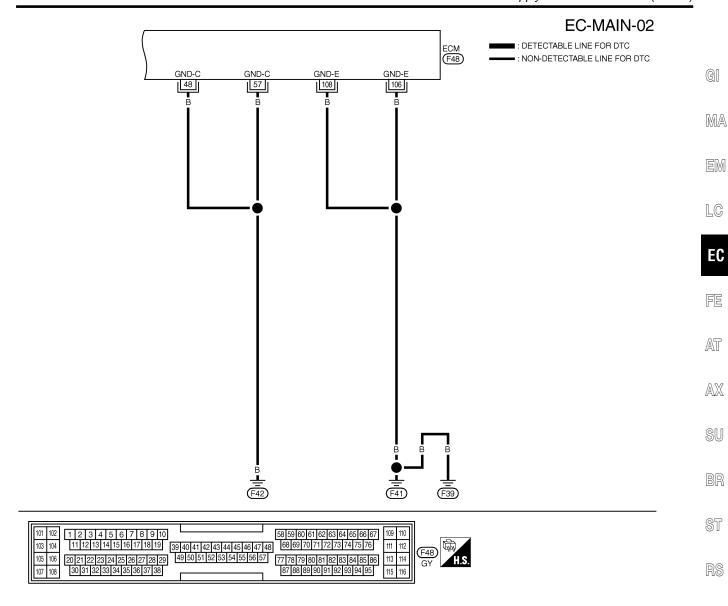
OK or NG

3	SEARCH FOR ELECTRICAL INCIDENT						
Perfori	Perform GI-25, "Incident Simulation Tests".						
	OK or NG						
OK	OK ▶ GO TO 4.						
NG	NG Repair or replace.						

HA

SC

EL


CHECK CONNECTOR TERMINALS Refer to GI-22, "How to Check Enlarged Contact Spring of Terminal". OK or NG INSPECTION END OK NG Repair or replace connector.

Main Power Supply and Ground Circuit

WIRING DIAGRAM NHEC0047 EC-MAIN-01 BATTERY : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC REFER TO EL-POWER. 40A C 15A 59 15A 58 JOINT CONNECTOR-13 E74 IGNITION SWITCH E93 ш ACC B/Y FUSE BLOCK (J/B) REFER TO EL-POWER (M19) , (E89) EC-PGC/V, EC-IGNSYS, EC-IVCB1, EC-IVCB2 W/R R/G (F18) w/B R/G 112 R/G 110 43 38 **IGNSW** ECM F48 REFER TO THE FOLLOWING. 1 2 5 7 E32 3 6 BR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 W 1 1 1 E74 2 2 2 W M19 , E89 -FUSE BLOCK-JUNCTION BOX (J/B) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 39 40 41 42 43 44 45 46 47 48 11 12 13 14 15 16 17 18 19 49 50 51 52 53 54 55 56 57 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 109 110 (F48) 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 105 106 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

MEC529D

Main Power Supply and Ground Circuit (Cont'd)

MEC717C

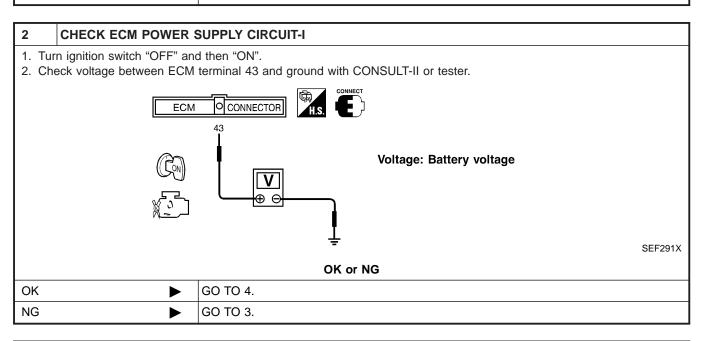
BT

HA

SC

EL

IDX


ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
38	W/B	ECM RELAY	ENGINE RUNNING FOR A FEW SECONDS AFTER TURNING IGN OFF	0 - 1.5V
(SELF-SHUTOFF)		(SELF-SHUTOFF)	A FEW SECONDS PASSED AFTER TURNING IGN OFF	BATTERY VOLTAGE
43	R	IGN	IGN OFF	OV
40	п	lan	IGN ON	BATTERY VOLTAGE
48	В	ECM GROUND	ENGINE RUNNING AT IDLE SPEED	ENGINE GROUND
57	В	ECM GROUND	ENGINE RUNNING AT IDLE SPEED	ENGINE GROUND
106	В	ECM GROUND	ENGINE RUNNING AT IDLE SPEED	ENGINE GROUND
108	В	LCIVI GROOND	LINGING HOWING AT IDLE SPEED	ENGINE GROUND
110	R/G	POWER SUPPLY FOR ECM	IGN ON	BATTERY VOLTAGE
112	R/G	I OWEN SON EN FOR ECM		DATTETT VOLIAGE

SEC200D

Main Power Supply and Ground Circuit (Cont'd)

DIAGNOSTIC PROCEDURE

3 DETECT MALFUNCTIONING PART

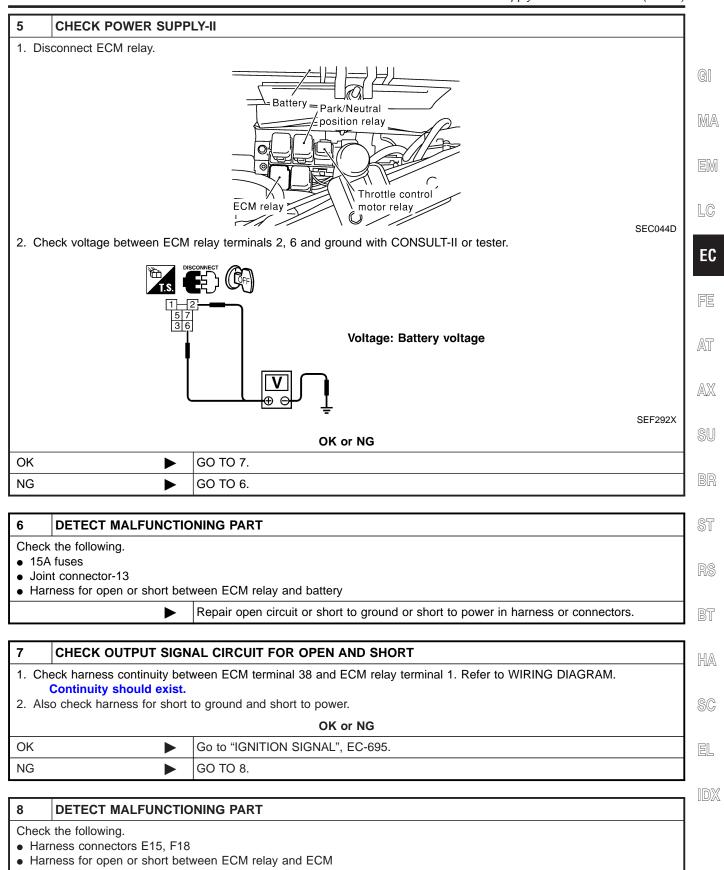
Check the following.

- 10A fuse
- Harness connectors M229, F66
- Fuse block (J/B) connectors M19, E89
- Harness for open or short between ECM and ignition switch

Repair harness or connectors.

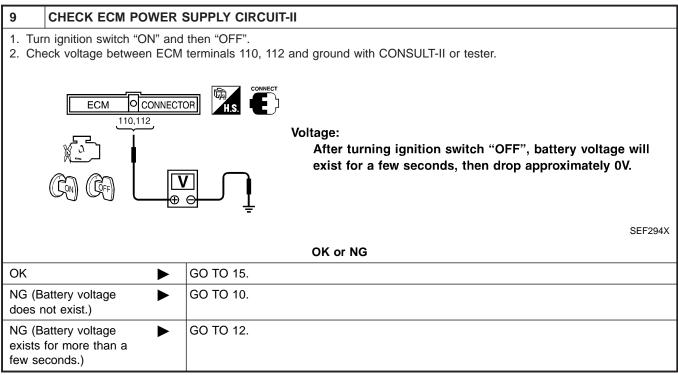
4 CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT-I

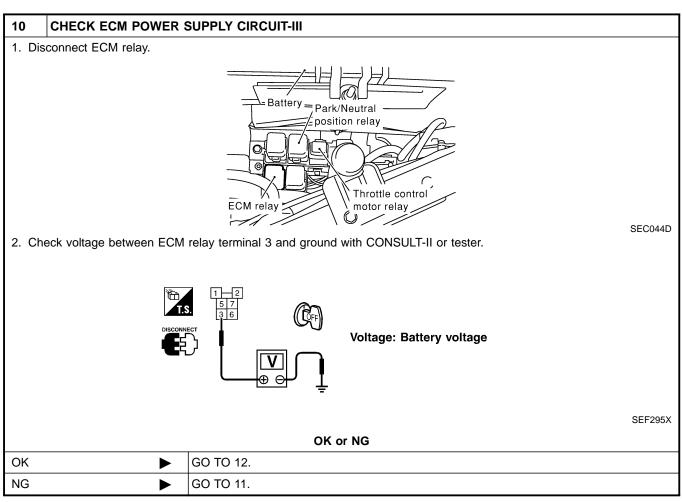
- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminals 48, 57, 106, 108 and engine ground. Refer to WIRING DIAGRAM.


Continuity should exist.

4. Also check harness for short to power.

\sim	\mathbf{v}		Ν	~
	n	or	IV	١,


OK •	GO TO 5.
NG ►	Repair open circuit or short to power in harness or connectors.


Main Power Supply and Ground Circuit (Cont'd)

Repair open circuit or short to ground or short to power in harness or connectors.

Main Power Supply and Ground Circuit (Cont'd)

Main Power Supply and Ground Circuit (Cont'd)

DETECT MALFUNCTIONING PART Check the following. Joint connector-13 • Harness for open or short between ECM relay and 15A fuse Repair open circuit or short to ground or short to power in harness or connectors. 12

MA

CHECK HARNESS CONTINUITY BETWEEN ECM RELAY AND ECM FOR OPEN AND SHORT

1. Check harness continuity between ECM terminals 110, 112 and ECM relay terminal 5. Refer to WIRING DIAGRAM.

Continuity should exist.

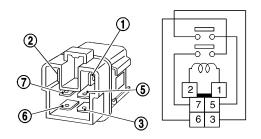
2. Also check harness for short to ground and short to power.

OK or NG

OK	GO TO 14.
NG	GO TO 13.

13 **DETECT MALFUNCTIONING PART**

Check the following.


- Harness connectors E15, F18
- Harness for open or short between ECM and ECM relay

Repair open circuit or short to ground or short to power in harness or connectors.

14 **CHECK ECM RELAY**

1. Apply 12V direct current between ECM relay terminals 1 and 2.

2. Check continuity between relay terminals 3 and 5, 6 and 7.

Condition	Continuity
12V direct current supply between terminals 1 and 2	Yes
OFF	No

SEF296X

OK or NG

OK		GO TO 15.
NG	>	Replace ECM relay.

15 CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT-II

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminals 48, 57, 106, 108 and engine ground. Refer to WIRING DIAGRAM.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG	
----------	--

OK •	GO TO 16.
NG	Repair open circuit or short to ground or short to power in harness or connectors.

EC-157

GI

LC

EC

AT

AX

HA

Main Power Supply and Ground Circuit (Cont'd)

16 CHECK INTERMITTENT INCIDENT			
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.			
► INSPECTION END		INSPECTION END	

DTC U1000, U1001 CAN COMMUNICATION LINE

Description

Description

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electonic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

G[

MA

EM

On Board Diagnosis Logic

NHEC1246

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
U1000 1000 U1001 1001	CAN communication line	 ECM cannot communicate to other control unit. ECM cannot communicate for more than the specified time. 	Harness or connectors (CAN communication line is open or shorted.)

LC

FF

AT

DTC Confirmation Procedure

NHEC1247

- 1. Turn ignition switch "ON" and wait at least 3 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- If 1st trip DTC is detected, go to "Diagnostic Procedure" EC-161.

SU

9T

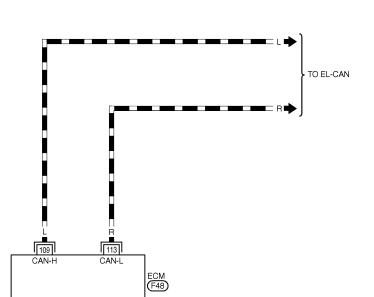
28

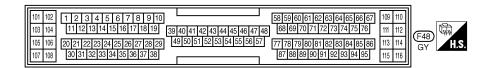
P2

HA

SC

EL


DX.


Wiring Diagram

NHEC1248

EC-CAN-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC
: DATA LINE

DTC U1000, U1001 CAN COMMUNICATION LINE

Diagnostic Procedure

Diagnostic Procedure

Go to EL-445 (With TCS models) or EL-458 (With VDC models), "CAN SYSTEM".

G[

MA

LC

EC

FE

AT

AX

SU

BR

ST

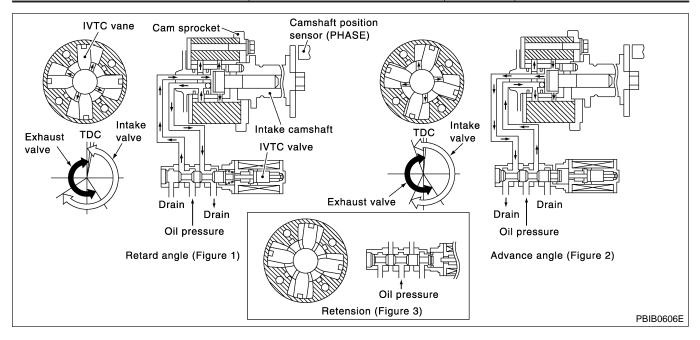
RS

BT

HA

SC

EL


Description

SYSTEM DESCRIPTION

NHEC0821

NHEC0821S01

			NITEC0021301	
Sensor	Input signal to ECM function	ECM	Actuator	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed	Intake valve	Intake valve timing control sole-	
Engine coolant temperature sensor	Engine coolant temperature	timing con- trol	noid valve	
Vehicle speed sensor	Vehicle speed			

This mechanism hydraulically controls cam phases continuously with the fixed operating angle of the intake

The ECM receives signals such as crankshaft position, camshaft position, engine speed, and engine coolant temperature. Then, the ECM sends ON/OFF pulse duty signals to the camshaft timing control valve depending on driving status. This makes it possible to control the shut/open timing of the intake valve to increase engine torque in low/mid speed range and output in high-speed range.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC0822

MONITOR ITEM	CONDITION		SPECIFICATION
INT/V TIM (B1)	 Engine: After warming up Shift lever "N" Quickly depressed accelerator 	Idle	–5 - 5° CA
INT/V TIM (B2)	pedal No-load	2,000 rpm	Approximately 0 - 30° CA
INT/V SOL (B1)	 Engine: After warming up Shift lever "N" Quickly depressed accelerator 	Idle	0 - 2%
INT/V SOL (B2)	pedal No-load	2,000 rpm	Approximately 25 - 50%

On Board Diagnosis Logic

GI

MA

LC

				NHEC0824
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	
P0011 0011 (Bank 1) P0021 0021 (Bank 2)	Intake valve timing control performance	There is a gap between angle of target and phase-control angle degree.	 Harness or connectors (Intake valve timing control solen valve circuit is open or shorted.) Intake valve timing control solend valve Crankshaft position sensor (POS Camshaft position sensor (PHAS Accumulation of debris to the sig pick-up portion of the camshaft 	oid) SE)

FAIL-SAFE MODE

When malfunction A or B is detected, the ECM enters fail-safe mode and the MIL lights up.

EC

Detected items	Engine operating condition in fail-safe mode
Intake valve timing control	The signal is not energized to the solenoid valve and the valve control does not function.

FE AT

DTC Confirmation Procedure

AX

NHEC0825

CAUTION:

Always drive at a safe speed.

SU

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

ST

BT

(P) WITH CONSULT-II

NHEC0825S03

- 1) Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.

3) Maintain the following conditions for at least 20 conecutive seconds.

HA

SC

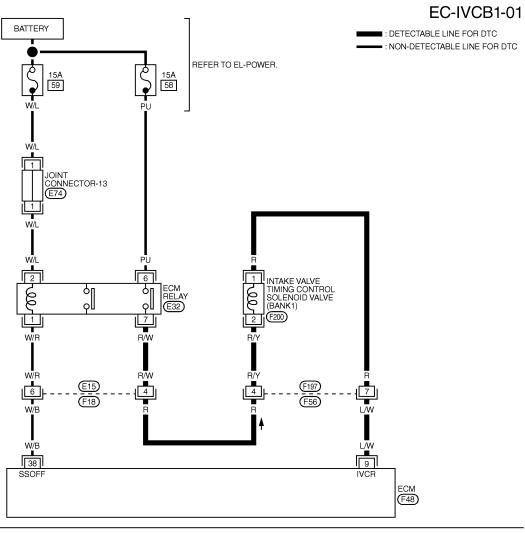
EL

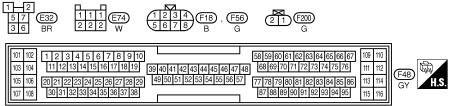
ENG SPEED	2,000 - 3,000 rpm (A constant rotation is maintained.)
COOLANT TEMPS	70 - 90°C (158 - 194°F)
Selector lever	1st position
Driving location	Driving vehicle uphill (Increased engine load will help maintain the driving conditions required for this test.)

4) If 1st trip DTC is detected, go to "Diagnostic Procedure",

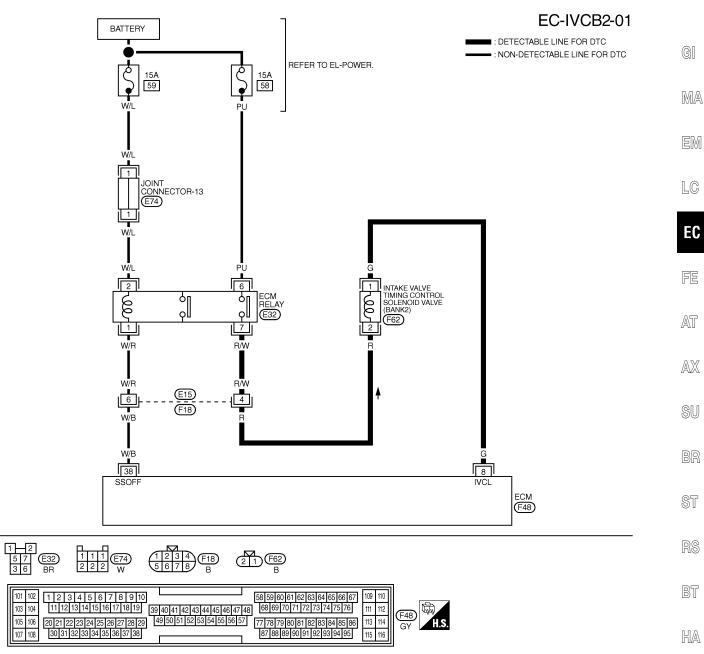
EC-167. **WITH GST**

NHEC0825S04


Follow the procedure "WITH CONSULT-II" above.


DATA MONITOR MONITOR NO DTC **ENG SPEED** XXX rpm B/FUEL SCHDL XXX msec COOLAN TENP/S XXX °C VHCL SPEED SE XXX km/h INT/V TIM (B1) XXX °CA INT/V TIM (B2) XXX °CA INT/V SOL (B1) XXX % INT/V SOL (B2) XXX % SEF353Z

Wiring Diagram


=NHEC1409

BANK 1

BANK 2

MEC576D

SC

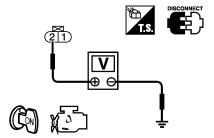
EL

Specification data are reference values, and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
8	G	Intake valve timing control solenoid valves (Bank 2)	[Engine is running] • Warm-up condition • Idle speed	Battery voltage (11 - 14V)★ SEC988C
			[Engine is running] • Warm-up condition • Engine speed is 2,500 rpm.	7 - 12V*
	L/W	Intake valve timing V control solenoid valves (Bank 1)	[Engine is running] ■ Warm-up condition ■ Idle speed	Battery voltage (11 - 14V)★ 10.0 V/Div 2 ms/Div L SEC988C
9			 [Engine is running] Warm-up condition Engine speed is 2,500 rpm. 	7 - 12V*


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

NHEC1410

Diagnostic Procedure

1 CHECK POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect intake valve timing control solenoid valve harness connector.
- 3. Turn ignition switch "ON".
- 4. Check voltage between intake valve timing control solenoid valve terminal 2 and ground with CONSULT-II or tester.

OK or NG

Voltage: Battery voltage

OK •	GO TO 3.
NG	GO TO 2

2 DETECT MALFUNCTION PART

Check the following.

- Harness connectors E15, F18
- Harness connectors F56, F197 (bank 1)
- Harness for open or short between intake valve timing control solenoid valve and ECM relay
 - ▶ Repair harness or connectors.

3 CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 9 (bank 1) or 8 (bank 2) and intake valve timing control solenoid valve terminal 1. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK	or	N	G

OK •	GO TO 5.
NG •	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following

- Harness connectors F56, F197 (bank 1)
- Harness for open or short between intake valve timing control solenoid valve and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

MA

LC

EC

ı

PBIB0192E

AT

 $\mathbb{A}\mathbb{X}$

SU

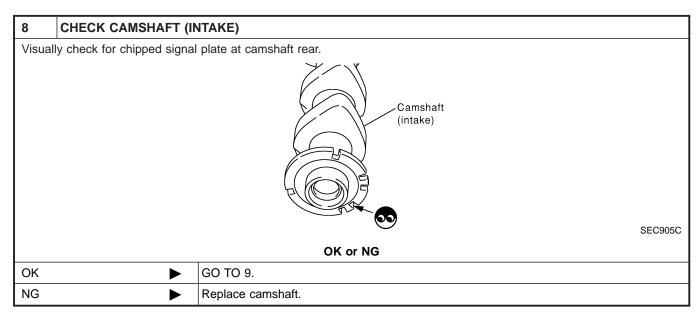
51

HA

U U/~1

SC

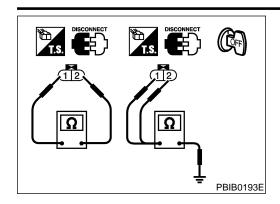
EL


DTC P0011, P0021 IVT CONTROL

Diagnostic Procedure (Cont'd)

5	5 CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE		
Refer to "Component Inspection", EC-169.			
OK or NG			
OK ▶ GO TO 6.			
NG	•	Replace intake valve timing control solenoid valve.	

6	6 CHECK CRANKSHAFT POSITION SENSOR (POS)			
Refer to "Component Inspection", EC-328.				
	OK or NG			
ОК	OK ▶ GO TO 7.			
NG	>	Replace crankshaft position sensor (POS).		


7	7 CHECK CAMSHAFT POSITION SENSOR (PHASE)				
Refer	Refer to "Component Inspection", EC-337.				
	OK or NG				
OK	OK ▶ GO TO 8.				
NG	•	Replace.			

9	9 CHECK INTERMITTENT INCIDENT				
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.				
	OK or NG				
	► INSPECTION END				

DTC P0011, P0021 IVT CONTROL

Component Inspection

Component Inspection

INTAKE VALVE TIMING CONTROL SOLENOID VALVE

1. Disconnect intake valve timing control solenoid valve harness connector.

 \mathbb{G}

Check resistance between intake valve timing control solenoid valve terminals as follows.

Terminals	Resistance	
1 and 2	7.0 - 7.5Ω at 20°C (68°F)	
1 or 2 and ground	${}^{\infty}\Omega$ (Continuity should not exist)	

MA

EM

LC

EC

FE

AT

AX

SU

BR

ST

RS

BT

HA

SC

EL

Description

SYSTEM DESCRIPTION

NHEC0826

NHEC0826S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed	sensor 1	Heated oxygen sensor 1 heat-
Engine coolant temperature sensor	Engine coolant temperature		ers

The ECM performs ON/OFF control of the heated oxygen sensor 1 heaters corresponding to the engine speed and engine coolant temperature. The duty percent varies with engine coolant temperature when engine is started.

OPERATION

NHEC0826S02

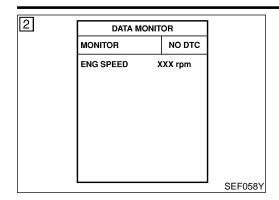
Engine speed rpm	Heated oxygen sensor 1 heaters	
Above 3,600	OFF	
Below 3,600 after warming up	ON	

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC0827

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S1 HTR (B1)	Engine: After warming upEngine speed: Below 3,600 rpm	ON
HO2S1 HTR (B2)	Engine speed: Above 3,600 rpm	OFF


On Board Diagnosis Logic

NHEC082

			NHEC0829
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0031 0031 (Bank 1) P0051 0051 (Bank 2)	Heated oxygen sensor 1 heater control circuit low	The current amperage in the heated oxygen sensor 1 heater circuit is out of the normal range. (An excessively low voltage signal is sent to ECM through the heated oxygen sensor 1 heater.)	 Harness or connectors (The heated oxygen sensor 1 heater circuit is open or shorted.) Heated oxygen sensor 1 heater
P0032 0032 (Bank 1) P0052 0052 (Bank 2)	Heated oxygen sen- sor 1 heater control circuit high	The current amperage in the heated oxygen sensor 1 heater circuit is out of the normal range. (An excessively high voltage signal is sent to ECM through the heated oxygen sensor 1 heater.)	Harness or connectors (The heated oxygen sensor 1 heater circuit is shorted.) Heated oxygen sensor 1 heater

DTC P0031, P0032, P0051, P0052 HO2S1 HEATER

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

(A) WITH CONSULT-II

NHEC0830

- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 10 seconds. 2)
- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.

LC

- Start engine and run it for at least 6 seconds at idle speed.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-174.

EC

WITH GST

3)

FE

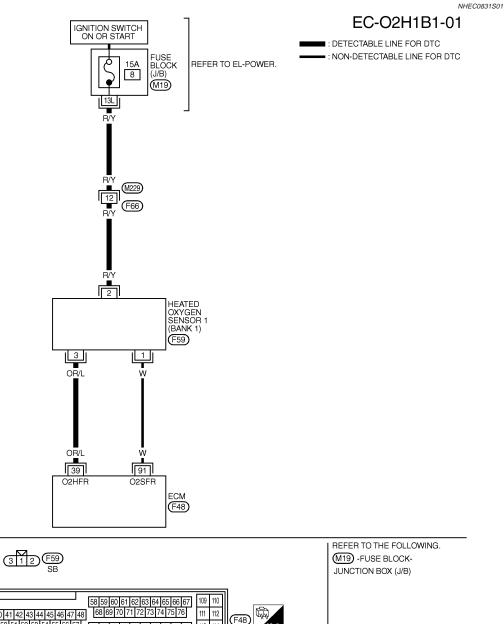
- Start engine and warm it up to normal operating temperature. 1)
- Turn ignition switch "OFF" and wait at least 10 seconds. 2)
 - AT Start engine and run it for at least 6 seconds at idle speed.
- 4) Turn ignition switch "OFF" and wait at least 10 seconds.
- 5) Start engine and run it for at least 6 seconds at idle speed.
- Select "MODE 3" with GST. 6)
- If DTC is detected, go to "Diagnostic Procedure", EC-174.

AX

When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

BT

HA


SC

EL

BANK 1

Wiring Diagram

NHEC0831

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND.

13 14 15 16 17 18

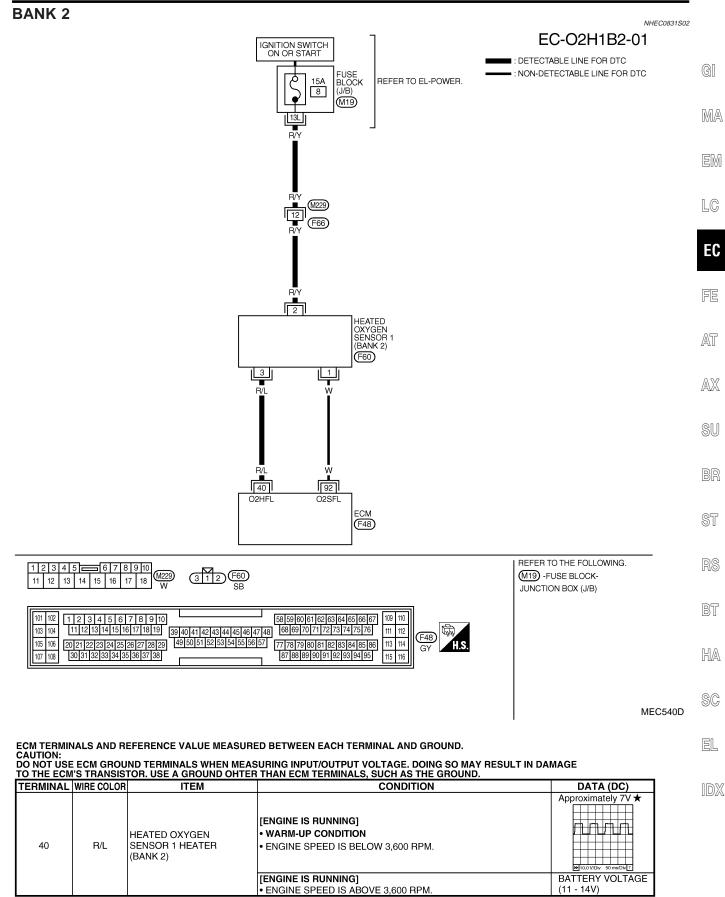
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

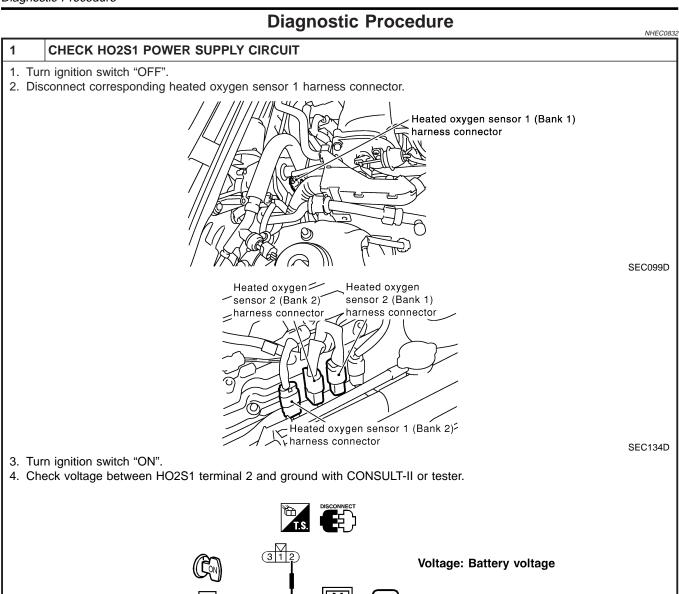
103 104

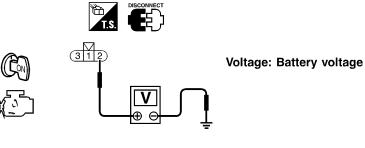
105 106

107 108


CAUTION:
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE
TO THE ECM'S TRANSISTOR. USE A GROUND OHTER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
39	OR/L	HEATED OXYGEN SENSOR 1 HEATER (BANK 1)	[ENGINE IS RUNNING] • WARM-UP CONDITION • ENGINE SPEED IS BELOW 3,600 RPM.	Approximately 7V ★
			[ENGINE IS RUNNING] • ENGINE SPEED IS ABOVE 3,600 RPM.	BATTERY VOLTAGE (11 - 14V)


77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95


113

MEC539D

SEC658D

OK or NG

SEF311X

ОК	>	GO TO 3.
NG	•	GO TO 2.

DETECT MALFUNCTIONING PART 2

Check the following.

- Harness connectors M229, F66
- Fuse block (J/B) connector M19
- 15A fuse
- Harness for open or short between heated oxygen sensor 1 and fuse

Repair harness or connectors.

DTC P0031, P0032, P0051, P0052 HO2S1 HEATER

Diagnostic Procedure (Cont'd)

CHECK HO2S1 OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
DIC	ECM	Sensor	Dank
P0031, P0032	39	3	Bank 1
P0051, P0052	40	3	Bank 2

MTBL1140

MA

LC

EC

AT

AX

SU

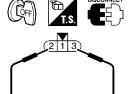
BT

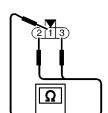
HA

SC

EL

Continuity should exist.


4. Also check harness for short to ground and short to power.


OK	or	NG
----	----	----

OK ►	GO TO 4.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.

CHECK HEATED OXYGEN SENSOR 1 HEATER

Check resistance between HO2S1 terminals as follows.

Terminals	Resistance
2 and 3	2.3 - 4.3 Ω at 25°C (77°F)
1 and 2 1 and 3	$\infty\Omega$ (Continuity should not exist.)

SEF310X

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

				_
	┏.	or	N	c
O		OI	14	u

OK •	GO TO 5.
NG •	Replace malfunctioning heated oxygen sensor.

5	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	► INSPECTION END		

EC-175

Description

SYSTEM DESCRIPTION

NHEC0833

NHEC0833S01

N/LE00000C				
Sensor	Input Signal to ECM	ECM func- tion	Actuator	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed	Heated oxygen	oxygen	Heated oxygen sensor 2 heat-
Engine coolant temperature sensor	Engine coolant temperature	sensor heater 2	ers	
Mass air flow sensor	Amount of intake air	control		

The ECM performs ON/OFF control of the heated oxygen sensor 2 heaters corresponding to the engine speed, amount of intake air and engine coolant temperature.

OPERATION

NHEC0833S02

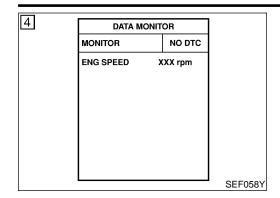
	_
Engine speed rpm	Heated oxygen sensor 2 heaters
Above 3,600	OFF
Below 3,600 (After the following conditions are met.) • After warming up • After keeping engine speed between 3,500 and 4,000 rpm for one minute and at idle for one minute under no load	ON

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC0834

MONITOR ITEM	CONDITION	SPECIFICATION
	Ignition switch: ON (Engine stopped)Engine is running above 3,600 rpm.	OFF
HO2S2 HTR (B1) HO2S2 HTR (B2)	 Engine speed: Below 3,600 rpm after the following conditions are met. After warming up After keeping engine speed between 3,500 and 4,000 rpm for one minute and at idle for one minute under no load 	ON


On Board Diagnosis Logic

NHEC0836

			WILCOSS
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0037 0037 (Bank 1) P0057 0057 (Bank 2)	Heated oxygen sensor 2 heater control circuit low	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range. (An excessively low voltage signal is sent to ECM through the heated oxygen sensor 2 heater.)	Harness or connectors (The heated oxygen sensor 2 heater circuit is open or shorted.) Heated oxygen sensor 2 heater
P0038 0038 (Bank 1) P0058 0058 (Bank 2)	Heated oxygen sensor 2 heater control circuit high	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range. (An excessively high voltage signal is sent to ECM through the heated oxygen sensor 2 heater.)	Harness or connectors (The heated oxygen sensor 2 heater circuit is shorted.) Heated oxygen sensor 2 heater

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

, G

NHEC0837

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 11.0V and 16V at idle.

Call

MA

(P) WITH CONSULT-II

Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.

2) Start engine and warm it up to the normal operating temperature.

LC

- 3) Turn ignition switch "OFF" and wait at least 10 seconds.
- 4) Start engine and keep engine speed between 3,500 and 4,000 rpm for at least one minute under no load.

- 5) Let engine idle for one minute.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-180.

AT

WITH GST

NHEC0837S02

1) Start engine and warm it up to the normal operating tempera-

AX

- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least one minute under no load.

- 4) Let engine idle for one minute.
- 5) Turn ignition switch "OFF" and wait at least 10 seconds.

BR

6) Start engine and keep engine speed at between 3,500 to 4,000 rpm for at least one minute under no load.

ST

- 7) Let engine idle for one minute.
- Select "MODE 3" with GST.
- 9) If DTC is detected, go to "Diagnostic Procedure", EC-180.

 When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

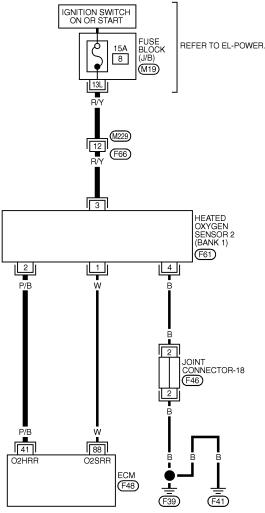
BT

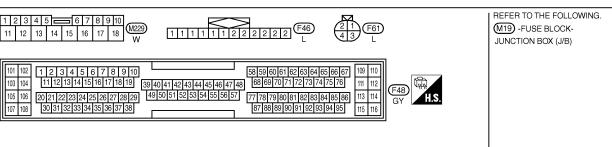
HA

SC

EL

BANK 1


Wiring Diagram

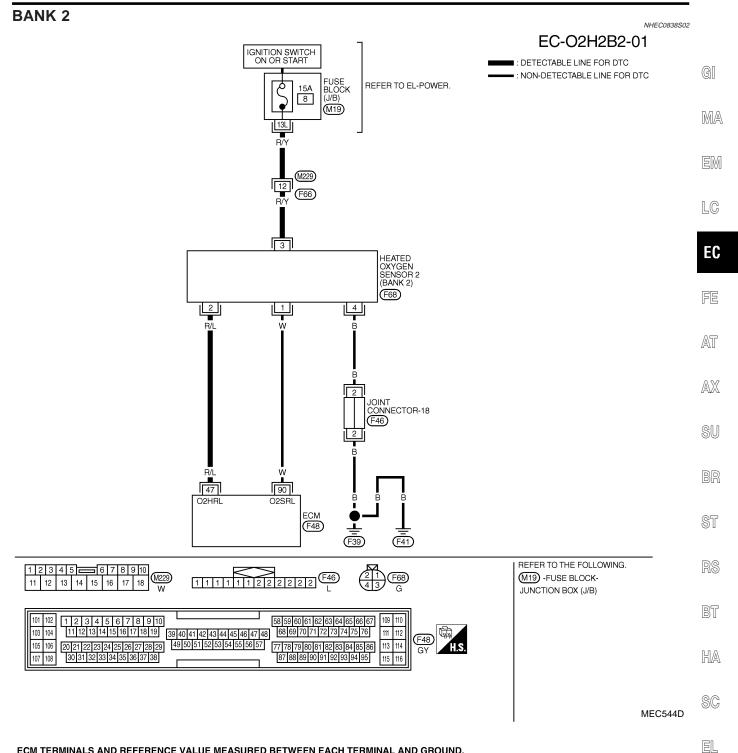

=NHEC0838

NHEC0838S01

EC-O2H2B1-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

MEC543D


ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:

DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE

TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

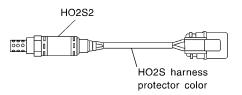
TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
			IGN ON	BATTERY VOLTAGE
			ENGINE RUNNING ABOVE 3,600 RPM	DATTENT VOLTAGE
41	P/B	HEATED OXYGEN SENSOR 2 HEATER (BANK 1)	ENGINE SPEED: BELOW 3,600 RPM AFTER THE FOLLOWING CONDITIONS ARE MET ENGINE: AFTER WARMING UP KEEP ENGINE SPEED BETWEEN 3,500 AND 4,000 RPM FOR ONE MINUTE AND AT IDLE FOR ONE MINUTE UNDER NO LOAD	0 - 1.0V

SEC659D

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:

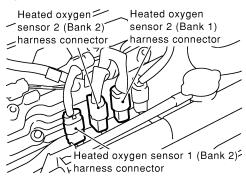
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR		CONDITION	DATA (DC)
TETUMINAL	WINE COLON		IGN ON	BATTERY VOLTAGE
			ENGINE RUNNING ABOVE 3,600 RPM	BATTETT VOLTAGE
47	R/L	HEATED OXYGEN SENSOR 2 HEATER (BANK 1)	ENGINE SPEED: BELOW 3,600 RPM AFTER THE FOLLOWING CONDITIONS ARE MET ENGINE: AFTER WARMING UP KEEP ENGINE SPEED BETWEEN 3,500 AND 4,000 RPM FOR ONE MINUTE AND AT IDLE FOR ONE MINUTE UNDER NO LOAD	0 - 1.0V

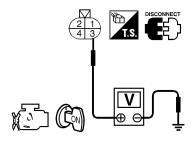

SEC660D

Diagnostic Procedure

NHEC0839


- 1. Turn ignition switch "OFF".
- 2. Check heated oxygen sensor harness 2 protector color.

HO2S2 (bank 1): White or Gray HO2S2 (bank 2): Red or Red/Brown


3. Disconnect corresponding heated oxygen sensor 2 harness connector.

SEF372ZB

SEC134D

- 4. Turn ignition switch "ON".
- 5. Check voltage between HO2S2 terminal 3 and ground.

Voltage: Battery voltage

SEF314X

OK or NG

ОК		GO TO 3.
NG	•	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M229, F66
- Fuse block (J/B) connector M19
- 15A fuse
- Harness for open or short between heated oxygen sensor 2 and fuse
 - Repair harness or connectors.

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

Diagnostic Procedure (Cont'd)

3 CHECK HO2S2 OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

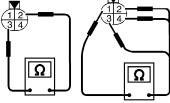
- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

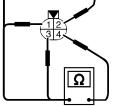
DTC	Term	Bank	
	ECM	Sensor	Dank
P0037, P0038	41	2	Bank 1
P0057, P0058	47	2	Bank 2

MTBL1141

Continuity should exist.

4. Also check harness for short to ground and short to power.


OK	or	NG
----	----	----


L	OK		GO TO 4.
	NG		Repair open circuit or short to ground or short to power in harness or connectors.

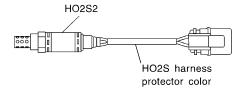
4 CHECK HEATED OXYGEN SENSOR 2 HEATER

Check the resistance between HO2S2 terminals as follows.

Terminal No.	Resistance
2 and 3	2.3 - 4.3Ω at 25°C (77°F)
1 and 2, 3, 4	∞ Ω
4 and 1, 2, 3	(Continuity should not exist.)

SEF315X

CAUTION:


Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK •	GO TO 6.
NG ►	GO TO 5.

5 REPLACE HEATED OXYGEN SENSOR 2

Check heated oxygen sensor harness protector color.

HO2S2 (bank 1): White or Gray HO2S2 (bank 2): Red or Red/Brown

SEF372ZB

CAUTION:

Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Replace malfunctioning heated oxygen sensor 2.

GI

MA

LC

EC

55

FE

AT

AX

@n n

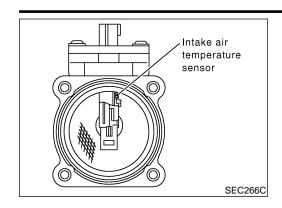
ST

RS

BT

HA

SC


EL

1197

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

Diagnostic Procedure (Cont'd)

6	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	► INSPECTION END		

Component Description

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the ECM must supply more electric current to maintain the temperature of the hot film as air flow increases. The ECM detects the air flow by means of this current change.

MA

LC

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONE	SPECIFICATION	
MAS A/F SE-B1	Engine: After warming upAir conditioner switch: "OFF"	Idle	1.1 - 1.5V
	Shift lever: "N"No-load	2,500 rpm	1.7 - 2.4V
CAL/LD VALUE	ditto	Idle	10 - 35%
	ditto	2,500 rpm	10 - 35%
MASS AIRFLOW	ditto	Idle	2.0 - 6.0 g·m/s
	ditto	2.500 rpm	7.0 - 20.0 g·m/s

NHEC0841 EC

AT

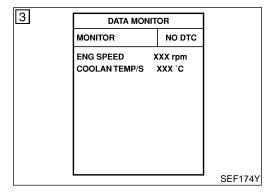
AX

SU

On Board Diagnosis Logic

NHEC0843

DTC No.	Trouble diagnosis name		DTC Detecting Condition	Possible Cause	BT
P0101 0101	Mass air flow sensor circuit range/ performance problem	A)	A high voltage from the sensor is sent to ECM under light load driving condition.	 Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor 	HA
		B)	A low voltage from the sensor is sent to ECM under heavy load driving condition.	 Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor 	SC EL


DTC Confirmation Procedure

NOTE:

NOTE:

NHEC0844

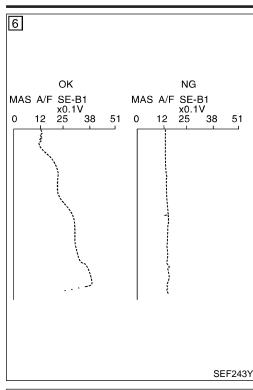
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A

NHFC0844S01

If engine will not start or stops soon, wait at least 10 seconds with engine stopped (Ignition switch "ON") instead of running engine at idle speed.

(II) With CONSULT-II


NHEC0844S0101

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and warm it up to normal operating temperature.
- 4) Run engine for at least 10 seconds at idle speed.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-187.

With GST

NHEC0844S0102

Follow the procedure "With CONSULT-II" above.

7	DATA MON	OR .		
	MONITOR NO DTC			
	ENG SPEED VHCL SPEED SE THRTL SEN 1 THRTL SEN 2	XX	XX rpm (X km/h XXX V XXX V	
				PBIB0199E

CALC LOAD COOLANT TEMP SHORT FT #1 LONG FT #1 SHORT FT #2 LONG FT #2 ENGINE SPD VEHICLE SPD IGN ADVANCE INTAKE AIR MAF THROTTLE POS	20% 95°C 2% 0% 4% 0 2637RPM 0MPH 41.0° 41°C 14.1gm/sec 3%	
	;	SEF534

PROCEDURE FOR MALFUNCTION B

CAUTION:

Always drive vehicle at a safe speed.

(P) With CONSULT-II

Turn ignition switch "ON". 1)

Start engine and warm it up to normal operating temperature. If engine cannot be started, go to "Diagnostic Procedure", EC-187.

Select "DATA MONITOR" mode with CONSULT-II.

Check the voltage of MAS A/F SE B1 with "DATA MONITOR".

Increases engine speed to about 4,000 rpm.

Monitor the linear voltage rise in response to engine speed increases.

If NG, go to "Diagnostic Procedure", EC-187. If OK, go to following step.

Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	More than 2,000 rpm
THRTL SEN 1 THRTL SEN 2	More than 3V
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-187.

Overall Function Check PROCEDURE FOR MALFUNCTION B

Use this procedure to check the overall function of the mass air flow sensor circuit. During this check, a 1st trip DTC might not be confirmed.

With GST

1) Start engine and warm it up to normal operating temperature.

Select "MODE 1" with GST.

Check the mass air flow sensor signal with "MODE 1".

Check for linear mass air flow sensor signal value rise in response to increases to about 4,000 rpm in engine speed.

If NG, go to "Diagnostic Procedure", EC-187.

NHFC0844S0201

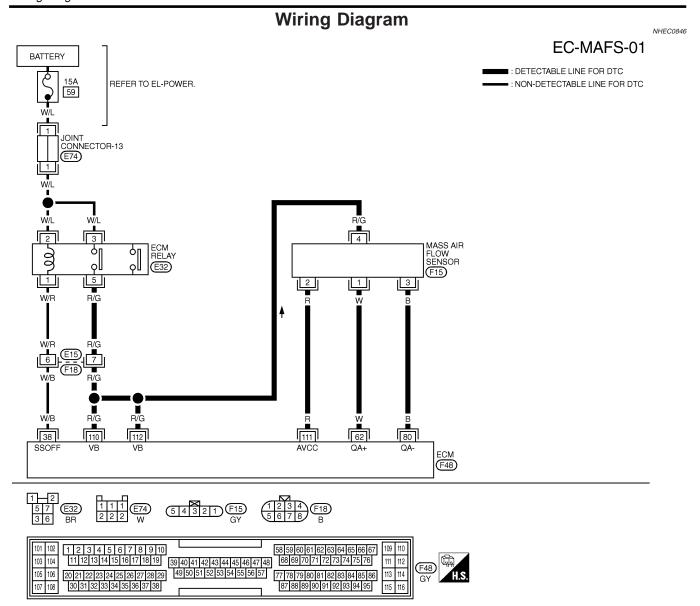
NHEC0844S02

LC

EC

AT

AX


SU

NHEC0845

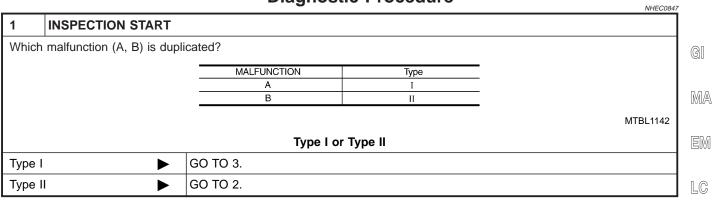
BT

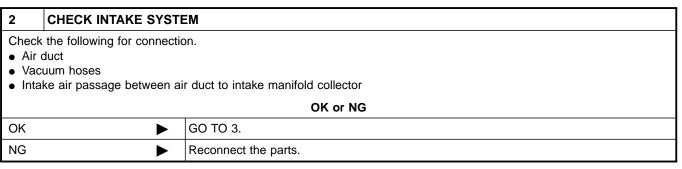
HA

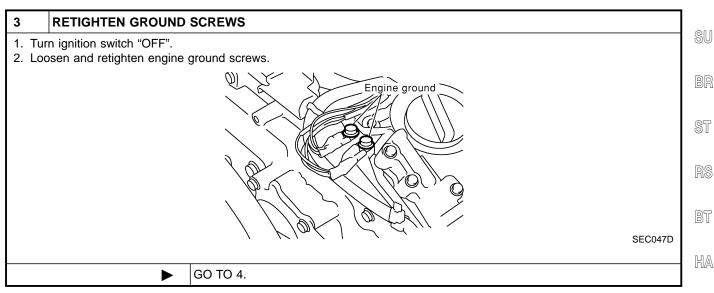
SC

MEC531D

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND.


CAUTION:


DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.


TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
62	WARM-UP CONDITION	ENGINE RUNNING AT IDLE SPEED UNDER WARM-UP CONDITION	1.1 - 1.5V	
			ENGINE RUNNING AT 2,500 RPM UNDER WARM-UP CONDITION	1.7 - 2.4V
80	В	MASS AIR FLOW SENSOR GROUND	ENGINE RUNNING AT IDLE SPEED UNDER WARM-UP CONDITION	APPROX. 0V
111	R	SENSORS' POWER SUPPLY	IGN ON	APPROX. 5V

SEF650XC

Diagnostic Procedure

SC

EL

IDX

EC

AT

AX

CHECK MAF SENSOR POWER SUPPLY CIRCUIT 1. Disconnect mass air flow (MAF) sensor harness connector. Mass air flow sensor (With intake air temperature sensor) SEC055D 2. Turn ignition switch "ON". 3. Check voltage between MAF sensor terminals 2, 4 and ground with CONSULT-II or tester. Terminal Voltage Approximately 5 2 4 Battery voltage SEF297X OK or NG

NG >	GO TO 5.

DETECT MALFUNCTIONING PART

Check the following.

OK

- Harness connectors E15, F18
- Harness for open or short between ECM relay and mass air flow sensor

GO TO 6.

- Harness for open or short between mass air flow sensor and ECM
 - Repair harness or connectors.

CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between MAF sensor terminal 3 and ECM terminal 80. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK	or	NG
----	----	----

OK •	GO TO 7.
NG •	Repair open circuit or short to power in harness or connectors.

GI

MA

EM

LC

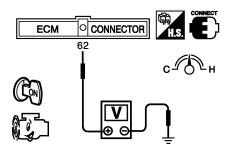
AT

AX

BT

HA

SC


EL

IDX

7	CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT			
Re	 Check harness continuity between MAF sensor terminal 1 and ECM terminal 62. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power. 			
	OK or NG			
OK	OK ▶ GO TO 8.			
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.		

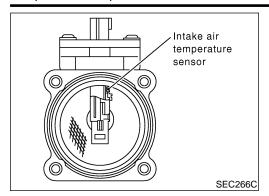
8 CHECK MASS AIR FLOW SENSOR

- 1. Reconnect harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 62 (Mass air flow sensor signal) and ground.

Condition	Voltage V
Ignition switch "ON" (Engine stopped.)	Approx. 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.1 - 1.5
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.7 - 2.4
Idle to about 4,000 rpm*	1.1 - 1.5 to Approx. 4.0

^{*:} Check for linear voltage rise in response to engine being increased to about 4,000 rpm.

SEC103D


4. If the voltage is out of specification, disconnect MAF sensor harness connector and connect it again. Then repeat above check.

OK (or I	νG

OK ▶	GO TO 9.
NG ►	Replace mass air flow sensor.

9	CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.	
	► INSPECTION END	

EC-189

Component Description

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the ECM must supply more electric current to maintain the temperature of the hot film as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC0747

MONITOR ITEM	CONDITION		SPECIFICATION
MAS A/F SE-B1	Engine: After warming upAir conditioner switch: "OFF"	Idle	1.1 - 1.5V
	Shift lever: "N"No-load	2,500 rpm	1.7 - 2.4V
CAL/LD VALUE	ditto	Idle	10 - 35%
		2,500 rpm	10 - 35%
MASS AIRFLOW	ditto	Idle	2.0 - 6.0 g·m/s
		2,500 rpm	7.0 - 20.0 g·m/s

On Board Diagnosis Logic

NHEC0749

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0102 0102	Mass air flow sensor circuit low input	An excessively low voltage from the sensor is sent to ECM when engine is running.	 Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor
P0103 0103	Mass air flow sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor

FAIL-SAFE MODE

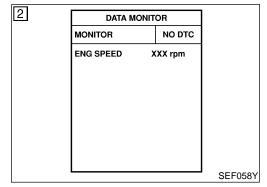
NHEC0749S01

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.

DTC Confirmation Procedure

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

NHEC0751

MA

EM

PROCEDURE FOR DTC P0103

NHFC0751S01

LC

EC

(A) With CONSULT-II

1) Turn ignition switch "ON".

NHEC0751S0101

Select "DATA MONITOR" mode with CONSULT-II.

Wait at least 6 seconds.

FE

4) If DTC is detected, go to "Diagnostic Procedure", EC-193.

With GST Follow the procedure "With CONSULT-II" above.

NHEC0751S0102

AT

AX

PROCEDURE FOR DTC P0102

(P) With CONSULT-II

NHEC0751S02

1) Turn ignition switch "ON".

NHEC0751S0201 SU

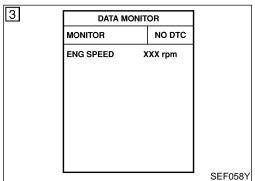
2) Select "DATA MONITOR" mode with CONSULT-II.

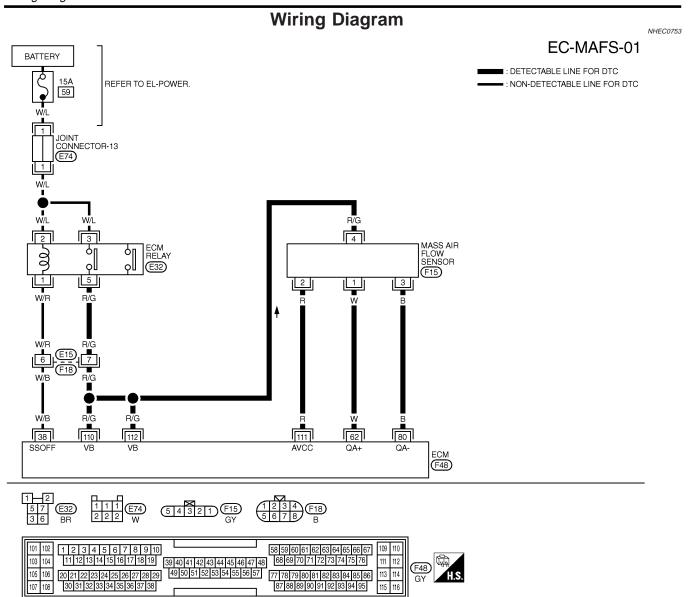
3) Start engine and wait at least 5 seconds.

4) If DTC is detected, go to "Diagnostic Procedure", EC-193.

With GST

Follow the procedure "With CONSULT-II" above.


NHEC0751S0202


BT

HA

SC

EL

MEC531D

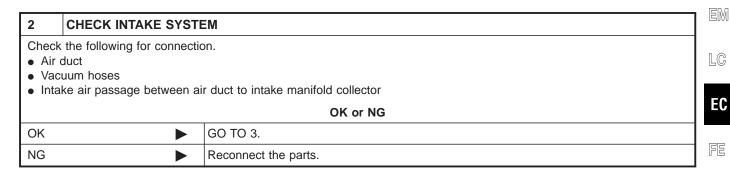
ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND.

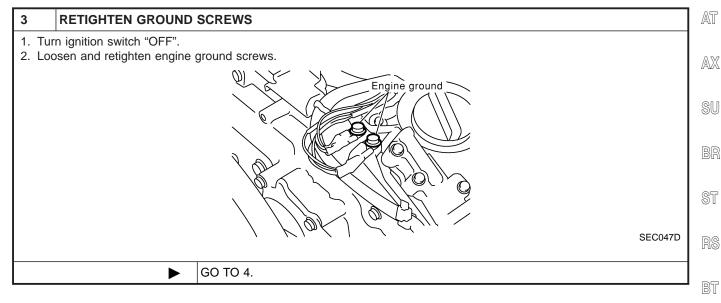
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
60	MAGG AIR FLOW OF NOOR	ENGINE RUNNING AT IDLE SPEED UNDER WARM-UP CONDITION	1.1 - 1.5V	
62 W	VV		ENGINE RUNNING AT 2,500 RPM UNDER WARM-UP CONDITION	1.7 - 2.4V
80	В	MASS AIR FLOW SENSOR GROUND	ENGINE RUNNING AT IDLE SPEED UNDER WARM-UP CONDITION	APPROX. 0V
111	R	SENSORS' POWER SUPPLY	IGN ON	APPROX. 5V

SEF650XC

GI


MA


HA

SC

EL

CHECK MAF SENSOR POWER SUPPLY CIRCUIT 1. Disconnect mass air flow (MAF) sensor harness connector. Mass air flow sensor (With intake air temperature sensor) SEC055D 2. Turn ignition switch "ON". 3. Check voltage between MAF sensor terminals 2, 4 and ground with CONSULT-II or tester. Terminal Voltage Approximately 5 2 4 Battery voltage SEF297X OK or NG

5	DETECT MALFUNCTIONING PART

Check the following.

OK

NG

- Harness connectors E15, F18
- Harness for open or short between ECM relay and mass air flow sensor

GO TO 6.

GO TO 5.

- Harness for open or short between mass air flow sensor and ECM
 - Repair harness or connectors.

CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

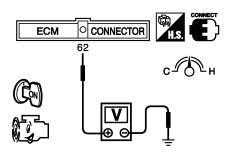
- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between MAF sensor terminal 3 and ECM terminal 80. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK	or	NG
----	----	----

OK •	GO TO 7.
NG ►	Repair open circuit or short to power in harness or connectors.


DTC P0102, P0103 MAF SENSOR

Diagnostic Procedure (Cont'd)

7	7 CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT			
Check harness continuity between MAF sensor terminal 1 and ECM terminal 62. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power.				
OK or NG				
OK	>	GO TO 8.		
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.		

8 CHECK MASS AIR FLOW SENSOR

- 1. Reconnect harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 62 (Mass air flow sensor signal) and ground.

Condition	Voltage V	
Ignition switch "ON" (Engine stopped.)	Approx. 1.0	
Idle (Engine is warmed-up to normal operating temperature.)	1.1 - 1.5	
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.7 - 2.4	
Idle to about 4,000 rpm*	1.1 - 1.5 to Approx. 4.0	

^{*:} Check for linear voltage rise in response to engine being increased to about 4,000 rpm.

SEC103D

4. If the voltage is out of specification, disconnect MAF sensor harness connector and connect it again. Then repeat above check.

			_
oĸ	or	Ν	G

OK ▶	GO TO 9.
NG ▶	Replace mass air flow sensor.

9	CHECK INTERMITTENT INCIDENT			
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.			
	>	INSPECTION END		

EM

LC

GI

MA

-

312

AT

AX

S

@TF

BT

HA

SC

EL

DTC P0107, P0108 ABSOLUTE PRESSURE SENSOR

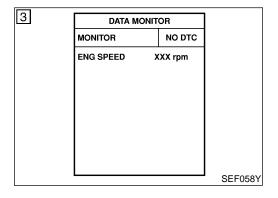
Component Description

Component Description

NHEC08

The absolute pressure sensor is built into ECM. The sensor detects ambient barometric pressure and sends the voltage signal to the microcomputer.

On Board Diagnosis Logic

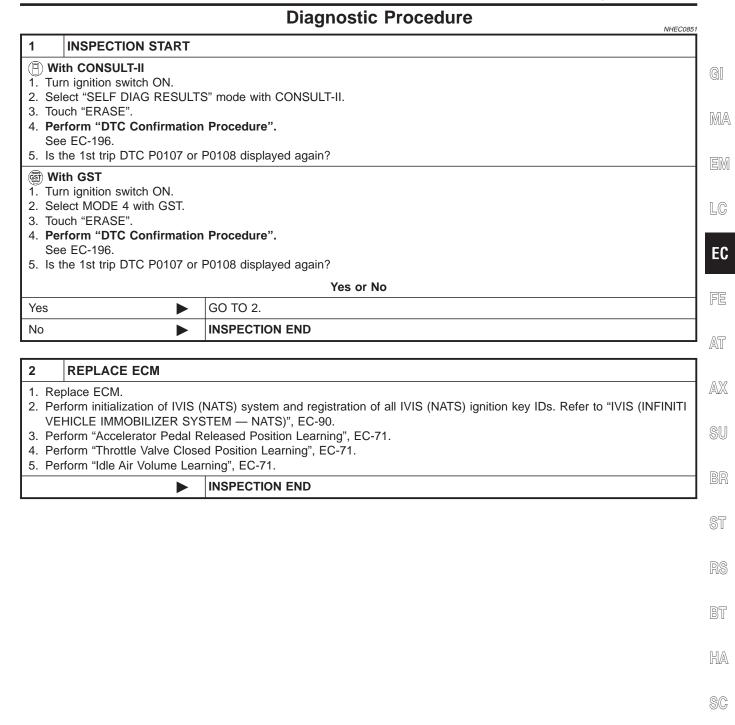

NHEC0849

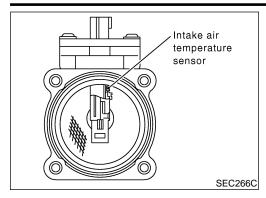
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0107 0107	Absolute pressure sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	(The sensor circuit is open or shorted.)
P0108 0108	Absolute pressure sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Absolute pressure sensor

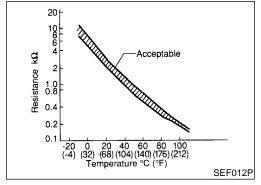
DTC Confirmation Procedure

NHEC0850

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


- (II) With CONSULT-II
- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 6 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-197.
- **With GST**


Follow the procedure "With CONSULT-II".


DTC P0107, P0108 ABSOLUTE PRESSURE SENSOR

Diagnostic Procedure

EL

Component Description

NHEC085

The intake air temperature sensor is mounted to the air duct housing. The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
25 (77)	3.32	1.9 - 2.1

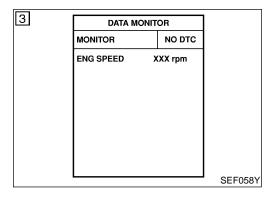
^{*:} These data are reference values and are measured between ECM terminal 66 (Intake air temperature sensor) and body ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

NHFC0853


DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0112 0112	Intake air temperature sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	(The sensor circuit is open or shorted.)
P0113 0113	Intake air temperature sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Intake air temperature sensor

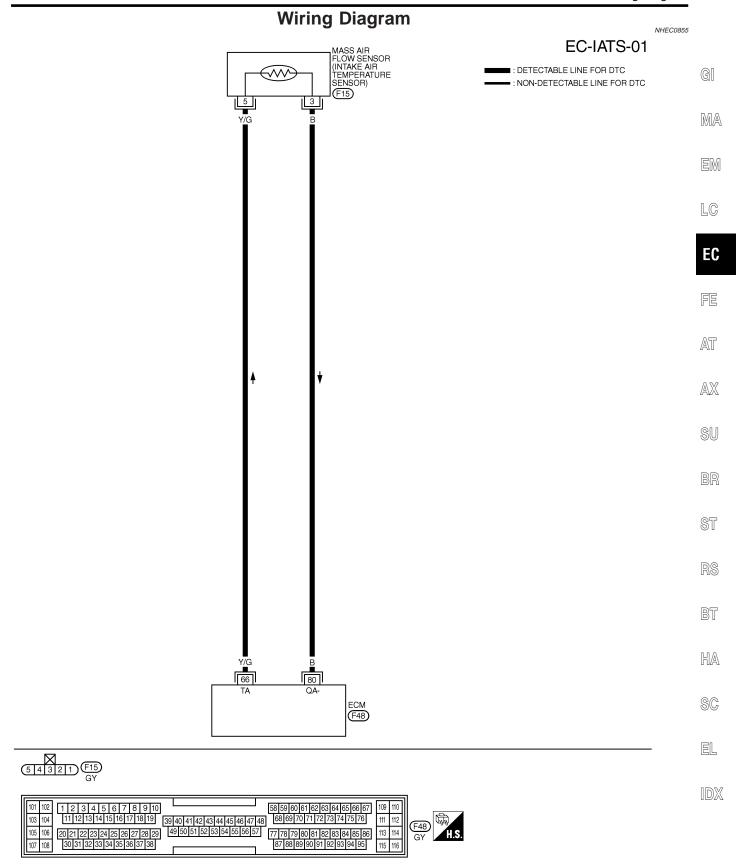
DTC Confirmation Procedure

NOTE:

NHEC0854

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(A) WITH CONSULT-II


NHEC0854S01

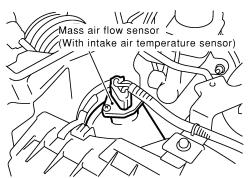
- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-200.

WITH GST

Follow the procedure "With CONSULT-II" above.

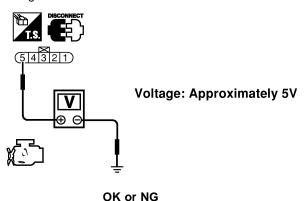
NHEC0854S02

MEC532D


CHECK INTAKE AIR TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

Diagnostic Procedure

NHEC0856


1. Turn ignition switch "OFF".

2. Disconnect intake air temperature sensor harness connector.

SEC055D

- 3. Turn ignition switch "ON".
- 4. Check voltage between terminal 5 and ground.

SEC104D

ОК	>	GO TO 3.
NG	•	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check harness for open or short between ECM and intake air temperature sensor.

Repair harness or connectors.

3 CHECK INTAKE AIR TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Check harness continuity between sensor terminal 3 and engine ground. Refer to Wiring Diagram.

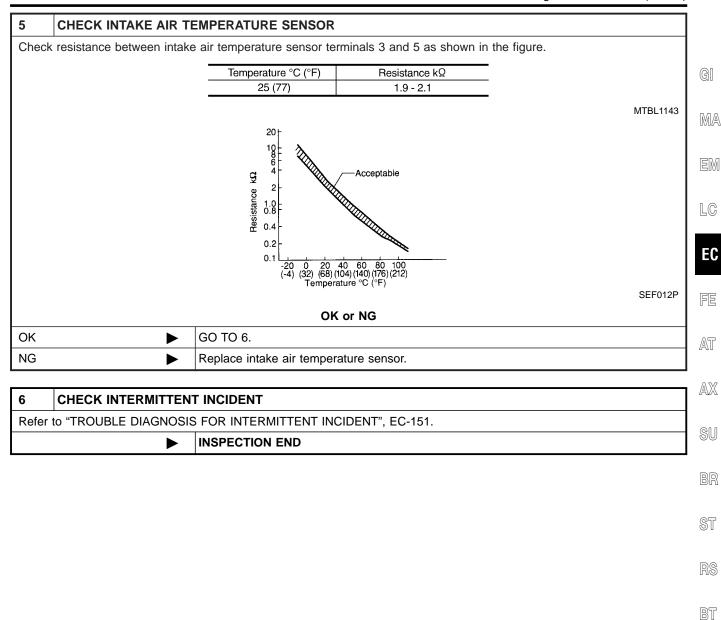
Continuity should exist.

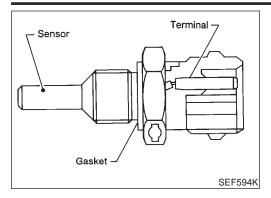
3. Also check harness for short to power.

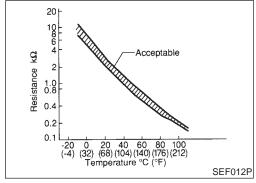
OK	•	GO TO 5.
NG	•	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check harness for open between ECM and intake air temperature sensor.


Repair open circuit or short to power in harness or connectors.


HA


SC

EL

IDX

Component Description

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 93 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

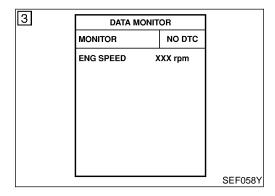
On Board Diagnosis Logic

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0117 0117	Engine coolant tem- perature sensor cir- cuit low input	An excessively low voltage from the sensor is sent to ECM.	(The sensor circuit is open or shorted.)
P0118 0118	Engine coolant tem- perature sensor cir- cuit high input	An excessively high voltage from the sensor is sent to ECM.	Engine coolant temperature sensor

FAIL-SAFE MODE

NHEC0858S01


NHEC0858

When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

DTC P0117, P0118 ECT SENSOR

On Board Diagnosis Logic (Cont'd)

Detected items	Engine operating condition in fail-safe mode		
Engine coolant tem- perature sensor circuit	Engine coolant temperature will be determined by ECM based on the time after turning ignition switch "ON" or "START". CONSULT-II displays the engine coolant temperature decided by ECM.		G[
	Condition	Engine coolant temperature decided (CONSULT-II display)	Ma
	Just as ignition switch is turned ON or Start	40°C (104°F)	
	More than approx. 4 minutes after ignition ON or Start	80°C (176°F)	E
	Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)	LC
When the fail-safe system for engine coolant temperature sensor is activated, the cooling fan opera while engine is running.		rature sensor is activated, the cooling fan operates	E(

DTC Confirmation Procedure

NHEC0859

AT

AX

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

BR NHEC0859S01

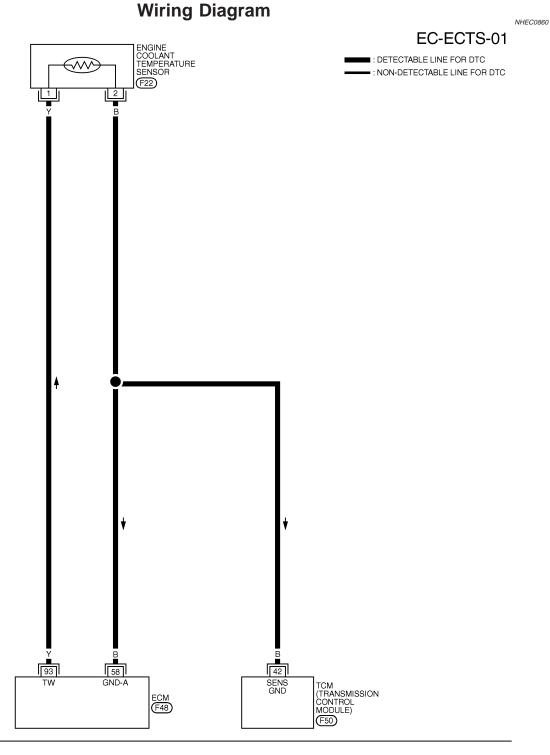
(II) WITH CONSULT-II

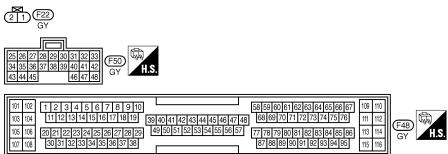
- Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-205.

WITH GST

TH CONCLUT II" above

Follow the procedure "WITH CONSULT-II" above.


BT


HA

SC

EL

DX.

MEC533D

NHEC0861

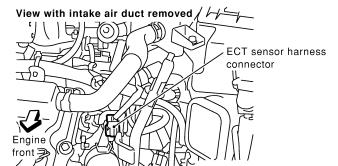
MA

LC

EC

AT

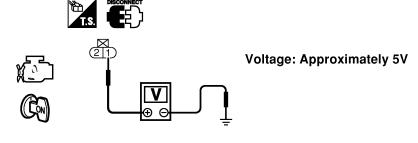
AX


HA

EL

Diagnostic Procedure

CHECK ECT SENSOR POWER SUPPLY CIRCUIT


- 1. Turn ignition switch "OFF".
- 2. Disconnect engine coolant temperature (ECT) sensor harness connector.

SEC105D

SEC106D

- 3. Turn ignition switch "ON".
- 4. Check voltage between ECT sensor harness connector terminal 1 and ground with CONSULT-II or tester.

OK or NG

OK ▶	GO TO 3.
NG ►	GO TO 2.

DETECT MALFUNCTIONING PART

Check harness for open or short between ECM and engine coolant temperature sensor.

Repair harness or connectors.

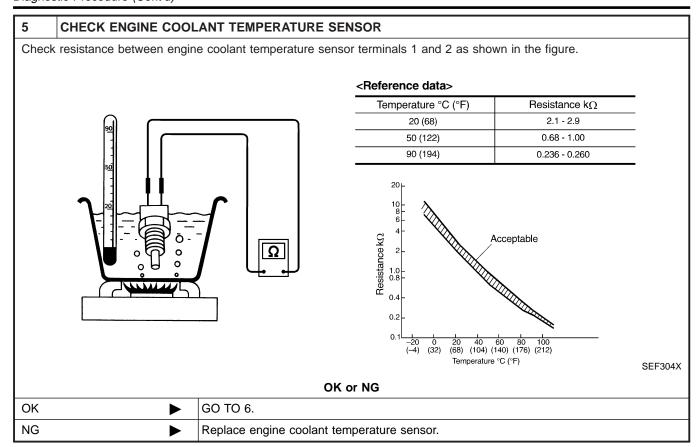
CHECK ECT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between ECT sensor terminal 2 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

O 5.		


OK •	GO TO 5.
NG ►	GO TO 4.

OK or NG

DETECT MALFUNCTIONING PART

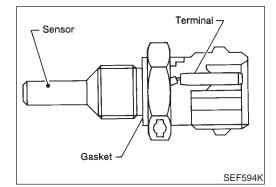
Check the following.

- Harness for open between ECM and engine coolant temperature sensor
- Harness for open between TCM (Transmission Control Module) and engine coolant temperature sensor
 - Repair open circuit or short to power in harness or connectors.

6	CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.	
	► INSPECTION END	

NHEC0869

Description


NOTE:

If DTC P0125 is displayed with P0117, P0118, first perform the trouble diagnosis for DTC P0117, P0118. Refer to EC-202.

MA

LC

Acceptable

0 20 40 60 80 100 (32) (68) (104) (140) (176) (212) Temperature °C (°F)

20

1.0 0.8

0.2

ĝ

COMPONENT DESCRIPTION

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

FE

AT

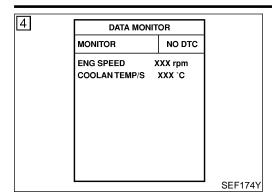
<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

*: These data are reference values and are measured between ECM terminal 93 (Engine coolant temperature sensor) and ground.

SEF012P

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


HA

SC

On Board Diagnosis Logic

NHEC0870

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0125 0125	Insufficient engine coolant temperature for closed loop fuel control	 Voltage sent to ECM from the sensor is not practical, even when some time has passed after starting the engine. Engine coolant temperature is insufficient for closed loop fuel control. 	Harness or connectors (The sensor circuit is open or shorted.) Engine coolant temperature sensor Thermostat

DTC Confirmation Procedure

CAUTION:

Be careful not to overheat engine.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

NHEC0871S01

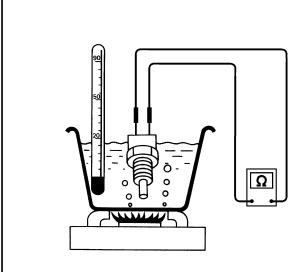
NHEC0871

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Check that "COOLAN TEMP/S" is above 10°C (50°F). If it is above 10°C (50°F), the test result will be OK. If it is below 10°C (50°F), go to following step.
- 4) Start engine and run it for 65 minutes at idle speed. If "COOLAN TEMP/S" increases to more than 10°C (50°F) within 65 minutes, stop engine because the test result will be OK.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-208.

WITH GST

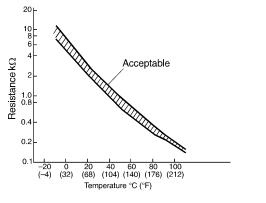
Follow the procedure "WITH CONSULT-II" above.

NHEC0871S02


Diagnostic Procedure

NHEC0872

SEF304X


CHECK ENGINE COOLANT TEMPERATURE SENSOR

Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

<Reference data>

Temperature °C (°F)	Resistance k Ω
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

OK or NG

OK		GO TO 2.
NG	•	Replace engine coolant temperature sensor.

DTC P0125 ECT SENSOR

Diagnostic Procedure (Cont'd)

2	CHECK THERMOSTA	T OPERATION	
	the engine is cold [lowe	than 70°C (158°F)] condition, grasp lower radiator hose and confirm the engine coolant	
40001	iot nom	OK or NG	GI
OK	•	GO TO 3.] ,,,,
NG	>	Repair or replace thermostat. Refer to LC-19, "Thermostat".	MA
	OUEOK INTERMITTE	ALT INCIDENT	1 EM
3	CHECK INTERMITTE	NI INCIDENT	
Ref	er to "TROUBLE DIAGN	OSIS FOR INTERMITTENT INCIDENT", EC-151.	

• Refer to Wiring Diagram, EC-204.

INSPECTION END

EC

LC

FE

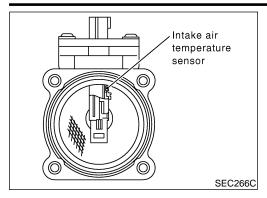
AT

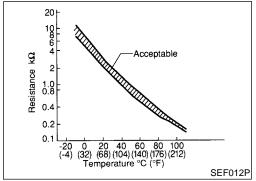
 $\mathbb{A}\mathbb{X}$

SU

BR

ST


RS


BT

HA

SC

EL

Component Description

The intake air temperature sensor is mounted to the air duct housing. The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
25 (77)	3.32	1.9 - 2.1

^{*:} These data are reference values and are measured between ECM terminal 66 (Intake air temperature sensor) and body ground.

CAUTION:

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

NHEC0768

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0127 0127	Intake air temperature too high	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signal from engine coolant temperature sensor.	Harness or connectors (The sensor circuit is open or shorted.) Intake air temperature sensor

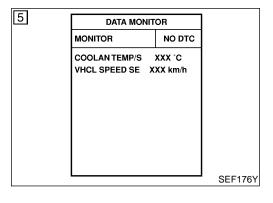
DTC Confirmation Procedure

NOTE:

NHEC0770

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

CAUTION:


Always drive vehicle at a safe speed.

TESTING CONDITION:

This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(A) WITH CONSULT-II

- 1) Wait until engine coolant temperature is less than 90°C (194°F).
- a) Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- Check the engine coolant temperature.
- If the engine coolant temperature is not less than 90°C (194°F), turn ignition switch "OFF" and cool down engine.
- Perform the following steps before engine coolant temperature is above 90°C (194°F).
- Turn ignition switch "ON".

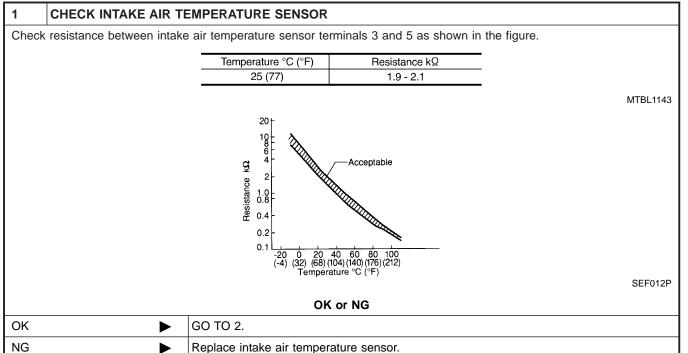
DTC P0127 IAT SENSOR

DTC Confirmation Procedure (Cont'd)

- B) Select "DATA MONITOR" mode with CONSULT-II.
- Start engine.
- 5) Hold vehicle speed at more than 70 km/h (43 MPH) for 100 consecutive seconds.
- 6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-211.

GI •

MA


WITH GST

Follow the procedure "With CONSULT-II" above.

HEC0770S04

Diagnostic Procedure

NHEC077

_ ST

AT

AX

SU

2 CHECK INTERMITTENT INCIDENT

• Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.

• Refer to wiring diagram, EC-199.

► INSPECTION END

BT

HA

SC

EL

On Board Diagnosis Logic

IHEC128

Engine coolant temperature has not risen enough to open the thermostat even though the engine has run long enough.

This is due to a leak in the seal or the thermostat open stuck.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0128 0128	Thermostat function	The engine coolant temperature does not reach to specified temperature even though the engine has run long enough.	

DTC Confirmation Procedure

NHEC1291

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- For best results, perform at ambient temperature of -10°C (14°F) or higher.
- For best results, perform at engine coolant temperature of -10°C (14°F) to 60°C (140°F).

(P) WITH CONSULT-II

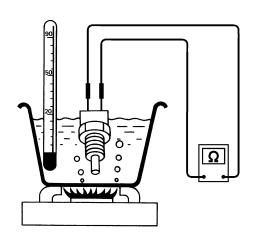
VHEC1291S0

- Replace thermostat with new one. Refer to LC-19, "Thermostat". Use only a genuine NISSAN thermostat as a replacement. If an incorrect thermostat is used, the MIL may come on.
- 2) Turn ignition switch "ON".
- 3) Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- 4) Check that the "COOLAN TEMP/S" is above 60°C (140°F). If it is below 60°C (140°F), go to following step. If it is above 60°C (140°F), stop engine and cool down the engine to less than 60°C (140°F), then retry from step 1.
- Drive vehicle for 10 consecutive minutes under the following conditions.

VHCL SPEED SE	80 - 120 km/h (50 - 75 MPH)
---------------	-----------------------------

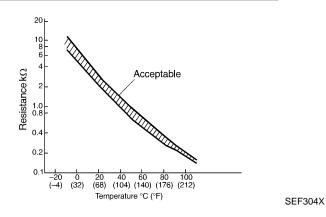
If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-213.

WITH GST


NHEC1291S02

1) Follow the prodedure "WITH CONSULT-II" above.

Diagnostic Procedure


CHECK ENGINE COOLANT TEMPERATURE SENSOR

- 1. Turn ignition switch OFF.
- 2. Remove engine coolant temperature sensor.
- 3. Check resistance between engine coolant temperature sensor terminals under the following conditions.

<Reference data>

	Temperature °C (°F)	Resistance k Ω
	20 (68)	2.1 - 2.9
•	50 (122)	0.68 - 1.00
	90 (194)	0.236 - 0.260

OK or NG

OK J		INSPECTION END
NG		Replace engine coolant temperature sensor.

GI

NHEC1292

MA

EM

LG

EC

FE

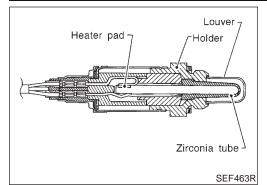
AT

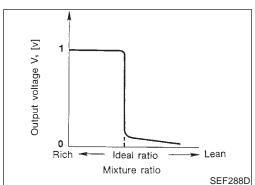
 $\mathbb{A}\mathbb{X}$

SU

BR

ST


RS


BT

HA

SC

EL

Component Description

The heated oxygen sensor 1 is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

·			
MONITOR ITEM	CONE	DITION	SPECIFICATION
HO2S1 (B1) HO2S1 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

On Board Diagnosis Logic

To judge the malfunction, the diagnosis checks that the heated oxygen sensor 1 output is not inordinately high.

DTC P0132, P0152 HO2S1

On Board Diagnosis Logic (Cont'd)

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	
P0132 0132 (Bank 1) P0152 0152 (Bank 2)	Heated oxygen sensor 1 circuit high voltage	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 1 	G M

MA

EM

LC

EC

FE

AT

AX

SU

5 DATA	MONITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm
COOLANTEM	IP/S XXX °C

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

1) Start engine and warm it up to normal operating temperature.

- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Turn ignition switch "ON".
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- Restart engine and let it idle for 25 seconds.
- 6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-218.

WITH GST

- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 10 seconds.

- Restart engine and let it idle for 25 seconds.
- 4) Turn ignition switch "OFF" and wait at least 10 seconds.
- 5) Restart engine and let it idle for 25 seconds.
- Select "MODE 3" with GST. 6)
- If DTC is detected, go to "Diagnostic Procedure", EC-218.

ST

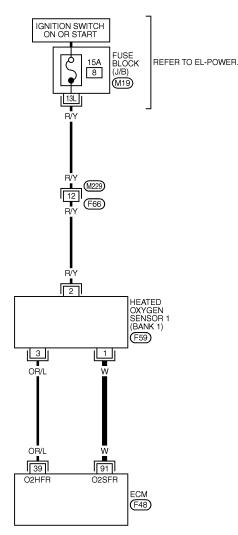
When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

HA

SC

EL

BANK 1


Wiring Diagram

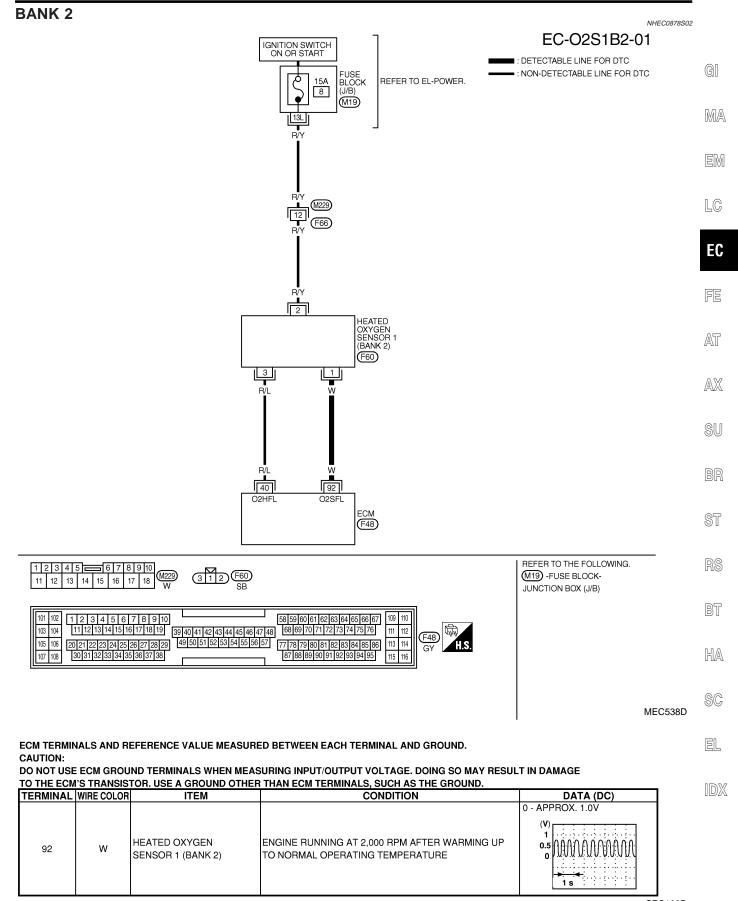
NHEC0878

NHEC0878S01 EC-O2S1B1-01

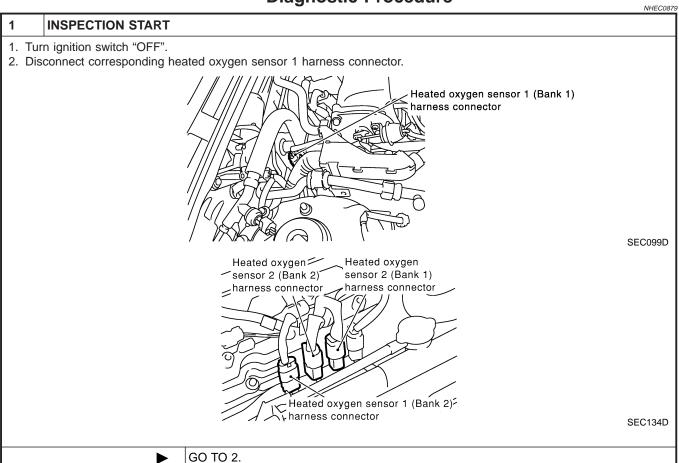
■ : DETECTABLE LINE FOR DTC

- : NON-DETECTABLE LINE FOR DTC

MEC537D


ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:

DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE


TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS. SUCH AS THE GROUND.

_	IO THE ECM	S I RANSIS	IOR. USE A GROUND OTHER	THAN ECM TERMINALS, SUCH AS THE GROUND.	
	TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
	91	w i	HEATED OXYGEN	ENGINE RUNNING AT 2,000 RPM AFTER WARMING UP TO NORMAL OPERATING TEMPERATURE	0 - APPROX. 1.0V (V) 1 0.5 0 1 s

SEC107D

Diagnostic Procedure

2 RETIGHTEN HEATED OXYGEN SENSOR 1 Loosen and retighten corresponding heated oxygen sensor 1. Tightening torque: 40 - 60 N·m (4.1 - 6.1 kg-m, 30 - 44 ft-lb) GO TO 3.

3 CHECK HO2S1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
DIC	ECM	Sensor	Dalik
P0132	91	1	Bank 1
P0152	92	1	Bank 2

MTBL1144

Continuity should exist.

3. Check harness continuity between ECM terminal or HO2S1 terminal and ground as follows. Refer to Wiring Diagram.

DTC	Term	Bank		
ыс	ECM or Sensor	Ground	Dalik	
P0132	91 or 1	Ground	Bank 1	
P0152	92 or 1	Ground	Bank 2	

MTBL1145

Continuity should not exist.

4. Also check harness for short to power.

OK or NG

OK ►	GO TO 4.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

CHECK HO2S1 CONNECTOR FOR WATER
Disconnect heated oxygen sensor 1 harness connector.

2. Check connectors for water.

Water should not exist.

OK or NG

	NG	•	Repair or replace harness or connectors.
	OK (Without CONSULT-II)	•	GO TO 6.
ı	OK (With CONSULT-II)		GO TO 5.

G

MA

FC.

LC

AT

AX

SU

RR

@T

RS

BT

HA

SC

EL

(I) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

DATA MONITOR			
MONITOR	NO DTC		
ENG SPEED COOLAN TEMP/S HO2S1 (B1) HO2S2 (B2)	XXX rpm XXX °C XXX V XXX V		

SEF967Y

- 6. Check the following.
- "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown left:

Bank 1

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

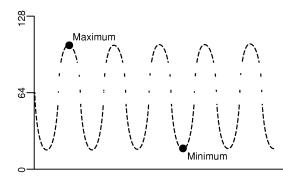
Bank 2

cycle | 1 | 2 | 3 | 4 | 5 |

HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R

R means HO2S1

MNTR (B1)/(B2) indicates RICH


L means HO2S1

MNTR (B1)/(B2) indicates LEAN

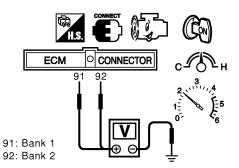
SEF647Y

- "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Trigger	ENG	HO2S1
	SPEED	(B1)
	rpm	٧
XXX	XXX	XXX

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK		GO TO 7.
NG	▼	Replace malfunctioning heated oxygen sensor 1.

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 91 (HO2S1 bank 1 signal) or 92 (HO2S1 bank 2 signal) and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

1 time:
$$0 - 0.3V \longrightarrow 0.6 - 1.0V \longrightarrow 0 - 0.3V$$

2 times: $0 - 0.3V \longrightarrow 0.6 - 1.0V \longrightarrow 0 - 0.3V \longrightarrow 0.6 - 1.0V \longrightarrow 0 - 0.3V$

SEC109D

GI

MA

LC

EC

AT

AX

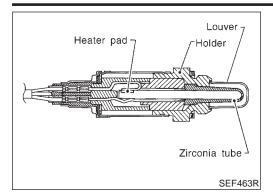
SU

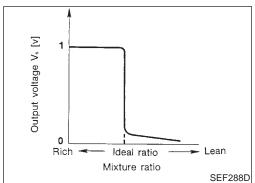
CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK D		GO TO 7.
NG	•	Replace malfunctioning heated oxygen sensor 1.


7	CHECK INTERMITTENT	T INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	•	INSPECTION END	


HA

SC

EL

EC-221

Component Description

The heated oxygen sensor 1 is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

·			
MONITOR ITEM	CONE	DITION	SPECIFICATION
HO2S1 (B1) HO2S1 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

On Board Diagnosis Logic

To judge the malfunction of heated oxygen sensor 1, this diagnosis measures response time of heated oxygen sensor 1 signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and heated oxygen sensor 1 temperature index. Judgment is based on whether the compensated time [heated oxygen sensor 1 cycling time index] is inordinately long or not.

DTC P0133, P0153 HO2S1

On Board Diagnosis Logic (Cont'd)

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	
P0133 0133 (Bank 1) P0153 0153 (Bank 2)	Heated oxygen sensor 1 circuit slow response	The response of the voltage signal from the sensor takes more than the specified time.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 1 Heated oxygen sensor 1 heater Fuel pressure Injectors 	 G[M.
			Intake air leaks Exhaust gas leaks PCV valve Mass air flow sensor	E1

EC

FE

AT

DTC Confirmation Procedure

NHECO884

CAUTION:

SU

Always drive vehicle at a safe speed.

RR

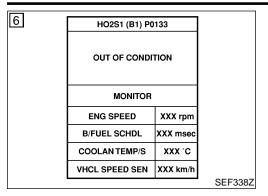
NOTE:

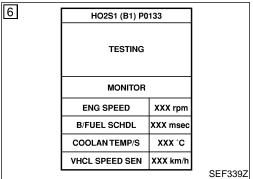
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

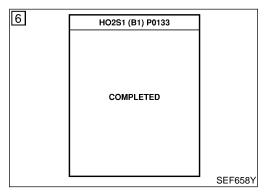
ST

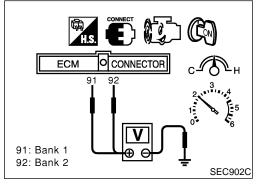
TESTING CONDITION:

- Always perform at a temperature above -10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.


RS


BT


HA


SC

EL

(P) WITH CONSULT-II

NHEC0884S01

- 1) Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 5 seconds.
- Turn ignition switch "ON" and select "HO2S1 (B1)/(B2) P0133/ P0153" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine and let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 5.

6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 40 to 50 seconds.)

ENG SPEED	1,200 - 3,100 rpm
Vehicle speed	More than 80 km/h (50 MPH)
B/FUEL SCHDL	2.5 - 12 msec
Selector lever	Suitable position

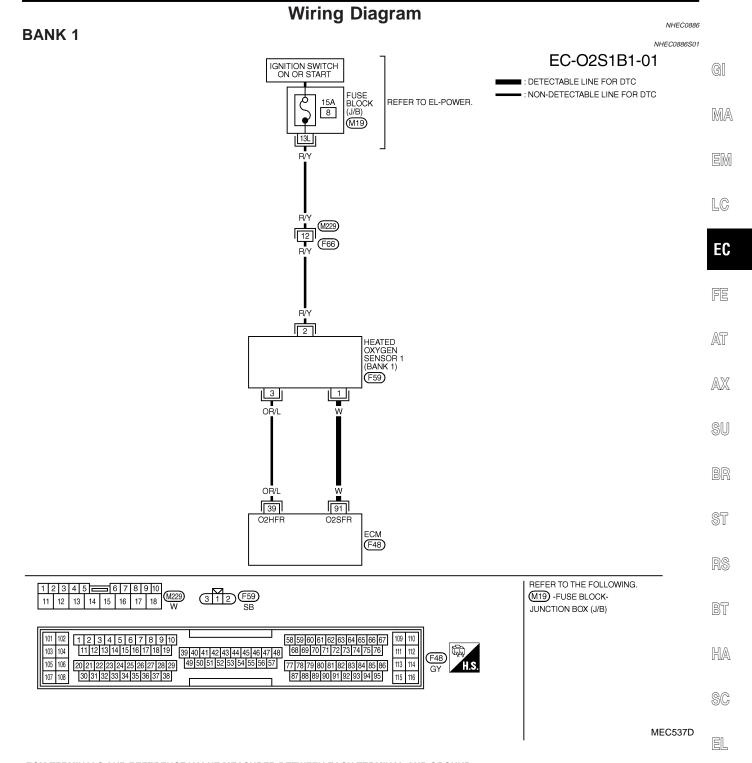
If "TESTING" is not displayed after 5 minutes, retry from step 2.

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-227.

Overall Function Check

NHEC088

Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a DTC might not be confirmed.

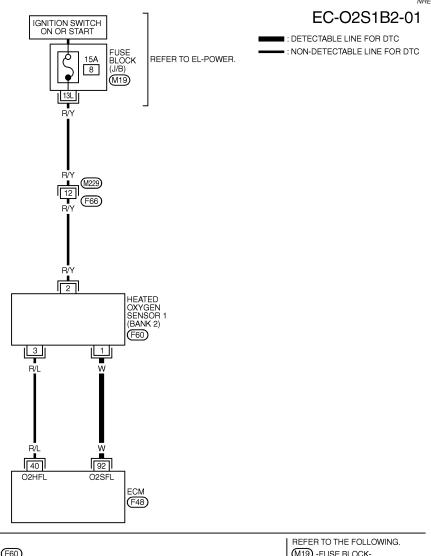

WITH GST

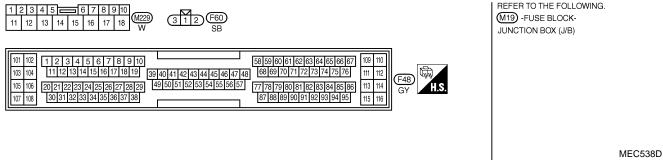
NHEC0885S01

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 91 (HO2S1 bank 1 signal) or 92 (HO2S1 bank 2 signal) and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.

1 time: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V 2 times: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V

4) If NG, go to "Diagnostic Procedure", EC-227.

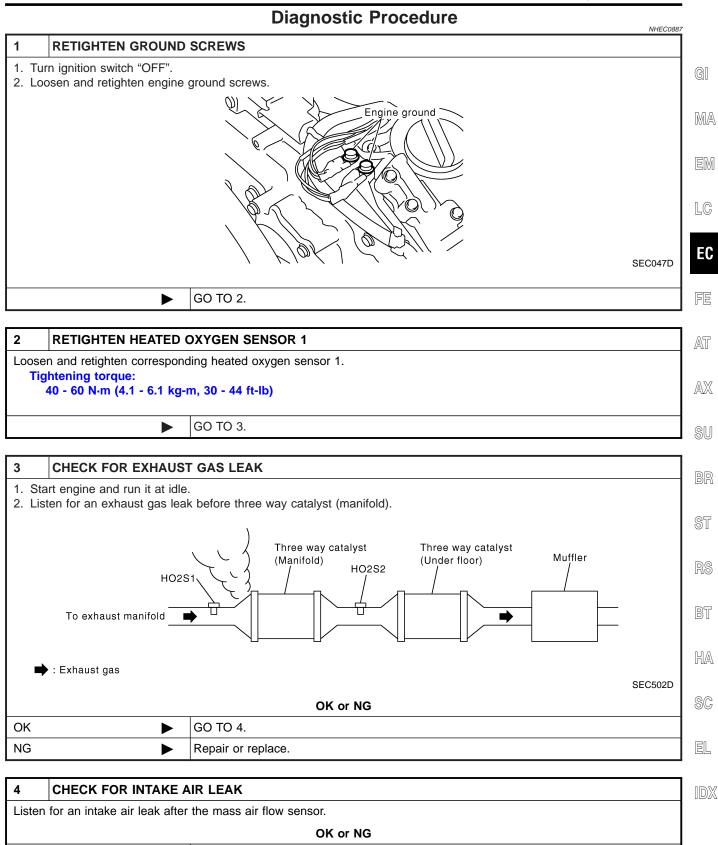

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:


DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE

TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
91	ı wı	HEATED OXYGEN	ENGINE RUNNING AT 2,000 RPM AFTER WARMING UP TO NORMAL OPERATING TEMPERATURE	0 - APPROX. 1.0V (V) 1 0.5 0 1 s

BANK 2


ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:

DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE

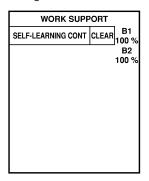
TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
92	1 1/1/	HEATED OXYGEN SENSOR 1 (BANK 2)	ENGINE RUNNING AT 2,000 RPM AFTER WARMING UP TO NORMAL OPERATING TEMPERATURE	0 - APPROX. 1.0V (V) 1 0.5 0 1 1 s

SEC108D

GO TO 5.

Repair or replace.


OK

NG

CLEAR THE SELF-LEARNING DATA

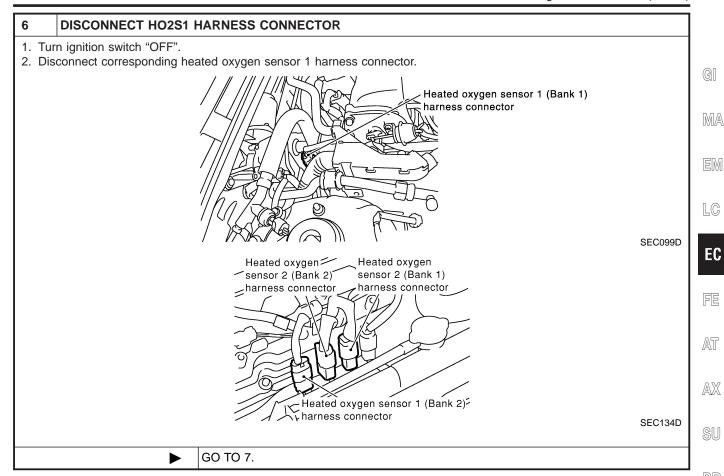
(I) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

SEF968Y

4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?


♥ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-89.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

Yes or No

Yes		Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to EC-261, EC-269.
No	>	GO TO 6.

CHECK HO2S1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
DIC	ECM	Sensor	Dalik
P0133	91	1	Bank 1
P0153	92	1	Bank 2

Continuity should exist.

3. Check harness continuity between ECM terminal or HO2S1 terminal and ground as follows. Refer to Wiring Diagram.

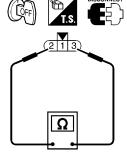
DTC	Term	Bank	
DIO	ECM or Sensor	Ground	Dank
P0133	91 or 1	Ground	Bank 1
P0153	92 or 1	Ground	Bank 2

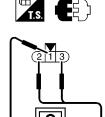
Continuity should not exist.

4. Also check harness for short to power.

OK	or	NG
----	----	----

OK	GO TO 8.
NG	Repair open circuit or short to ground or short to power in harness or connectors.


MTBL1146


MTBL1147

HA

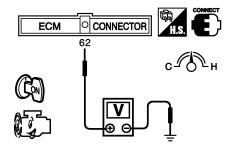
CHECK HEATED OXYGEN SENSOR 1 HEATER

Check resistance between HO2S1 terminals as follows.

Terminals	Resistance
2 and 3	2.3 - 4.3Ω at 25°C (77°F)
1 and 2 1 and 3	$\infty\Omega$ (Continuity should not exist.)

SEF310X

CAUTION:


Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK		GO TO 9.
NG	•	GO TO 13

9 CHECK MASS AIR FLOW SENSOR

- 1. Reconnect harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 62 (Mass air flow sensor signal) and ground.

Condition	Voltage V
Ignition switch "ON" (Engine stopped.)	Approx. 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.1 - 1.5
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.7 - 2.4
Idle to about 4,000 rpm*	1.1 - 1.5 to Approx. 4.0

^{*:} Check for linear voltage rise in response to engine being increased to about 4,000 rpm.

SEC103D

4. If the voltage is out of specification, disconnect mass air flow sensor harness connector and connect it again. Then repeat above check.

OK or NG

OK •	•	GO TO 10.
NG •	•	Replace mass air flow sensor.

10 **CHECK PCV VALVE** 1. Install all removed parts. 2. Start engine and let it idle. 3. Remove PCV valve from rocker cover. 4. Make sure that a hissing noise will be heard as air passes through it and a strong vacuum should be felt immediately when a finger is placed over valve inlet. SEC137A OK or NG OK (With CONSULT-II) GO TO 11. OK (Without CONSULT-GO TO 12. II) NG Replace PCV valve.

G[

MA

EM

LC

EC

FE

AT

AX

SU

BR

ST

RS

BT

HA

SC

EL

- (I) With CONSULT-II
- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

DATA MONITOR			
MONITOR	NO DTC		
ENG SPEED COOLANTEMP/S HO2S1 (B1) HO2S2 (B2)	XXX rpm XXX °C XXX V		

SEF967Y

- 6. Check the following.
- "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below.

Bank 1

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

Bank 2

cycle | 1 | 2 | 3 | 4 | 5 |

HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R

R means HO2S1

MNTR (B1)/(B2) indicates RICH

L means HO2S1

MNTR (B1)/(B2) indicates LEAN

SEF647Y

- "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

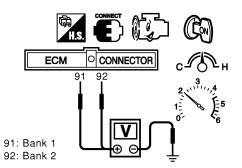
Trigger	ENG	HO2S1
	SPEED	(B1)
	rpm	V
XXX	XXX	XXX

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool
 J-43897-18 or J-43897-12 and approved anti-seize lubricant.


OK (or I	NG
------	------	----

OK ► GO TO 13.		GO TO 13.
NG		Replace malfunctioning heated oxygen sensor 1.

⊗ Without CONSULT-II

12

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 91 (HO2S1 bank 1 signal) or 92 (HO2S1 bank 2 signal) and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

1 time:
$$0 - 0.3V \longrightarrow 0.6 - 1.0V \longrightarrow 0 - 0.3V$$

2 times: $0 - 0.3V \longrightarrow 0.6 - 1.0V \longrightarrow 0 - 0.3V \longrightarrow 0.6 - 1.0V \longrightarrow 0 - 0.3V$

SEC109D

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 13.
NG	Replace malfunctioning heated oxygen sensor 1.

13	CHECK INTERMITTENT INCIDENT		
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	► INSPECTION END		

EC-233

GI

MA

LC

EC

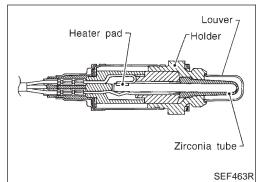
FE

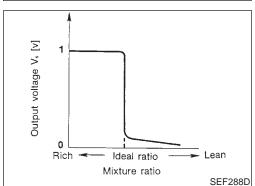
AT

AX

SU

95Z


50


HA

SC

EL

DX.

Component Description

The heated oxygen sensor 1 is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

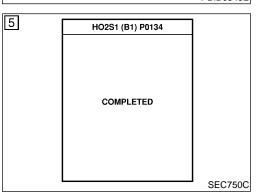
CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

·			
MONITOR ITEM	CONE	SPECIFICATION	
HO2S1 (B1) HO2S1 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

On Board Diagnosis Logic

Under the condition in which the heated oxygen sensor 1 signal is not input, the ECM circuits will read a continuous approximately 0.3V. Therefore, for this diagnosis, the time that output voltage is within 200 to 400 mV range is monitored, and the diagnosis checks that this time is not inordinately long.


DTC P0134, P0154 HO2S1

On Board Diagnosis Logic (Cont'd)

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	
P0134 0134 (Bank 1) P0154 0154 (Bank 2)	Heated oxygen sensor 1 circuit no activity detected	The voltage from the sensor is constantly approx. 0.3V.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 1 	GI MA

5			1
	HO2S1 (B1) PO		
	OUT OF COND		
	MONITOR		
	ENG SPEED		
	B/FUEL SCHDL	XXX msec	
	COOLAN TEMP/S		
	VHCL SPEED SEN		
			PBIB0544E

[5]			
[<u>5</u>]	HO2S1 (B1) P0	134	
	TESTING		
	MONITOR		
	ENG SPEED	XXX rpm	
	B/FUEL SCHDL	XXX msec	
	COOLAN TEMP/S	xxx .c	
	VHCL SPEED SEN	XXX km/h	
			PBIB0545E

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(A) WITH CONSULT-II

1) Start engine and warm it up to normal operating temperature.

Select "HO2S1 (B1)/(B2) P0134/P0154" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.

Touch "START".

4) Let it idle for at least 3 minutes.

NOTE:

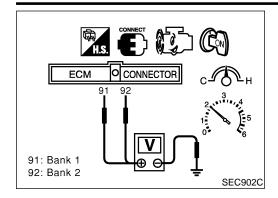
Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 4.

5) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 10 to 60 seconds.)

ENG SPEED	1,400 - 2,600 rpm
Vehicle speed	More than 70 km/h (43 MPH)
B/FUEL SCHDL	2 - 12 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-239.

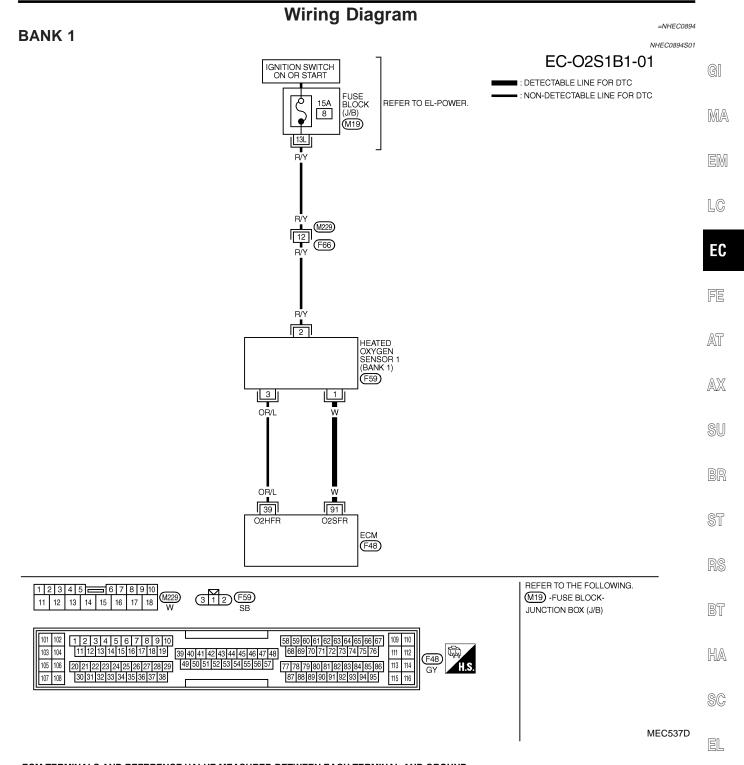

During this test, P1148 and P1168 may be stored in ECM.

LC

AX

RS

HA

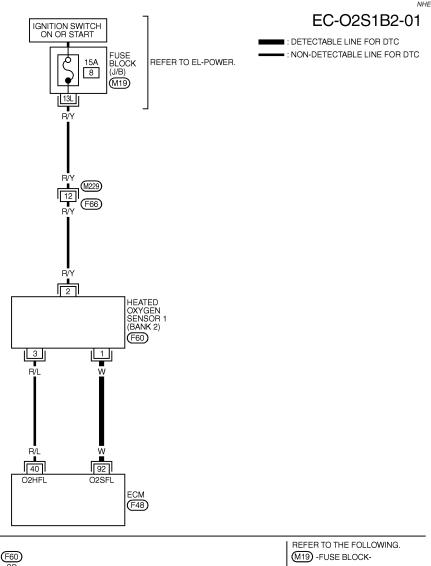


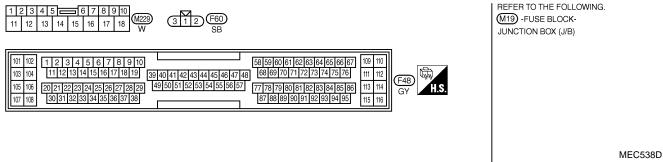
Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a DTC might not be confirmed.

WITH GST

- 1) Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 91 (HO2S1 bank 1 signal) or 92 (HO2S1 bank 2 signal) and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage does not remain in the range of 0.2 0.4V.
- 4) If NG, go to "Diagnostic Procedure", EC-239.


ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:


DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE

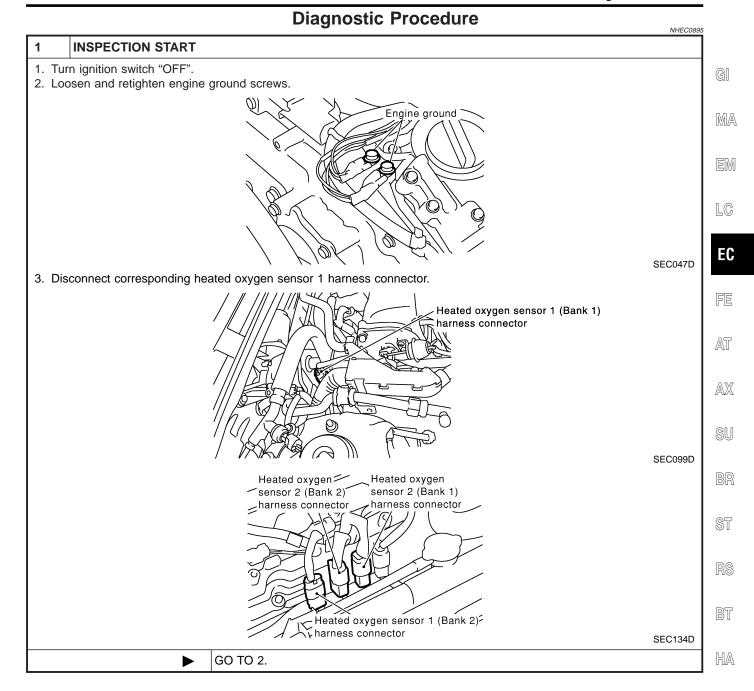
TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
91	ı wı	HEATED OXYGEN	ENGINE RUNNING AT 2,000 RPM AFTER WARMING UP TO NORMAL OPERATING TEMPERATURE	0 - APPROX. 1.0V (V) 1 0.5 0 1 s

BANK 2

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:

DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE


TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
92	ı w		ENGINE RUNNING AT 2,000 RPM AFTER WARMING UP TO NORMAL OPERATING TEMPERATURE	0 - APPROX. 1.0V (V) 1 0.5 0 11 1 s

SEC108D

SC

EL

2 CHECK HO2S1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
DIC	ECM	Sensor	Dank
P0134	91	1	Bank 1
P0154	92	1	Bank 2

MTBL1148

Continuity should exist.

3. Check harness continuity between ECM terminal or HO2S1 terminal and ground as follows. Refer to Wiring Diagram.

DTC	Term	Bank		
DIC	ECM or Sensor	Ground	Dank	
P0134	91 or 1	Ground	Bank 1	
P0154	92 or 1	Ground	Bank 2	

MTBL1149

Continuity should not exist.

4. Also check harness for short to power.

OK or NG

OK (With CONSULT-II)		GO TO 3.
OK (Without CONSULT-II)	•	GO TO 4.
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.

(I) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

DATA MONITOR			
MONITOR NO DT			
ENG SPEED COOLANTEMP/S HO2S1 (B1) HO2S2 (B2)	XXX rpm XXX °C XXX V		

SEF967Y

MA

LC

EC

AT

AX

HA

6. Check the following.

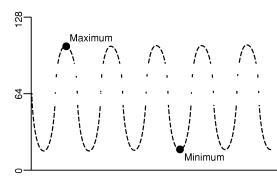
• "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below.

Bank 1

cycle | 1 | 2 | 3 | 4 | 5 |

HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

Bank 2


cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R

R means HO2S1 MNTR (B1)/(B2) indicates RICH L means HO2S1 MNTR (B1)/(B2) indicates LEAN

SEF647Y

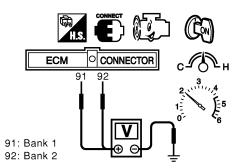
- "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Trigger	ENG	HO2S1
	SPEED	(B1)
	rpm	٧
XXX	XXX	XXX

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

CAUTION:


- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK	or	NG
----	----	----

OK •	GO TO 5.
NG	Replace malfunctioning heated oxygen sensor 1.

Without CONSULT-II

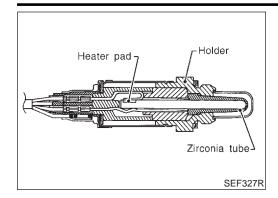
- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 91 (HO2S1 bank 1 signal) or 92 (HO2S1 bank 2 signal) and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

1 time:
$$0 - 0.3V \longrightarrow 0.6 - 1.0V \longrightarrow 0 - 0.3V$$

2 times: $0 - 0.3V \longrightarrow 0.6 - 1.0V \longrightarrow 0 - 0.3V \longrightarrow 0.6 - 1.0V \longrightarrow 0 - 0.3V$

SEC109D


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 5.
NG ►	Replace malfunctioning heated oxygen sensor 1.

5	CHECK INTERMITTENT INCIDENT				
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.				
	•	INSPECTION END			

Component Description

The heated oxygen sensor 2, after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

MA

EM

CONSULT-II Reference Value in Data Monitor Mode

The heated oxygen sensor 2 has a much longer switching time

between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen

sensor 2, ECM monitors whether the voltage is unusually high

during the various driving condition such as fuel-cut.

Specification data are reference values.

NG

SEF305UA

OK

MONITOR ITEM	COND	SPECIFICATION	
HO2S2 (B1) HO2S2 (B2)	Engine: After warming up After kenning angling angling		0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	I Detween 3 500 and 4 000 rnm I	Revving engine from idle up to 3,000 rpm quickly	LEAN ←→ RICH

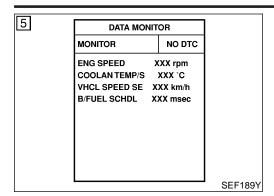
On Board Diagnosis Logic

NHEC0897

EC

LC

AT


AX

SU

HA

SC

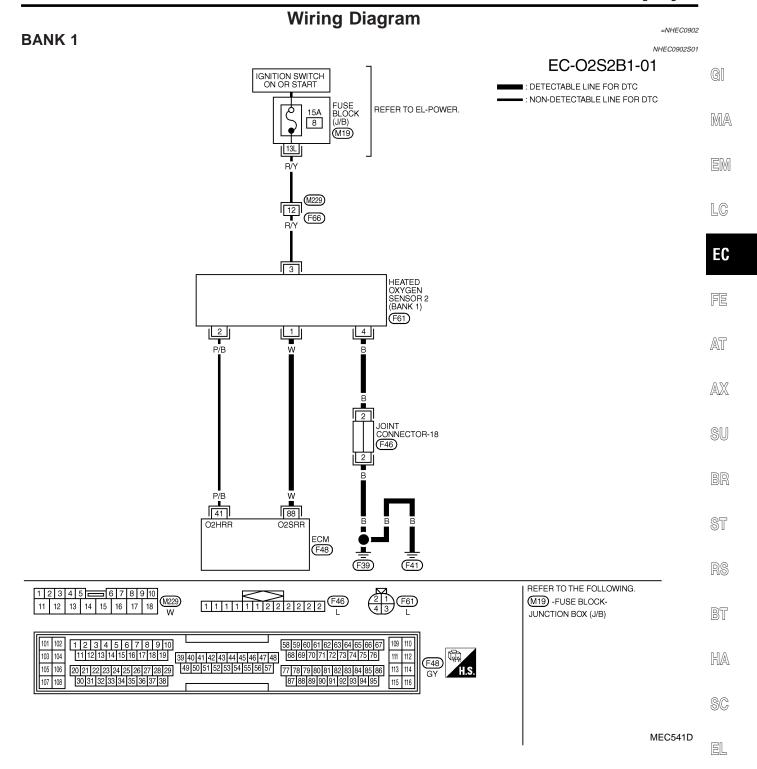
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0138 0138 (Bank 1) P0158 0158 (Bank 2)	Heated oxygen sensor 2 circuit high voltage	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2

DTC Confirmation Procedure

NHEC0900

CAUTION:

Always drive vehicle at a safe speed.

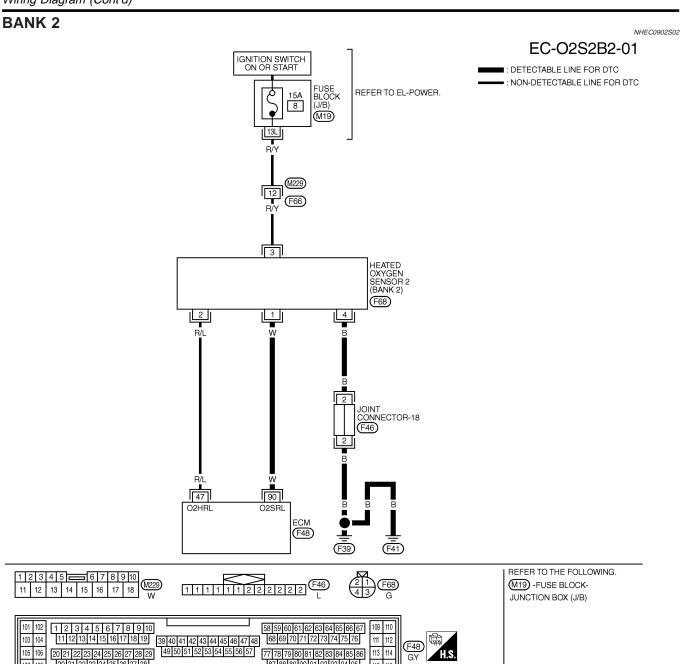

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(A) WITH CONSULT-II

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to the normal operating tempera-
- 3) Turn ignition switch "OFF" and wait at least 10 seconds.
- Start engine and keep engine speed between 3,500 and 4,000 rpm for at least one minute under no load.
- 5) Let engine idle for 1 minute.
- 6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-247.

WITH GST

- Start engine and warm it up to the normal operating tempera-
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least one minute under no load.
- Let engine idle for two minutes.
- Turn ignition switch "OFF" and wait at least 10 seconds.
- Start engine and keep engine speed between 3,500 and 4,000 rpm for at least one minute under no load.
- 7) Let engine idle for two minutes.
- Select "Mode 3" with GST.
- 9) If DTC is detected, go to EC-247, "Diagnostic Procedure".
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.


ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:

DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE

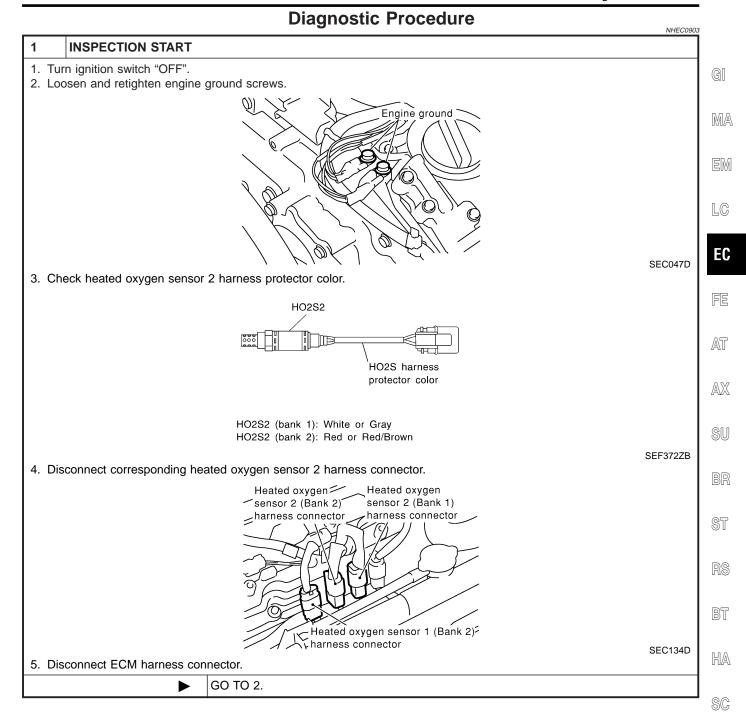
TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
88	W	HEATED OXYGEN SENSOR 2 (BANK 1)	[ENGINE IS RUNNING] • WARM-UP CONDITION • REVVING ENGINE FROM IDLE UP TO 3,000 RPM QUICKLY AFTER THE FOLLOWING CONDITIONS ARE MET. • AFTER KEEPING ENGINE SPEED BETWEEN 3,500 AND 4,000 RPM FOR ONE MINUTE AND AT IDLE FOR ONE MINUTE UNDER NO LOAD	0 - APPROX. 1.0V

SEC661D

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:

DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.


TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
90	W	HEATED OXYGEN SENSOR 2 (BANK 2)	[ENGINE IS RUNNING] • WARM-UP CONDITION • REVVING ENGINE FROM IDLE UP TO 3,000 RPM QUICKLY AFTER THE FOLLOWING CONDITIONS ARE MET. • AFTER KEEPING ENGINE SPEED BETWEEN 3,500 AND 4,000 RPM FOR ONE MINUTE AND AT IDLE FOR ONE MINUTE UNDER NO LOAD	0 - APPROX. 1.0V

SEC662D

MEC542D

EL

IDX

2 CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
ыо	ECM	Sensor	Dank
P0138	88	1	Bank 1
P0158	90	1	Bank 2

MTBL1150

Continuity should exist.

2. Check harness continuity between ECM terminal or HO2S2 terminal and ground as follows. Refer to Wiring Diagram.

DTC	Term	Bank		
DIC	ECM or Sensor	Ground	Dank	
P0138	88 or 1	Ground	Bank 1	
P0158	90 or 1	Ground	Bank 2	

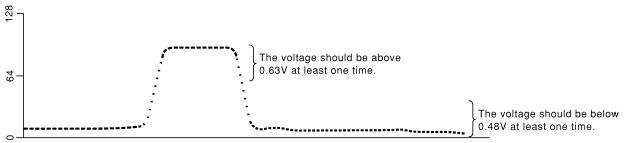
MTBL1151

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK		GO TO 3.
NG		Repair open circuit or short to ground or short to power in harness or connectors.


4	DETECT MALFUNCTIONING PART			
	Check the following. • Joint connector-18			
	Harness for open and short between HO2S2 and engine ground			
	•	Repair open circuit or short to power in harness or connectors.		

5	CHECK HO2S2 (CHECK HO2S2 CONNECTORS FOR WATER		
Check heated oxygen sensor connector 2 and harness connector for water. Water should not exist.				
			OK or NG	
OK (With CONSULT-II)		GO TO 6.	
OK (\	Without CONSULT-	•	GO TO 7.	
NG			Repair or replace harness or connectors.	

(P) With CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch "ON" and wait at least 10 seconds.
- 3. Start engine and keep engine speed between 3,500 and 4,000 rpm for at least one minute under no load.
- 4. Let engine idle for one minute.
- 5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-II.
- 6. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

(Reference data)

SEF066YA

GI

MA

LC

AT

AX

SW

BT

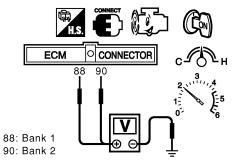
HA

SC

"HO2S2 (B1)/(B2)" should be above 0.63V at least once when the "FUEL INJECTION" is +25%.

"HO2S2 (B1)/(B2)" should be below 0.48V at least once when the "FUEL INJECTION" is -25%. CAUTION:

Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.


OK or NG

OK ►	GO TO 10.
NG ►	GO TO 9.

7 CHECK HEATED OXYGEN SENSOR 2-I

Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch "ON" and wait at least 10 seconds.
- 3. Start engine and keep engine speed between 3,500 and 4,000 rpm for at least one minute under no load.
- 4. Let engine idle for one minute.
- 5. Set voltmeter probes between ECM terminal 88 (HO2S2 bank 1 signal) or 90 (HO2S2 bank 2 signal) and engine ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times. (Depress and release accelerator pedal as soon as possible.)

The voltage should be above 0.63V at least once during this procedure.

SEC114D

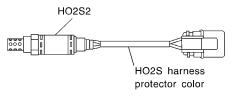
OK or NG

OK •	GO TO 10.
NG ►	GO TO 8.

Idle vehicle for 10 minutes, then check voltage between the same terminals as in Test No. 7; or check voltage when coasting from 80 km/h (50 MPH) in "D" position with "OD" OFF.

The voltage should go below 0.48V at least once during this procedure.

CAUTION:


Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

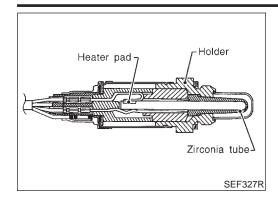
OK	GO TO 10.
NG	GO TO 9.

9 REPLACE HEATED OXYGEN SENSOR 2

- 1. Stop vehicle and turn ignition switch "OFF".
- 2. Check heated oxygen sensor 2 harness protector color.

HO2S2 (bank 1): White or Gray HO2S2 (bank 2): Red or Red/Brown

CAUTION:


Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

SEF372ZB

Replace malfunctioning heated oxygen sensor 2.

10 CHECK INTERMITTENT INCIDENT Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.

INSPECTION END

Component Description

The heated oxygen sensor 2, after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

MA

LC

EC

AT

AX

CONSULT-II Reference Value in Data Monitor Mode

NHEC0905

The heated oxygen sensor 2 has a much longer switching time

between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the switching response of the sensor's voltage is faster than specified during the various driving

Specification data are reference values.

OK

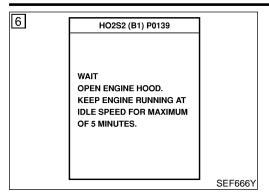
NG

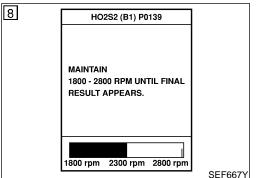
SEF302U

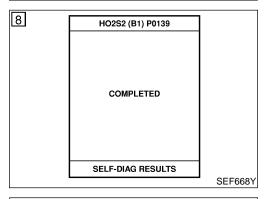
				4
MONITOR ITEM	CONDITION		SPECIFICATION	
	Engine: After warming up After keeping engine speed		0 - 0.3V ←→ Approx. 0.6 - 1.0V	
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	hetween 3 500 and 4 000 rnm	Revving engine from idle up to 3,000 rpm quickly	LEAN ←→ RICH	-

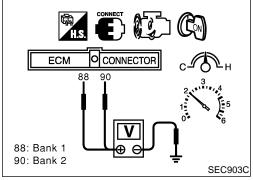
On Board Diagnosis Logic

SC


3	
5	






DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0139 0139 (Bank 1) P0159 0159 (Bank 2)	Heated oxygen sensor 2 circuit slow response	It takes more time for the sensor to respond between rich and lean than the specified time.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 Fuel pressure Injectors Intake air leaks

condition such as fuel-cut.

DTC Confirmation Procedure

NHEC0908

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Open engine hood before conducting following procedure.

(P) WITH CONSULT-II

NHEC0908S01

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Start engine and keep engine speed between 3,500 and 4,000 rpm for at least one minute under no load.
- Let engine idle for one minute.
- 5) Select "HO2S2 (B1)/(B2) P0139/P0159" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 6) Start engine and follow the instruction of CONSULT-II.
- 7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If NG is displayed, refer to "Diagnostic Procedure", EC-256. If "CANNOT BE DIAGNOSED" is displayed, perform the following.
- Stop engine and cool down until "COOLAN TEMP/S" indicates less than 70°C (158°F).
- b) Turn ignition switch "ON".
- c) Select "DATA MONITOR" mode with CONSULT-II.
- d) Start engine.
- e) Return to step 6 again when the "COOLAN TEMP/S" reaches to 70°C (158°F).

Overall Function Check

NHEC090

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a DTC might not be confirmed.

WITH GST

NHEC0909S01

- Start engine and warm it up to the normal operating temperature
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Start engine and keep engine speed between 3,500 and 4,000 rpm for at least one minute under no load.
- 4) Let engine idle for two minutes.
- 5) Set voltmeter probes between ECM terminal 88 (HO2S2 bank 1 signal) or 90 (HO2S2 bank 2 signal) and engine ground.
- 6) Check the voltage when racing up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) A change of voltage should be at more than 0.06V for 1 second during this procedure.
 - If the voltage can be confirmed in step 4, step 5 is not necessary.
- Keep vehicle at idling for 10 minutes, then check the voltage.
 Or check the voltage when coasting from 80 km/h (50 MPH)

in "D" position with "OD" OFF.

The voltage should change at more than 0.06V for 1 second during this procedure.

8) If NG, go to "Diagnostic Procedure", EC-256.

G[

MA

EM

LC

EC

FE

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

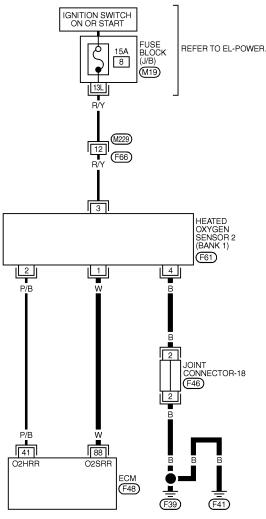
BT

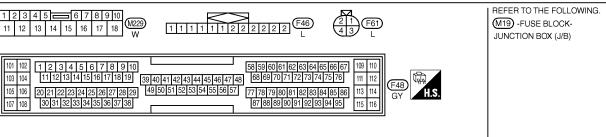
HA

SC

EL

BANK 1

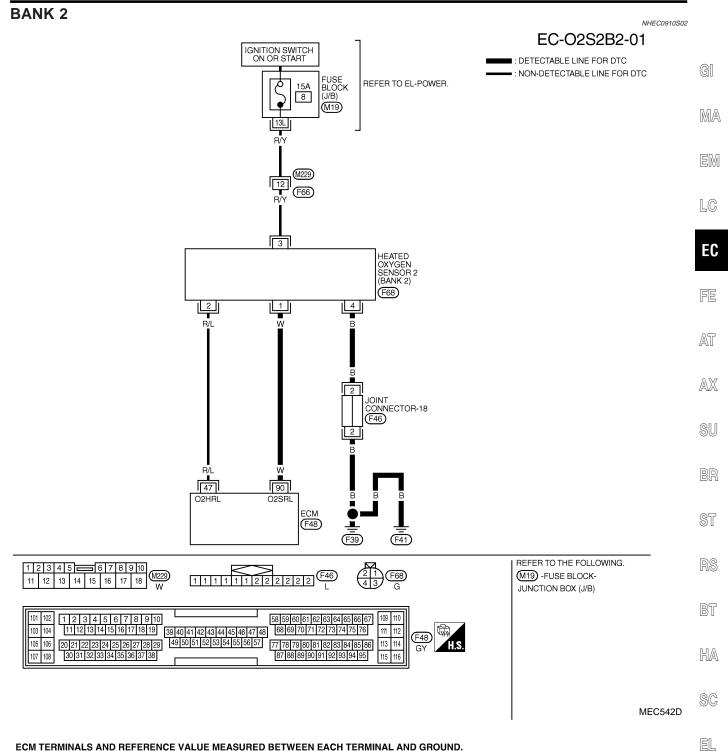

Wiring Diagram


=NHEC0910

NHEC0910S01

EC-O2S2B1-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC


MEC541D

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:

DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

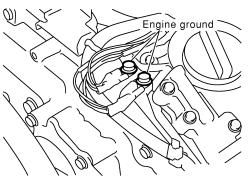
	TO THE EDING THANGETON, DEE A GHOOND OTHER THAN EDIN TERMINALO, DOOT AC THE GHOOND.				
TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)	
88	W	HEATED OXYGEN SENSOR 2 (BANK 1)	[ENGINE IS RUNNING] • WARM-UP CONDITION • REVVING ENGINE FROM IDLE UP TO 3,000 RPM QUICKLY AFTER THE FOLLOWING CONDITIONS ARE MET. • AFTER KEEPING ENGINE SPEED BETWEEN 3,500 AND 4,000 RPM FOR ONE MINUTE AND AT IDLE FOR ONE MINUTE UNDER NO LOAD	0 - APPROX. 1.0V	

SEC661D

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:

DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
90	W	HEATED OXYGEN SENSOR 2 (BANK 2)	[ENGINE IS RUNNING] • WARM-UP CONDITION • REVVING ENGINE FROM IDLE UP TO 3,000 RPM QUICKLY AFTER THE FOLLOWING CONDITIONS ARE MET. • AFTER KEEPING ENGINE SPEED BETWEEN 3,500 AND 4,000 RPM FOR ONE MINUTE AND AT IDLE FOR ONE MINUTE UNDER NO LOAD	0 - APPROX. 1.0V

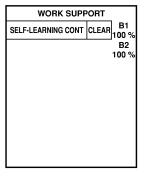

SEC662D

Diagnostic Procedure

NHEC0911

1 RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.


SEC047D

■ GO TO 2.

2 CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

SEF968Y

4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC No. P0102 is displayed.
- Erase the 1st trip DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-89.
- 7. Make sure DTC No. P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

Yes or No

Yes	Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to EC-261, 269.
No	GO TO 3.

DTC P0139, P0159 HO2S2 Diagnostic Procedure (Cont'd) CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch "OFF". 2. Check heated oxygen sensor 2 harness protector color. HO2S2 MA HO2S harness protector color HO2S2 (bank 1): White or Gray LC HO2S2 (bank 2): Red or Red/Brown SEF372ZB 3. Disconnect corresponding heated oxygen sensor 2 harness connector. Heated oxygen Heated oxygen sensor 2 (Bank 2) sensor 2 (Bank 1) harness connector harness connector AT Heated oxygen sensor 1 (Bank 2)harness connector SEC134D

4. Disconnect ECM harness connector.

5. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
DIC	ECM	Sensor	Dank
P0139	88	1	Bank 1
P0159	90	1	Bank 2

Continuity should exist.

6. Check harness continuity between ECM terminal or HO2S2 terminal and ground as follows. Refer to Wiring Diagram.

DTC	Term	Bank		
DIC	ECM or Sensor	Ground	Dank	
P0139	88 or 1	Ground	Bank 1	
P0159	90 or 1	Ground	Bank 2	

MTBL1153

MTBL1152

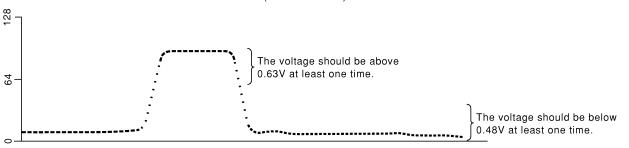
Continuity should not exist.

7. Also check harness for short to power.

OK	or	NG
----	----	----

OK •	GO TO 4.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.

AX


HA

4 CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT 1. Check harness continuity between HO2S2 terminal 4 and engine ground. Refer to Wiring Diagram. Continuity should exist. 2. Also check harness for short to power. OK or NG OK (With CONSULT-II) GO TO 6. OK (Without CONSULT- GO TO 7. II) NG GO TO 5.

5	DETECT MALFUNCTIONING PART	
Check the following.		
Joint connector-18		
Harness for open and short between HO2S2 and engine ground		
	•	Repair open circuit or short to power in harness or connectors.

Repair open circuit or short to power in harness or connectors. 6 CHECK HEATED OXYGEN SENSOR 2 © With CONSULT-II 1. Start engine and warm it up to the normal operating temperature. 2. Turn ignition switch "ON" and wait at least 10 seconds. 3. Start engine and keep engine speed between 3,500 and 4,000 rpm for at least one minute under no load. 4. Let engine idle for one minute. 5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-

II.
6. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

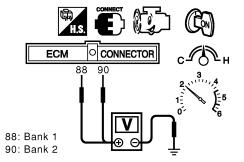
(Reference data)

SEF066YA

"HO2S2 (B1)/(B2)" should be above 0.63V at least once when the "FUEL INJECTION" is +25%.

"HO2S2 (B1)/(B2)" should be below 0.48V at least once when the "FUEL INJECTION" is −25%. CAUTION:

Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.


OK or NG

OK •	GO TO 10.
NG •	GO TO 9.

CHECK HEATED OXYGEN SENSOR 2-I

Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch "ON" and wait at least 10 seconds.
- 3. Start engine and keep engine speed between 3,500 and 4,000 rpm for at least one minute under no load.
- 4. Let engine idle for one minute.
- Set voltmeter probes between ECM terminal 88 (HO2S2 bank 1 signal) or 90 (HO2S2 bank 2 signal) and engine ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times. (Depress and release accelerator pedal as soon as possible.)

The voltage should be above 0.63V at least once during this procedure.

SEC114D

OK or NG

OK •	GO TO 10.
NG ►	GO TO 8.

8 CHECK HEATED OXYGEN SENSOR 2-II

Idle vehicle for 10 minutes, then check voltage between the same terminals as in Test No. 7; or check voltage when coasting from 80 km/h (50 MPH) in "D" position with "OD" OFF.

The voltage should go below 0.48V at least once during this procedure.

CAUTION:

Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG
----	----	----

OK •	GO TO 10.
NG ►	GO TO 9.

MA

GI

SUVU

EC

LC

. . .

 $\mathbb{A}\mathbb{X}$

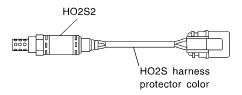
SU

01

RS

D-2

HA


SC

F

D.X.

REPLACE HEATED OXYGEN SENSOR 2

- 1. Stop vehicle and turn ignition switch "OFF".
- 2. Check heated oxygen sensor 2 harness protector color.

HO2S2 (bank 1): White or Gray HO2S2 (bank 2): Red or Red/Brown

SEF372ZB

CAUTION:

Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Replace malfunctioning heated oxygen sensor 2.

10 CHECK INTERMITTENT INCIDENT

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.

► INSPECTION END

On Board Diagnosis Logic

On Board Diagnosis Logic

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensors 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios. In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the ECM judges the condition as the fuel injection system malfunction and light up the MIL (2 trip detection logic).

MA

	П
	λl

Sensor	Input Signal to ECM	ECM func- tion	Actuator
		Fuel injec- tion control	Injectors

LC	

EC

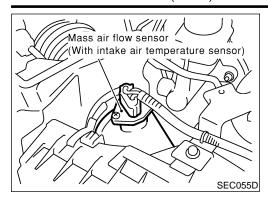
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	FE
P0171 0171 (Bank 1) P0174 0174 (Bank 2)	Fuel injection system too lean	Fuel injection system does not operate Properly, the amount of mixture ratio compensation is too large. (The mixture ratio is too lean.)	 Intake air leaks Heated oxygen sensor 1 Injectors Exhaust gas leaks Incorrect fuel pressure Lack of fuel Mass air flow sensor 	AT AX

4 WORK SUPPORT SELF-LEARNING CONT CLEAR 100 9 100 % SEF968Y

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

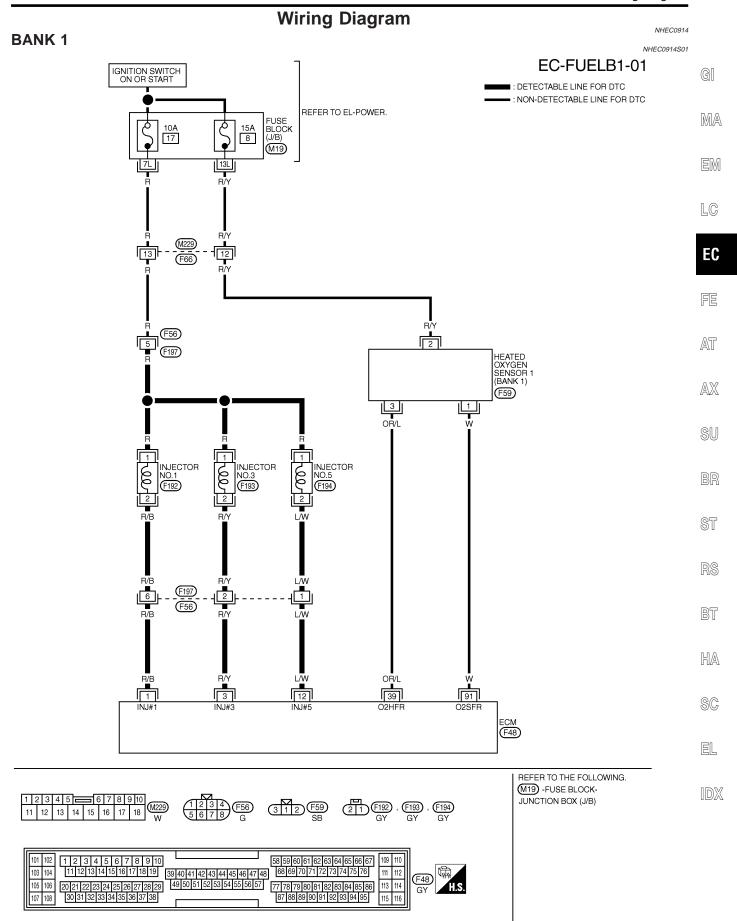

BT

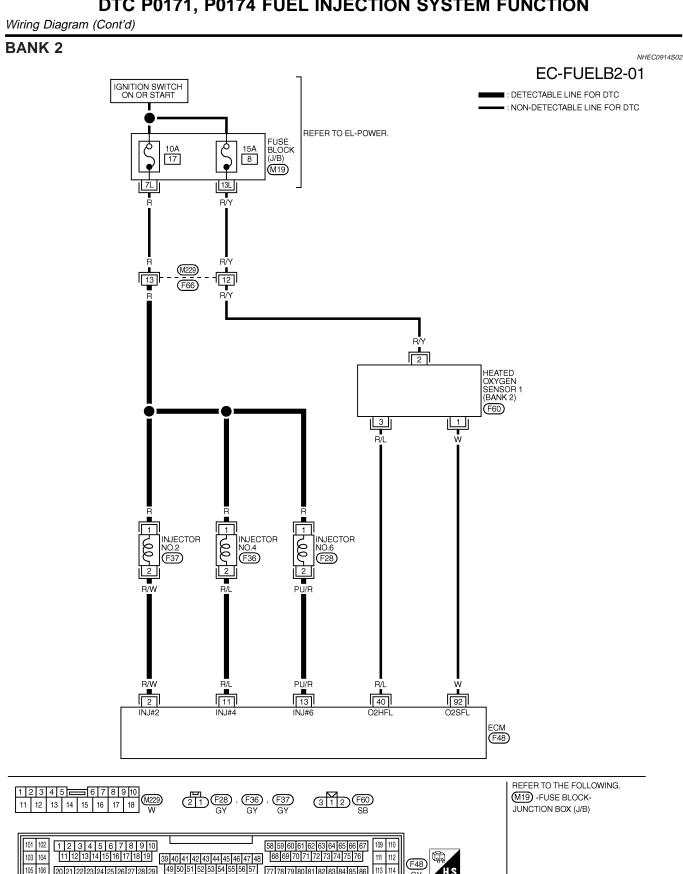
HA

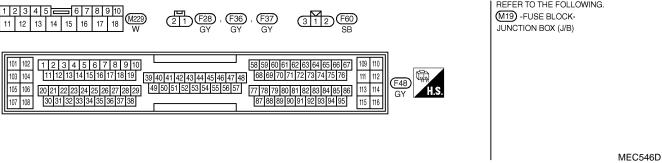
(A) WITH CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON" and select "SELF-LEARN CON-TROL" in "WORK SUPPORT" mode with CONSULT-II.
- 4) Clear the self-learning control coefficient by touching "CLEAR".
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0171 or P0174 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-265.
- 7) If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
- Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-265. If engine does not start, check exhaust and intake air leak visually.

DTC Confirmation Procedure (Cont'd)

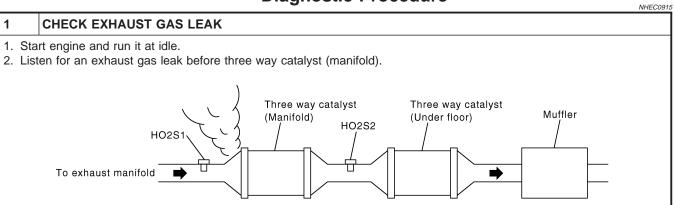



WITH GST


NHEC0913S02

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5) Select "MODE 7" with GST. Make sure DTC P0102 is detected.
- 6) Select "MODE 4" with GST and erase the DTC P0102.
- 7) Start engine again and let it idle for at least 10 minutes.
- Select "MODE 7" with GST. The 1st trip DTC P0171 or P0174 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-265.
- 9) If it is difficult to start engine at step 7, the fuel injection system has a malfunction.
- 10) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-265. If engine does not start, check exhaust and intake air leak visually.

MEC545D



Diagnostic Procedure

Diagnostic Procedure

: Exhaust gas

SEC502D

	OK 01 NG	
OK •	GO TO 2.	
NG ►	Repair or replace.	

OK or NG

2 CHECK FOR INTAKE AIR LEAK Listen for an intake air leak after the mass air flow sensor. OK or NG OK Repair or replace.

CHECK HEATED OXYGEN SENSOR 1 CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect corresponding heated oxygen sensor 1 harness connector.
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
DIC	ECM	Sensor	Dank
P0171	91	1	Bank 1
P0174	92	1	Bank 2

MTBL1154

Continuity should exist.

5. Check harness continuity between ECM terminal or HO2S1 terminal and ground as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
	ECM or Sensor	Ground	Dank
P0171	91 or 1	Ground	Bank 1
P0174	92 or 1	Ground	Bank 2

MTBL1155

Continuity should not exist.

6. Also check harness for short to power.

OK (or NG
------	-------

OK		GO TO 4.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

EC-265

G

MA

EM

LC

EC

FE

AT

 $\mathbb{A}\mathbb{X}$

@II

3R

ST

RS

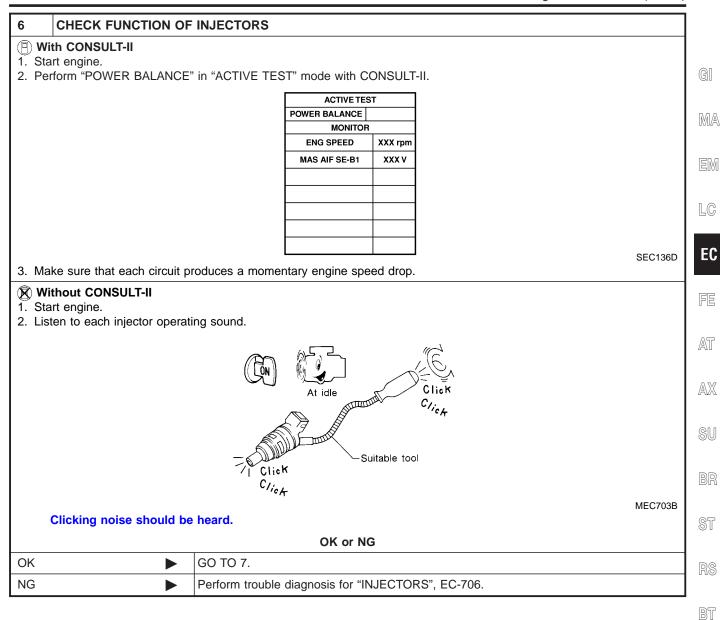
BT

HA

EL

Diagnostic Procedure (Cont'd)

4	CHECK FUEL PRESSURE		
2. Inst	 Release fuel pressure to zero. Refer to EC-56. Install fuel pressure gauge and check fuel pressure. Refer to EC-56. At idling: Approximately 350 kPa (3.7 kg/cm², 51 psi) 		
	OK or NG		
OK	>	GO TO 5.	
NG	>	Follow the construction of "Fuel Pressure Check", EC-56.	


5	CHECK MASS AIR FLOW SENSOR			
1. In 2. C	With CONSULT-II 1. Install all removed parts. 2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II. 2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm			
1. In 2. C	With GST 1. Install all removed parts. 2. Check mass air flow sensor signal in MODE 1 with GST. 2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm			
	OK or NG			
OK	•	GO TO 6.		
NG	>	Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-193.		

Diagnostic Procedure (Cont'd)

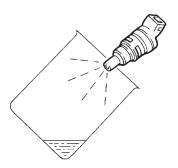
HA

SC

EL

EC-267

Diagnostic Procedure (Cont'd)


7 CHECK INJECTOR

- 1. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 2. Turn ignition switch "OFF".
- 3. Disconnect injector harness connectors on bank 2 (for DTC P0171), bank 1 (for DTC P0174).
- 4. Remove injector gallery assembly. Refer to EC-57.

Keep fuel hose and all injectors connected to injector gallery.

The injector harness connectors on bank 1 (for DTC P0171), bank 2 (for DTC P0174) should remain connected.

- 5. Disconnect all ignition coil harness connectors.
- 6. Prepare pans or saucers under each injector.
- 7. Crank engine for about 3 seconds. Make sure that fuel sprays out from injectors.

SEF595Q

Fuel should be sprayed evenly for each injector.

OK or NG

OK		GO TO 8.
NG	•	Replace injectors from which fuel does not spray out. Always replace O-ring with new ones.

8	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	INSPECTION END		

On Board Diagnosis Logic

On Board Diagnosis Logic

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensors 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios. In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the ECM judges the condition as the fuel injection system malfunction and light up the MIL (2 trip detection logic).

- ()	51	
	SIL	J

MA

EM

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Heated oxygen sensors 1		Fuel injection control	Injectors

LC

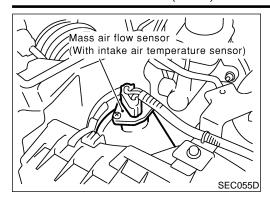
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	FE
P0172 0172 (Bank 1) P0175	Fuel injection system too rich	Fuel injection system does not operate properly, the amount of mixture ratio compensation is too large. (The mixture ratio is too rich.)	 Heated oxygen sensor 1 Injectors Exhaust gas leaks Incorrect fuel pressure 	AT
0175 (Bank 2)			Mass air flow sensor	$\mathbb{A}\mathbb{X}$

4 WORK SUPPORT SELF-LEARNING CONT CLEAR 100 9 100 %

DTC Confirmation Procedure

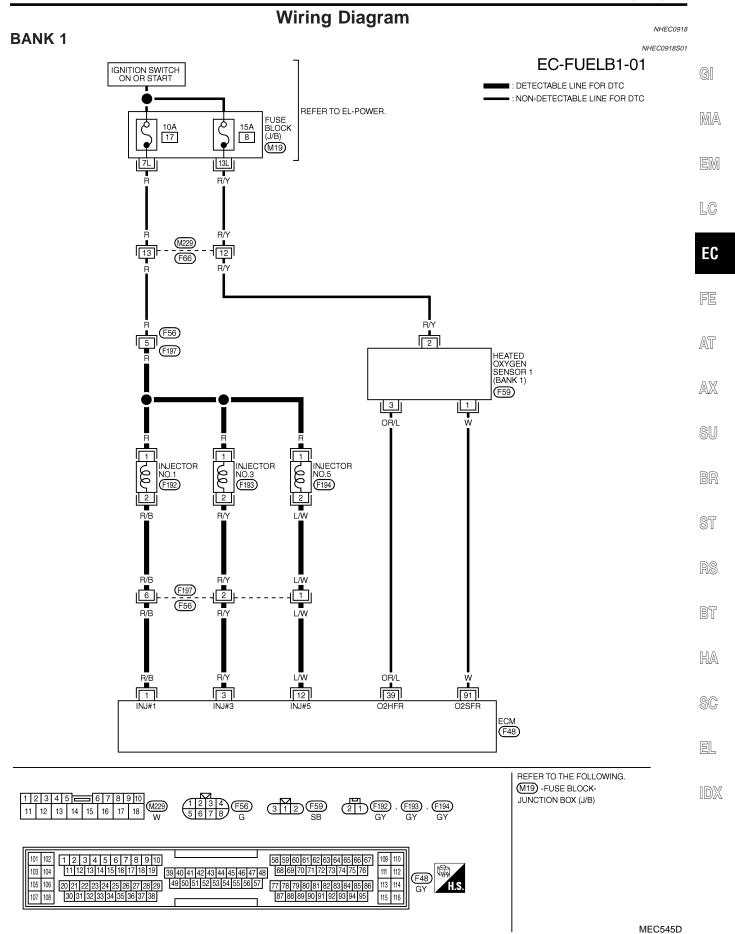
NOTE:

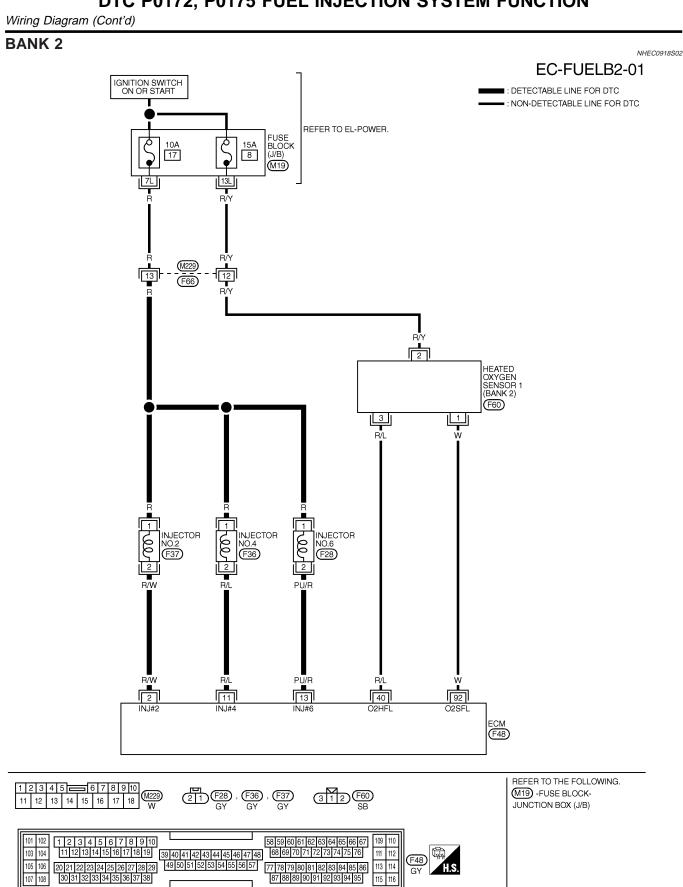
SEF968Y


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(A) WITH CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON" and select "SELF-LEARN CON-TROL" in "WORK SUPPORT" mode with CONSULT-II.
- 4) Clear the self-learning control coefficient by touching "CLEAR".
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0172, P0175 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-273.
- 7) If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
 - Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-273. If engine does not start, remove ignition plugs and check for fouling, etc.

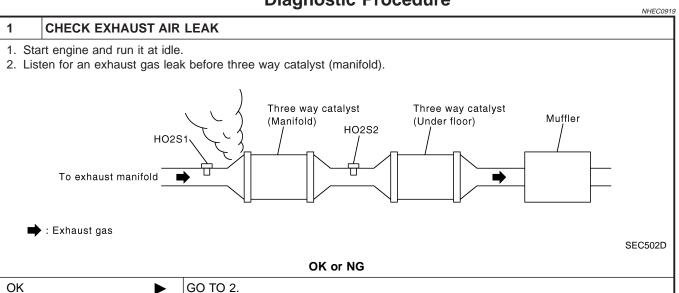

DTC Confirmation Procedure (Cont'd)



WITH GST

NHEC0917S02

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5) Select "MODE 7" with GST. Make sure DTC P0102 is detected.
- 6) Select "MODE 4" with GST and erase the DTC P0102.
- 7) Start engine again and let it idle for at least 10 minutes.
- Select "MODE 7" with GST. The 1st trip DTC P0172 or P0175 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-273.
- 9) If it is difficult to start engine at step 7, the fuel injection system has a malfunction.
- 10) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-273. If engine does not start, check exhaust and intake air leak visually.



MEC546D

Diagnostic Procedure

Diagnostic Procedure

2	CHECK FOR INTAKE AIR LEAK		
Listen	Listen for an intake air leak after the mass air flow sensor.		
	OK or NG		
ОК	OK ▶ GO TO 3.		
NG	>	Repair or replace.	

CHECK HEATED OXYGEN SENSOR 1 CIRCUIT FOR OPEN AND SHORT

Repair or replace.

1. Turn ignition switch "OFF".

NG

- 2. Disconnect corresponding heated oxygen sensor 1 harness connector.
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
DIC	ECM	Sensor	Dalik
P0172	91	1	Bank 1
P0175	92	1	Bank 2

Continuity should exist.

5. Check harness continuity between ECM terminal or HO2S1 terminal and ground as follows. Refer to Wiring Diagram.

DTC	Term	Bank		
	ECM or Sensor	Ground	Dank	
P0172	91 or 1	Ground	Bank 1	
P0175	92 or 1	Ground	Bank 2	

Continuity should not exist.

6. Also check harness for short to power.

OK	0.5	NIC
UN	OI	INC

OK		GO TO 4.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

MA

LC

EC

AT

AX

HA

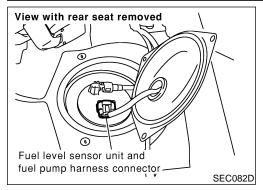
MTBL1156

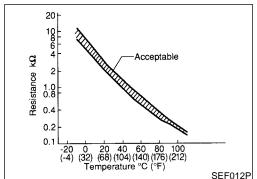
MTBL1157

SC

EL

Diagnostic Procedure (Cont'd)


4	CHECK FUEL PRESSURE		
Release fuel pressure to zero. Refer to EC-56. Install fuel pressure gauge and check fuel pressure. Refer to EC-56. At idling: Approximately 350 kPa (3.7 kg/cm², 51 psi)			
	OK or NG		
OK	>	GO TO 5.	
NG	•	Follow the construction of "Fuel Pressure Check", EC-56.	


5	CHECK MASS AIR FLO	DW SENSOR		
1. In:	 With CONSULT-II Install all removed parts. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II. 			
2.	2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm			
1. In: 2. Cl	With GST 1. Install all removed parts. 2. Check mass air flow sensor signal in MODE 1 with GST. 2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm			
	OK or NG			
ОК	•	GO TO 6.		
NG	>	Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-193.		

Diagnostic Procedure (Cont'd)

CHECK FUNCTION OF INJECTORS (II) With CONSULT-II 1. Start engine. 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II. **ACTIVE TEST** POWER BALANCE MA MONITOR **ENG SPEED** XXX rpm MAS AIF SE-B1 xxx v LC EC SEC136D 3. Make sure that each circuit produces a momentary engine speed drop. Without CONSULT-II 1. Start engine. 2. Listen to each injector operating sound. AT AX STITUTE OF THE PARTY OF THE PAR Suitable tool MEC703B Clicking noise should be heard. OK or NG GO TO 7. OK NG Perform trouble diagnosis for "INJECTORS", EC-706. 7 **CHECK INJECTOR** 1. Remove injector assembly. Refer to EC-57. HA Keep fuel hose and all injectors connected to injector gallery. 2. Confirm that the engine is cooled down and there are no fire hazards near the vehicle. 3. Disconnect injector harness connectors bank 2 (for DTC P0172), bank 1 (for P0175). SC The injector harness connectors on bank 1 (for P0172), bank 2 (for P0175) should remain connected. 4. Disconnect all ignition coil harness connectors. 5. Prepare pans or saucers under each injectors. EL 6. Crank engine for about 3 seconds. Make sure fuel does not drip from injector. OK or NG OK (Does not drip.) GO TO 8. NG (Drips.) Replace the injectors from which fuel is dripping. Always replace O-ring with new one.

8		CHECK INTERMITTENT INCIDENT	
R	efer t	er to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.	
	► INSPECTION END		

Component Description

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Fuel temperature °C (°F)	Voltage* V	Resistance kΩ	
20 (68)	3.5	2.3 - 2.7	
50 (122)	2.2	0.79 - 0.90	

^{*:} These data are reference values and are measured between ECM terminal 75 (Fuel tank temperature sensor) and body ground.

CAUTION:

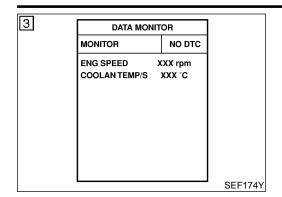
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

NHEC07

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	
P0181 0181		Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signals from engine coolant temperature sensor and intake air temperature sensor.	 Harness or connectors (The sensor circuit is open or shorted.) Fuel tank temperature sensor 	

DTC Confirmation Procedure


NHEC0776

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

DTC P0181 FTT SENSOR

DTC Confirmation Procedure (Cont'd)

(P) WITH CONSULT-II

1) Turn ignition switch "ON".

Select "DATA MONITOR" mode with CONSULT-II.

Wait at least 10 seconds.
If the result is NG, go to "Diagnostic Procedure", EC-277.
If the result is OK, go to following step.

Check "COOLAN TEMP/S" value.
 If "COOLAN TEMP/S" is less than 60°C (140°F), the result will be OK.
 If "COOLAN TEMP/S" is above 60°C (140°F), go to the follow-

5) Cool engine down until "COOLAN TEMP/S" is less than 60°C (140°F).

6) Wait at least 10 seconds.

 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-277. GI

NHEC0776S01

MA

LC

EC

FE

AT

NHECO776S02

WITH GST

ing step.

Follow the procedure "With CONSULT-II" above.

SU

20

ST

\$ I

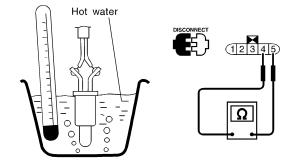
BT

HA

SC

EL

R


NHEC0778

CHECK FUEL TANK TEMPERATURE SENSOR

1. Remove fuel level sensor unit.

2. Check resistance between fuel level sensor unit and fuel pump terminals 4 and 5 by heating with hot water or heat gun as shown in the figure.

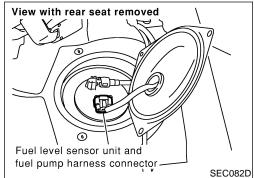
Diagnostic Procedure

Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

SEF587X

_			
\sim	v	0 F	NG
···	n	OI	ING

OK •	GO TO 2.
NG •	Replace fuel level sensor unit.


DTC P0181 FTT SENSOR

Diagnostic Procedure (Cont'd)

CHECK INTERMITTENT INCIDENT

- Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.
 Refer to Wiring Diagram, EC-281.

INSPECTION END

Acceptable ĝ 1.0 0.4

0 20 40 60 80 100 (32) (68) (104) (140) (176) (212)

Fuel tank temperature

sensor circuit high

input

empérature °C (°F)

0.2

P0183 0183

Component Description

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

MA

<Reference data>

Fuel temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

*: These data are reference values and are measured between ECM terminal 75 (Fuel tank temperature sensor) and body ground.

CAUTION:

SEF012P

sent to ECM.

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

EC

AT

AX

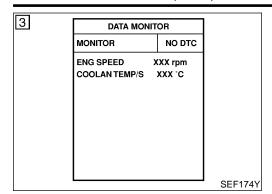
SU

On Board Diagnosis Logic

DTC No.	I rouble diagnosis name	DTC Detecting Condition	Possible Cause
P0182 0182		An excessively low voltage from the sensor is sent to ECM.	(The sensor circuit is open or shorted.)
			 Fuel tank temperature sensor

An excessively high voltage from the sensor is

HA


DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

DTC P0182, P0183 FTT SENSOR

DTC Confirmation Procedure (Cont'd)

(E) WITH CONSULT-II

NHEC0922S01

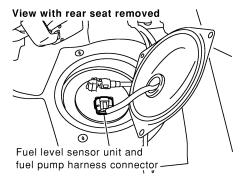
- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 10 seconds.
 If the result is NG, go to "Diagnostic Procedure", EC-282.
 If the result is OK, go to following step.
- 4) Check "COOLAN TEMP/S" value. If "COOLAN TEMP/S" is less than 60°C (140°F), the result will be OK. If "COOLAN TEMP/S" is above 60°C (140°F), go to the following step.
- 5) Cool engine down until "COOLAN TEMP/S" is less than 60°C (140°F).
- 6) Wait at least 10 seconds.
- 7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-282.

WITH GST

NHEC0922S02

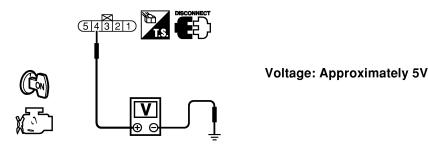
Follow the procedure "With CONSULT-II" above.

Wiring Diagram NHEC0923 EC-FTTS-01 FUEL LEVEL SENSOR UNIT AND FUEL PUMP (FUEL TANK TEMPERATURE SENSOR) : DETECTABLE LINE FOR DTC \mathbb{G} ■ : NON-DETECTABLE LINE FOR DTC $\langle W \rangle$ (RS): WITH REAR SUNSHADE OR: WITHOUT REAR SUNSHADE B19 MA 5 EM LC EC P/B B3 M6 P/B FE AT AXSU P/B (M81) 13 (F49) BR (F49) ST RS BT HA P/B 75 ECM F48 SC <u>B</u>7 B46 : (RS) B12 : OR EL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 W81 W 5 4 3 2 1 B19 GY 58 59 60 61 62 63 64 65 66 67 39 40 41 42 43 44 45 46 47 48 68 69 70 71 72 73 74 75 76 49 50 51 52 53 54 55 56 57 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 103 104 105 106 111 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 113


MEC547D

Diagnostic Procedure

NHEC0924


1 CHECK FUEL TANK TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect fuel level sensor unit and fuel pump harness connector.

SEC082D

- 3. Turn ignition switch "ON".
- 4. Check voltage between fuel level sensor unit terminal 4 and ground with CONSULT-II or tester.

SEC116D

OK or NG

OK •	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B3, M6
- Harness connectors M81, F49
- Harness for open or short between ECM and fuel level sensor unit and fuel pump

Repair harness or connector.

3 CHECK FUEL TANK TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between fuel level sensor unit and fuel pump terminal 5 and body ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

\sim 1/		NI.	\sim
UIN	or	Ν	G

OK •	GO TO 4.
NG •	Repair open circuit or short to power in harness or connectors.

GI

MA

EM

LC

FE

AT

AX

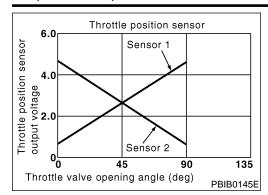
SU

BR

ST

RS

BT


HA

SC

EL

CHECK FUEL TANK TEMPERATURE SENSOR 1. Remove fuel level sensor unit. 2. Check resistance between fuel level sensor unit and fuel pump terminals 4 and 5 by heating with hot water or heat gun as shown in the figure. Hot water 12345 Temperature °C (°F) Resistance $k\Omega$ 20 (68) 2.3 - 2.7 50 (122) 0.79 - 0.90 Ω SEF587X OK or NG GO TO 5. OK NG Replace fuel level sensor unit.

5	5 CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151. INSPECTION END			

Component Description

NHEC1365

Electric Throttle Control Actuator Consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle vale movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve form these signal and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC1366

MONITOR ITEM	COND	DITION	SPECIFICATION	
THRTL SEN1	ON (Engine stopped)	Accelerator pedal: Released	More than 0.36V	
THRTL SEN2		Accelerator pedal: Fully depressed	Less than 4.75V	

On Board Diagnosis Logic

NHEC1367

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0221 0221	Throttle position sensor circuit range/ performance problem	Rationally incorrect voltage is sent to ECM compared with the signals from TP sensor 1 and TP sensor 2.	 Harness or connector (The TP sensor 1 and 2 circuit is open or shorted.) Electric throttle control actuator (TP sensor 1 and 2)

FAIL-SAFE MODE

NHEC1367S01

When the malfunction is detected, ECM enters in fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

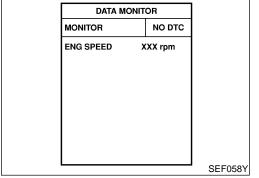
The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

NOTE:


NHEC1368

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

MA

(II) With CONSULT-II

LC

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to "Diagnostic Procedure", EC-287.

EC

FE

AT

AX

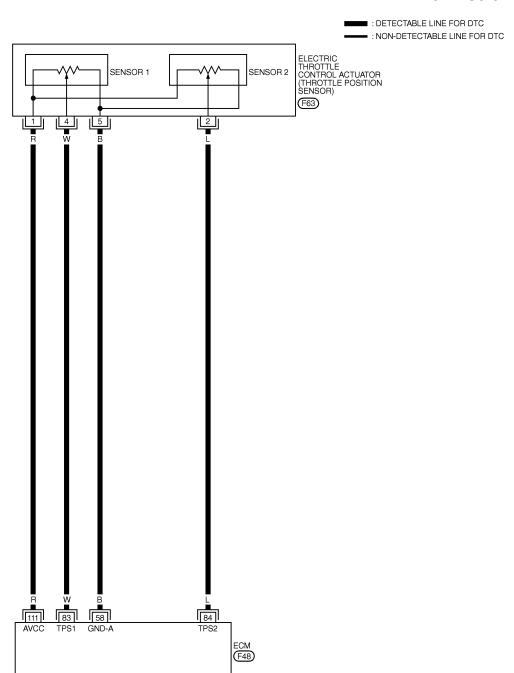
SU

BT

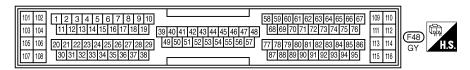
HA

SC

EL


With GST

Follow the procedure "WITH CONSULT-II" above.


Wiring Diagram

NHEC1369

EC-TPS3-01

MEC705D

SU

BR

ST

RS

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

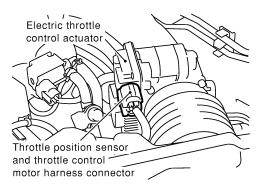
ge to tl	ge to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.				GI
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	MA
58	В	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	_ EN
00	w		[Ignition switch "ON"] ■ Shift lever position is "D" ■ Accelerator pedal released	More than 0.36V	 LC
83 W 11		[Ignition switch "ON"] ■ Shift lever position is "D" ■ Accelerator pedal fully depressed	Less than 4.75V	EC	
0.4		Throttle position sensor	[Ignition switch "ON"] ■ Shift lever position is "D" ■ Accelerator pedal released	Less than 4.75V	— FE
84 L ₂ '		-	[Ignition switch "ON"] ■ Shift lever position is "D" ■ Accelerator pedal fully depressed	More than 0.36V	— AT
111	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V	— AX

Diagnostic Procedure

1 RETIGHTEN GROUND SCREWS

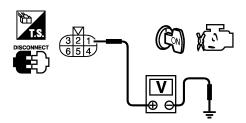
1. Turn ignition switch "OFF".

2. Loosen and retighten engine ground screws.


Engine ground

SC

SEC047D


2 CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch "ON".

SEC054D

3. Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.

PBIB0082E

Voltage: Approximately 5V

OK	or	N	3
----	----	---	---

OK •	GO TO 3.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK THROTTLE POSITION SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between electric throttle control actuator terminal 5 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

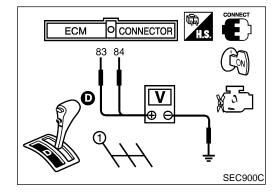
OK or NG

OK •	GO TO 5.
NG ►	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

• Harness for open or short between electric throttle control actuator and ECM


Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK THROTTLE POSITION SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT 1. Disconnect ECM harness connector. 2. Check harness continuity between ECM terminal 83 and electric throttle control actuator terminal 4, ECM terminal 84 and electric throttle control actuator terminal 2. Refer to Wiring Diagram. Continuity should exist. 3. Also check harness for short to ground and short to power. OK or NG OK Repair open circuit or short to ground or short to power in harness or connectors.

6	CHECK THROTTLE P	OSITION SENSOR		
Refer	Refer to "Component Inspection", EC-289.			
	OK or NG			
OK	•	GO TO 8.		
NG	•	GO TO 7.		

		•	INSPECTION END
	2. Per	place the electric throttle conform "Throttle Valve Close form "Idle Air Volume Lear	d Position Learning", EC-71.
ı	7	REPLACE ELECTRIC T	THROTTLE CONTROL ACTUATOR

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.	
► INSPECTION END	

Component Inspection THROTTLE POSITION SENSOR

NHEC1371

1. Reconnect all harness connectors disconnected.

2. Perform "Throttle Valve Closed Position Learning", EC-71.

Turn ignition switch "ON".

4. Set selector lever to "D" position.

 Check voltage between ECM terminals 83 (TP sensor 1), 84 (TP sensor 2) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
83	Released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
84 (Throttle position concer	Released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- 6. If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform "Throttle Valve Closed Position Learning", EC-71.
- 8. Perform "Idle Air Volume Learning", EC-71.

G[

MA

LC

C

FE

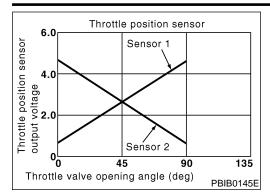
AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST


BT

HA

ITIZA

@@

EL

Component Description

Electric Throttle Control Actuator consists of throttle control motor. throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC1373

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL SEN1	ON (Engine stopped)	Accelerator pedal: Released	More than 0.36V
THE SENT		Accelerator pedal: Fully depressed	Less than 4.75V

On Board Diagnosis Logic

NHEC1374

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0222 0222	Throttle position sensor 1 circuit low input	An excessively low voltage from the TP sensor 1 is sent to ECM.	Harness or connectors (The TP sensor 1 circuit is open or
P0223 0223	Throttle position sensor 1 circuit high input	An excessively high voltage from the TP sensor 1 is sent to ECM.	 shorted.) Electric throttle control actuator (TP sensor 1)

FAIL-SAFE MODE

NHEC1374S01

When the malfunction is detected, ECM enters in fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

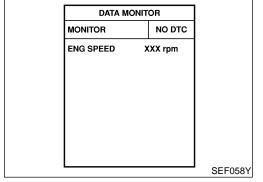
The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

NOTE:


NHEC1375

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

MA

(II) With CONSULT-II

LC

- 1. Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to "Diagnostic Procedure", EC-293.

EC

FE

AT

AX

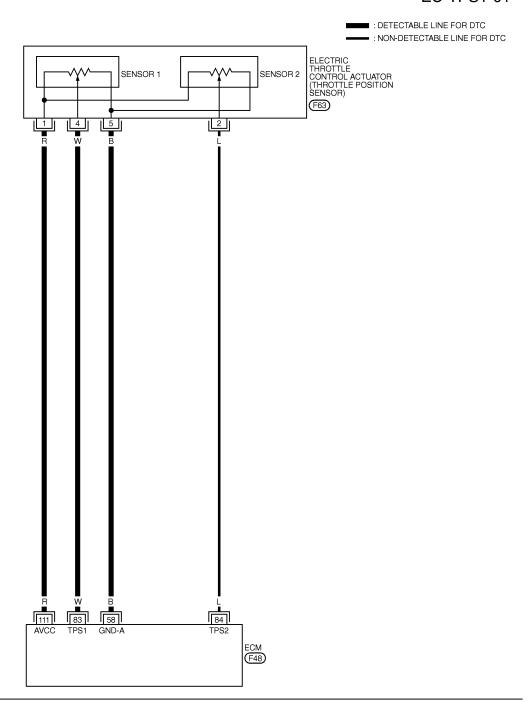
SU

BT

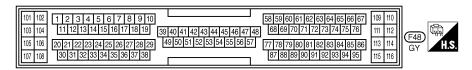
HA

SC

EL


With GST

Follow the procedure "WITH CONSULT-II" above.


Wiring Diagram

NHEC1376

EC-TPS1-01

MEC534D

SU

BR

ST

RS

Specification data are reference values and are measured between each terminal and ground.

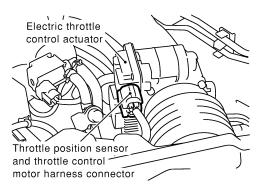
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

ge to tl	he ECM's	s transistor. Use a g	round other than ECM terminals, such a	is the ground.	GI
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	MA
58	В	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	— EM
00	\\\\\	Throttle position sensor	[Ignition switch "ON"] ■ Shift lever position is "D" ■ Accelerator pedal released	More than 0.36V	 LC
83	W	1	[Ignition switch "ON"] ■ Shift lever position is "D" ■ Accelerator pedal fully depressed	Less than 4.75V	EC
0.4		Throttle position sensor	[Ignition switch "ON"] ■ Shift lever position is "D" ■ Accelerator pedal released	Less than 4.75V	— FE
84	L	2	[Ignition switch "ON"] ■ Shift lever position is "D" ■ Accelerator pedal fully depressed	More than 0.36V	— at
111	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V	— AX

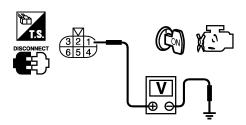
Diagnostic Procedure

1. Turn ignition switch "OFF".
2. Loosen and retighten engine ground screws.


Engine ground

SC

SEC047D


CHECK THROTTLE POSITION SENSOR 1 POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch "ON".

SEC054D

3. Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.

PBIB0082E

Voltage: Approximately 5V

OK	or	NG
----	----	----

OK	GO TO 3.
NG	Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK THROTTLE POSITION SENSOR 1 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between electric throttle control actuator terminal 5 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

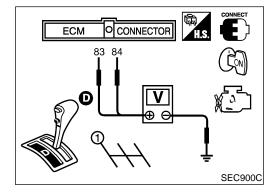
OK or NG

OK •	GO TO 5.
NG ►	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

• Harness for open or short between electric throttle control actuator and ECM


Repair open circuit or short to ground or short to power in harness or connectors.

CHECK THROTTLE POSITION SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT 1. Disconnect ECM harness connector. 2. Check harness continuity between ECM terminal 83 and electric throttle control actuator terminal 4. Refer to Wiring Diagram. Continuity should exist. 3. Also check harness for short to ground and short to power. GO TO 6. OK NG Repair open circuit or short to ground or short to power in harness or connectors.

6	CHECK THROTTLE PO	SITION SENSOR	
Refer	to "Component Inspection"	, EC-295.	1
		OK or NG	l
OK	>	GO TO 8.	1
NG	>	GO TO 7.	1

7	REPLACE ELECTRIC T	HROTTLE CONTROL ACTUATOR
	place the electric throttle co	
	rform "Throttle Valve Close rform "Idle Air Volume Lear	d Position Learning", EC-71. ning", EC-71.
	► INSPECTION END	

8	CHECK INTERMITTENT INCIDENT				
Refer to	o "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-151.			
	INSPECTION END				

Component Inspection THROTTLE POSITION SENSOR

NHEC1378

Reconnect all harness connectors disconnected.

2. Perform "Throttle Valve Closed Position Learning", EC-71.

Turn ignition switch "ON".

Set selector lever to "D" position.

Check voltage between ECM terminals 83 (TP sensor 1), 84 (TP sensor 2) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage	
83 (Throttle position sensor	Released	More than 0.36V	
1)	Fully depressed	Less than 4.75V	
84 (Throttle position concer-	Released	Less than 4.75V	
(Throttle position sensor 2)	Fully depressed	More than 0.36V	

- 6. If NG, replace electric throttle control actuator and go to the next step.
- Perform "Throttle Valve Closed Position Learning", EC-71.
- Perform "Idle Air Volume Learning", EC-71.

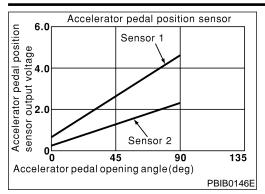
MA

GI

LC

AT

AX


SU

BT

HA

EL

Component Description

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

This self-diagnosis has the one trip detection logic.

NHEC1380

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN1	Ignition switch: ON (engine stopped)	Accelerator pedal: Released	0.41 - 0.71V
ACCEL SENT		Accelerator pedal: Fully depressed	More than 3.7V
ACCEL SEN2	Ignition switch: ON (engine stopped)	Accelerator pedal: Released	0.15 - 0.97V
ACCEL SENZ		Accelerator pedal: Fully depressed	More than 3.5V
	Ignition switch: ON	Accelerator pedal: Released	ON
CLSD THL POS		Accelerator pedal: Slightly depressed	OFF

On Board Diagnosis Logic

NHEC1381

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0226 0226	Accelerator pedal position sensor circuit range/performance problem	Rationally incorrect voltage is sent to ECM compared with the signals from APP sensor 1 and APP sensor 2.	 Harness or connector (The APP sensor 1 and 2 circuit is open or shorted.) Accelerator pedal position sensor 1 and 2

FAIL-SAFE MODE

NHEC1381S01

When the malfunction is detected, ECM enters in fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

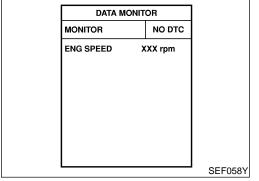
The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

NOTE:


NHEC1382

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

MA

(II) With CONSULT-II

LC

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to "Diagnostic Procedure", EC-299.

EC

FE

AT

AX

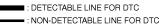
With GST

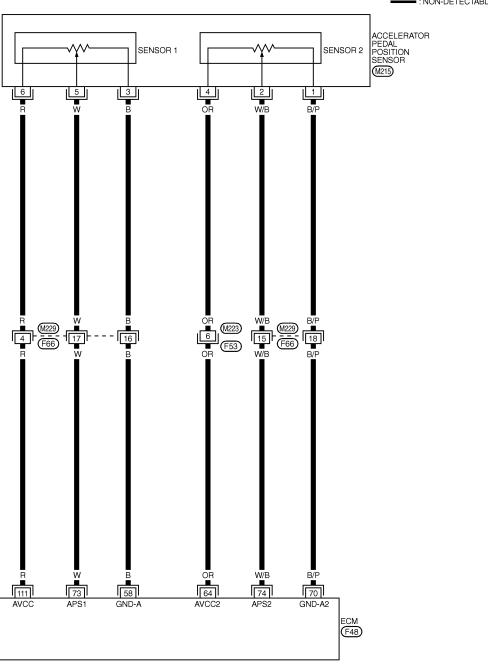
Follow the procedure "WITH CONSULT-II" above.

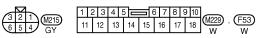
SU

BT

HA


SC


EL


Wiring Diagram

NHEC1383

EC-APPS3-01

MEC707D

BR

ST

RS

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

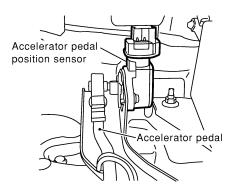
age to the	ge to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.					
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	. GI MA	
58	В	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	EM	
64	OR	Accelerator pedal position sensor 2 power supply	[Ignition switch "ON"]	Approximately 2.5V	LG	
70	B/P	Accelerator pedal position sensor 2 ground	[Ignition switch "ON"]	Approximately 0V	EC	
73		w	Accelerator pedal posi-	[Ignition switch "ON"] • Accelerator pedal released	0.41 - 0.71V	FE
73 W		tion sensor 1	[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 3.7V	. at	
74	W/P	Accelerator pedal posi- Accelerator pedal posi-	[Ignition switch "ON"] • Accelerator pedal released	0.08 - 0.48V		
74 W/B	VV/B	tion sensor 2	[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 1.8V	- AX	
111	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V	SU	

Diagnostic Procedure

RETIGHTEN GROUND SCREWS

1. Turn ignition switch "OFF".
2. Loosen and retighten engine ground screws.

Engine ground

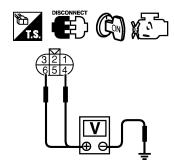

SC

SEC047D

GO TO 2.

2 CHECK APP SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect accelerator pedal position (APP) sensor harness connector.
- 2. Turn ignition switch "ON".



3. Check voltage between APP sensor terminals 4, 6 and ground with CONSULT-II or tester.

APP sensor terminal	Voltage (V)
4	Approximately 2.5
6	Approximately 5

MTBL1167

SEC081D

SEC092D

OK or NG

OK •	GO TO 4.
NG ▶	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M223, F53
- Harness connectors M229, F66
- Harness for open or short between ECM and accelerator pedal position sensor

OK

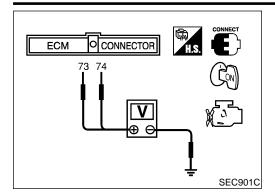
Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK APP SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between APP sensor terminals 1, 3 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

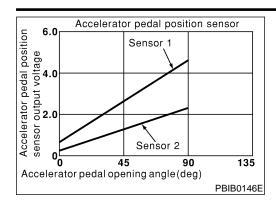

OK or NG

OK •	GO TO 6.
NG ▶	GO TO 5.

DTC P0226 APP SENSOR

Diagnostic Procedure (Cont'd)

Harness connect Harness for ope	tors M229, F66 n or short between ECM and accelerator pedal position sensor
	Repair open circuit or short to ground or short to power in harness or connectors.
6 CHECK AI	PP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT
Check harness minal 2. Refer to Wiring Continuity s	A harness connector. continuity between ECM terminal 73 and APP sensor terminal 5, ECM terminal 74 and APP sensor ter- Diagram should exist. ness for short to ground and short to power.
	OK or NG
OK	▶ GO TO 8.
NG	▶ GO TO 7.
Check the following Harness connec	
Check the following Harness connect	g. tors M229, F66
Check the following Harness connect Harness for ope	g. tors M229, F66 n or short between ECM and accelerator pedal position sensor
Check the following Harness connect Harness for ope	g. tors M229, F66 n or short between ECM and accelerator pedal position sensor Repair open circuit or short to ground or short to power in harness or connectors.
Check the following Harness connect Harness for ope CHECK AI Refer to "Compone	tors M229, F66 n or short between ECM and accelerator pedal position sensor Repair open circuit or short to ground or short to power in harness or connectors. PP SENSOR ent Inspection", EC-302. OK or NG
Check the following Harness connect Harness for ope CHECK AI Refer to "Compone	tors M229, F66 n or short between ECM and accelerator pedal position sensor Repair open circuit or short to ground or short to power in harness or connectors. PP SENSOR ent Inspection", EC-302. OK or NG GO TO 9.
Check the following Harness connect Harness for ope CHECK AI Refer to "Compone	tors M229, F66 n or short between ECM and accelerator pedal position sensor Repair open circuit or short to ground or short to power in harness or connectors. PP SENSOR ent Inspection", EC-302. OK or NG
Check the following Harness connect Harness for ope CHECK AI Refer to "Compone OK NG	tors M229, F66 n or short between ECM and accelerator pedal position sensor Repair open circuit or short to ground or short to power in harness or connectors. PP SENSOR ent Inspection", EC-302. OK or NG GO TO 9. Replace accelerator pedal assembly.
Check the following Harness connect Harness for ope 8 CHECK AI Refer to "Compone OK NG CHECK IN	tors M229, F66 n or short between ECM and accelerator pedal position sensor Repair open circuit or short to ground or short to power in harness or connectors. PP SENSOR ent Inspection", EC-302. OK or NG GO TO 9.
Check the following Harness connect Harness for ope 8 CHECK AI Refer to "Compone OK NG CHECK IN	tors M229, F66 n or short between ECM and accelerator pedal position sensor Repair open circuit or short to ground or short to power in harness or connectors. PP SENSOR ent Inspection", EC-302. OK or NG OK or NG Replace accelerator pedal assembly. TERMITTENT INCIDENT


Component Inspection ACCELERATOR PEDAL POSITION SENSOR

=NHEC1385

- 1. Reconnect all harness connectors disconnected.
- 2. Turn ignition switch "ON".
- Check voltage between ECM terminals 73 (APP sensor 1 signal), 74 (APP sensor 2 signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
73 (Accelerator pedal posi-	Released	0.41 - 0.71V
tion sensor 1)	Fully depressed	More than 3.7V
74	Released	0.08 - 0.48V
(Accelerator pedal position sensor 2)	Fully depressed	More than 1.8V

- 4. If NG, replace accelerator pedal assembly.
- Perform "Accelerator Pedal Released Position Learning", EC-71.
- 6. Perform "Throttle Valve Close Position Learning", EC-71.
- 7. Perform "Idle Air Volume Learning", EC-71.

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

GI

MA

LC

EC

AT

AX

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM

ACCEL SEN1

ACCEL SEN2

CLSD THL POS

SPECIFICATION

0.41 - 0.71V

More than 3.7V 0.15 - 0.97V

More than 3.5V

ON

OFF

SU

SC

On Board Diagnosis Logic

Accelerator pedal: Released

Accelerator pedal: Released

Accelerator pedal: Released

Accelerator pedal: Slightly

Accelerator pedal: Fully depressed

Accelerator pedal: Fully depressed

These self-diagnoses have the trip detection logic.

Ignition switch: ON

(engine stopped)

• Ignition switch: ON

(engine stopped)

Ignition switch: ON

HA

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0227 0227	Accelerator pedal position sensor 1 circuit low input	An excessively low voltage from the APP sensor 1 is sent to ECM.	Harness or connectors (The APP sensor 1 circuit is open or shorted.)
P0228 0228	Accelerator pedal position sensor 1 circuit high input	An excessively high voltage from the APP sensor 1 is sent to ECM.	Accelerator pedal position sensor (Accelerator pedal position sensor 1)

depressed

CONDITION

DTC P0227, P0228 APP SENSOR

On Board Diagnosis Logic (Cont'd)

FAIL-SAFE MODE

=NHEC1388S01

When the malfunction is detected, ECM enters in fail-safe mode and the MIL lights up.

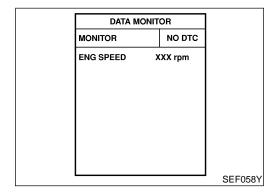
Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure


NHEC1389

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to "Diagnostic Procedure", EC-306.

With GST

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram NHEC1390 EC-APPS1-01 : DETECTABLE LINE FOR DTC GI ■ : NON-DETECTABLE LINE FOR DTC ACCELERATOR PEDAL POSITION SENSOR MA SENSOR 1 SENSOR 2 EM 6 3 OR W/B B/P 5 LC EC FE AT AXW/B M229 F66 W/B R W229 - 17-- 16 B SU BR ST RS BT W/B B/P OR HA 111 73 58 64 ECM F48 SC EL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 W229 W 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 113

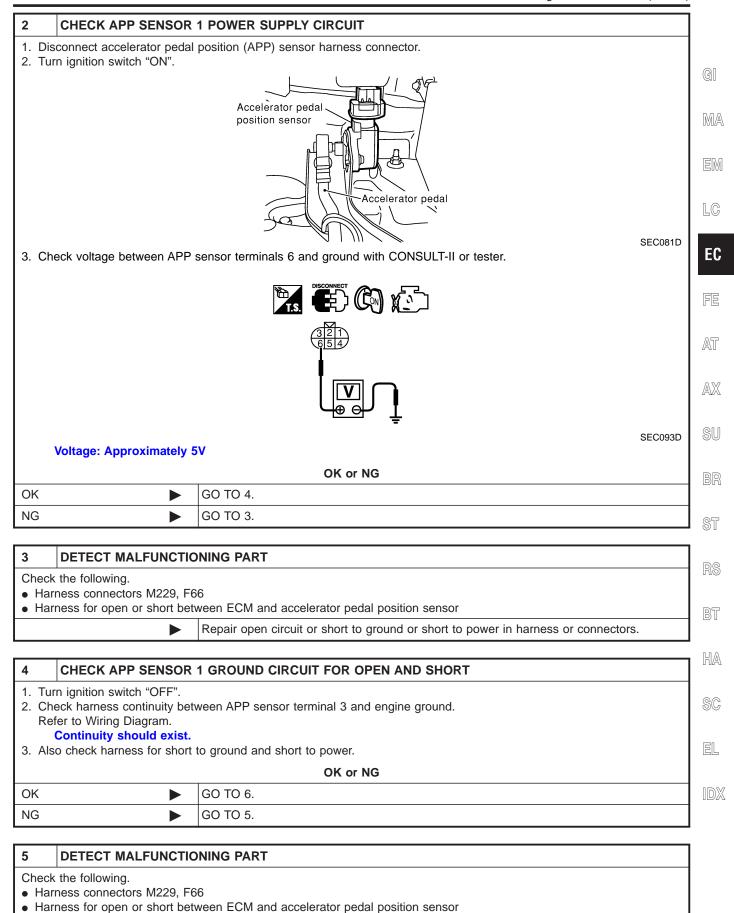
MEC536D

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
58	В	Sensors' ground	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V
64	OR	Accelerator pedal position sensor 2 power supply	[Ignition switch "ON"]	Approximately 2.5V
70	B/P	Accelerator pedal position sensor 2 ground	[Ignition switch "ON"]	Approximately 0V
73		Accelerator pedal position sensor 1	[Ignition switch "ON"] • Accelerator pedal released	0.41 - 0.71V
73	W		[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 3.7V
74 W/B	Accelerator pedal posi-	[Ignition switch "ON"] • Accelerator pedal released	0.08 - 0.48V	
	VV/D	tion sensor 2	[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 1.8V
111	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V


Diagnostic Procedure

1 RETIGHTEN GROUND SCREWS

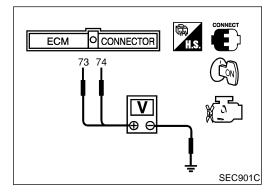
1. Turn ignition switch "OFF".
2. Loosen and retighten engine ground screws.

Engine ground

SEC047D

Repair open circuit or short to ground or short to power in harness or connectors.

NG


6 CHECK APP SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT 1. Disconnect ECM harness connector. 2. Check harness continuity between ECM terminal 73 and APP sensor terminal 5. Refer to Wiring Diagram Continuity should exist. 3. Also check harness for short to ground and short to power. OK or NG OK

7	DETECT MALFUNCTIONING PART		
• Har	Check the following. • Harness connectors M229, F66 • Harness for open or short between ECM and accelerator pedal position sensor		
	Repair open circuit or short to ground or short to power in harness or connectors.		

GO TO 7.

8	CHECK APP SENSOR				
Refer	Refer to "Component Inspection", EC-308.				
		OK or NG			
ОК	OK ▶ GO TO 9.				
NG	NG Replace accelerator pedal assembly.				

9	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	► IINSPECTION END		

Component InspectionACCELERATOR PEDAL POSITION SENSOR

NHEC1392

- 1. Reconnect all harness connectors disconnected.
- 2. Turn ignition switch "ON".
- Check voltage between ECM terminals 73 (APP sensor 1 signal), 74 (APP sensor 2 signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage	
73 (Accelerator pedal posi-	Released	0.41 - 0.71V	
tion sensor 1)	Fully depressed	More than 3.7V	
74	Released	0.08 - 0.48V	
(Accelerator pedal position sensor 2)	Fully depressed	More than 1.8V	

- 4. If NG, replace accelerator pedal assembly.
- Perform "Accelerator Pedal Released Position Learning", EC-71.
- 6. Perform "Throttle Valve Closed Position Learning", EC-71.
- 7. Perform "Idle Air Volume Learning", EC-71.

On Board Diagnosis Logic

On Board Diagnosis Logic

When a misfire occurs, engine speed will fluctuate. If the engine speed fluctuates enough to cause the CKP sensor signal to vary, ECM can determine that a misfire is occurring.

Sensor	Input Signal to ECM	ECM function	-
Crankshaft position sensor (POS)	Engine speed	On board diagnosis of misfire	MA

The misfire detection logic consists of the following two conditions.

One Trip Detection Logic (Three Way Catalyst Damage) On the first trip that a misfire condition occurs that can damage the three way catalyst (TWC) due to overheating, the MIL

When a misfire condition occurs, the ECM monitors the CKP sensor signal every 200 engine revolutions for a change. When the misfire condition decreases to a level that will not damage the TWC, the MIL will turn off.

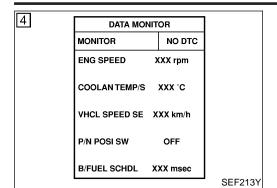
LC

EC

If another misfire condition occurs that can damage the TWC on a second trip, the MIL will blink.

When the misfire condition decreases to a level that will not damage the TWC, the MIL will remain on.

If another misfire condition occurs that can damage the TWC, the MIL will begin to blink again.


AX

2. Two Trip Detection Logic (Exhaust quality deterioration) For misfire conditions that will not damage the TWC (but will affect vehicle emissions), the MIL will only light when the misfire is detected on a second trip. During this condition, the ECM monitors the CKP sensor signal every 1,000 engine revolu-

A misfire malfunction can be detected on any one cylinder or

		on multiple cylinders.		
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	ST
P0300 0300	Multiple cylinder mis- fire detected	Multiple cylinders misfire, No. 1 cylinder misfires, No. 2 cylinder misfires, No. 3 cylinder misfires, No.	Improper spark plug Insufficient compression	RS
P0301 0301	No. 1 cylinder misfire detected	4 cylinder misfires, No. 5 cylinder misfires and No. 6 cylinder misfires.	 Incorrect fuel pressure The injector circuit is open or shorted Injectors 	BT
P0302 0302	No. 2 cylinder misfire detected		Intake air leak The ignition secondary circuit is open or shorted	
P0303 0303	No. 3 cylinder misfire detected		Lack of fuelDrive plate	HA
P0304 0304	No. 4 cylinder misfire detected		Heated oxygen sensor 1	SC
P0305 0305	No. 5 cylinder misfire detected			EL
P0306 0306	No. 6 cylinder misfire detected			IDX

DTC Confirmation Procedure

DTC Confirmation Procedure

NHEC0930

CAUTION:

Always drive vehicle at a safe speed.

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- Turn ignition switch "ON", and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to normal operating temperature.
- 3) Turn ignition switch "OFF" and wait at least 10 seconds.
- 4) Start engine again and drive at 1,500 to 3,000 rpm for at least 3 minutes.

Hold the accelerator pedal as steady as possible.

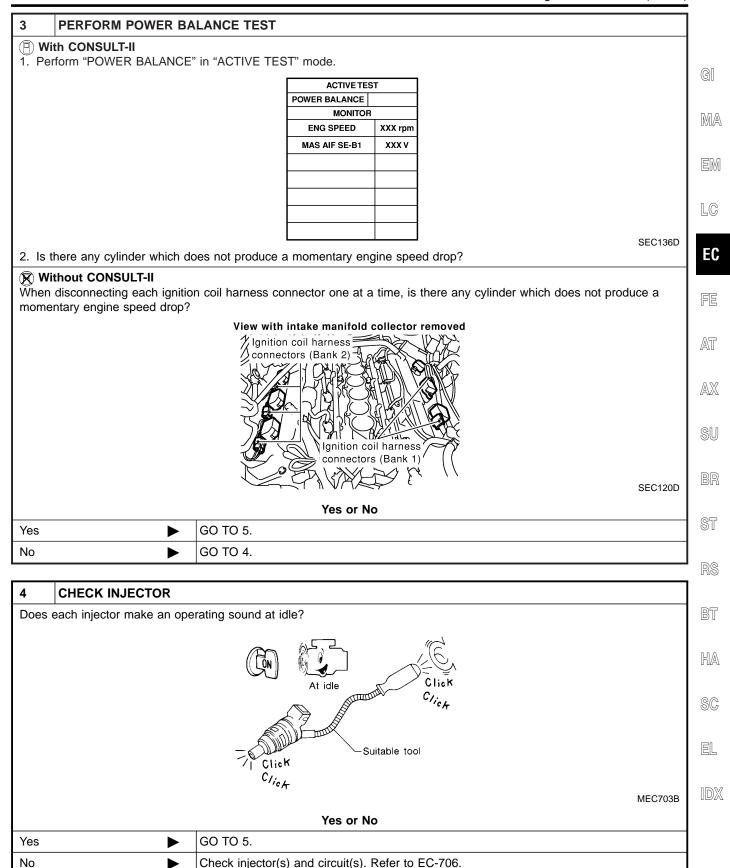
NOTE:

Refer to the freeze frame data for the test driving conditions.

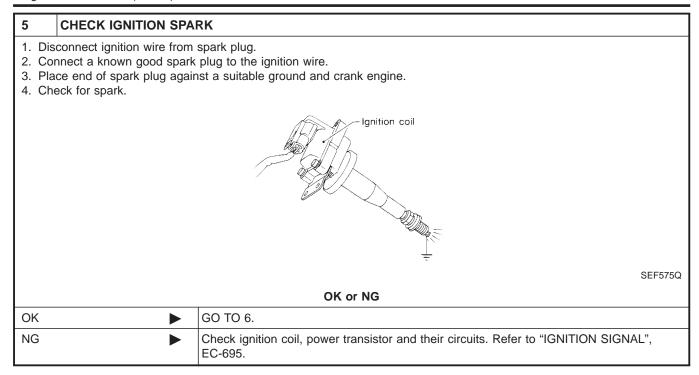
5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-310.

WITH GST

NHEC0930S02


Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure


1	CHECK FOR INTAKE AIR LEAK				
	Start engine and run it at idle speed. Listen for the sound of the intake air leak. OK or NG				
OK	OK ▶ GO TO 2.				
NG	NG Discover air leak location and repair.				

2	CHECK FOR EXHAUST SYSTEM CLOGGING				
1. Sto	Stop engine and visually check exhaust tube, three way catalyst and muffler for dents.				
	OK or NG				
OK	OK ▶ GO TO 3.				
NG	>	Repair or replace it.			

Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)

6	CHECK SPARK PLUG	5
Ren	nove the spark plugs and ch	eck for fouling, etc.
		SEF156I
		OK or NG
OK	•	GO TO 7.
NG	>	Repair or replace spark plug(s) with standard type one(s). For spark plug type, refer to MA-18, "Changing Spark Plugs".

7	CHECK COMPRESSION PRESSURE				
S	Check compression pressure. Refer to EM-13, "Measurement of Compression Pressure". Standard: 1,275 kPa (13.0 kg/cm², 185 psi)/300 rpm Minimum: 981 kPa (10.0 kg/cm², 142 psi)/300 rpm Difference between each cylinder: 98 kPa (1.0 kg/cm², 14 psi)/300 rpm				
	OK or NG				
OK	OK ▶ GO TO 8.				
NG	NG Check pistons, piston rings, valves, valve seats and cylinder head gaskets.				

Diagnostic Procedure (Cont'd)

LC

EC

FE

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

8	CHECK FUEL PRESSI	JRE		
2. Re	At idle:	nd check fuel pressure. Refer to EC-56.	GI	
	Approx. 350 kPa (3.7	kg/cm ² , 51 psi)		
		OK or NG	I UVU <i>U</i> ∩	
OK				
NG	Follow the construction of "Fuel Pressure Check", EC-56. □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□			

9	CHECK IGNITION TIMING			
Check	the following items. Refe	er to "Basic Inspection	n", EC-119.	
		Items	Specifications	
		Ignition timing	15° ± 5° BTDC	
		Target idle speed	675 ± 50 rpm (in "P" or "N" position)	
				MTBL1299
			OK or NG	
OK (V	Vith CONSULT-II)	GO TO 10.		
OK (V II)	Vithout CONSULT-	GO TO 11.		
NG	>	Follow the "Basic Ir	nspection".	

Diagnostic Procedure (Cont'd)

0 CHECK HEATED OXYGEN SENSOR 1

- (P) With CONSULT-II
- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 3. Hold engine speed at 2,000 rpm under no load during the following steps.
- 4. Touch "RECORD" on CONSULT-II screen.

DATA MON	IITOR
MONITOR	NO DTC
ENG SPEED COOLANTEMP/S HO2S1 (B1) HO2S2 (B2)	XXX rpm XXX °C XXX V

SEF967Y

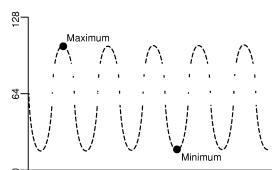
- 5. Check the following.
- "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown left:

Bank 1

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

Bank 2

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R


R means HO2S1 MNTR (B1)/(B2) indicates RICH L means HO2S1

MNTR (B1)/(B2) indicates LEAN

SEF647Y

- "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Trigger	ENG	HO2S1
	SPEED	(B1)
	rpm	V
XXX	XXX	XXX

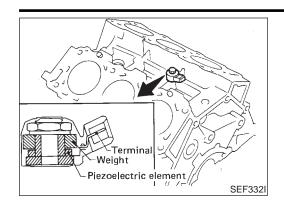
- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK	or	NG
----	----	----


OK	•	GO TO 12.
NG	•	Replace malfunctioning heated oxygen sensor 1.

Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 1 Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Set voltmeter probes between ECM terminal 91 (HO2S1 bank 1 signal) or 92 (HO2S1 bank 2 signal) and engine ground. 3. Check the following with engine speed held at 2,000 rpm constant under no load. MA • The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds. **ECM** CONNECTOR • The maximum voltage is over 0.6V at least one time. • The minimum voltage is below 0.3V at least one time. LC • The voltage never exceeds 1.0V. 1 time: 0 - 0.3V → 0.6 - 1.0V → 0 - 0.3V 2 times: $0 - 0.3V \longrightarrow 0.6 - 1.0V \longrightarrow 0 - 0.3V \longrightarrow 0.6 - 1.0V \longrightarrow 0 - 0.3V$ EC 91: Bank 1 92: Bank 2 SEC109D **CAUTION:** • Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one. • Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool AT J-43897-18 or J-43897-12 and approved anti-seize lubricant. AX GO TO 12. OK NG Replace malfunctioning heated oxygen sensor 1. 12 **CHECK MASS AIR FLOW SENSOR** (P) With CONSULT-II Check mass air flow sensor signal in "DATA MONITOR" mode with CONSULT-II. 2.0 - 6.0 q-m/sec: at idling 7.0 - 20.0 g-m/sec: at 2,500 rpm Check mass air flow sensor signal in MODE 1 with GST. 2.0 - 6.0 g-m/sec: at idling 7.0 - 20.0 g-m/sec: at 2,500 rpm OK or NG OK GO TO 13. HA NG Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-190. CHECK SYMPTOM MATRIX CHART Check items on the rough idle symptom in "Symptom Matrix Chart", EC-126. EL OK or NG OK GO TO 14. NG Repair or replace. 14 **ERASE THE 1ST TRIP DTC** Erase the 1st trip DTC from the ECM memory after performing the tests. Refer to EC-89. Some tests may cause a 1st trip DTC to be set. GO TO 15.

Diagnostic Procedure (Cont'd)

15	CHECK INTERMITTENT INCIDENT		
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	>	INSPECTION END	

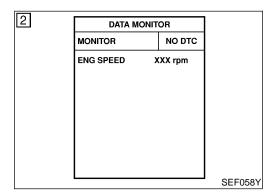
Component Description

The knock sensor is attached to the cylinder block. It senses engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM.

Freeze frame data will not be stored in the ECM for the knock sensor. The MIL will not light for knock sensor malfunction.

MA

EM


On Board Diagnosis Logic

NHEC0934

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0327 0327	Knock sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	(The sensor circuit is open or
P0328 0328	Knock sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	shorted.) • Knock sensor

AT

AX

DTC Confirmation Procedure

NHFC0935

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

WITH CONSULT-II

Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II

- Start engine and run it for at least 5 seconds at idle speed.
- 3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-319.

® WITH GST

Follow the procedure "With CONSULT-II" above.

NHEC0935S03

HA SC

EL

Wiring Diagram NHEC0936 **EC-KS-01** : DETECTABLE LINE FOR DTC ECM (F48) : NON-DETECTABLE LINE FOR DTC 71 F8 F131 JOINT CONNECTOR-18 F46 KNOCK SENSOR (F132) (F41) 12 F8 B 21 F132 GY 111111222222 L 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 39 40 41 42 43 44 45 46 47 48 12 13 14 15 16 17 18 19 39 40 41 42 43 44 45 46 47 48 12 13 14 15 16 17 18 19 49 50 51 52 53 54 55 56 57 12 13 14 15 16 17 18 19 39 40 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 103 104 (F48) 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 105 106 113 114

MEC550D

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINA	L WIRE COLOR	ITEM	CONDITION	DATA (DC)
71	W	KNOCK SENSOR	ENGINE RUNNING AT IDLE SPEED	APPROX. 2.5V

SEC117D

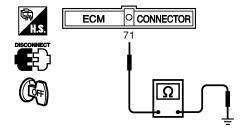
Diagnostic Procedure

NHEC0937

MA

LC

EC


AT

AX

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check resistance between ECM terminal 71 and engine ground.

NOTE:

It is necessary to use an ohmmeter which can measure more than 10 M Ω .

CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-I

Resistance: Approximately 500 - 620 kΩ [at 25°C (77°F)]

SEC118D

4. Also check harness for short to ground and short to power.

OK or NG

OK ▶	GO TO 5.
NG •	GO TO 2.

2 CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-II

- 1. Disconnect knock sensor harness connector.
- Check harness continuity between ECM terminal 71 and knock sensor terminal 1. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG ▶	GO TO 3.

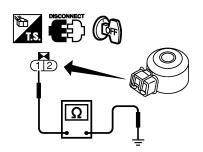
3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F8, F131
- · Harness for open or short between ECM and knock sensor

Repair open circuit or short to ground or short to power in harness or connectors.

SC


HA

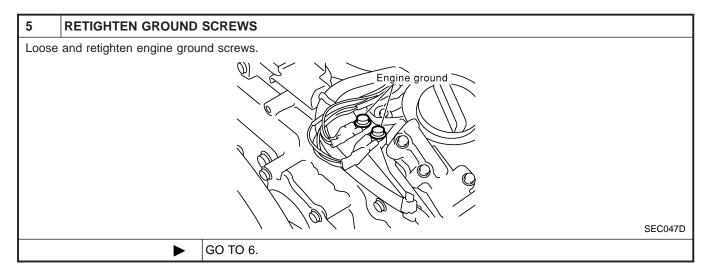
4 CHECK KNOCK SENSOR

Check resistance between knock sensor terminal 1 and ground.

NOTE:

It is necessary to use an ohmmeter which can measure more than 10 M Ω .

Resistance: 500 - 620 k Ω [at 25°C (77°F)]


SEC119D

CAUTION:

Do not use any knock sensors that have been dropped or physically damaged. Use only new ones.

OK or NG

OK	GO TO 8.
NG	Replace knock sensor.

6 CHECK KNOCK SENSOR SHIELD CIRCUIT FOR OPEN AND SHORT 1. Disconnect harness connectors F8, F131. 2. Check harness continuity between harness connector F8 terminal 2 and engine ground. Continuity should exist. 3. Also check harness for short to power. OK or NG OK

NG	>	GO TO 7.
7	DETECT MALFUNCTIO	NING PART

Check the following.

- Harness connectors F8, F131
- Joint connector-18
- Harness for open or short between harness connector F8 and engine ground

Repair open circuit or short to power in harness or connectors.

DTC P0327, P0328 KS

Diagnostic Procedure (Cont'd)

8	CHECK INTERMITTENT INCIDENT		
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	•	INSPECTION END	

G[

 $\mathbb{M}\mathbb{A}$

EM

LC

EC

FE

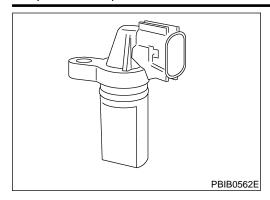
AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST


RS

BT

HA

SC

EL

Component Description

The crankshaft position sensor (POS) is located on the oil pan facing the gear teeth (cogs) of the signal plate at the end of the crankshaft. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet and Hall IC.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

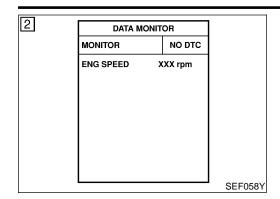
The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC0939

MONITOR ITEM	CONDITION	SPECIFICATION
ENG SPEED	 Tachometer: Connect Run engine and compare tachometer indication with the CONSULT-II value. 	Almost the same speed as the CONSULT-II value.


On Board Diagnosis Logic

NHEC0941

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0335 0335	Crankshaft position sensor (POS) circuit	 The crankshaft position sensor signal is not detected by the ECM during the first few seconds of engine cranking. The proper pulse signal from the crankshaft position sensor (POS) is not sent to ECM while the engine is running. The crankshaft position sensor signal is not in the normal pattern during engine running. 	 Harness or connectors [The crankshaft position sensor (POS) circuit is open or shorted.] Crankshaft position sensor (POS) Signal plate

DTC P0335 CKP SENSOR (POS)

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

=NHEC0942

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch "ON".

(P) With CONSULT-II

Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.

Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.

3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-325. If 1st trip DTC is not detected, go to next step.

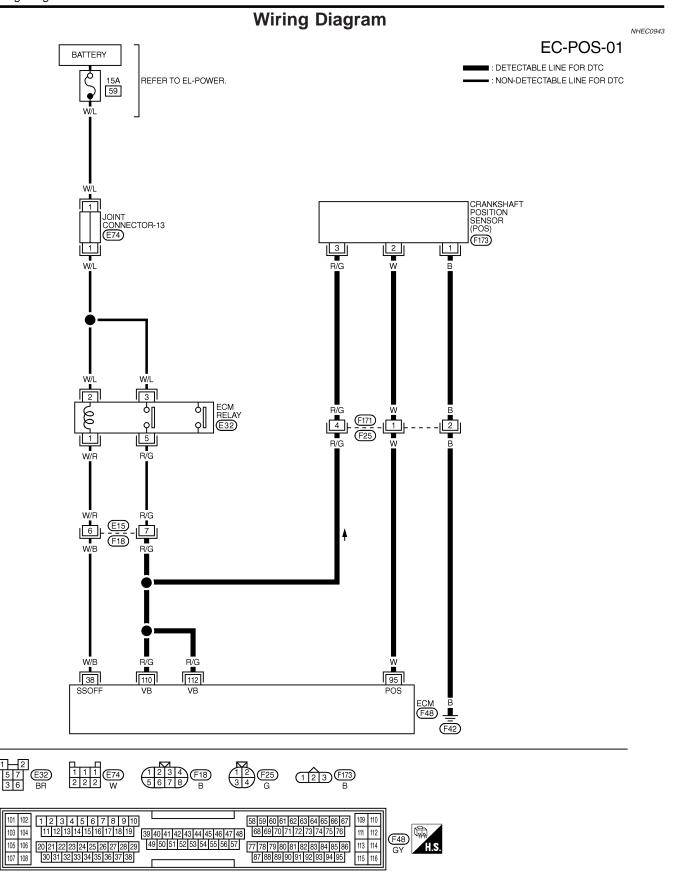
4) Maintaining engine speed at more than 1,000 rpm for at least 5 seconds.

5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-325

® With GST

Follow the procedure "With CONSULT-II" above.

AX


SU

BT

HA

SC

EL

MEC551D

SU

BR

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

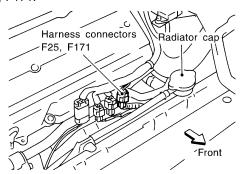
age to the	age to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.					
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	MA	
				Approximately 2.4V★		
			[Engine is running]		EM	
			• Idle speed	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	LG	
		Crankshaft position		SEC035D	EC	
95	W	sensor (POS)		Approximately 2.3V★		
				100000000000000000000000000000000000000	FE	
			[Engine is running] • Engine speed is 2,000 rpm.		AT	
				>> 5.0 V/Div 1 ms/Div r		
				SEC036D	$\mathbb{A}\mathbb{X}$	

 $[\]star$: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

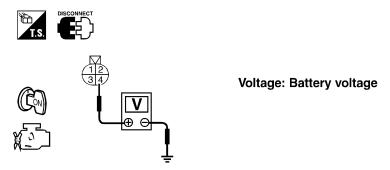
1 RETIGHTEN GROUND SCREWS

1. Turn ignition switch "OFF".
2. Loosen and retighten engine ground screws.


Engine ground

SC

SEC047D


CHECK CKP SENSOR (POS) POWER SUPPLY CIRCUIT

1. Disconnect harness connectors F25, F171.

SEF511WB

- 2. Turn ignition switch "ON".
- 3. Check voltage between harness connector F25 terminal 4 and ground with CONSULT-II or tester.

SEF323X

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG ▶	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F25, F171
- Harness connectors E15, F18
- Harness for open or short between ECM and harness connetor F25
- Harness for open or short between ECM relay and harness connector F25

Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK CKP SENSOR (POS) GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between harness connector F25 terminal 2 and engine ground. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to power.

OK	or	NG

OK •	GO TO 6.
NG ▶	GO TO 5.

DTC P0335 CKP SENSOR (POS)

Diagnostic Procedure (Cont'd)

5 DETECT MALFUNCTIONING PART Check the following.

• Harness connectors F25, F171

Harness for open between harness connector F25 and ground

Repair open circuit or short to power in harness or connectors.

6 CHECK CKP SENSOR (POS) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Disconnect ECM harness connector.

2. Check harness continuity between ECM terminal 95 and harness connector F25 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

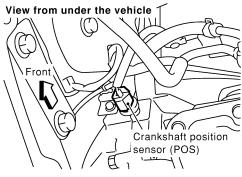
3. Also check harness for short to ground and short to power.

0	K	or	Ν	G
---	---	----	---	---

OK •	GO TO 8.
NG •	GO TO 7.

7 DETECT MALFUNCTIONING PART

Check the following.


• Harness connectors F25, F171

• Harness for open or short between ECM and harness connector F25

Repair open circuit or short to ground or short to power in harness or connectors.

8 CHECK CKP SENSOR (POS) SUB-HARNESS CIRCUIT FOR OPEN AND SHORT

1. Disconnect CKP sensor (POS) harness connector.

2. Check harness continuity between CKP sensor (POS) terminals and harness connector F171 terminals as follows.

CKP sensor (POS) terminal	Harness connector F171 terminal
1	2
2	1
3	4

MTBL1191

SEC137D

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK		GO TO 9.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

G[

MA

LC

EC

515

AT

AX

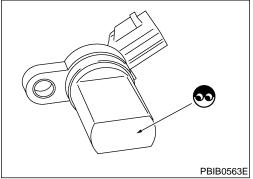
SU

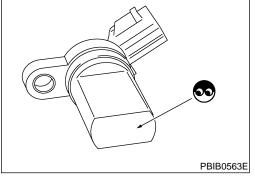
9 I

HA

SC

EL

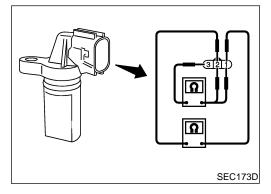

DTC P0335 CKP SENSOR (POS)


Diagnostic Procedure (Cont'd)

9	9 CHECK CRANKSHAFT POSITION SENSOR (POS)	
Refer to "Component Inspection", EC-328.		
OK or NG		
OK	•	GO TO 10.
NG	•	Replace crankshaft position sensor (POS).

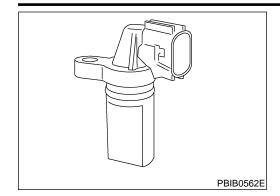
10	CHECK GEAR TOOTH			
Visually check for chipping signal plate gear tooth.				
OK or NG				
OK	>	GO TO 11.		
NG	>	Replace the signal plate.		

11	CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.			
	► INSPECTION END		



Component Inspection CRANKSHAFT POSITION SENSOR (POS)

NHEC1415


NHEC1415S01

- 1. Loosen the fixing bolt of the sensor.
- Disconnect crankshaft position sensor (POS) harness connector.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.

5. Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
1 (+) - 2 (-)	
1 (+) - 3 (–)	Except 0 or ∞
2 (+) - 3 (–)	

Component Description

The camshaft position sensor (PHASE) senses the retraction with intake valve camshaft to identify a particular cylinder. The crankshaft position sensor (POS) senses the piston position. When the crankshaft position sensor (POS) system becomes inoperative, the camshaft position sensor (PHASE) provides various controls of engine parts instead, utilizing timing of cylinder identification signals. The sensor consists of a permanent magnet and Hall IC. When engine is running, the high and low parts of the teeth cause the gap with the sensor to change. The changing gap causes the magnetic field near the sensor to change. Due to the changing magnetic field, the voltage from the sensor changes.

LC

FE

AT

AX

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	
P0340 0340 (Bank 1) P0345 0345 (Bank 2)	Camshaft position sensor circuit	 The cylinder No. signal is not sent to ECM for the first few seconds during engine cranking. The cylinder No. signal is not sent to ECM during engine running. The cylinder No. signal is not in the normal pattern during engine running. 	 Harness or connectors [The camshaft position sensor (PHASE) circuit is open or shorted.] Camshaft position sensor (PHASE) Camshaft (Intake) Starter motor (Refer to SC section.) Starting system circuit (Refer to SC section.) Dead (Weak) battery 	

BT

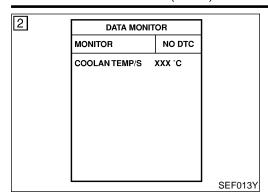
HA

SC

EL

DTC Confirmation Procedure

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch "ON".

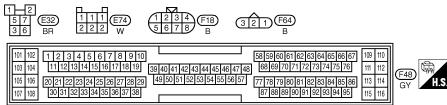
DTC P0340, P0345 CMP SENSOR (PHASE)

DTC Confirmation Procedure (Cont'd)

(E) WITH CONSULT-II

NHEC0948S03

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-334. If 1st trip DTC is not detected, go to next step.
- 5) Maintaining engine speed at more than 1,000 rpm for at least 5 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-334.


WITH GST

NHEC0948S04

Follow the procedure "With CONSULT-II" above.

Wiring Diagram NHEC0949 **BANK 1** NHEC0949S01 EC-PHASE-01 GI BATTERY : DETECTABLE LINE FOR DTC REFER TO EL-POWER. : NON-DETECTABLE LINE FOR DTC MA CAMSHAFT POSITION SENSOR (PHASE) (BANK1) EM F212 R/G 2 1 B LC JOINT CONNECTOR-13 E74 EC FE AT AXECM RELAY E32 ρl SU 5 BR W/R 6 W/B ST RS BT HA W/B 38 R/G 110 R/G 112 65 SC ECM F48 Ē EL 1 1 1 E74 2 2 2 W 1 2 F58 3 4 L)(F18) B 321 F212 G (E32) 103 104 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 105 106

Wiring Diagram (Cont'd) **BANK 2** NHFC0949S02 EC-PHASE-02 **BATTERY** : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC 15A 59 REFER TO EL-POWER. CAMSHAFT POSITION SENSOR (PHASE) (BANK 2) F64 R/G JOINT CONNECTOR-13 E74 ECM RELAY E32 W/B 38 R/G 110 R/G 112 85 ECM B F48 = F42 1 1 1 2 2 2 W 1 2 3 4 5 6 7 8 B 321 F64 B

DTC P0340, P0345 CMP SENSOR (PHASE)

Wiring Diagram (Cont'd)

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

					뗂
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	M
		[Engine is running] • Warm-up condition • Idle speed Camshaft position sen-	Warm-up condition	BATTERY VOLTAGE (1.0 - 4.0V)★	
65	Υ	sor (PHASE) (Bank 1)		BATTERY VOLTAGE (1.0 - 4.0V)★	F
			 [Engine is running] Warm-up condition Engine speed is 2,000 rpm. 	→ 5.0 V/Div 20 ms/Div	AT AZ
		Camshaft position sensor (PHASE) (Bank 2)		BATTERY VOLTAGE	S
			[Engine is running] • Warm-up condition	(1.0 - 4.0V)★	B
85 R			• Idle speed	■ 5.5 V/DIV 20 ms/Div [-	S
	R			BATTERY VOLTAGE	R
				(1.0 - 4.0V)★	8
			[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.		ŀ
				> 5.0 V/Div 20 ms/Div SEC034D	8
					F

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

IDX

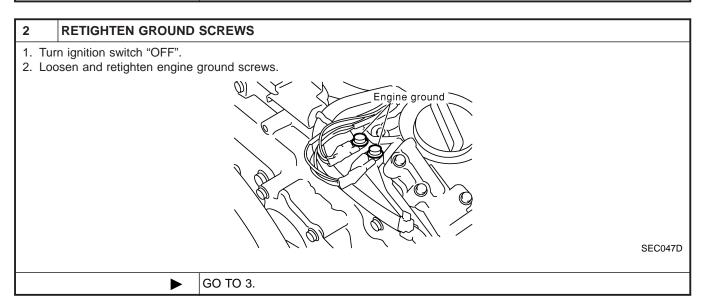
DTC P0340, P0345 CMP SENSOR (PHASE)

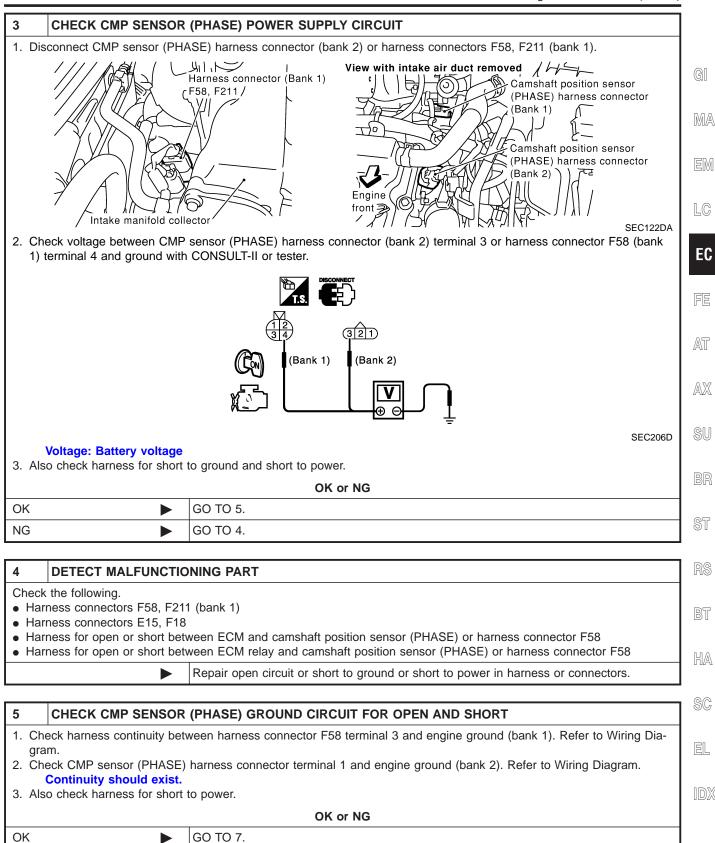
Diagnostic Procedure

Turn ignition switch to "START" position.

Does the engine turn over?

Does the starter motor operate?


Yes or No


Yes

GO TO 2.

No

Check starting system. (Refer to SC-10, "STARTING SYSTEM".)

GO TO 6.

NG

DTC P0340, P0345 CMP SENSOR (PHASE)

Diagnostic Procedure (Cont'd)

6 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F58, F211 (bank 1)
- Harness for open between camshaft position sensor (PHASE) or harness connector F58 and ground
 - Repair open circuit or short to ground or short to power in harness or connectors.

7 CHECK CMP SENSOR (PHASE) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 65 and harness connector F58 terminal 1.
- 3. Check harness continuity between ECM terminal 85 and CMP sensor (PHASE) harness connector terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK (DTC P0340)		GO TO 9.
OK (DTC P0345)	•	GO TO 10.
NG	•	GO TO 8.

8 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F58, F211 (bank 1)
- Harness for open or short between ECM and camshaft position sensor (PHASE) or harness connector F58
 - Repair open circuit or short to ground or short to power in harness or connectors.

9 CHECK CMP SENSOR (PHASE) SUB-HARNESS CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect CMP sensor (PHASE) harness connector.
- 2. Check harness continuity between CMP sensor (PHASE) terminals and harness connector F211 terminals as follows.

CMP sensor (PHASE) terminal	Harness connector F231 terminal
1	3
2	1
3	4

MTBL1300

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK	GO TO 10.
NG	Repair open circuit or short to ground or short to power in harness or connectors.

10	10 CHECK CAMSHAFT POSITION SENSOR (PHASE)				
Refer to "Component Inspection", EC-337.					
	OK or NG				
OK	OK ▶ GO TO 11.				
NG	NG Replace camshaft position sensor (PHASE).				

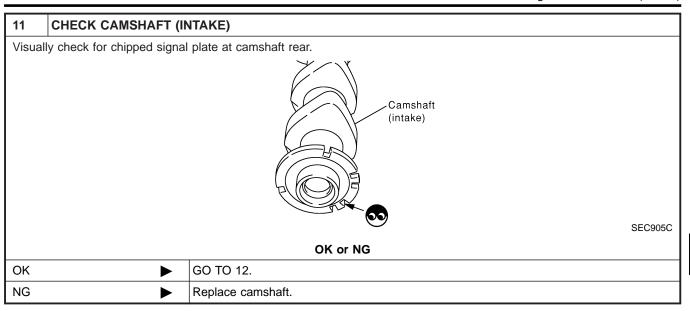
GI

MA

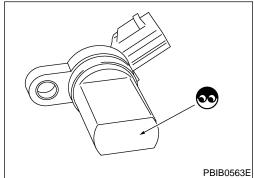
EM

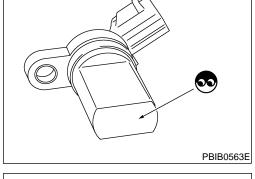
LC

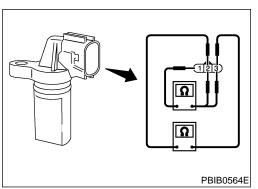
EC


AT

AX


SU


BR


ST

12	CHECK INTERMITTENT INCIDENT			
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.			
	► INSPECTION END			

Component Inspection CAMSHAFT POSITION SENSOR (PHASE)

NHEC1416

Loosen the fixing bolt of the sensor.

Disconnect camshaft position sensor (PHASE) harness connector.

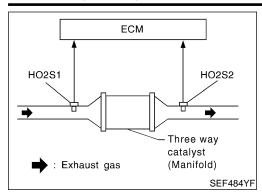
3. Remove the sensor.

Visually check the sensor for chipping.

Check resistance as shown inthe figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]	
1 (+) - 2 (–)		
1 (+) - 3 (–)	Except 0 or [∞]	
2 (+) - 3 (-)		

NHEC1416S01


BT

HA

SC

EL

On Board Diagnosis Logic

On Board Diagnosis Logic

The ECM monitors the switching frequency ratio of heated oxygen sensors 1 and 2.

A warm-up three way catalyst with high oxygen storage capacity will indicate a low switching frequency of heated oxygen sensor 2. As oxygen storage capacity decreases, the heated oxygen sensor 2 switching frequency will increase.

When the frequency ratio of heated oxygen sensors 1 and 2 approaches a specified limit value, the warm-up three way catalyst (manifold) malfunction is diagnosed.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0420 0420 (Bank 1) P0430 0430 (Bank 2)	Catalyst system effi- ciency below thresh- old	Warm-up three way catalyst (manifold) does not operate properly, warm-up three way catalyst (manifold) does not have enough oxygen storage capacity.	 Three way catalyst (manifold) Exhaust tube Intake air leaks Injectors Injector leaks Spark plug Improper ignition timing

SRT WORK SI		
CATALYST	INCMP	
EVAP SYSTEM	INCMP	
HO2S HTR	CMPLT	
HO2S	INCMP	
MONITO)R	
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
		0504005
		SEC138D

SRT WORK SI		
CATALYST	CMPLT	
EVAP SYSTEM	INCMP	
HO2S HTR	CMPLT	
HO2S	INCMP	
MONITO)R	
ENG SPEED B/FUEL SCHDL	XXX rpm XXX msec	
		SEC139D

SELF DIAG RES		
DTC RESULTS	TIME	
NO DTC IS DETECTED		
FURTHER TESTING MAY BE REQUIRED.		
		SEF560X

DTC Confirmation Procedure

JOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II

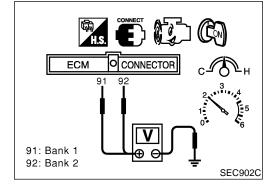
NHEC0952S01

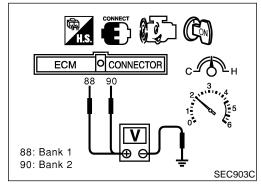
NHEC0952

TESTING CONDITION:

- Open engine hood before conducting the following procedure.
- Do not hold engine speed for more than the specified minutes below.
- Start engine and warm it up to the normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Start engine and keep engine speed between 3,500 and 4,000 rpm for at least one minute under no load.
- 4) Let engine idle for one minute.
- 5) Open engine hood.
- 6) Select "DTC & SRT CONFIRMATION" then "SRT WORK SUP-PORT" mode with CONSULT-II.
- 7) Rev engine up to 2,000 to 3,000 rpm and hold it for 3 consecutive minutes then release the accelerator pedal completely. If "INCMP" of "CATALYST" changed to "COMPLT", go to step 10.
- Wait 5 seconds at idle.
- 9) Rev engine up to 2,000 to 3,000 rpm and maintain it until "INCMP" of "CATALYST" changes to "CMPLT" (It will take approximately 5 minutes). If not "CMPLT", perform the following.
- Turn ignition switch "OFF" and leave the vehicle in a cool place (soak the vehicle).
- b) Turn ignition switch "ON" and select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- c) Start engine and warm it up while monitoring "COOLAN

DTC Confirmation Procedure (Cont'd)


TEMP/S" indication on CONSULT-II.


- d) When "COOLAN TEMP/S" indication reaches to 70°C (158°F), go to step 3.
- 10) Select "SELF-DIAG RESULTS" mode with CONSULT-II.

 Confirm that the 1st trip DTC is not detected.
 If the 1st trip DTC is detected, go to "Diagnostic Procedure", EC-339.

MA

Overall Function Check

NHEC095

Use this procedure to check the overall function of the three way catalyst (manifold). During this check, a DTC might not be confirmed.

EC

LC

CAUTION:

2)

Always drive vehicle at a safe speed.

NHECO053S01

WITH GST

- Start engine and warm it up to the normal operating temperature
 - Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Start engine and keep engine speed between 3,500 and 4,000 rpm for at least one minute under no load.
 - 0

AT

- 4) Let engine idle for one minute.
- 5) Set voltmeters probes between ECM terminals 91 [heated oxygen sensor 1 bank 1 signal], 92 [heated oxygen sensor 1 bank 2 signal] and engine ground, and ECM terminals 88 [heated oxygen sensor 2 bank 1 signal], 90 [heated oxygen sensor 2 bank 2 signal] and engine ground.
- BR
- 6) Keep engine speed at 2,000 rpm constant under no load.
- Make sure that the voltage switching frequency (high & low) between ECM terminals 88 and engine ground, or 90 and engine ground is very less than that of ECM terminals 91 and engine ground, or 91 and engine ground.

Switching frequency ratio = A/B

A: Heated oxygen sensor 2 voltage switching frequency B: Heated oxygen sensor 1 voltage switching frequency This ratio should be less than 0.75.

BT

If the ratio is greater than above, it means warm-up three way catalyst does not operate properly. Go to "Diagnostic Procedure", EC-339.

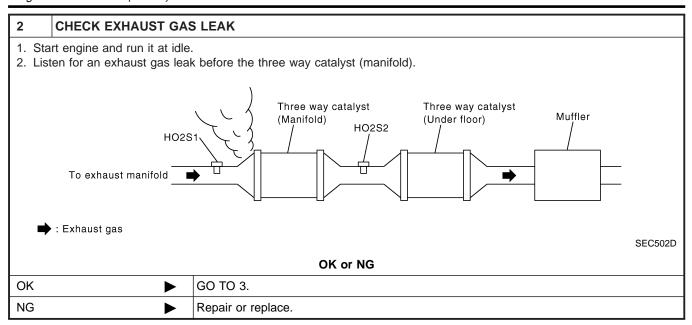
HA

SC

NOTE:

ore

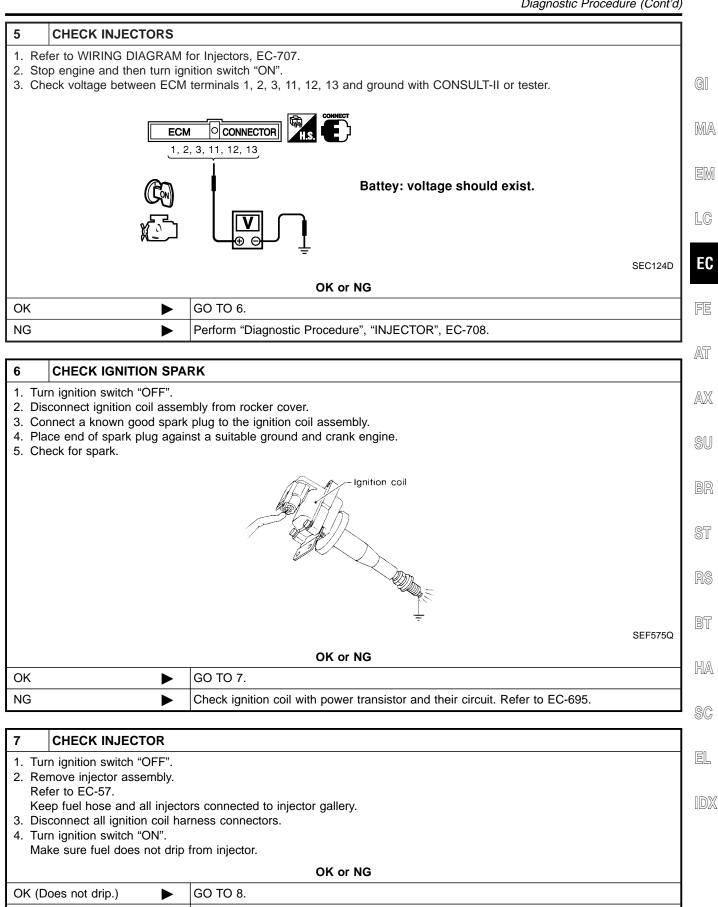
If the voltage at terminal 92 or 91 does not switch periodically more than 5 times within 10 seconds at step 5, perform trouble diagnosis for "DTC P0133, P0153" first. (See EC-222.)


EL

Diagnostic Procedure

NHEC0954

1	CHECK EXHAUST SYS	TEM	
Visually check exhaust tubes and muffler for dent.			
OK or NG			
OK	•	GO TO 2.	
NG	•	Repair or replace.	


Diagnostic Procedure (Cont'd)

3	3 CHECK INTAKE AIR LEAK		
Listen	Listen for an intake air leak after the mass air flow sensor.		
	OK or NG		
ОК	>	GO TO 4.	
NG	>	Repair or replace.	

4	CHECK IGNITION TIMING			
Che	ck the following items. Refe	r to "Basic Inspection	", EC-119.	
		Items	Specifications	
		Ignition timing	15° ± 5° BTDC	
		Target idle speed	675 ± 50 rpm (in "P" or "N" position)	
				MTBL1257
			OK or NG	
OK	>	GO TO 5.		
NG	•	Follow the "Basic Ir	nspection".	

Diagnostic Procedure (Cont'd)

Replace the injector(s) from which fuel is dripping.

NG (Drips.)

Diagnostic Procedure (Cont'd)

8	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
Trouble is fixed.			INSPECTION END
Troubl	e is not fixed.		Replace three way catalyst (manifold).

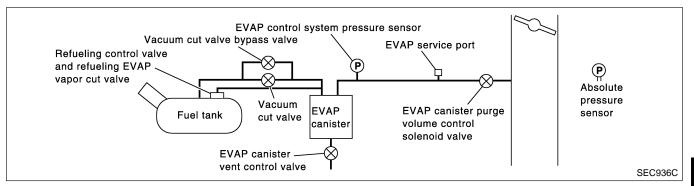
System Description

NHEC0955

GI

MA

LC


EC

FE

AT

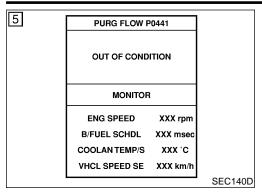
NOTE:

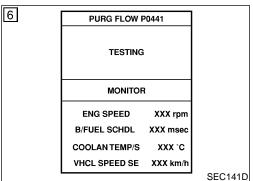
If DTC P0441 is displayed with P0226, P0227, P0228, P1227 or P1228, perform trouble diagnosis for other DTC.

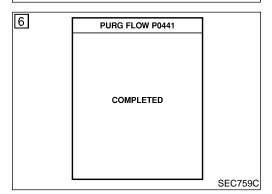
In this evaporative emission (EVAP) control system, purge flow occurs during non-closed throttle conditions. Purge volume is related to air intake volume. Under normal purge conditions (non-closed throttle), the EVAP canister purge volume control solenoid valve is open to admit purge flow. Purge flow exposes the EVAP control system pressure sensor to intake manifold vacuum.

On Board Diagnosis Logic

EC0956


Under normal conditions (non-closed throttle), sensor output voltage indicates if pressure drop and purge flow are adequate. If not, a fault is determined.


SU


DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	BR
P0441 0441	EVAP control system incorrect purge flow	EVAP control system does not operate properly, EVAP control system has a leak between intake manifold and EVAP control system pressure sensor.	EVAP canister purge volume control solenoid valve stuck closed EVAP control system pressure sensor and the circuit	ST
			Loose, disconnected or improper connection of rubber tube Blocked rubber tube	RS
			 Blocked rubber tube Cracked EVAP canister EVAP canister purge volume control solenoid valve circuit 	BT
			Blocked purge port EVAP canister vent control valve	HA

SC

EL

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE

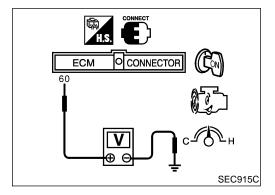
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-II

NHEC0957S01


NHEC0957

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Start engine and let it idle for at least 70 seconds.
- 4) Select "PURG FLOW P0441" of "EVAPORATIVE SYSTEM" in "DTC CONFIRMATION" mode with CONSULT-II.
- 5) Touch "START". If "COMPLETED" is displayed, go to step 7.
- 6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 35 seconds.)

Selector lever	Suitable position
Vehicle speed	32 - 120 km/h (20 - 75 MPH)
ENG SPEED	500 - 3,000 rpm
B/FUEL SCHDL	1.3 - 8.1 msec
Engine coolant temperature	70 - 100°C (158 - 212°F)

If "TESTING" is not changed for a long time, retry from step 2.

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-346.

Overall Function Check

Use this procedure to check the overall monitoring function of the EVAP control system purge flow monitoring. During this check, a DTC might not be confirmed.

WITH GST

NHEC0958S01

- 1) Lift up drive wheels.
- 2) Start engine (TCS switch "OFF") and warm it up to normal operating temperature.
- 3) Turn ignition switch "OFF", wait at least 10 seconds.
- Start engine and wait at least 70 seconds.

Overall Function Check (Cont'd)

- Set voltmeter probes to ECM terminals 60 (EVAP control system pressure sensor signal) and ground.
- Check EVAP control system pressure sensor value at idle speed and note it.
- Establish and maintain the following conditions for at least 1 7)

Air conditioner switch	ON
Headlamp switch	ON
Rear window defogger switch	ON
Engine speed	Approx. 3,000 rpm
Gear position	Any position other than "P", "N" or "R"

- Verify that EVAP control system pressure sensor value stays 0.1V less than the value at idle speed (measured at step 6) for at least 1 second.
- 9) If NG, go to "Diagnostic Procedure", EC-346.

EC

MA

EM

LC

FE

AT

AX

SU

BR

ST

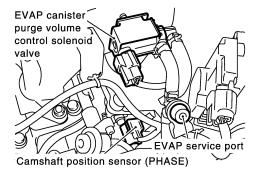
BT

HA

SC

EL

IDX


Diagnostic Procedure

	=NHECOSS			
1	CHECK EVAP CANIST	ER		
	Turn ignition switch "OFF". Check EVAP canister for cracks.			
OK or NG				
OK (W	ith CONSULT-II)	GO TO 2.		
OK (W II)	ithout CONSULT-	GO TO 3.		
NG	•	Replace EVAP canister.		

2 CHECK PURGE FLOW

(P) With CONSULT-II

1. Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge.

SEC929C

- 2. Start engine and let it idle.
- 3. Select "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.
- 4. Rev engine up to 2,000 rpm.
- 5. Touch "Qd" and "Qu" on CONSULT-II screen to adjust "PURG VOL CONT/V" opening and check vacuum existence.

ACTIVE TEST		
PURG VOL CONT/V	0.0%	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	RICH	
HO2S1 MNTR (B2)	RICH	

SEC142D

PURG VOL CONT/V	VACUUM
100.0%	Should exist
0.0%	Should not exist

MTBL1158

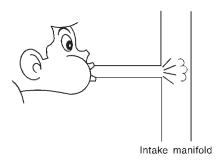
OK	or	NG
----	----	----

OK •	GO TO 7.
NG ►	GO TO 4.

Diagnostic Procedure (Cont'd)

EL

CHECK PURGE FLOW ⊗ Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. GI 2. Stop engine. 3. Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge. MA EVAP canister purge volume control solenoid valve LC EC EVAP service port Camshaft position sensor (PHASE) SEC929C 4. Start engine and let it idle for at least 80 seconds. 5. Check vacuum gauge indication when revving engine up to 2,000 rpm. Vacuum should exist. 6. Release the accelerator pedal fully and let idle. AT Vacuum should not exist. OK or NG AX GO TO 7. OK NG GO TO 4. SU 4 **CHECK EVAP PURGE LINE** 1. Turn ignition switch "OFF". 2. Check EVAP purge line for improper connection or disconnection. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-40. OK or NG GO TO 5. OK NG Repair it. HA SC


5 CHECK EVAP PURGE HOSE AND PURGE PORT

1. Disconnect purge hoses connected to EVAP service port A and EVAP canister purge volume control solenoid valve B.

SEF367U

- 2. Blow air into each hose and EVAP purge port C.
- 3. Check that air flows freely.

SEF368U

OK or NG

OK (With CONSULT-II)		GO TO 6.
OK (Without CONSULT-II)	•	GO TO 7.
NG	>	Repair or clean hoses and/or purge port.

6 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

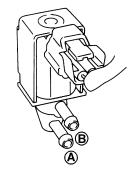
(P) With CONSULT-II

- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

ACTIVE TEST			
PURG VOL CONT/V	0.0%		
MONITOR			
ENG SPEED	XXX rpm		
A/F ALPHA-B1	XXX %		
A/F ALPHA-B2	XXX %		
HO2S1 MNTR (B1)	RICH		
HO2S1 MNTR (B2)	RICH		

SEC142D

OK or NG

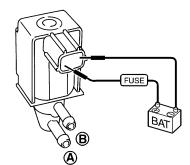

OK •	GO TO 8.
NG •	GO TO 7.

Diagnostic Procedure (Cont'd)

CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

With CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.



Condition PURG VOL CONT/V value	Air passage continuity between A and B
100.0%	Yes
0.0%	No

SEF334X

Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

SEF335X

OK or NG

OK		GO TO 8.	
NG		Replace EVAP canister purge volume control solenoid valve.	

8	CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE		
	1. Turn ignition switch "OFF".		
2. Ch	2. Check disconnection or improper connection of hose connected to EVAP control system pressure sensor.		
	OK or NG		
OK	>	GO TO 9.	
NG	>	Repair it.	

GI

MA

EM

LC

EC

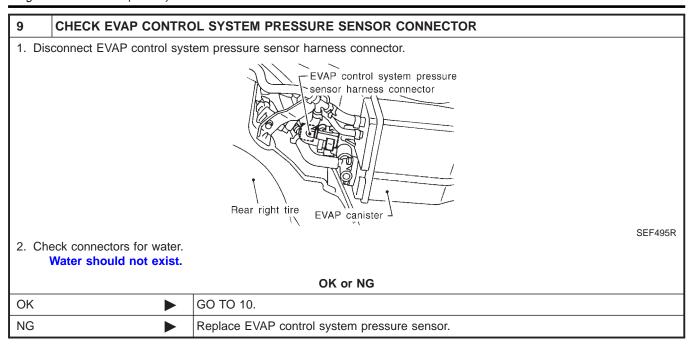
FE

AT

AX

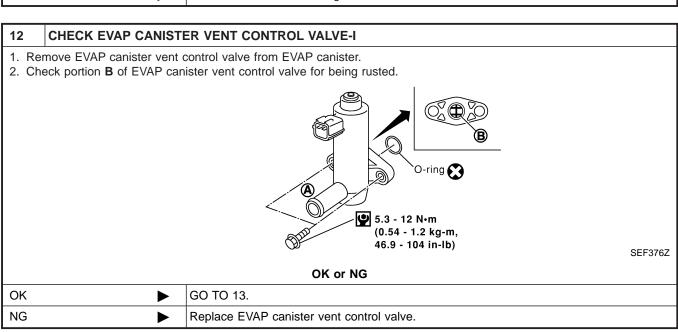
SU

01


RS

BT

HA

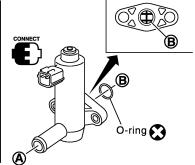

SC

EL

10	0 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION		
Refer to "DTC Confirmation Procedure" for DTC P0452, EC-382 and P0453, EC-389.			
	OK or NG		
OK	OK ▶ GO TO 11.		
NG	•	Replace EVAP control system pressure sensor.	

11	11 CHECK RUBBER TUBE FOR CLOGGING			
	 Disconnect rubber tube connected to EVAP canister vent control valve. Check the rubber tube for clogging. OK or NG			
OK	OK GO TO 12.			
NG	>	Clean the rubber tube using an air blower.		

Diagnostic Procedure (Cont'd)

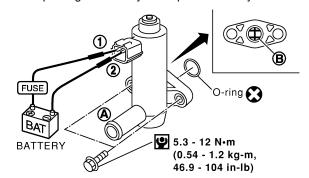

CHECK EVAP CANISTER VENT CONTROL VALVE-II

(II) With CONSULT-II

13

- 1. Reconnect harness connectors disconnected.
- 2. Turn ignition switch "ON".
- 3. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time.

ACTIVE TEST		
VENT CONTROL/V	OFF	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	


Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

Operation takes less than 1 second.

SEC158D

Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

Operation takes less than 1 second.

SEF378Z

Make sure new O-ring is installed properly.

OK	or	NG
UN	OI	ING

OK ▶	GO TO 15.
NG ▶	GO TO 14.

CHECK EVAP CANISTER VENT CONTROL VALVE-III

- 1. Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower.
- 2. Perform Test No. 13 again.

OK or NG

ОК	•	GO TO 15.
NG	•	Replace EVAP canister vent control valve.

CHECK EVAP PURGE LINE

Inspect EVAP purge line (pipe and rubber tube). Check for evidence of leaks.

Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-40.

OK or NG

OK •	GO TO 16.
NG ▶	Replace it.

GI

MA

LC

FE

AT

AX

SU

BT

HA

SC

EL

Diagnostic Procedure (Cont'd)

16	16 CLEAN EVAP PURGE LINE	
Clean EVAP purge line (pipe and rubber tube) using air blower.		
	▶ GO TO 17.	

17	17 CHECK INTERMITTENT INCIDENT	
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	INSPECTION END	

NHEC0960

GI

MA

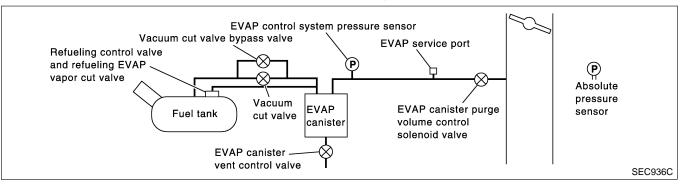
EC

FE

AT

AX

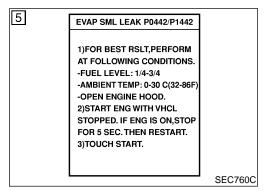
On Board Diagnosis Logic

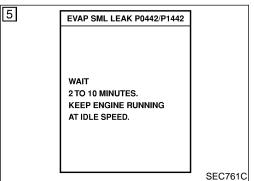

NOTE:

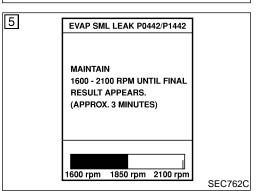
If DTC P0442 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-600.)

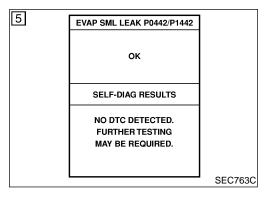
This diagnosis detects leaks in the EVAP purge line using engine intake manifold vacuum.

If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge volume control solenoid valve, under the following "Vacuum test" conditions.


The vacuum cut valve bypass valve is opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP canister vent control valve will then be closed to shut the EVAP purge line off. The EVAP canister purge volume control solenoid valve is opened to depressurize the EVAP purge line using intake manifold vacuum. After this occurs, the EVAP canister purge volume control solenoid valve will be closed.




DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0442 0442	EVAP control system small leak detected (negative pressure)	EVAP control system has a leak, EVAP control system does not operate properly.	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close.
			 Foreign matter caught in fuel filler cap Leak is in line between intake manifold and EVAP canister purge volume
			 control solenoid valve. Foreign matter caught in EVAP canister vent control valve
			 EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks
			 EVAP purge line rubber tube bent Blocked or bent rubber tube to EVAP control system pressure sensor
			 Loose or disconnected rubber tube EVAP canister vent control valve and the circuit
			 EVAP canister purge volume control solenoid valve and the circuit Absolute pressure sensor
			 Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged.
			 Water separator EVAP canister is saturated with water. EVAP control system pressure sensor Fuel level sensor and the circuit
			Refueling control valve ORVR system leaks


CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

NHEC0961

NOTE:

- If DTC P0442 is displayed with P1448, perform trouble diagnosis for DTC P1448 first (see EC-600).
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).
- Open engine hood before conducting the following procedure.

(P) WITH CONSULT-II

NHEC0961S01

- 1) Turn ignition switch "ON".
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 4) Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 30°C (32 - 86°F)

 Select "EVP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to "Basic Inspection", EC-119.

Make sure that "OK" is displayed.
 If "NG" is displayed, refer to "Diagnostic Procedure", EC-355.

NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

WITH GST

NOTE:

NHEC0961S02

Be sure to read the explanation of "Driving Pattern" on EC-82 before driving vehicle.

- Start engine.
- 2) Drive vehicle according to "Driving Pattern", EC-82.

- Stop vehicle.
- Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- Turn ignition switch "OFF" and wait at least 10 seconds. 5)
- Start engine.
 - It is not necessary to cool engine down before driving.
- Drive vehicle again according to the "Driving Pattern", EC-82. 7)
- Stop vehicle.
- Select "MODE 3" with GST.
- If P0442 is displayed on the screen, go to "Diagnostic Procedure", EC-355.
- If P0441 is displayed on the screen, go to "Diagnostic Procedure" for DTC P0441, EC-346.
- If P0441 and P0442 are not displayed on the screen, go to the following step.
- 10) Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6.

AX **Diagnostic Procedure** NHEC0962 **CHECK FUEL FILLER CAP DESIGN** 1. Turn ignition switch "OFF". 2. Check for genuine NISSAN fuel filler cap design. NISSAN SEF915U OK or NG

ш			
	OK	•	GO TO 2.
	NG	>	Replace with genuine NISSAN fuel filler cap.
I	2	CHECK FUEL FILLER (CAP INSTALL ATION

2	CHECK FUEL FILLER	CAP INSTALLATION	
Check that the cap is tightened properly by rotating the cap clockwise.			
	OK or NG		
OK	>	GO TO 3.	
NG	>	 Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard. 	

EC-355

EC

GI

MA

LC

AT

HA

SC

Diagnostic Procedure (Cont'd)

3	3 CHECK FUEL FILLER CAP FUNCTION			
Check for air releasing sound while opening the fuel filler cap.				
	OK or NG			
OK	OK ▶ GO TO 5.			
NG	•	GO TO 4.		

CHECK FUEL TANK VACUUM RELIEF VALVE 1. Wipe clean valve housing. 2. Check valve opening pressure and vacuum. Plate Pressure valve Gasket Vacuum valve SEF445Y -Vacuum/Pressure gauge Vacuum/ Fuel filler Pressure cap pump One-way valve

SEF943S

Pressure:

15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 - 2.90 psi)

Vacuum:

-6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm², -0.87 to -0.48 psi)

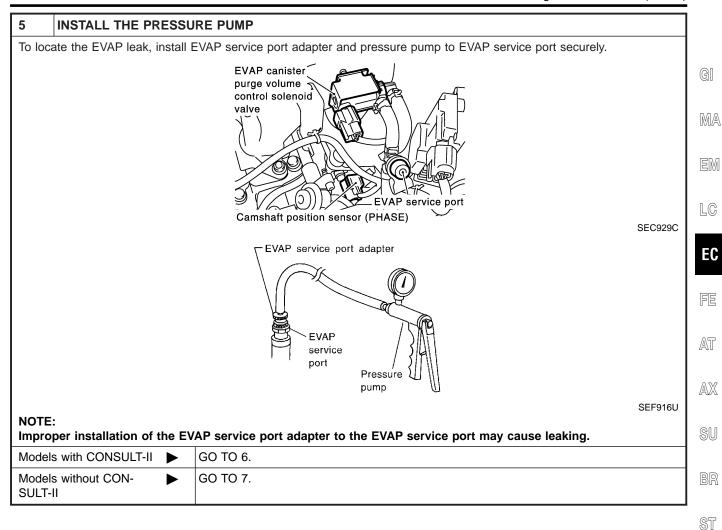
Fuel filler cap adapter

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

OK or NG

OK •	GO TO 5.
NG ►	Replace fuel filler cap with a genuine one.

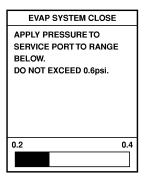

RS

BT

HA

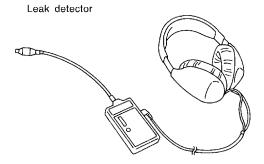
SC

EL



Diagnostic Procedure (Cont'd)

CHECK FOR EVAP LEAK

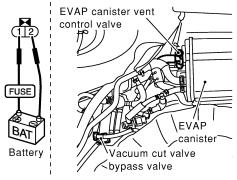

- With CONSULT-II
- 1. Turn ignition switch "ON".
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

 NOTE:
 - Never use compressed air or a high pressure pump.
 - Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

PEF917U

4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-40.

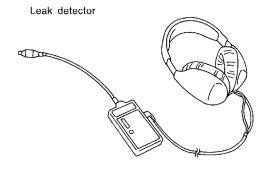
SEF200U


OK or NG

OK ►	GO TO 8.
NG ►	Repair or replace.

CHECK FOR EVAP LEAK

⋈ Without CONSULT-II


- 1. Turn ignition switch "OFF".
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-40.

SEF200U

OK or NG

OK •	GO TO 8.
NG ►	Repair or replace.

GI

MA

LC

EC

FE

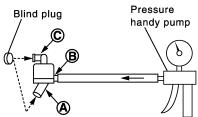
AT

AX

SU

BT

HA


SC

EL

Diagnostic Procedure (Cont'd)

CHECK WATER SEPARATOR

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that A and C are not clogged by blowing air into B with A, and then C plugged.

* (A) : Bottom hole (To atmosphere)

(B): Emergency tube (From EVAP canister)

(To member)

PBIB1032E

5. In case of NG in items 2 - 4, replace the parts.

IOTE.

• Do not disassemble water separator.

OI	Κ	or	Ν	G
----	---	----	---	---

OK •	>	GO TO 9.
NG	•	Replace water separator.

9	CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT				
Refer to "DTC Confirmation Procedure", EC-600.					
OK or NG					
ОК	>	GO TO 10.			
NG	•	Repair or replace EVAP canister vent control valve and O-ring or harness/connector.			

Diagnostic Procedure (Cont'd)

11	CHECK EVAP CANISTER				
Weigh the EVAP canister with the EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).					
			OK or NG		
OK (\	With CONSULT-II)	•	GO TO 13.		١.
OK (\ II)	Without CONSULT-	•	GO TO 14.		
NG		•	GO TO 12.		1

DETECT MALFUNCTIONING PART 12

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection

Repair hose or replace EVAP canister.

13 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

ACTIVE TEST			
PURG VOL CONT/V	0.0%		
MONITOR			
ENG SPEED	XXX rpm		
A/F ALPHA-B1	XXX %		
A/F ALPHA-B2	XXX %		
HO2S1 MNTR (B1)	RICH		
HO2S1 MNTR (B2)	RICH		

Vacuum should exist.

OK or NG

OK		GO TO 16.
NG		GO TO 15.

14 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK ►	GO TO 17.
NG ►	GO TO 15.

GI

MA

EC

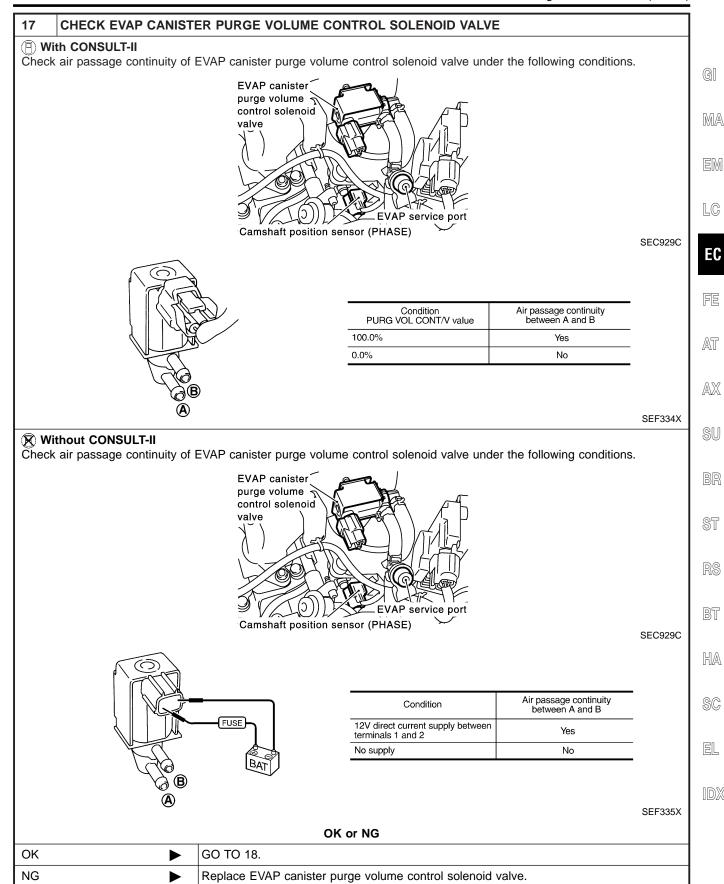
AT

AX

SEC142D

HA

EL

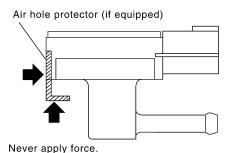

Diagnostic Procedure (Cont'd)

NG

15	15 CHECK VACUUM HOSE				
Check	Check vacuum hoses for clogging or disconnection. Refer to "Vacuum Hose Drawing", EC-30.				
	OK or NG				
OK (V	/ith CONSULT-II)		GO TO 16.		
OK (W	/ithout CONSULT-	•	GO TO 17.		
NG			Repair or reconnect the hose.		

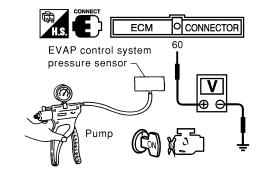
CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE With CONSULT-II 1. Start engine. 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. ACTIVE TEST PURG VOL CONT/V 0.0% MONITOR **ENG SPEED** XXX rpm A/F ALPHA-B1 XXX % A/F ALPHA-B2 XXX % HO2S1 MNTR (B1) RICH HO2S1 MNTR (B2) RICH SEC142D OK or NG GO TO 18. OK

GO TO 17.


Diagnostic Procedure (Cont'd)

CHECK FUEL TANK TEMPERATURE SENSOR 1. Remove fuel level sensor unit. 2. Check resistance between fuel level sensor unit and fuel pump terminals 4 and 5 by heating with hot water or heat gun as shown in the figure. Hot water Temperature °C (°F) Resistance $k\Omega$ 20 (68) 2.3 - 2.7 50 (122) 0.79 - 0.90 Ω SEF587X OK or NG GO TO 19. OK NG Replace fuel level sensor unit.

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


Remove EVAP control system pressure sensor with its harness connector connected.
 CAUTION:

Never apply force to the air hole protector of the sensor if equipped.

SEF799W

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure. CAUTION:
 - Always calibrate the vacuum pump gauge when using it.
 - Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 5. Check input voltage between ECM terminal 60 and ground.

SEC908C

Pressure (Relative to atmospheric pressure)	Voltage V
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

MTBL1159

CAUTION:

Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5m (19.7in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG
----	----	----

OK •	GO TO 20.
NG ►	Replace EVAP control system pressure sensor.

20 CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to "Evaporative Emission System", EC-36.

α	0.5	NG
UN	OI	IAG

OK •		GO TO 21.
NG	•	Repair or reconnect the hose.

Äl

MA

LC

/ II EC

FE

AT

AX

SU

BR

ST

IUI6

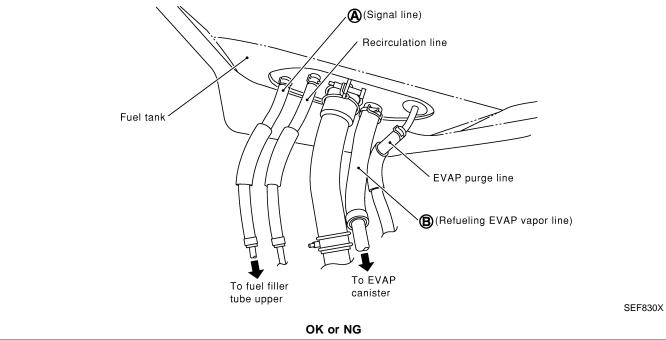
BT

HA

SC

EL

Diagnostic Procedure (Cont'd)


21	21 CLEAN EVAP PURGE LINE		
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.		
>		GO TO 22.	

22	2 CHECK REFUELING EVAP VAPOR LINE				
	Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to "ON BOARD REFUELING VAPOR RECOVERY (ORVR)", EC-42.				
		OK or NG			
OK	•	GO TO 23.			
NG	>	Repair or replace hoses and tubes.			

23	23 CHECK SIGNAL LINE AND RECIRCULATION LINE		
Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.			
OK or NG			
OK	•	GO TO 24.	
NG	•	Repair or replace hoses, tubes or filler neck tube.	

24 CHECK REFUELING CONTROL VALVE

- 1. Remove fuel filler cap.
- Check air continuity between hose ends A and B. Blow air into the hose end B. Air should flow freely into the fuel tank.
- 3. Blow air into hose end A and check there is no leakage.
- 4. Apply pressure to both hose ends A and B [20 kPa (150 mmHg, 5.91 inHg)] using a pressure pump and a suitable 3-way connector. Check that there is no leakage.

OK	>	GO TO 25.
NG		Replace refueling control valve with fuel tank.

Diagnostic Procedure (Cont'd)

25	25 CHECK FUEL LEVEL SENSOR			
Refer	to EL-139, "Fuel Level Se	ensor Unit Check".		
		OK or NG	G	
OK				
NG	NG Replace fuel level sensor unit.			
] M/	
26 CHECK INTERMITTENT INCIDENT				
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.				

INSPECTION END

EC

LC

FE

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

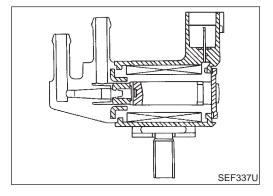
RS

BT

HA

SC

EL


Description

Description SYSTEM DESCRIPTION

NHEC0963 NHEC0963S01

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Ignition switch	Start signal	EVAP can-	
Throttle position sensor	Throttle position	ister purge	EVAP canister purge volume control solenoid valve
Accelerator pedal position sensor	Accelerator pedal position	flow control	
Heated oxygen sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)		
uel tank temperature sensor Fuel temperature in fuel tank			
Vehicle speed sensor	Vehicle speed		

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

NHEC09639

The EVAP canister purge volume control solenoid valve uses a ON/OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

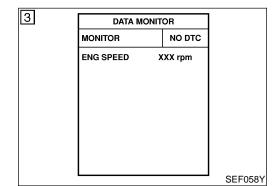
CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC0964

MONITOR ITEM	COND	OITION	SPECIFICATION
PURG VOL C/V	Engine: After warming upAir conditioner switch "OFF"	Idle (Vehicle stopped)	0%
PORG VOL C/V	Shift lever: "N"No-load	2,000 rpm	_

On Board Diagnosis Logic


On Board Diagnosis Logic			
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0444 0444	EVAP canister purge volume control sole- noid valve circuit open	An excessively low voltage signal is sent to ECM through the valve.	Harness or connectors (The solenoid valve circuit is open or shorted.) EVAP canister purge volume control solenoid valve
P0445 0445	EVAP canister purge volume control sole- noid valve circuit shorted	An excessively high voltage signal is sent to ECM through the valve.	 Harness or connectors (The solenoid valve circuit is shorted.) EVAP canister purge volume control solenoid valve

FE

AT

AX

DTC Confirmation Procedure

NHEC0967

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

,

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

(E) WITH CONSULT-II

NHEC0967S01

1) Turn ignition switch "ON".

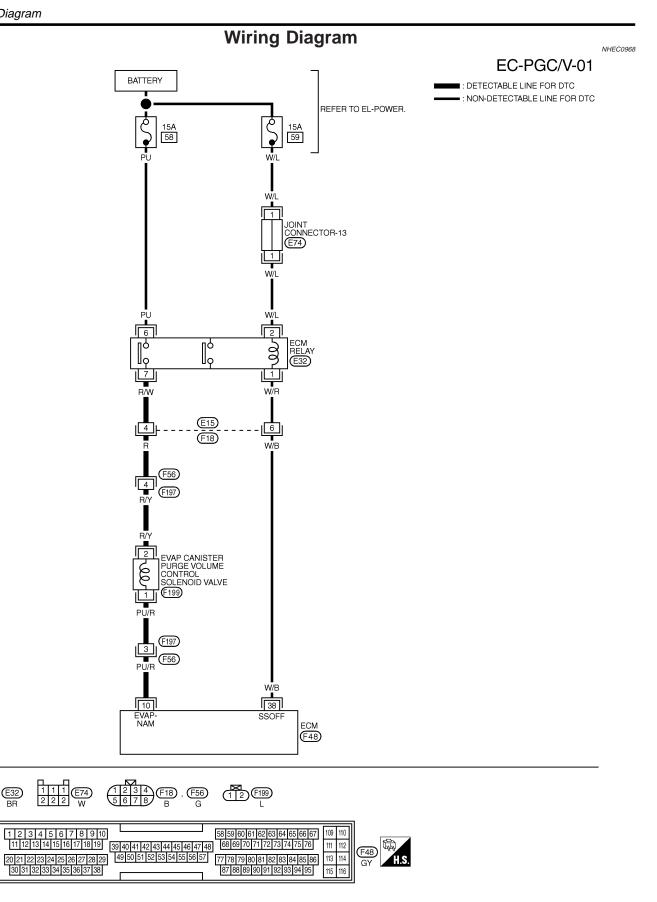
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for at least 13 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-372.

BT

HA

SC

WITH GST


Follow the proocedure "WITH CONSULT-II" above.

NHEC0967S02

EL

DX.

Wiring Diagram

Wiring Diagram (Cont'd)

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. **CAUTION:**

DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE

TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE ENGINE RUNNING AT IDLE SPEED EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE ENGINE RUNNING AT 2,000 RPM (MORE THAN 100 SECONDS AFTER STARTING ENGINE) BATTERY VOLTAGE* (V) 40 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
SOLENOID VALVE ENGINE RUNNING AT 2,000 RPM (MORE THAN 100 SECONDS AFTER STARTING ENGINE) BATTERY VOLTAGE* (V) 40 20 0				ENGINE RUNNING AT IDLE SPEED	(V) 40 20 0
	10	PU/R	SOLENOID VALVE	,	(V) 40 20 0

 $[\]bigstar$: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

GI

MA

EM

LC

EC

FE

AT

AX

SU

BR

RS

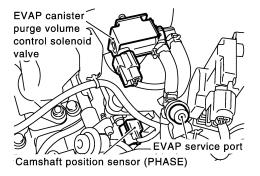
BT

HA

SC

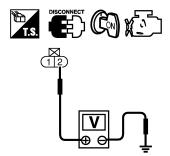
EL

EC-371


Diagnostic Procedure

Diagnostic Procedure

NHEC09


1 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect EVAP canister purge volume control solenoid valve harness connector.

SEC929C

- 3. Turn ignition switch "ON".
- 4. Check voltage between EVAP canister purge volume control solenoid valve terminal 2 and ground with CONSULT-II or tester.

SEC062D

Voltage: Battery voltage

OK or NG

OK •	GO TO 3.
NG ►	GO TO 2.

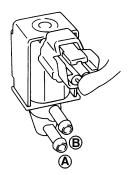
2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E15, F18
- Harness connectors F56, F197
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM relay
 - Repair harness or connectors.

Diagnostic Procedure (Cont'd)

3 CHECK EVAP CANIS	STER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT ORT	
		G
Refer to Wiring Diagram. Continuity should exist	st	
	ort to ground and short to power.	UVI
	OK or NG	
OK (With CONSULT-II)	GO TO 5.	
OK (Without CONSULT- II)	GO TO 6.	
NG •	GO TO 4.	
		Ē
4 DETECT MALFUNC	TIONING PART	
Check the following.		F
 Harness connectors F197, Harness for open or short I 	between EVAP canister purge volume control solenoid valve and ECM	
•	Repair harness or connectors.	A
		ı
5 CHECK EVAP CANI	STER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION	A
With CONSULT-II		
 Start engine. Perform "PURG VOL CON to the valve opening. 	IT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according	S
to the varie opening.	ACTIVE TEST	<u></u>
	PURG VOL CONT/V 0.0%	00
	MONITOR ENG SPEED XXX rpm	
	A/F ALPHA-B1 XXX %	8
	A/F ALPHA-B2 XXX %	
	HO2S1 MNTR (B1) RICH	R
	HO2S1 MNTR (B2) RICH	
		[6]
	SEC142D	
	OK or NG	H
OK •	GO TO 7.	
NG •	GO TO 6.	S

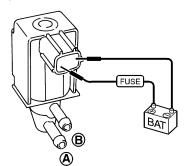

EL

Diagnostic Procedure (Cont'd)

CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.



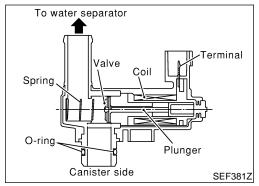
Condition PURG VOL CONT/V value	Air passage continuity between A and B
100.0%	Yes
0.0%	No

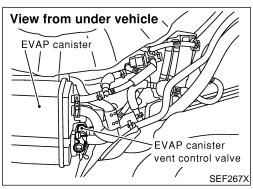
SEF334X

⋈ Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No


SEF335X


OK or NG

OK	>	GO TO 7.
NG	•	Replace EVAP canister purge volume control solenoid valve.

7	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	>	INSPECTION END	

Component Description

Component Description

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

MA

EM

LC

EC

AT

AX

SU

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION	•
VENT CONT/V	Ignition switch: ON	OFF	_

On Board Diagnosis Logic

NHEC0973

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0447 0447	EVAP canister vent control valve circuit open	An improper voltage signal is sent to ECM through EVAP canister vent control valve.	 Harness or connectors (The valve circuit is open or shorted.) EVAP canister vent control valve

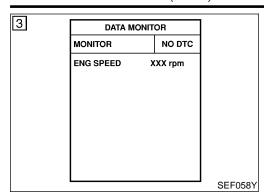
HA

BT

SC

EIL

DTC Confirmation Procedure


NOTE:

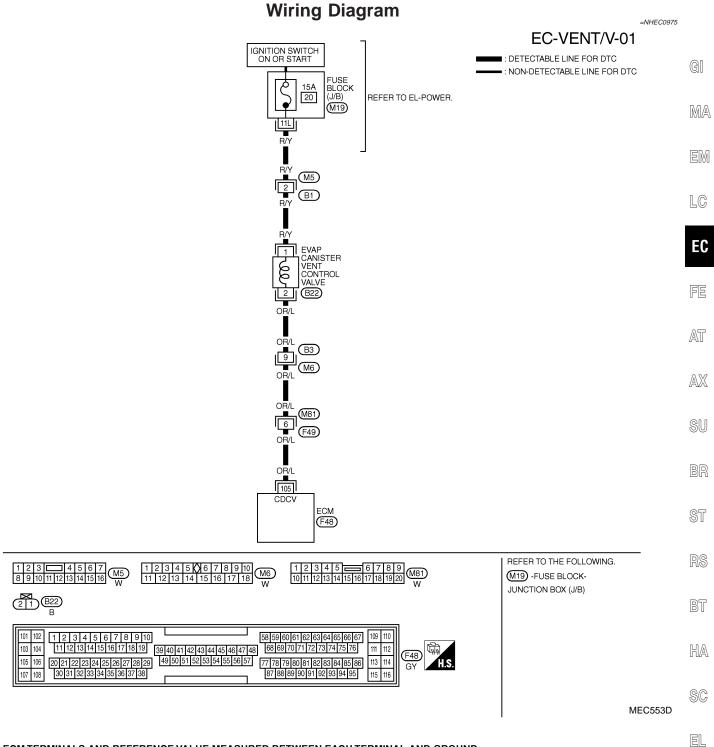
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

DTC Confirmation Procedure (Cont'd)

(E) WITH CONSULT-II


NHEC0974S01

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait at least 8 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-378.

WITH GST

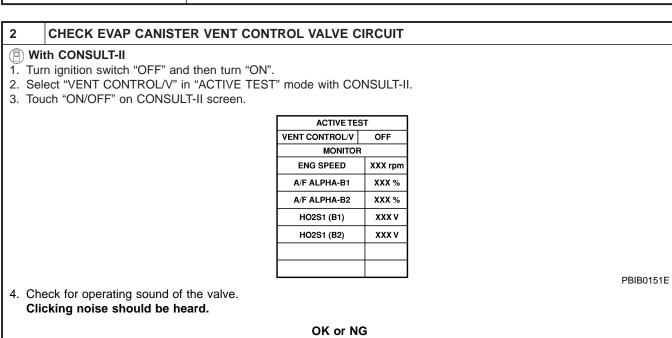
NHEC0974S02

Follow the procedure "WITH CONSULT-II" above.

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND.

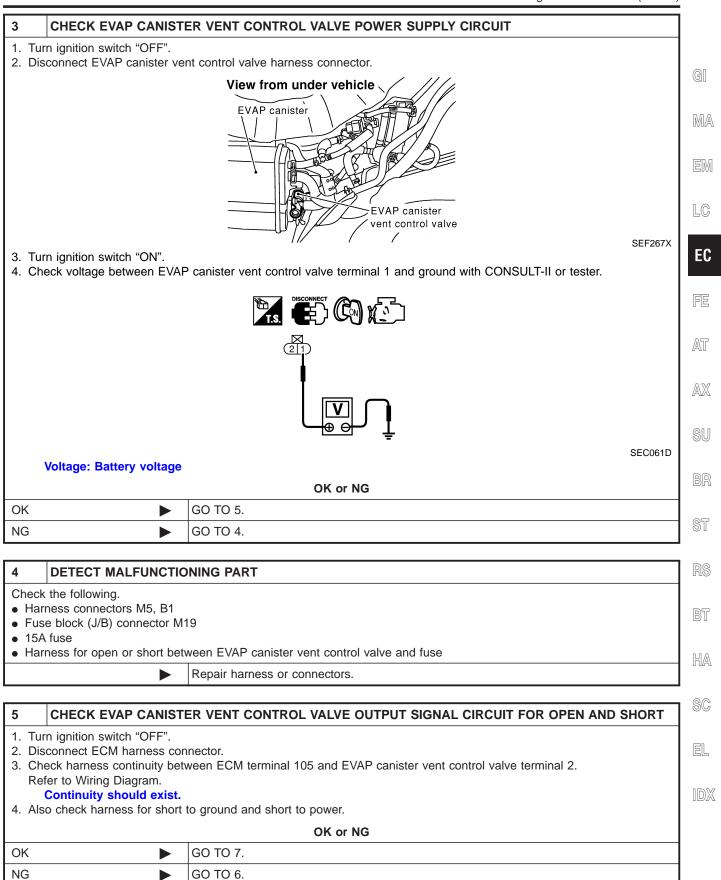
CAUTION:
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE
TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TO THE ESIM O THANGOTOTI. GOE A GROUND OTHER THAN ESIM TERMINAES, GOOT AS THE GROUND.				
TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
105		EVAP CANISTER VENT CONTROL VALVE	IGN ON	BATTERY VOLTAGE


SEF668XC

Diagnostic Procedure

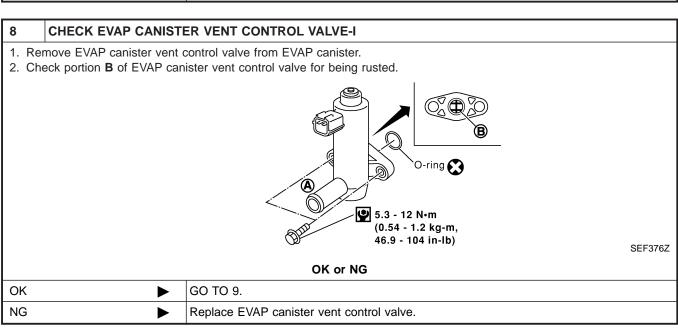
Diagnostic Procedure NHECO976 Yes or No

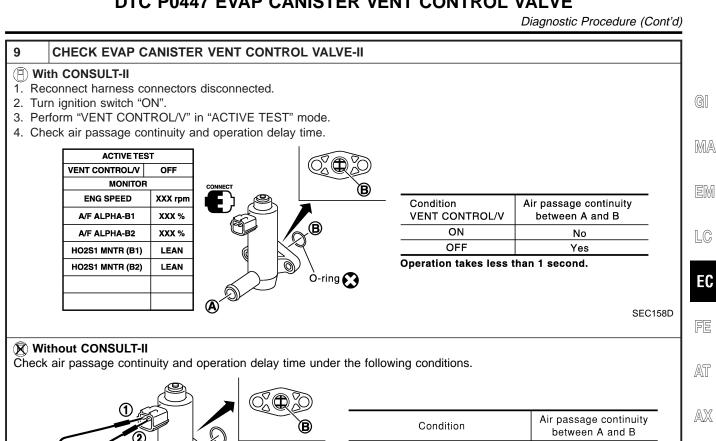

INSPECTION START

1. Do you have CONSULT-II?

OK •	GO TO 7.
NG ►	GO TO 3.

Diagnostic Procedure (Cont'd)




Diagnostic Procedure (Cont'd)

6 DETECT MALFUNCTIONING PART Check the following. • Harness connectors B3, M6 • Harness connectors M81, F49 • Harness for open or short between EVAP canister vent control valve and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

7	CHECK RUBBER TUBE	FOR CLOGGING		
 Disconnect rubber tube connected to EVAP canister vent control valve. Check the rubber tube for clogging. 				
	OK or NG			
	•	GO TO 8.		
OK				

B B	Condition	Air passage continuity between A and B
FUSE O-ring 🚱	12V direct current supply between terminals 1 and 2	No
(A)	OFF	Yes
BATTERY 5.3 - 12 N·m	Operation takes less than 1 second	

SU

BT

HA

SC

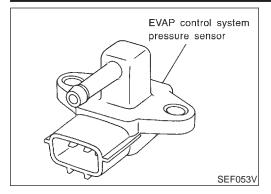
EL

SEF378Z

Make sure new O-ring is installed properly.

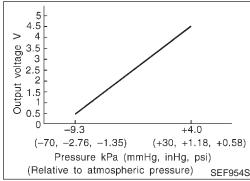
BATTERY

		OK or NG
OK	GO TO 11.	


(0.54 - 1.2 kg-m, 46.9 - 104 in-lb)

OK ▶	GO TO 11.
NG ▶	GO TO 10.

CHECK EVAP CANISTE	ER VENT CONTROL VALVE-III			
 Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower. Perform Test No. 9 again. 				
OK or NG				
>	GO TO 11.			
>	Replace EVAP canister vent control valve.			
	an the air passage (Portion form Test No. 9 again.			


11	CHECK INTERMITTENT INCIDENT		
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	► INSPECTION END		

Component Description

Component Description

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases. The EVAP control system pressure sensor is not used to control the engine system. It is used only for on board diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC0780

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 3.4V

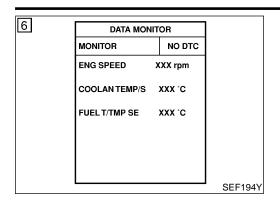
On Board Diagnosis Logic

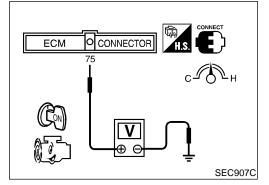
NHEC0782

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0452 0452	EVAP control system pressure sensor low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor

DTC Confirmation Procedure

NHEC078


NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

DTC Confirmation Procedure (Cont'd)

(P) WITH CONSULT-II

NHEC0784S01

-) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Turn ignition switch "ON".
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure that "FUEL T/TEMP SE" is more than 0°C (32°F).
- 6) Start engine and wait at least 20 seconds.
- 7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-385.

If 1st trip DTC is not detected, go to next step.

- Stop engine and install EVAP service port adapter and pressure pump to EVAP service port securely.
- 9) Pressurize the EVAP line using pressure pump.
- 10) Confirm the pressure does not go up.
- 11) If pressure go up, go to "Diagnostic Procedure", EC-385.

WITH GST

- 1) Start engine and warm it up to normal operating temperature.
- 2) Check that voltage between ECM terminal 75 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3) Turn ignition switch "OFF" and wait at least 10 seconds.
- 4) Start engine and wait at least 20 seconds.
- 5) Select "MODE 7" with GST.
- 6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-385.

GI

MA

EM

LC

EC

LU

FE

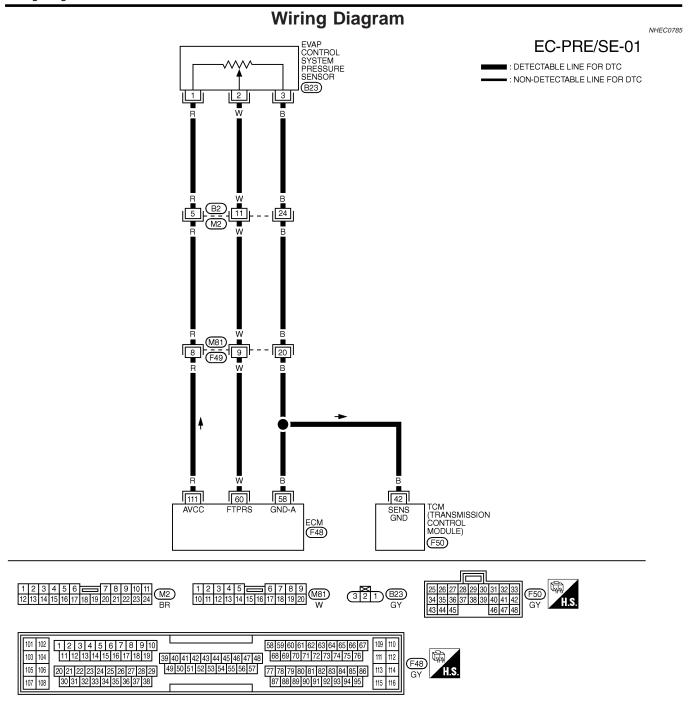
AT

AX

SU

BR

ST

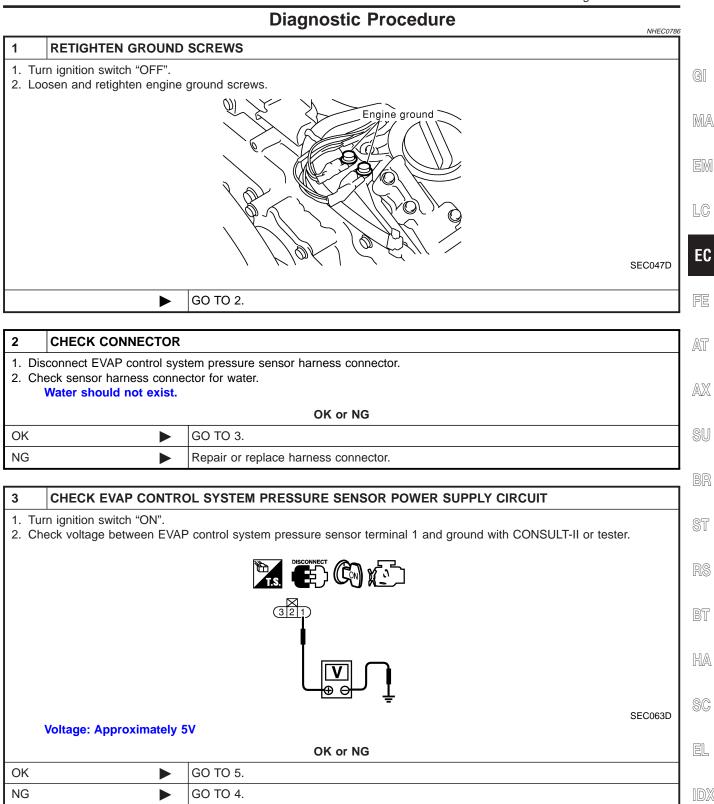

D@

BT

HA

SC

DW.



MEC554D

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
58	В		ENGINE RUNNING AT IDLE SPEED UNDER WARM-UP CONDITION	APPROX. 0V
60	W	EVAP CONTROL SYSTEM PRESSURE SENSOR	IGN ON	APPROX. 3.4V
111	R	SENSORS' POWER SUPPLY	IGN ON	APPROX. 5V

SEF623XC

4	DETECT MALFUNCTIONING PART		
Check the following.			
Hari	Harness connectors B2, M2		
Hari	Harness connectors M81, F49		
Harness for open or short between EVAP control system pressure sensor and ECM			
	Repair harness or connectors.		

Diagnostic Procedure (Cont'd)

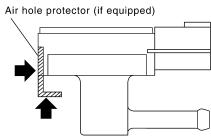
NG

5 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch "OFF". 2. Check harness continuity between EVAP control system pressure sensor terminal 3 and engine ground. Refer to Wiring Diagram. Continuity should exist. 3. Also check harness for short to power. OK or NG OK

GO TO 6.

6	DETECT MALFUNCTIO	NING PART
Check the following. • Harness connectors B2, M2		
 Harness connectors M81, F49 Harness for open between EVAP control system pressure sensor and ECM 		
 Harness for open between EVAP control system pressure sensor and TCM (Transmission Control Module) 		
	•	Repair open circuit or short to power in harness or connectors.

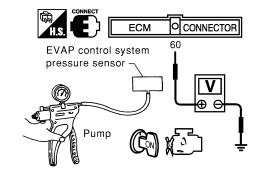
7	CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT			
Disconnect ECM harness connector. Check harness continuity between ECM terminal 60 and EVAP control system pressure sensor terminal 2. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power.				
OK or NG				
OK	DK			
NG	G			


8	DETECT MALFUNCTIONING PART		
HaHa	Check the following. • Harness connectors B2, M2 • Harness connectors M81, F49 • Harness for open or short between ECM and EVAP control system pressure sensor		
	•	Repair open circuit or short to ground or short to power in harness or connectors.	

Diagnostic Procedure (Cont'd)

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

 Remove EVAP control system pressure sensor with its harness connector connected. CAUTION:


Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure. CAUTION:
 - Always calibrate the vacuum pump gauge when using it.
 - Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 5. Check input voltage between ECM terminal 60 and ground.

SEC908C

Pressure (Relative to atmospheric pressure)	Voltage V
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

MTBL1159

CAUTION:

Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG
----	----	----

OK •	GO TO 10.
NG 🕨	Replace EVAP control system pressure sensor.

10	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	► INSPECTION END		

GI

MA

LC

EC

FE

AT

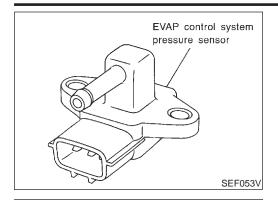
AX

SU

RE

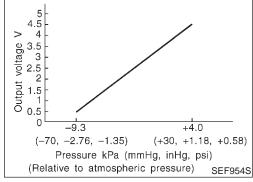
ST

B


HA

11139

SC


EL

Component Description

Component Description

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases. The EVAP control system pressure sensor is not used to control the engine system. It is used only for on board diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC0978

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 3.4V

On Board Diagnosis Logic

NHEC098

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0453 0453	EVAP control system pressure sensor high input	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor EVAP canister vent control valve EVAP canister Water separator Rubber hose from EVAP canister vent control valve to water separator

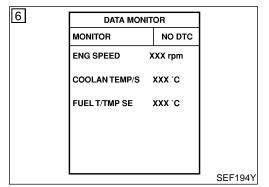
DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

NHEC0981

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.


TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

MA

LC

EC

(E) WITH CONSULT-II

NHEC0981S01

1) Start engine and warm it up to normal operating temperature.

- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Turn ignition switch "ON".
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure that "FUEL T/TEMP SE" is more than 0°C (32°F).
- 6) Start engine and wait at least 20 seconds.
- 7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-391.

AT

AX

WITH GST

NHEC0981S02

1) Start engine and warm it up to normal operating temperature.

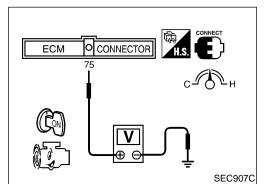
Check that voltage between ECM terminal 75 (Fuel tank tem-

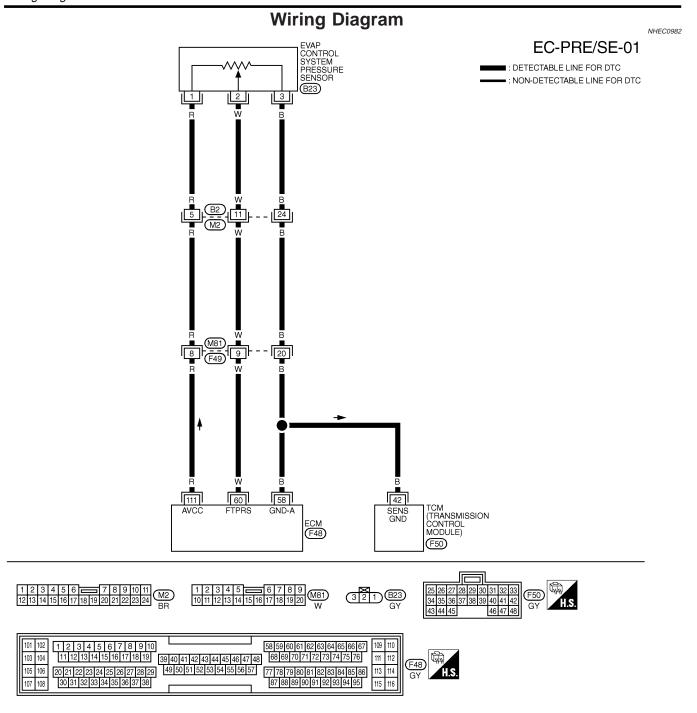
- perature sensor signal) and ground is less than 4.2V.

 Turn ignition switch "OFF" and wait at least 10 seconds.
- 4) Start engine and wait at least 20 seconds.

- 5) Select "MODE 7" with GST.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-391.

UIØ

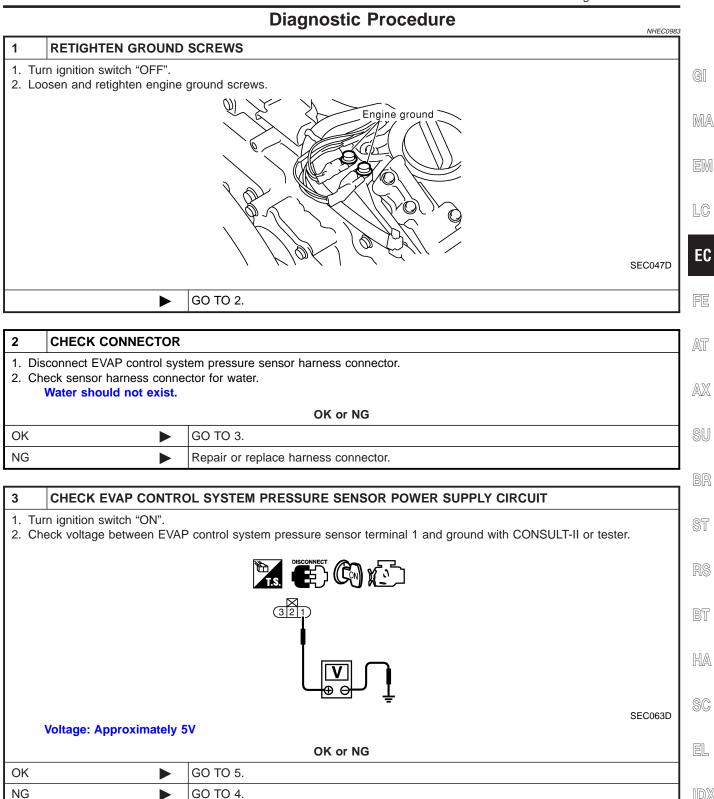

BT


HA

SC

EL

1MX



MEC554D

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
58	В		ENGINE RUNNING AT IDLE SPEED UNDER WARM-UP CONDITION	APPROX. 0V
60	W	EVAP CONTROL SYSTEM PRESSURE SENSOR	IGN ON	APPROX. 3.4V
111	R	SENSORS' POWER SUPPLY	IGN ON	APPROX. 5V

SEF623XC

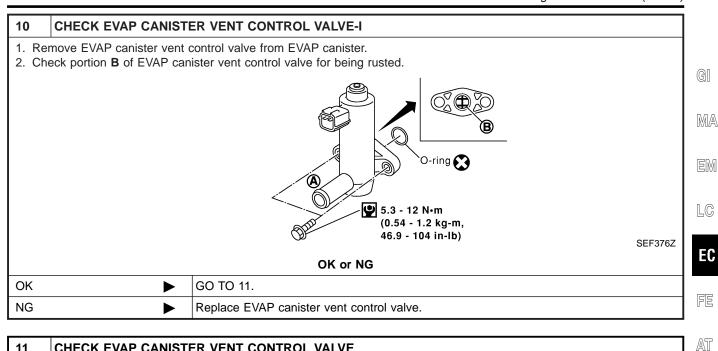
4	DETECT MALFUNCTIONING PART		
Check	the following.		
Hart	 Harness connectors B2, M2 		
Harness connectors M81, F49			
Harness for open or short between EVAP control system pressure sensor and ECM			
	•	Repair harness or connectors.	

Diagnostic Procedure (Cont'd)

NG

5 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch "OFF". 2. Check harness continuity between EVAP control system pressure sensor terminal 3 and engine ground. Refer to Wiring Diagram. Continuity should exist. 3. Also check harness for short to power. OK or NG OK

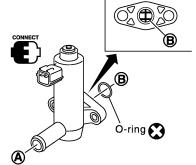
GO TO 6.


6	DETECT MALFUNCTIONING PART		
Check	the following.		
Har	ness connectors B2, M2		
Harness connectors M81, F49			
Harness for open between EVAP control system pressure sensor and ECM			
• Harness for open between EVAP control system pressure sensor and TCM (Transmission Control Module)			
	•	Repair open circuit or short to power in harness or connectors.	

7	CHECK EVAP CONTE	ROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND
2. Ch	efer to Wiring Diagram. Continuity should exist	etween ECM terminal 60 and EVAP control system pressure sensor terminal 2.
		OK or NG
OK	•	GO TO 9.
NG	•	GO TO 8.

8	DETECT MALFUNCTIONING PART		
HarHar	Check the following. • Harness connectors B2, M2 • Harness connectors M81, F49 • Harness for open or short between ECM and EVAP control system pressure sensor		
	•	Repair open circuit or short to ground or short to power in harness or connectors.	

9	CHECK RUBBER TUBE	FOR CLOGGING
 Disconnect rubber tube connected to EVAP canister vent control valve. Check the rubber tube for clogging. 		
OK or NG		
OK	•	GO TO 10.
NG	•	Clean the rubber tube using an air blower.


Diagnostic Procedure (Cont'd)

- (P) With CONSULT-II
- 1. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 2. Check air passage continuity and operation delay time under the following conditions.

ACTIVE TEST		
VENT CONTROL/V	OFF	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

Operation takes less than 1 second.

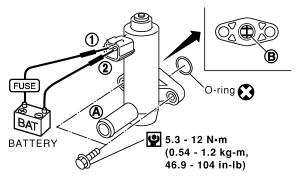
SEC158D

EC

AX

SU

BT


HA

SC

EL

Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

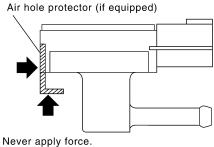
Operation takes less than 1 second.

SEF378Z

Make sure new O-ring is installed properly.

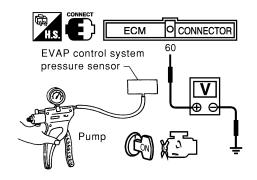
OK •	GO TO 13.
NG ▶	GO TO 12.

Diagnostic Procedure (Cont'd)


12	12 CHECK EVAP CANISTER VENT CONTROL VALVE-III	
Clean the air passage (portion A to B) of EVAP canister vent control valve using an air blower. Perform Test No. 14 again. OK or NG		
ОК	>	GO TO 13.
NG	•	Replace EVAP canister vent control valve.

13 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

1. Remove EVAP control system pressure sensor with its harness connector connected.


CAUTION:

Never apply force to the air hole protector of the sensor if equipped.

SEF799W

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure. CAUTION:
 - Always calibrate the vacuum pump gauge when using it.
 - Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 5. Check input voltage between ECM terminal 60 and ground.

SEC908C

Pressure (Relative to atmospheric pressure)	Voltage V
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

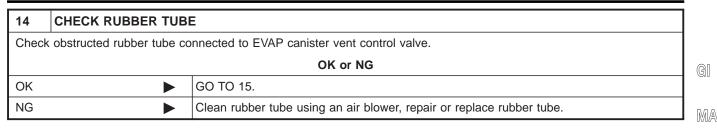
MTBL1159

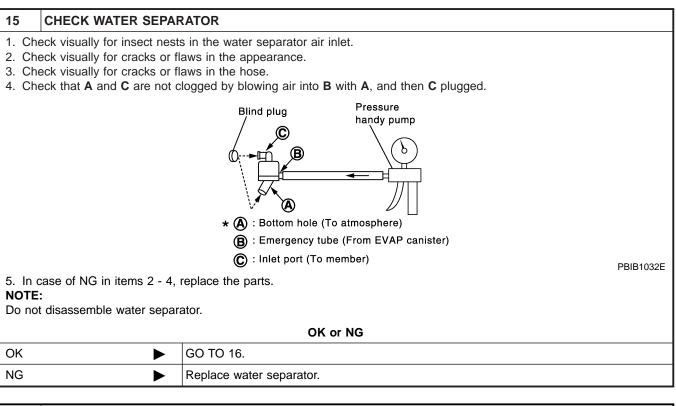
CAUTION:

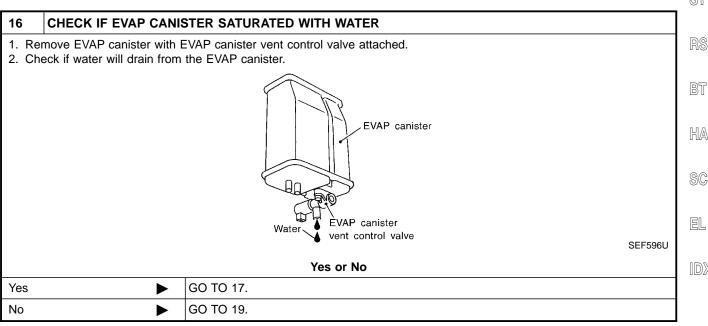
Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

$\alpha \nu$		NIC
Un	or	NG

OK J		GO TO 14.
NG J		Replace EVAP control system pressure sensor.


Diagnostic Procedure (Cont'd)


LC


AT

AX

SW

Diagnostic Procedure (Cont'd)

17	17 CHECK EVAP CANISTER		
	Weigh the EVAP canister with the EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb). OK or NG		
ОК	•	GO TO 19.	
NG	•	GO TO 18.	

18	DETECT MALFUNCTIONING PART		
• EVA	Check the following. • EVAP canister for damage • EVAP hose between EVAP canister and water separator for clogging or poor connection		
	•	Repair hose or replace EVAP canister.	

19	CHECK INTERMITTENT INCIDENT	
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	•	INSPECTION END

On Board Diagnosis Logic

NOTE:

If DTC P0455 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-600.)

This diagnosis detects a very large leak (fuel filler cap fell off etc.) in EVAP system between the fuel tank and EVAP canister purge volume control solenoid valve.

Malfunction is detected when EVAP control system has a very large leak such as fuel filler cap fell off, EVAP control system does not operate properly.

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

Possible Cause

Fuel filler cap remains open or fails to close.

Incorrect fuel tank vacuum relief valve

Incorrect fuel filler cap used

Foreign matter caught in fuel filler cap.

Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.

Foreign matter caught in EVAP canister vent control valve.

EVAP canister or fuel tank leaks

EVAP purge line (pipe and rubber tube) leaks

EVAP purge line rubber tube bent.

Blocked or bent rubber tube to EVAP control system pressure sensor

Loose or disconnected rubber tube

- EVAP canister vent control valve and the circuit
- EVAP canister purge volume control solenoid valve and the circuit
- Fuel tank temperature sensor
- O-ring of EVAP canister vent control valve is missing or dam-
- EVAP control system pressure sensor

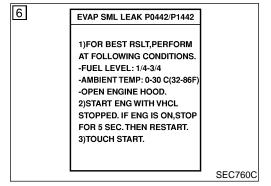
MA

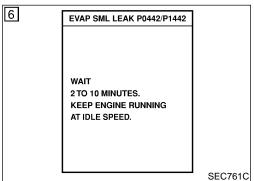
NHEC1417

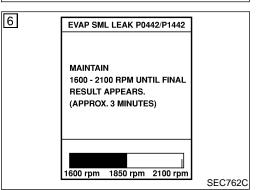
LC

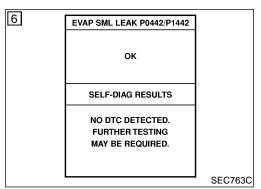
EC

AT


AX


NHEC1418


SC


EL

- Refueling control valve
- ORVR system leaks

DTC Confirmation Procedure

NHEC1419

CAUTION:

Never remove fuel filler cap during the DTC Confirmation Procedure.

NOTE:

- If DTC P0455 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-600.)
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Open engine hood before conducting the following procedures.

(II) WITH CONSULT-II

NHEC1419S0

- 1) Tighten fuel filler cap securely until ratcheting sound is heard.
- 2) Turn ignition switch "ON".
- 3) Turn ignition switch "OFF" and wait at least 10 seconds.
- 4) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure that the following conditions are met. COOLAN TEMP/S: 0 70°C (32 158°F) INT/A TEMP SE: 0 60°C (32 140°F)
- 6) Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II

Follow the instruction displayed.

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to "Basic Inspection", EC-119.

Make sure that "OK" is displayed. If "NG" is displayed, select "SELF-DIAG RESULTS" mode and make sure that "EVAP GROSS LEAK [P0455]" is displayed. If it is displayed, refer to "Diagnostic Procedure", EC-399. If P0442 is displayed, perform "Diagnostic Procedure" for DTC P0442.

DTC Confirmation Procedure (Cont'd)

WITH GST

NOTE:

NHFC1419S02

Be sure to read the explanation of "Driving Pattern" on EC-82 before driving vehicle.

Start engine.

2) Drive vehicle according to "Driving Pattern", EC-82.

Stop vehicle.

Select "MODE 1" with GST.

If SRT of EVAP system is not set yet, go to the following step.

If SRT of EVAP system is set, the result will be OK.

Turn ignition switch "OFF" and wait at least 10 seconds. 5)

Start engine. It is not necessary to cool engine down before driving.

- Drive vehicle again according to the "Driving Pattern", EC-82. 7)
- Stop vehicle.
- Select "MODE 3" with GST.
- If P0455 is displayed on the screen, go to "Diagnostic Procedure", EC-399.
- If P0442 is displayed on the screen, go to "Diagnostic Procedure", for DTC P0442, EC-353.
- If P0441 is displayed on the screen, go to "Diagnostic Procedure" for DTC P0441, EC-343.
- If P0455, P0442 and P0441 are not displayed on the screen, go to the following step.
- 10) Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6.

Diagnostic Procedure

NHEC1420

1. Turn ignition switch "OFF".

2. Check for genuine NISSAN fuel filler cap design.

CHECK FUEL FILLER CAP DESIGN

SEF915U

OK or NG

GO TO 2. OK NG Replace with genuine NISSAN fuel filler cap.

LC

GI

MA

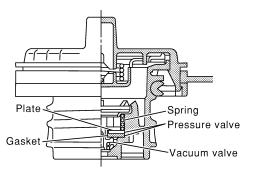
EC

AT

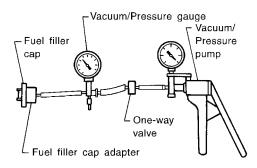
AX

HA

EL


Diagnostic Procedure (Cont'd)

2	CHECK FUEL FILLER CAP INSTALLATION		
Check that the cap is tightened properly by rotating the cap clockwise.			
OK or NG			
OK	OK • GO TO 3.		
NG 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. 2. Retighten until ratcheting sound is heard.			


3	3 CHECK FUEL FILLER CAP FUNCTION			
Check for air releasing sound while opening the fuel filler cap.				
	OK or NG			
OK	OK ▶ GO TO 5.			
NG	>	GO TO 4.		

CHECK FUEL TANK VACUUM RELIEF VALVE

- 1. Wipe clean valve housing.
- 2. Check valve opening pressure and vacuum.

SEF445Y

SEF943S

Pressure:

15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 - 2.90 psi)

Vacuum:

-6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm², -0.87 to -0.48 psi)

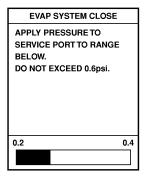
CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

OK or NG

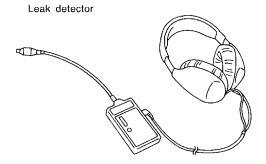
OK •	GO TO 5.
NG ►	Replace fuel filler cap with a genuine one.

Diagnostic Procedure (Cont'd)


	Diagnostic Procedure (Cor	it'd)
5 CHECK I	AP PURGE LINE	
	line (pipe, rubber tube, fuel tank and EVAP canister) for cracks, improper connection or disconnection	١.
keter to "Evapora	ve Emission System", EC-36.	
OK	OK or NG	\dashv
OK	GO TO 6.	\dashv
NG	Repair or reconnect the hose.	
6 CLEAN E	AP PURGE LINE	
Clean EVAP purç	line (pipe and rubber tube) using air blower.	ヿ
	▶ GO TO 7.	コ
		_
7 CHECK I	AP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT	_
Refer to "DTC Co	irmation Procedure", EC-375.	
	OK or NG	\perp
OK	▶ GO TO 8.	_
NG	Repair or replace EVAP canister vent control valve and O-ring or harness/connector.	\Box
		\neg
	HE PRESSURE PUMP	4
to locate the EV	leak, install EVAP service port adapter and pressure pump to EVAP service port securely.	
	EVAP canister purge volume	
	control solenoid valve	
	EVAP service port	
	Camshaft position sensor (PHASE)	
	SEC929	^{3C}
	EVAF Service port adapter	
	EVAP	
	service / }	
	port / Pressure	
	pump U	.
NOTE:	SEF910	ōU
	on of the EVAP service port adapter to the EVAP service port may cause leaking.	
Models with CON	•	_
Models without C SULT-II	N- ► GO TO 10.	
JULI-II		

Diagnostic Procedure (Cont'd)

CHECK FOR EVAP LEAK


- With CONSULT-II
- 1. Turn ignition switch "ON".
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

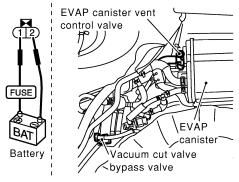
 NOTE:
 - Never use compressed air or a high pressure pump.
 - Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

PEF917U

4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-40.

SEF200U

OK or NG

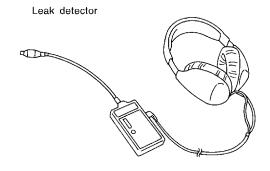

OK •	GO TO 11.
NG ►	Repair or replace.

Diagnostic Procedure (Cont'd)

10 CHECK FOR EVAP LEAK

Without CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)



SEF254X

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-40.

SEF200U

OK or NG

OK	>	GO TO 12.
NG		Repair or replace.

GI

MA

LC

EC

FE

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

 $\mathbb{S}\mathbb{C}$

EL

 $\mathbb{D}\mathbb{X}$

Diagnostic Procedure (Cont'd)

11 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(I) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

ACTIVE TEST			
PURG VOL CONT/V	0.0%		
MONITOR	1		
ENG SPEED	XXX rpm		
A/F ALPHA-B1	XXX %		
A/F ALPHA-B2	XXX %		
HO2S1 MNTR (B1)	RICH		
HO2S1 MNTR (B2)	RICH		

Vacuum should exist.

OK or NG

SEC142D

OK •	GO TO 14.
NG ►	GO TO 13.

12 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK •	GO TO 15.
NG ▶	GO TO 13.

13	CHECK VACUUM	1 HOS	E	
Check	Check vacuum hoses for clogging or disconnection. Refer to "Vacuum Hose Drawing", EC-30.			
	OK or NG			
OK (V	Vith CONSULT-II)	•	GO TO 14.	
OK (W	Vithout CONSULT-	•	GO TO 15.	
NG			Repair or reconnect the hose.	

Diagnostic Procedure (Cont'd)

CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

With CONSULT-II

1. Start engine.

2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

 ACTIVE TEST

 PURG VOL CONT/V
 0.0%

 MONITOR
 XXX rpm

 A/F ALPHA-B1
 XXX %

 A/F ALPHA-B2
 XXX %

 HO2S1 MNTR (B1)
 RICH

 HO2S1 MNTR (B2)
 RICH

SEC142D

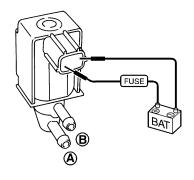
OK or NG

OK	>	GO TO 16.
NG		GO TO 15.

15 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.



Condition PURG VOL CONT/V value	Air passage continuity between A and B
100.0%	Yes
0.0%	No

SEF334X

Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

SEF335X

OK or NG

OK •	GO TO 16.
NG ►	Replace EVAP canister purge volume control solenoid valve.

EC-405

GI

MA

LC

EC

FE

AT

 $\mathbb{A}\mathbb{X}$

SU

DD

ST

IUI@

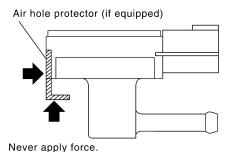
BT

HA

SC

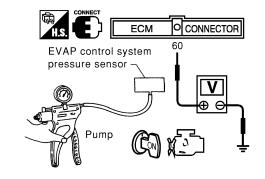
EL

Diagnostic Procedure (Cont'd)


CHECK FUEL TANK TEMPERATURE SENSOR 1. Remove fuel level sensor unit. 2. Check resistance between fuel level sensor unit and fuel pump terminals 4 and 5 by heating with hot water or heat gun as shown in the figure. Hot water Temperature °C (°F) Resistance $k\Omega$ 20 (68) 2.3 - 2.7 50 (122) 0.79 - 0.90 Ω SEF587X OK or NG GO TO 17. OK NG Replace fuel level sensor unit.

Diagnostic Procedure (Cont'd)

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


Remove EVAP control system pressure sensor with its harness connector connected.
 CAUTION:

Never apply force to the air hole protector of the sensor if equipped.

SEF799W

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure. CAUTION:
 - Always calibrate the vacuum pump gauge when using it.
 - Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 5. Check input voltage between ECM terminal 60 and ground.

SEC908C

Pressure (Relative to atmospheric pressure)	Voltage V
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

MTBL1159

CAUTION:

Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG
----	----	----

OK •	GO TO 18.
NG •	Replace EVAP control system pressure sensor.

18 CHECK REFUELING EVAP VAPOR LINE

Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to "ON BOARD REFUELING VAPOR RECOVERY (ORVR)", EC-42.

OK	or	NG
UN	OI	IAG

OK •	GO TO 19.	
NG	Repair or replace hoses and tubes.	

GI

MA

FM

LC

EC

FE

AT

AX

ST

1110

BT

HA

SC

EL

Diagnostic Procedure (Cont'd)

19	19 CHECK SIGNAL LINE AND RECIRCULATION LINE	
Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection. OK or NG		
OK	>	GO TO 20.
NG	>	Repair or replace hoses, tubes or filler neck tube.

20 **CHECK REFUELING CONTROL VALVE** 1. Remove fuel filler cap. 2. Check air continuity between hose ends A and B. Blow air into the hose end B. Air should flow freely into the fuel tank. 3. Blow air into hose end A and check there is no leakage. 4. Apply pressure to both hose ends A and B [20 kPa (150 mmHg, 5.91 inHg)] using a pressure pump and a suitable 3-way connector. Check that there is no leakage. (Signal line) Recirculation line Fuel tank EVAP purge line (Refueling EVAP vapor line) To EVAP To fuel filler canister tube upper SEF830X OK or NG OK GO TO 21. NG Replace refueling control valve with fuel tank.

21	CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.	
	► INSPECTION END	

MA

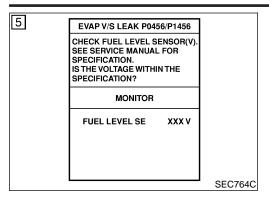
LC

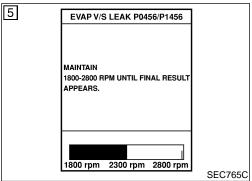
EC

SEC936C

On Board Diagnosis Logic NHEC0987 EVAP control system pressure sensor Vacuum cut valve bypass valve **EVAP** service port Refueling control valve and refueling EVAP P (P) vapor cut valve Absolute pressure Vacuum EVAP canister purge **EVAP** sensor Fuel tank cut valve canister volume control

solenoid valve


This diagnosis detects very small leaks in the EVAP line between fuel tank and EVAP canister purge volume control solenoid valve, using the intake manifold same as a conventional EVAP small leak diagnosis. If ECM judges a leak which corresponds to a very small leak, the very small leak P0456 will be detected. If ECM judges a leak equivalent to a small leak, EVAP small leak P0442 will be detected. If ECM judges there are no leaks, the diagnosis will be OK.


EVAP canister — vent control valve

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0456 9456	Evaporative emission control system very small leak (negative pressure check)	 EVAP system has a very small leak. EVAP system does not operate properly. 	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close.
	procedure criestry		 Foreign matter caught in fuel filler cap Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.
			 Foreign matter caught in EVAP canister vent control valve EVAP canister or fuel tank leaks
			 EVAP purge line (Pipe and rubber tube) leaks EVAP purge line rubber tube bent
			 Blocked or bent rubber tube to EVAP control system pressure sensor Loose or disconnected rubber tube EVAP canister vent control valve and
			the circuit EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit
			Absolute pressure sensorFuel tank temperature sensorO-ring of EVAP canister vent control
			 valve is missing or damaged. Water separator EVAP canister saturated with water
			 EVAP control system pressure sensor Refueling control valve ORVR system leaks Fuel level sensor and the circuit
			 Foreign matter caught in EVAP canister purge volume control solenoid valve

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

NHEC0988

CAUTION:

Never remove fuel filler cap during the DTC confirmation procedure.

NOTE:

- If DTC P0456 is displayed with P0442, perform TROUBLE DIAGNOSIS FOR DTC P0456 first.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.
- After repair, make sure that the hoses and clips are installed properly.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- If any of following condition is met just before the DTC confirmation procedure, leave the vehicle for more than 1 hour.
- a) Fuel filler cap is removed.
- b) Refilled or drained the fuel.
- c) EVAP component parts is/are removed.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) With CONSULT-II

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Make sure the following conditions are met.

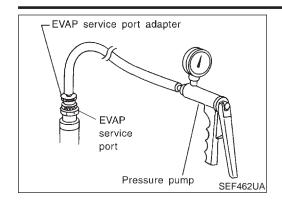
FUEL LEVEL SE: 1.08 - 0.2V

COOLAN TEMP/S: 0 - 32°C (32 - 90°F)

FUEL T/TMP SE: 0 - 35°C (32 - 95°F)

INT A/TEMP SE: More than 0°C (32°F)

If NG, turn ignition switch "OFF" and leave the vehicle in a cool place (soak the vehicle) or refilling/draining fuel until the output voltage condition of the "FUEL LEVEL SE" meets within the range above and leave the vehicle for more than 1 hour. Then start from step 1).


- 3) Turn ignition switch "OFF" and wait at least 5 seconds.
- 4) Turn ignition switch "ON".
- Select "EVP V/S LEAK P0456/P1456" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

6) Make sure that "OK" is displayed. If "NG" is displayed, refer to "Diagnostic Procedure", EC-411.

NOTE:

- If the engine speed cannot be maintained within the range displayed on CONSULT-II screen, go to "Basic Inspection", EC-119.
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

NG

Overall Function Check

WITH GST

Use this procedure to check the overall function of the EVAP very small leak function. During this check, a DTC might not be confirmed.

CAUTION:

Never use compressed air, doing so may damage the EVAP system.

MA

Do not start engine.

Do not exceeded 4.12 kPa (0.042 kg/cm², 0.6 psi).

Attach the EVAP service port adapter securely to the EVAP 1) service port.

Set the pressure pump and a hose.

LC

Also set a vacuum gauge via 3-way connector and a hose.

EC

Turn ignition switch "ON".

Connect GST and select mode 8. 5)

6) Using mode 8 control the EVAP canister vent control valve (close) and vacuum cut valve bypass valve (open).

AT

7) Apply pressure and make sure the following conditions are satisfied.

AX

Pressure to be applied: 2.7 kPa (20 mmHg, 0.79 inHg) Time to be waited after the pressure drawn in to the EVAP system and the pressure to be dropped: 60 seconds and the pressure should not be dropped more than 0.4 kPa (3 mmHg, 0.12 inHg)

If NG, go to diagnostic procedure, EC-411.

NOTE:

For more information, refer to GST instruction manual.

HA

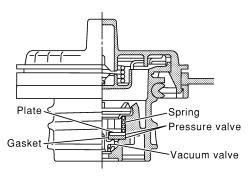
SC

EL

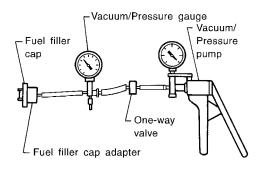
Diagnostic Procedure

NHEC0990

1	CHECK FUEL FILLER CAP DESIGN] [
	urn ignition switch "OFF".	1
2. C	heck for genuine NISSAN fuel filler cap design.	
		0
	NISSAN	
	SEF915U	
	OK or NG	1
OK	▶ GO TO 2.	1


Replace with genuine NISSAN fuel filler cap.

2	2 CHECK FUEL FILLER CAP INSTALLATION		
Check that the cap is tightened properly by rotating the cap clockwise.			
	OK or NG		
OK	•	GO TO 3.	
NG	>	 Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard. 	


3	CHECK FUEL FILLER CAP FUNCTION		
Check for air releasing sound while opening the fuel filler cap.			
	OK or NG		
OK	•	GO TO 5.	
NG	>	GO TO 4.	

CHECK FUEL TANK VACUUM RELIEF VALVE

- 1. Wipe clean valve housing.
- 2. Check valve opening pressure and vacuum.

SEF445Y

SEF943S

Pressure:

15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 - 2.90 psi)

Vacuum:

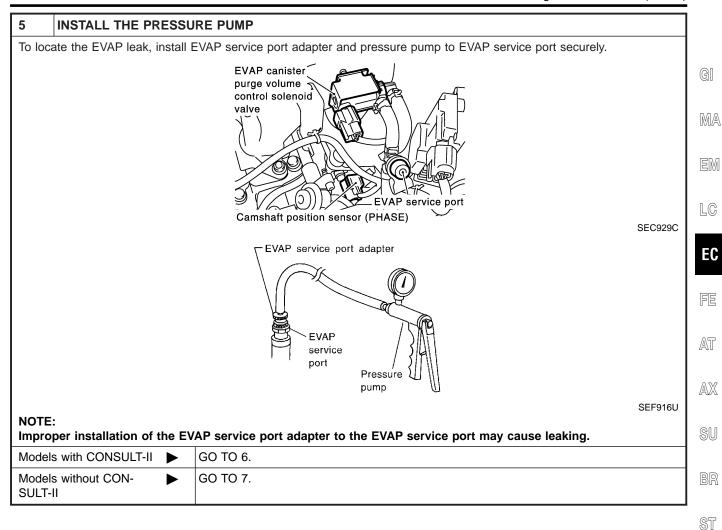
-6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm², -0.87 to -0.48 psi)

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

OK or NG

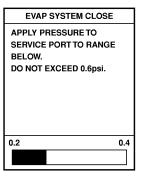
OK •	GO TO 5.
NG ►	Replace fuel filler cap with a genuine one.


RS

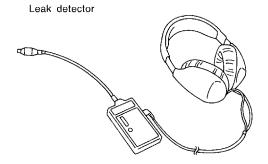
BT

HA

SC


EL

Diagnostic Procedure (Cont'd)

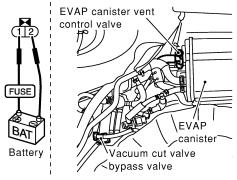

6 CHECK FOR EVAP LEAK

- With CONSULT-II
- 1. Turn ignition switch "ON".
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.
 - Never use compressed air or a high pressure pump.
 - Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

PEF917U

4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-40.

SEF200U

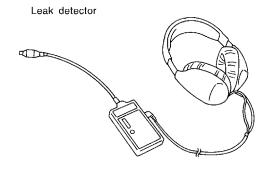

OK or NG

OK •	GO TO 8.
NG ►	Repair or replace.

CHECK FOR EVAP LEAK

Without CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)



EF254X

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-40.

SEF200U

OK or NG

OK •	GO TO 8.
NG •	Repair or replace.

GI

MA

LC

EC

--

FE

AT

AX

SU

RR

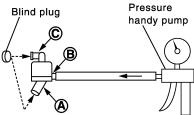
ST

RS

BT

HA

SC


EL

 $\mathbb{D}\mathbb{X}$

Diagnostic Procedure (Cont'd)

CHECK WATER SEPARATOR

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that A and C are not clogged by blowing air into B with A, and then C plugged.

* (A) : Bottom hole (To atmosphere)

(B): Emergency tube (From EVAP canister)

(To member)

PBIB1032E

5. In case of NG in items 2 - 4, replace the parts.

NOTE:

Do not disassemble water separator.

oĸ	or	N	G
----	----	---	---

OK		GO TO 9.
NG		Replace water separator.

9	CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT		
Refer	Refer to "DTC Confirmation Procedure", EC-600.		
	OK or NG		
OK	•	GO TO 10.	
NG	•	Repair or replace EVAP canister vent control valve and O-ring or harness/connector.	

10 CHECK IF EVAP CANISTER SATURATED WITH WATER 1. Remove EVAP canister with EVAP canister vent control valve attached. 2. Does water drain from the EVAP canister? EVAP canister EVAP canister vent control valve Yes or No Yes SQ TO 11. No (With CONSULT-II) GO TO 13. No (Without CONSULT-II) GO TO 14.

Diagnostic Procedure (Cont'd)

		Diagnostic Procedure (Con	ťa)
11	CHECK EVAP CAN	IISTER	7
	gh the EVAP canister w weight should be less	ith the EVAP canister vent control valve attached. s than 1.8 kg (4.0 lb).	
		OK or NG	G
OK ((With CONSULT-II)	■ GO TO 13.	٦.
OK (Without CONSULT-	► GO TO 14.	
NG		► GO TO 12.	
12	DETECT MALFUN	CTIONING PART	
	ck the following.		
	VAP canister for damag VAP hose between EVA	e P canister and water separator for clogging or poor connection	E
		Repair hose or replace EVAP canister.	
			<u> </u>
	1		

13 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

ACTIVE TES	T
PURG VOL CONT/V	0.0%
MONITOR	1
ENG SPEED	XXX rpm
A/F ALPHA-B1	XXX %
A/F ALPHA-B2	XXX %
HO2S1 MNTR (B1)	RICH
HO2S1 MNTR (B2)	RICH

Vacuum should exist.

OK or NG

OK ►	GO TO 16.
NG ►	GO TO 15.

14 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

⊗ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK •	GO TO 17.
NG ►	GO TO 15.

AT

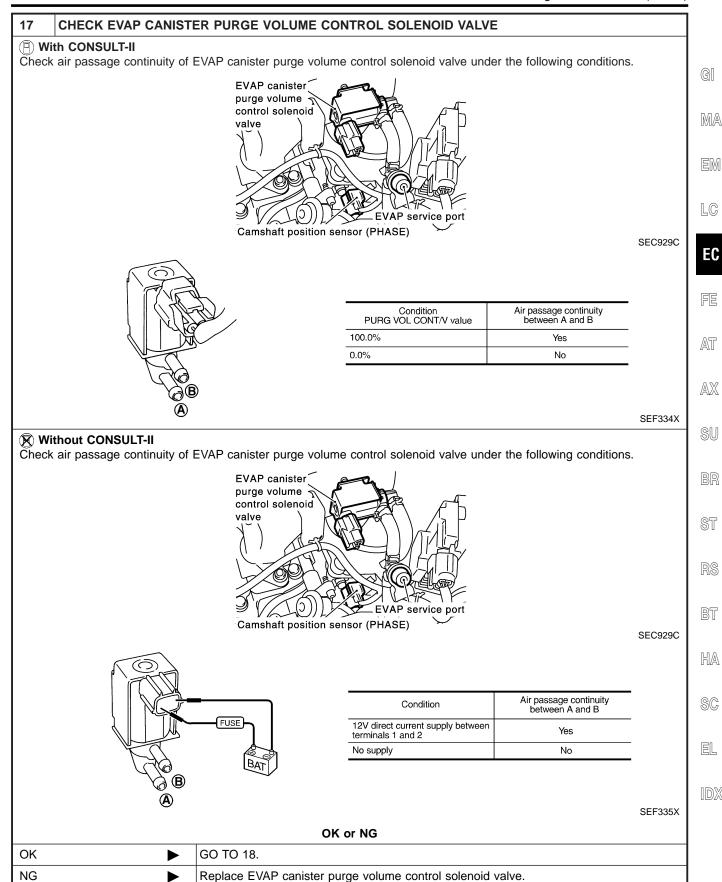
AX

SU

SEC142D

HA

SC

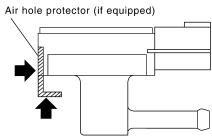

Diagnostic Procedure (Cont'd)

NG

15	CHECK VACUUM HOSE		
Check	Check vacuum hoses for clogging or disconnection. Refer to "Vacuum Hose Drawing", EC-30.		
	OK or NG		
OK (V	Vith CONSULT-II)		GO TO 16.
OK (V II)	Vithout CONSULT-	•	GO TO 17.
NG			Repair or reconnect the hose.

CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE With CONSULT-II 1. Start engine. 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. ACTIVE TEST PURG VOL CONT/V 0.0% MONITOR **ENG SPEED** XXX rpm A/F ALPHA-B1 XXX % A/F ALPHA-B2 XXX % HO2S1 MNTR (B1) RICH HO2S1 MNTR (B2) RICH SEC142D OK or NG GO TO 18. OK

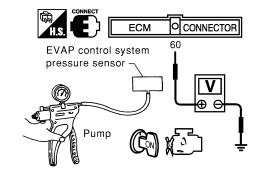
GO TO 17.


Diagnostic Procedure (Cont'd)

CHECK FUEL TANK TEMPERATURE SENSOR 1. Remove fuel level sensor unit. 2. Check resistance between fuel level sensor unit and fuel pump terminals 4 and 5 by heating with hot water or heat gun as shown in the figure. Hot water Temperature °C (°F) Resistance $k\Omega$ 20 (68) 2.3 - 2.7 50 (122) 0.79 - 0.90 Ω SEF587X OK or NG GO TO 19. OK NG Replace fuel level sensor unit.

19 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Remove EVAP control system pressure sensor with its harness connector connected.
 CAUTION:


Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure. CAUTION:
 - Always calibrate the vacuum pump gauge when using it.
 - Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 5. Check input voltage between ECM terminal 60 and ground.

SEC908C

Pressure (Relative to atmospheric pressure)	Voltage V	
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6	
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6	

MTBL1159

CAUTION:

Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG
----	----	----

OK •	GO TO 20.
NG ►	Replace EVAP control system pressure sensor.

20 CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to "Evaporative Emission System", EC-36.

α	0.5	NG
UN	OI	IAG

OK •	GO TO 21.
NG •	Repair or reconnect the hose.

G[

MA

LG

EC

FE

AT

AX

SU

0.

D7r

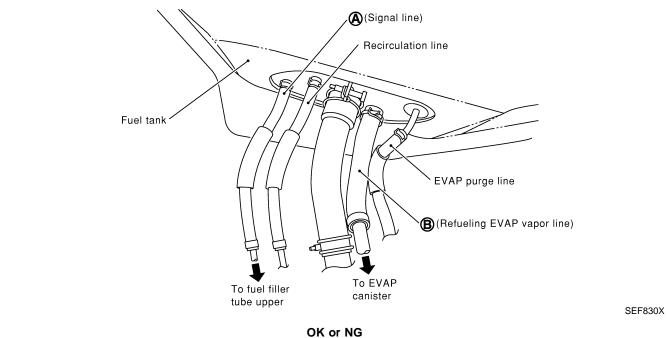
ß [

HA

00

EL

Diagnostic Procedure (Cont'd)


21	21 CLEAN EVAP PURGE LINE		
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.		
	▶ GO TO 22.		

22	2 CHECK REFUELING EVAP VAPOR LINE			
	Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-40.			
	OK or NG			
OK	•	GO TO 23.		
NG	>	Repair or replace hoses and tubes.		

23	CHECK SIGNAL LINE AND RECIRCULATION LINE		
Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.			
	OK or NG		
OK	OK ▶ GO TO 24.		
NG	NG Repair or replace hoses, tubes or filler neck tube.		

24 CHECK REFUELING CONTROL VALVE

- 1. Remove fuel filler cap.
- Check air continuity between hose ends A and B. Blow air into hose end B. Air should flow freely into the fuel tank.
- 3. Blow air into hose end A and check that there is no leakage.
- 4. Apply pressure to both hose ends A and B [20 kPa (150 mmHg, 5.91 inHg)] using a pressure pump and a suitable 3-way connector. Check that there is no leakage.

OK •	GO TO 25.
NG ►	Replace or refueling control valve with fuel tank.

Diagnostic Procedure (Cont'd)

25	CHECK FUEL LEVEL SENSOR		
Refer	to EL-139, "Fuel Level Ser	nsor Unit Check".	
		OK or NG	G
OK	•	GO TO 26.	Q.
NG	•	Replace fuel level sensor unit.	l ma
26	CHECK INTERMITTEN	T INCIDENT	ena
Refer	to "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-151.	EM
	•	INSPECTION END	

EC

LC

FE

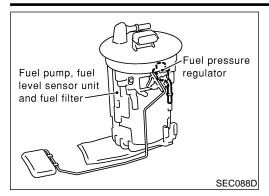
AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST


RS

BT

HA

SC

EL

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnostic Logic

NHECOO

When the vehicle is parked, naturally the fuel level in the fuel tank is stable. It means that output signal of the fuel level sensor does not change. If ECM senses sloshing signal from the sensor, fuel level sensor malfunction is detected.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0460 0460	Fuel level sensor circuit noise	varied is sent from the fuel level sensor to ECM.	Fuel level sensor circuit (The fuel level sensor circuit is open or shorted.) Fuel level sensor

1101			
[3]	DATA MONITOR		
	MONITOR	NO DTC	
	FUELT/TMP SE FUEL LEVEL SE		
			SEF195Y

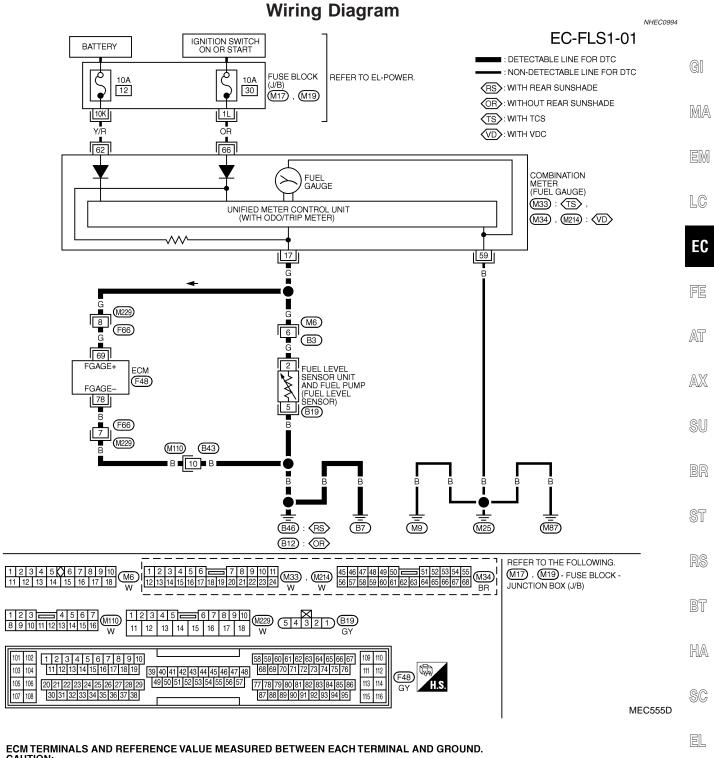
DTC Confirmation Procedure

NOTE:

NHEC0993

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II


NHEC0993S01

- 1) Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait maximum of 2 consecutive minutes.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-426.

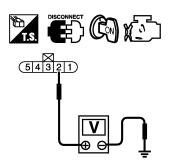
WITH GST

NHEC0993S02

Follow the procedure "WITH CONSULT-II" above.

CAUTION:
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE
TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

[TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
	78	В	FUEL LEVEL SENSOR GROUND	ENGINE RUNNING AT IDLE SPEED	APPROX. 0V
	69	G	FUEL LEVEL SENSOR	IGN ON	APPROX. 0 - 4.8V OUTPUT VOLTAGE VARIES WITH FUEL LEVEL.


SEF711YB

Diagnostic Procedure

=NHEC0995

1 CHECK FUEL LEVEL SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect fuel level sensor unit and fuel pump harness connector.
- 3. Turn ignition switch "ON".
- 4. Check voltage between fuel level sensor unit and fuel pump terminal 2 and ground with CONSULT-II or a tester.

SEC065D

Voltage: Battery voltage

0	K	or	· N	G

OK •	GO TO 3.
NG •	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M6, B3
- Harness for open or short between combination meter and fuel level sensor unit and fuel pump
 - Repair or replace harness or connectors.

3 CHECK FUEL LEVEL SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between fuel level sensor unit and fuel pump terminal 5 and body ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

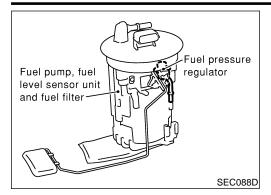
OK •	GO TO 4.
NG ►	Repair open circuit or short to power in harness or connectors.

4 CHECK FUEL LEVEL SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 69 and fuel level sensor unit and fuel pump terminal 2, ECM terminal 78 and fuel level sensor unit and fuel pump terminal 5. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.


OK or NG

OK •	GO TO 6.
NG •	GO TO 5.

DTC P0460 FUEL LEVEL SENSOR

Diagnostic Procedure (Cont'd)

	Diagnostic Procedure (Co	oni a)
DETECT M	ALFUNCTIONING PART	\neg
Check the following Harness connect Harness connect Harness connect Harness for oper	ors M229, F66 ors M6, B3	
Trainess for oper	Repair open circuit or short to ground or short to power in harness or connectors.	\dashv
	rospan opon onotation ground of other to poster in the model of	
CHECK FU	EL LEVEL SENSOR	
efer to EL-139, "F	uel Level Sensor Unit Check".	\neg
	OK or NG	
K	▶ GO TO 7.	
G	Replace fuel level sensor unit and fuel pump.	
CHECK INT		
	ERMITTENT INCIDENT	
efer to "TROUBLE	DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.	\dashv
	INSPECTION END	

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnostic Logic

NHEC0997

Driving long distances naturally affect fuel gauge level.

This diagnosis detects the fuel gauge malfunction of the gauge not moving even after a long distance has been driven.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	
P0461 0461	Fuel level sensor cir- cuit range/ performance	The output signal of the fuel level sensor does not change within the specified range even though the vehicle has been driven a long distance.	 Harness or connectors (The level sensor circuit is open or shorted.) Fuel level sensor 	

Overall Function Check

NHEC0998

Use this procedure to check the overall function of the fuel level sensor function. During this check, a 1st trip DTC might not be confirmed.

WARNING:

When performing following procedure, be sure to observe the handling of the fuel. Refer to FE-4, "Fuel Tank".

TESTING CONDITION:

Before starting overall function check, preparation of draining fuel and refilling fuel is required.

DATA MONITOR MONITOR NO DTC FUEL T/TMP SE XXX 'C FUEL LEVEL SE XXX V

(P) WITH CONSULT-II

NHEC0998S0

NOTE:

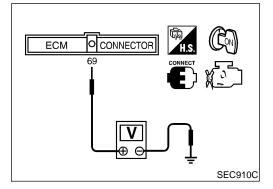
SEF195Y

Start from step 11, if it is possible to confirm that the fuel cannot be drained by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

- Prepare a fuel container and a spare hose.
- 2) Release fuel pressure from fuel line, refer to "Fuel Pressure Release", EC-56.
- Remove the fuel feed hose on the fuel level sensor unit.
- 4) Connect a spare fuel hose where the fuel feed hose was removed.
- 5) Turn ignition switch "OFF" and wait at least 10 seconds then turn "ON".
- Select "FUEL LEVEL SE" in "DATA MONITOR" mode with CONSULT-II.
- Check "FUEL LEVEL SE" output voltage and note it.
- 8) Select "FUEL PUMP" in "ACTIVE TEST" mode with CON-SULT-II.
- Touch "ON" and drain fuel approximately 30ℓ (7-7/8 US gal, 6-5/8 Imp gal) and stop it.
- 10) Fill fuel into the fuel tank for 30ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- 11) Check "FUEL LEVEL SE" output voltage and note it.

DTC P0461 FUEL LEVEL SENSOR

Overall Function Check (Cont'd)


12) Check "FUEL LEVEL SE" output voltage and confirm whether the voltage changes more than 0.03V during step 7 to 11. If NG, check the fuel level sensor, refer to EL-139, "FUEL LEVEL SENSOR UNIT CHECK".

MA

EM

LC

WITH GST

NHEC0998S02

NOTE:

Start from step 11, if it is possible to confirm that the fuel cannot be drained by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

EC

- 1) Prepare a fuel container and a spare hose.
- 2) Release fuel pressure from fuel line, refer to "Fuel Pressure Release", EC-56.

AT

- 3) Remove the fuel feed hose on the fuel level sensor unit.
- 4) Connect a spare fuel hose where the fuel feed hose was removed.

 $\mathbb{A}\mathbb{X}$

- 5) Turn ignition switch "OFF".
- 6) Set voltmeters probe between ECM terminal 69 (fuel level sensor signal) and ground.

SU

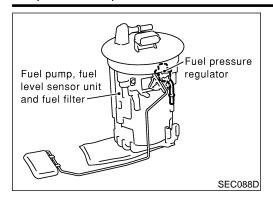
- 7) Turn ignition switch "ON".
- 8) Check voltage between ECM terminal 69 and ground and note it

BR

- 9) Drain fuel by 30ℓ (7-7/8 US gal, 6-5/8 Imp gal) from the fuel tank using proper equipment.
- 10) Fill fuel into the fuel tank for 30ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- 11) Confirm that the voltage between ECM terminal 69 and ground changes more than 0.03V during step 8 10.

If NG, check component of fuel level sensor, refer to EL-139, "FUEL LEVEL SENSOR UNIT CHECK".

9, RS


BT

HA

SC

EL

DX.

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnostic Logic

NHEC1000

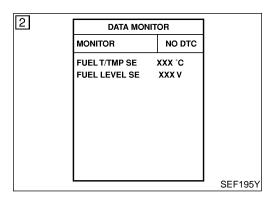
ECM receives two signals from the fuel level sensor circuit.

One is fuel level sensor power supply circuit, and the other is fuel level sensor ground circuit.

This diagnosis indicates the former, to detect open or short circuit malfunction.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0462 0462	Fuel level sensor cir- cuit low input	An excessively low voltage is sent from the sensor is sent to ECM.	(The sensor circuit is open or
P0463 0463	Fuel level sensor cir- cuit high input	An excessively high voltage is sent from the sensor is sent to ECM.	shorted.) • Fuel level sensor

DTC Confirmation Procedure


NOTE:

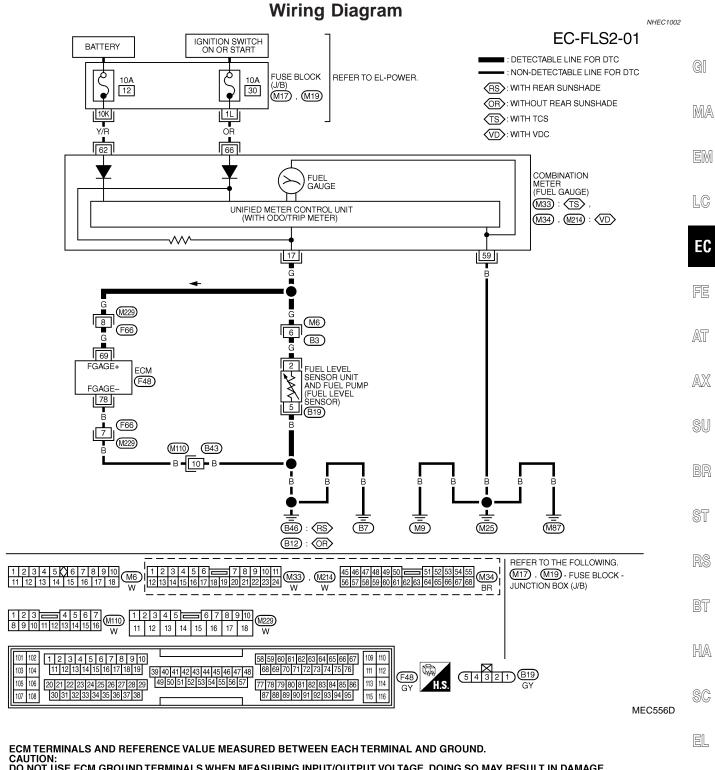
NHEC1001

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at ignition switch "ON".

(A) WITH CONSULT-II


NHEC1001S01

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-432.

WITH GST

Follow the procedure "WITH CONSULT-II" above.

NHEC1001S02

CAUTION:
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE
TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
78	В	FUEL LEVEL SENSOR GROUND	ENGINE RUNNING AT IDLE SPEED	APPROX. 0V
69	G	FUEL LEVEL SENSOR	IGN ON	APPROX. 0 - 4.8V OUTPUT VOLTAGE VARIES WITH FUEL LEVEL.

SEF711YB

Diagnostic Procedure

=NHEC1003

1 CHECK FUEL LEVEL SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect fuel level sensor unit and fuel pump harness connector.
- 3. Turn ignition switch "ON".
- Check voltage between fuel level sensor unit and fuel pump terminal 2 and ground, ECM terminal 69 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK •	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M6, B3
- Harness for open or short between combination meter and fuel level sensor unit
 - Repair or replace harness or connectors.

3 CHECK FUEL LEVEL SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between fuel level sensor unit terminal 5 and body ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK •	GO TO 4.
NG ►	Repair open circuit or short to power in harness or connectors.

4 CHECK FUEL LEVEL SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 69 and fuel level sensor and fuel pump terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK •	GO TO 6.
NG •	GO TO 5.

5 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F66, M229
- Harness connectors M6, B3
- Harness for open between ECM and fuel level sensor

Repair open circuit or short to power in harness on connectors.

6 CHECK FUEL LEVEL SENSOR

Refer to EL-139, "Fuel Level Sensor Unit Check".

OK or NG

OK	GO TO 7.

NG Replace fuel level sensor unit.

DTC P0462, P0463 FUEL LEVEL SENSOR

Diagnostic Procedure (Cont'd)

7	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	► INSPECTION END		

G[

MA

EM

LC

EC

FE

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

Component Description

NHEC10

The vehicle speed sensor signal is sent from ABS actuator and electric unit or ABS/TCS control unit to combination meter. The combination meter then sends a signal to the ECM.

On Board Diagnosis Logic

NHEC1006

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0500 0500	Vehicle speed sensor	The almost 0 km/h (0 MPH) signal from vehicle speed sensor signal is sent to ECM even when vehicle is being driven.	 Harness or connector (The vehicle speed sensor signal circuit is open or shorted.) ABS/TCS control unit Vehicle speed sensor Combination meter

DTC Confirmation Procedure

NHEC:1007

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

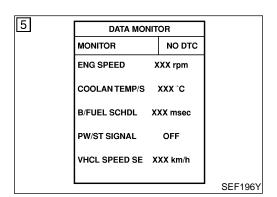
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Steps 1 and 2 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(A) WITH CONSULT-II

NHEC1007S0


- 1) Start engine.
- Read "VHCL SPEED SE" in "DATA MONITOR" mode with CONSULT-II. The vehicle speed on CONSULT-II should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.

If NG, go to "Diagnostic Procedure", EC-437.

- If OK, go to following step.
- 3) Select "DATA MONITOR" mode with CONSULT-II.
- Warm engine up to normal operating temperature.
- Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	More than 1,800 rpm
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	5.5 - 14.0 msec
Selector lever	Suitable position
PW/ST SIGNAL	OFF

 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-437.

Overall Function Check

Use this procedure to check the overall function of the vehicle speed sensor signal circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1) Lift up drive wheels.
- 2) Start engine.
- 3) Read vehicle speed sensor signal in "MODE 1" with GST. The vehicle speed sensor signal on GST should be able to exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.
- 4) If NG, go to "Diagnostic Procedure", EC-437.

MA

NHEC1008S01

EM

LC

EC

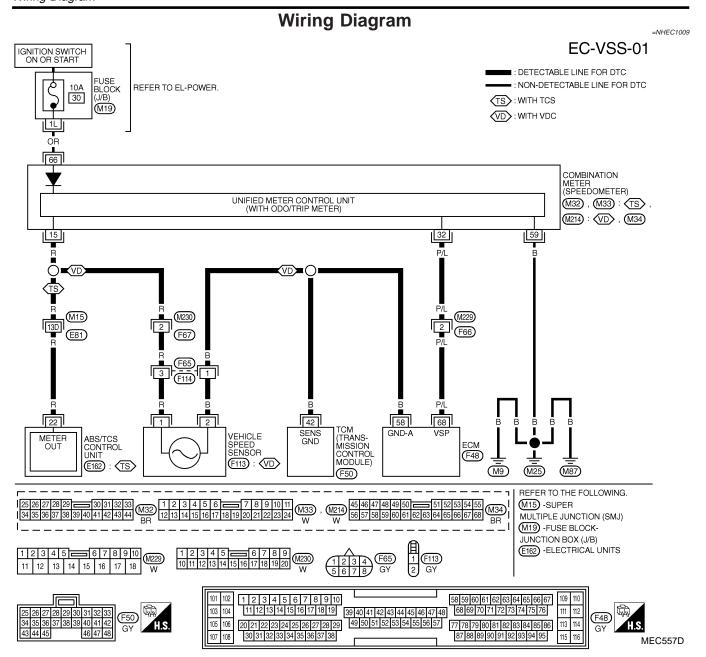
FE

AT

AX

SU

BR


ST

BT

HA

SC

EL

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:

DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
00	DA	VEHICLE SPEED SENSOR	VEHICLE DRIVING AT 10 KM/H (6 MPH) IN 1ST GEAR POSITION UNDER LIFTED UP CONDITION	APPROX. 2.5V
68	P/L		VEHICLE DRIVING AT 30 KM/H (19 MPH) IN 2ND GEAR POSITION UNDER LIFTED UP CONDITION	APPROX. 2.5V

Diagnostic Procedure

NHEC1010 CHECK VEHICLE SPEED SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT MA

1.	Turn	ignition	switch	"OFF".
_				

- 2. Disconnect ECM harness connector and combination meter harness connector M32.
- 3. Check harness continuity between ECM terminal 68 and combination meter terminal 32. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK	GO TO 3.
NG	GO TO 2.

LC

EC

AT

AX

DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M229, F66
- Harness for open or short between ECM and combination meter

Repair open circuit or short to ground or short to power in harness or connectors.

CHECK COMBINATION METER FUNCTION

Make sure that speedometer functions properly.

OK or NG

OK		GO TO 5.
NG	•	GO TO 4.

CHECK COMBINATION METER CIRCUIT FOR OPEN AND SHORT

Check the following.

- Harness connectors M15, E81
- Harness connectors M230, F67
- Harness connectors F65. F114
- Harness for open or short between combination meter and vehicle speed sensor
- Harness for open or short between combination meter and ABS/TCS control unit
- Harness for open or short between vehicle speed sensor and ECM
- Harness for open or short between vehicle speed sensor and TCM (Transmission control module)

OK or NG

NG		Repair open circuit or short to ground or short to power in harness or connectors
OK	- 1	Check combination meter and vehicle speed sensor or ABS/TCS control unit. Refer to EL section.

SC

HA

5 **CHECK INTERMITTENT INCIDENT**

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.

INSPECTION END

Description

NHEC0787

NOTE:

If DTC P0506 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

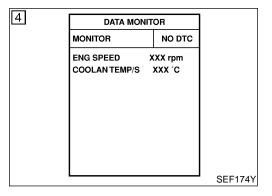
The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadly. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner, power steering and cooling fan operation, etc.).

On Board Diagnosis Logic

NHEC0790

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0506 0506	Idle speed control system RPM lower than expected	The idle speed is not in the specified range.	Electric throttle control actuator Intake air leak

DTC Confirmation Procedure


NHEC0792

NOTE:

- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform "Idle Air Volume Learning", Idle Air Volume Learning, before conducting "DTC Confirmation Procedure". For the target idle speed, refer to the "Service Data and Specifications (SDS)", EC-751.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above -10°C (14°F).

(A) WITH CONSULT-II

NHEC0792S03

- Open engine hood.
- 2) Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON" again and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 1 minute at idle speed.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-439.

WITH GST

Follow the procedure "With CONSULT-II" above.

NHEC0792S04

GI

MA

EM

Diagnostic Procedure

NHEC079

1	1 CHECK INTAKE AIR LEAK				
	 Start engine and let it idle. Listen for an intake air leak after the mass air flow sensor. 				
Z. LIS	ten for an intake all leak at	ter the mass air now sensor.			
	OK or NG				
OK	•	GO TO 2.			
NG	•	Discover air leak location and repair.			

2 REPLACE ECM

- 1. Stop engine.
- 2. Replace ECM.
- 3. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to "IVIS (INFINITI VEHICLE IMMOBILIZER SYSTEM NATS)", EC-90.
- 4. Perform "Accelerator Pedal Released Position Learning", EC-71.
- 5. Perform "Throttle Valve Closed Position Learning", EC-71.
- 6. Perform "Idle Air Volume Learning", EC-71.

► INSPECTION END

EC

LC

FE

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

D@

BT

HA

SC

EL

Description

NOTE:

If DTC P0507 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadly. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner, power steering and cooling fan operation, etc.).

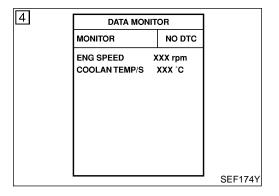
On Board Diagnosis Logic

NHEC0798

NHEC0795

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P0507 0507	Idle speed control system RPM higher than expected	The idle speed is not in the specified range.	Electric throttle control actuator Intake air leak

DTC Confirmation Procedure


NHEC0800

NOTE:

- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform "Idle Air Volume Learning", Idle Air Volume Learning, before conducting "DTC Confirmation Procedure". For the target idle speed, refer to the "Service Data and Specifications (SDS)", EC-751.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above -10°C (14°F).

(A) WITH CONSULT-II

NHEC0800S03

- Open engine hood.
- Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON" again and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 1 minute at idle speed.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-441.

WITH GST

Follow the procedure "With CONSULT-II" above.

NHEC0800S04

GI

MA

EM

Diagnostic Procedure

NHEC080

1	1 CHECK INTAKE AIR LEAK				
	Start engine and let it idle. Listen for an intake air leak after the mass air flow sensor.				
Z. LIS	ten for an intake all leak at	ter the mass air now sensor.			
	OK or NG				
OK	>	GO TO 2.			
NG	•	Discover air leak location and repair.			

2 REPLACE ECM

- 1. Stop engine.
- 2. Replace ECM.
- 3. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to "IVIS (INFINITI VEHICLE IMMOBILIZER SYSTEM NATS)", EC-90.
- 4. Perform "Accelerator Pedal Released Position Learning", EC-71.
- 5. Perform "Throttle Valve Closed Position Learning", EC-71.
- 6. Perform "Idle Air Volume Learning", EC-71.

► INSPECTION END

__

LC

EC

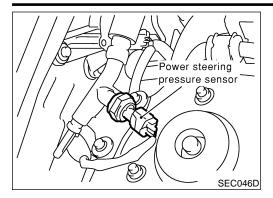
FE

AT

 $\mathbb{A}\mathbb{X}$

BR

ST


RS

BT

HA

SC

EL

Component Description

Power steering pressure (PSP) sensor is installed to the power steering high-pressure tube and detects a power steering load. This sensor is a potentiometer which transforms the power steering load into output voltage, and emits the voltage signal to the ECM. The ECM controls the ETC actuator and adjusts the throttle valve opening angle to increase the engine speed and adjusts the idle speed for the increased load.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC1256

MONITOR ITEM	COND	SPECIFICATION	
PW/ST SIGNAL	• Engine: After warming up, idle the	Steering wheel is in neutral position. (Forward direction)	OFF
	engine	Steering wheel is turned.	ON

On Board Diagnosis Logic

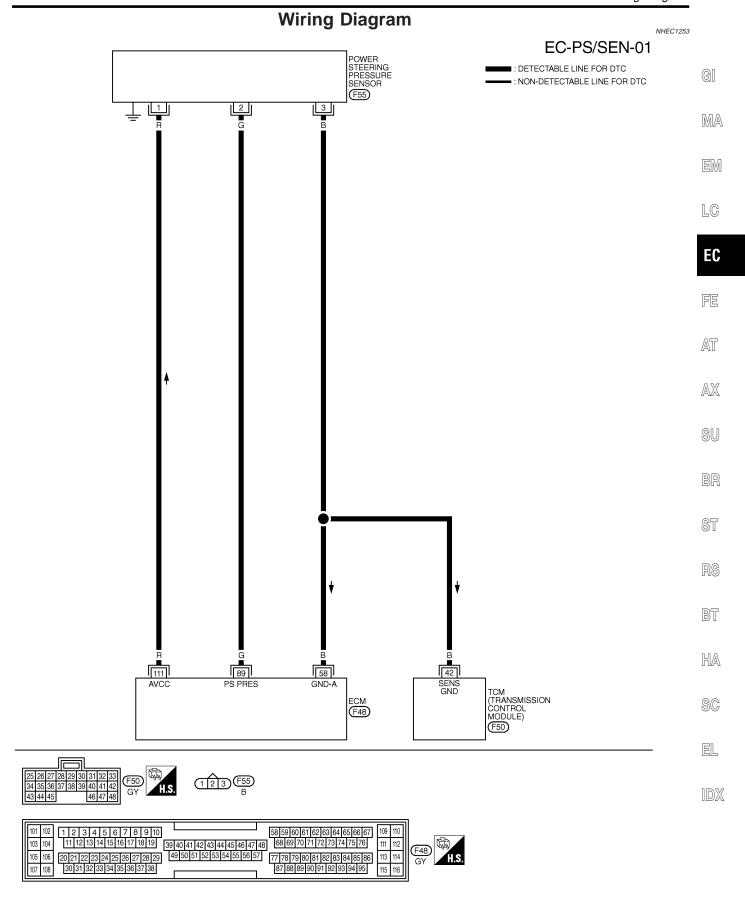
NHEC1251

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0550 0550	Power steering pressure sensor circuit	An excessively low or high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) Power steering pressure sensor

DTC Confirmation Procedure

NOTE:

NHEC1252


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 5 seconds.
- If 1st trip DTC is detected, go to EC-444, "Diagnostic Procedure".

With GST

Follow the procedure "WITH CONSULT-II" above.

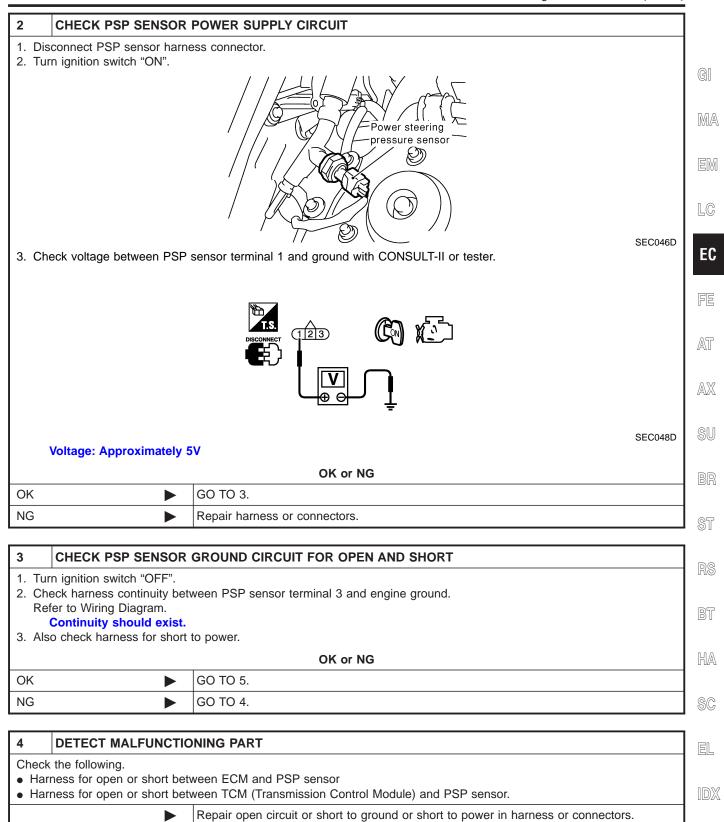
MEC568D

Specification data are reference values and are measured between each terminal and body ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

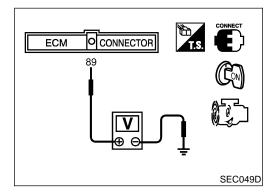
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
58	В	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
89	G	Power steering pressure sensor	[Engine is running] • Steering wheel is being turned.	0.5 - 4.0V
69			[Engine is running] • Steering wheel is not being turned.	0.4 - 0.8V
111	R	Sensors' power supply	[Ignition switch "ON"]	Approximately 5V


Diagnostic Procedure

1 RETIGHTEN GROUND SCREWS

1. Turn ignition switch "OFF".
2. Loosen and retighten engine ground screws.

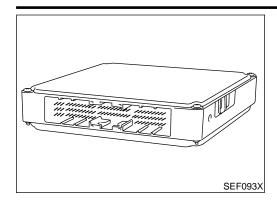
Engine ground


SEC047D

5	CHECK PSP SENSOR	INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	
2. Ch	Disconnect ECM harness connector. Check harness continuity between ECM terminal 89 and PSP sensor terminal 2. Continuity should exist. Also check harness for short to ground and short to power.		
	OK or NG		
OK	•	GO TO 6.	
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.	

6	CHECK PSP SENSOR		
Refer	Refer to "Component Inspection", EC-446.		
	OK or NG		
OK	>	GO TO 7.	
NG	>	Replace PSP sensor.	

7	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	•	INSPECTION END	



Component InspectionPOWER STEERING PRESSURE SENSOR

NHEC1257

- I. Reconnect all harness connectors disconnected.
- 2. Start engine and let it idle.
- 3. Check voltage between ECM terminal 89 and ground under the following conditions.

Condition	Voltage
Steering wheel is turned fully.	Approximately 3.6V
Steering wheel is not turned.	Approximately 0.6V

Component Description

The ECM consists of a microcomputer and connectors for signal input and output and for power supply. The unit controls the engine.

GI

MA

EM

On Board Diagnosis Logic

NHEC1033

DTC No.	Trouble diagnosis name	DTC Detecting Condition		Possible Cause
		A)	ECM calculation function is malfunctioning.	
P0605 0605	Engine control module	B)	ECM EEP-ROM system is malfunctioning.	• ECM
		C)	ECM self shut-off function is malfunctioning.	

EC

FAIL-SAFE MODE

AT

Detected items	Engine operation condition in fail-safe mode
Malfunction A	 ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring. ECM deactivates ASCD operation.

AX

SU

ST

DTC Confirmation Procedure

NHEC103

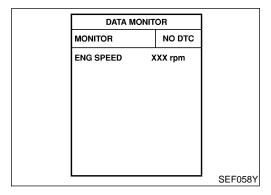
Perform "PROCEDURE FOR MALFUNCTION A" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B". If there is no malfunction on "PROCEDURE FOR MALFUNCTION B", perform "PROCEDURE FOR MALFUNCTION C".

HA

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

96


EL

PROCEDURE FOR MALFUNCTION A

- (P) With CONSULT-II
- 1) Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- If 1st trip DTC is detected, go to EC-448, "Diagnostic Procedure".

With GST

Follow the procedure "With CONSULT-II" above.

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm SEF058Y

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm SEF058Y

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II

- 1) Turn ignition switch "ON" and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- Turn ignition switch "OFF", wait at least 10 seconds, and then turn "ON".
- If 1st trip DTC is detected, go to EC-448, "Diagnostic Procedure".

With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION C

(P) With CONSULT-II

- 1) Turn ignition switch "ON" and wait at least 1 second.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Turn ignition switch "OFF", wait at least 10 seconds, and then turn "ON".
- Repeat step 3 procedure, 32 times.
- 5) If 1st trip DTC is detected, go to EC-448, "Diagnostic Procedure".

With GST

Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure

NHEC1035

INSPECTION START 1

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "SELF DIAG RESULTS" mode with CONSULT-II.
- 3. Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure".

See EC-447.

5. Is the 1st trip DTC P0605 displayed again?

■ With GST

- 1. Turn ignition switch "ON".
- 2. Select MODE 4 with GST.
- 3. Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure".

See EC-447.

5. Is the 1st trip DTC P0605 displayed again?

Yes or No

Yes	>	GO TO 2.
No	>	INSPECTION END

2 REPLACE ECM

- 1. Replace ECM.
- 2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to "IVIS (INFINITI VEHICLE IMMOBILIZER SYSTEM — NATS)", EC-90.
- 3. Perform "Accelerator Pedal Released Position Learning", EC-71.
- 4. Perform "Throttle Valve Closed Position Learning", EC-71.
- 5. Perform "Idle Air Volume Learning", EC-71.

INSPECTION END

Component Description

Malfunction Indicator Lamp (MIL) is located on the instrument panel. When the ignition switch is turned ON without engine running, MIL will light up. This is a bulb check. When the engine is started, MIL should go off. If MIL remains on, the on board diagnostic system has detected an engine system malfunction.

on. Gl

On Board Diagnosis Logic

			NREC1259	
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	MA
P0650	Malfunction indicator	An excessively high voltage is sent to ECM through the MIL circuit under the condition that calls for MIL light up.	Harness or connectors (MIL circuit is open or shorted.)	EM
0650	(MIL) control circuit	 An excessively low voltage is sent to ECM through the MIL circuit under the condition that calls for MIL not to light up. 	• MIL	LC

FAIL-SAFE MODE

ECM enters in fail-safe mode when both DTC P0650 and another DTC, which calls for MIL to light up, are detected at the same time.

Detected items	Engine operating condition in fail-safe mode
MIL circuit	Engine speed will not rise more than 2,500 rpm due to the fuel cut.

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

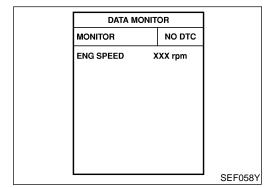
EC

FE

AT

AX

BR


NHFC1260

ST

© I

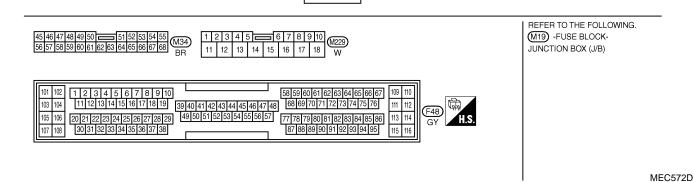
RS

BT

(II) With CONSULT-II

- 1. Turn ignition switch "ON" and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and let it idle for 1 second.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-451.

SC


EL

B WITH GST

Follow the procedure "WITH CONSULT-II" above.

10X

DTC P0650 MIL (CIRCUIT) **Wiring Diagram** NHEC1261 EC-MIL-01 IGNITION SWITCH ON OR START : DETECTABLE LINE FOR DTC ■: NON-DETECTABLE LINE FOR DTC FUSE BLOCK (J/B) M19 10A 30 REFER TO EL-POWER. COMBINATION METER (MALFUNCTION INDICATOR LAMP) (M34)

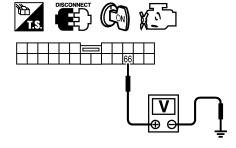
LG/B

ECM (F48)

LG/B M229 5 F66 (F66) Specification data are reference values and are measured between each terminal and body ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
33	LG/B	MIL	[Ignition switch "ON"]	0 - 1.0V
			[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

IFC1262

1 CHECK MIL POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect combination meter harness connector.
- 3. Turn ignition switch "ON".
- 4. Check voltage between combination meter terminal 66 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK •	GO TO 3.
NG •	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector M19
- 10A fuse
- Harness for open or short between fuse block (J/B) and combination meter

Repair harness or connectors.

3 CHECK MIL OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 33 and combination meter terminal 45. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK ►	GO TO 6.
NG 🕨	GO TO 4.

EC-451

GI

MA

EM

LC

EC

AT

 $\mathbb{A}\mathbb{X}$

@11

SEC207D

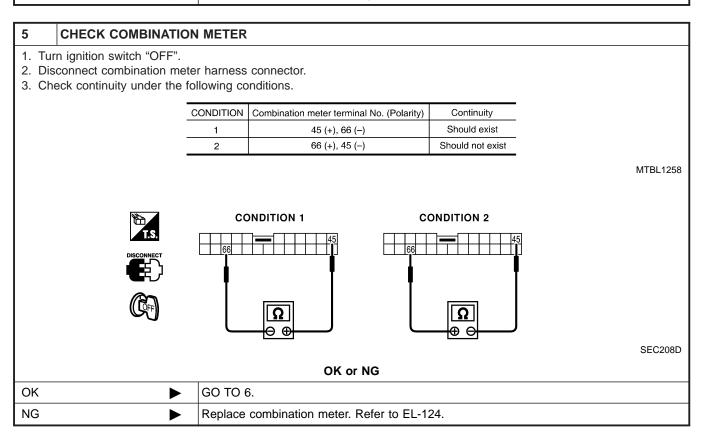
ST

RS

HA

SC

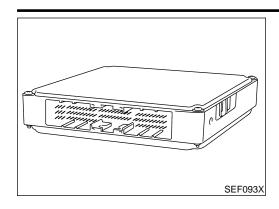
EL


DTC P0650 MIL (CIRCUIT)

Diagnostic Procedure (Cont'd)

4 DETECT MALFUNCTIONING PART

Check the following.


- Harness connectors M229, F66
- Harness for open or short between ECM and combination meter
 - Repair open circuit or short to ground or short to power in harness or connectors.

6	CHECK INTERMITTENT INCIDENT				
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.				
		OK or NG			
OK	OK Replace combination meter. Refer to EL-124, "METERS AND GAUGES".				
NG	>	Repair or replace.			

DTC P1065 ECM POWER SUPPLY (BACK UP)

Component Description

Component Description

Battery voltage is supplied to the ECM even when the ignition switch is turned OFF for the ECM memory function of the DTC memory, the air fuel ratio feedback compensation value memory, the idle air volume learning value memory, etc.

(G)

MA

EM

On Board Diagnosis Logic

NHEC1264

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1065 1065	ECM power supply circuit	ECM back-up RAM system does not function properly.	Harness or connectors [ECM power supply (back-up) circuit is open or shorted.] ECM

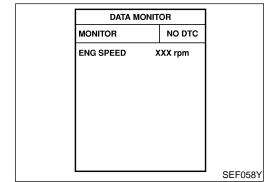
EC

FE

AT

DTC Confirmation Procedure

NHEC1265


NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

91

RS

BT

(II) With CONSULT-II

- 1. Turn ignition switch "ON" and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and let it idle for 1 second.
- 4. Turn ignition switch "OFF", wait at least 10 seconds, and then turn "ON".

HA

- 5. Repeat steps 3 and 4 four times.
- 6. If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-455.

EL

With GST

Follow the procedure "WITH CONSULT-II" above.

10X

Wiring Diagram NHEC1266 EC-ECM/PW-01 BATTERY : DETECTABLE LINE FOR DTC ■: NON-DETECTABLE LINE FOR DTC 15A 59 REFER TO EL-POWER. JOINT CONNECTOR-13 E74 W/L 67 ECM F48 101 102 103 104 105 106 107 108 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 39 40 41 42 43 44 45 46 47 48 58 59 60 61 62 63 64 65 66 67 109 110 68 69 70 71 72 73 74 75 76 111 112 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 113 114

DTC P1065 ECM POWER SUPPLY (BACK UP)

Wiring Diagram (Cont'd)

Specification data are reference values and are measured between each terminal and body ground.

CAUTION:

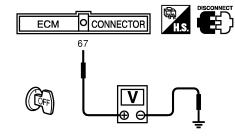
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	MA
67	W/L	Power supply for ECM (Buck-up)	[Ignition switch "OFF"]	BATTERY VOLTAGE (11 - 14V)	EM

Diagnostic Procedure

EC

AT


AX

SU

SEC912C

- 2. Disconnect ECM harness connector.
- 3. Check voltage between ECM terminal 67 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK •	GO TO 3.
NG	GO TO 2.

DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E15, F18
- Joint connector-13
- 15A fuse
- Harness for open or short between ECM and fuse

Repair or replace harness or connectors.

CHECK INTERMITTENT INCIDENT Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151. OK or NG GO TO 4. OK NG Repair or replace harness or connectors.

HA

SC

EL

DTC P1065 ECM POWER SUPPLY (BACK UP)


Diagnostic Procedure (Cont'd)

PERFORM DTC CONFIRMATION PROCEDURE (I) With CONSULT-II 1. Turn ignition switch "ON". 2. Select "SELF DIAG RESULTS" mode with CONSULT-II. 3. Touch "ERASE". 4. Perform "DTC Confirmation Procedure". See EC-453. 5. Is the 1st trip DTC P1065 displayed again? With GST 1. Turn ignition switch "ON". 2. Select MODE 4 with GST. 3. Touch "ERASE". 4. Perform "DTC Confirmation Procedure". See EC-453. 5. Is the 1st trip DTC P1065 displayed again? Yes or No Yes GO TO 5. **INSPECTION END** No

5 REPLACE ECM

- 1. Replace ECM.
- 2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to "IVIS (INFINITI VEHICLE IMMOBILIZER SYSTEM NATS)", EC-90.
- 3. Perform "Accelerator Pedal Released Position Learning", EC-71.
- 4. Perform "Throttle Valve Closed Position Learning", EC-71.
- 5. Perform "Idle Air Volume Learning", EC-71.

▶ INSPECTION END

Component Description

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the

greater the heat loss. Therefore, the ECM must supply more electric current to maintain the temperature of the hot film as air flow increases. The ECM

MA

LC

EC

AT

AX

CONSULT-II Reference Value in Data Monitor Mode

detects the air flow by means of this current change.

NHEC0804

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up Air conditioner switch: "OFF"	Idle	1.1 - 1.5V
	Shift lever: "N"No-load	2,500 rpm	1.7 - 2.4V
CAL /LD \/ALLIE	ditto	Idle	10 - 35%
CAL/LD VALUE		2,500 rpm	10 - 35%
MACC AIDELOW	dista	Idle	2.0 - 6.0 g·m/s
MASS AIRFLOW	ditto	2,500 rpm	7.0 - 20.0 g·m/s

On Board Diagnosis Logic

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	(0
P1102 1102	Mass air flow sensor circuit range/ performance problem	A voltage from the sensor is constantly approx. 1.0V when engine is running.	Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor	

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

NHEC0806S01

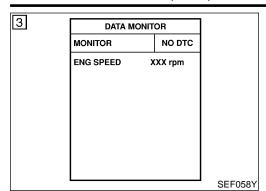
Detected items	Engine operating condition in fail-safe mode
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.

SC

EL

BT

HA


DTC Confirmation Procedure

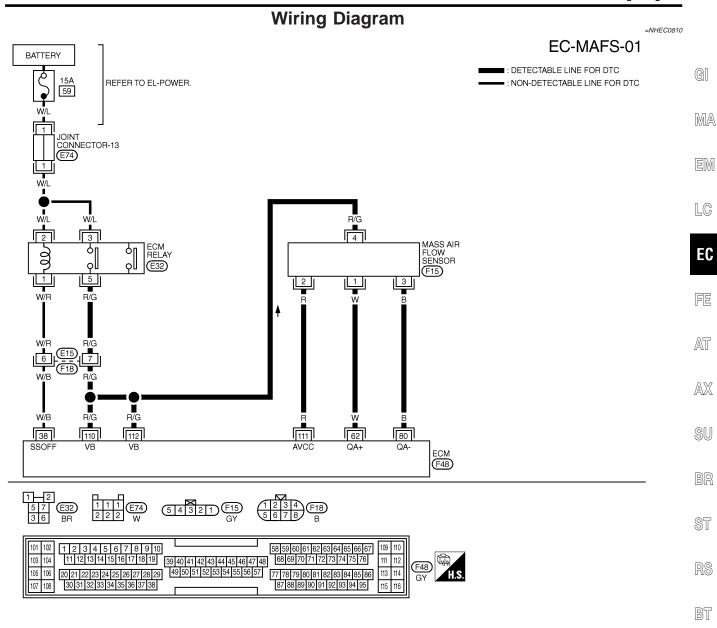
NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

DTC P1102 MAF SENSOR

DTC Confirmation Procedure (Cont'd)

(E) WITH CONSULT-II


NHEC0808S06

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait at least 5 seconds.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-460.

WITH GST

NHEC0808S07

Follow the procedure "With CONSULT-II" above.

MEC531D

HA

SC

EL

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND.

DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

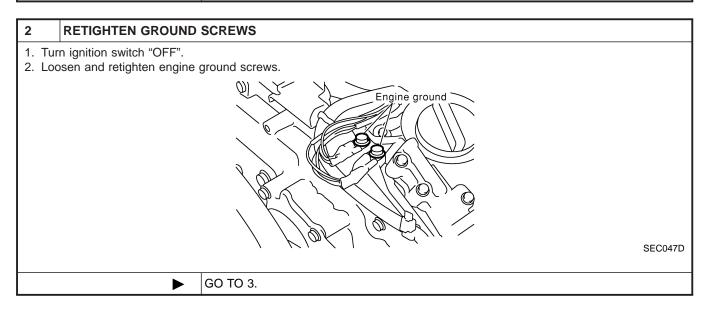
TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
62	100	MASS AIR FLOW SENSOR	ENGINE RUNNING AT IDLE SPEED UNDER WARM-UP CONDITION	1.1 - 1.5V
62	W		ENGINE RUNNING AT 2,500 RPM UNDER WARM-UP CONDITION	1.7 - 2.4V
80			ENGINE RUNNING AT IDLE SPEED UNDER WARM-UP CONDITION	APPROX. 0V
111	R	SENSORS' POWER SUPPLY	IGN ON	APPROX. 5V

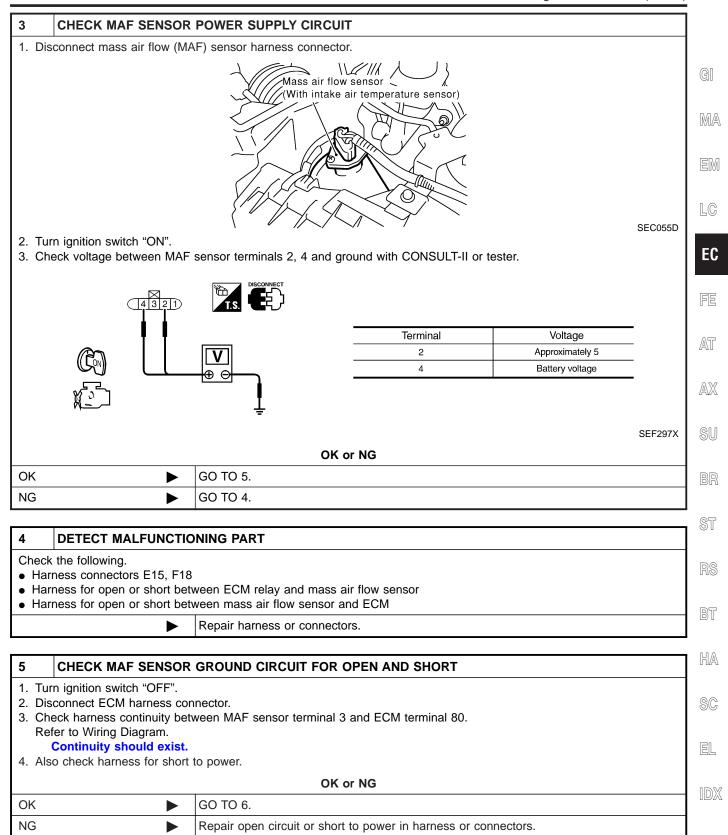
SEF650XC

Diagnostic Procedure

1 CHECK INTAKE SYSTEM

Check the following for connection.

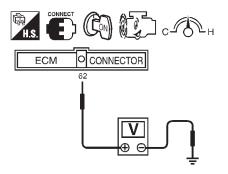

• Air duct


• Vacuum hoses

OK or NG

OK

Reconnect the parts.



6 CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT 1. Check harness continuity between MAF sensor terminal 1 and ECM terminal 62. Refer to Wiring Diagram. Continuity should exist. 2. Also check harness for short to ground and short to power. OK or NG OK Repair open circuit or short to ground or short to power in harness or connectors.

7 CHECK MASS AIR FLOW SENSOR

- 1. Reconnect harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 62 (Mass air flow sensor signal) and ground.

SEF391R

Condition	Voltage V
Ignition switch "ON" (Engine stopped.)	Approx. 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.1 - 1.5
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.7 - 2.4
Idle to about 4,000 rpm*	1.1 - 1.5 to Approx. 4.0

^{*:} Check for linear voltage rise in response to engine being increased to about 4,000 rpm.

MTBL1160

4. If the voltage is out of specification, disconnect MAF sensor harness connector and connect it again. Then repeat above check.

OK	or	NG
----	----	----

OK ▶	GO TO 8.
NG ►	Replace mass air flow sensor.

8	CHECK INTERMITTENT INCIDENT			
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.				
	>	INSPECTION END		

DTC P1121 ELECTRIC THROTTLE CONTROL ACTUATOR

Component Description

Component Description

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The throttle position sensor detects the throttle valve position, and the opening and closing speed of the throttle valve and feeds the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

MA

On Board Diagnosis Logic

NHFC1299

NHEC1298

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause	ļ
		A)	Electric throttle control actuator does not function properly due to the return spring malfunction.		
P1121 1121	Electric throttle control actuator	B)	Throttle valve opening angle in fail-safe mode is not in specified range.	Electric throttle control actuator	
		C)	ECM detect the throttle valve is stuck open. This self-diagnosis has the one trip detection logic.		

EC

LC

AT

FAIL-SAFE MODE

When the malfunction A or B is detected in the two consecutive trips, the ECM enters fail-safe mode and the

When the malfunction C is detected even in the 1st trip, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode		
Malfunction A	The ECM controls the electric throttle throttle actuator by regulating the throttle opening around the idle position. The engine speed will not rise more than 2,000 rpm.		
Malfunction B	ECM controls the electric throttle control actuator by regulating the throttle opening to 20 degrees or less.		
Malfunction C	While the vehicle is driving, it slows down gradually by fuel cut. After the vehicle stops, the engine stalls. The engine can restart in "N" or "P" position, and engine speed will not exceed 1,000 rpm or more.		

AX

DTC Confirmation Procedure

NOTE:

Perform "PROCEDURE FOR MALFUNCTION A AND B" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION C".

If there is no malfunction on "PROCEDURE FOR MAL-FUNCTION A AND B", perform "PROCEDURE FOR MAL-FUNCTION C".

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least

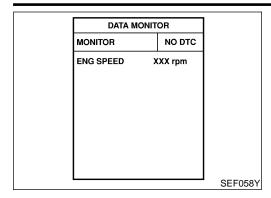
10 seconds before conducting the next test.

EL

SC

PROCEDURE FOR MALFUNCTION A AND B

(P) With CONSULT-II

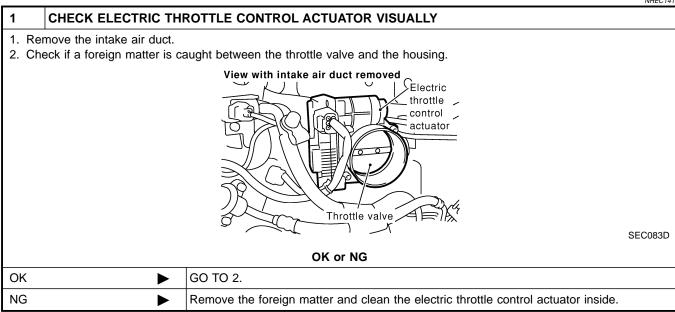

- Turn ignition switch "ON" and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- Shift selector lever to "D" position and wait at least 2 seconds.
- Turn ignition switch "OFF", wait at least 10 seconds, and then turn "ON".
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-464.
- With GST

Follow the procedure "WITH CONSULT-II" above.

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm SEF058Y

DTC P1121 ELECTRIC THROTTLE CONTROL ACTUATOR

DTC Confirmation Procedure (Cont'd)


PROCEDURE FOR MALFUNCTION C

- (P) With CONSULT-II
- 1) Turn ignition switch "ON" and wait at least 1 second.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Shift selector lever to "D" position and wait at least 2 seconds.
- 4) Shift selector lever to "N" or "P" position.
- 5) Start engine and let it idle for 3 seconds.
- 6) If DTC is detected, go to "Diagnostic Procedure", EC-464.
- **With GST**

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

NHEC1413

2	REPLACE ELECTRIC T	THROTTLE CONTROL ACTUATOR			
Replace the electric throttle control actuator. Perform "Throttle Valve Closed Position Learning", EC-71.					
	3. Perform "Idle Air Volume Learning", EC-71.				
	>	INSPECTION END			

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

Description

NHEC1301

GI

MA

Description

NOTE:

If DTC P1122 is displayed with DTC P1121 or P1126, first perform the trouble diagnosis for DTC P1121 or P1126. Refer to EC-463, 473.

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides the feedback to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

This self-diagnosis has the one trip detection logic.

NHEC1302

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1122 1122	Electric throttle control performance problem	Electric throttle control function does not operate properly.	Harness or connectors (Throttle control motor circuit is open or shorted.) Electric throttle control actuator

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

AT

Engine operating condition in fail-safe mode

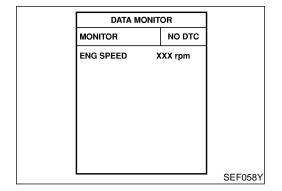
ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

SU

AX

DTC Confirmation Procedure

NOTE:


NHEC1303

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

HA

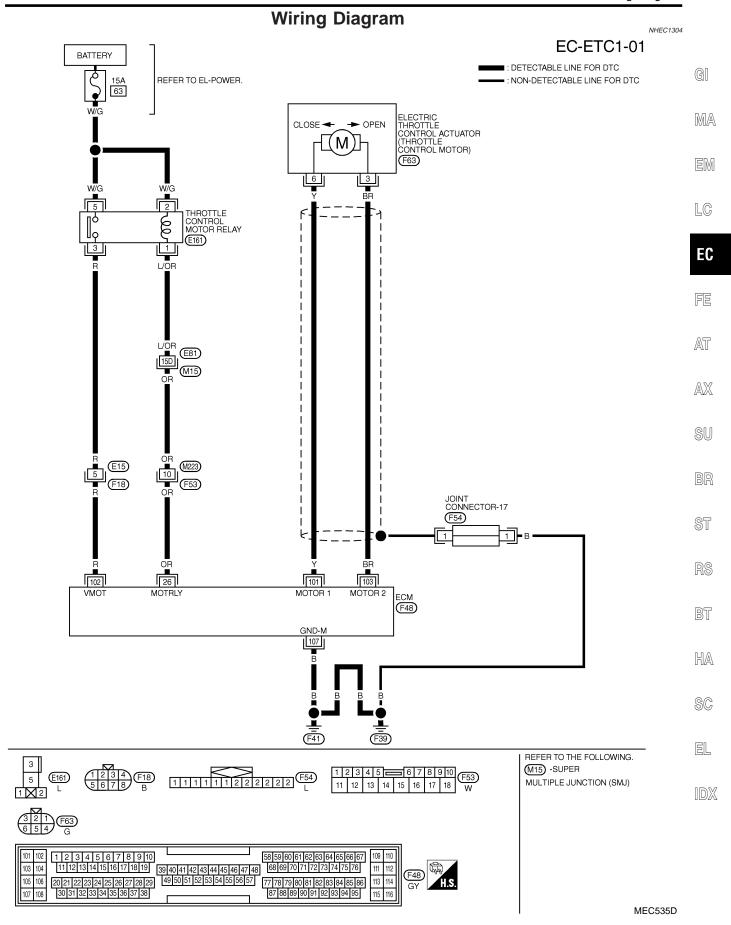
BT

SC

(P) With CONSULT-II

1) Turn ignition switch "ON" and wait at least 2 seconds.

Select "DATA MONITOR" mode with CONSULT-II.


Start engine and let it idle for 5 seconds.

I) If DTC is detected, go to "Diagnostic Procedure", EC-468.

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

DTC Confirmation Procedure (Cont'd)

With GST Follow the procedure "WITH CONSULT-II" above.

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

Wiring Diagram (Cont'd)

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

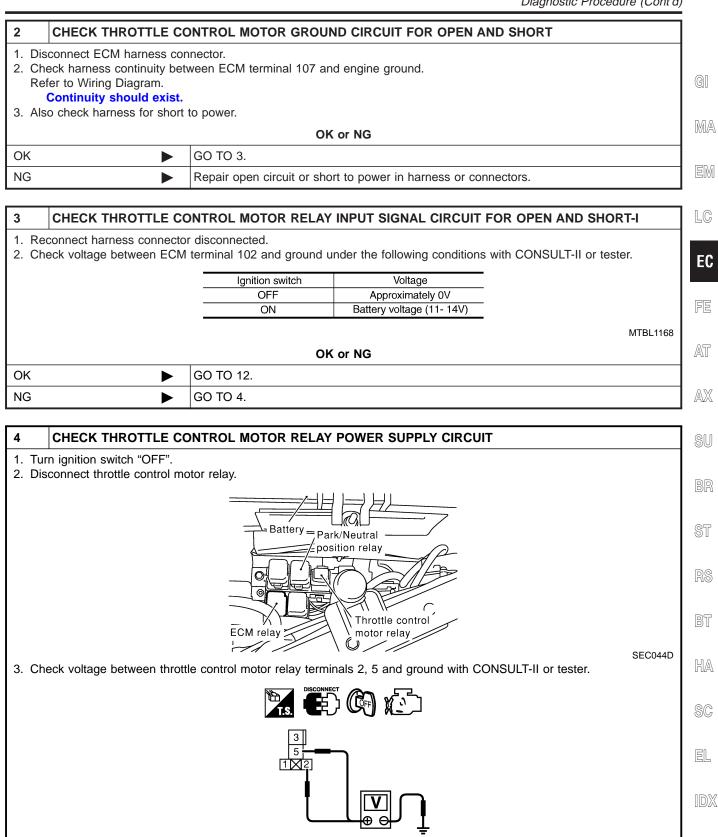
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
26 OR	Throttle control motor	[Ignition switch "OFF"]	BATTERY VOLTAGE (11 - 14V)	
		relay	[Ignition switch "ON"]	0 - 1.0V
101	Y	Throttle control motor (Open)	[Ignition switch "ON"] • Engine stopped • Shift lever position is "D" • Accelerator pedal is depressing	0 - 14V★
102	R	Throttle control motor relay power supply	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
103	BR	Throttle control motor (Close)	[Ignition switch "ON"] • Engine stopped • Shift lever position is "D" • Accelerator pedal is releasing	0 - 14V★
107	В	Throttle control motor ground	[Engine is running] • Idle speed	Approximately 0V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1 RETIGHTEN GROUND SCREWS


1. Turn ignition switch "OFF".
2. Loosen and retighten engine ground screws.

Engine ground

SEC047D

Diagnostic Procedure (Cont'd)

SEC091D

EC-469

OK or NG

Voltage: Battery voltage

GO TO 6.

GO TO 5.

OK

NG

Diagnostic Procedure (Cont'd)

5 DETECT MALFUNCTIONING PART

Check the following.

- 15A fuse
- Harness for open and short between throttle control motor relay and fuse
 - Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-II

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 102 and throttle control motor relay terminal 3. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 8.
NG •	GO TO 7.

7 DETECT MALFUNCTIONING PART

Check the following.

- Harness connector E15, F18
- Harness for open and short between throttle control motor relay and ECM
 - Repair open circuit or short to ground or short to power in harness or connectors.

8 CHECK THROTTLE CONTROL MOTOR RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal 26 and throttle control motor relay terminal 1.
 Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 10.
NG	GO TO 9.

9 DETECT MALFUNCTIONING PART

Check the following.

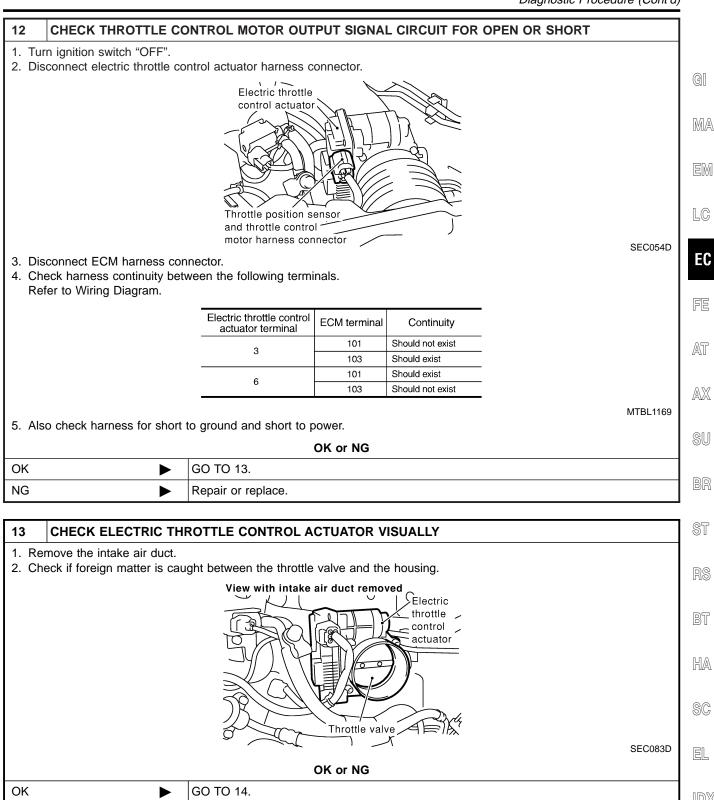
- Harness connector E81, M15
- Harness connectors M223, F53
- Harness for open and short between throttle control motor relay and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

10 CHECK THROTTLE CONTROL MOTOR RELAY

Refer to "Component Inspection", EC-472.

OK or NG


OK	GO TO 11.
NG	Replace throttle control motor relay.

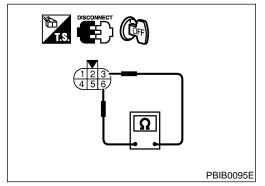
11 CHECK INTERMITTENT INCIDENT

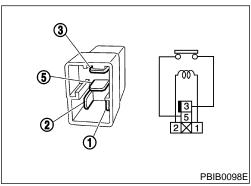
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.

▶ INSPECTION END

Diagnostic Procedure (Cont'd)

Remove the foreign matter and clean the electric throttle control actuator inside.


NG


Diagnostic Procedure (Cont'd)

14	4 CHECK THROTTLE CONTROL MOTOR			
Refer	Refer to "Component Inspection", EC-472.			
	OK or NG			
ОК	OK 🕨 GO TO 15.			
NG	>	GO TO 16.		

15	CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.			
	OK or NG		
ОК	OK ▶ GO TO 16.		
NG	>	Repair or replace harness or connectors.	

16	REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR		
1. Re	Replace the electric throttle control actuator.		
2. Per	2. Perform "Throttle Valve Closed Position Learning", EC-71.		
3. Per	3. Perform "Idle Air Volume Learning", EC-71.		
	INSPECTION END		

Component Inspection THROTTLE CONTROL MOTOR

NHEC1306

- Disconnect electric throttle control actuator harness connector.
- 2. Check resistance between terminals 3 and 6.

Resistance: Approximately 1 - 15 Ω [at 25°C (77°F)]

- 3. If NG, replace electric throttle control actuator and go to next step.
- 4. Perform "Throttle Valve Closed Position Learning", EC-71.
- 5. Perform "Idle Air Volume Learning", EC-71.

THROTTLE CONTROL MOTOR RELAY

NHEC1306S02

- 1. Apply 12V direct current between relay terminals 1 and 2.
- 2. Check continuity between relay terminals 3 and 5.

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

3. If NG, replace throttle control motor relay.

Component Description

Component Description

Power supply for the Throttle Control motor is provided to the ECM via throttle control motor relay. The throttle control motor relay is ON/OFF controlled by the ECM. When the ignition switch is turned ON, the ECM sends an ON signal to throttle control motor relay and battery voltage is provided to the ECM. When the ignition switch is turned OFF, the ECM sends an OFF signal to throttle control motor relay and battery voltage is not provided to the ECM.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC1319

MONITOR ITEM	CONDITION	SPECIFICATION
THRTL RELAY	Ignition switch: ON	ON

MA

On Board Diagnosis Logic

These self-diagnoses have one trip detection logic.

EC NHEC1308

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	[
P1124 1124	Throttle control motor relay circuit short	ECM detect the throttle control motor relay is stuck ON.	Harness or connectors (Throttle control motor relay circuit is shorted) Throttle control motor relay	
P1126 1126	Throttle control motor relay circuit open	ECM detects a voltage of power source for throttle control motor is excessively low.	Harness or connectors (Throttle control motor relay circuit is open) Throttle control motor relay	

AT

AX

SU

FAIL-SAFE MODE

NHEC1308S01

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

NOTE:

NHEC1309

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

HA

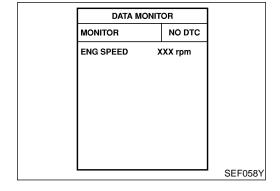
BT

PROCEDURE FOR DTC P1124

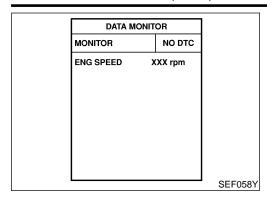
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

SC


EIL

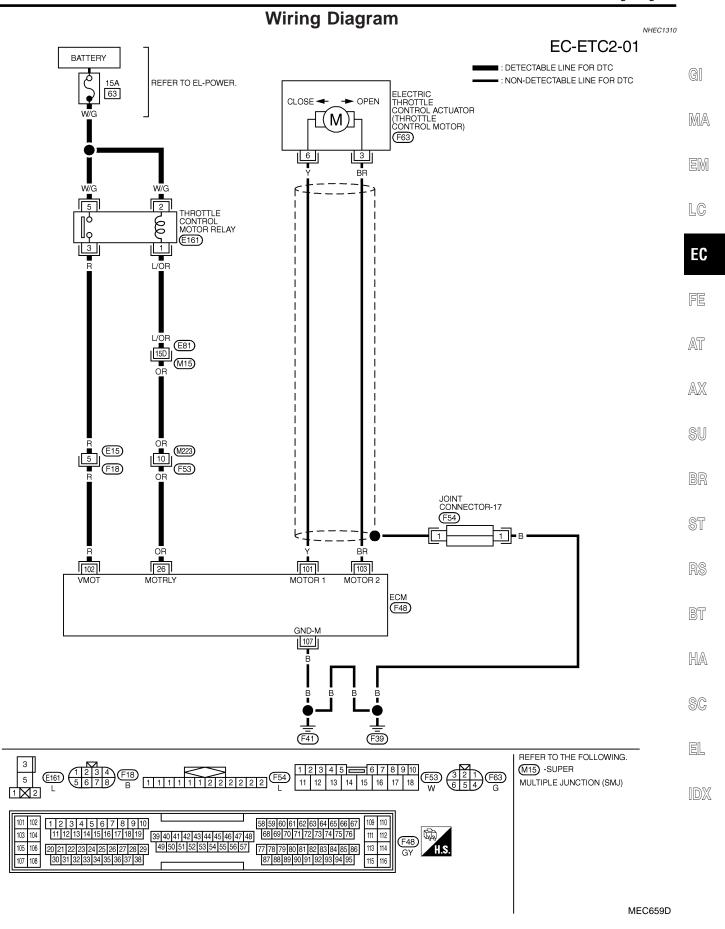
(P) With CONSULT-II


- Turn ignition switch "ON" and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-476.

Follow the procedure "With CONSULT-II" above.

DTC Confirmation Procedure (Cont'd)



PROCEDURE FOR DTC P1126

- (II) With CONSULT-II
- 1) Turn ignition switch "ON" and wait at least 2 seconds.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for 5 seconds.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-476.

With GST

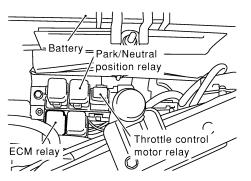
Follow the procedure "With CONSULT-II" above.

Wiring Diagram (Cont'd)

Specification data are reference values and are measured between each terminal and ground.

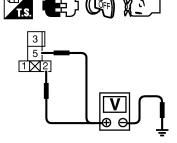
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
26	OR	Throttle control motor	[Ignition switch "OFF"]	BATTERY VOLTAGE (11 - 14V)
16	relay	[Ignition switch "ON"]	0 - 1.0V	
102	102 R Throttle control motor relay	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)	
			[Ignition switch "OFF"]	0 - 1.0V

Diagnostic Procedure

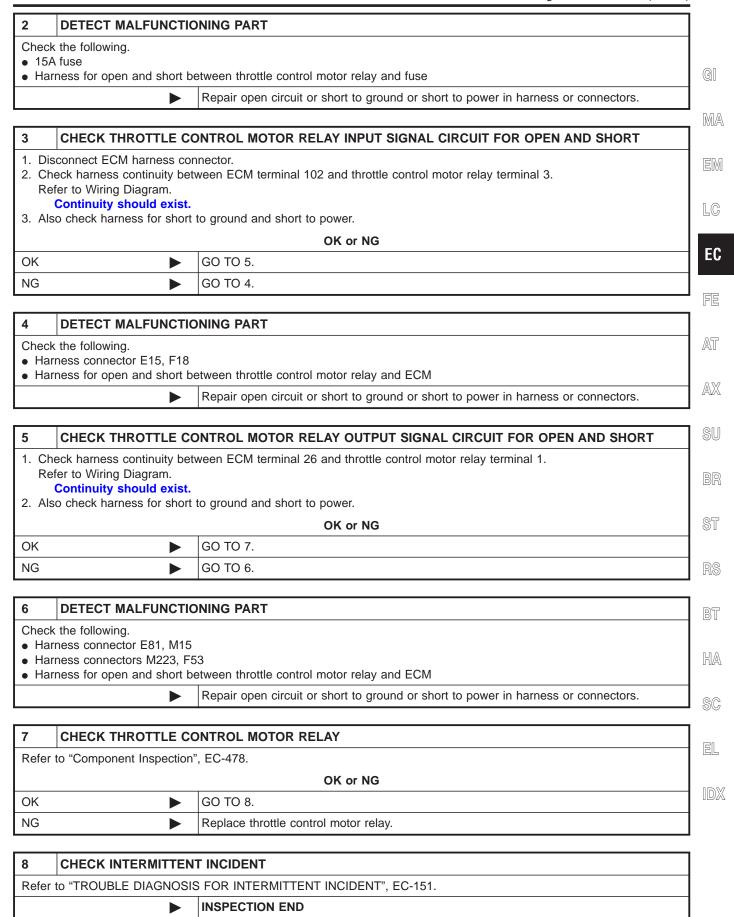
NHEC1311



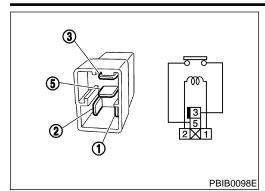
- 1. Turn ignition switch "OFF".
- 2. Disconnect throttle control motor relay.

SEC044D

3. Check voltage between throttle control motor relay terminals 2, 5 and ground with CONSULT-II or tester.


SEC091D

Voltage: Battery voltage


OK	or	N	G
----	----	---	---

OK •	GO TO 3.
NG ►	GO TO 2.

Diagnostic Procedure (Cont'd)

Component Inspection

Component Inspection THROTTLE CONTROL MOTOR RELAY

NHEC1312

- 1. Apply 12V direct current between relay terminals 1 and 2.
- 2. Check continuity between relay terminals 3 and 5.

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

3. If NG, replace throttle control motor relay.

Component Description

Component Description

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feed-back to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

This self-diagnosis has the one trip detection logic.

NHEC1314	MA
----------	----

NHEC1313

				_
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	
P1128 1128	Throttle control motor circuit short	ECM detects short both circuits between ECM and throttle control motor.	Harness or connectors (Throttle control motor circuit is shorted.) Electric throttle control actuator (Throttle control motor)	_

EM

LC

PP

EC

AT

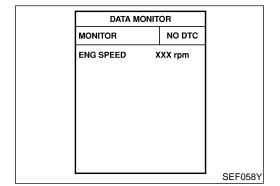
AX

NHEC1315

DTC Confirmation Procedure

OTE.

reviously conducted


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

T2

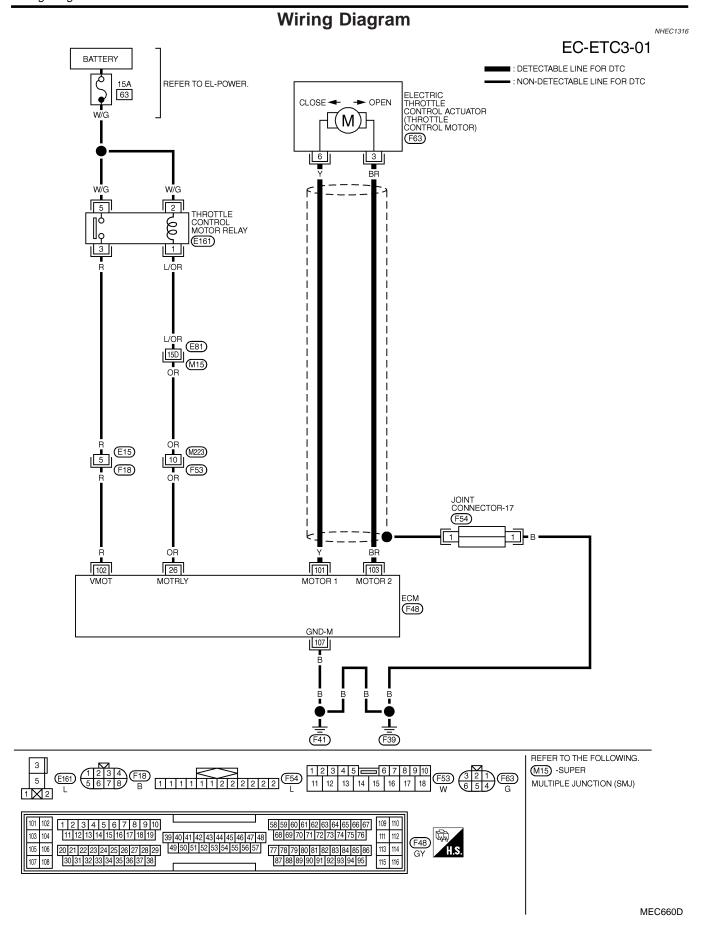
-

RS

BT

(II) With CONSULT-II

- 1) Turn ignition switch "ON" and wait at least 2 seconds.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for 5 seconds.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-481.


HA

SC

EL

With GST

Follow the procedure "With CONSULT-II" above.

Wiring Diagram (Cont'd)

SU

BR

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

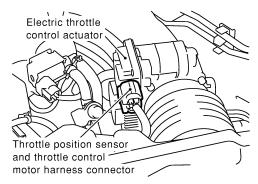
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	MA
101	Y	Throttle control motor (Open)	[Ignition switch "ON"] • Engine stopped • Shift lever position is "D" • Accelerator pedal is depressing	0 - 14V*	EM LG
103	BR	Throttle control motor (Close)	[Ignition switch "ON"] • Engine stopped • Shift lever position is "D" • Accelerator pedal is releasing	0 - 14V★ ////////////////////////////////////	FE
				▶5.0 V/Div 200 us/Div SEC038D	

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. Turn ignition switch "OFF".
2. Loosen and retighten engine ground screws.

Engine ground


SC

SEC047D

Diagnostic Procedure (Cont'd)

2 CHECK THROTTLE CONTROL MOTOR OUTPUT SIGNAL CIRCUIT FOR OPEN OR SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect electric throttle control actuator harness connector.
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

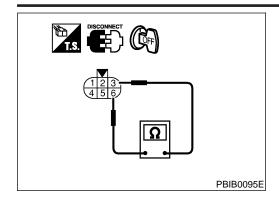
SEC054D

Electric throttle control actuator terminal	ECM terminal	Continuity
3	101	Should not exist
	103	Should exist
6	101	Should exist
0	103	Should not exist

MTBL1169

5. Also check harness for short to ground and short to power.

OK or NO	Ĵ
----------	---


OK •	GO TO 3.
NG ►	Repair or replace.

3	CHECK THROTTLE CO	NTROL MOTOR	
Refer	Refer to "Component Inspection", EC-483.		
	OK or NG		
OK	•	GO TO 4.	
NG	•	GO TO 5.	

4	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
OK or NG			
OK	OK		
NG	•	Repair or replace harness or connectors.	

1. Replace the electric throttle control actuator. 2. Perform "Throttle Valve Closed Position Learning", EC-71. 3. Perform "Idle Air Volume Learning", EC-71. INSPECTION END

Component Inspection

Component Inspection THROTTLE CONTROL MOTOR

NHEC1318

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Check resistance between terminals 3 and 6.

Resistance: Approximately 1 - 15 Ω [at 25°C (77°F)]

- If NG, replace electric throttle control actuator and go to next step.
- 4. Perform "Throttle Valve Closed Position Learning", EC-71.
- 5. Perform "Idle Air Volume Learning", EC-71.

MA

GI

LC

EC

FE

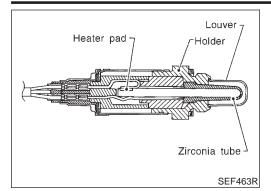
AT

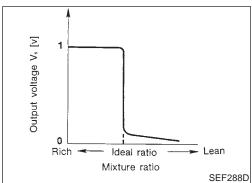
AX

SU

BR

ST

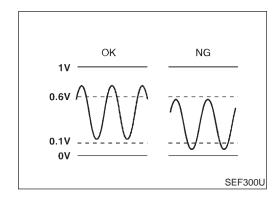

D@


BT

HA

SC

EL


Component Description

The heated oxygen sensor 1 is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONE	DITION	SPECIFICATION
HO2S1 (B1) HO2S1 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

On Board Diagnosis Logic

To judge the malfunction, the output from the heated oxygen sensor 1 is monitored to determine whether the "rich" output is sufficiently high and whether the "lean" output is sufficiently low. When both the outputs are shifting to the lean side, the malfunction will be detected.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	
P1143 1143 (Bank 1) P1163 1163 (Bank 2)	Heated oxygen sensor 1 lean shift monitoring	The maximum and minimum voltage from the sensor are not reached to the specified voltages.	 Heated oxygen sensor 1 Heated oxygen sensor 1 heater Fuel pressure Injectors Intake air leaks 	GI M/

EM

EC

AT

AX

HA

DTC Confirmation Procedure

LC NHEC1151

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above -10°C (14°F).
- Before performing following procedure, confirm that battery voltage is more than 11V at idle.
- (A) WITH CONSULT-II

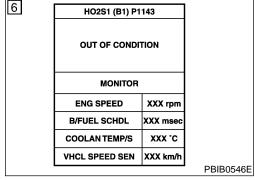
NHEC1151S01

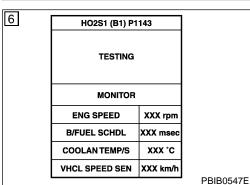
- Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 10 seconds.
- Turn ignition switch "ON" and select "HO2S1 (B1)/(B2) P1143/ P1163" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.

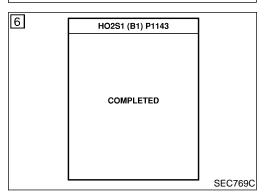
Touch "START".

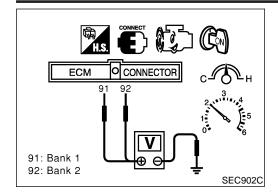
Start engine and let it idle for at least 3 minutes.

NOTE:


Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 5.


When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)

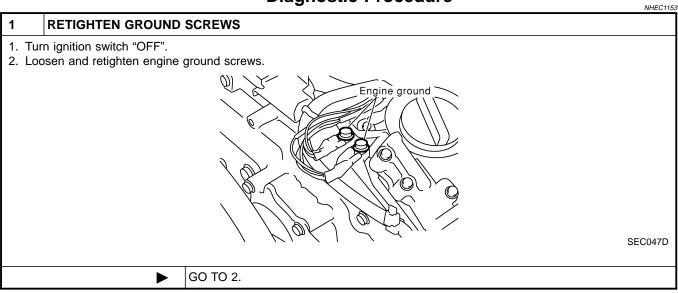

ENG SPEED	1,200 - 2,600 rpm
Vehicle speed	Less than 100 km/h (62 MPH)
B/FUEL SCHDL	3 - 9 msec
Selector lever	Suitable position

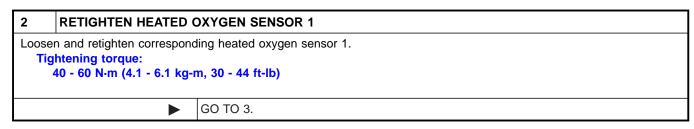

If "TESTING" is not displayed after 5 minutes, retry from step 2.

Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-486.

Overall Function Check

NHEC1152

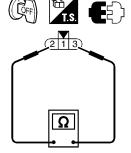

Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a DTC might not be confirmed.

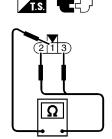

WITH GST

IHEC1152S01

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 91 (bank 1 HO2S1 signal) or 92 (bank 2 HO2S1 signal) and engine ground.
- 3) Check one of the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is over 0.1V at least one time.
- 4) If NG, go to "Diagnostic Procedure", EC-486.

Diagnostic Procedure


SC


EL

CLEAR THE SELF-LEARNING DATA (II) With CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II. 3. Clear the self-learning control coefficient by touching "CLEAR". WORK SUPPORT MA SELF-LEARNING CONT CLEAR 100 % B2 100 % LC EC SEF968Y 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0174 detected? FE Is it difficult to start engine? Without CONSULT-II AT 1. Start engine and warm it up to normal operating temperature. 2. Turn ignition switch "OFF". 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed. AX 4. Stop engine and reconnect mass air flow sensor harness connector. 5. Make sure DTC P0102 is displayed. 6. Erase the DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-89. SU 7. Make sure DTC P0000 is displayed. 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine? Yes or No Yes Perform trouble diagnosis for DTC P0171, P0174. Refer to EC-261. GO TO 4. No BT HA

CHECK HEATED OXYGEN SENSOR 1 HEATER

- 1. Stop engine.
- 2. Disconnect HO2S1 harness connector.
- 3. Check resistance between HO2S1 terminals as follows.

Terminals	Resistance	
2 and 3	2.3 - 4.3 Ω at 25°C (77°F)	
1 and 2 1 and 3	$\infty\Omega$ (Continuity should not exist.)	

SEF310X

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK (With CONSULT-II)		GO TO 5.
OK (Without CONSULT-II)	•	GO TO 6.
NG		Replace malfunctioning heated oxygen sensor 1.

CHECK HEATED OXYGEN SENSOR 1

(I) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

DATA MON	ITOR
MONITOR	NO DTC
ENG SPEED COOLAN TEMP/S HO2S1 (B1) HO2S2 (B2)	XXX rpm XXX °C XXX V XXX V

SEF967Y

MA

LC

EC

AT

AX

HA

6. Check the following.

• "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below.

Bank 1

cycle | 1 | 2 | 3 | 4 | 5 |

HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

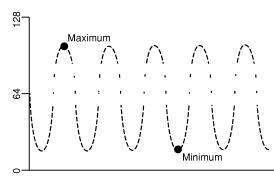
Bank 2

cycle | 1 | 2 | 3 | 4 | 5 |

HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R

R means HO2S1

MNTR (B1)/(B2) indicates RICH


L means HO2S1

MNTR (B1)/(B2) indicates LEAN

SEF647Y

- "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Trigger	ENG	HO2S1
	SPEED	(B1)
	rpm	V
XXX	XXX	XXX

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

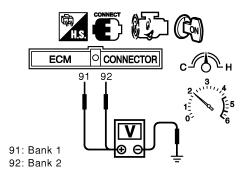
SEF648Y

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK	or	NG
----	----	----

OK •	GO TO 7.
NG ►	Replace malfunctioning heated oxygen sensor 1.


CHECK HEATED OXYGEN SENSOR 1

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 91 (HO2S1 bank 1 signal) or 92 (HO2S1 bank 2 signal) and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

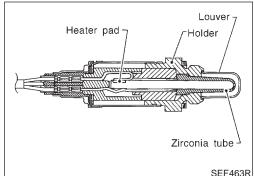
1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

SEC085D

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.


OK or NG

OK ►	GO TO 7.
NG ►	Replace malfunctioning heated oxygen sensor 1.

7 CHECK INTERMITTENT INCIDENT Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.

For circuit, refer to "Wiring Diagram", EC-225.

► INSPECTION END

SEF463R Output voltage V_s [v]

Component Description

The heated oxygen sensor 1 is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

MA

EM

LC

AT

AX

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

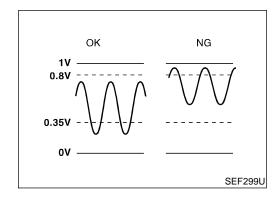
Ideal ratio Mixture ratio Lean

SEF288D

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1) HO2S1 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

SU

BT


HA

SC

EL

On Board Diagnosis Logic

To judge the malfunction, the output from the heated oxygen sensor 1 is monitored to determine whether the "rich" output is sufficiently high. The "lean" output is sufficiently low. When both the outputs are shifting to the rich side, the malfunction will be detected.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1144 1144 (Bank 1) P1164 1164 (Bank 2)	Heated oxygen sensor 1 rich shift monitoring	The maximum and minimum voltages from the sensor are beyond the specified voltages.	 Heated oxygen sensor 1 Fuel pressure Injectors Heated oxygen sensor 1 heater

DTC Confirmation Procedure

NHEC1158

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

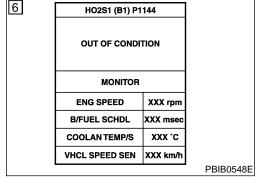
TESTING CONDITION:

- Always perform at a temperature above –10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- (P) WITH CONSULT-II

NHFC1158S01

- 1) Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 5 seconds.
- 3) Turn ignition switch "ON" and select "HO2S1 (B1)/(B2) P1144/ P1164" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine and let it idle for at least 3 minutes.

NOTE:


Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 5.

6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)

ENG SPEED	1,200 - 2,600 rpm
Vehicle speed	Less than 100 km/h (62 MPH)
B/FUEL SCHDL	3 - 9 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-493.

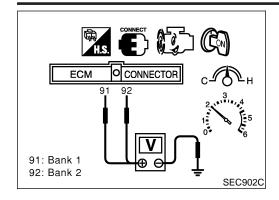
6 HO2S1 (B1) P1144

TESTING

MONITOR

ENG SPEED XXX rpm

B/FUEL SCHDL XXX msec


COOLAN TEMP/S XXX °C

VHCL SPEED SEN XXX km/h

6 HO2S1 (B1) P1144

COMPLETED

SEC772C

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a DTC might not be confirmed.

WITH GST

NHEC1159S01

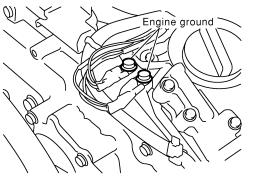
- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 91 (HO2S1 bank 1 signal) or 92 (HO2S1 bank 2 signal) and engine ground.
- 3) Check one of the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is below 0.8V at least one time.
- The minimum voltage is below 0.35V at least one time.
- 4) If NG, go to "Diagnostic Procedure", EC-493.

EC

AT

AX

MA


LC

Diagnostic Procedure

NHEC1160

RETIGHTEN GROUND SCREWS
 Turn ignition switch "OFF".

2. Loosen and retighten engine ground screws.

SEC047D

► GO TO 2.

HA

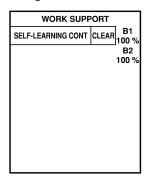
RETIGHTEN HEATED OXYGEN SENSOR 1

Loosen and retighten corresponding heated oxygen sensor 1.

Tightening torque:

40 - 60 N-m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)

GO TO 3.


SC

EL

CLEAR THE SELF-LEARNING DATA

With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

SEF968Y

4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-89.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0172 or P0175 detected?

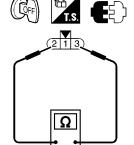
Is it difficult to start engine?

Yes or No

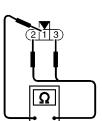
Yes ▶	Perform trouble diagnosis for DTC P0172, P0175. Refer to EC-269.	
No •	GO TO 4.	

4 CHECK HO2S 1 CONNECTOR FOR WATER

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 1 harness connector.
- 3. Check connectors for water.


Water should not exist.

OK or NG


OK •	GO TO 5.
NG •	Repair or replace harness or connectors.

CHECK HEATED OXYGEN SENSOR 1 HEATER

Check resistance between HO2S1 terminals as follows.

Terminals Resistance	
2 and 3 2.3 - 4.3 Ω at 25°C (77°	
1 and 2 1 and 3	$\infty\Omega$ (Continuity should not exist.)

SEF310X

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK (With CONSULT-II)		GO TO 6.
OK (Without CONSULT-II)	>	GO TO 7.
NG	>	Replace malfunctioning heated oxygen sensor 1.

GI

MA

LC

EC

FE

AT

AX

SU

BR

BT

HA

SC

EL

IDX

6 CHECK HEATED OXYGEN SENSOR 1

- (II) With CONSULT-II
- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

DATA MONITOR			
MONITOR	NO DTC		
ENG SPEED COOLANTEMP/S HO2S1 (B1) HO2S2 (B2)	XXX rpm XXX °C XXX V		

SEF967Y

- 6. Check the following.
- "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below.

Bank 1

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

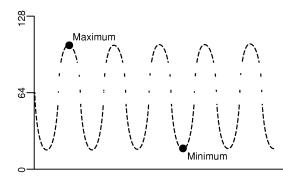
Bank 2

cycle | 1 | 2 | 3 | 4 | 5 |

HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R

R means HO2S1

MNTR (B1)/(B2) indicates RICH


L means HO2S1

MNTR (B1)/(B2) indicates LEAN

SEF647Y

- "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Trigger	ENG	HO2S1
	SPEED	(B1)
	rpm	٧
XXX	XXX	XXX

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

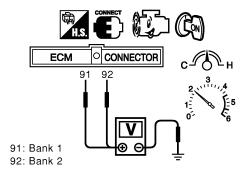
SEF648Y

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

ОК	>	GO TO 8.
NG	•	Replace malfunctioning heated oxygen sensor 1.


CHECK HEATED OXYGEN SENSOR 1

⊗ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 91 (HO2S1 bank 1 signal) or 92 (HO2S1 bank 2 signal) and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

2 times: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$

SEC085D

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK	>	GO TO 8.
NG	•	Replace malfunctioning heated oxygen sensor 1.

8	CHECK INTERMITTENT INCIDENT
---	-----------------------------

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.

For circuit, refer to "Wiring Diagram", EC-225.

INSPECTION END

GI

MA

r n a

LG

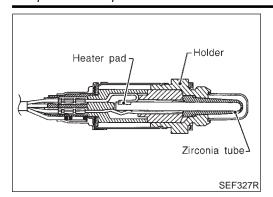
EC

FE

AT

AX

@T


De

D-2

HA

SC

EL

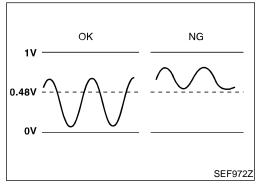
Component Description

NHEC116

The heated oxygen sensor 2, after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

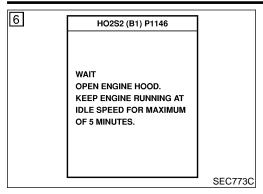

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

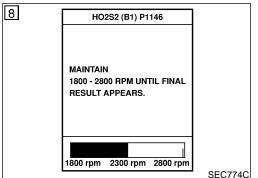
CONSULT-II Reference Value in Data Monitor Mode

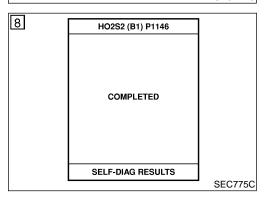
Specification data are reference values.

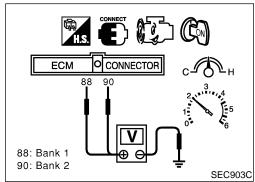
NHEC1162

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1) HO2S2 (B2)	Engine: After warming up After keeping angine appeal.		0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	After keeping engine speed between 3,500 and 4,000 rpm for one minute and at idle for one minute under no load	Revving engine from idle up to 3,000 rpm quickly	LEAN ←→ RICH




On Board Diagnosis Logic


The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the minimum voltage of sensor is sufficiently low during the various driving condition such as fuel-cut.


DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1146 1146 (Bank 1) P1166 1166 (Bank 2)	Heated oxygen sensor 2 minimum voltage monitoring	The minimum voltage from the sensor is not reached to the specified voltage.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 Fuel pressure Injectors

NOTE:

DTC Confirmation Procedure

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Open engine hood before conducting following procedure.

(A) WITH CONSULT-II

Start engine and warm it up to the normal operating temperature.

2) Turn ignition switch "OFF" and wait at least 10 seconds.

Start engine and keep engine speed between 3,500 and 4,000 rpm for at least one minute under no load.

Let engine idle for one minute.

Select "HO2S2 (B1)/(B2) P1146/P1166" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.

Start engine and follow the instruction of CONSULT-II.

Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".

If NG is displayed, refer to "Diagnostic Procedure", EC-503. If "CANNOT BE DIAGNOSED" is displayed, perform the fol-

Stop engine and cool down until "COOLAN TEMP/S" indicates less than 70°C (158°F).

Turn ignition switch "ON".

Select "DATA MONITOR" mode with CONSULT-II.

d) Start engine.

Return to step 6 again when the "COOLAN TEMP/S" reaches to 70°C (158°F).

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a DTC might not be confirmed.

WITH GST

Start engine and warm it up to the normal operating tempera-

Turn ignition switch "OFF" and wait at least 10 seconds. 2)

Start engine and keep engine speed between 3,500 and 4,000 rpm for at least one minute under no load.

Let engine idle for one minute. 4)

Set voltmeter probes between ECM terminal 88 (HO2S2 bank 1 signal) or 90 (HO2S2 bank 2 signal) and engine ground.

Check the voltage when racing up to 4,000 rpm under no load at least 10 times.

(Depress and release accelerator pedal as soon as possible.) The voltage should be below 0.48V at least once during this procedure.

If the voltage can be confirmed in step 4, step 5 is not necessary.

Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH)

MA

EM

LC

EC

FE

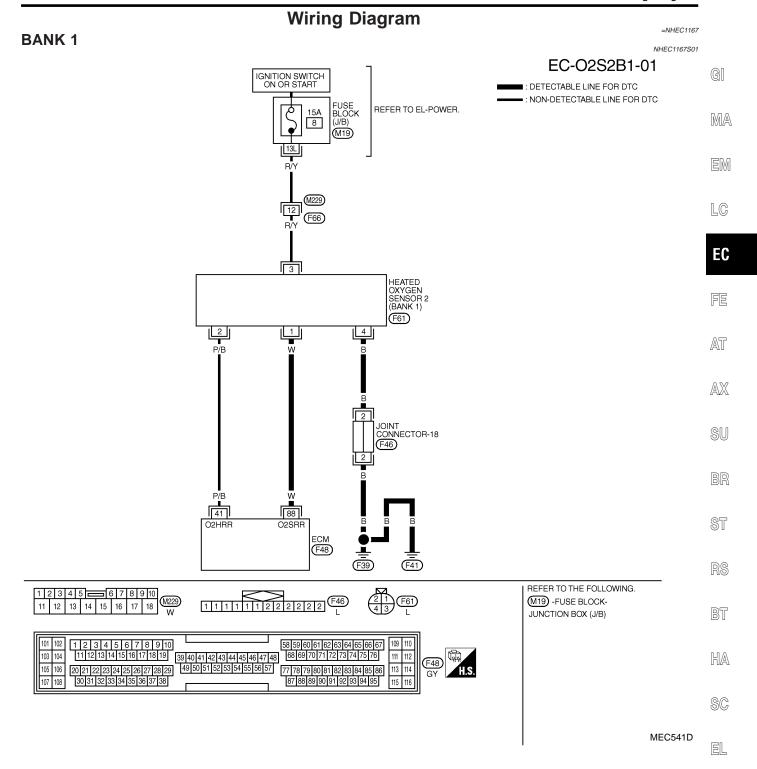
AT

AX

SU

HA

SC

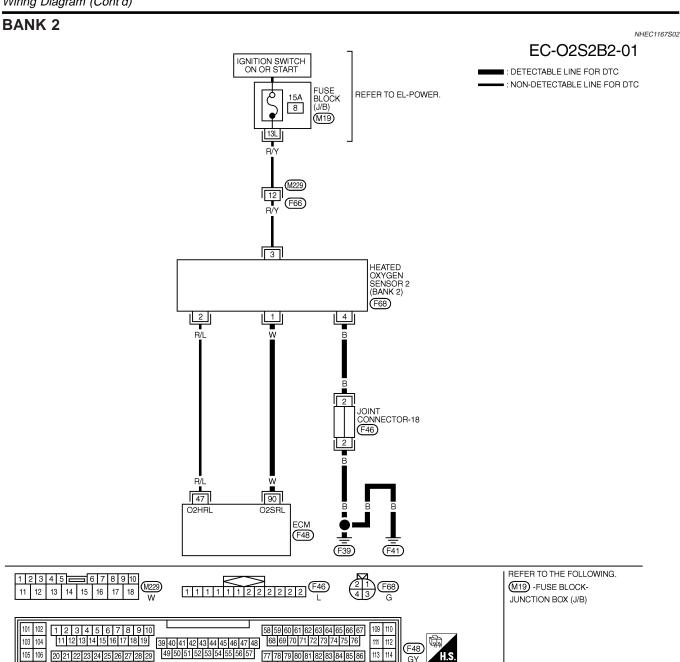

EL

EC-499

in "D" position with "OD" OFF.

The voltage should be below 0.48V at least once during this procedure.

8) If NG, go to "Diagnostic Procedure", EC-503.

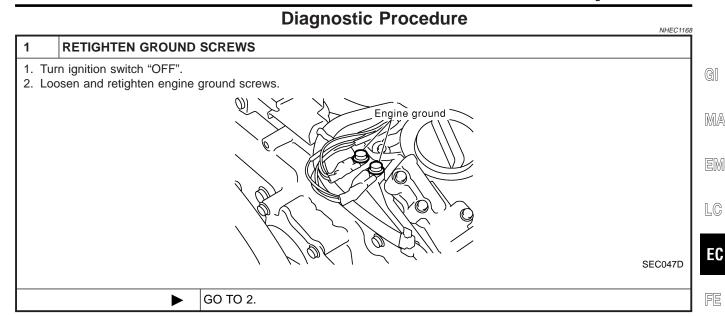

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:

DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE

TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
88	W	HEATED OXYGEN SENSOR 2 (BANK 1)	[ENGINE IS RUNNING] • WARM-UP CONDITION • REVVING ENGINE FROM IDLE UP TO 3,000 RPM QUICKLY AFTER THE FOLLOWING CONDITIONS ARE MET. • AFTER KEEPING ENGINE SPEED BETWEEN 3,500 AND 4,000 RPM FOR ONE MINUTE AND AT IDLE FOR ONE MINUTE UNDER NO LOAD	0 - APPROX. 1.0V

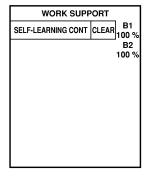
SEC661D


ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:

DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
90	W	HEATED OXYGEN SENSOR 2 (BANK 2)	[ENGINE IS RUNNING] • WARM-UP CONDITION • REVVING ENGINE FROM IDLE UP TO 3,000 RPM QUICKLY AFTER THE FOLLOWING CONDITIONS ARE MET. • AFTER KEEPING ENGINE SPEED BETWEEN 3,500 AND 4,000 RPM FOR ONE MINUTE AND AT IDLE FOR ONE MINUTE UNDER NO LOAD	0 - APPROX. 1.0V

SEC662D


MEC542D

2 CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine?

⊗ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-89.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine?

Yes	or	No
-----	----	----

Yes	Perform trouble diagnosis for DTC P0172, P0175. Refer to EC-269.
No •	GO TO 3.

SEF968Y

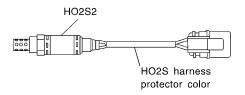
BT

AT

AX

SW

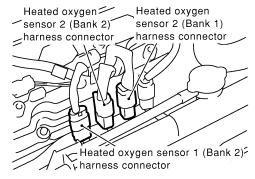
HA


U U/\-\

SC

EL

3 CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT


- 1. Turn ignition switch "OFF".
- 2. Check heated oxygen sensor 2 harness protector color.

HO2S2 (bank 1): White or Gray HO2S2 (bank 2): Red or Red/Brown

3. Disconnect corresponding heated oxygen sensor 2 harness connector.

SEF372ZB

SEC134D

- 4. Disconnect ECM harness connector.
- 5. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
	ECM	Sensor	Dank
P1146	88	1	Bank 1
P1166	90	1	Bank 2
			-

MTBL1161

Continuity should exist.

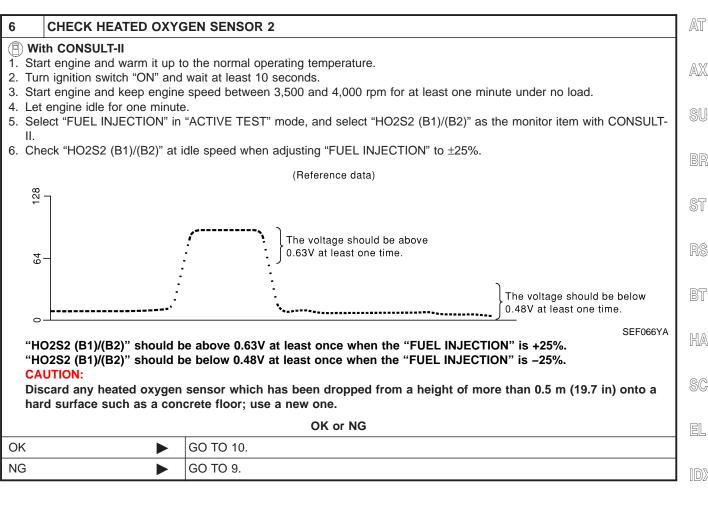
Check harness continuity between ECM terminal or HO2S2 terminal and ground as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
	ECM or Sensor	Ground	Dank
P1146	88 or 1	Ground	Bank 1
P1166	90 or 1	Ground	Bank 2

MTBL1162

Continuity should not exist.

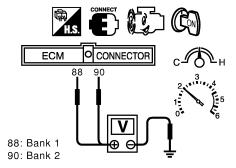
7. Also check harness for short to power.


-	-			-
OI	ĸ	or	. N	IG

OK •	GO TO 4.
NG ▶	Repair open circuit or short to ground or short to power in harness or connectors.

EC

4 CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT 1. Check harness continuity between HO2S2 terminal 4 and engine ground. Refer to Wiring Diagram. Continuity should exist. 2. Also check harness for short to power. OK or NG OK (With CONSULT-II) GO TO 6. OK (Without CONSULT- GO TO 7. II) NG GO TO 5.


5 DETECT MALFUNCTIONING PART Check the following. ■ Joint connectors-18 ■ Harness for open or short between heated oxygen sensor 2 and ground Repair open circuit or short to power in harness or connectors.

CHECK HEATED OXYGEN SENSOR 2-I

⊗ Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch "ON" and wait at least 10 seconds.
- 3. Start engine and keep engine speed between 3,500 and 4,000 rpm for at least one minute under no load.
- 4. Let engine idle for one minute.
- 5. Set voltmeter probes between ECM terminal 88 (HO2S2 bank 1 signal) or 90 (HO2S2 bank 2 signal) and engine ground.
- 6. Check the voltage when rewing up to 4,000 rpm under no load at least 10 times. (Depress and release accelerator pedal as soon as possible.)

SEC903C

The voltage should be above 0.63V at least once during this procedure.

OK or NG

OK ►	GO TO 10.
NG ►	GO TO 8.

CHECK HEATED OXYGEN SENSOR 2-II

Without CONSULT-II

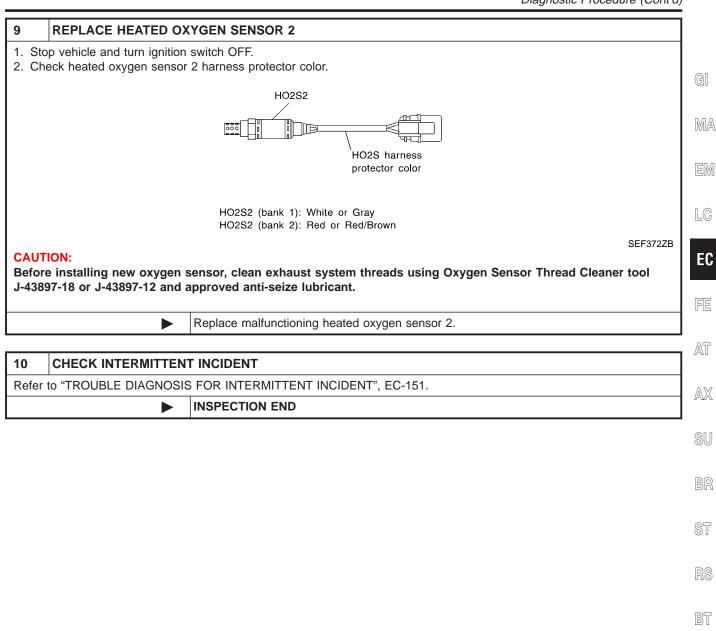
Idle vehicle for 10 minutes, then check voltage between the same terminals as in Test No. 7; or check voltage when coasting from 80 km/h (50 MPH) in "D" position with "OD" OFF.

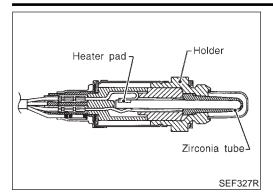
The voltage should go below 0.48V at least once during this procedure.

CAUTION:

8

Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.


OK or NG


OK •	GO TO 10.
NG ►	GO TO 9.

HA

SC

EL

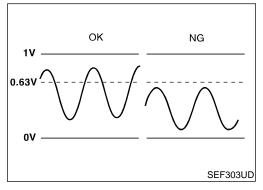
Component Description

NHEC116

The heated oxygen sensor 2, after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

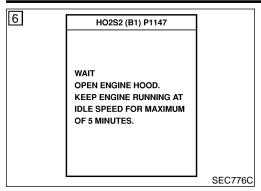

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

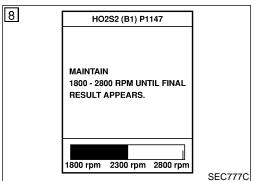
CONSULT-II Reference Value in Data Monitor Mode

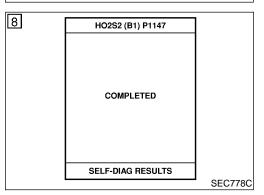
Specification data are reference values.

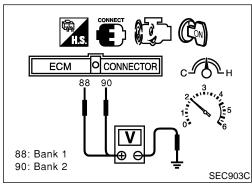
NHEC1170

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1) HO2S2 (B2)	Engine: After warming up		0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	After keeping engine speed between 3,500 and 4,000 rpm for one minute and at idle for one minute under no load	Revving engine from idle up to 3,000 rpm quickly	LEAN ←→ RICH




On Board Diagnosis Logic


The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the maximum voltage of the sensor is sufficiently high during the various driving condition such as


DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1147 1147 (Bank 1) P1167 1167 (Bank 2)	Heated oxygen sensor 2 maximum voltage monitoring	The maximum voltage from the sensor is not reached to the specified voltage.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 Fuel pressure Injectors Intake air leaks

fuel-cut.

DTC Confirmation Procedure

NOTE: If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds

before conducting the next test.

TESTING CONDITION:

- Open engine hood before conducting following proce-
- For the best results, perform "DTC WORK SUPPORT" at
- a temperature of 0 to 30°C (32 to 86°F).

(P) WITH CONSULT-II

Start engine and warm it up to the normal operating temperature.

- Turn ignition switch "OFF" and wait at least 10 seconds.
- Start engine and keep engine speed between 3,500 and 4,000 rpm for at least one minute under no load.
- Let engine idle for one minute.
- Select "HO2S2 (B1) P1147" or "HO2S2 (B2) P1167" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Start engine and follow the instruction of CONSULT-II.
- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-513, "Diagnostic Procedure".
- If "CAN NOT BE DIAGNOSED" is displayed, perform the following. Turn ignition switch "OFF" and leave the vehicle in a cool place
- (soak the vehicle).
- Turn ignition switch "ON" and select "COOLANTEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- and engine up while warm it monitoring "COOLANTEMP/S" indication on CONSULT-II.
- When "COOLANTEMP/S" indication reaches to 70°C (158°F), go to step 3.

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a DTC might not be confirmed.

WITH GST

- Start engine and warm it up to the normal operating tempera-
- Turn ignition switch "OFF" and wait at least 10 seconds. 2)
- Start engine and keep engine speed between 3,500 and 4,000 rpm for at least one minute under no load.
- 4) Let engine idle for one minute.
- Set voltmeter probes between ECM terminal 88 (HO2S2 bank 1 signal) or 90 (HO2S2 bank 2 signal) and engine ground.
- Check the voltage when racing up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.63V at least once during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH)

MA

LC

EC

FE

AT

AX

SU

HA

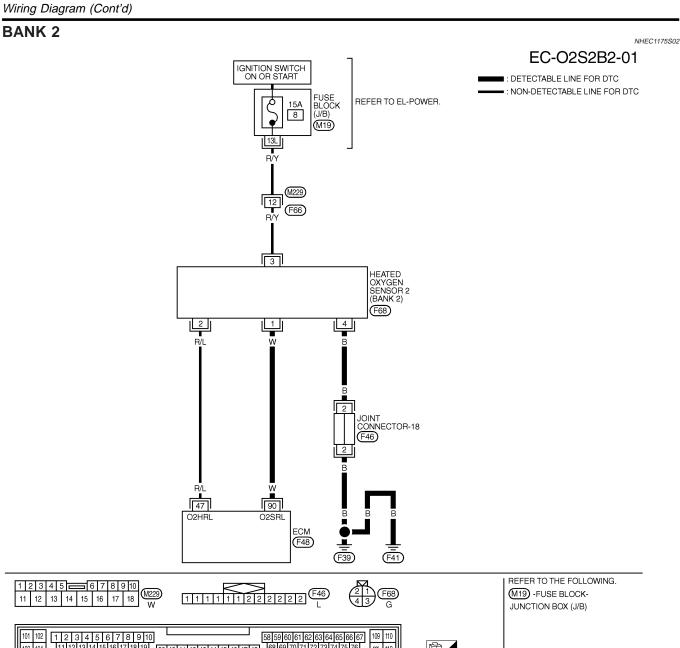
EL

in "D" position with "OD" OFF.

The voltage should be above 0.63V at least once during this procedure.

8) If NG, go to "Diagnostic Procedure", EC-513.

Wiring Diagram =NHEC1175 **BANK 1** NHEC1175S01 EC-O2S2B1-01 GI IGNITION SWITCH ON OR START : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC FUSE BLOCK (J/B) REFER TO EL-POWER. MA 8 M19 EM LC (F66) EC 3 HEATED OXYGEN SENSOR 2 (BANK 1) FE (F61) 2 4 AT AXJOINT CONNECTOR-18 SU P/B 41 41 88 O2HRR O2SBB (F48) REFER TO THE FOLLOWING. 11 12 13 14 15 16 17 18 W229 W 1111111222222 F46 L M19 -FUSE BLOCK-JUNCTION BOX (J/B) BT 101 102 1 2 3 4 5 6 7 8 9 10 109 110 58 59 60 61 62 63 64 65 66 67 103 104 11 12 13 14 15 16 17 18 19 68 69 70 71 72 73 74 75 76 HA (F48) 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 105 106 113 114 107 108 SC MEC541D EL


ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:

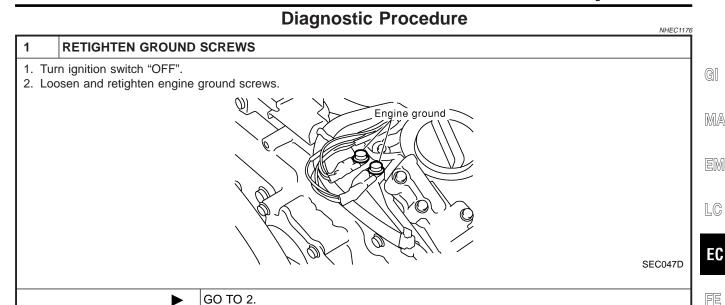
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE

TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

	TERMINAL	WIRE COLOR	COLOR ITEM	CONDITION	DATA (DC)
ENGINE IS RUNNING]	88	w	W SENSOR 2	WARM-UP CONDITION REVVING ENGINE FROM IDLE UP TO 3,000 RPM QUICKLY AFTER THE FOLLOWING CONDITIONS ARE MET. AFTER KEEPING ENGINE SPEED BETWEEN 3,500 AND 4,000 RPM FOR ONE MINUTE AND AT IDLE FOR ONE MINUTE UNDER	0 - APPROX. 1.0V

SEC661D

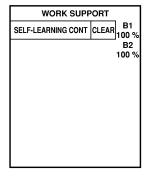
58 59 60 61 62 63 64 65 66 67 109 110 68 69 70 71 72 73 74 75 76 111 112 11 12 13 14 15 16 17 18 19 39 40 41 42 43 44 45 46 47 48 (F48) 20 21 22 23 24 25 26 27 28 29 77 78 79 80 81 82 83 84 85 86 105 106 113 114


MEC542D

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:

DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
90	w	HEATED OXYGEN SENSOR 2 (BANK 2)	[ENGINE IS RUNNING] • WARM-UP CONDITION • REVVING ENGINE FROM IDLE UP TO 3,000 RPM QUICKLY AFTER THE FOLLOWING CONDITIONS ARE MET. • AFTER KEEPING ENGINE SPEED BETWEEN 3,500 AND 4,000 RPM FOR ONE MINUTE AND AT IDLE FOR ONE MINUTE UNDER NO LOAD	0 - APPROX. 1.0V


SEC662D

CLEAR THE SELF-LEARNING DATA 2

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine?

⊗ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-89.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine?

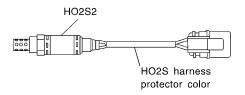
Yes	or	No
-----	----	----

Yes	Perform trouble diagnosis for DTC P0171, P0174. Refer to EC-261.
No •	GO TO 3.

AX

SW

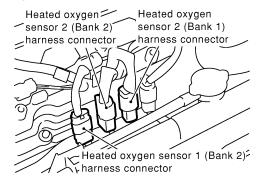
BT


SEF968Y

HA

SC

3 CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT


- 1. Turn ignition switch "OFF".
- 2. Check heated oxygen sensor 2 harness protector color.

HO2S2 (bank 1): White or Gray HO2S2 (bank 2): Red or Red/Brown

3. Disconnect corresponding heated oxygen sensor 2 harness connector.

SEF372ZB

SEC134D

- 4. Disconnect ECM harness connector.
- 5. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
	ECM	Sensor	Dank
P1147	88	1	Bank 1
P1167	90	1	Bank 2

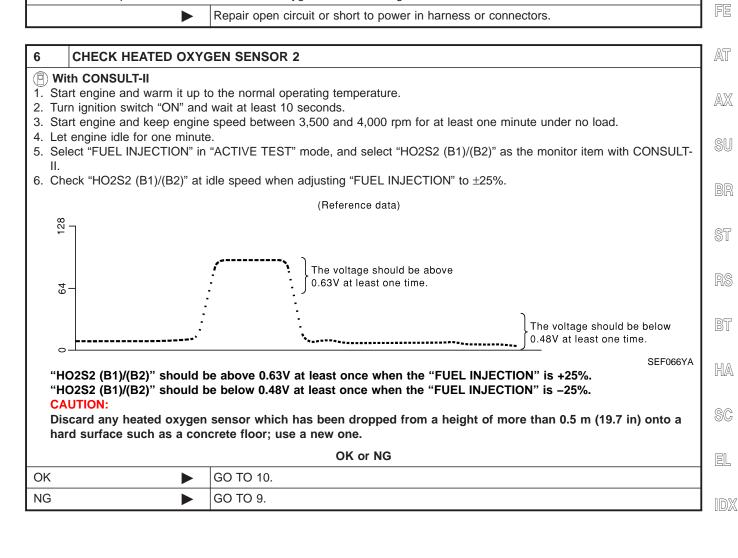
MTBL1163

Continuity should exist.

Check harness continuity between ECM terminal or HO2S2 terminal and ground as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
DIO	ECM or Sensor	Ground	Dank
P1147	88 or 1	Ground	Bank 1
P1167	90 or 1	Ground	Bank 2

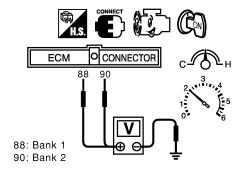
MTBL1164


Continuity should not exist.

7. Also check harness for short to power.

-	-			_
OI	ĸ	or	·N	G

OK •	GO TO 4.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.


CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT 1. Check harness continuity between HO2S2 terminal 4 and engine ground. Refer to Wiring Diagram. Continuity should exist. 2. Also check harness for short to power. OK or NG MA OK (With CONSULT-II) GO TO 6. OK (Without CONSULT-GO TO 7. II) NG GO TO 5. LC 5 **DETECT MALFUNCTIONING PART** EC Check the following. Joint connectors-18 Harness for open or short between heated oxygen sensor 2 and ground

CHECK HEATED OXYGEN SENSOR 2-I

Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch "ON" and wait at least 10 seconds.
- 3. Start engine and keep engine speed between 3,500 and 4,000 rpm for at least one minute under no load.
- 4. Let engine idle for one minute.
- 5. Set voltmeter probes between ECM terminal 88 (HO2S2 bank 1 signal) or 90 (HO2S bank 2 signal) and engine ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times. (Depress and release accelerator pedal as soon as possible.)

SEC903C

The voltage should be above 0.63V at least once during this procedure.

OK or NG

OK •	GO TO 10.
NG ►	GO TO 8.

8 CHECK HEATED OXYGEN SENSOR 2-II

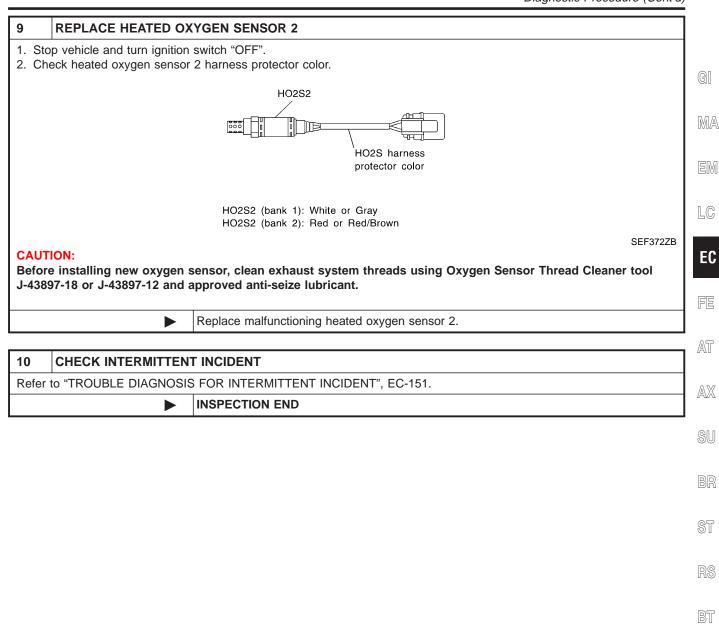
⋈ Without CONSULT-II

Idle vehicle for 10 minutes, then check voltage between the same terminals as in Test No. 7; or check voltage when coasting from 80 km/h (50 MPH) in "D" position with "OD" OFF.

The voltage should go below 0.48V at least once during this procedure.

CAUTION:

Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.


OK or NG

OK •	GO TO 10.
NG ►	GO TO 9.

HA

SC

EL

On Board Diagnosis Logic

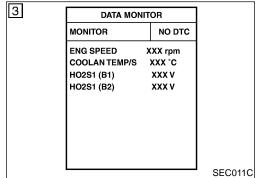
★ The closed loop control has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1148 1148 (Bank 1) P1168 1168 (Bank 2)	Closed loop control	The closed loop control function for bank 1 does not operate even when vehicle is driving in the specified condition, the closed loop control function for bank 2 does not operate even when vehicle is driving in the specified condition.	 The heated oxygen sensor 1 circuit is open or shorted. Heated oxygen sensor 1 Heated oxygen sensor 1 heater

DTC Confirmation Procedure

NHEC1065

CAUTION:


Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Never raise engine speed above 3,600 rpm during the "DTC Confirmation Procedure". If the engine speed limit is exceeded, retry the procedure from step 2.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) WITH CONSULT-II

NHEC1065S01

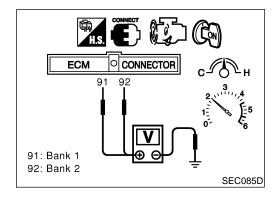
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Start engine and keep engine speed between 3,500 and 4,000 rpm for at least one minute under no load.
- 4) Let engine idle for one minute.
- 5) Select "DATA MONITOR" mode with CONSULT-II.
- 6) Hold engine speed at 2,000 rpm and check one of the following.
- "HO2S1 (B1)/(B2)" voltage should go above 0.70V at least once.
- "HO2S1 (B1)/(B2)" voltage should go below 0.21V at least once.
 - If the check result is NG, perform "Diagnosis Procedure", EC-519.
 - If the check result is OK, perform the following step.
- 7) Let engine idle at least 5 minutes.
- Maintain the following condition at least 50 consecutive seconds.

B/FUEL SCHDL 3.0 msec or more	B/FUEL SCHDL
-------------------------------	--------------

DTC P1148, P1168 CLOSED LOOP CONTROL

DTC Confirmation Procedure (Cont'd)

ENG SPEED	1,800 - 3,000 rpm
Selector lever	Suitable position
VHCL SPEED SE	More than 70 km/h (43 MPH)


G[

During this test, P0134 and/or P0154 may be displayed on CONSULT-II screen.

MA

9) If DTC is detected, go to "Diagnostic Procedure", EC-519.

EM

Overall Function Check

LC

Use this procedure to check the overall function of the closed loop control. During this check, a DTC might not be confirmed.

WITH GST

NHEC1066S01

1) Start engine and warm it up to normal operating temperature.

FE

EC

2) Turn ignition switch "OFF" and wait at least 10 seconds.
3) Start engine and keep engine speed between 3,500 and 4,000 rpm for at least one minute under no load.

. AT

4) Let engine idle for one minute.

5) Set voltmeter probes between ECM terminal 91 [Heated oxygen sensor 1 bank 1 signal] or 92 [Heated oxygen sensor 1 bank 2 signal] and engine ground.

AX

Check the following with engine speed held at 2,000 rpm constant under no-load.

SU

• The voltage should go above 0.70V at least once.

3R

The voltage should go below 0.21V at least once.
If NG, go to "Diagnostic Procedure", EC-519.

ST

Diagnostic Procedure

BT

Perform trouble diagnosis for "DTC P0133, P0153", EC-222.

HA

SC

EL

DX.

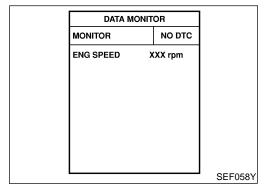
Description

The malfunction information related to ABS/TCS or VDC/TCS/ABS is transferred through the CAN communication line from ABS/TCS control unit or VDC/TCS/ABS control unit to ECM.

Be sure to erase the malfunction information such as DTC not only for ABS/TCS control unit or VDC/ TCS/ABS control unit but also for ECM after the ABS/TCS or VDC/TCS/ABS related repair.

On Board Diagnosis Logic

Freeze frame data is not stored in the ECM for this self-diagnosis. The MIL will not light up for this self-diagnosis.


DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1211 1211	VDC/TCS/ABS control unit performance	ECM receives a malfunction information from ABS/TCS control unit or VDC/TCS/ABS control unit.	ABS/TCS control unit VDC/TCS/ABS control unit TCS related parts VDC related parts

DTC Confirmation Procedure

NHFC1270

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

(II) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 60 seconds.
- 4. If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-521.

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

Go to BR-54 (With ABS/TCS models) or BR-101 (With VDC/TCS/ABS models), "TROUBLE DIAGNOSIS — INTRODUCTION".

G[

MA

EM

LC

EC

FE

AT

AX

SU

BR

ST

RS

BT

HA

SC

EL

Description

NOTE:

If DTC P1212 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to "DTC U1000, U1001 CAN COMMUNICATION LINE", EC-159.

This CAN communication line is used to control the smooth engine operation during the VDC, ABS or TCS operation. Pulse signals are exchanged between ECM and ABS/TCS control unit or VDC/TCS/ABS control unit.

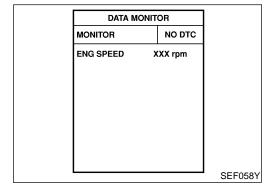
Be sure to erase the malfunction information such as DTC not only in ABS/TCS control unit or VDC/TCS/ABS control unit but also ECM after the ABS/TCS or VDC/TCS/ABS related repair.

On Board Diagnosis Logic

NHFC127

NHEC1273

Freeze frame data is not stored in the ECM for this self-diagnosis. The MIL will not light up for this self-diagnosis.


DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1212 1212	VDC/TCS/ABS communication line	ECM cannot receive the information from ABS/TCS control unit or VDC/TCS/ABS control unit continuously.	Harness or connectors (The CAN communication line is open or shorted.) ABS/TCS control unit VDC/TCS/ABS control unit Dead (Weak) battery

DTC Confirmation Procedure

NHFC1275

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

(II) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 10 seconds.
- 4. If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-523.

B WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P1212 VDC/TCS/ABS COMMUNICATION LINE

Diagnostic Procedure

Diagnostic Procedure

NHEC1277

Refer to "TROUBLE DIAGNOSIS — INTRODUCTION", BR-54 (With ABS/TCS models) or BR-101 (With VDC/TCS/ABS models).

CHECK ABS/TCS CONTROL UNIT OR VDC/TCS/ABS CONTROL UNIT FUNCTION

G[

INSPECTION END

MA

EM

LC

EC

FE

-15

AT

AX

SU

BR

ST

RS

BT

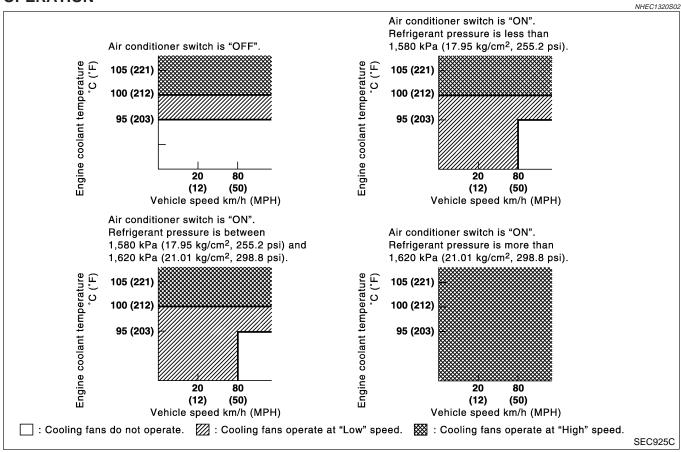
HA

SC

EL

System Description

COOLING FAN CONTROL


NHEC1320

NHEC1320S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Wheel sensor	Vehicle speed		
Engine coolant temperature sensor	Engine coolant temperature		
Air conditioner switch	Air conditioner "ON" signal	Cooling fan	Cooling fan relay(s)
Ignition switch	Start signal		
Refrigerant pressure sensor	Refrigerant pressure		

The ECM controls the cooling fan corresponding to the vehicle speed, engine coolant temperature, refrigerant pressure and air conditioner ON signal. The control system has 3-step control [HIGH/LOW/OFF].

OPERATION

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC1321

MONITOR ITEM	CONE	OITION	SPECIFICATION
AIR COND SIG	- Engine: After warming up, idle	Air conditioner switch: OFF	OFF
	ine engine	Air conditioner switch: ON (Compressor operates)	ON

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONDITION		SPECIFICATION	
		Engine coolant temperature is 94°C (201°F) or less	OFF	– – G1
COOLING FAN	After warming up engine, idle the engine.Air conditioner switch: OFF	Engine coolant temperature is between 95°C (203°F) and 99°C (210°F)	LOW	— Gi
		Engine coolant temperature is 100°C (212°F) or more	HIGH	– – EM

On Board Diagnosis Logic

If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will

When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

_	_	
	r	
	٠.	

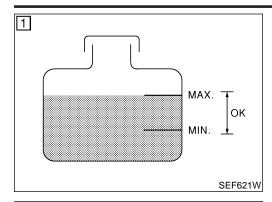
AT

AX

SU

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	_
P1217 1217	Engine over temperature	 Cooling fan does not operate properly (Overheat). Cooling fan system does not operate properly (Overheat). Engine coolant was not added to the system using the proper filling method. 	 Harness or connectors (The cooling fan circuit is open or shorted.) Cooling fan Radiator hose Radiator Radiator cap Water pump Thermostat For more information, refer to "MAIN 12 CAUSES OF OVERHEATING", EC-541. 	

CAUTION:


When a malfunction is indicated, be sure to replace the coolant following the procedure in the MA-14, "Changing Engine Coolant". Also, replace the engine oil.

- 1) Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Be sure to use coolant with the proper mixture ratio. Refer to MA-12, "Anti-freeze Coolant Mixture Ratio".
- 2) After refilling coolant, run engine to ensure that no water-flow noise is emitted.

HA

SC

EL

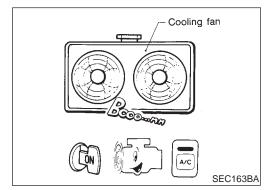
[4]	ACTIVE TES	ST .	
	COOLING FAN	OFF	
	MONITOR		
	COOLAN TEMP/S	xxx °c	
			SEF111X

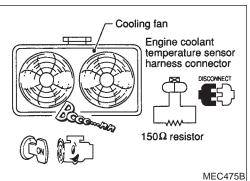
Overall Function Check

NHEC132

Use this procedure to check the overall function of the cooling fan. During this check, a 1st trip DTC might not be confirmed.

WARNING.


Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator.


Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

(P) WITH CONSULT-II

NHEC1324S01

- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to "Diagnostic Procedure", EC-530.
- 2) Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to "Diagnostic Procedure", EC-530.
- 3) Turn ignition switch "ON".
- Perform "COOLING FAN" in "ACTIVE TEST" mode with CON-SULT-II.
- 5) If the results are NG, go to "Diagnostic Procedure", EC-530.

WITH GST

NHEC1324S03

- 1) Check the coolant level in the reservoir tank and radiator.

 Allow engine to cool before checking coolant level.

 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to "Diagnostic Procedure", EC-530.
- Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to "Diagnostic Procedure", EC-530.
- 3) Start engine.

Be careful not to overheat engine.

- 4) Set temperature control lever to full cold position.
- 5) Turn air conditioner switch "ON".
- Turn blower fan switch "ON".
- Run engine at idle for a few minutes with air conditioner operating.

Be careful not to overheat engine.

- 8) Make sure that cooling fan operates at low speed. If NG, go to "Diagnostic Procedure", EC-530. If OK, go to the following step.
- 9) Turn ignition switch "OFF".
- 10) Turn air conditioner switch and blower fan switch "OFF".

Overall Function Check (Cont'd)

- 11) Disconnect engine coolant temperature sensor harness connector.
- 12) Connect 150Ω resistor to engine coolant temperature sensor harness connector.
- 13) Restart engine and make sure that cooling fan operates at higher speed than low speed.

Be careful not to overheat engine.

14) If NG, go to "Diagnostic Procedure", EC-530.

GI

MA

LC

EC

FE

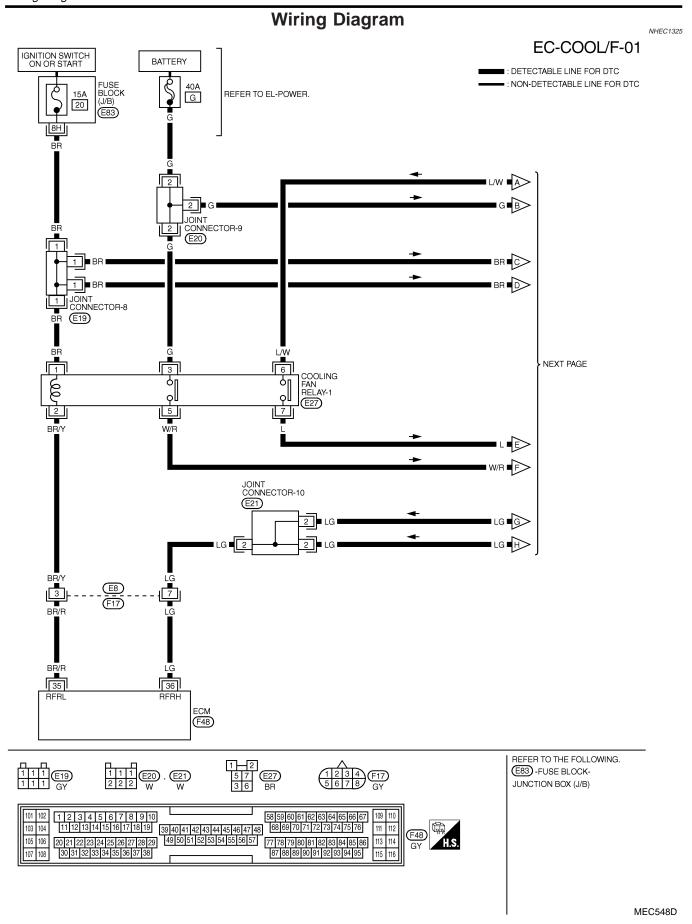
AT

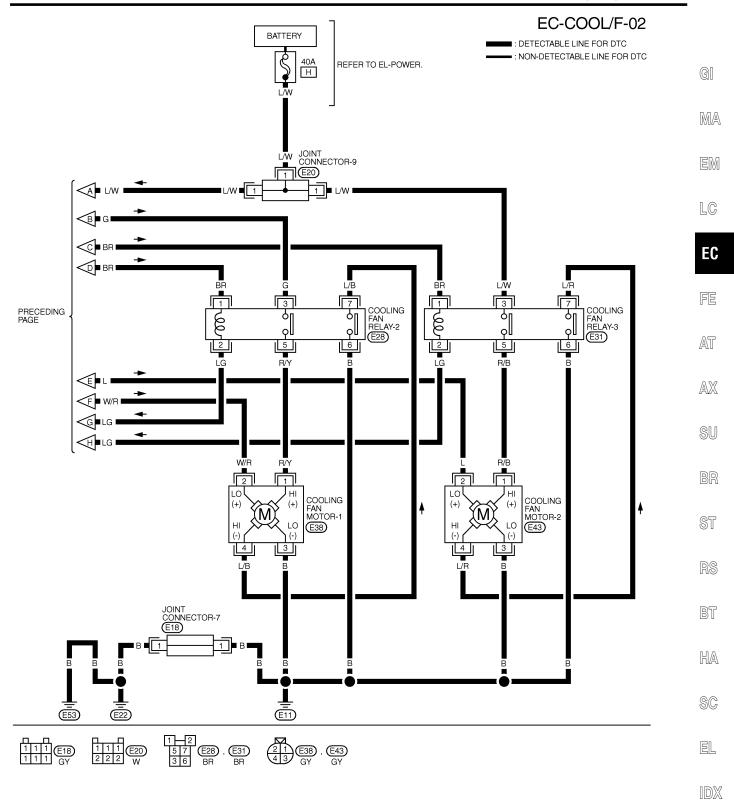
AX

SU

BR

ST


RS


BT

HA

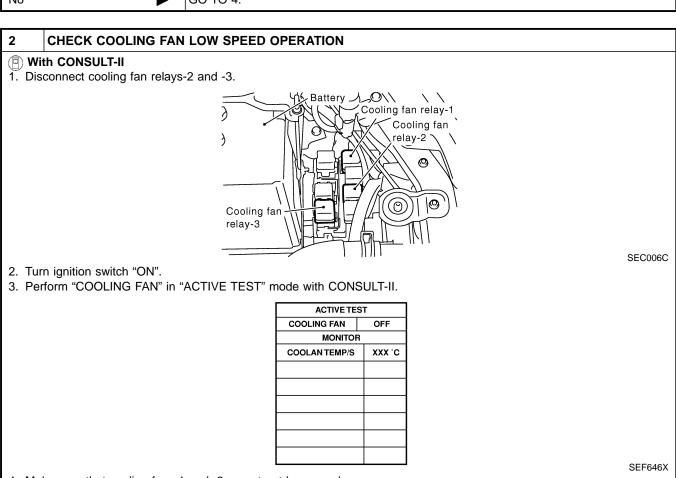
SC

EL

MEC549D

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND.

CAUTION:


DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

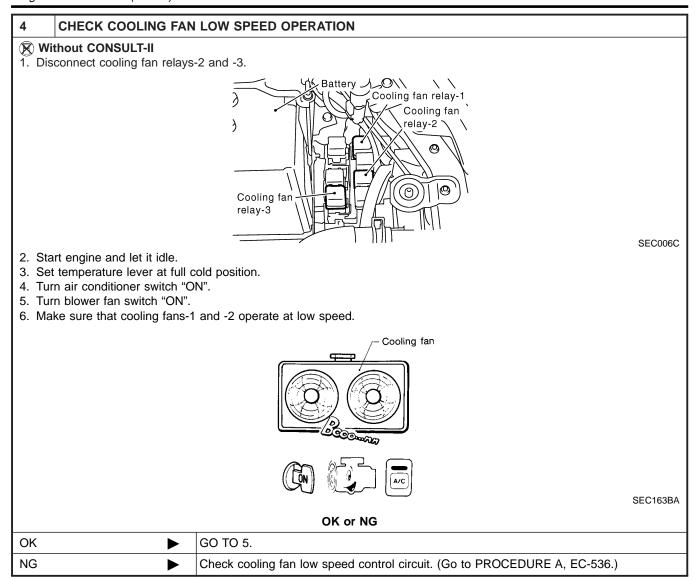
TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
36	LG	COOLING FAIN NELAT	ENGINE RUNNING WITH COOLING FAN NOT OPERATING	BATTERY VOLTAGE
36 LG	LG		ENGINE RUNNING WITH COOLING FAN OPERATING AT HIGH SPEED	0 - 1.0V
35	DD/D	BR/R COOLING FAN RELAY (LOW)	ICOOLING FAN NOT OPERATING	BATTERY VOLTAGE
35	ווט //ו	` ,	ENGINE RUNNING WITH COOLING FAN OPERATING AT LOW SPEED	0 - 1.0V

SEF630XC

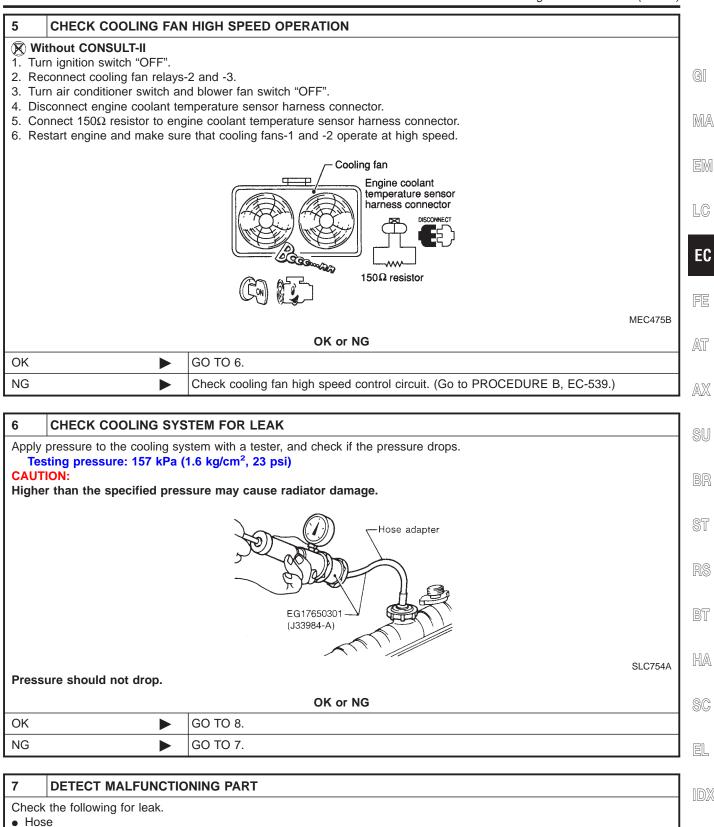
Diagnostic Procedure

1	INSPECTION START				
Do yo	Do you have CONSULT-II?				
	Yes or No				
Yes	Yes ► GO TO 2.				
No	>	GO TO 4.			

4. Make sure that cooling fans-1 and -2 operate at low speed.


OK or NG

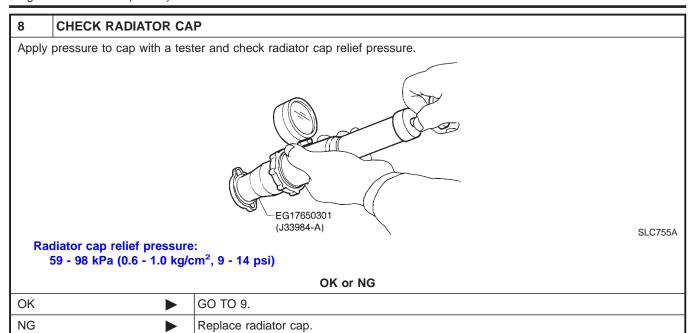
OK •	GO TO 3.
NG ▶	Check cooling fan low speed control circuit. (Go to PROCEDURE A, EC-536.)


Diagnostic Procedure (Cont'd)

3 CHECK COOLING FAN HIGH SPEED OPERATION			
With CONSULT-II 1. Turn ignition switch "OFF". 2. Reconnect cooling fan relays 3. Turn ignition switch "ON".	-2 and -3. "ACTIVE TEST" mode with CONSULT-II.		GI
4. Pelioilii COOLING FAN III			MA
	ACTIVE TEST COOLING FAN OFF		
	MONITOR COOLAN TEMP/S XXX °C		EM
	COULANTEMPS AAA C		
			LC
			EC
5. Make sure that cooling fans-	1 and -2 operate at high speed.	SEF111X	FE
	OK or NG		
OK •	GO TO 6.		AT
NG ▶	Check cooling fan high speed control circuit. (Go to PROCEDURE B, EC-539.)		
			$\mathbb{A}\mathbb{X}$
			SU
			BR
			ST
			RS
			BT
			HA
			0 00 0
			SC
			99
			EL
			IDX

Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)


EC-533

Radiator

• Water pump (Refer to LC-14, "Water Pump".)

Repair or replace.

Diagnostic Procedure (Cont'd)



9 CHECK THERMOSTAT

- 1. Remove thermostat.
- 2. Check valve seating condition at normal room temperatures.

It should seat tightly.

3. Check valve opening temperature and valve lift.

SLC343

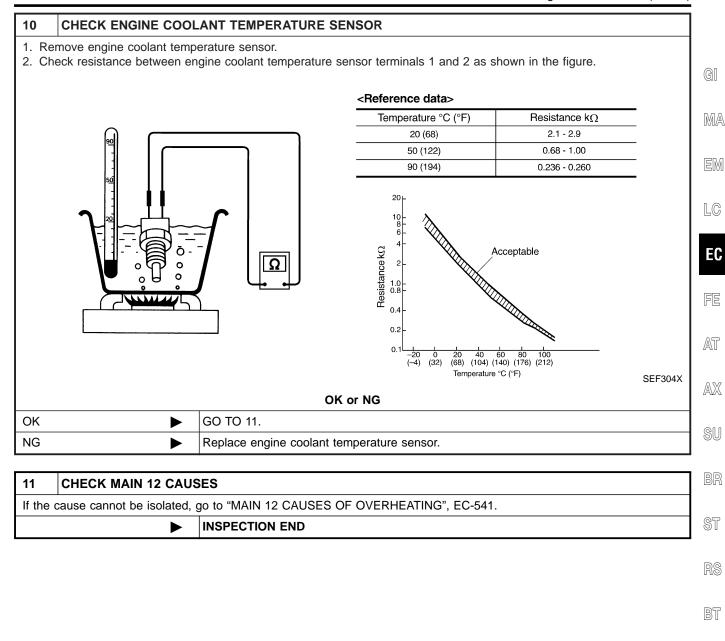
Valve opening temperature: 82°C (180°F) [standard]

Valve lift:

More than 8.6 mm/95°C (0.339 in/203°F)

4. Check if valve is closed at 5°C (9°F) below valve opening temperature. For details, refer to LC-19, "Thermostat".

OK or NG

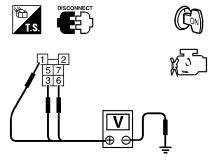

OK •	GO TO 10.
NG •	Replace thermostat.

Diagnostic Procedure (Cont'd)

HA

SC

EL


Diagnostic Procedure (Cont'd)

PROCEDURE A

=NHEC1326S01

1 CHECK COOLING FAN POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect cooling fan relay-1.
- 3. Turn ignition switch "ON".
- 4. Check voltage between cooling fan relay-1 terminals 1, 3, 6 and ground with CONSULT-II or tester.

Voltage: Battery voltage

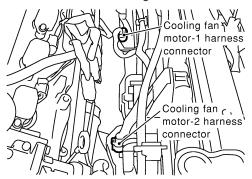
SEF590X

OK or NG

OK	>	GO TO 3.
NG	•	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.


- Joint connector-8
- Joint connector-9
- 15A fuse
- 40A fusible links
- Harness for open or short between cooling fan relay-1 and fuse
- Harness for open or short between cooling fan relay-1 and battery

Repair open circuit or short to ground or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)

CHECK COOLING FAN GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect cooling fan motor-1 harness connector and cooling fan motor-2 harness connector.

SEC057D

3. Check harness continuity between cooling fan relay-1 terminal 5 and cooling fan motor-1 terminal 2, cooling fan motor-1 terminal 3 and body ground. Refer to Wiring Diagram.

Continuity should exist.

- 4. Also check harness for short to ground and short to power.
- 5. Check harness continuity between cooling fan relay-1 terminal 7 and cooling fan motor-2 terminal 2, cooling fan motor-2 terminal 3 and body ground. Refer to Wiring Diagram.

Continuity should exist.

6. Also check harness for short to ground and short to power.

0	K	or	N	G

OK	GO TO 4.
NG	Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK COOLING FAN OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 35 and cooling fan relay-1 terminal 2. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK •	GO TO 6.
NG ▶	GO TO 5.

5 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E8, F17
- Harness for open or short between cooling fan relay-1 and ECM
 - Repair open circuit or short to ground or short to power in harness or connectors.

GI

MA

LC

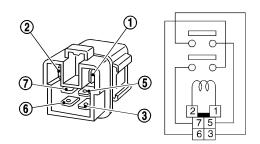
EC

FF

AT

 $\mathbb{A}\mathbb{X}$

SU


HA

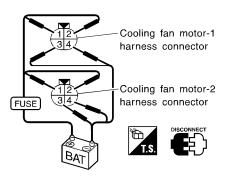
l SC

Diagnostic Procedure (Cont'd)

CHECK COOLING FAN RELAY-1

Check continuity between cooling fan relay-1 terminals 3 and 5, 6 and 7 under the following conditions.

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No


SEF591X

OK or NG

OK •	GO TO 7.
NG ►	Replace cooling fan relay.

7 CHECK COOLING FAN MOTORS-1 AND -2

Supply battery voltage between the following terminals and check operation.

	Speed	Terminals	
		(+)	(-)
Cooling fan	Low	2	3
motor-1	High	1,2	3,4
Cooling fan motor-2	Low	2	3
motor-2	High	1,2	3,4

SEF592X

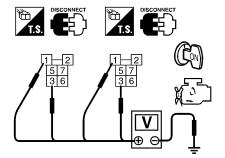
OK or NG

OK •	GO TO 8.
NG ▶	Replace cooling fan motors.

8 CHECK INTERMITTENT INCIDENT

Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.

INSPECTION END


Diagnostic Procedure (Cont'd)

PROCEDURE B

NHEC1326S02

1 CHECK COOLING FAN POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect cooling fan relays-2 and -3.
- 3. Turn ignition switch "ON".
- 4. Check voltage between cooling fan relays-2 and -3 terminals 1, 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK •	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-8
- Joint connector-9
- Harness for open or short between cooling fan relays-2 and -3 and joint connectors-8, -9
 - Repair harness or connectors.

3 CHECK COOLING FAN GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect cooling fan motor-1 harness connector and cooling fan motor-2 harness connector.
- 3. Check harness continuity between cooling fan relay-2 terminal 5 and cooling fan motor-1 terminal 1, cooling fan relay-2 terminal 7 and cooling fan motor-1 terminal 4, cooling fan relay-2 terminal 6 and body ground. Refer to Wiring Diagram.

 Continuity should exist.
- 4. Also check harness for short to ground and short to power.
- 5. Check harness continuity between cooling fan relay-3 terminal 5 and cooling fan motor-2 terminal 1, cooling fan relay-3 terminal 7 and cooling fan motor-2 terminal 4, cooling fan relay-3 terminal 6 and body ground. Refer to Wiring Diagram.

 Continuity should exist.
- 6. Also check harness for short to ground and short to power.

OK or NG

OK ►	GO TO 4.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK COOLING FAN OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 36 and cooling fan relay-2 terminal 2, cooling fan relay-3 terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 6.
NG 🕨	GO TO 5.

U

MA

LC

EC

SEF593X

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

__

51

RS

BT

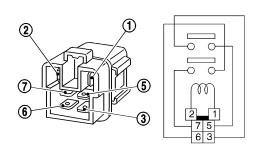
HA

SC

EL

Diagnostic Procedure (Cont'd)

5 DETECT MALFUNCTIONING PART


Check the following.

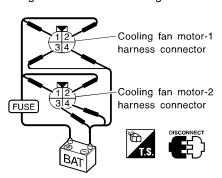
- Harness connectors E8, E17
- Joint connector-10
- Harness for open or short between cooling fan relays-2 and -3 and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK COOLING FAN RELAYS-2 AND -3

Check continuity between cooling fan relay-2, -3 terminals 3 and 5, 6 and 7 under the following conditions.

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No


SEF591X

OK or NG

OK ►	GO TO 7.
NG ►	Replace cooling fan relays.

7 CHECK COOLING FAN MOTORS

Supply battery voltage between the following terminals and check operation.

	Speed	Terminals	
		(+)	(-)
Cooling fan motor-1	Low	2	3
motor-1	High	1,2	3,4
Cooling fan motor-2	Low	2	3
motor-2	High	1,2	3,4

SEF592X

OK or NG

OK ▶	GO TO 8.
NG ▶	Replace cooling fan motors.

8 CHECK INTERMITTENT INCIDENT

1. Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.

INSPECTION END

DTC P1217 ENGINE OVER TEMPERATURE

Main 12 Causes of Overheating

GI

MA

EM

LC

EC

FE

AT

AX

SU

BR

ST

RS

BT

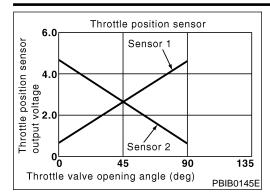
HA

SC

			Main 12 Cause	s of Overheating	NHEC13:
Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	Blocked radiator Blocked condenser Blocked radiator grille Blocked bumper	Visual	No blocking	_
,	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See MA-11, "RECOM- MENDED FLUIDS AND LUBRICANTS".
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See MA-14, "Changing Engine Coolant".
	4	Radiator cap	Pressure tester	59 - 98 kPa (0.6 - 1.0 kg/cm², 9 - 14 psi) (Limit)	See LC-12, "System Check".
ON* ²	5	Coolant leaks	Visual	No leaks	See LC-12, "System Check".
ON* ²	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	See LC-19, "Thermostat" and LC-21, "Radiator".
ON*1	7	Cooling fan	CONSULT-II	Operating	See trouble diagnosis for DTC P1217 (EC-524).
OFF	8	Combustion gas leak	Color checker chemi- cal tester 4 Gas ana- lyzer	Negative	_
ON*3	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	See MA-14, "Changing Engine Coolant".
OFF*4	10	Coolant return from reservoir tank to radia- tor	Visual	Should be initial level in reservoir tank	See MA-13, "ENGINE MAINTENANCE".
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	See EM-42, "Inspection".
	12	Cylinder block and pis-	Visual	No scuffing on cylinder	See EM-64, "Inspection".

walls or piston

For more information, refer to LC-26, "OVERHEATING CAUSE ANALYSIS".


 $\mathbb{D}\mathbb{X}$

^{*1:} Turn the ignition switch ON.

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

Component Description

Electric Throttle Control Actuator consists of throttle control motor. throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC1334

MONITOR ITEM	COND	DITION	SPECIFICATION
THRTL SEN2	9	Accelerator pedal: Released	More than 0.36V
ITINIL SENZ	ON (Engine stopped) • Shift lever position is "D"	Accelerator pedal: Fully depressed	Less than 4.75V

On Board Diagnosis Logic

NHEC1335

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1223 1223	Throttle position sensor 2 circuit low input	An excessively low voltage from the TP sensor 2 is sent to ECM.	Harness or connectors (The TP sensor 2 circuit is open or
P1224 1224	Throttle position sensor 2 circuit high input	An excessively high voltage from the TP sensor 2 is sent to ECM.	shorted.)Electric throttle control actuator (TP sensor 2)

FAIL-SAFE MODE

NHEC1335S01

When the malfunction is detected, ECM enters fail-safe mode and MIL lights up.

Engine operation condition in fail-safe mode

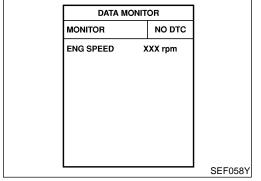
The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

NOTE:


NHEC1336

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

MA

(II) With CONSULT-II

LC

- 1) Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for 1 second.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-545.

FE

EC

With GST

Follow the procedure "With CONSULT-II" above.

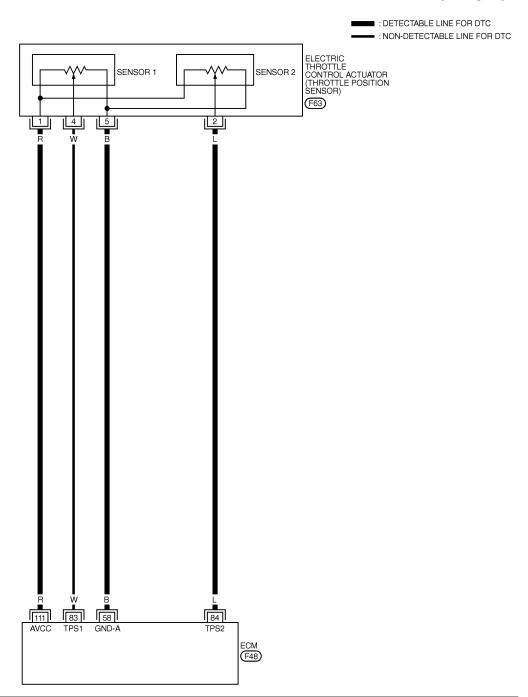
SU

AX

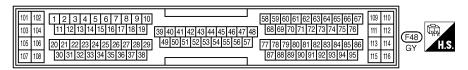
AT

BT

HA


SC

EL


Wiring Diagram

NHEC1337

EC-TPS2-01

MEC704D

SU

BR

ST

RS

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

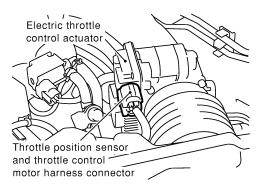
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

111	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V	
04	_	2	[Ignition switch "ON"] • Shift lever position is "D" • Accelerator pedal fully depressed	More than 0.36V	at - ax
84		1 Throttle position sensor	 [Ignition switch "ON"] Shift lever position is "D" Accelerator pedal released 	Less than 4.75V	FE
83 W			[Ignition switch "ON"] • Shift lever position is "D" • Accelerator pedal fully depressed	Less than 4.75V	EC
	Throttle position sensor	[Ignition switch "ON"] ■ Shift lever position is "D" ■ Accelerator pedal released	More than 0.36V	LC	
58	В	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	EM
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	MA

Diagnostic Procedure

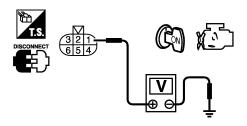
1 RETIGHTEN GROUND SCREWS

1. Turn ignition switch "OFF".
2. Loosen and retighten engine ground screws.


Engine ground

SC

SEC047D


2 CHECK THROTTLE POSITION SENSOR 2 POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch "ON".

SEC054D

3. Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.

PBIB0082E

Voltage: Approximately 5V

OK	or	N	3
----	----	---	---

OK	GO TO 3.
NG	Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK THROTTLE POSITION SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between electric throttle control actuator terminal 5 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

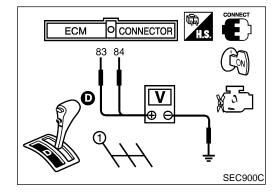
OK or NG

OK •	GO TO 5.
NG ►	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

• Harness for open or short between electric throttle control actuator and ECM


Repair open circuit or short to ground or short to power in harness or connectors.

CHECK THROTTLE POSITION SENSOR 2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT 1. Disconnect ECM harness connector. 2. Check harness continuity between ECM terminal 84 and electric throttle control actuator terminal 2. Refer to Wiring Diagram. Continuity should exist. 3. Also check harness for short to ground and short to power. GO TO 6. OK NG Repair open circuit or short to ground or short to power in harness or connectors.

6	6 CHECK THROTTLE POSITION SENSOR				
Refer to "Component Inspection", EC-547.					
OK or NG					
OK	OK ▶ GO TO 8.				
NG ▶ GO TO 7.					

7	REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR			
Replace the electric throttle control actuator.				
	Perform "Throttle Valve Closed Position Learning", EC-71. Perform "Idle Air Volume Learning", EC-71.			
	► INSPECTION END			

8	CHECK INTERMITTENT INCIDENT			
Refer to	to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.			
	► INSPECTION END			

Component Inspection THROTTLE POSITION SENSOR

NHEC1339

Reconnect all harness connectors disconnected.

2. Perform "Throttle Valve Closed Position Learning", EC-71.

Turn ignition switch "ON".

Set selector lever to "D" position.

Check voltage between ECM terminals 83 (TP sensor 1), 84 (TP sensor 2) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage		
83 (Throttle position sensor	Released	More than 0.36V		
1)	Fully depressed	Less than 4.75V		
84 (Throttle position sensor	Released	Less than 4.75V		
(Throttle position sensor 2)	Fully depressed	More than 0.36V		

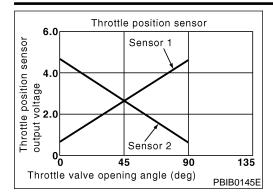
- 6. If NG, replace electric throttle control actuator and go to the next step.
- Perform "Throttle Valve Closed Position Learning", EC-71.
- Perform "Idle Air Volume Learning", EC-71.

GI

MA

LC

AT


AX

SU

BT

HA

EL

Component Description

NHEC1340

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

NHFC1342

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1225 1225	Closed throttle position learning performance problem	Closed throttle position learning value is excessively low.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure

NOTE:

NHEC1343

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) With CONSULT-II

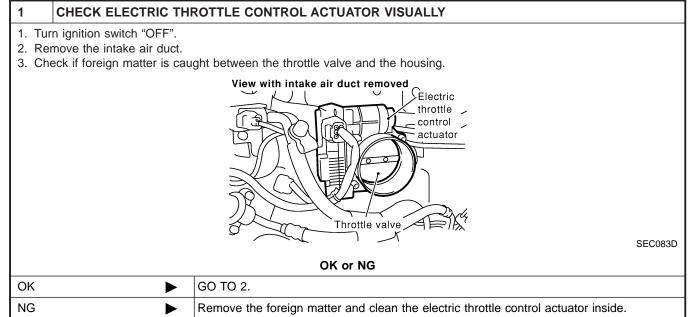
- 1) Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Turn ignition switch "OFF", wait at least 10 seconds.
- 4) Turn ignition switch "ON".
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-549.

With GST

Follow the procedure "With CONSULT-II" above.

GI

MA

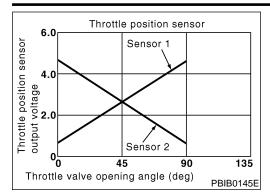

AT

AX

SU

Diagnostic Procedure

HEC1345



2 REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR 1. Replace the electric throttle control actuator. 2. Perform "Throttle Valve Closed Position Learning", EC-71. 3. Perform "Idle Air Volume Learning", EC-71. INSPECTION END

SC EL

BT

HA

Component Description

NHEC1361

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

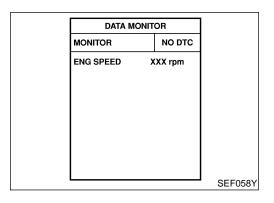
The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

NHEC1362

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1226 1226	Closed throttle position learning performance problem	Closed throttle position learning is not performed successfully, repeatedly.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure


NOTE:

NHEC1363

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) With CONSULT-II

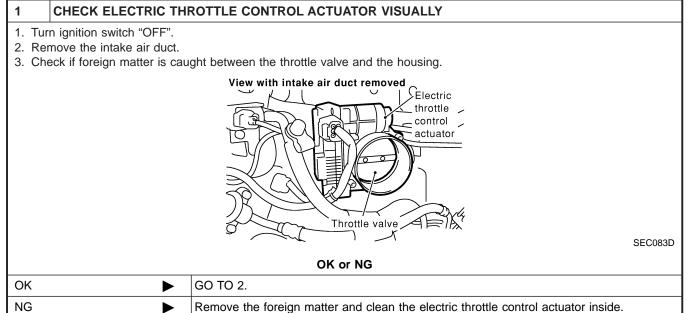
- 1) Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Turn ignition switch "OFF", wait at least 10 seconds.
- 4) Turn ignition switch "ON".
- 5) Repeat steps 3 and 4, 32 times.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-551.

With GST

Follow the procedure "With CONSULT-II" above.

GI

MA

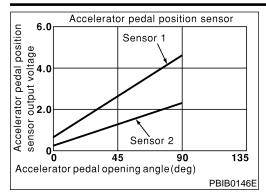

AT

AX

SU

Diagnostic Procedure

NHEC136


REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR 1. Replace the electric throttle control actuator. 2. Perform "Throttle Valve Closed Position Learning", EC-71. 3. Perform "Idle Air Volume Learning", EC-71. INSPECTION END

HA SC

BT

EL

DX.

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC1348

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN1	Ignition switch: ON (engine stanped)	Accelerator pedal: Released	0.41 - 0.71V
ACCEL SENT	stopped) • Shift lever: "D"	Accelerator pedal: Fully depressed	More than 3.7V
ACCEL SEN2	Ignition switch: ON (engine stanpad)	Accelerator pedal: Released	0.15 - 0.97V
ACCEL SEINZ	stopped) • Shift lever: "D"	Accelerator pedal: Fully depressed	More than 3.5V
	Ignition switch: ON	Accelerator pedal: Released	ON
CLSD THL POS	Shift lever: "D"	Accelerator pedal: Slightly depressed	OFF

On Board Diagnosis Logic

These self-diagnoses have the one trip detection logic.

NHEC1349

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1227 1227	Accelerator pedal position sensor 2 circuit low input	An excessively low voltage from the APP sensor 2 is sent to ECM.	Harness or connectors (The APP sensor 2 circuit is open or shorted.)
P1228 1228	Accelerator pedal position sensor 2 circuit high input	An excessively high voltage from the APP sensor 2 is sent to ECM.	 Accelerator pedal position sensor (Accelerator pedal position sensor 2)

DTC P1227, P1228 APP SENSOR

On Board Diagnosis Logic (Cont'd)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters in fail-safe mode and the MIL lights up.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

=NHFC1349S01

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within

So, the acceleration will be poor.

DATA MONITOR

NO DTC

XXX rpm

MONITOR

ENG SPEED

MA

GI

EM

DTC Confirmation Procedure

LC

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

EC

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) With CONSULT-II

- Turn ignition switch "ON". 1)
- Select "DATA MONITOR" mode with CONSULT-II. 2)
- Start engine and let it idle for 1 second.
- If DTC is detected, go to "Diagnostic Procedure", EC-555.

SU

With GST

EC-553

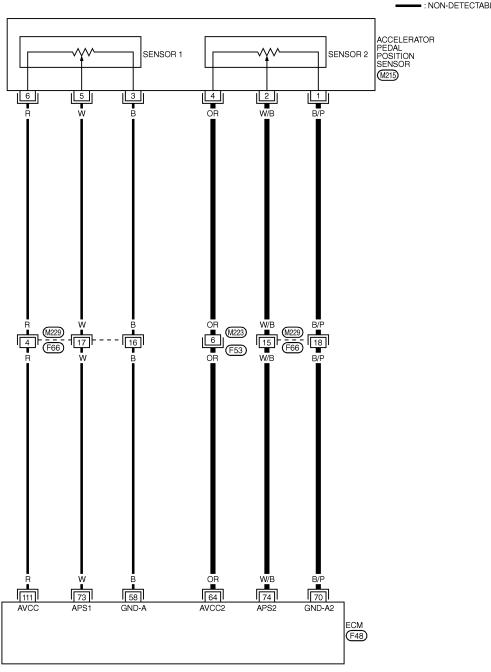
SEF058Y

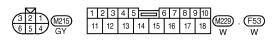
Follow the procedure "With CONSULT-II" above.

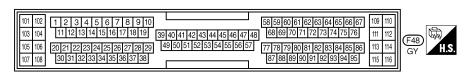
HA

SC

EL




Wiring Diagram


NHEC1351

EC-APPS2-01

: DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC

MEC706D

BR

ST

RS

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

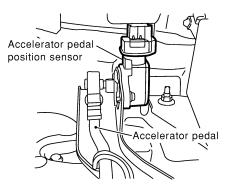
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

age to the	ge to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.				. GI	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	Ma	
58	В	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	EM	
64	OR	Accelerator pedal position sensor 2 power supply	[Ignition switch "ON"]	Approximately 2.5V	LG	
70	B/P	Accelerator pedal position sensor 2 ground	[Ignition switch "ON"]	Approximately 0V	EC	
73	10/	Accelerator pedal posi-	[Ignition switch "ON"] • Accelerator pedal released	0.41 - 0.71V	FE	
73	tion sensor 1		[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 3.7V	. at	
74		Accelerator pedal posi-	Accelerator pedal posi- Accelerator pedal posi-		0.08 - 0.48V	
74	W/B	tion sensor 2	[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 1.8V	- AX	
111	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V	SU	

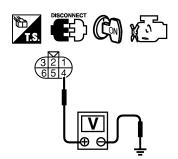
Diagnostic Procedure

1 RETIGHTEN GROUND SCREWS

1. Turn ignition switch "OFF".
2. Loosen and retighten engine ground screws.


Engine ground

SC


SEC047D

CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT

- 1. Disconnect accelerator pedal position (APP) sensor harness connector.
- 2. Turn ignition switch "ON".

3. Check voltage between APP sensor terminal 4 and ground with CONSULT-II or tester.

SEC094D

SEC081D

Voltage: Approximately 2.5V

OK	or	NO	6
----	----	----	---

OK •	GO TO 4.
NG ▶	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M223, F53
- Harness for open or short between ECM and accelerator pedal position sensor

Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK APP SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Check harness continuity between APP sensor terminal 1 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 6.
NG ►	GO TO 5.

5 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M229, F66
- Harness for open or short between ECM and accelerator pedal position sensor

Repair open circuit or short to ground or short to power in harness or connectors.

GI

MA

LC

EC

AT

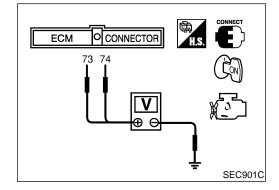
AX

SU

BT

HA

SC


EL

7	DETECT MALFUNCTIO	TIONING PART		
Check the following.				
Hari	ness connectors M229, F6	6		
Hari	 Harness for open or short between ECM and accelerator pedal position sensor 			
	Repair open circuit or short to ground or short to power in harness or connectors.			

8	CHECK APP SENSOR		
Refer to "Component Inspection", EC-557.			
OK or NG			
OK	•	GO TO 9.	
NG	>	Replace accelerator pedal assembly.	

9	CHECK INTERMITTENT INCIDENT		
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	► INSPECTION END		

Component Inspection ACCELERATOR PEDAL POSITION SENSOR

NHEC1353

1. Reconnect all harness connectors disconnected.

2. Turn ignition switch "ON".

3. Check voltage between ECM terminals 73 (APP sensor 1 signal), 74 (APP sensor 2 signal) and engine ground under the following conditions.

ionoming contamone.			
Terminal	Accelerator pedal	Voltage	
73 (Accelerator pedal posi-	Released	0.41 - 0.71V	
tion sensor 1)	Fully depressed	More than 3.7V	
74 (Accelerator pedal posi-	Released	0.08 - 0.48V	
tion sensor 2)	Fully depressed	More than 1.8V	

- 4. If NG, replace accelerator pedal assembly.
- Perform "Accelerator Pedal Released Position Learning", EC-71.
- 6. Perform "Throttle Valve Closed Position Learning", EC-71.
- 7. Perform "Idle Air Volume Learning", EC-71.

EC-557

On Board Diagnosis Logic

This self-diagnosis has the one trip detection logic.

NHEC1356

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1229 1229	Sensor power supply circuit short	ECM detects a voltage of power source for sensor is excessively low or high.	Harness or connectors (The TP sensor 1 and 2 circuit is shorted.) (APP sensor circuit is shorted.) (MAF sensor circuit is shorted.) (EVAP control system pressure sensor circuit is shorted.) (Power steering pressure sensor circuit is shorted.) (Refrigerant pressure sensor circuit is shorted.) (Refrigerant pressure sensor circuit is shorted.) Electric throttle control actuator (TP sensor 1 and 2) Accelerator pedal position sensor (APP sensor 1) MAF sensor EVAP control system pressure sensor Power steering pressure sensor Refrigerant pressure sensor ECM pin terminal

FAIL-SAFE MODE

NHEC1356S01

When the malfunction is detected, ECM enters in fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

NOTE:

NHEC1357

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm SEF058Y

(P) With CONSULT-II

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for 1 second.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-561.

DTC Confirmation Procedure (Cont'd)

With GST Follow the procedure "With CONSULT-II" above.

GI

MA

EM

LC

EC

FE

AT

 $\mathbb{A}\mathbb{X}$

SU

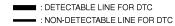
BR

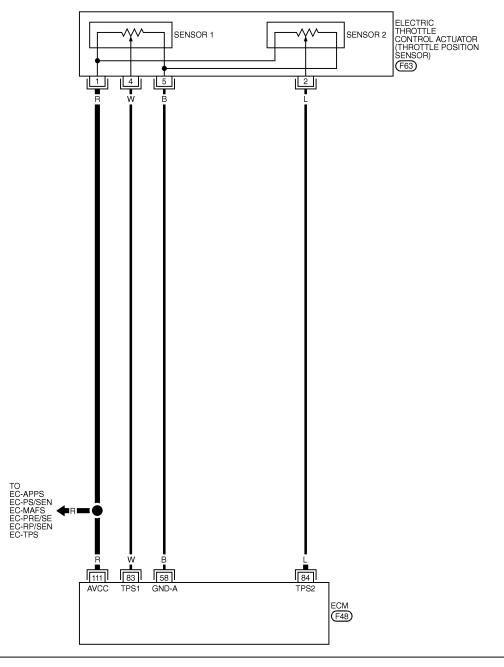
ST

RS

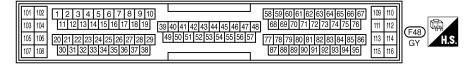
BT

HA


SC


EL

Wiring Diagram


NHEC1358

EC-SEN/PW-01

MEC662D

Wiring Diagram (Cont'd)

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
111	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V

Diagnostic Procedure

NHEC1359

MA

EM

LC

AT

AX

SU

ST

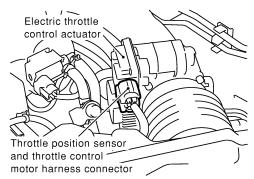
BT

HA

SC

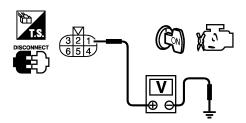
EL

1. Turn ignition switch "OFF".
2. Loosen and retighten engine ground screws.


Engine ground

SEC047D

EC-561


Diagnostic Procedure (Cont'd)

2 CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT 1. Disconnect electric throttle control actuator harness connector. 2. Turn ignition switch "ON".

SEC054D

3. Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.

PBIB0082E

Voltage: Approximately 5V

OK	or	NG
----	----	----

OK •	GO TO 5.
NG ►	GO TO 3.

3 CHECK SENSOR POWER SUPPLY CIRCUITS

Check the following.

- Harness for short to power and short to ground, between the following terminals.
 - ECM terminal 111 and electric throttle control actuator terminal 1. Refer to "Wiring Diagram", EC-560.
 - ECM terminal 111 and APP sensor terminal 2. Refer to "Wiring Diagram", EC-305.
 - ECM terminal 111 and MAF sensor terminal 2. Refer to "Wiring Diagram", EC-192.
 - ECM terminal 111 and EVAP control system pressure sensor terminal 1. Refer to "Wiring Diagram", EC-384.
 - ECM terminal 111 and power steering pressure sensor terminal 1. Refer to "Wiring Diagram", EC-443.
 - ECM terminal 111 and refrigerant pressure sensor terminal 1. Refer to "Wiring Diagram", EC-728.
- ECM pin terminal

OK or NG

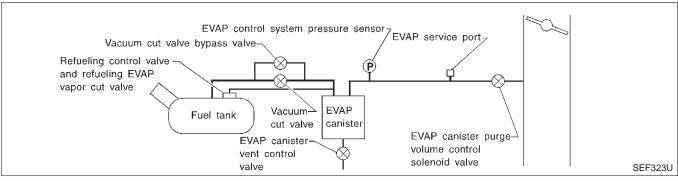
OK	GO TO 4.
NG ►	Repair short to ground or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)

	Diagno	stic Procedure (Cont'd)
4 CHECK	COMPONENTS	
Mass air flowEVAP controlPower steerin	edal position sensor (Refer to "Component Inspection", EC-302.) sensor (Refer to "Diagnostic Procedure", EC-187.) system pressure sensor (Refer to "Diagnostic Procedure", EC-385.) sign pressure sensor (Refer to "Component Inspection", EC-446.) ressure sensor (Refer to "Diagnostic Procedure", EC-729.)	
	OK or NG	
OK	► GO TO 7.	
NG	Replace malfunctioning component.	
CHECK	THROTTLE POSITION SENSOR	
Refer to "Compo	onent Inspection", EC-289.	
	OK or NG	
OK	► GO TO 7.	
NG	▶ GO TO 6.	
REPLAC	CE ELECTRIC THROTTLE CONTROL ACTUATOR	
	tric throttle control actuator.	
2. Perform "Thro	ottle valve closed position learning", EC-71.	
3. Perform "Idle	air volume learning", EC-71.	
	INSPECTION END	
7 CHECK	INTERMITTENT INCIDENT	
Refer to "TROUI	BLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.	
	INSPECTION END	

On Board Diagnosis Logic

NHEC1425


NOTE:

If DTC P0442 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-600.)

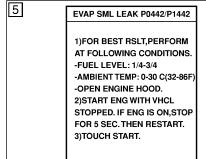
This diagnosis detects leaks in the EVAP purge line using the vapor pressure in the fuel tank.

The EVAP canister vent control valve is closed to shut the EVAP purge line. The vacuum cut valve bypass valve will then be opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP control system pressure sensor can now monitor the pressure inside the fuel tank.

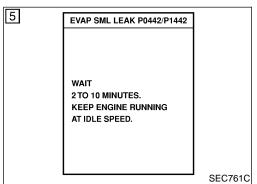
If pressure increases, the ECM will check for leaks in the line between the vacuum cut valve and EVAP canister purge volume control solenoid valve.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1442 1442	EVAP control system small leak detected (positive pressure)	EVAP control system has a leak, EVAP control system does not operate properly.	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. Foreign matter caught in fuel filler cap Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent Blocked or bent rubber tube to EVAP control system pressure sensor Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged. Water separator EVAP canister is saturated with water. EVAP control system pressure sensor Fuel level sensor and the circuit Refueling control valve ORVR system leaks

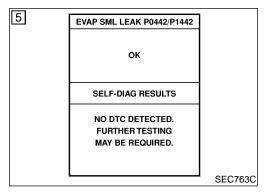
CAUTION:


- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

MA


EM

EC


SU

SEC760C

5 EVAP SML LEAK P0442/P1442 MAINTAIN 1600 - 2100 RPM UNTIL FINAL RESULT APPEARS. (APPROX. 3 MINUTES) 1600 rpm 1850 rpm 2100 rpm SEC762C

DTC Confirmation Procedure

LC

NOTE:

- If DTC P1442 is displayed with P1448, first perform trouble diagnosis for DTC P1448 (See EC-600).
- "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Open engine hood before conducting the following procedure.
 - NHFC1426S01

(A) WITH CONSULT-II

- Turn ignition switch "ON".
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- Make sure that the following conditions are met. COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 30°C (32 - 86°F)
- Select "EVP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

BT

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to "Basic Inspection", EC-119.

Make sure that "OK" is displayed. If "NG" is displayed, refer to "Diagnostic Procedure", EC-566.

SC

NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

NHEC1426S02

WITH GST

Be sure to read the explanation of "Driving Pattern" on EC-82 before driving vehicle.

- Start engine.
- Drive vehicle according to "Driving Pattern", EC-82.
- 3) Stop vehicle.
- Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.

- If SRT of EVAP system is set, the result will be OK.
- 5) Turn ignition switch "OFF" and wait at least 10 seconds.
- Start engine.
 - It is not necessary to cool engine down before driving.
- 7) Drive vehicle again according to the "Driving Pattern", EC-82.
- 8) Stop vehicle.
- 9) Select "MODE 3" with GST.
- If P1442 is displayed on the screen, go to "Diagnostic Procedure", EC-566.
- If P0442 is displayed on the screen, go to "Diagnostic Procedure", EC-355.
- If P0441 is displayed on the screen, go to "Diagnostic Procedure" for DTC P0441, EC-346.
- If P0441, P0442 and P1442 are not displayed on the screen, go to the following step.
- 10) Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6.

Diagnostic Procedure

1 CHECK FUEL FILLER CAP DESIGN

1. Turn ignition switch "OFF".
2. Check for genuine NISSAN fuel filler cap design.

SEF915U

OK or NG

OK

Replace with genuine NISSAN fuel filler cap.

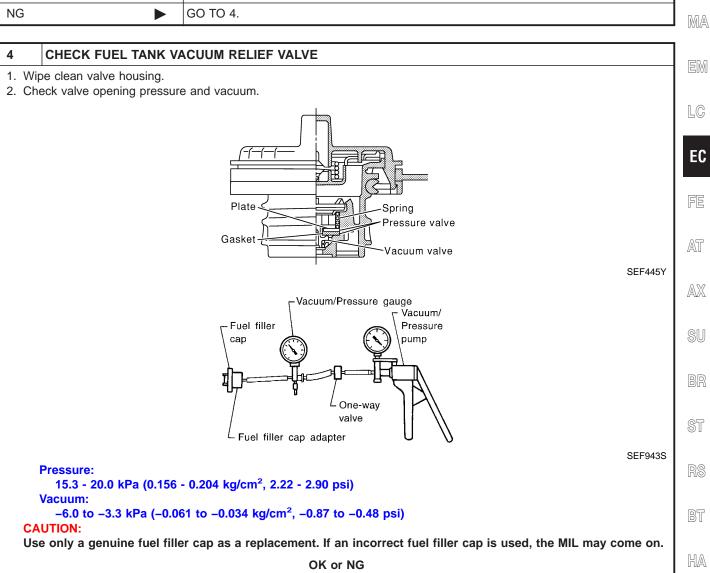
2	CHECK FUEL FILLER CAP INSTALLATION			
Check that the cap is tightened properly by rotating the cap clockwise.				
	OK or NG			
OK	•	GO TO 3.		
NG	>	 Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard. 		

Diagnostic Procedure (Cont'd)

GI

EM

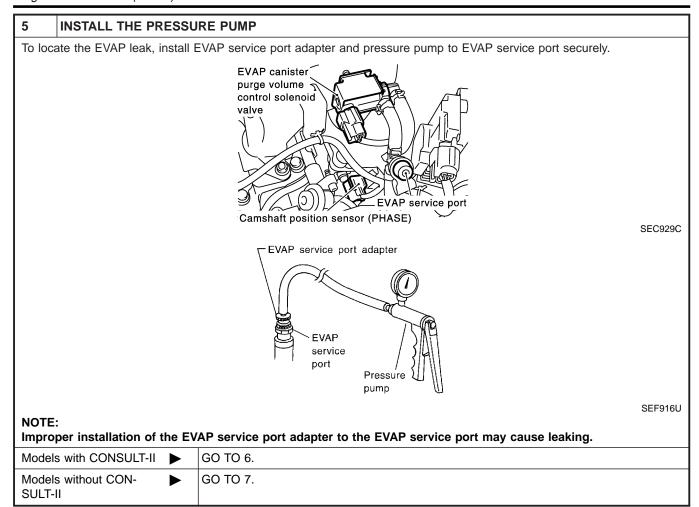
LC

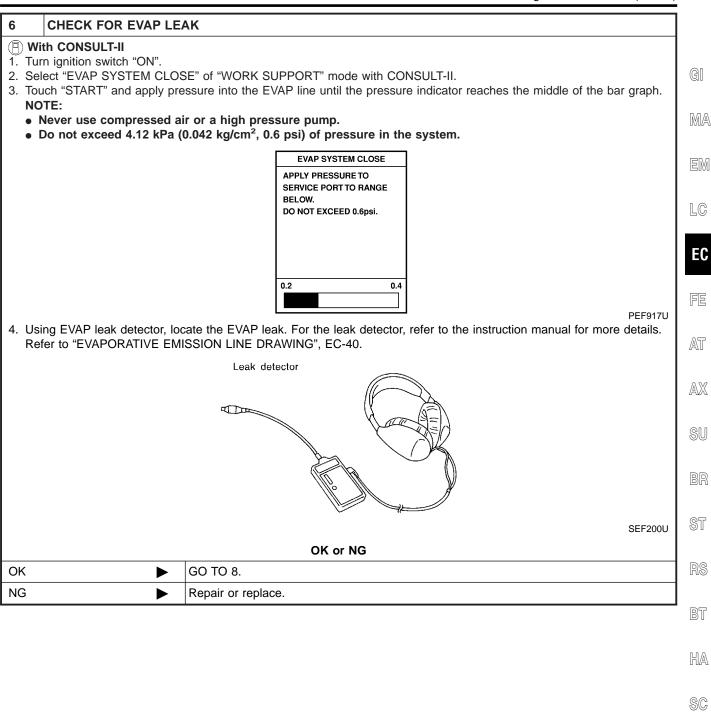

EC

AT

SU

ST

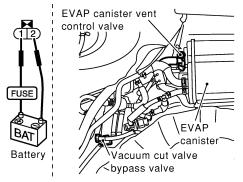

3	3 CHECK FUEL FILLER CAP FUNCTION]
Check for air releasing sound while opening the fuel filler cap.			1
OK or NG			l
OK	>	GO TO 5.	1
NG	>	GO TO 4.	


OK •	GO TO 5.
NG ►	Replace fuel filler cap with a genuine one.

EL

Diagnostic Procedure (Cont'd)

EL

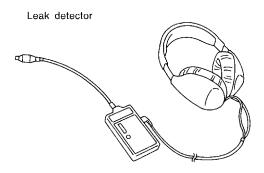


Diagnostic Procedure (Cont'd)

CHECK FOR EVAP LEAK

⋈ Without CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)

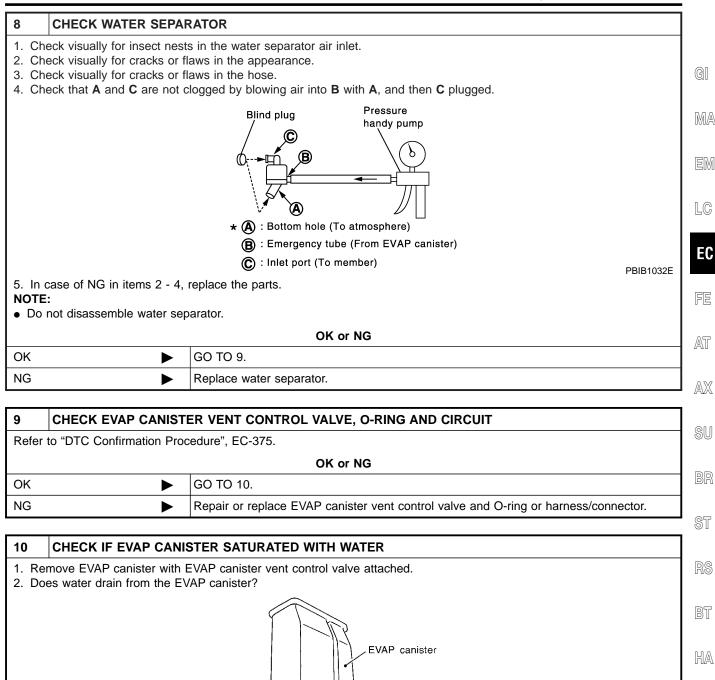


SEF254X

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-40.


SEF200U

OK or NG

OK •	GO TO 8.
NG ►	Repair or replace.

Diagnostic Procedure (Cont'd)

SC

		Water Vent control valve	SEF596U
		Yes or No	
Yes	>	GO TO 11.	
No (With CONSULT-II)		GO TO 13.	
No (Without CONSULT-II)	>	GO TO 14.	

Diagnostic Procedure (Cont'd)

11	CHECK EVAP CANISTER		
Weigh the EVAP canister with the EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).			
	OK or NG		
OK (V	Vith CONSULT-II)	•	GO TO 13.
OK (Without CONSULT- GO TO 14.			
NG		•	GO TO 12.

12 DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection

Repair hose or replace EVAP canister.

13 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

ACTIVE TEST		
PURG VOL CONT/V	0.0%	
MONITOF	1	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	RICH	
HO2S1 MNTR (B2)	RICH	

SEC142D

Vacuum should exist.

OK or NG

OK		GO TO 16.
NG		GO TO 15.

14 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK ►	GO TO 17.
NG ►	GO TO 15.

Diagnostic Procedure (Cont'd)

15	CHECK VACUUM	1 HOS	E
Check	Check vacuum hoses for clogging or disconnection. Refer to "Vacuum Hose Drawing", EC-30.		
			OK or NG
OK (V	Vith CONSULT-II)	•	GO TO 16.
OK (V II)	Vithout CONSULT-	•	GO TO 17.
NG		•	Repair or reconnect the hose.

GI MA EM CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE With CONSULT-II LC 1. Start engine. 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according EC to the valve opening. ACTIVE TEST PURG VOL CONT/V 0.0% FE MONITOR **ENG SPEED** XXX rpm A/F ALPHA-B1 XXX % AT A/F ALPHA-B2 XXX % HO2S1 MNTR (B1) RICH AXHO2S1 MNTR (B2) RICH SEC142D OK or NG

OK •	GO TO 18.
NG ►	GO TO 17.

ST

RS

BT

HA

SC

EL

Diagnostic Procedure (Cont'd) CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions. **EVAP** canister purge volume control solenoid EVAP service port Camshaft position sensor (PHASE) SEC929C Condition PURG VOL CONT/V value Air passage continuity between A and B 100.0% Yes 0.0% No SEF334X Without CONSULT-II Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions. EVAP canister purge volume control solenoid valve Camshaft position sensor (PHASE) SEC929C Air passage continuity between A and B Condition FUSE 12V direct current supply between terminals 1 and 2 Yes No supply No

SEF335X

OK	or	NG

OK •	GO TO 18.
NG ►	Replace EVAP canister purge volume control solenoid valve.

GI

MA

LC

EC

FE

AT

AX

SU

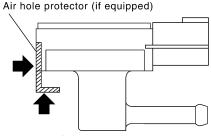
BR

ST

RS

BT

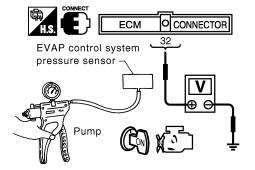
HA


SC

EL

Diagnostic Procedure (Cont'd) 18 **CHECK FUEL TANK TEMPERATURE SENSOR** 1. Remove fuel level sensor unit. 2. Check resistance between fuel level sensor unit terminals 1 and 2 by heating with hot water or heat gun as shown in the figure. Fuel tank temperature Hot watersensor connector Temperature °C (°F) Resistance $k\Omega$ 20 (68) 2.3 - 2.7 50 (122) 0.79 - 0.90 Ω SEF974Y OK or NG GO TO 19. OK NG Replace fuel level sensor unit.

19 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


- 1. Remove EVAP control system pressure sensor with its harness connector connected.
 - Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

- 2. Remove EVAP control system pressure sensor from EVAP canister.
 - Do not reuse the O-ring, replace it with a new one.
- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch "ON" and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value

SEC422D

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or	NG
-------	----

ОК	•	GO TO 20.
NG		Replace EVAP control system pressure sensor.

20	20 CHECK EVAP PURGE LINE			
	Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to "Evaporative Emission System", EC-36. OK or NG			
OK	OK			
NG	•	Repair or reconnect the hose.		

21	CLEAN EVAP PURGE LINE		
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.		
	▶ GO TO 22.		

GI

MA

EM

LC

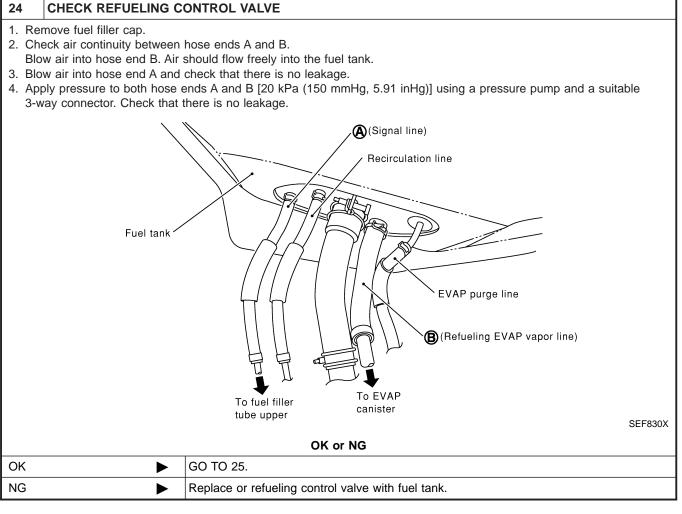
FE

AT

AX

SU

BT


HA

SC

EL

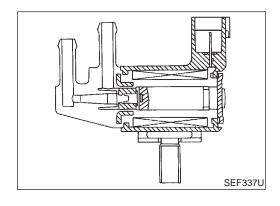
23	23 CHECK SIGNAL LINE AND RECIRCULATION LINE			
Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection. OK or NG				
OK	OK ▶ GO TO 24.			
NG	>	Repair or replace hoses, tubes or filler neck tube.		

25	25 CHECK FUEL LEVEL SENSOR				
Refer	Refer to EL-139, "Fuel Level Sensor Unit Check".				
	OK or NG				
ОК	OK ▶ GO TO 26.				
NG	>	Replace fuel level sensor unit.			

DTC P1442 EVAP CONTROL SYSTEM

Diagnostic Procedure (Cont'd)

26	CHECK INTERMITTENT INCIDENT			
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.			
	► INSPECTION END			


Description

Description SYSTEM DESCRIPTION

NHEC1089 NHEC1089S01

Sensor	Input Signal to ECM	ECM function	Actuator	GI
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed			- MA
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			EM
Ignition switch	Start signal	EVAP can-		
Throttle position sensor	Throttle position	ister purge	I EVAP canister hilide vollime	LC
Accelerator pedal position sensor	Accelerator pedal position	flow control		50
Heated oxygen sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)			EC
Fuel tank temperature sensor	Fuel temperature in fuel tank			FE
Vehicle speed sensor	Vehicle speed			

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

HA

SC

AT

CONSULT-II Reference Value in Data Monitor Mode

NHFC1090

Specification data are reference values.

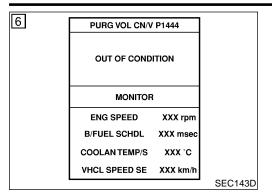
MONITOR ITEM	COND	OITION	SPECIFICATION
PURG VOL C/V	 Air conditioner switch "OFF" Shift lever: "N" 	Idle (Vehicle stopped)	0%
PURG VOL C/V		2,000 rpm	_

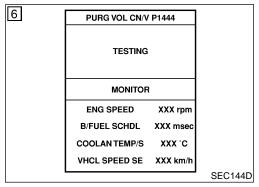
On Board Diagnosis Logic

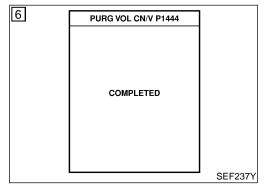
	On Board Diagnosis Logic			
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	
P1444 1444	EVAP canister purge volume control sole- noid valve	The canister purge flow is detected during the specified driving conditions, even when EVAP canister purge volume control solenoid valve is completely closed.	 EVAP control system pressure sensor EVAP canister purge volume control solenoid valve (The valve is stuck open.) EVAP canister vent control valve EVAP canister Hoses (Hoses are connected incorrectly or clogged.) 	

DTC Confirmation Procedure

NHEC1093


NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.


TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

DTC Confirmation Procedure (Cont'd)

WITH CONSULT-II

Start engine and warm it up to normal operating temperature.

- Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON". 3)
- Select "PURG VOL CN/V P1444" of "EVAPORATIVE SYS-TEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START".
- Start engine and let it idle until "TESTING" on CONSULT-II changes to "COMPLETED". (It will take for approximately 10 seconds.)

If "TESTING" is not displayed after 5 minutes, retry from step 2.

Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-584.

® WITH GST

- Start engine and warm it up to normal operating temperature. 1)
- Turn ignition switch "OFF" and wait at least 10 seconds.
- Start engine and let it idle for at least 20 seconds.
- Select "MODE 7" with GST.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-584.

GI

MA

EM

LC

EC

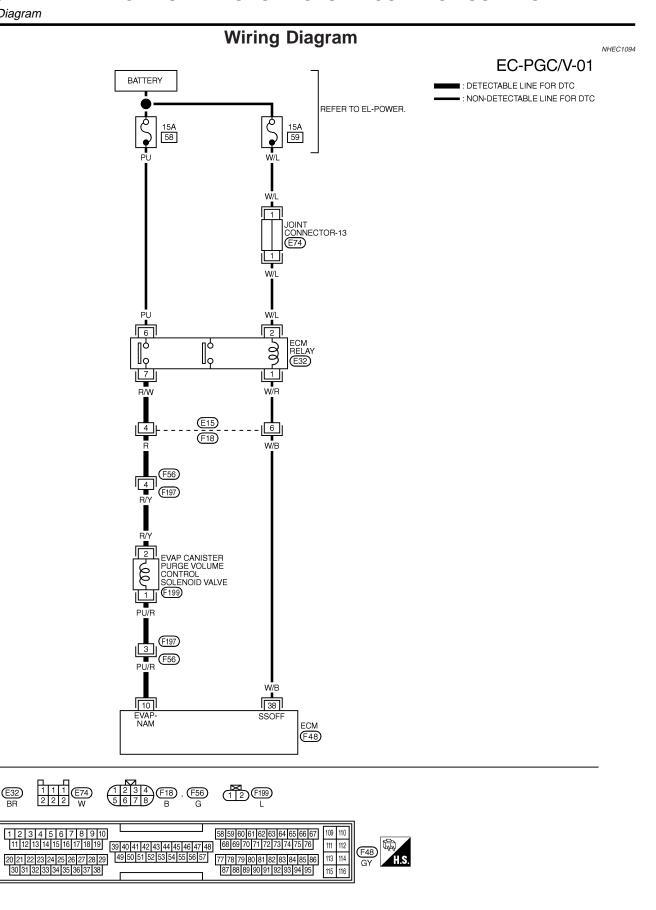
FE

AT

AX

SU

BT


HA

SC

EL

Wiring Diagram

107 108

Wiring Diagram (Cont'd)

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:

DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE

TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
10	PU/R	EVAP CANISTER PURGE PU/R VOLUME CONTROL SOLENOID VALVE	ENGINE RUNNING AT IDLE SPEED	(V) 40 20 0 50 ms
			ENGINE RUNNING AT 2,000 RPM (MORE THAN 100 SECONDS AFTER STARTING ENGINE)	(V) 40 20 0 50 ms

 $[\]bigstar$: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

SEF800YC

GI

MA

EM

LC

EC

FE

AT

AX

SU

BR

RS

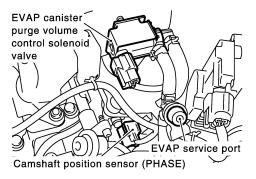
BT

HA

SC

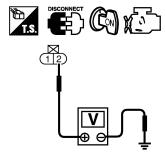
EL

EC-583


Diagnostic Procedure

Diagnostic Procedure

NHEC1095


1 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect EVAP canister purge volume control solenoid valve harness connector.

SEC929C

- 3. Turn ignition switch "ON".
- 4. Check voltage between EVAP canister purge volume control solenoid valve terminal 2 and engine ground with CON-SULT-II or tester.

SEC062D

Voltage: Battery voltage

OK or NG

OK •	GO TO 3.
NG •	GO TO 2.

2 DETECT MALFUNCTIONING PART

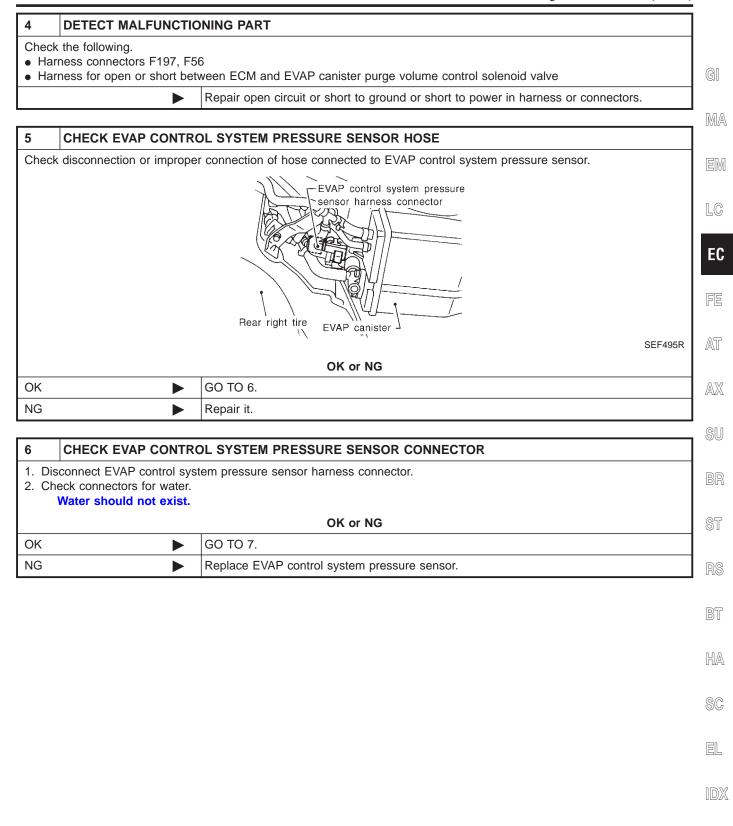
Check the following.

- Harness connectors E15, F18
- Harness connectors F56, F197
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM relay

Repair harness or connectors.

3 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 10 and EVAP canister purge volume control solenoid valve terminal 1. Refer to Wiring Diagram.

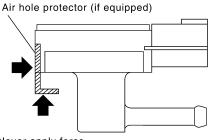

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK •	GO TO 5.
NG ►	GO TO 4.

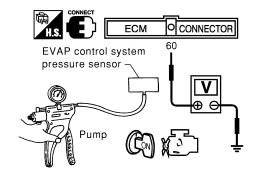
Diagnostic Procedure (Cont'd)


Diagnostic Procedure (Cont'd)

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

1. Remove EVAP control system pressure sensor with its harness connector connected.

CAUTION:


Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure. **CAUTION**:
 - Always calibrate the vacuum pump gauge when using it.
 - Do not apply below −20 kPa (−150 mmHg, −5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 5. Check input voltage between ECM terminal 60 and ground.

SEC908C

Pressure (Relative to atmospheric pressure)	Voltage V
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

MTBL1159

CAUTION:

Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5m (19.7in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG
----	----	----

OK (With CONSULT-II)		GO TO 8.
OK (Without CONSULT-II)	•	GO TO 9.
NG	•	Replace EVAP control system pressure sensor.

Diagnostic Procedure (Cont'd)

CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(I) With CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Reconnect harness connectors disconnected.
- 3. Start engine.

4. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

ACTIVE TEST				
PURG VOL CONT/V	0.0%			
MONITOR				
ENG SPEED	XXX rpm			
A/F ALPHA-B1	XXX %			
A/F ALPHA-B2	XXX %			
HO2S1 MNTR (B1)	RICH			
HO2S1 MNTR (B2)	RICH			

SEC142D

GI

MA

LC

AT

AX

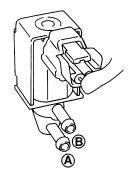
SU

BT

HA

SC

EL

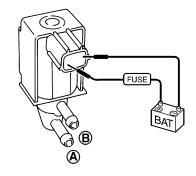

OK or NG

OK •	GO TO 10.
NG •	GO TO 9.

9 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.



Condition PURG VOL CONT/V value	Air passage continuity between A and B
100.0%	Yes
0.0%	No

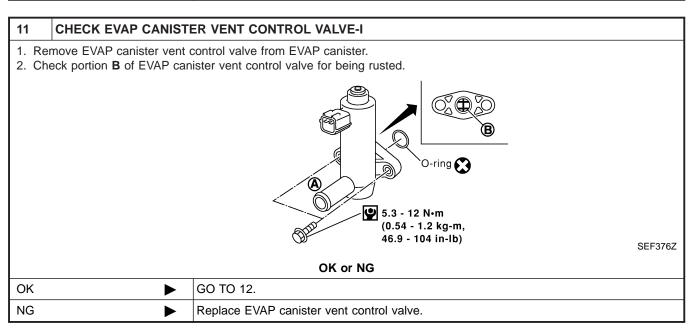
SEF334X

Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B	
12V direct current supply between terminals 1 and 2	Yes	
No supply	No	

SEF335X


OK or NG

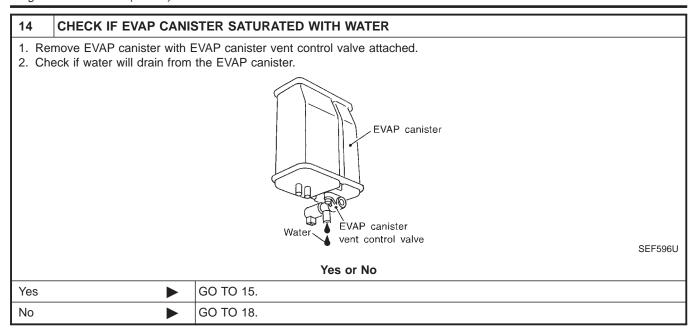
OK ▶	GO TO 10.
NG ►	Replace EVAP canister purge volume control solenoid valve.

EC-587

Diagnostic Procedure (Cont'd)

10	10 CHECK RUBBER TUBE FOR CLOGGING		
 Disconnect rubber tube connected to EVAP canister vent control valve. Check the rubber tube for clogging. 			
	OK or NG		
OK	•	GO TO 11.	
NG	•	Clean the rubber tube using an air blower.	

Diagnostic Procedure (Cont'd)


CHECK EVAP CANISTER VENT CONTROL VALVE-II (II) With CONSULT-II 1. Reconnect harness connectors disconnected. GI 2. Turn ignition switch "ON". 3. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode. 4. Check air passage continuity and operation delay time. MA **ACTIVE TEST** VENT CONTROL/V OFF MONITOR **ENG SPEED** XXX rpm Air passage continuity Condition VENT CONTROL/V A/F ALPHA-B1 XXX % between A and B A/F ALPHA-B2 XXX % ON Nο LC Yes OFF HO2S1 MNTR (B1) LEAN Operation takes less than 1 second. HO2S1 MNTR (B2) LEAN O-ring 🔀 EC SEC158D FE ₩ Without CONSULT-II Check air passage continuity and operation delay time under the following conditions. AT AX Air passage continuity Condition between A and B 12V direct current supply between FUSE O-ring No SU terminals 1 and 2 OFF Yes BAT Operation takes less than 1 second. 🥊 5.3 - 12 N∙m **BATTERY** (0.54 - 1.2 kg-m, 46.9 - 104 in-lb) SEF378Z Make sure new O-ring is installed properly. OK or NG OK GO TO 14. NG GO TO 13. BT 13 CHECK EVAP CANISTER VENT CONTROL VALVE-III 1. Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower. HA 2. Perform procedure 9 again. OK or NG SC OK GO TO 14.

IW/A

Replace EVAP canister vent control valve.

NG

Diagnostic Procedure (Cont'd)

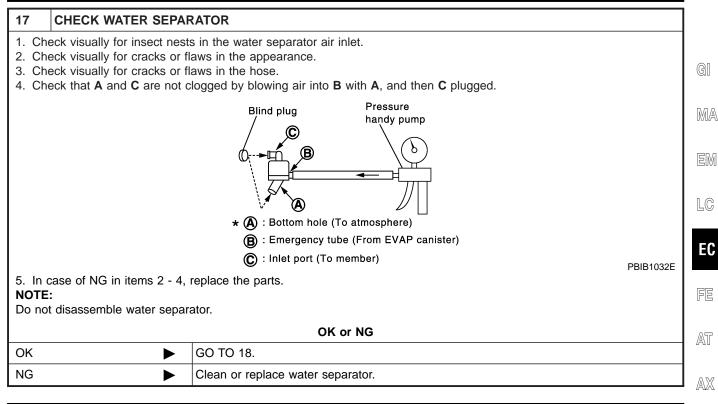
15	The weight should be less than 1.8 kg (4.0 lb). OK or NG		
ОК	>	GO TO 17.	
NG	•	GO TO 16.	

16	DETECT MALFUNCTIONING PART		
• EVA	Check the following. • EVAP canister for damage • EVAP hose between EVAP canister and water separater for clogging or poor connection		
► Repair hose or replace EVAP canister.		Repair hose or replace EVAP canister.	

Diagnostic Procedure (Cont'd)

EC

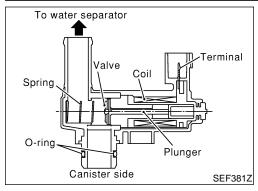
SU

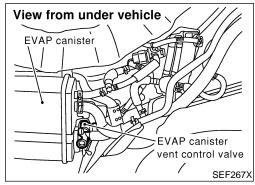

BR

BT

HA

SC


EL



18	CHECK INTERMITTENT INCIDENT			
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.			
	► INSPECTION END			

EC-591

Component Description

Component Description

VHEC109

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM CONDITION SPECIFICATION

VENT CONT/V • Ignition switch: ON OFF

On Board Diagnosis Logic

NHEC1099

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause	
P1446 1446	EVAP canister vent control valve closed	EVAP canister vent control valve remains closed under specified driving conditions.	 EVAP canister vent control valve EVAP control system pressure sensor and the circuit Blocked rubber tube to EVAP canister vent control valve Water separator EVAP canister is saturated with water. 	

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm COOLAN TEMP/S XXX 'C VHCL SPEED SE XXX km/h B/FUEL SCHDL XXX msec PBIB0164E

DTC Confirmation Procedure

NHEC1100

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(E) WITH CONSULT-II

NHEC1100S01

- 1) Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.

DTC Confirmation Procedure (Cont'd)

- Start engine.
- 4) Drive vehicle at a speed of approximately 80 km/h (50 MPH) for a maximum of 15 minutes.

NOTE:

G[

If a malfunction exists, NG result may be displayed quicker. 5) If 1st trip DTC is detected, go to "Diagnostic Procedure",

MA

WITH GST

EC-595.

Follow the procedure "WITH CONSULT-II" above.

NHEC1100S02

LC

EC

FE

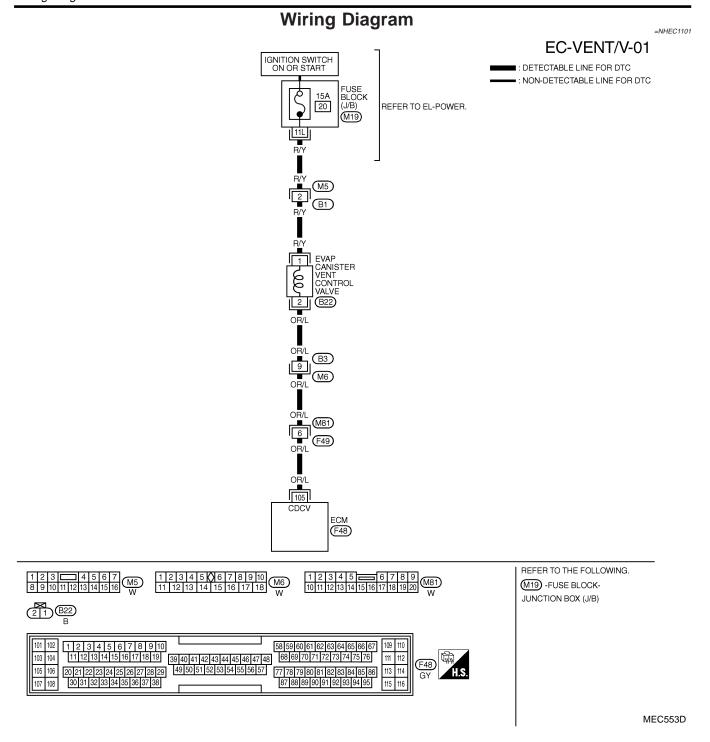
AT

AX

SU

BR

ST

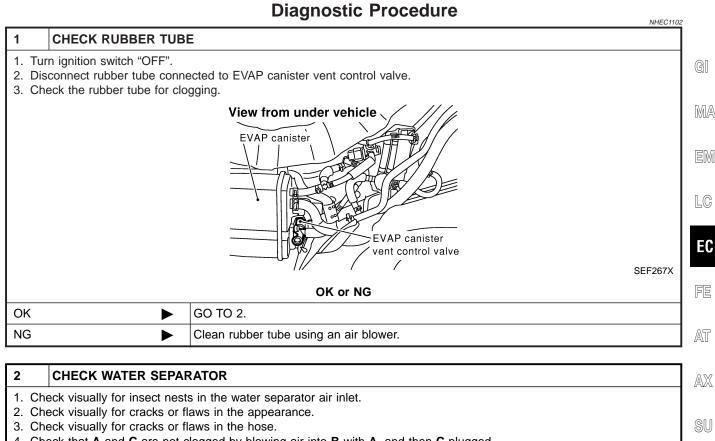

RS

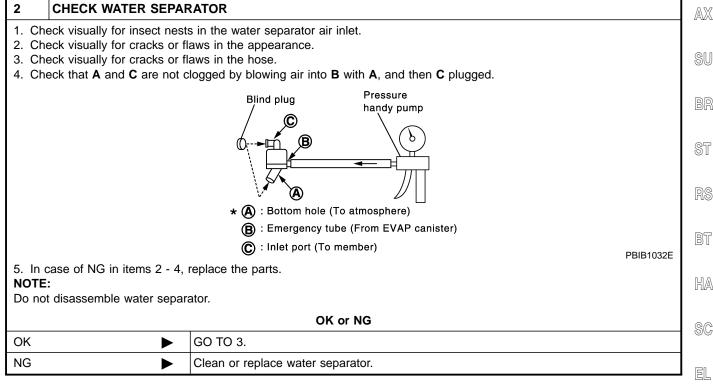
BT

HA

SC

EL

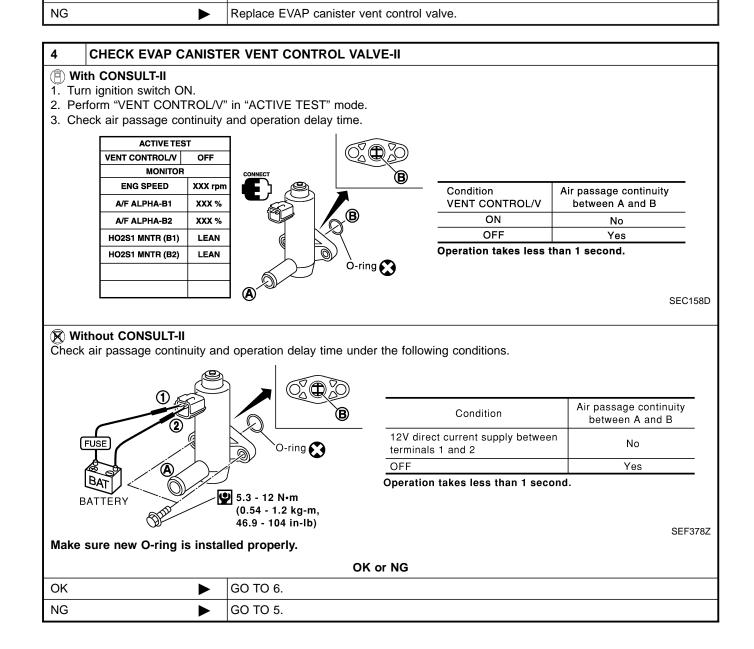



ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND.

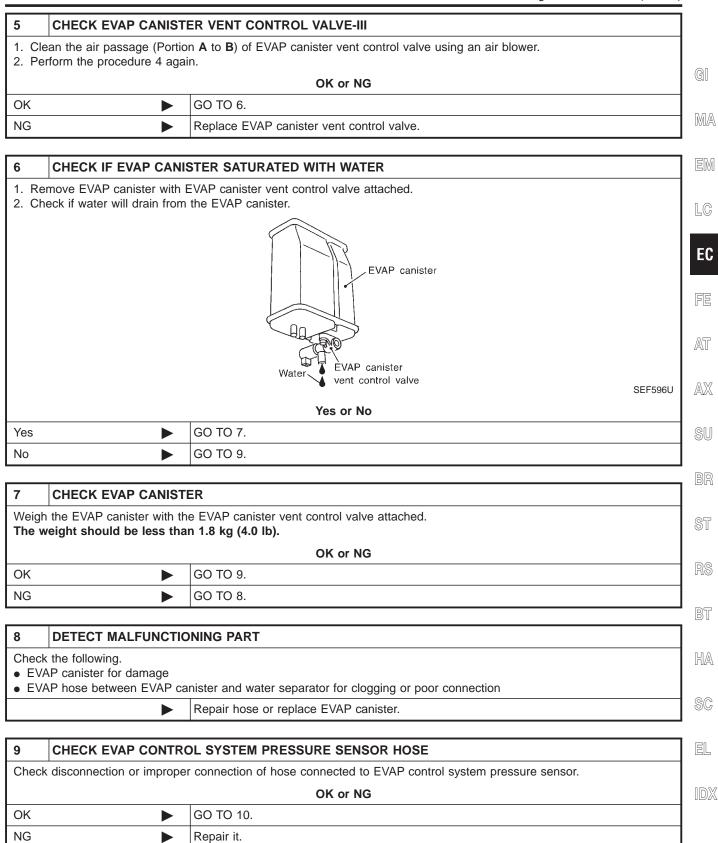
CAUTION:
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

 TO THE EDM OF THE MODE A GROOM OTHER THANK EDM TERMINATES, SOCIETAE THE GROOMS				
TERMINAL WIRE COL		ITEM	CONDITION	DATA (DC)
105	OR/L	EVAP CANISTER VENT CONTROL VALVE	IGN ON	BATTERY VOLTAGE

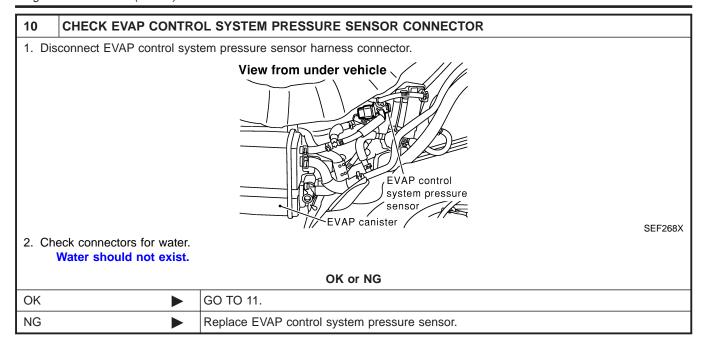
Diagnostic Procedure



Diagnostic Procedure (Cont'd)

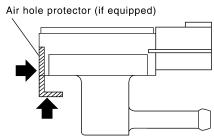

OK

3 CHECK EVAP CANISTER VENT CONTROL VALVE-I 1. Remove EVAP canister vent control valve from EVAP canister. 2. Check portion B of EVAP canister vent control valve for being rusted. O-ring 5 5.3 - 12 N·m (0.54 - 1.2 kg-m, 46.9 - 104 in-lb) SEF376Z


GO TO 4.

Diagnostic Procedure (Cont'd)

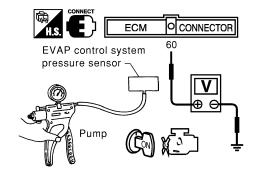
Diagnostic Procedure (Cont'd)


Diagnostic Procedure (Cont'd)

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

1. Remove EVAP control system pressure sensor with its harness connector connected.

CAUTION:


Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure. CAUTION:
 - Always calibrate the vacuum pump gauge when using it.
 - Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 5. Check input voltage between ECM terminal 60 and ground.

SEC908C

Pressure (Relative to atmospheric pressure)	Voltage V
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

MTBL1159

CAUTION:

Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG
----	----	----

OK •	GO TO 12.
NG ►	Replace EVAP control system pressure sensor.

12	CHECK	INTERMITTENT	INCIDENT

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.

► INSPECTION END

نالاك

LC

MA

EC

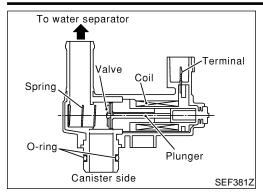
FE

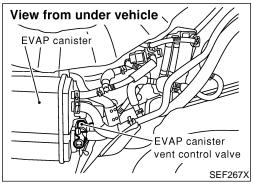
AT

AX

ST

RS


Bī


HA

SC

ΞL

Component Description

Component Description

NOTE:

If DTC P1448 is displayed with P0442, perform trouble diagnosis for DTC P1448 first.

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

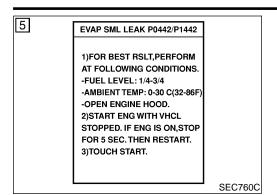
NHEC1104

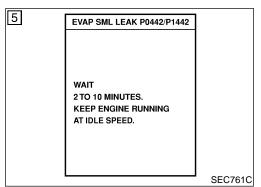
MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

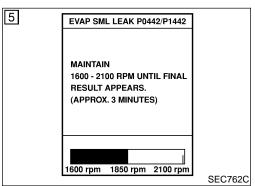
On Board Diagnosis Logic

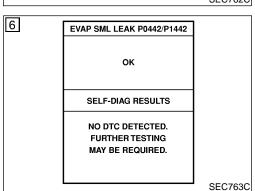
NHEC1106

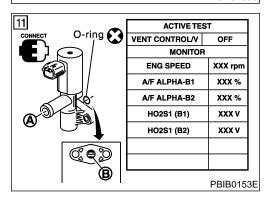
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1448 1448	EVAP canister vent control valve open	EVAP canister vent control valve remains opened under specified driving conditions.	 EVAP canister vent control valve EVAP control system pressure sensor and circuit Blocked rubber tube to EVAP canister vent control valve Water separator EVAP canister is saturated with water. Vacuum cut valve


DTC Confirmation Procedure


NOTE:


NHEC1107


- If DTC P1448 is displayed with P0442 or P1442, perform trouble diagnosis for DTC P1448 first.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.


DTC Confirmation Procedure (Cont'd)

WITH CONSULT-II TESTING CONDITION:

NHEC1107S01

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).
- Sorr).
 Open engine hood before conducting the following proce-
- 1) Turn ignition switch "ON".

dure.

- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 4) Make sure that the following conditions are met.

<u>, </u>		
	COOLAN TEMP/S	0 - 70°C (32 - 158°F)
	INT/A TEMP SE	0 - 30°C (32 - 86°F)

5) Select "EVP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

NOTE

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to "Basic Inspection", EC-119.

6) Make sure that "OK" is displayed. If "NG" is displayed, go to the following step.

NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

- 7) Stop engine and wait at least 10 seconds, then turn "ON".
- 8) Disconnect hose from water separator.
- 9) Select "VENT CONTROL/V" of "ACTIVE TEST" mode with CONSULT-II.
- 10) Touch "ON" and "OFF" alternately.

11) Make sure the following.

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

If the result is NG, go to "Diagnostic Procedure", EC-604. If the result is OK, go to "Diagnostic Procedure" for DTC P0442, EC-353.

EC

MA

EM

LC

FF

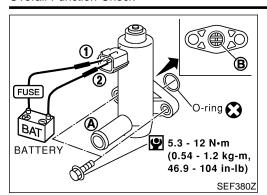
AT

AX

SU

BR

@T


BT

HA

SC

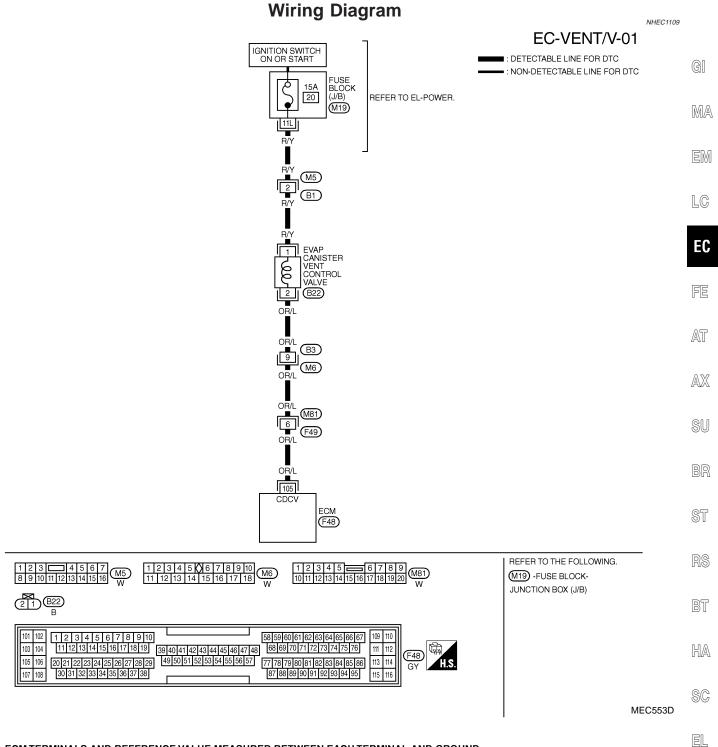
FI

Overall Function Check

Overall Function Check

NHEC11

Use this procedure to check the overall function of the EVAP canister vent control valve circuit. During this check, a DTC might not be confirmed.


WITH GST

NHEC1108S01

- 1) Disconnect hose from water separator.
- Disconnect EVAP canister vent control valve harness connector.
- 3) Verify the following.

Condition	Air passage continuity
12V direct current supply between terminals 1 and 2	No
No supply	Yes

If the result is NG, go to "Diagnostic Procedure", EC-604. If the result is OK, go to "Diagnostic Procedure" for DTC P0442, EC-353.

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND.

CAUTION:
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE
TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

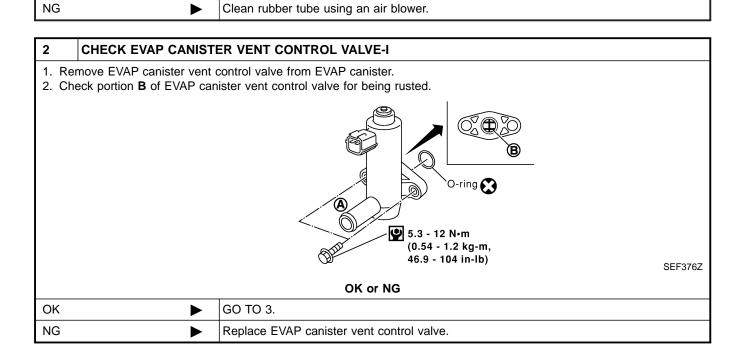
TO THE EDING THANGGOTOTI. GOE A GROOND OTHER THAN EDIN TERMINAES, GOOT AG THE GROOND.				
TERMINAL WIRE COLOR		ITEM	CONDITION	DATA (DC)
105		EVAP CANISTER VENT CONTROL VALVE	IGN ON	BATTERY VOLTAGE

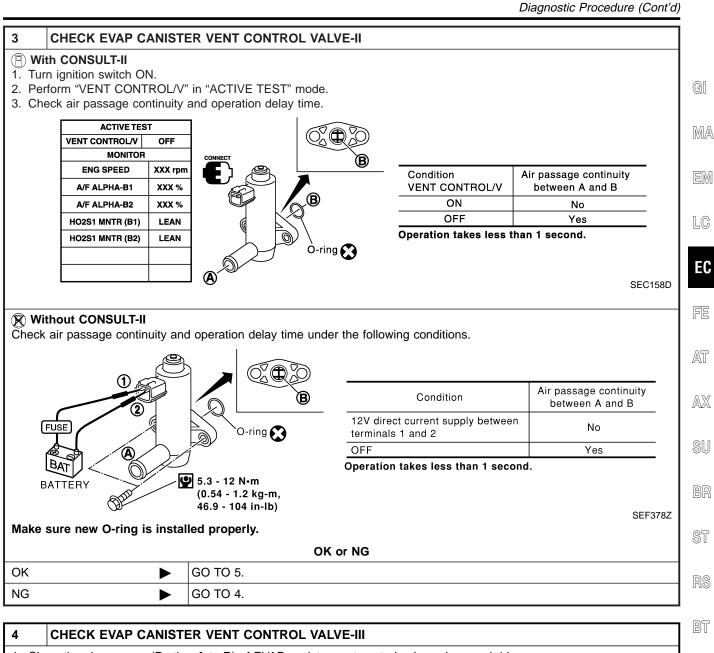
SEF668XC

OK

Diagnostic Procedure

1. Turn ignition switch "OFF".
2. Disconnect rubber tube connected to EVAP canister vent control valve.
3. Check the rubber tube for clogging.


View from under vehicle


EVAP canister
vent control valve

SEF267X

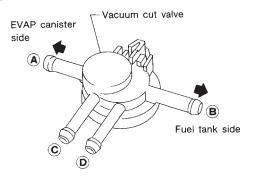
OK or NG

GO TO 2.

4 CHECK	EVAP CANISTI	ER VENT CONTROL VALVE-III		
 Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower. Perform Test No. 3 again. 				
		OK or NG		
OK	>	GO TO 5.		
NG	•	Replace EVAP canister vent control valve.		

HA

SC


EL

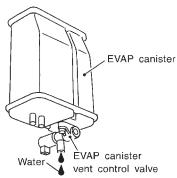
EC-605

Diagnostic Procedure (Cont'd)

5 CHECK VACUUM CUT VALVE

- 1. Turn ignition switch OFF.
- 2. Remove vacuum cut valve.
- 3. Check vacuum cut valve as follows:

SEF379Q


- a. Plug port C and D with fingers.
- b. Apply vacuum to port A and check that there is no suction from port B.
- c. Apply vacuum to port **B** and check that there is suction from port **A**.
- d. Blow air in port B and check that there is a resistance to flow out of port A.
- e. Open port C and D.
- f. Blow air in port A check that air flows freely out of port C.
- g. Blow air in port B check that air flows freely out of port D.

OK or NG

OK •	GO TO 6.
NG ►	Replace vacuum cut valve.

6 CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

SEF596U

Yes or No

Yes		GO TO 7.
No		GO TO 9.

7 CHECK EVAP CANISTER

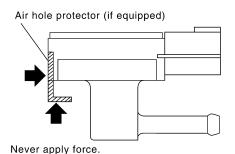
Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

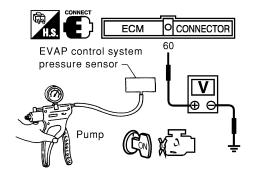
OK		GO TO 9.
NG		GO TO 8.

		Diagnostic Procedure (Cont	'd)
8	DETECT MALFUNCTIO	NING PART	٦
 EV 	k the following. 'AP canister for damage 'AP hose between EVAP ca	nister and water separator for clogging or poor connection	GI
	>	Repair hose or replace EVAP canister.	1
9	CHECK EVAP CONTRO	DL SYSTEM PRESSURE SENSOR HOSE	
Chec	k disconnection or imprope	r connection of hose connected to EVAP control system pressure sensor.	E
		OK or NG	4
OK	<u> </u>	GO TO 10.	
NG	<u> </u>	Repair it.	┚╻
10	CHECK EVAP CONTRO	OL SYSTEM PRESSURE SENSOR CONNECTOR	7 E
		tem pressure sensor harness connector.	┨┺
		View from under vehicle / ///	FE
			A A
		EVAP control system pressure sensor SEF268X	x B
2. Ci	heck connectors for water. Water should not exist.		
		OK or NG	_ \ \
OK	>	GO TO 11.	7 "
NG	•	Replace EVAP control system pressure sensor.	
			B
			K
			S
			[5


Diagnostic Procedure (Cont'd)

11 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

1. Remove EVAP control system pressure sensor with its harness connector connected.


CAUTION:

Never apply force to the air hole protector of the sensor if equipped.

SEF799W

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure. **CAUTION**:
 - Always calibrate the vacuum pump gauge when using it.
 - Do not apply below −20 kPa (−150 mmHg, −5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 5. Check input voltage between ECM terminal 60 and ground.

SEC908C

Pressure (Relative to atmospheric pressure)	Voltage V
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

MTBL1159

CAUTION:

Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG
----	----	----

OK •	GO TO 12.
NG •	Replace EVAP control system pressure sensor.

12	12 CHECK INTERMITTENT INCIDENT			
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.			
	► INSPECTION END			

MA

LC

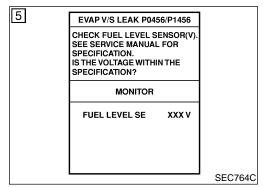
EC

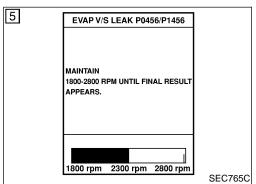
AT

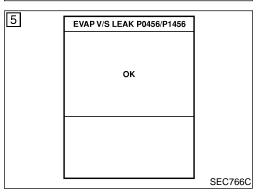
On Board Diagnosis Logic NHEC1421 EVAP control system pressure sensor Vacuum cut valve bypass valve **EVAP** service port Refueling control valve and refueling EVAP P (P) vapor cut valve Absolute pressure Vacuum EVAP canister purge **EVAP** sensor Fuel tank cut valve canister volume control solenoid valve EVAP canister vent control valve SEC936C

This diagnosis detects very small leaks in the EVAP line between fuel tank and EVAP canister purge volume control solenoid valve, using of vapor pressure in the fuel tank.

The EVAP canister vent control valve is closed to shut the EVAP purge line. The vacuum cut valve bypass valve will then be opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP control system pressure sensor can now monitor the pressure inside the fuel tank. If pressure increases, the ECM will check for leaks in the line between the vacuum cut valve and EVAP canister purge volume control solenoid valve.


If ECM judges a leak which corresponds to a very small leak, the very small leak P1456 will be detected. If ECM judges a leak equivalent to a small leak, EVAP small leak P1442 will be detected.


DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1456 1456	Evaporative emission control system very small leak (positive	 EVAP system has a very small leak. EVAP system does not operate properly. 	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to
	pressure check)		close.Foreign matter caught in fuel filler capLeak is in line between intake mani-
			fold and EVAP canister purge volume control solenoid valve. • Foreign matter caught in EVAP canis-
			ter vent control valve EVAP canister or fuel tank leaks EVAP purge line (Pipe and rubber
			tube) leaks • EVAP purge line rubber tube bent • Blocked or bent rubber tube to EVAP
			control system pressure sensor Loose or disconnected rubber tube EVAP canister vent control valve and
			the circuit EVAP canister purge volume control
			 solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control
			valve is missing or damaged.Water separatorEVAP canister saturated with water
			 EVAP control system pressure sensor Refueling control valve ORVR system leaks
			 Fuel level sensor and the circuit Foreign matter caught in EVAP canister purge volume control solenoid valve


CAUTION:

Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

NHEC1422

CAUTION:

Never remove fuel filler cap during the DTC confirmation procedure.

NOTE:

- If DTC P1456 is displayed with P1442, perform TROUBLE DIAGNOSIS FOR DTC P1456 first.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.
- After repair, make sure that the hoses and clips are installed properly.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- If any of following conditions are met just before the DTC confirmation procedure, leave the vehicle for more than 1 hour.
- a) Fuel filler cap is removed.
- b) Refilled or drained the fuel.
- c) EVAP component parts is/are removed.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) With CONSULT-II

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Make sure the following conditions are met.

FUEL LEVEL SE: 1.08 - 0.2V

COOLAN TEMP/S: 0 - 32°C (32 - 90°F)

FUEL T/TMP SE: 0 - 35°C (32 - 95°F)

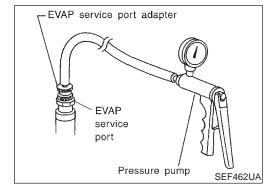
INT A/TEMP SE: More than 0°C (32°F)

If NG, turn ignition switch "OFF" and leave the vehicle in a cool place (soak the vehicle) or refilling/draining fuel until the output voltage condition of the "FUEL LEVEL SE" meets within the range above and leave the vehicle for more than 1 hour. Then start from step 1).

- 3) Turn ignition switch "OFF" and wait at least 10 seconds.
- 4) Turn ignition switch "ON".
- 5) Select "EVP V/S LEAK P0456/P1456" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

Make sure that "OK" is displayed.
 If "NG" is displayed, refer to "Diagnostic Procedure", EC-612.


NOTE:

- If the engine speed cannot be maintained within the range displayed on CONSULT-II screen, go to Inspection", EC-119.
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

MA

LC

Overall Function Check

WITH GST

Use this procedure to check the overall function of the EVAP very small leak function. During this check, a DTC might not be confirmed.

EC

CAUTION:

- Never use compressed air, doing so may damage the **EVAP** system.
- Do not start engine.
- Do not exceeded 4.12 kPa (0.042 kg/cm², 0.6 psi).
- Attach the EVAP service port adapter securely to the EVAP 1) service port.
 - AX

AT

- 2) Set the pressure pump and a hose.
- Also set a vacuum gauge via 3-way connector and a hose.
- 4) Turn ignition switch "ON".
- 5) Connect GST and select mode 8.
- Using mode 8 control the EVAP canister vent control valve (close) and vacuum cut valve bypass valve (open).
- 7) Apply pressure and make sure the following conditions are satisfied.

Pressure to be applied: 2.7 kPa (20 mmHg, 0.79 inHg) Time to be waited after the pressure drawn in to the EVAP system and the pressure to be dropped: 60 seconds and the pressure should not be dropped more than 0.4 kPa (3 mmHq, 0.12 inHq)

If NG, go to diagnostic procedure, EC-612.

NOTE:

For more information, refer to GST instruction manual.

HA SC

EL

NG

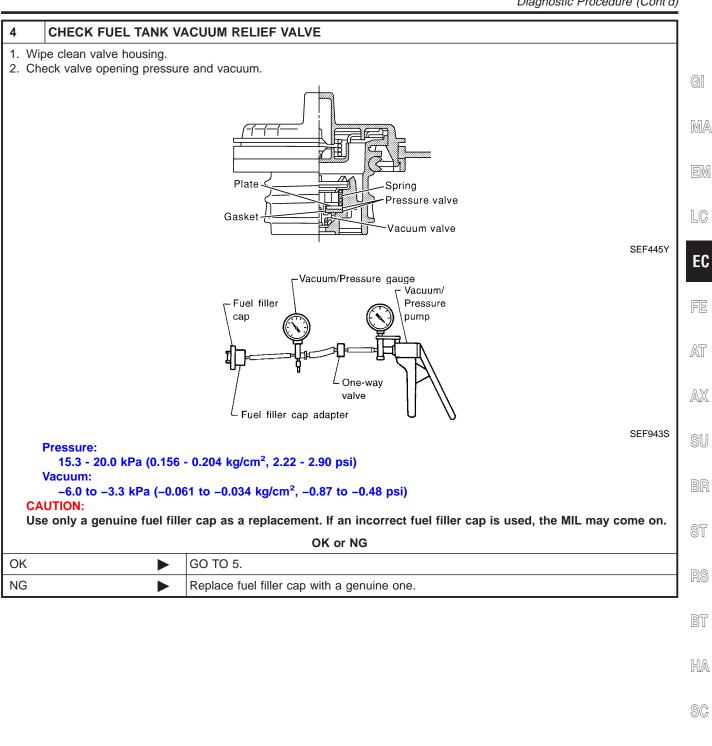
Diagnostic Procedure

1 CHECK FUEL FILLER CAP DESIGN

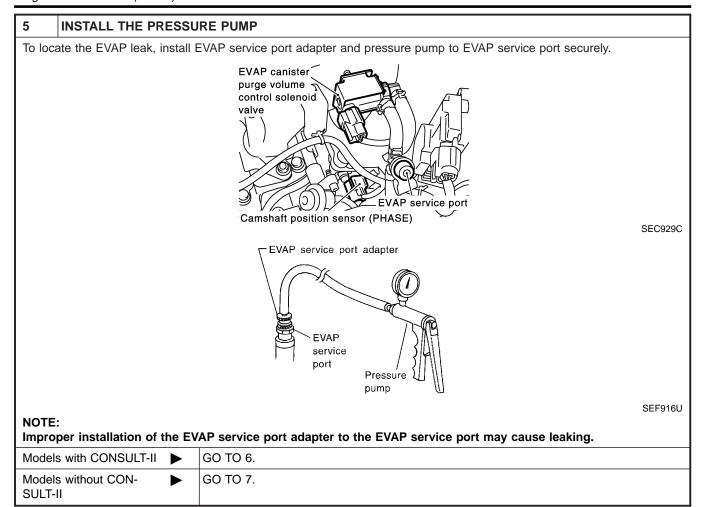
1. Turn ignition switch "OFF".
2. Check for genuine NISSAN fuel filler cap design.

NISSAN

OK
OK GO TO 2.


2	2 CHECK FUEL FILLER CAP INSTALLATION		
Check that the cap is tightened properly by rotating the cap clockwise.			
	OK or NG		
OK	OK ▶ GO TO 3.		
NG	NG 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. 2. Retighten until ratcheting sound is heard.		

Replace with genuine NISSAN fuel filler cap.

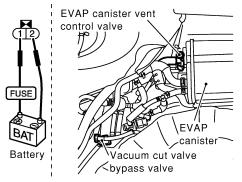

3	3 CHECK FUEL FILLER CAP FUNCTION			
Check	Check for air releasing sound while opening the fuel filler cap.			
	OK or NG			
OK	>	GO TO 5.		
NG	•	GO TO 4.		

EL

IDX

Diagnostic Procedure (Cont'd)

EL

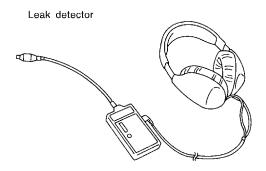

CHECK FOR EVAP LEAK With CONSULT-II 1. Turn ignition switch "ON". GI 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II. 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph. MA • Never use compressed air or a high pressure pump. • Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system. **EVAP SYSTEM CLOSE** APPLY PRESSURE TO SERVICE PORT TO RANGE BELOW. LC DO NOT EXCEED 0.6psi. 0.2 0.4 FE PEF917U 4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-40. AT Leak detector AX SU SEF200U OK or NG OK GO TO 8. NG Repair or replace. BT HA SC

Diagnostic Procedure (Cont'd)

CHECK FOR EVAP LEAK

Without CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)

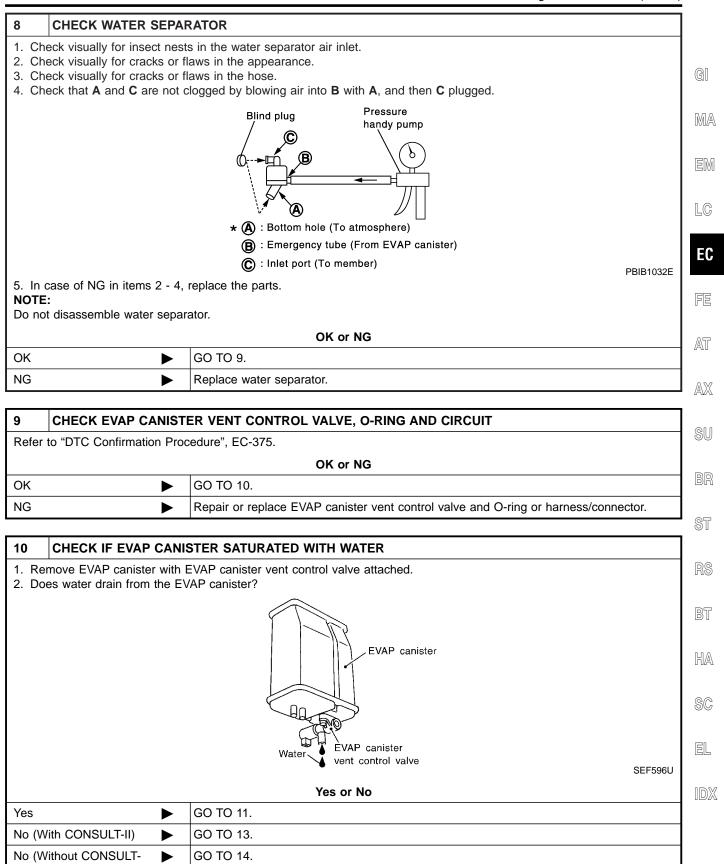


SEF254X

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-40.



SEF200U

OK or NG

OK •	GO TO 8.
NG ►	Repair or replace.

Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)

11	CHECK EVAP CANISTER		
Weigh the EVAP canister with the EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).			
	OK or NG		
OK (V	With CONSULT-II)	•	GO TO 13.
OK (V II)	Without CONSULT-	>	GO TO 14.
NG			GO TO 12.

12 DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection

Repair hose or replace EVAP canister.

13 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

ACTIVE TEST		
PURG VOL CONT/V 0.0%		
MONITOR	1	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	RICH	
HO2S1 MNTR (B2)	RICH	

SEC142D

Vacuum should exist.

OK or NG

OK	•	GO TO 16.
NG	•	GO TO 15.

14 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK •	GO TO 17.
NG ►	GO TO 15.

Diagnostic Procedure (Cont'd)

15	CHECK VACUUM	I HOS	E
Check	Check vacuum hoses for clogging or disconnection. Refer to "Vacuum Hose Drawing", EC-30.		
			OK or NG
OK (V	Vith CONSULT-II)	•	GO TO 16.
OK (Without CONSULT- GO TO 17.			
NG		•	Repair or reconnect the hose.

MA CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE With CONSULT-II LC 1. Start engine. 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according EC to the valve opening. ACTIVE TEST PURG VOL CONT/V 0.0% MONITOR **ENG SPEED** XXX rpm A/F ALPHA-B1 XXX % A/F ALPHA-B2 XXX % HO2S1 MNTR (B1) RICH HO2S1 MNTR (B2) RICH SEC142D OK or NG

OK •	GO TO 18.
NG ▶	GO TO 17.

EC-619

GI

EM

FE

AT

AX

ST

RS

BT

HA

SC

EL

Diagnostic Procedure (Cont'd) CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions. **EVAP** canister purge volume control solenoid valve EVAP service port Camshaft position sensor (PHASE) SEC929C Condition PURG VOL CONT/V value Air passage continuity between A and B 100.0% Yes 0.0% No SEF334X Without CONSULT-II Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions. **EVAP** canister purge volume control solenoid valve Camshaft position sensor (PHASE) SEC929C

	Condition	Air passage continuity between A and B
FUSE	12V direct current supply between terminals 1 and 2	Yes
	No supply	No
(A) BAT		

SEF335X

ON OF NO		
OK •	>	GO TO 18.
NG	>	Replace EVAP canister purge volume control solenoid valve.

OK or NG

Diagnostic Procedure (Cont'd)

GI

MA

EM

LC

EC

FE

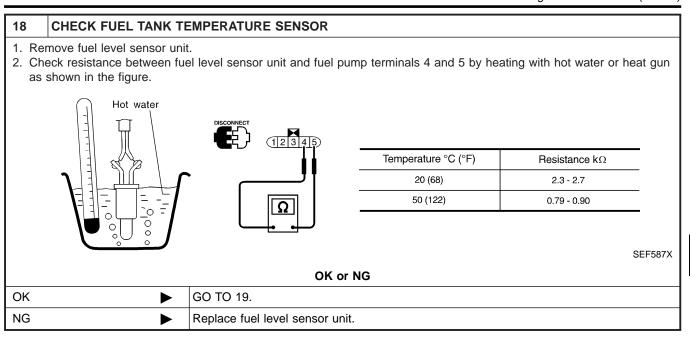
AT

AX

SU

BR

ST

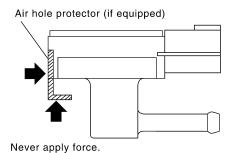

RS

BT

HA

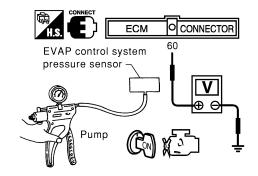
SC

EL



19 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

1. Remove EVAP control system pressure sensor with its harness connector connected.


CAUTION:

Never apply force to the air hole protector of the sensor if equipped.

SEF799W

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure. **CAUTION**:
 - Always calibrate the vacuum pump gauge when using it.
 - Do not apply below −20 kPa (−150 mmHg, −5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 5. Check input voltage between ECM terminal 60 and ground.

SEC908C

Voltage V
3.0 - 3.6
0.4 - 0.6

MTBL1159

CAUTION:

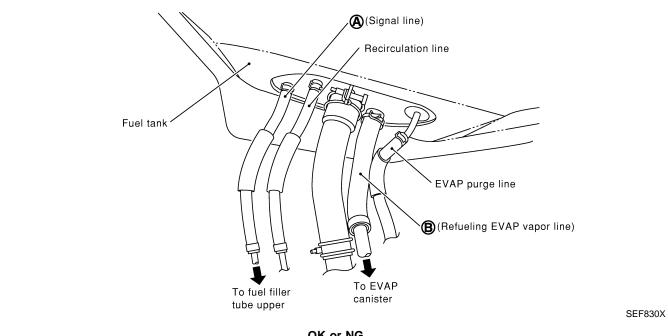
Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG
----	----	----

OK •	GO TO 20.
NG ►	Replace EVAP control system pressure sensor.

20	CHECK EVAP PURGE LINE		
	Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to "Evaporative Emission System", EC-36.		
	OK or NG		
OK	•	GO TO 21.	
NG	•	Repair or reconnect the hose.	

Diagnostic Procedure (Cont'd)


21	1 CLEAN EVAP PURGE LINE	
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.	
	► GO TO 22.	

22	CHECK REFUELING E	VAP VAPOR LINE	$\Big]_{\mathbb{R}}$
		between EVAP canister and fuel tank for clogging, kink, looseness and improper connec-ORATIVE EMISSION LINE DRAWING", EC-40.	טע
		OK or NG	
ОК	>	GO TO 23.	1
NG	>	Repair or replace hoses and tubes.	

23	CHECK SIGNAL LINE AND RECIRCULATION LINE		
	Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.		
		OK or NG	
OK	•	GO TO 24.	
NG	•	Repair or replace hoses, tubes or filler neck tube.	

24 CHECK REFUELING CONTROL VALVE

- 1. Remove fuel filler cap.
- 2. Check air continuity between hose ends A and B. Blow air into hose end B. Air should flow freely into the fuel tank.
- 3. Blow air into hose end A and check that there is no leakage.
- 4. Apply pressure to both hose ends A and B [20 kPa (150 mmHg, 5.91 inHg)] using a pressure pump and a suitable 3-way connector. Check that there is no leakage.

OK or NG	
OK •	GO TO 25.
NG ▶	Replace or refueling control valve with fuel tank.

EC-623

GI

MA

EM

LC

EC

FE

AT

 $\mathbb{A}\mathbb{X}$

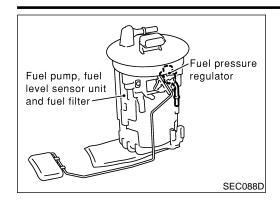
SU

ST

28

BT

HA


SC

EL

Diagnostic Procedure (Cont'd)

25	CHECK FUEL LEVEL SENSOR		
Refer	Refer to EL-139, "Fuel Level Sensor Unit Check".		
		OK or NG	
OK	OK ▶ GO TO 26.		
NG	•	Replace fuel level sensor unit.	

26	CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.	
	► INSPECTION END	

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

MA

EM

On Board Diagnostic Logic

ECM receives two signals from the fuel level sensor.

One is fuel level sensor power supply circuit, and the other is fuel level sensor ground circuit.

This diagnosis indicates the latter to detect open circuit malfunction.

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1464 1464	Fuel level sensor cir- cuit ground signal	A high voltage from the sensor is sent to ECM.	Fuel level sensor circuit (The fuel level sensor circuit is open or shorted.)

FE

EC

AT

AX

SU

DTC Confirmation Procedure

NOTE:

NHEC1113

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

HA

BT

SC

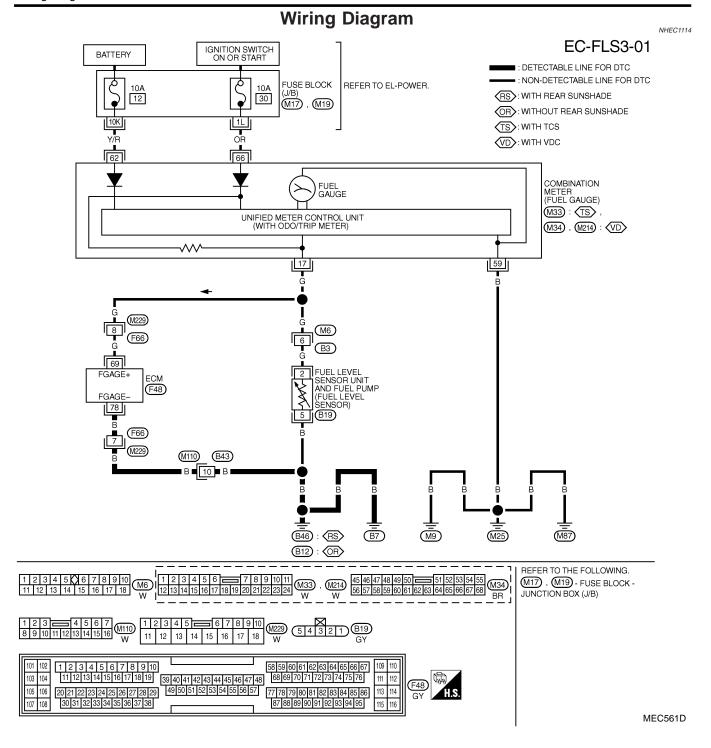
EIL

FUEL T/TMP SE XXX °C FUEL LEVEL SE XXX V

(A) WITH CONSULT-II Turn ignition switch "ON".

Select "DATA MONITOR" mode with CONSULT-II.

Wait at least 5 seconds.


If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-627.

WITH GST

Follow the procedure "WITH CONSULT-II" above.

NHEC1113S02

NHFC1113S01

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND.

CAUTION:
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE
TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
78	В	FUEL LEVEL SENSOR GROUND	ENGINE RUNNING AT IDLE SPEED	APPROX. 0V
69	G	FUEL LEVEL SENSOR	IGN ON	APPROX. 0 - 4.8V OUTPUT VOLTAGE VARIES WITH FUEL LEVEL.

SEF711YB

LC

EC

FE

AT

AX

SU

BR

ST

RS

BT

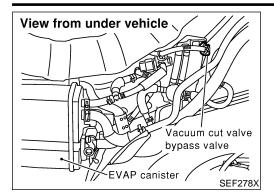
HA

SC

EL

Diagnostic Procedure

=NHEC1115 CHECK FUEL LEVEL SENSOR GROUND CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch "OFF". GI 2. Disconnect ECM harness connector. 3. Check harness continuity between ECM terminal 78 and body ground. Refer to Wiring Diagram. Continuity should exist. MA 4. Also check harness for short to power. OK or NG GO TO 3. OK NG GO TO 2.


2	DETECT MALFUNCTIONING PART		
Har	1. Check the following.Harness connectors F66, M229		
	 Harness connectors M110, B43 Harness for open between ECM and body ground 		
	Replace open circuit or short to power in harness or connectors.		

3	CHECK FUEL LEVEL SENSOR		
Refer	Refer to EL-139, "Fuel Level Sensor Unit Check".		
		OK or NG	
OK	OK ▶ GO TO 4.		
NG	>	Replace fuel level sensor unit.	

4	CHECK INTERMITTENT INCIDENT		
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	OK or NG		
	► INSPECTION END		

EC-627

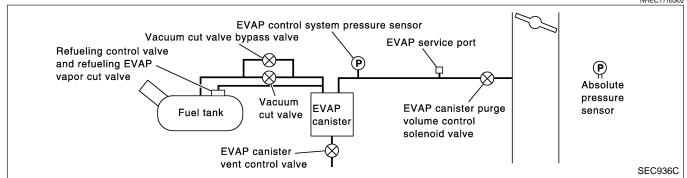
Description

Description COMPONENT DESCRIPTION

=NHEC1116

NHEC1116S01

The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.


The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

EVAPORATIVE EMISSION SYSTEM DIAGRAM

NHEC1116S02

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC1117

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPASS/V	Ignition switch: ON	OFF

On Board Diagnosis Logic

NHEC111

			WILETITS
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1490 1490	Vacuum cut valve bypass valve circuit	An improper voltage signal is sent to ECM through vacuum cut valve bypass valve.	Harness or connectors (The vacuum cut valve bypass valve circuit is open or shorted.) Vacuum cut valve bypass valve

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

NHEC1120

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle speed.

MA

LC

EC

FE

3 DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm SEF058Y

(P) WITH CONSULT-II

NHEC1120S01

1) Turn ignition switch "ON".

- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-631.

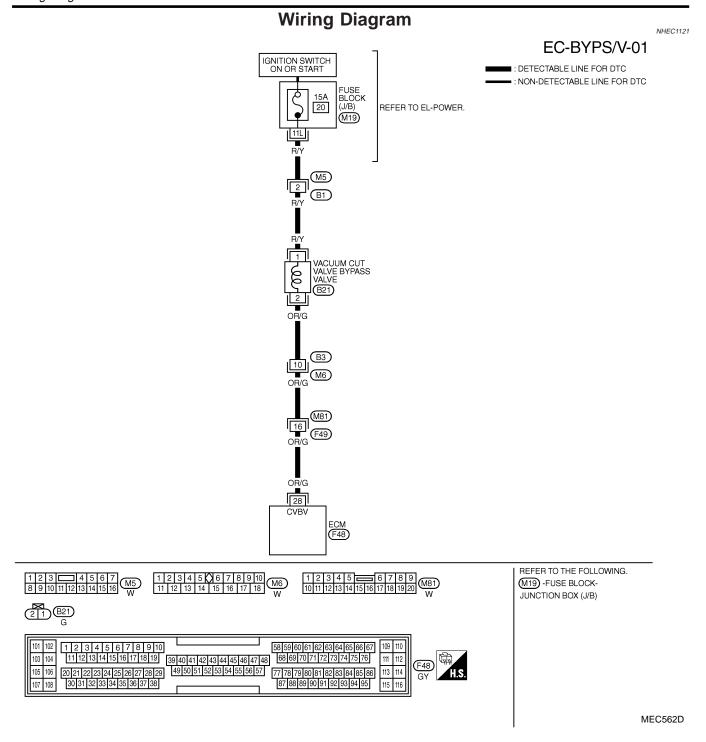
WITH GST

Follow the procedure "WITH CONSULT-II" above.

NHEC1120S02

AT

AX


SU

BT

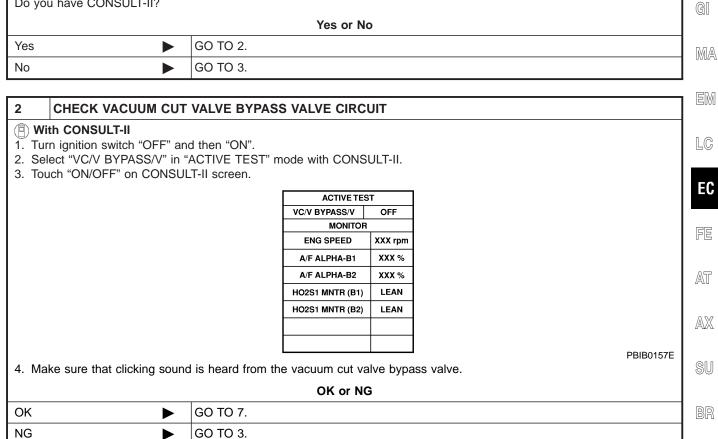
HA

SC

EL

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND.

CAUTION:


DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
28		VACUUM CUT VALVE BYPASS VALVE	IGN ON	BATTERY VOLTAGE

SEF634XD

Diagnostic Procedure

Diagnostic Procedure NHEC1122 **INSPECTION START** Do you have CONSULT-II? Yes or No Yes GO TO 2. GO TO 3. No

ST

BT

HA

SC

EL

Diagnostic Procedure (Cont'd)

CHECK VACUUM CUT VALVE BYPASS VALUE POWER SUPPLY CIRCUIT 1. Turn ignition switch "OFF". 2. Disconnect vacuum cut valve bypass valve harness connector. View from under vehicle Vacuum cut valve bypass valve EVAP cánister SEF278X 3. Turn ignition switch "ON". 4. Check voltage between vacuum cut valve bypass valve terminal 1 and ground with CONSULT-II or tester. Voltage: Battery voltage SEF356X

OK or NG

4	DETECT	MALFUNCTIONING	PART

Check the following.

- Harness connectors M5, B1
- Fuse block (J/B) connector M19
- 15A fuse

OK NG

Harness for open or short between vacuum cut valve bypass valve and fuse

GO TO 5.

GO TO 4.

Repair harness or connectors.

CHECK VACUUM CUT VALVE BYPASS VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 28 and vacuum cut valve bypass valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK	or	NG
\sim 1 $^{\circ}$	VI.	110

OK •	GO TO 7.
NG •	GO TO 6.

Diagnostic Procedure (Cont'd)

6 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B3, M6
- Harness connectors M81, F49
- Harness for open or short between vacuum cut valve bypass valve and ECM


Repair open circuit or short to ground or short to power in harness or connectors.

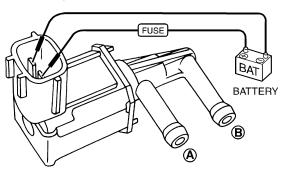
CHECK VACUUM CUT VALVE BYPASS VALVE

(P) With CONSULT-II

7

- 1. Reconnect harness disconnected connectors.
- 2. Turn ignition switch ON.
- 3. Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time under the following conditions.

ACTIVE TEST		
VC/V BYPASS/V	OFF	
MONITOR	₹	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	


Condition VC/V BYPASS/V	Air passage continuity between A and B	
ON	Yes	
OFF	No	

Operation takes less than 1 second.

SEC156D

Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B	
12V direct current supply between terminals 1 and 2	Yes	
No supply	No	

Operation takes less than 1 second.

SEF358X

OK or NG

OK GO TO 8.

NG Replace vacuum cut valve bypass valve.

8	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	•	INSPECTION END	

GI

MA

FIM

LC

C

FE

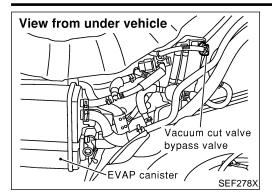
AT

 $\mathbb{A}\mathbb{X}$

SU

ווש

51


BT

HA

SC

EL

Description

Description COMPONENT DESCRIPTION

NHEC1123

NHEC1123S01

The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.

The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

EVAPORATIVE EMISSION SYSTEM DIAGRAM

NHEC1123S02

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC1124

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPASS/V	Ignition switch: ON	OFF

On Board Diagnosis Logic

On Board Diagnosis Logic

GI

MA

			NHEC1126
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1491 1491	Vacuum cut valve bypass valve	Vacuum cut valve bypass valve does not operate properly.	Vacuum cut valve bypass valve Vacuum cut valve Bypass hoses for clogging EVAP control system pressure sensor and circuit EVAP canister vent control valve Hose between fuel tank and vacuum cut valve clogged Hose between vacuum cut valve and EVAP canister clogged EVAP canister EVAP purge port of fuel tank for clogging

AX

EC

LC

AT

NHFC1127

NHEC1127S01

7 VC CUT/V BP/V P1491 **OUT OF CONDITION** MONITOR **ENG SPEED** XXX rpm VHCL SPEED SE XXX km/h **B/FUEL SCHDL** XXX msed SEF210Y

CAUTION: Always drive vehicle at a safe speed.

NOTE:

DTC Confirmation Procedure

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

For best results, perform test at a temperature of 5 to 30°C (41 to 86°F).

(P) WITH CONSULT-II

1) Turn ignition switch "ON".

Start engine and warm it up to normal operating temperature.

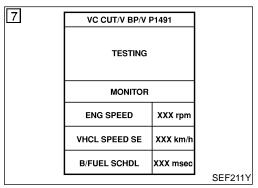
Turn ignition switch "OFF" and wait at least 10 seconds.

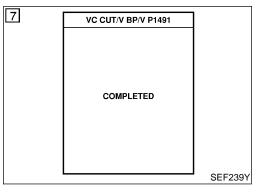
Start engine and let it idle for at least 70 seconds.

Select "VC CUT/V BP/V P1491" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

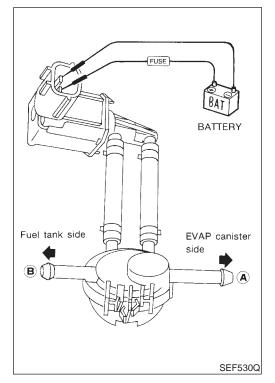
Touch "START".

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 30 seconds.)


HA


EL

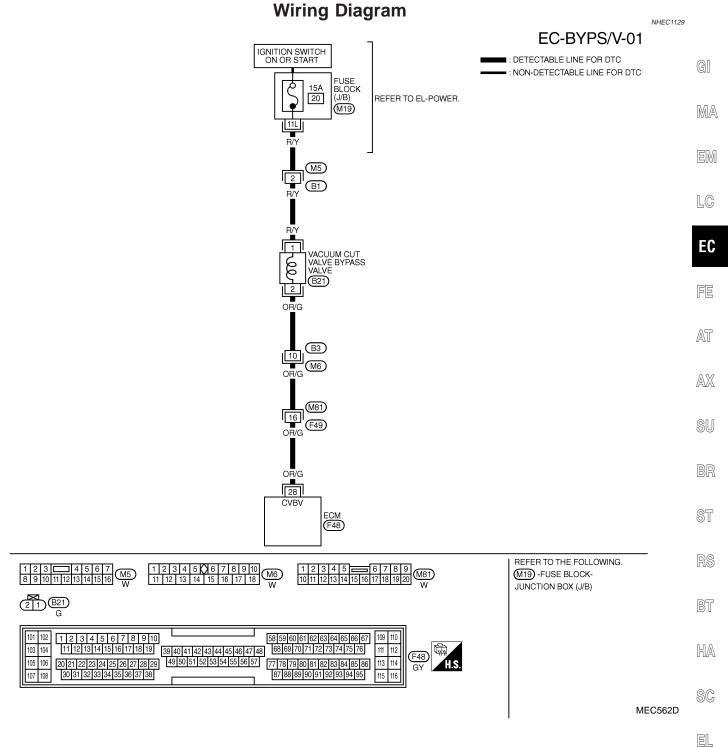
ENG SPEED Idle speed or more Selector lever Suitable position Vehicle speed 35 - 120 km/h (22 - 75 MPH) or more B/FUEL SCHDL 1.3 - 8.1 msec


If "TESTING" is not displayed after 5 minutes, retry from step 3.

Make sure that "OK" is displayed after touching "SELF-DIAG

RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-638.

Overall Function Check


NHEC112

Use this procedure to check the overall function of vacuum cut valve bypass valve. During this check, the 1st trip DTC might not be confirmed.

® WITH GST

UEC1128S0

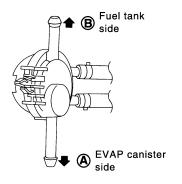
- 1) Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- 2) Apply vacuum to port **A** and check that there is no suction from port **B**.
- 3) Apply vacuum to port **B** and check that there is suction from port **A**.
- 4) Blow air in port **B** and check that there is a resistance to flow out of port **A**.
- 5) Supply battery voltage to the terminal.
- 6) Blow air in port **A** and check that air flows freely out of port **B**.
- 7) Blow air in port **B** and check that air flows freely out of port **A**.
- 8) If NG, go to "Diagnostic Procedure", EC-638.

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND.

CAUTION:
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE
TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TO THE EDIN O THANGIOTOTI. GOE A GROOM OTHER THAN EDIN TERMINALS, GOOT ACTIVE GROOMS.				
TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
28		VACUUM CUT VALVE BYPASS VALVE	IGN ON	BATTERY VOLTAGE

SEF634XD


Diagnostic Procedure

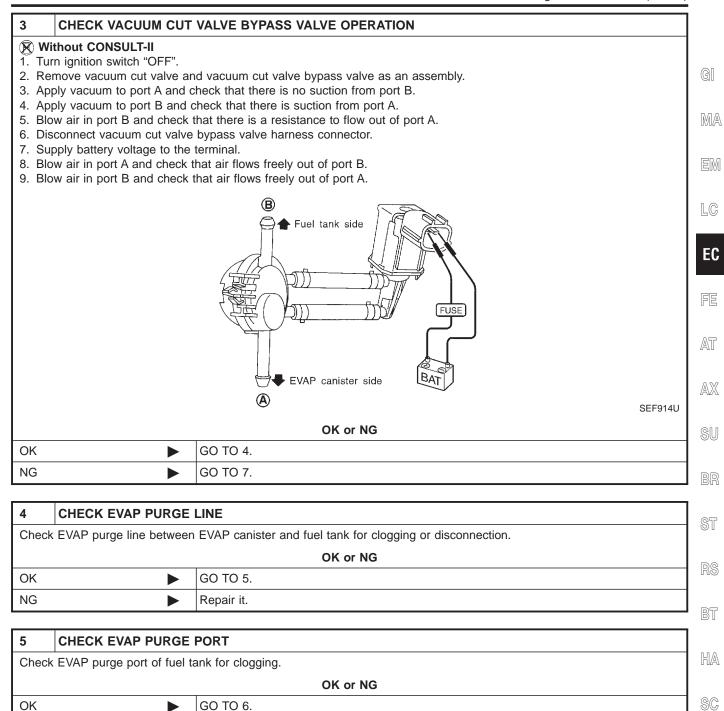
		3	NHEC1130
1	INSPECTION START		
Do yo	u have CONSULT-II?		
		Yes or No	
Yes	•	O TO 2.	
No	•	O TO 3.	

2 CHECK VACUUM CUT VALVE BYPASS VALVE OPERATION

With CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- 3. Apply vacuum to port A and check that there is no suction from port B.
- 4. Apply vacuum to port B and check that there is suction from port A.
- 5. Blow air in port B and check that there is a resistance to flow out of port A.
- 6. Turn ignition switch "ON".
- 7. Select "VC/V BYPASS/V" in "ACTIVE TEST" mode with CONSULT-II and touch "ON".
- 8. Blow air in port A and check that air flows freely out of port B.
- 9. Blow air in port B and check that air flows freely out of port A.

ACTIVE TEST		
VC/V BYPASS/V	OFF	
MONITOR		
ENG SPEED XXX rpr		
A/F ALPHA-B1 XXX %		
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	

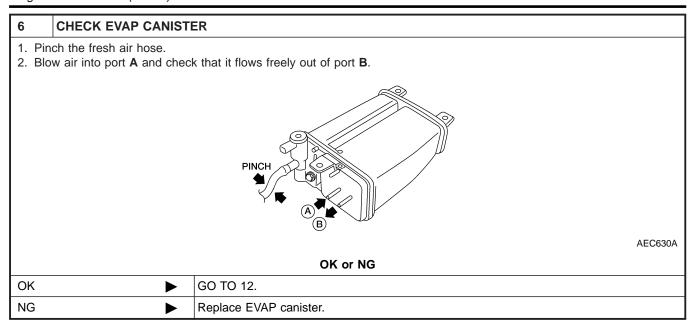

SEC157D

OK or NG

OK •	GO TO 4.
NG ▶	GO TO 5.

Diagnostic Procedure (Cont'd)

EL

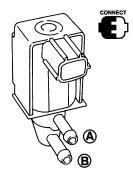


EC-639

Clean EVAP purge port.

NG

Diagnostic Procedure (Cont'd)


7	CHECK BYPASS HOSE			
Check bypass hoses for clogging.				
	OK or NG			
ОК	OK ▶ GO TO 8.			
NG	•	Repair or replace hoses.		

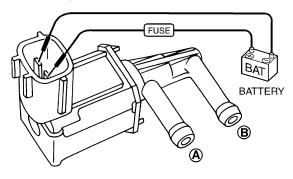
Diagnostic Procedure (Cont'd)

CHECK VACUUM CUT VALVE BYPASS VALVE

With CONSULT-II

- 1. Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.
- 2. Check air passage continuity and operation delay time under the following conditions.

ACTIVE TEST		
VC/V BYPASS/V	OFF	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	


Condition VC/V BYPASS/V	Air passage continuity between A and B	
ON	Yes	
OFF	No	

Operation takes less than 1 second.

SEC156D

⊗ Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B	
12V direct current supply between terminals 1 and 2	Yes	
No supply	No	

Operation takes less than 1 second.

SEF358X

OK or NG

OK ▶	GO TO 9.
NG •	Replace vacuum cut valve bypass valve.

GI

MA

EM

LC

EC

FE

AT

AX

SU

51

RS

BT

HA

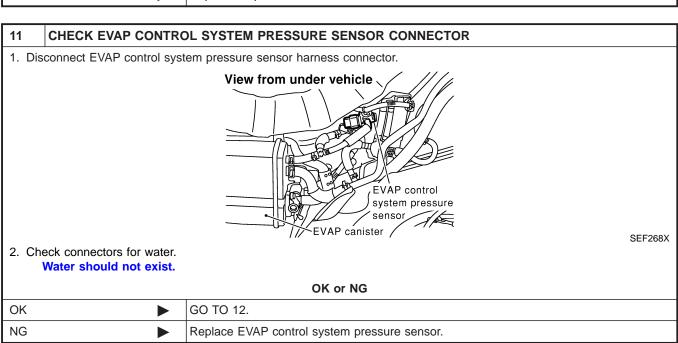
SC

EL

Diagnostic Procedure (Cont'd)

OK

NG

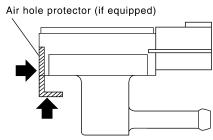

CHECK VACUUM CUT VALVE Check vacuum cut valve as follows: Vacuum cut valve EVAP canister side Fuel tank side SEF379Q a. Plug port C and D with fingers. b. Apply vacuum to port A and check that there is no suction from port B. c. Apply vacuum to port **B** and check that there is suction from port **A**. d. Blow air in port B and check that there is a resistance to flow out of port A. e. Open port C and D. f. Blow air in port A check that air flows freely out of port C. g. Blow air in port B check that air flows freely out of port D.

10	0 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE		
	 Turn ignition switch "OFF". Check disconnection or improper connection of hose connected to EVAP control system pressure sensor. OK or NG		
OK	OK		
NG	>	Repair or replace.	

OK or NG

GO TO 10.

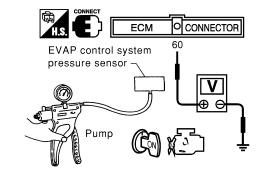
Replace vacuum cut valve.



Diagnostic Procedure (Cont'd)

12 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Remove EVAP control system pressure sensor with its harness connector connected.
 CAUTION:


Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure. CAUTION:
 - Always calibrate the vacuum pump gauge when using it.
 - Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 5. Check input voltage between ECM terminal 84 and ground.

SEC908C

Pressure (Relative to atmospheric pressure)	Voltage V
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

MTBL1159

CAUTION:

Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG
----	----	----

OK •	GO TO 13.
NG ►	Replace EVAP control system pressure sensor.

13 CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

	OK		GO TO 14.
NG Clean the rubber tube using a		•	Clean the rubber tube using an air blower.

G

MA

LC

EC

FE

AT

AX

SU

BR

ST

IUI@

BT

HA

SC

EL

Diagnostic Procedure (Cont'd)

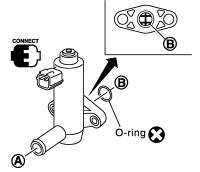
CHECK EVAP CANISTER VENT CONTROL VALVE-I Remove EVAP canister vent control valve from EVAP canister. Check portion B of EVAP canister vent control valve for being rusted.

O-ring

5.3 - 12 N·m (0.54 - 1.2 kg-m, 46.9 - 104 in-lb)

SEF376Z

OK o	r N	വ


ОК	•	GO TO 15.
NG	•	Replace EVAP canister vent control valve.

15 CHECK EVAP CANISTER VENT CONTROL VALVE-II

(P) With CONSULT-II

- 1. Reconnect harness disconnected connectors.
- 2. Turn ignition switch ON.
- 3. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time.

ACTIVE TEST		
VENT CONTROL/V	OFF	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	

Condition VENT CONTROL/V	Air passage continuity between A and B	
ON	No	
OFF	Yes	

Operation takes less than 1 second.

SEC158D

Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B	
12V direct current supply between terminals 1 and 2	No	
OFF	Yes	

Operation takes less than 1 second.

SEF378Z

Make sure new O-ring is installed properly.

OK or NG

OK •	GO TO 17.
NG •	GO TO 16.

Diagnostic Procedure (Cont'd)

16	16 CHECK EVAP CANISTER VENT CONTROL VALVE-III		
	ean the air passage (Porti	on A to B) of EVAP canister vent control valve using an air blower. in.	
	OK or NG		
OK	•	GO TO 17.	
NG	•	Replace EVAP canister vent control valve.	
1			· •
17	CHECK INTERMITTE	NT INCIDENT	EM
Refer	to "TROUBLE DIAGNOS	IS FOR INTERMITTENT INCIDENT". FC-151.	

INSPECTION END

EC

FE

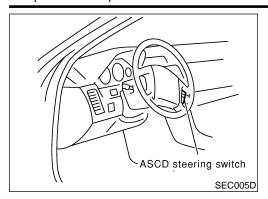
AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST


RS

LC

HA

SC

EL

Component Description

NHEC1208

ASCD steering switch has variant values of electrical resistance for each button. ECM reads voltage variation of switch, and determines which button is operated.

Refer to EC-53 for the ASCD function.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC1209

MONITOR ITEM	CONDITION		SPECIFICATION
MAIN SW	Ignition switch: ON	CRUISE switch pressed	ON
		CRUISE switch released	OFF
CANCEL SW	Ignition switch: ON	CANCEL switch pressed	ON
		CANCEL switch released	OFF
DECLINE /ACC CW/	Ignition switch: ON	ACCEL/RES switch pressed	ON
RESUME/ACC SW		ACCEL/RES switch released	OFF
SET SW	Ignition switch: ON	COAST/SET switch pressed	ON
SET SW		COAST/SET switch released	OFF

On Board Diagnosis Procedure

NHEC1210

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible cause
P1564 1564	ASCD steering switch	 An excessively high voltage signal from the ASCD steering switch is sent to ECM. ECM detects that input signal from the ASCD steering switch is out of the specified range. ECM detects that the ASCD steering switch is stuck ON. 	 Harness or connectors (The ASCD steering switch circuit is open or shorted.) ASCD steering switch ECM

DTC Confirmation Procedure

NOTE:

NHEC121

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 10 seconds.
- 4. Press "CRUISE" switch for at least 10 seconds, then release

DTC P1564 ASCD STEERING SWITCH

DTC Confirmation Procedure (Cont'd)

it and wait at least 10 seconds.

- 5. Press "ACCEL/RES" switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 6. Press "COAST/SET" switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 7. Press "CANCEL" switch for at least 10 seconds, then release it and wait at least 10 seconds.
- MA
- 8. If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-650.
- **With GST**

Follow the procedure "With CONSULT-II" above.

LC

EC

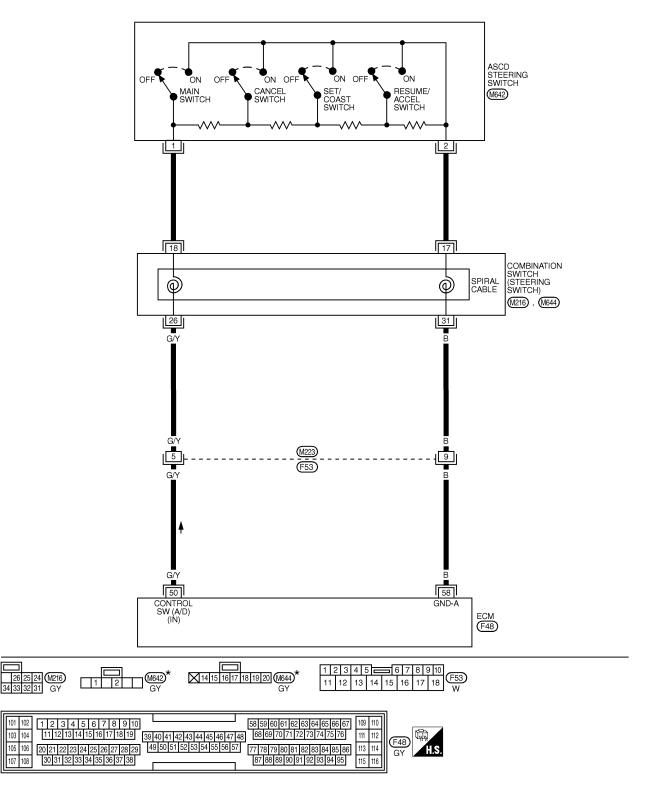
AT

AX

SU

BT

HA


SC

EL

Wiring Diagram

NHEC1213

*: THIS CONNECTOR IS NOT SHOWN IN "HARNESS LAYOUT", EL SECTION.

101 102 103 104

105 106

107 108

MEC893D

GI

MA

EM

LC

EC

FE

AT

AX

SU

BR

ST

RS

BT

HA

SC

EL

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Ignition switch "ON"] • ASCD steering switch is "OFF"	Approximately 4.0V
			[Ignition switch "ON"] ■ CRUISE switch is "ON"	Approximately 0V
50	G/Y	ASCD steering switch	[Ignition switch "ON"] • CANCEL switch is "ON"	Approximately 1V
			[Ignition switch "ON"] • COAST/SET switch is "ON"	Approximately 2V
			[Ignition switch "ON"] • ACCEL/RES switch is "ON"	Approximately 3V
58	В	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

Diagnostic Procedure

NHEC1214

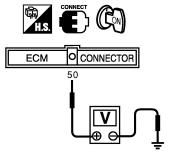
CHECK ASCD STEERING SWITCH CIRCUIT

With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "MAIN SW", "RESUME/ACC SW", "SET SW" and "CANCEL SW" in "DATA MONITOR" mode with CONSULT-II.

DATA MONITOR		
MONITOR	NO DTC	
MAIN SW	OFF	
CANCEL SW	OFF	
RESUME/ACC SW	OFF	
SET SW	OFF	

3. Check each item indication under the following conditions.


Switch	Monitor item	Condition	Indication
CRUISE	MAIN SW	Pressed	ON
UNUISE	WAINSW	Released	OFF
COAST/SET	SET SW	Pressed	ON
COAST/SET	SELOW	Released	OFF
ACCEL/RES	RESUME/ACC SW	Pressed	ON
ACCEL/NES	headivie/ACC avv	Released	OFF
CANCEL	CANCEL SW	Pressed	ON
UMNUEL	CANCEL SVV	Released	OFF

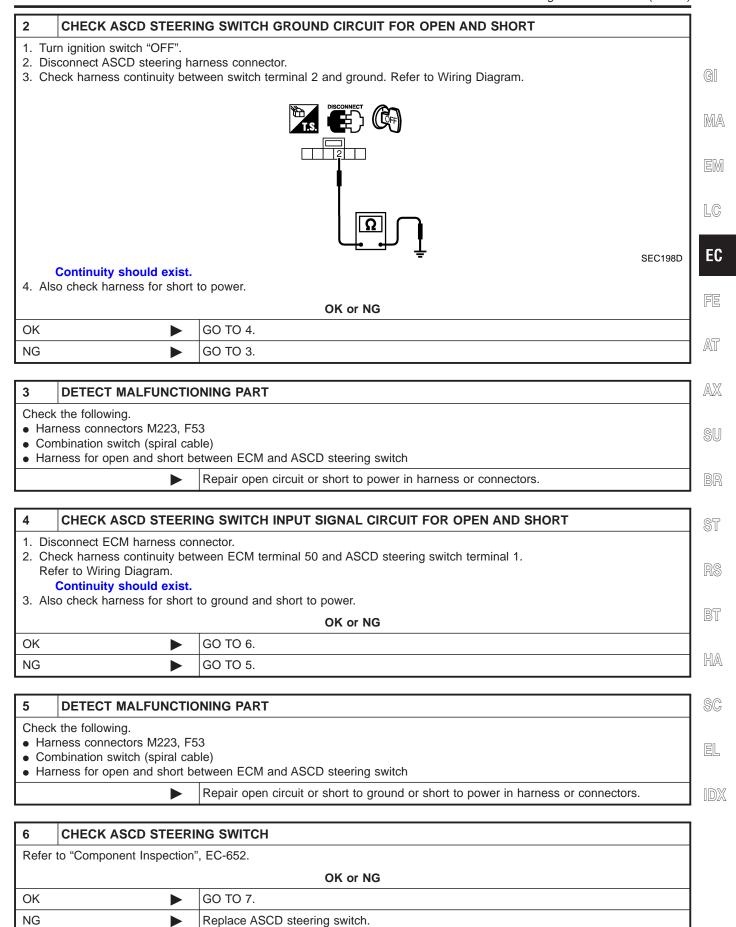
MTBL1193

SEC006D

Without CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Check voltage between ECM terminal 50 and ground with pressing each button.

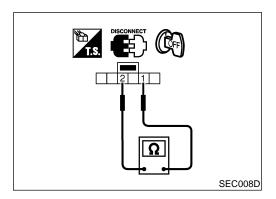
SEC007D


Switch	Condition	Voltage [V]
CRUISE SW	Pressed	Approx. 0.5
Choise SW	Released	Approx. 4.0
COAST/SET SW	Pressed	Approx. 2.0
COASI/SET SW	Released	Approx. 4.0
ACCEL/RES SW	Pressed	Approx. 3.0
ACCEL/NES SW	Released	Approx. 4.0
CANCEL SW	Pressed	Approx. 1.0
CANCEL SW	Released	Approx. 4.0

MTBL1133

Refer to Wiring Diagram.

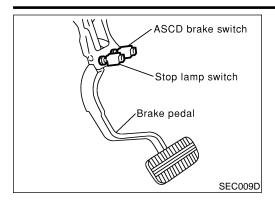
OK or NG


OK ▶	GO TO 4.
NG ▶	GO TO 2.

DTC P1564 ASCD STEERING SWITCH

Diagnostic Procedure (Cont'd)

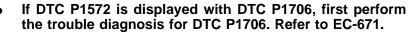
7	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	► INSPECTION END		



Component Inspection ASCD STEERING SWITCH

NHEC1215

- 1. Disconnect ASCD steering switch.
- 2. Check continuity between terminals 1 and 2 by pushing each switch.


Switch	Condition	Resistance [Ω]
CRUISE SW	Pressed	Approx. 0
CRUISE SW	Released	Approx. 4,000
COAST/SET SW	Pressed	Approx. 660
COAST/SET SW	Released	Approx. 4,000
ACCEL/RES SW	Pressed	Approx. 1,480
ACCEL/RES SW	Released	Approx. 4,000
CANCEL SW	Pressed	Approx. 250
CANCEL SW	Released	Approx. 4,000

Component Description

NOTE:

If DTC P1572 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to EC-447.

If DTC P1572 is displayed with DTC P1805, first perform the trouble diagnosis for DTC P1805. Refer to EC-681.

When the brake pedal is depressed, ASCD brake switch is turned OFF and stop lamp switch is turned ON.

ECM detects the state of the brake pedal by this input of two kinds (ON/OFF signal).

Refer to EC-53 for the ASCD function.

GI

NHEC1216

MA

EM

LC

EC

AT

AX

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM

BRAKE SW 1

(ASCD brake switch)

BRAKE SW 2

(Stop lamp switch)

NHEC1217

SPECIFICATION

ON

OFF

OFF

ON

SU

BT

HA

SC

EL

On Board Diagnosis Procedure

Brake pedal depressed

Brake pedal released

 Brake pedal depressed • Brake pedal released

		_	NHEC1218
DTC	Trouble diagnosis name	DTC Detecting Condition	Possible cause
P1572 1572	ASCD brake switch	When the vehicle speed is above 30 km/h (19 MPH), ON signal from the stop lamp switch and ASCD brake switch are sent to the ECM at the same time.	 Harness or connectors (The stop lamp switch circuit is open or shorted.) Harness or connectors (The ASCD brake switch circuit is open or shorted.) ASCD brake switch Stop lamp switch Harness or connectors (The ASCD brake switch or stop lamp switch circuit is open or shorted.) Incorrect stop lamp switch installation Incorrect ASCD brake switch installation ECM

CONDITION

· Ignition switch: ON

. Ignition switch: ON

"P" position

Shift lever: Except "N" and

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

NHEC1220

TESTING CONDITION:

Steps 3 and 4 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

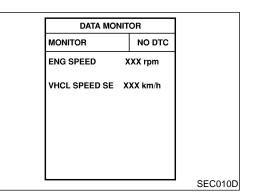
(P) With CONSULT-II

- 1) Start engine (TCS switch "OFF").
- Select "DATA MONITOR" mode with CONSULT-II.
- Drive the vehicle for at least 5 consecutive seconds under the following condition.

VHCL SPEED SE	More than 30 km/h (19 MPH)	
Selector lever	Suitable position	

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-657.

If 1st rip DTC is not detected, go to the following step.


4) Drive the vehicle for at least 5 consecutive seconds under the following condition.


VHCL SPEED SE	More than 30 km/h (19 MPH)	
Selector lever	Suitable position	
Driving location	Depress the brake pedal for more than five seconds so as not to come off from the above-mentioned condition.	

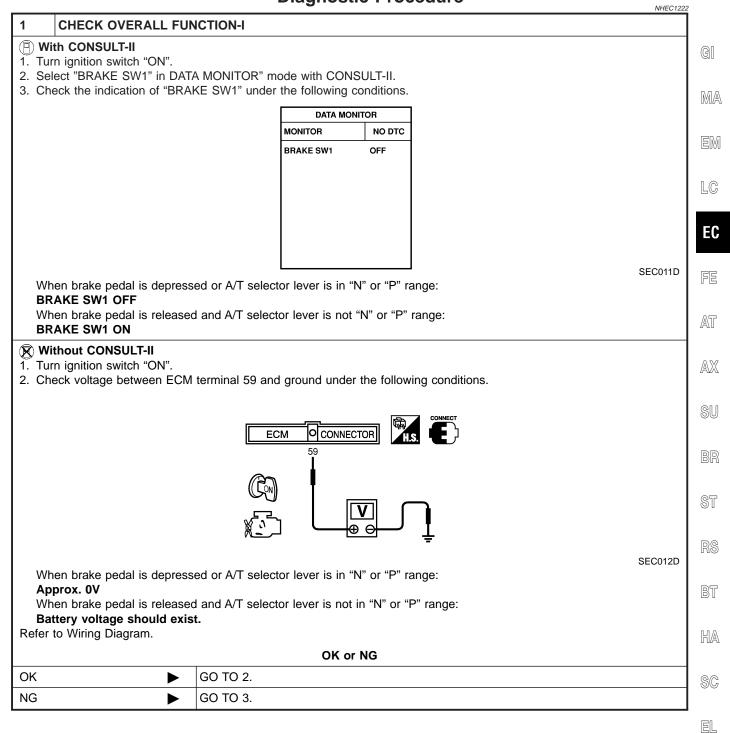
5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-657.

With GST

Follow the procedure "With CONSULT-II" above.

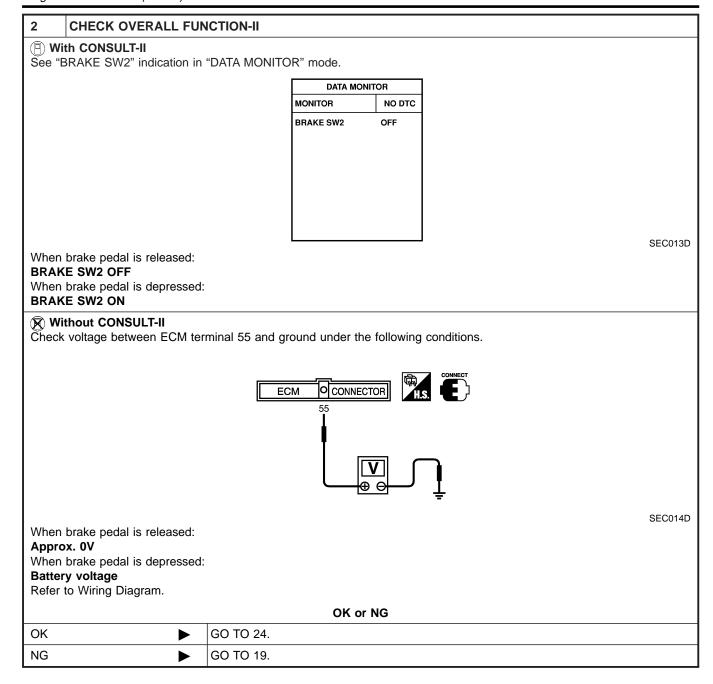
DTC P1572 ASCD BRAKE SWITCH

Wiring Diagram (Cont'd)

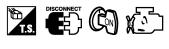

Specification data are reference values and are measured between each terminal and ground.

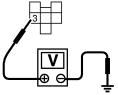
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
55	D/C	t/G Stop lamp switch	[Ignition switch "ON"] • Brake pedal is released	Approximately 0V
55 R/G	R/G		[Ignition switch "ON"] ■ Brake pedal is depressed	BATTERY VOLTAGE (11 - 14V)
50 0/0	G/B	ASCD brake switch	[Ignition switch "ON"] ■ Gear position is except "P" or "N" ■ Brake pedal is released	BATTERY VOLTAGE (11 - 14V)
59	G/B	ASCD DIAKE SWITCH	[Ignition switch "ON"] ■ Gear position is except "P" or "N" ■ Brake pedal is depressed	Approximately 0V

Diagnostic Procedure


DTC P1572 ASCD BRAKE SWITCH


Diagnostic Procedure (Cont'd)

CHECK ASCD BRAKE SWITCH CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect park/neutral position relay harness connector.
- 3. Turn ignition switch "ON".
- 4. Check voltage between park/neutral position relay terminal 3 and ground under the following conditions.

SEC209D

MA

LC

EC

AT

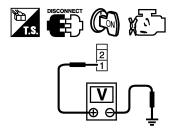
AX

SU

HA

EL

CONDITION	VOLTAGE
When brake pedal is released	Battery voltage
When brake pedal is depressed	Approx. 0V


MTBL1259

OK or NG

ОК	>	GO TO 8.
NG	>	GO TO 4.

4 CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ASCD brake switch harness connector.
- 3. Turn ignition switch "ON".
- 4. Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-II or tester.

PBIB0857E

Voltage: Battery voltage

OK or NG

OK •	GO TO 6.
NG •	GO TO 5.

5 DETECT MALFUNCTIONING PART

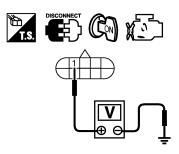
Check the following.

- Fuse block (J/B) connector E83
- 10A fuse
- Harness for open or short between ASCD brake switch and fuse

Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch "OFF". 2. Check continuity between ASCD brake switch terminal 2 and park/neutral position relay terminal 3. SEC213D OK or NG OK

7	CHECK ASCD BRAKE SWITCH		
Refer	Refer to "Component Inspection", EC-665.		
	OK or NG		
OK	>	GO TO 8.	
NG	>	Replace ASCD brake switch.	

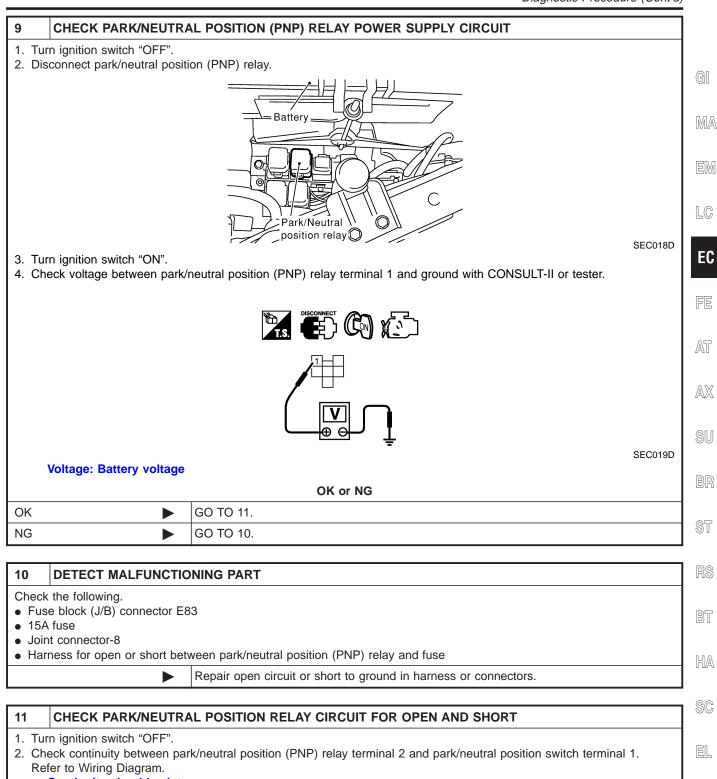

Repair open circuit or short to ground or short to power in harness or connectors.

CHECK PARK/NEUTRAL POSITION (PNP) RELAY CIRCUIT

1. Turn ignition switch "OFF".

NG

- 2. Disconnect park/neutral position switch harness connector.
- 3. Turn ignition switch "ON".
- 4. Check voltage between park/neutral position (PNP) switch terminal 1 and ground with CONSULT-II or tester.



SEC214D

Voltage: Battery voltage

OK or NG

OK •	GO TO 13.
NG	GO TO 9.

OK	•	GO TO 13.	
NG	•	GO TO 12.	

DTC P1572 ASCD BRAKE SWITCH

Diagnostic Procedure (Cont'd)

12 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E8, F17
- Harness connectors F10, F151
- Harness for open or short between park/neutral position relay and park/neutral position switch

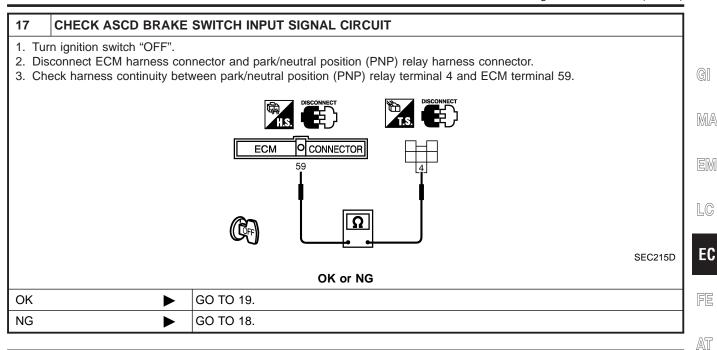
Repair open circuit or short to ground or short to power in harness or connectors.

13	13 CHECK PARK/NEUTRAL POSITION RELAY		
Refer	Refer to "Component Inspection", EC-665.		
	OK or NG		
OK	•	GO TO 14.	
NG	NG Replace park/neutral position relay.		

14	CHECK PARK/NEUTRAL POSITION (PNP) SWITCH GROUND CIRCUIT		
	n ignition switch "OFF". connect park/neutral position	on switch harness connector.	
	3. Check continuity between park/neutral position (PNP) switch terminal 2 and ground.		
	OK or NG		
OK	OK ▶ GO TO 16.		
NG	>	GO TO 15.	

ı	15	DETECT MALFUNCTIO	NING PART	
		Check the following. • Harness connectors F10, F151		
		Harness for open or short between park/neutral position (PNP) switch and ground		
		Repair open circuit or short to ground or short to power in harness or connectors.		

16	6 CHECK PARK/NEUTRAL POSITION SWITCH		
Refer	Refer to "Component Inspection", EC-665.		
	OK or NG		
OK	>	GO TO 17.	
NG	>	Replace park/neutral position switch.	


EC

AX

SU

HA

SC

18 **DETECT MALFUNCTIONING PART**

Check the following.

- Harness connectors E81, M15
- Harness connectors M223, F53
- Harness for open or short between park/neutral position (PNP) relay and ECM
 - Repair open circuit or short to ground or short to power in harness or connectors.

19 CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT 1. Turn ignition switch "OFF". 2. Disconnect stop lamp switch harness connector. 3. Check voltage between stop lamp switch terminal 1 and ground with CONSULT-II or tester. 1 2 PBIB0117E Voltage: Battery voltage OK or NG

OK ►	GO TO 21.
NG ►	GO TO 20.

DTC P1572 ASCD BRAKE SWITCH

Diagnostic Procedure (Cont'd)

20 DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector M17
- 15A fuse
- Harness connectors M15, E81
- Harness for open or short between stop lamp switch and fuse
 - ▶ Repair open circuit or short to ground in harness or connectors.

21 CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT 1. Disconnect ECM harness connector. 2. Check harness continuity between stop lamp switch terminal 2 and ECM terminal 55. Continuity should exist OK or NG OK

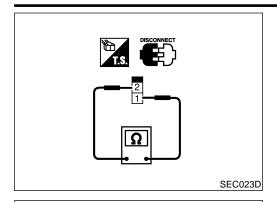
22 DETECT MALFUNCTIONING PART

Check the following.

NG

- Harness connectors M15, E81
- Harness connectors M223, F53
- Harness for open or short between stop lamp switch and ECM

GO TO 22.


Repair open circuit or short to ground or short to power in harness or connectors.

23	3 CHECK STOP LAMP SWITCH		
Refer	Refer to "Component Inspection", EC-665.		
	OK or NG		
OK	>	GO TO 24.	
NG	•	Replace stop lamp switch.	

24 CHECK INTERMITTENT INCIDENT		F INCIDENT	
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.			
	► INSPECTION END		

DTC P1572 ASCD BRAKE SWITCH

Component Inspection

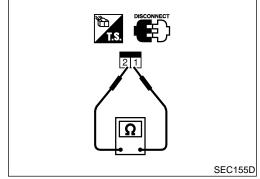
Component Inspection ASCD BRAKE SWITCH AND STOP LAMP SWITCH

NHEC1223

	Continuity	
Condition	ASCD brake switch	Stop lamp switch
When brake pedal is depressed	No	Yes
When brake pedal is released	Yes	No

GI

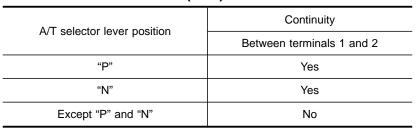
MA


Check each switch after adjusting brake pedal — refer to BR section.

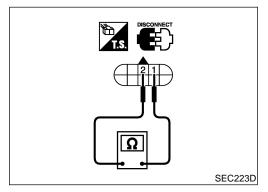
LC

EC

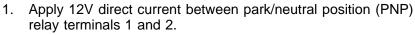
FE



PARK/NEUTRAL POSITION (PNP) SWITCH

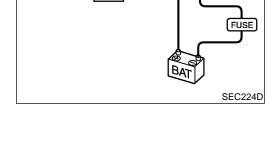


SU


AT

ST

PARK/NEUTRAL POSITION (PNP) RELAY (FOR A/T MODELS)



Check continuity between park/neutral position (PNP) relay Terminals 3 and 4.

ПП	Μ
ΙĦ	/∆\

Condition	Continuity
12V direct current supply between terminals 1 and 2	No
OFF	Yes

SC EL

Component Description

NOTE:

If DTC P1574 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001, refer to EC-159.

If DTC P1574 is displayed with DTC P0500, first perform the trouble diagnosis for DTC P0500. Refer to EC-434.

If DTC P1574 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to EC-447.

ECM receives vehicle speed signals via two different lines, and detects vehicle speed for ASCD control.

Vehicle speed signals are input from combination meter and TCM separately.

Signal from TCM is sent via CAN communication line.

Refer to EC-53 for ASCD functions.

On Board Diagnosis Procedure

NHFC1226

NHEC1228

NHEC1224

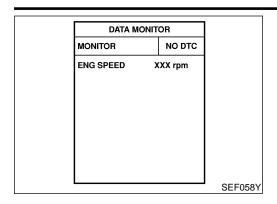
DTC	Trouble diagnosis name	DTC Detecting Condition	Possible cause
P1574 1574	ASCD vehicle speed sensor	ECM detects a difference values between two vehicle speed signals if they are out of the specified range.	Harness or connectors (The CAN communication line is open or shorted.) Harness or connectors (The combination meter circuit is open or shorted.) Combination meter Vehicle speed sensor TCM ECM

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Step 3 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

DTC P1574 ASCD VEHICLE SPEED SENSOR

DTC Confirmation Procedure (Cont'd)

(P) With CONSULT-II

- 1) Start engine (TCS switch "OFF").
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Drive the vehicle at more than 40 km/h (25 MPH)
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-669.

G[

MA

EM

With GST

Follow the procedure "With CONSULT-II" above

LC

EC

FE

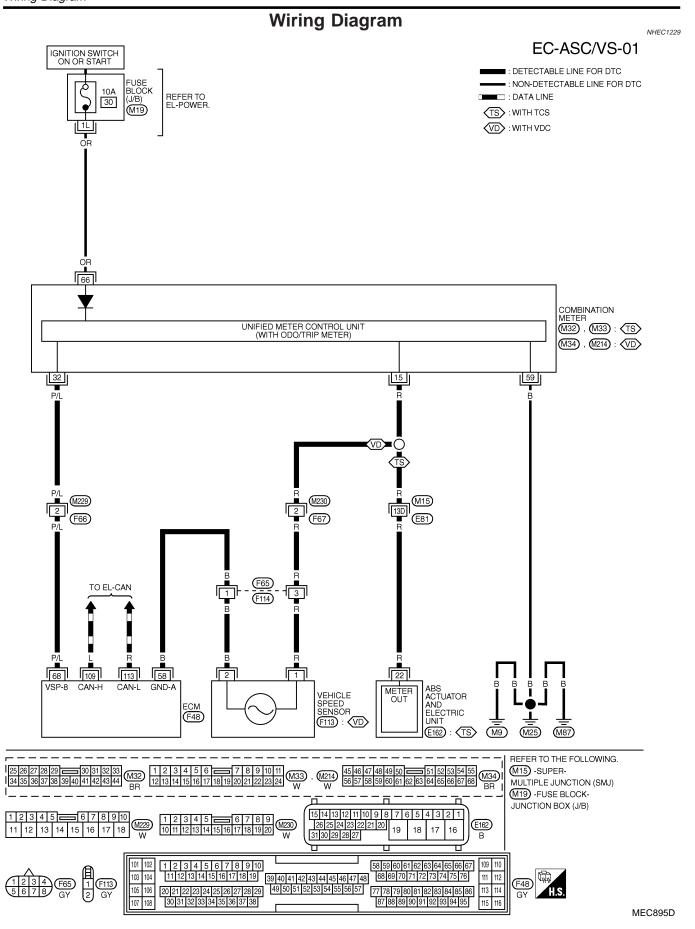
AT

AX

SU

BR

ST


RS

BT

HA

SC

EL

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:

DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE

TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
60	D/I	VEHICLE SPEED SENSOR	VEHICLE DRIVING AT 10 KM/H (6 MPH) IN 1ST GEAR POSITION UNDER LIFTED UP CONDITION	APPROX. 2.5V
68	P/L		VEHICLE DRIVING AT 30 KM/H (19 MPH) IN 2ND GEAR POSITION UNDER LIFTED UP CONDITION	APPROX. 2.5V

GI

MA

EC

AT

AX

Diagnostic Procedure

NHFC1230

		TWILE TEST	
1	CHECK TCM FUNCTIO	N	1 (
	k malfunction of the AT syst to AT-5.	em with CONSULT-II or "O/D OFF" indicator.	,
		OK or NG	[
OK	>	GO TO 2.	
NG	>	Check AT system. Refer to AT-5.)

CHECK SPEEDOMETER OPERATION Check if speedometer operates normally. OK or NG GO TO 3. OK NG Check speedometer and vehicle speed sensor circuit. Refer to EL-124.

HA

CHECK VEHICLE SPEED SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector and combination meter harness connector.
- 3. Check harness continuity between ECM terminal 68 and combination meter terminal 32 with CONSULT-II or tester. Refer to Wiring Diagram.

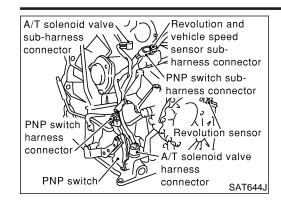
Continuity should exist.

4. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK •	GO TO 5.
NG ▶	GO TO 4.

DTC P1574 ASCD VEHICLE SPEED SENSOR


Diagnostic Procedure (Cont'd)

4	4 DETECT MALFUNCTIONING PART	
Check	the following.	

Harness connectors F66, M229Harness for open or short between combination meter and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

5	5 CHECK INTERMITTENT INCIDENT	
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
► INSPECTION END		

Component Description

When the gear position is "P" or "N", park/neutral position (PNP) switch is "ON".

ECM detects the position because the continuity of the line (the "ON" signal) exists.

The park/neutral position (PNP) switch assembly also includes a transmission range switch to detect selector lever position.

MA

CONSULT-II Reference Value in Data Monitor Mode

LC NHEC1135

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
P/N POSI SW • Ignition switch: ON	- Ignition awitch: ON	Shift lever: "P" or "N"	ON
	• Ignition switch. ON	Except above	OFF

EC

AT

AX

On Board Diagnosis Logic

NHEC1137

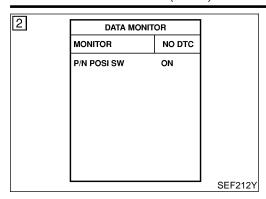
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1706 1706	Park/Neutral position switch	The signal of the park/neutral position (PNP) switch is not changed in the process of engine starting and driving.	 Harness or connectors [The park/neutral position (PNP) switch circuit is open or shorted.] Park/neutral position (PNP) switch

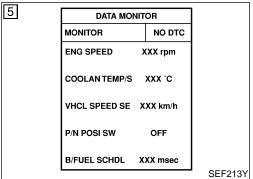
DTC Confirmation Procedure

CAUTION:

NHEC1138

BT


Always drive vehicle at a safe speed.


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

HA

SC

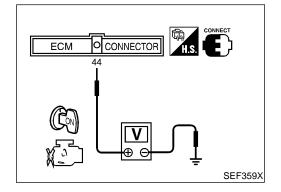
EL

(P) WITH CONSULT-II

Turn ignition switch "ON".

=NHEC1138S01

2) Select "P/N POSI SW" in "DATA MONITOR" mode with CON-SULT-II. Then check the "P/N POSI SW" signal under the following conditions.


Position (Selector lever)	Known-good signal
"N" and "P" position	ON
Except the above position	OFF

If NG, go to "Diagnostic Procedure", EC-674. If OK, go to following step.

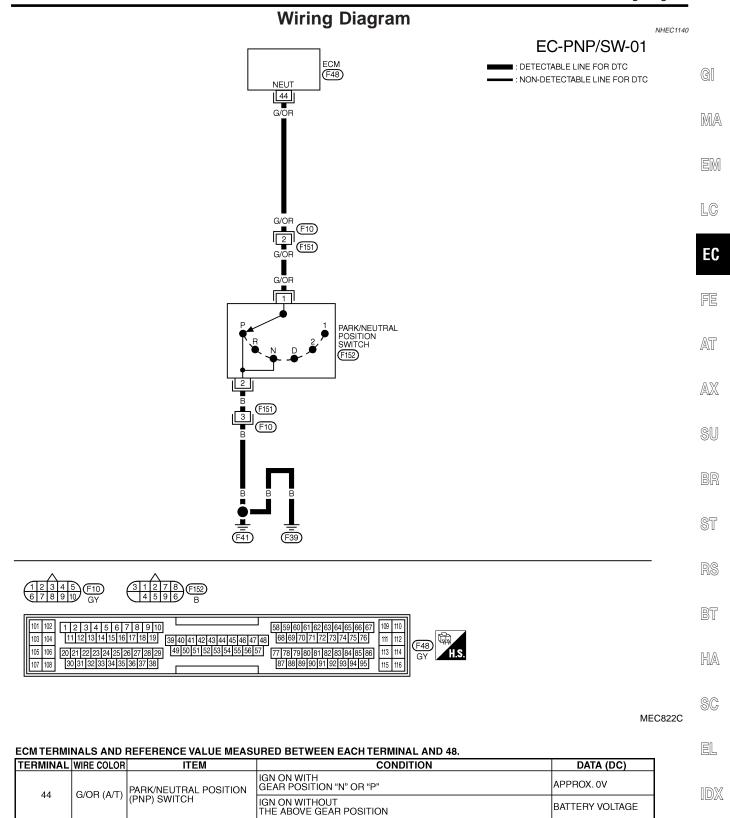
- 3) Select "DATA MONITOR" mode with CONSULT-II.
- 4) Start engine and warm it up to normal operating temperature.
- 5) Maintain the following conditions for at least 60 consecutive seconds.

ENG SPEED	More than 1,400 rpm
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	More than 2 msec
VHCL SPEED SE	More than 65 km/h (40 MPH)
Selector lever	Suitable position

6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-674.

Overall Function Check

Use this procedure to check the overall function of the park/neutral position (PNP) switch circuit. During this check, a 1st trip DTC might not be confirmed.

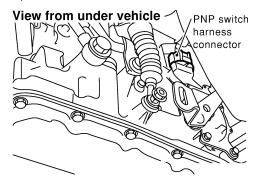

® WITH GST

NHEC1139S01

- 1) Turn ignition switch "ON".
- Check voltage between ECM terminal 44 and body ground under the following conditions.

Condition (Gear position)	Voltage V (Known-good data)	
"P" and "N" position	Approx. 0	
Except the above position	Battery voltage	

3) If NG, go to "Diagnostic Procedure", EC-674.


SEF635XD

Diagnostic Procedure

NHEC1141

1 | CHECK PNP SWITCH GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect park/neutral position (PNP) switch harness connector.

SEF279X

- 3. Check harness continuity between PNP switch terminal 2 and engine ground. Refer to Wiring Diagram. Continuity should exist.
- 4. Also check harness for short to power.

OK or NG

OK	GO TO 3.
NG	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F151, F10
- Check harness for open between park/neutral position (PNP) switch and engine ground.
 - Repair open circuit or short to power in harness or connectors.

3 CHECK PNP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 44 and PNP switch terminal 1. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 5.
NG 🕨	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F10, F151
- Harness for open or short between ECM and park/neutral position (PNP) switch

Repair open circuit or short to ground or short to power in harness or connectors.

DTC P1706 PNP SWITCH

Diagnostic Procedure (Cont'd)

6	6 CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIGNOSIS FOR INTERMITTENT INCIDENT", EC-151.	
► INSPECTION END		

G[

MA

EM

LC

EC

FE

AT

 $\mathbb{A}\mathbb{X}$

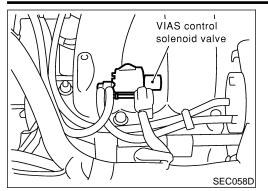
SU

BR

ST

RS

BT


HA

SC

EL

DTC P1800 VIAS CONTROL SOLENOID VALVE

Component Description

Component Description

The VIAS control solenoid valve cuts the intake manifold vacuum signal for power valve control. It responds to ON/OFF signals from the ECM. When the solenoid is off, the vacuum signal from the intake manifold is cut. When the ECM sends an ON signal the coil pulls the plunger downward and feeds the vacuum signal to the power valve actuator.

CONSULT-II Reference Value in Data Monitor Mode

NHEC1404

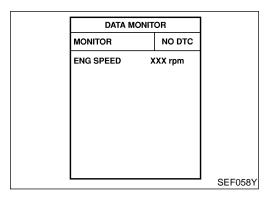
MONITOR ITEM	CONDITION		SPECIFICATION
VIAS S/V • Engine: After warning up	- Engine, After warning up	1,800 - 3,600 rpm	ON
	Except above condition	OFF	

On Board Diagnosis Logic

NHEC1405

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1800 1800	VIAS control solenoid valve circuit open	An improper voltage signal is sent to ECM through VIAS control solenoid valve.	Harness connectors (The solenoid valve circuit is open or shorted.) VIAS control solenoid valve

DTC Confirmation Procedure


NOTE:

NHEC1406

If "DTC" Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it for 10 seconds.
- 4. If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-679.

DTC P1800 VIAS CONTROL SOLENOID VALVE

DTC Confirmation Procedure (Cont'd)

WITH GST
Follow the procedure "WITH CONSULT-II" above.

GI

MA

EM

LC

EC

FE

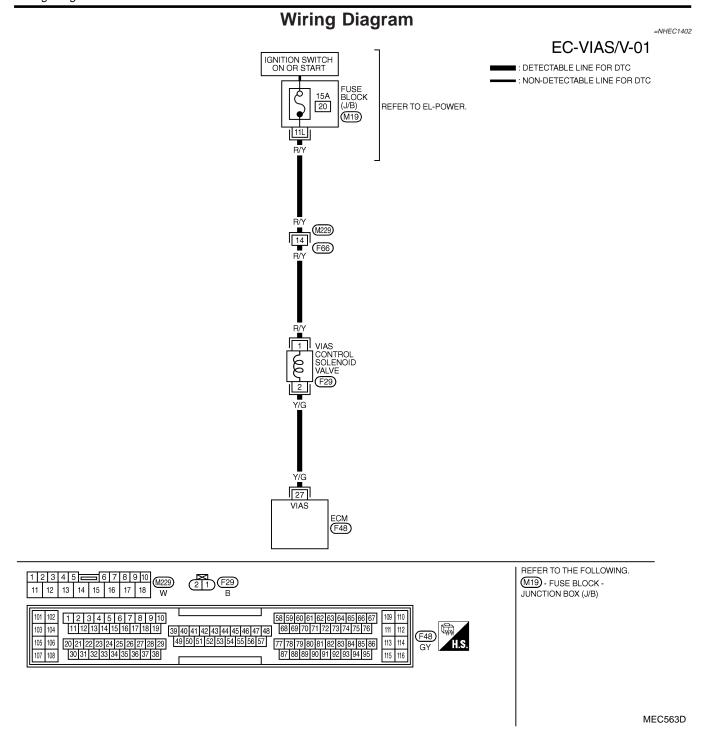
AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST


RS

BT

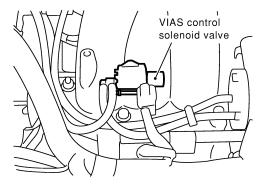
HA

SC

EL

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

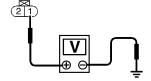
TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
07	Y/G		ENGINE RUNNING BETWEEN 1,800 AND 3,600 RPM	0 - 1.0V
21	1/4	VALVE	EXCEPT ABOVE CONDITION	BATTERY VOLTAGE


SEF636XC

CHECK VIAS CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

1. Turn ignition switch "OFF".

2. Disconnect VIAS control solenoid valve harness connector.



SEC058D

3. Turn ignition switch "ON".

4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

SEF603X

OK or NG

OK ►	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M229, F66
- Fuse block (J/B) connector M19
- 15A fuse
- Harness continuity between fuse and VIAS control solenoid valve

Repair harness or connectors.

3 CHECK VIAS CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 27 and terminal 2. Refer to Wiring Diagram.
 Continuity should exist.
- 4. Also check harness for short to ground and short to power.

OK	or	NO	6
----	----	----	---

OK •	GO TO 4.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

EC-679

G[

NHEC1403

MA

EM

LC

EC

re

Ē

AT

AX

BK

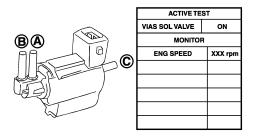
ST

1110

BT

HA

EL


DTC P1800 VIAS CONTROL SOLENOID VALVE

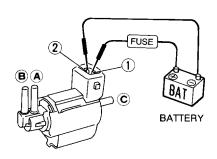
Diagnostic Procedure (Cont'd)

CHECK VIAS CONTROL SOLENOID VALVE

With CONSULT-II

- 1. Reconnect harness connector disconnected.
- 2. Turn ignition switch ON.
- 3. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time under the following conditions.

PBIB0177E


Condition VIAS SOL VALVE	Air passage continuity between A and B	Air passage continuity between A and C
ON	Yes	No
OFF	No	Yes

Operation takes less than 1 second.

MTBL1301

Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

MEC488B

Condition VIAS SOL VALVE	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes

Operation takes less than 1 second.

MTBL1302

	0.1. d. 1.10
OK •	GO TO 5.
NG ►	Replace VIAS control solenoid valve.

OK or NG

5	CHECK INTERMITTENT INCIDENT	
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	>	INSPECTION END

Description

NHEC1278

Brake switch signal is applied to the ECM through the stop lamp switch when the brake pedal is depressed. This signal is used mainly to decrease the engine speed when the vehicle is driving.

CONSULT-II Reference Value in Data Monitor Mode

GI

Specification data are reference values.

DATA MONITOR

NO DTC

XXX rpm

MONITOR

ENG SPEED

HEC1279

MONITOR ITEM	CONE	DITION	SPECIFICATION
BRAKE SW	Ignition switch: ON	Brake pedal: Released	OFF
DRAKE SW		Brake pedal: Slightly depressed	ON

EM

LC

MA

On Board Diagnosis Logic

VILLEC 1 20

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1805 1805	Brake switch	A brake switch signal is not sent to ECM for an extremely long time while the vehicle is driving.	Harness or connectors (Stop lamp switch circuit is open or shorted.) Stop lamp switch

FE

EC

DTC Confirmation Procedure

AX

AT

(A) WITH CONSULT-II

NHEC1281

1. Turn ignition switch "ON".

SU

3. Erase the DTC with CONSULT-II.

- 5. If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-683.

Fully depress the brake pedal for at least 5 seconds.

Select "DATA MONITOR" mode with CONSULT-II.

ST

BR

WITH GST

SEF058Y

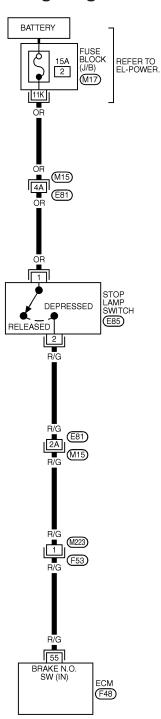
Follow the procedure "WITH CONSULT-II" above.

BT

HA

SC

EL


EC-681

Wiring Diagram

NHEC1282

EC-BRK/SW-01

: DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC

REFER TO THE FOLLOWING.
M15 -SUPER

MULTIPLE JUNCTION (SMJ)

M17 -FUSE BLOCK-

JUNCTION BOX (J/B)

MEC896D

DTC P1805 BRAKE SWITCH

Wiring Diagram (Cont'd)

Specification data are reference values and are measured between each terminal and body ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

[Engine is running] Approximately 0V	TER- MINAL NO.
● Brake pedal released	55
55 R/G Stop lamp switch [Engine is running] • Brake pedal depressed BATTERY VOLTAGE (11 - 14V)	55 R/

EC

FE

AT

AX

SU

BR

Diagnostic Procedure

Illuminated

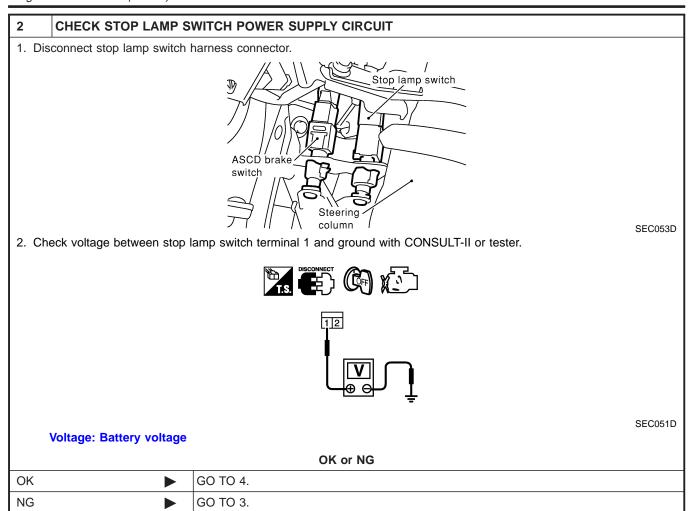
NHEC128

1	CHECK STOP LAMP SWI	TCH CIRCUIT		NREC I.
	rn ignition switch "OFF". eck the stop lamp when depr	essing and releasing the bra	ke pedal.	
		Brake pedal	Stop lamp	
		Released	Not illuminated	

1560

MTBL1560

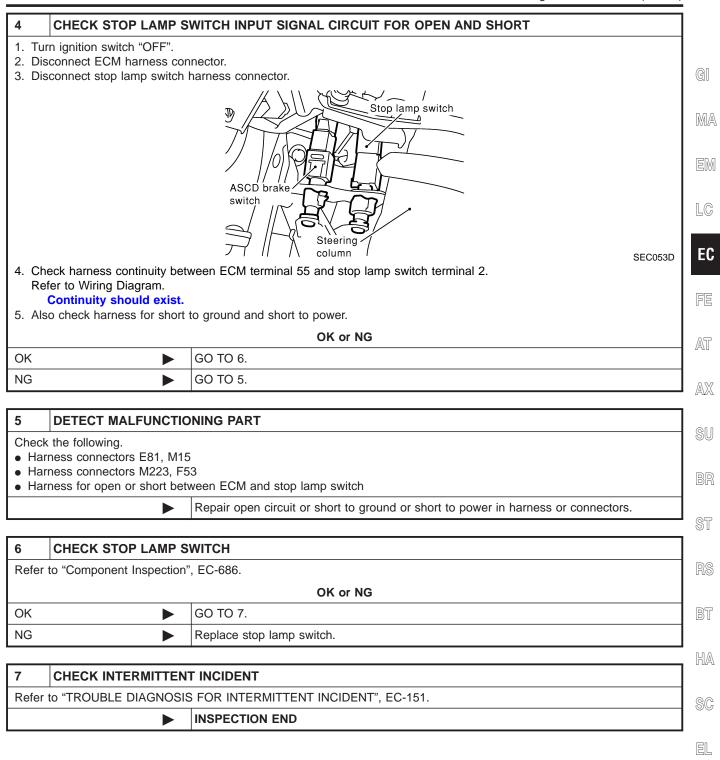
		OK or NG
ОК	>	GO TO 4.
NG	>	GO TO 2.

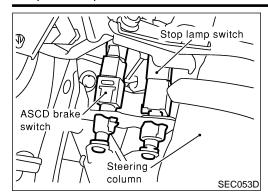

Released Depressed

BT

HA

SC

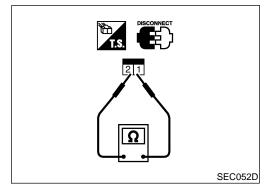

EL



3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M15, E81
- 15A fuse
- Fuse block (J/B) connector M17
- Harness for open and short between stop lamp switch and battery
 - Repair open circuit or short to ground or short to power in harness or connectors.



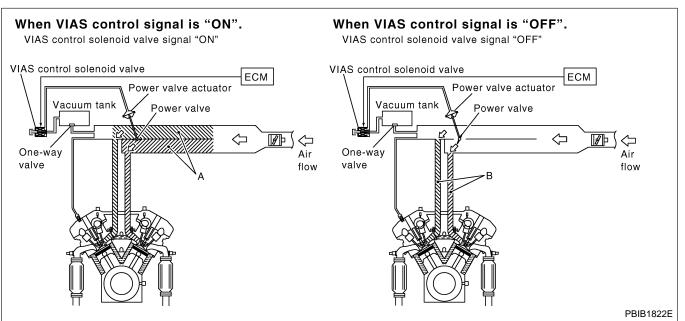
Component Inspection STOP LAMP SWITCH

=NHEC1284

1. Disconnect stop lamp switch harness connector.

2. Check continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Conditions	Continuity
Brake pedal released	Should not exist.
Brake pedal depressed	Should exist.


3. If NG, replace stop lamp switch.

Description

Description SYSTEM DESCRIPTION

NHEC0596 NHEC0596S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator	GI
Mass air flow sensor	Amount of intake air			плл
Throttle position sensor	Throttle position			MA
Accelerator pedal position sensor	Accelerator pedal position	VIAS con-		EM
Ignition switch	Start signal	trol	VIAS control solenoid valve	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed			LC
Engine coolant temperature sensor	Engine coolant temperature			F 0

When the engine is running at medium speed, the ECM sends the ON signal to the VIAS control solenoid valve. This signal introduces the intake manifold vacuum into the power valve actuator and therefore closes the power valve.

Under this condition, the effective intake manifold length is equivalent to the total length of passage A and passage B. This long intake manifold provides increased amount of intake air, which results in improved suction efficiency and higher torque.

When engine is running at low or high speed, the ECM sends the OFF signal to the VIAS control solenoid valve and the power valve is opened.

Under this condition, the effective intake manifold length is equivalent to the length of passage B. This shortened intake manifold length results in enhanced engine output due to reduced suction resistance under high speeds.

FE

AT

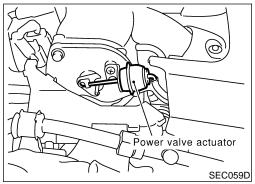
 $\mathbb{A}\mathbb{X}$

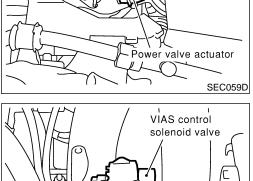
SU

BR

91

RS


HA


SC

EL

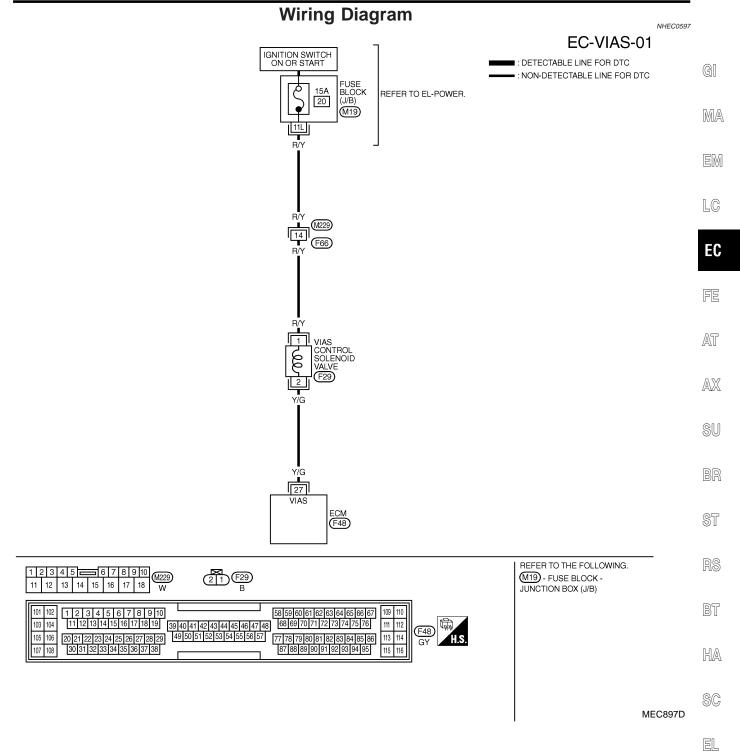
 \mathbb{Z}

Description (Cont'd)

SEC058D

COMPONENT DESCRIPTION Power Valve

NHEC0596S02


NHEC0596S0201

The power valve is installed in intake manifold collector and used to control the suction passage of the variable induction air control system. It is set in the fully closed or fully opened position by the power valve actuator operated by the vacuum stored in the surge tank. The vacuum in the surge tank is controlled by the VIAS control solenoid valve.

VIAS Control Solenoid Valve

The VIAS control solenoid valve cuts the intake manifold vacuum signal for power valve control. It responds to ON/OFF signals from the ECM. When the solenoid is off, the vacuum signal from the intake manifold is cut. When the ECM sends an ON signal the coil pulls the plunger downward and feeds the vacuum signal to the power valve actuator.

Wiring Diagram

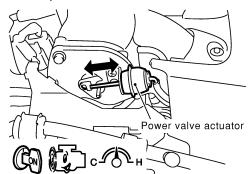
ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

Т	ERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
	07	Y/G	VIAS CONTROL SOLENOID	ENGINE RUNNING BETWEEN 1,800 AND 3,600 RPM	0 - 1.0V
	27 Y/G		VALVE	EXCEPT ABOVE CONDITION	BATTERY VOLTAGE

SEF636XC

Diagnostic Procedure

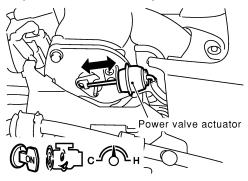
Diagnostic Procedure


NHEC0598

CHECK OVERALL FUNCTION

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Turn VIAS control solenoid valve "ON" and "OFF", and make sure that power valve actuator rod moves.


ACTIVE TEST			
OFF			
XXX rpm			

SEC128D

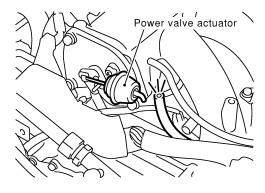
Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Rev engine quickly up to above 5,000 rpm and make sure that power valve actuator rod moves.

SEC060D

OK or NG

OK ▶	INSPECTION END
NG ►	GO TO 2.

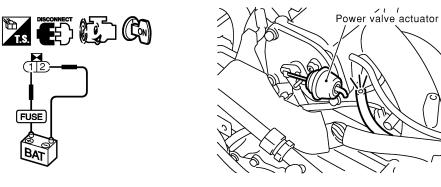

Diagnostic Procedure (Cont'd)

CHECK VACUUM EXISTENCE

With CONSULT-II

- 1. Stop engine and disconnect vacuum hose connected to power valve actuator.
- 2. Start engine and let it idle.
- 3. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode with CONSULT-II.
- 4. Turn VIAS control solenoid valve "ON" and "OFF", and check for the existence of vacuum under the following conditions

ACTIVE TEST			
VIAS SOL VALVE	OFF		
MONITOR	₹		
ENG SPEED	XXX rpm		


SEC129D

VIAS SOL VALVE	Vacuum
ON	Should exist.
OFF	Should not exist.

MTBL1174

Without CONSULT-II

- 1. Stop engine and disconnect vacuum hose connected to power valve actuator.
- 2. Disconnect VIAS control solenoid valve harness connector.
- 3. Start engine and let it idle.
- 4. Apply 12V of direct current between VIAS control solenoid valve terminals 1 and 2.
- 5. Check for the existence of vacuum under the following conditions.

SEC130D

Condition	Vacuum
12V direct current supply	Should exist.
No supply	Should not exist.

MTBL1175

OK	or	NG
----	----	----

OK J	>	Repair or replace power valve actuator.
NG I	>	GO TO 3.

GI

MA

LC

: **G**

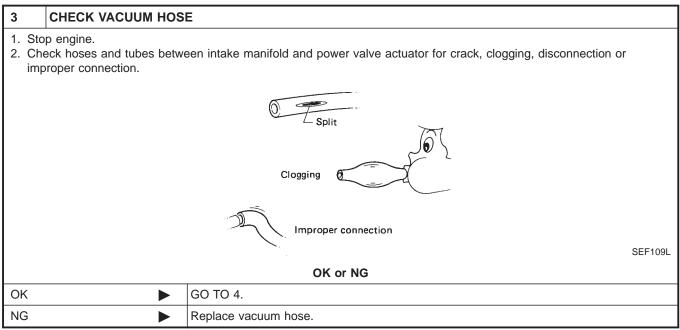
FE

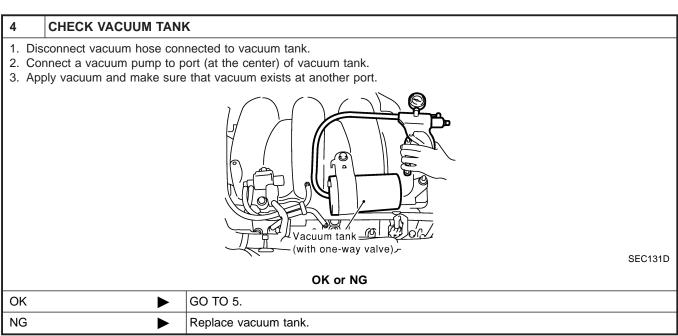
AT

AX

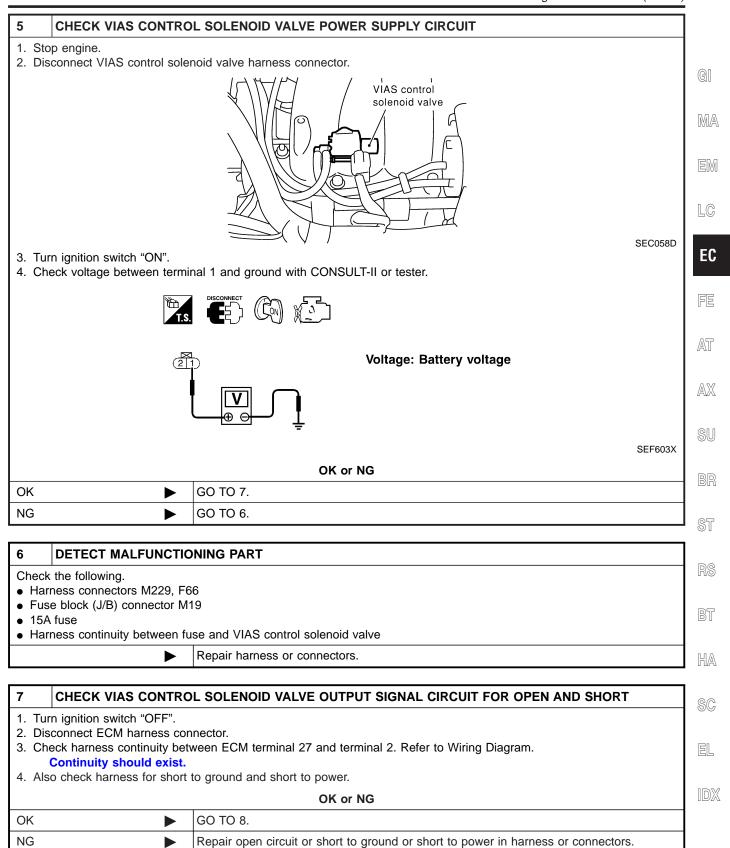
SU

DK


\$ I

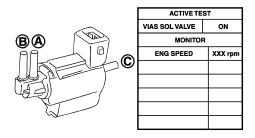

BT

HA


SC

Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)



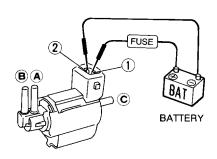
Diagnostic Procedure (Cont'd)

CHECK VIAS CONTROL SOLENOID VALVE

With CONSULT-II

- 1. Reconnect disconnected harness connector.
- 2. Turn ignition switch ON.
- 3. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time under the following conditions.

PBIB0177E


Condition VIAS SOL VALVE	Air passage continuity between A and B	Air passage continuity between A and C
ON	Yes	No
OFF	No	Yes

Operation takes less than 1 second.

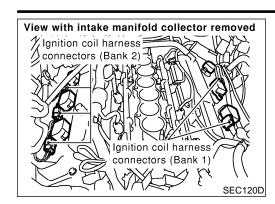
MTBL1301

⊗ Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

MEC488B

Condition VIAS SOL VALVE	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes


Operation takes less than 1 second.

MTBL1302

OK ►	GO TO 9.
NG 🕨	Replace VIAS control solenoid valve.

OK or NG

9	CHECK INTERMITTENT INCIDENT				
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.				
	INSPECTION END				

Component Description IGNITION COIL & POWER TRANSISTOR

NHEC0817

The ignition signal from the ECM is sent to and amplified by the power transistor. The power transistor turns on and off the ignition coil primary circuit. This on-off operation induces the proper high voltage in the coil secondary circuit.

GI

MA

LC

EC

FE

AT

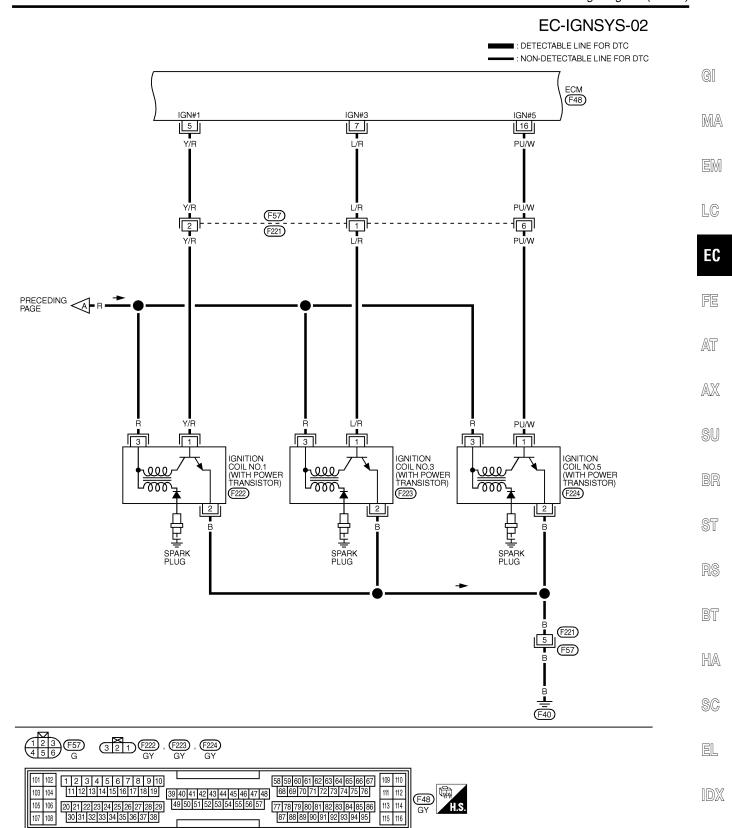
 $\mathbb{A}\mathbb{X}$

SU

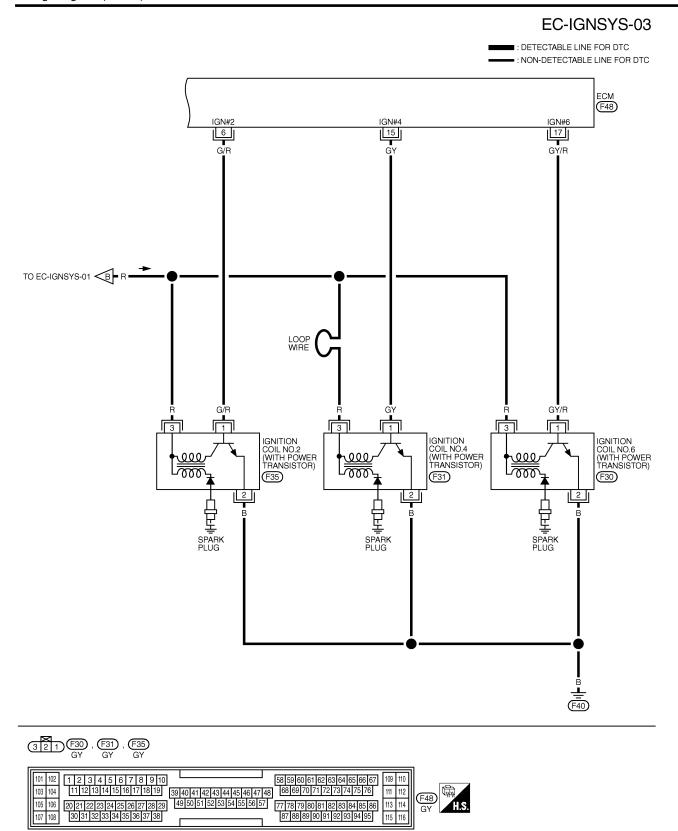
BR

ST

RS


BT

HA


SC

EL

Wiring Diagram NHEC0819 EC-IGNSYS-01 BATTERY : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC REFER TO EL-POWER. 15A 59 15A 58 JOINT CONNECTOR-13 E74 WL 3 PU 6 7 R/W ECM RELAY E32 5 R/G W/R R/G <u>E15</u> F18 LOOP WIRE R ANEXT PAGE R B TO EC-IGNSYS-03 CONDENSER F34 R/G 112 W/B R/G 31 38 110 SSOFF ₽ F40 1 1 1 2 2 2 2 W 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 39 40 41 42 43 44 45 46 47 48 11 12 13 14 15 16 17 18 19 49 50 51 52 53 54 55 56 57 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 103 104 F48 GY 105 106 107 108 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

MEC559D

MEC560D

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

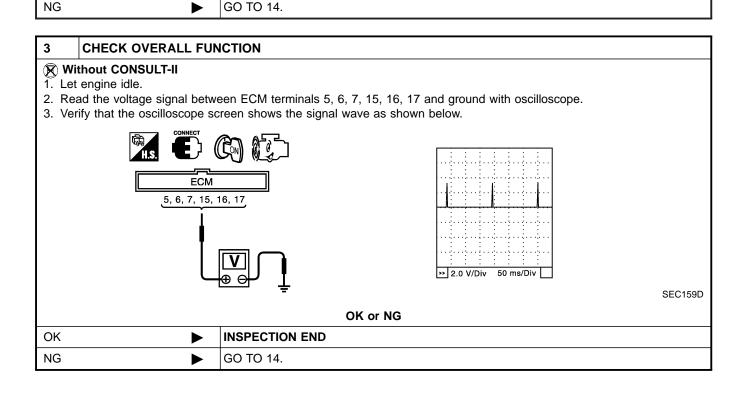
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	MA		
				0 - 0.2∀★			
					EM		
			[Engine is running]Warm-up conditionIdle speed		LG		
5 6	Y/R G/R	Ignition signal No. 1	Ignition signal No. 1 Ignition signal No. 2		>> 2.0 V/Div 50 ms/Div	EC	
7	L/R	Ignition signal No. 3		SEC986C	LU		
15 16	GY PU/W	Ignition signal No. 4 Ignition signal No. 5		0.1 - 0.3V★			
17	GY/R	Ignition signal No. 6			FE		
					[Engine is running]		
			Warm-up conditionEngine speed is 2,500 rpm.		AT		
			Engine speed is 2,000 ipin.	>> 2.0 V/Div 50 ms/Div			
				SEC987C	$\mathbb{A}\mathbb{X}$		

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

				NHEC0820
1	CHECK ENGINE	STAR	т	
	ignition switch "OFF" gine running?	, and r	estart engine.	
			Yes or No	
Yes (With CONSULT-II)	>	GO TO 2.	
Yes (Without CONSULT-	•	GO TO 3.	,
No			GO TO 4.	

SU


BR

ST

OK

2 CHECK OVERALL FUNCTION With CONSULT-II 1. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II. 2. Make sure that all circuits do not produce a momentary engine speed drop. ACTIVE TEST POWER BALANCE MONITOR ENG SPEED XXX rpm MAS A/F SE-B1 XXXV MAS A/F SE-B1 XXXV PBIB0133E OK or NG

INSPECTION END

GI

MA

EM

LC

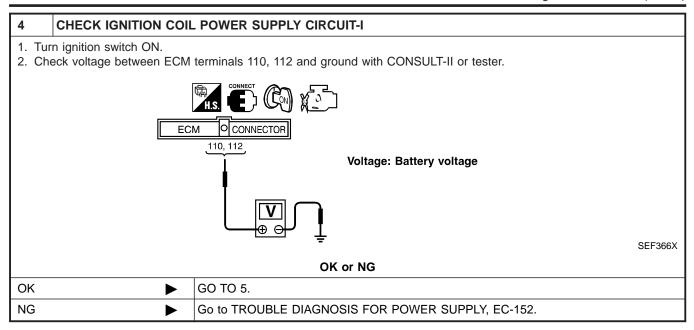
EC

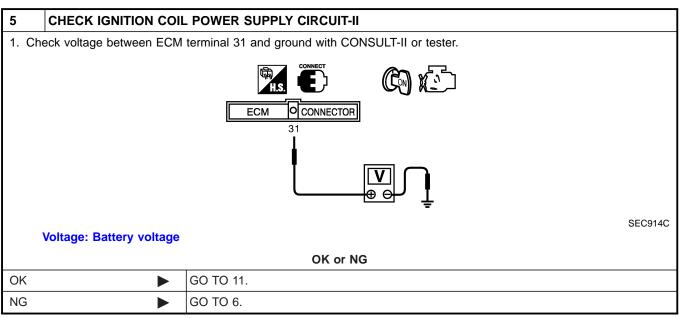
FE

AT

AX

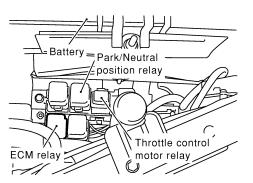
SU


BT


HA

SC

EL


IDX

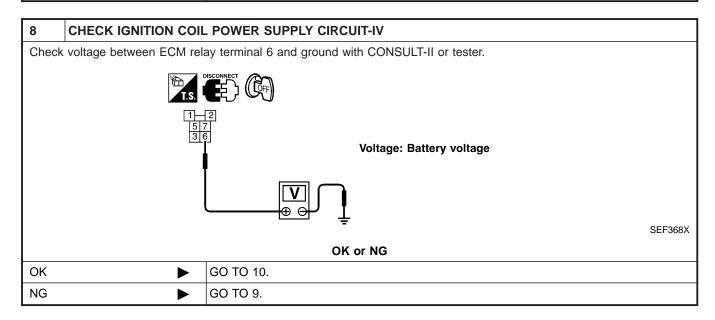
6 CHECK IGNITION COIL POWER SUPPLY CIRCUIT-III

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM relay.

SEC044D

- Check harness continuity between ECM relay terminal 31 and ECM relay terminal 7. Refer to Wiring Diagram. Continuity should exist.
- 4. Also check harness for short to ground and short to power.

OK or NG


OK		GO TO 8.
NG	•	GO TO 7.

7 DETECT MALFUNCTIONING PART

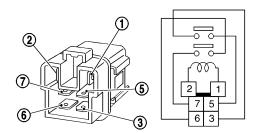
Check the following.

- Harness connectors E15, F18
- Harness for open or short between ECM and ECM relay

Repair open circuit or short to ground or short to power in harness or connectors.

9 DETECT MALFUNCTIONING PART

Check the following.


- 15A fuse
- Harness for open and short between ECM relay and fuse

Repair or replace harness or connectors.

CHECK ECM RELAY

10

- 1. Apply 12V direct current between ECM relay terminals 1 and 2.
- 2. Check continuity between ECM relay terminals 3 and 5, 6 and 7.

Condition	Continuity
12V direct current supply between terminals 1 and 2	Yes
OFF	No

SEF296X

OK or NG

OK •	GO TO 19.
NG ►	Replace ECM relay.

11 CHECK CONDENSER CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect condenser harness connector.
- 3. Check harness continuity between ECM terminal 31 and condenser terminal 1. Refer to Wiring Diagram.

Continuity should exist.

4. Also check for short to ground and short to power.

OK or NG

OK •	GO TO 12.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

12 CHECK CONDENSER GROUND CIRCUIT FOR OPEN AND SHORT

- Check harness continuity between condenser terminal 2 and engine ground. Refer to Wiring Diagram.
 Continuity should exist.
- 2. Also check harness for short to power.

OK or NG

OK J	GO TO 13.
NG	Repair open circuit or short to power in harness or connectors.

GI

MA

LC

EC

__

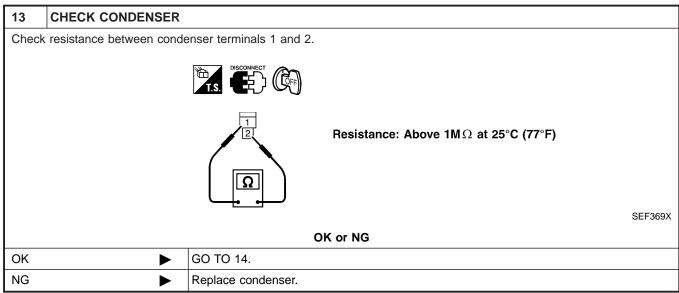
AT

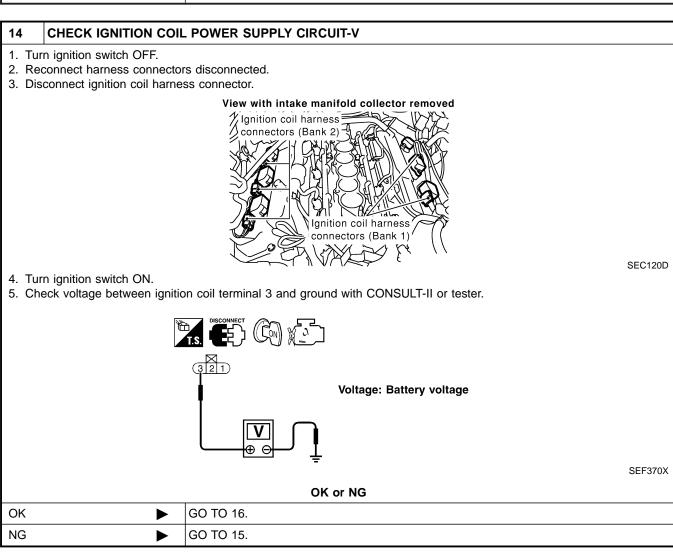
 $\mathbb{A}\mathbb{X}$

SU

BR

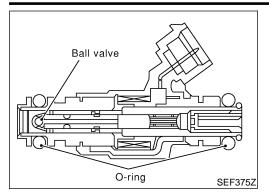
ST


BT


HA

SC

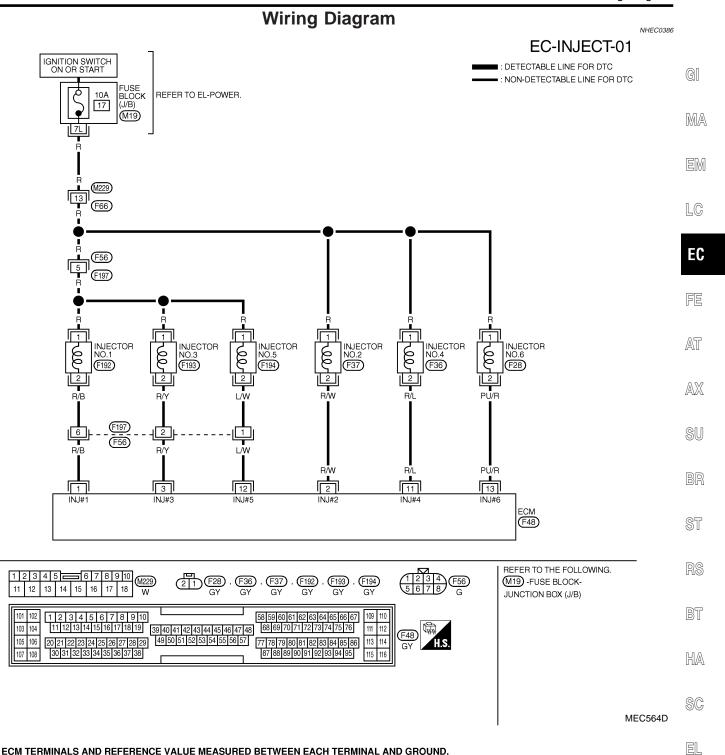
EL


DW.

	DETECT MALFUNCTION	UNING PARI				
	he following.					
	ess connectors F59, F22 ess for open and short b		and harness connector	r F18		
- Harric	233 for open and short b		harness or connectors.			
		Repair of Teplace	namess or connectors.			
16 C	CHECK IGNITION COI	I CROIIND CIRCI	IIT FOR OPEN AND	SHODT		
	ignition switch OFF.	L GROOND CINCO	DIT TOK OF EN AND	SHOKI		
	k harness continuity bet	ween ignition coil te	rminal 2 and engine gr	ound. Refer to Wir	ing Diagram.	
Co	ontinuity should exist.	-				
3. Also	check harness for short	to power.				
		T	OK or NG			
OK	•	GO TO 17.				
NG	<u> </u>	Repair open circui	t or short to power in h	arness or connect	ors.	
17 C	CHECK IGNITION COI	L OUTPUT SIGNA	L CIRCUIT FOR OPE	EN AND SHORT		
	onnect ECM harness cor					A.//
Chec gram.	k harness continuity bet	ween ECM terminal	s 5, 6, 7, 15, 16, 17 ar	nd ignition coil term	iinal 1. Refer to V	Wiring Dia-
Co	ontinuity should exist.					
3. Also	check harness for short	to ground and short	t to power.			
			'			
		_	OK or NG			
OK	>	GO TO 18.				
	>			short to power in h	narness or conne	ctors.
OK	>		OK or NG	short to power in h	narness or conne	ctors.
OK NG	CHECK IGNITION COI	Repair open circui	OK or NG t or short to ground or	short to power in h	narness or conne	ctors.
OK NG	CHECK IGNITION COIl	Repair open circui	OK or NG t or short to ground or	short to power in h	narness or conne	ctors.
OK NG		Repair open circui	OK or NG t or short to ground or	short to power in h	narness or conne	ctors.
OK NG		Repair open circui	OK or NG t or short to ground or	short to power in h	narness or conne	ctors.
OK NG		Repair open circui	OK or NG t or short to ground or	short to power in h	narness or conne	ctors.
OK NG		Repair open circuit L WITH POWER Ton coil terminals 2 a	OK or NG t or short to ground or	short to power in h	Result	ctors.
OK NG		Repair open circuit L WITH POWER Ton coil terminals 2 a	OK or NG t or short to ground or RANSISTOR and 3.	Resistance Not 0Ω	Result OK	ctors.
OK NG		Repair open circuit L WITH POWER Ton coil terminals 2 a	OK or NG t or short to ground or RANSISTOR and 3.	Resistance	Result	ctors.
OK NG		Repair open circuit L WITH POWER Ton coil terminals 2 a	OK or NG t or short to ground or RANSISTOR and 3.	Resistance Not 0Ω	Result OK	ctors.
OK NG		Repair open circuit L WITH POWER Ton coil terminals 2 a	OK or NG t or short to ground or RANSISTOR and 3.	Resistance Not 0Ω	Result OK	ctors.
OK NG		Repair open circuit L WITH POWER Ton coil terminals 2 a	OK or NG t or short to ground or RANSISTOR and 3.	Resistance Not 0Ω	Result OK	ctors.
OK NG		Repair open circuit L WITH POWER Ton coil terminals 2 a	OK or NG t or short to ground or RANSISTOR and 3.	Resistance Not 0Ω	Result OK	
OK NG		Repair open circuit L WITH POWER Ton coil terminals 2 a	OK or NG t or short to ground or RANSISTOR and 3. Terminals 2 and 3	Resistance Not 0Ω	Result OK	

D. C. C. STROUBLE BLACKICOLO					
Refer to "TROUBLE DIAGNOSIS	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.				
INSPECTION END					

Component Description


The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the injector circuit, the coil in the injector is energized. The energized coil pulls the ball valve back and allows fuel to flow through the injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC0384

MONITOR ITEM	CONE	DITION	SPECIFICATION
INJ PULSE-B2	Engine: After warming upAir conditioner switch: "OFF"	Idle	2.0 - 3.0 msec
INJ PULSE-B1	Shift lever: "N"No-load	2,000 rpm	1.9 - 2.9 msec
B/FUEL SCHDL	ditto	Idle	2.3 - 2.9 msec
	luitto	2,000 rpm	2.3 - 2.9 msec

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:

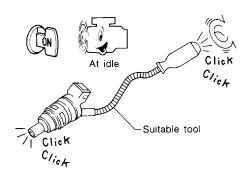
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE

TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND. TERMINAL WIRE COLOR ITEM DATA (DC) CONDITION BATTERY VOLTAGE INJECTOR NO. 1 R/B R/W INJECTOR NO. 2 2 3 R/Y INJECTOR NO. 3 ENGINE RUNNING AT IDLE SPEED UNDER 10 INJECTOR NO. 4 WARM-UP CONDITION 11 R/L INJECTOR NO. 5 12 L/W INJECTOR NO. 6 13 PU/R 100 ms

SEF796YB

Diagnostic Procedure

2 CHECK OVERALL FUNCTION

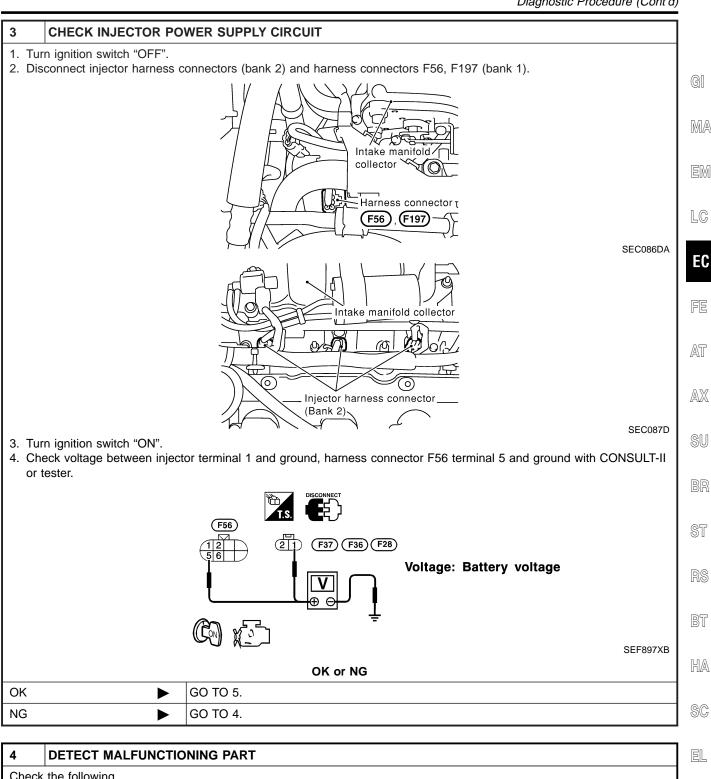

- (P) With CONSULT-II
- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.

ACTIVE TEST		
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	

3. Make sure that each circuit produces a momentary engine speed drop.

Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound.


MEC703B

PBIB0133E

Clicking noise should be heard.

OK or NG

OK •	INSPECTION END
NG ▶	GO TO 3.

Check the following.

- Harness connectors M229, F66
- Harness connectors F56, F197
- Fuse block (J/B) connector M19
- 10A fuse
- · Harness for open or short between injector and fuse
- Harness for open or short between harness connector F56 and fuse
 - Repair harness or connectors.

5 CHECK INJECTOR OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between injector terminal 2 and ECM terminals 2, 11, 13, harness connector F56 terminals 6,
 - 2, 1 and ECM terminals 1, 3, 12. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 7.
NG ►	GO TO 6.

6 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F56, F197
- Harness for open or short between harness connector F56 and ECM
- · Harness for open or short between ECM and injector

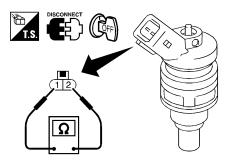
Repair open circuit or short to ground or short to power in harness or connectors.

7 CHECK SUB-HARNESS CIRCUIT FOR OPEN AND SHORT (BANK 1)

- 1. Remove intake manifold collector.
- 2. Disconnect injector harness connectors (Bank 1).
- 3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

Harness connector F197	Injector F192, F193, F194
5	1
6, 2, 1	2

MTBL1173


Continuity should exist.

OK or NG

OK •	GO TO 8.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

8 CHECK INJECTOR

- 1. Disconnect injector harness connector.
- 2. Check resistance between terminals as shown in the figure.

Resistance: 13.5 - 17.5 Ω [at 20°C (68°F)]

SEF964XA

OK or NG

OK •	GO TO 9.
NG ►	Replace injector.

9	9 CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	•	INSPECTION END	

G[

 $\mathbb{M}\mathbb{A}$

EM

LC

EC

FE

AT

AX

SU

BR

ST

RS

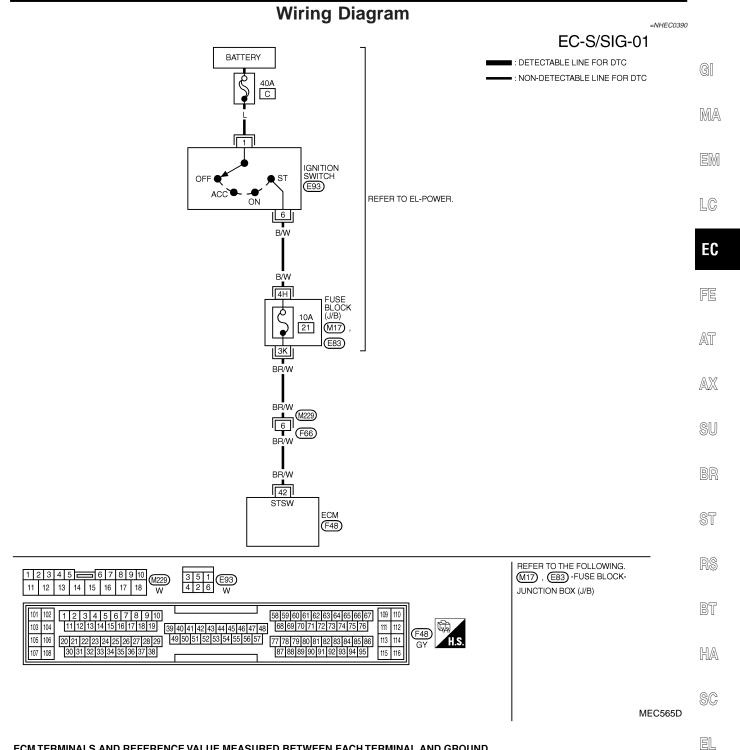
BT

HA

SC

EL

START SIGNAL

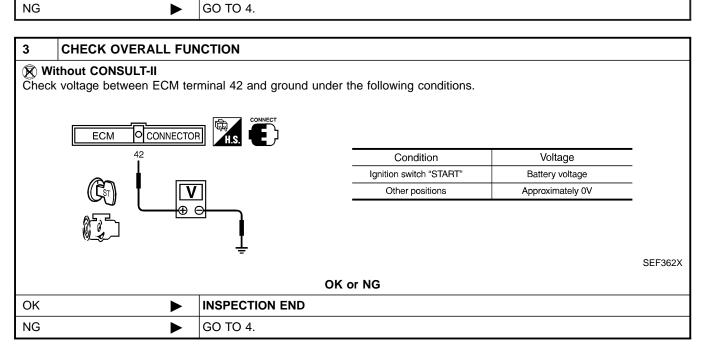

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NHEC0388

MONITOR ITEM	CONDITION	SPECIFICATION
START SIGNAL • Ignition switch: $ON \rightarrow START \rightarrow ON$		$OFF \to ON \to OFF$


ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
42	BR/W	START SIGNAL	IGN ON	APPROX 0V
			IGN START	9 - 12V

SEF638XB

Diagnostic Procedure

2 **CHECK OVERALL FUNCTION** (I) With CONSULT-II 1. Turn ignition switch "ON". 2. Check "START SIGNAL" in "DATA MONITOR" mode with CONSULT-II under the following conditions. DATA MONITOR NO DTC MONITOR START SIGNAL **CLSD THL POS** ON Condition "START SIGNAL" AIR COND SIG OFF P/N POSI SW ON Ignition switch "ON" OFF Ignition switch "START" ON SEF072Y OK or NG OK **INSPECTION END**

4	CHECK STARTING SYS	STEM		
	Turn ignition switch "OFF", then turn it to "START". Does starter motor operate? Yes or No			
Yes	>	GO TO 5.		
No	>	Refer to SC-10, "STARTING SYSTEM".		

FE

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

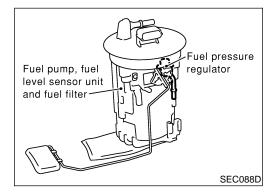
		Diagnostic Procedure (Contra)	-
5	CHECK FUSE		
1. T	ırn ignition switch "OFF".		1
	sconnect 10A fuse. neck if 10A fuse is OK.		GI
		OK or NG	
OK	•	GO TO 6.	[M/
NG	>	Replace 10A fuse.	1
			EN
6	CHECK START SIGNA	AL INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	
2. D	sconnect ECM harness co sconnect ignition switch ha	arness connector.	LC
	Continuity should exist	tween ECM terminal 42 and ignition switch terminal 6. Refer to Wiring Diagram. to ground and short to power.	E

NG	<u> </u>	GO TO 7.	
			_
7	DETECT MALFUNCTIO	NING PART	
Har	Check the following. • Harness connectors F66, M229		
	se block (J/B) connectors M rness for open or short betw	117, E83 ween ignition switch and ECM	

OK or NG

GO TO 8.

OK


	•	Repair open circuit or short to ground or short to power in harness or connectors.	
8	CHECK INTERMITTEN	T INCIDENT	

	OTTEOR INTERNATION	I INGISERI	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.		
	•	INSPECTION END	

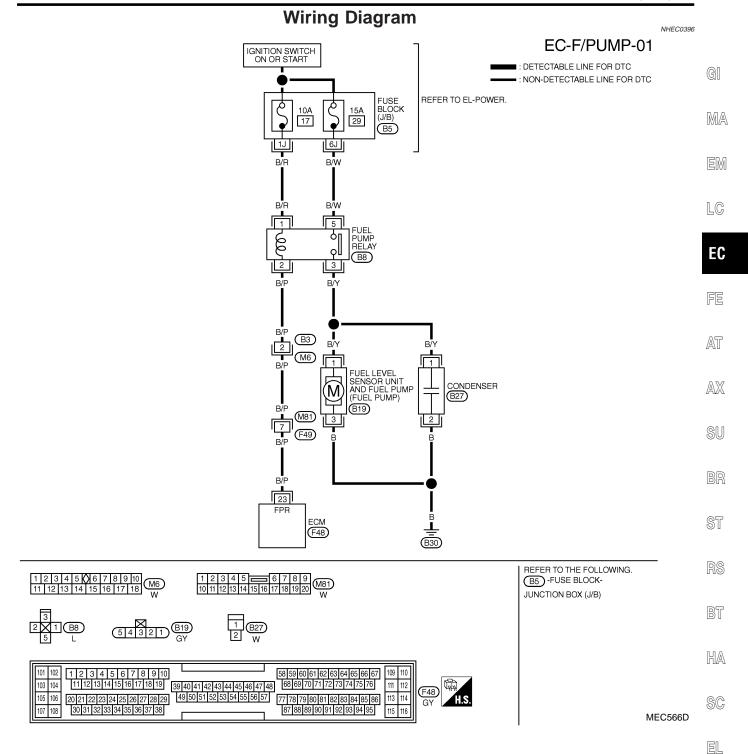
Sensor Input Signal to ECM ECM function Actuator Crankshaft position sensor (POS) Camshaft position sensor (PHASE) Engine speed Fuel pump control Start signal

The ECM activates the fuel pump for several seconds after the ignition switch is turned on to improve engine startability. If the ECM receives a 120° signal from the camshaft position sensor (PHASE), it knows that the engine is rotating, and causes the pump to operate. If the 120° signal is not received when the ignition switch is on, the engine stalls. The ECM stops pump operation and prevents battery discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

Condition	Fuel pump operation	
Ignition switch is turned to ON.	Operates for 1 second.	
Engine running and cranking	Operates.	
When engine is stopped	Stops in 1.5 seconds.	
Except as shown above	Stops.	

Component Description

NHEC0393


The fuel pump with a fuel damper is an in-tank type (the pump and damper are located in the fuel tank).

CONSULT-II Reference Value in Data Monitor Mode

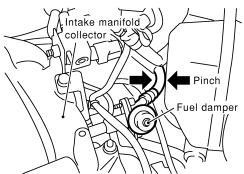
Specification data are reference values.

NHEC0394

MONITOR ITEM	CONDITION	SPECIFICATION
FUEL PUMP RLY	 Ignition switch is turned to ON. (Operates for 1 second.) Engine running and cranking 	ON
	Except as shown above	OFF

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
	23 B/P FUEL PUMP RELAY		FOR 1 SECOND AFTER IGN ON	-0 - 1.5V
00		ELIEL DUMD DELAY	ENGINE RUNNING	
23			BATTERY VOLTAGE (11 - 14V)	


SEF639XC

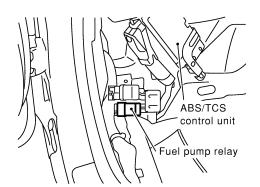
Diagnostic Procedure

NHEC0397

1 CHECK OVERALL FUNCTION

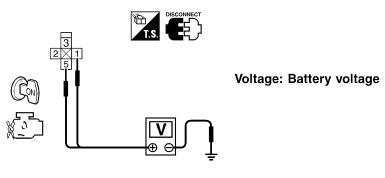
- 1. Turn ignition switch "ON".
- 2. Pinch fuel feed hose with two fingers.

SEC089D


Fuel pressure pulsation should be felt on the fuel feed hose for 1 second after ignition switch is turned "ON".

OK or NG

OK	>	INSPECTION END
NG		GO TO 2.


2 CHECK FUEL PUMP RELAY POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect fuel pump relay.

SEF284X

- 3. Turn ignition switch "ON".
- 4. Check voltage between terminals 1, 5 and ground with CONSULT-II or tester.

SEF898X

OK or NG

OK •	GO TO 4.
NG ►	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector B5
- 10A fuse
- 15A fuse
- Harness for open or short between fuse and fuel pump relay
 - Repair harness or connectors.

4 CHECK CONDENSER CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect condenser harness connector.
- 3. Check harness continuity between fuel pump relay terminal 3 and condenser terminal 1, condenser terminal 2 and body ground.

Refer to Wiring Diagram.

Continuity should exist.

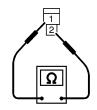
4. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK •	GO TO 6.
NG ►	GO TO 5.

5 DETECT MALFUNCTIONING PART

Check the following.


- Harness for open or short between fuel pump relay and condenser
- Harness for open or short between condenser and body ground

Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK CONDENSER

- 1. Turn ignition switch "OFF".
- 2. Disconnect condenser harness connector.
- 3. Check resistance between condenser terminals 1 and 2.

Resistance: Above 1 M Ω at 25°C (77°F)

OK or NG

OK ►	GO TO 7.
NG ►	Replace condenser.

G[

MA

LC

EC

FE

AT

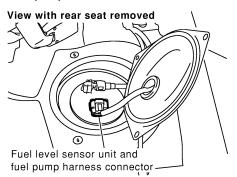
AX

SU

ST

38

BT


HA

SC

SEF124Y

7 CHECK FUEL PUMP POWER SUPPLY AND GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect fuel level sensor unit and fuel pump harness connector.

SEC082D

3. Check harness continuity between fuel pump terminal 3 and body ground, fuel pump terminal 1 and fuel pump relay terminal 3. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK		GO TO 9.
NG	•	GO TO 8.

8 DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between fuel pump relay and fuel pump
- Harness for open or short between fuel pump and body ground

Repair open circuit or short to ground or short to power in harness or connectors.

9 CHECK FUEL PUMP RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 23 and fuel pump relay terminal 2. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 11.
NG	GO TO 10.

10 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B3, M6
- Harness connectors M81, F49
- Harness for open or short between ECM and fuel pump relay

Repair open circuit or short to ground or short to power in harness or connectors.

CHECK FUEL PUMP RELAY

With CONSULT-II

- 1. Reconnect fuel pump relay, fuel level sensor unit and fuel pump harness connector and ECM harness connector.
- 2. Turn ignition switch "ON".
- 3. Turn fuel pump relay "ON" and "OFF" in "ACTIVE TEST" mode with CONSULT-II and check operating sound.

ACTIVE TE	ST
FUEL PUMP RELAY	ON
MONITOR	¥
ENG SPEED	XXX rpm

SEF073Y

GI

MA

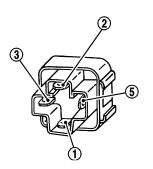
LC

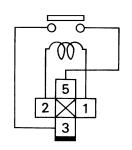
EC

AT

AX

BT


HA


SC

EL

⋈ Without CONSULT-II

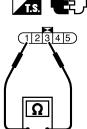
Check continuity between terminals 3 and 5 under the following conditions.

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No
No current supply	INO .

SEF608X

OK or NG

OK


PGO TO 12.

NG

Replace fuel pump relay.

12 CHECK FUEL PUMP

- 1. Disconnect fuel level sensor unit and fuel pump harness connector.
- 2. Check resistance between fuel level sensor unit and fuel pump terminals 1 and 3.

SEC918C

Resistance: 0.2 - 5.0Ω [at 25°C (77°F)]

OK	or	NG
----	----	----

OK •	GO TO 13.
NG ►	Replace fuel pump.

FUEL PUMP

13	13 CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.			
► INSPECTION END			

ELECTRONIC CONTROLLED ENGINE MOUNT

System Description

System Description			
Sensor	Input Signal to ECM	ECM func- tion	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed	Engine mount con-	Electronic controlled engine
Wheel sensor	Vehicle speed	trol	mount

GI

MA

The ECM controls the engine mount operation corresponding to the engine speed and the vehicle speed. The control system has 2-step control [soft/hard].

Vehicle condition	Engine mount control
Idle (with vehicle stopped)	Soft
Driving	Hard

LC

EC

FE

AT

AX

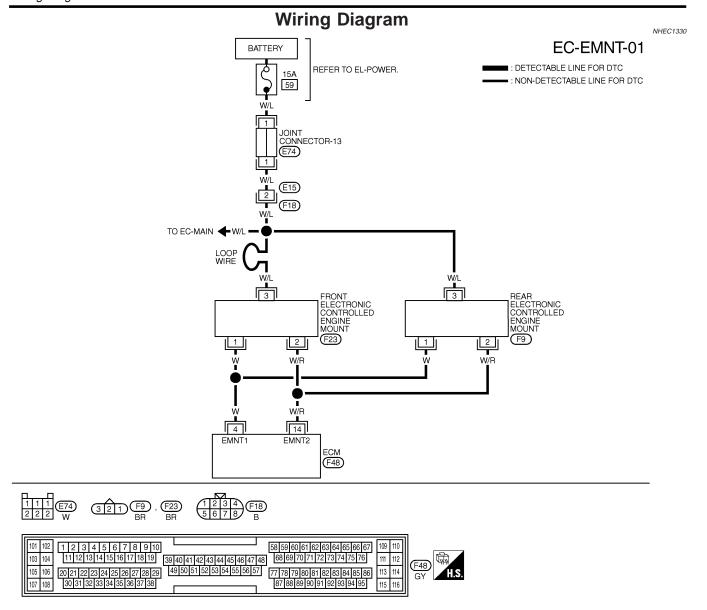
CONSULT-II Reference Value in Data Monitor Mode

SU

MONITOR ITEM	CONDITION		SPECIFICATION
ENCINE MOUNT	Engine: Running	Idle	"IDLE"
ENGINE MOUNT		Except above	"TRVL"

Specification data are reference values.

BR


RS

BT

HA

SC

EL

MEC567D

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND.

DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

				· · · · · · · · · · · · · · · · · · ·	
TE	RMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
	4			ENGINE RUNNING AT IDLE SPEED	0 - 1.0V
1	4		ENGINE MOUNT-1	EXCEPT ABOVE	BATTERY VOLTAGE
	14	W/R		ENGINE RUNNING AT IDLE SPEED	BATTERY VOLTAGE
14	VV/F1	14 W/H ENGINE MOUNT-2	EXCEPT ABOVE	0 - 1 0V	

SEF640XC

ELECTRONIC CONTROLLED ENGINE MOUNT

Diagnostic Procedure

Diagnostic Procedure

CHECK THE OVERALL FUNCTION

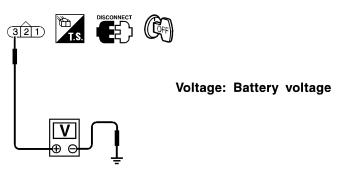
(P) With CONSULT-II

- 1. After warming up engine, run it at idle speed.
- 2. Shift selector lever to "D" range while depressing the brake pedal and pulling the parking brake control lever.
- 3. Perform "ENGINE MOUNTING" in "ACTIVE TEST" mode with CONSULT-II and check that the body vibration changes according to switching the condition (With vehicle stopped).

ACTIVE TEST		
ENGINE MOUNTING	IDLE	
MONITOR		
ENG SPEED	XXX rpm	
COOLAN TEMP/S	XXX °C	

SEC237C

⋈ Without CONSULT-II


- 1. After warming up engine, run it at idle speed.
- 2. Shift selector lever to "D" range while depressing the brake pedal and pulling the parking brake control lever.
- 3. Disconnect front or rear electronic controlled engine mount harness connector when engine speed is more than 1,000 rpm.
- 4. When returning engine speed to idle speed, check that the body vibration increases, compared with the condition of the above step 2 (With vehicle stopped).

OK or NG

OK •	INSPECTION END
NG ►	GO TO 2.

2 CHECK ELECTRONIC CONTROLLED ENGINE MOUNT POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect front or rear electronic controlled engine mount harness connector.
- 3. Check voltage between electronic controlled engine mount terminal 3 and ground with CONSULT-II or tester.

SEF899X

OK or NG

OK •	GO TO 4.
NG ►	GO TO 3.

G[

NHEC1331

MA

ĒM

LC

U

FE

AT

AX

SU

BR

ST

_ .

HA

SC

EL

אַמוּ

ELECTRONIC CONTROLLED ENGINE MOUNT

Diagnostic Procedure (Cont'd)

3 DETECT MALFUNCTIONING PART

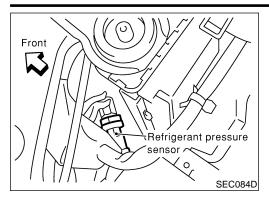
Check the following.

- Harness connectors E15, F18
- 15A fuse
- Joint connector-13
- Harness for open or short between electronic controlled engine mount and battery
 - Repair harness or connectors.

4 CHECK ELECTRONIC CONTROLLED ENGINE MOUNT OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 4 and electronic controlled engine mount terminal 1, ECM terminal 14 and electronic controlled engine mount terminal 2. Refer to Wiring Diagram.

Continuity should exist.

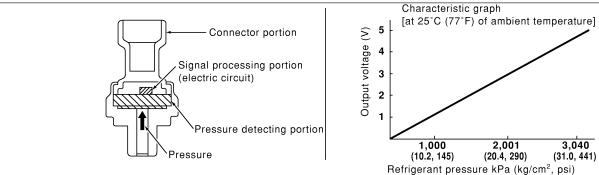

3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 5.
NG ►	Repair open circuit, short to ground or short to power in harness connectors.

5	5 CHECK ELECTRONIC CONTROLLED ENGINE MOUNT			
Visually check front and rear electronic controlled engine mount.				
	OK or NG			
OK	OK			
NG	•	Replace front or rear engine mount assembly.		

6	CHECK INTERMITTENT INCIDENT			
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.			
	► INSPECTION END			


Description

The refrigerant pressure sensor is installed at the liquid tank of the air conditioner system. The sensor uses an electrostatic volume pressure transducer to convert refrigerant pressure to voltage. The voltage signal is sent to ECM, and ECM controls cooling fan system.

 $\mathbb{M}\mathbb{A}$

EM

EC

LC

__

FE

AT

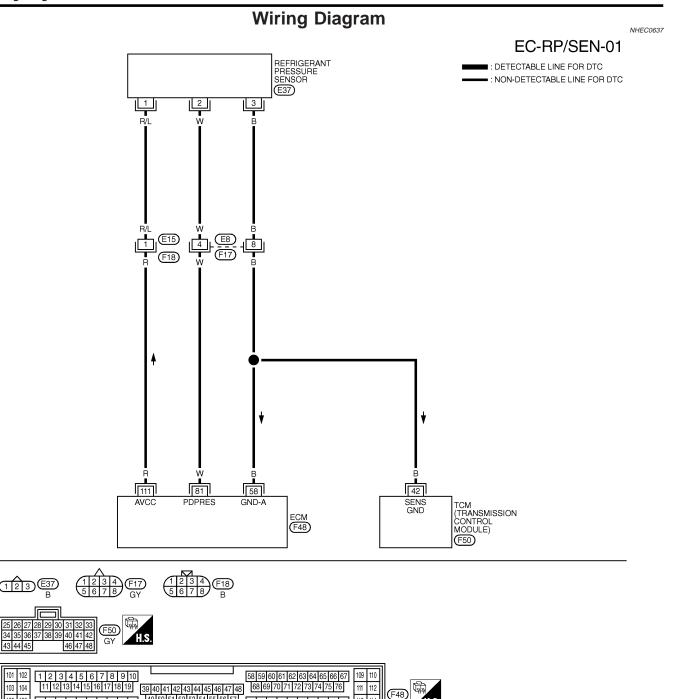
SEF099XA

 $\mathbb{A}\mathbb{X}$

SU

BR

ST


D@

BT

HA

SC

EL

ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND. CAUTION:

20 21 22 23 24 25 26 27 28 29 49 50 51 52 53 54 55 56 57 30 31 32 33 34 35 36 37 38

105 106

107 108

DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
58	В	SENSOR'S GROUND	ENGINE RUNNING AT IDLE SPEED UNDER WARM-UP CONDITION	ov
81	W		ENGINE RUNNING UNDER WARM-UP CONDITION WITH A/C SWITCH AND BLOWER SWITH ON	1.0 - 4.0V
111	R	SENSOR'S POWER SUPPLY	IGN ON	APPROX. 5V

(F48)

113 114

SEF643XC

MEC569D

NHEC0638

GI

MA

LC

EC

FE

AT

AX

SU

BT

HA

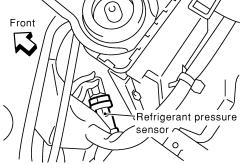
SC

EL

CHECK REFRIGERANT PRESSURE SENSOR OVERALL FUNCTION

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn A/C switch and blower switch "ON".
- 3. Check voltage between ECM terminal 81 and ground with CONSULT-II or tester.

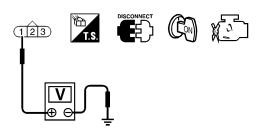
Voltage: 1 - 4V


SEF617XA

OK or NG

OK •	INSPECTION END
NG ►	GO TO 2.

2 CHECK REFRIGERANT PRESSURE SENSOR POWER SUPPLY CIRCUIT


- 1. Turn A/C switch and blower switch "OFF".
- 2. Stop engine.
- 3. Disconnect refrigerant pressure sensor harness connector.

SEC084D

4. Turn ignition switch "ON".

5. Check voltage between refrigerant pressure sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

SEF618X

ok	or	NG
----	----	----

OK >	GO TO 4.
NG •	GO TO 3.

REFRIGERANT PRESSURE SENSOR

Diagnostic Procedure (Cont'd)

DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E15, F18
- · Harness for open or short between ECM and refrigerant pressure sensor
 - Repair harness or connectors.

CHECK REFRIGERANT PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between refrigerant pressure sensor terminal 3 and engine ground. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to power.

OK or NG

OK		GO TO 6.
NG	•	GO TO 5.

5 **DETECT MALFUNCTIONING PART**

Check the following.

- Harness connectors E8, F17
- Harness for open between ECM and refrigerant pressure sensor
- Harness for open between TCM (Transmission control module) and refrigerant pressure sensor
 - Repair open circuit or short to power in harness or connectors.

CHECK REFRIGERANT PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 81 and refrigerant pressure sensor terminal 2. Refer to Wiring Dia-

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK	GO TO 8.
NG	GO TO 7.

DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E8, F17
- Harness for open or short between ECM and refrigerant pressure sensor

Repair open circuit or short to ground or short to power in harness or connectors.

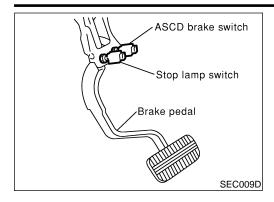
CHECK REFRIGERANT PRESSURE SENSOR

Refer to HA-14, "Refrigerant pressure sensor".

OK or NG

OK	GO TO 9.
NG	Replace refrigerant pressure sensor.

00.70.0


CHECK INTERMITTENT INCIDENT

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.

INSPECTION END

ASCD BRAKE SWITCH

Component Description

Component Description

When depressing the brake pedal, ASCD brake switch is turned OFF and stop lamp switch is turned ON.

ECM detects the state of the brake pedal by this two kinds of input (ON/OFF signal).

Refer to EC-53 for the ASCD function.

MA

EM

CONSULT-II Reference Value in Data Monitor Mode

NHEC1233

CONSULT-II Reference Value in Data Monitor Mode Specification data are reference values.

CONSEL II Reference value in Data Monitor Mode Openinoation data die Telefonice Values.				
MONITOR ITEM	CONDITION		SPECIFICATION	
BRAKE SW 1	Ignition switch: ON Shift lever:	Brake pedal released	ON	
(ASCD brake switch)	1	Brake pedal depressed	OFF	
BRAKE SW 2	Ignition switch: ON	Brake pedal released	OFF	
(Stop lamp switch)		Brake pedal depressed	ON	

LC

EC

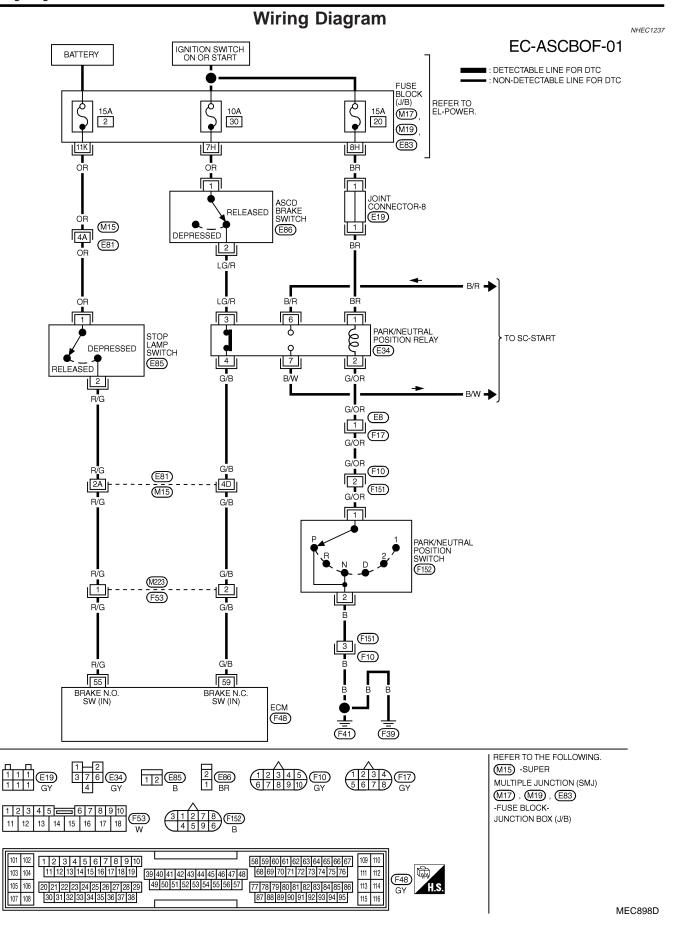
FE

AT

AX

SU

BR


ST

BT

HA

SC

EL

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
<i>EE</i>	B/C	Stop lamp switch	[Ignition switch "ON"] • Brake pedal is released	Approximately 0V
55	R/G		[Ignition switch "ON"] • Brake pedal is depressed	BATTERY VOLTAGE (11 - 14V)
50	G/B		[Ignition switch "ON"] ■ Gear position is except "P" or "N" ■ Brake pedal is released	BATTERY VOLTAGE (11 - 14V)
59			[Ignition switch "ON"] ■ Gear position is except "P" or "N" ■ Brake pedal is depressed	Approximately 0V

G[

MA

EM

LC

EC

FE

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

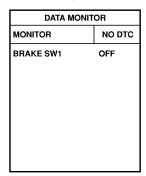
RS

BT

HA

SC

EL


Diagnostic Procedure

NHEC1238

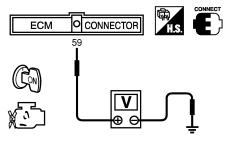
CHECK OVERALL FUNCTION-I

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "BRAKE SW1" in DATA MONITOR" mode with CONSULT-II.
- 3. Check the indication of "BRAKE SW1" under the following conditions.

SEC011D

When brake pedal is depressed or A/T selector lever is in "N" or "P" range:


BRAKE SW1 OFF

When brake pedal is released and A/T selector lever is not "N" or "P" range:

BRAKE SW1 ON

Without CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Check voltage between ECM terminal 59 and ground under the following conditions.

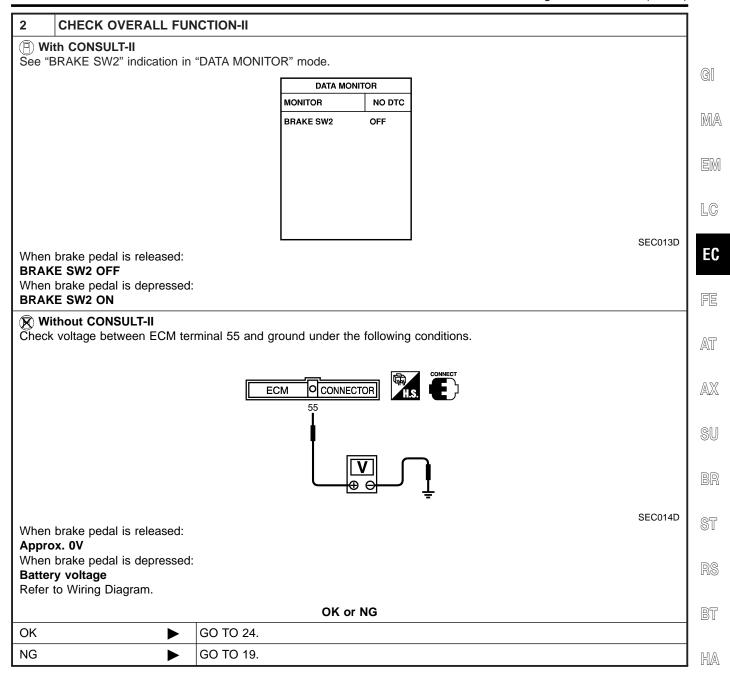
SEC012D

When brake pedal is depressed or A/T selector lever is in "N" or "P" range:

Approx. 0V

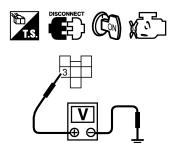
When brake pedal is released and A/T selector lever is not in "N" or "P" range:

Battery voltage should exist.


Refer to Wiring Diagram.

OK or NG

OK •	GO TO 2.
NG ►	GO TO 3.


SC

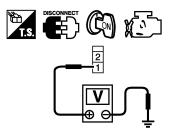
EL

3 CHECK ASCD BRAKE SWITCH CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect park/neutral position relay harness connector.
- 3. Turn ignition switch "ON".
- 4. Check voltage between park/neutral position relay terminal 3 and ground under the following conditions.

SEC209D

CONDITION	VOLTAGE
When brake pedal is released	Battery voltage
When brake pedal is depressed	Approx. 0V


MTBL1259

OK or NG

OK •	GO TO 8.
NG ►	GO TO 4.

4 CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ASCD brake switch harness connector.
- 3. Turn ignition switch "ON".
- 4. Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-II or tester.

PBIB0857E

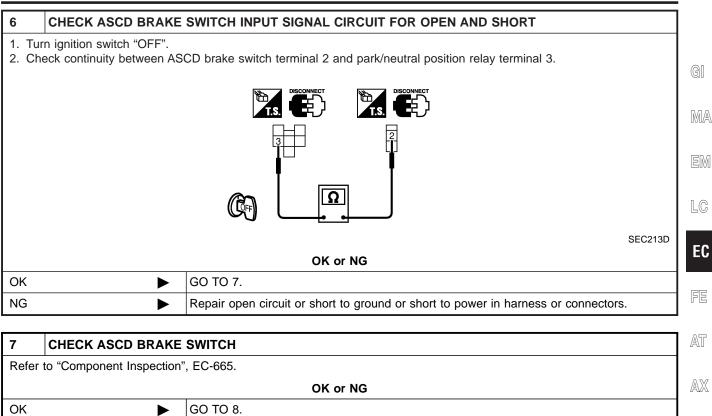
Voltage: Battery voltage

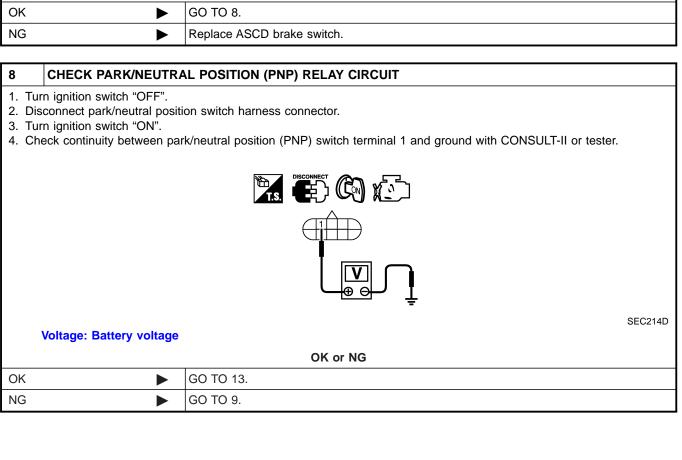
OK or NG

OK •	GO TO 6.
NG ▶	GO TO 5.

5 DETECT MALFUNCTIONING PART

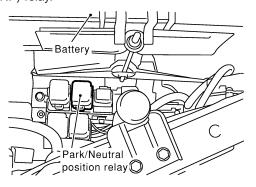
Check the following.

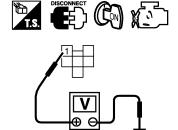

- Fuse block (J/B) connector E83
- 10A fuse
- Harness for open or short between ASCD brake switch and fuse


Repair open circuit or short to ground or short to power in harness or connectors.

HA

SC


EL


CHECK PARK/NEUTRAL POSITION (PNP) RELAY POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect park/neutral position (PNP) relay.

SEC018D

- 3. Turn ignition switch "ON".
- 4. Check voltage between park/neutral position (PNP) relay terminal 1 and ground with CONSULT-II or tester.

SEC019D

Voltage: Battery voltage

OK or NG

OK •	GO TO 11.
NG ►	GO TO 10.

10 DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E83
- 15A fuse
- Joint connector-8
- Harness for open or short between park/neutral position (PNP) relay and fuse

Repair open circuit or short to ground in harness or connectors.

11 CHECK PARK/NEUTRAL POSITION RELAY CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check continuity between park/neutral position (PNP) relay terminal 2 and park/neutral position switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK •	GO TO 13.
NG 🕨	GO TO 12.

ASCD BRAKE SWITCH

		Diagnostic Procedure (Cont'd)
12 DETECT I	ALFUNCTIONING PART	
Check the followir Harness conner Harness conner Harness for ope	tors E8, F17	and park/neutral position switch
	Repair open circuit or short to g	ground or short to power in harness or connectors.
13 CHECK P	RK/NEUTRAL POSITION RELAY	
Refer to "Compon	nt Inspection", EC-665.	
	OK or No	G
OK .	▶ GO TO 14.	
NG	Replace park/neutral position re	elay.
14 CHECK P	RK/NEUTRAL POSITION (PNP) SWITCH (GROUND CIRCUIT
	itch "OFF". /neutral position switch harness connector. / between park/neutral position (PNP) switch to	erminal 2 and ground.
o. Onook oorkind	OK or No	-
 OK	■ GO TO 16.	
NG	GO TO 15.	
	00 10 10.	
15 DETECT I	ALFUNCTIONING PART	
Check the followir Harness connection Harness for ope) switch and ground
		ground or short to power in harness or connectors.
	p repair of our answer of our	,
16 CHECK P	RK/NEUTRAL POSITION SWITCH	
Refer to "Compon	nt Inspection", EC-665.	
•	OK or No	G
OK	▶ GO TO 17.	
NG	Replace park/neutral position sv	witch.

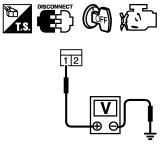
17 CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT 1. Turn ignition switch "OFF". 2. Disconnect ECM harness connector and park/neutral position (PNP) relay harness connector. 3. Check harness continuity between park/neutral position (PNP) relay terminal 4 and ECM terminal 59. ECM OCONNECTOR SEC215D OK or NG

18 DETECT MALFUNCTIONING PART

Check the following.

OK NG

- Harness connectors E81, M15
- Harness connectors M223, F53
- Harness for open or short between park/neutral position (PNP) relay and ECM


GO TO 19.

GO TO 18.

Repair open circuit or short to ground or short to power in harness or connectors.

19 CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect stop lamp switch harness connector.
- 3. Check voltage between stop lamp switch terminal 1 and ground with CONSULT-II or tester.

PBIB0117E

Voltage: Battery voltage

OK or NG

OK •	GO TO 21.
NG ►	GO TO 20.

DETECT MALFUNCTIONING PART Check the following. • Fuse block (J/B) connector M17 • 15A fuse Harness connectors M15, E81 Harness for open or short between stop lamp switch and fuse MA Repair open circuit or short to ground in harness or connectors. 21 CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT 1. Disconnect ECM harness connector. 2. Check harness continuity between stop lamp switch terminal 2 and ECM terminal 55. LC EC OCONNECTOR **ECM** AT Ω SEC216D AX **Continuity should exist** OK or NG GO TO 23. OK GO TO 22. NG **DETECT MALFUNCTIONING PART** Check the following. • Harness connectors M15, E81 Harness connectors M223, F53 Harness for open or short between stop lamp switch and ECM Repair open circuit or short to ground or short to power in harness or connectors. 23 **CHECK STOP LAMP SWITCH** Refer to "Component Inspection", EC-665. HA OK or NG OK GO TO 24. SC NG Replace stop lamp switch. EL 24 **CHECK INTERMITTENT INCIDENT**

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.

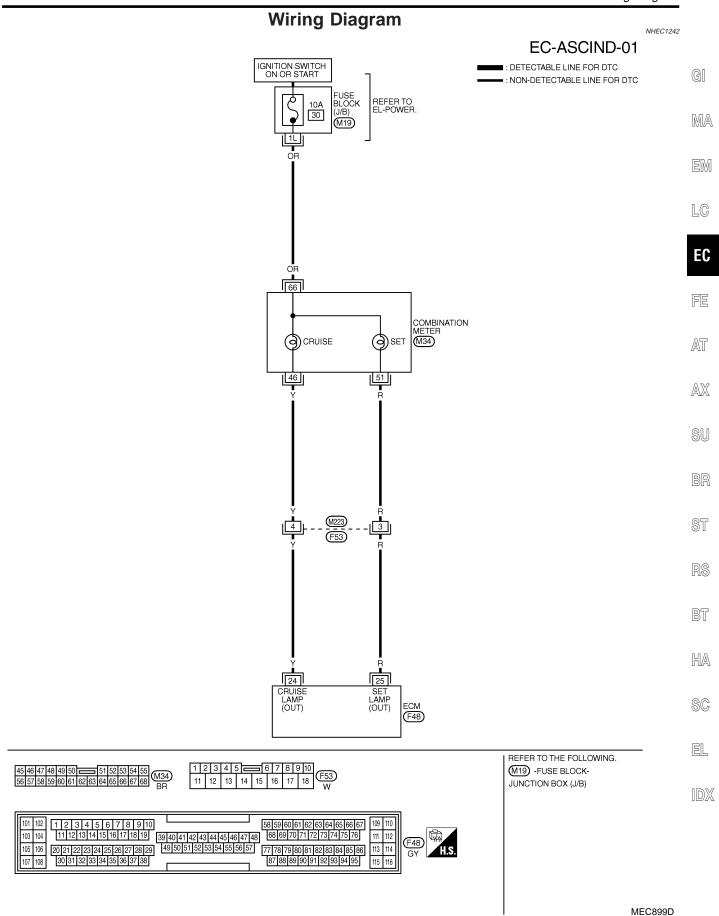
INSPECTION END

Component Description

NHFC12

ASCD indicator lamp illuminates to indicate ASCD operation status. Lamp has two indicators, CRUISE and SET, and is integrated in combination meter.

CRUISE indicator illuminates when CRUISE switch on steering switch is turned ON to indicate that ASCD system is ready for operation.

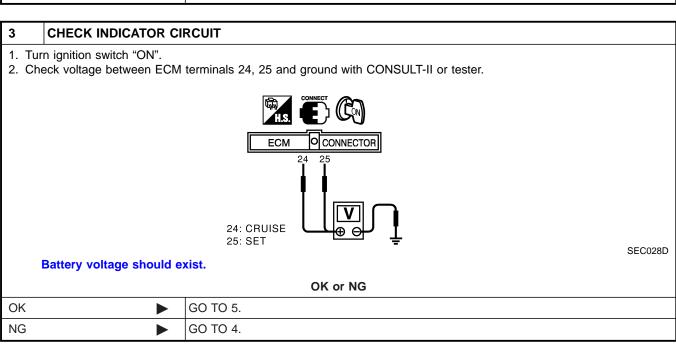

SET indicator illuminates when following conditions are met. CRUISE indicator illuminates, and SET switch on steering switch is turned ON while vehicle speed is within range of ASCD setting. SET indicator remains lit during ASCD control. Refer to EC-53 for ASCD functions.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

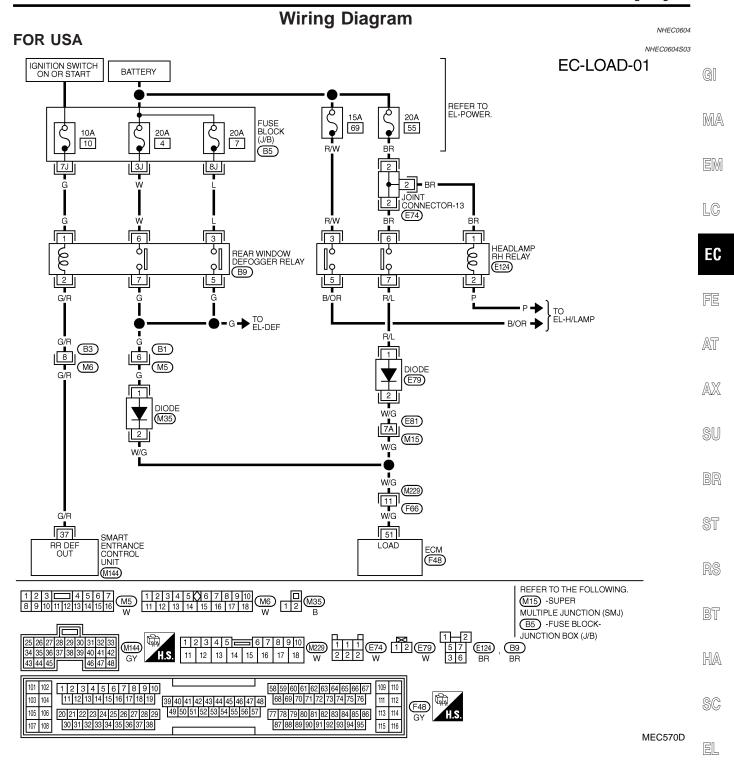
NHEC1241

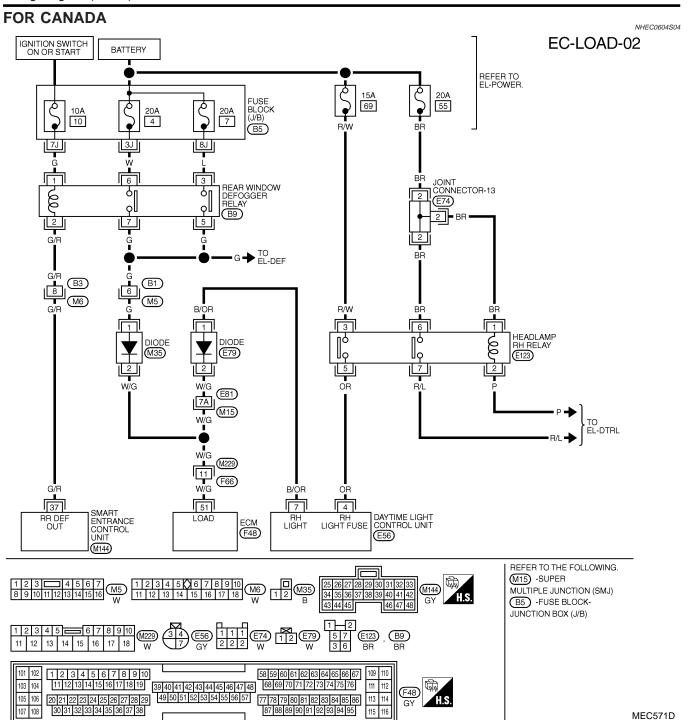
MONITOR ITEM	CONDITION		SPECIFICATION
CRUISE LAMP	Ignition switch: ON	CRUISE switch is depressed at first time → second time.	$ON \to OFF$
SET LAMP	When vehicle speed is between 40 km/h (25 MPH) and 144 km/h (89 MPH), and CRUISE switch is ON.	COAST/SET switch pressed	ON
OLI LAWIF		ASCD control is canceled.	OFF


NG

Diagnostic Procedure

NHEC1243 **CHECK OVERALL FUNCTION** Check ASCD indicator under the following conditions. MONITOR ITEM CONDITION **SPECIFICATION** ON CRUISE switch pressed **CRUISE LAMP** Ignition switch: ON CRUISE switch released OFF When vehicle speed is between 40 km/h (25 MPH) and 144 km/h (89 MPH), and CRUISE switch is ON. COAST/SET switch pressed ON SET LAMP COAST/SET switch released OFF MTBL1561 OK or NG **INSPECTION END** OK


2	CHECK COMBINATION METER OPERATION		
Check	Check that combination meter operates normally.		
	OK or NG		
OK	OK ▶ GO TO 3.		
NG	>	Check combination meter circuit. Refer to EL-128.	


GO TO 2.

4 DETECT MALFUNCTIONING PART Check the following. • Harness connectors F53, M223 • Harness for open or short between combination meter and ECM Repair open circuit or short to ground or short to power in harness or connectors.

5	CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151.	
	•	INSPECTION END

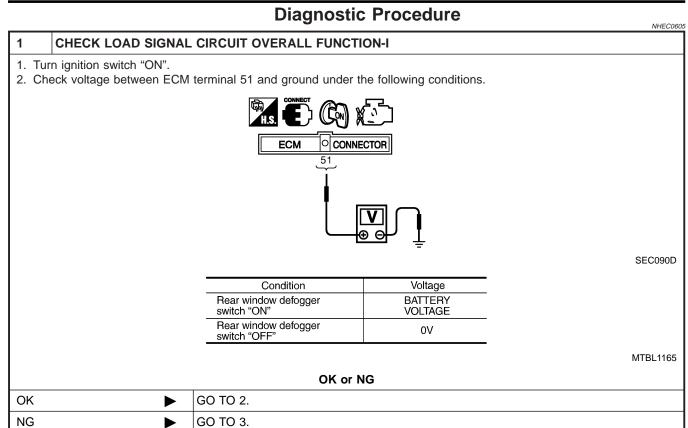
ECM TERMINALS AND REFERENCE VALUE MEASURED BETWEEN EACH TERMINAL AND GROUND.

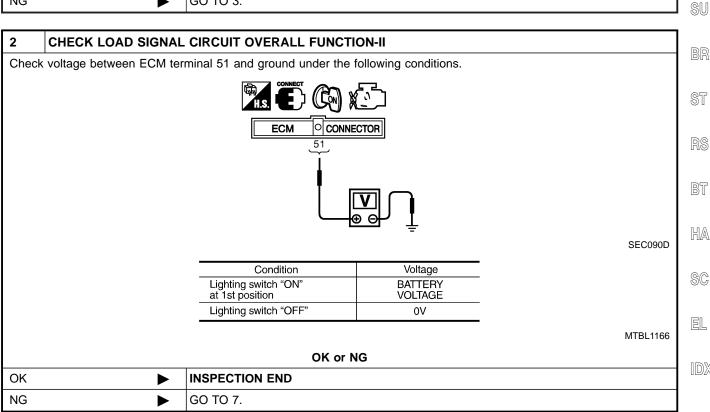
CAUTION:
DO NOT USE ECM GROUND TERMINALS WHEN MEASURING INPUT/OUTPUT VOLTAGE. DOING SO MAY RESULT IN DAMAGE TO THE ECM'S TRANSISTOR. USE A GROUND OTHER THAN ECM TERMINALS, SUCH AS THE GROUND.

TERMINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC)
51	W/G	ELECTRICAL LOAD SIGNAL	IGN ON WITH REAR WINDOW DEFOGGER SWITCH ON OR LIGHTING SWITCH ON AT 1ST POSITION	BATTERY VOLTAGE
			IGN ON UNDER EXCEPT ABOVE CONDITION	ov

SEF642XC

GI


MA


LC

EC

AT

AX

3 CHECK REAR WINDOW DEFOGGER FUNCTION 1. Start engine. 2. Turn "ON" the rear window defogger switch. 3. Check the rear windshield. Is the rear windshield heated up? Yes or No Yes Refer to EL-183, "Rear Window Defogger".

4 CHECK REAR WINDOW DEFOGGER INPUT SIGNAL CIRCUIT FOR OPEN OR SHORT 1. Stop engine. 2. Disconnect ECM harness connector. 3. Disconnect rear window defogger relay. 4. Check harness continuity between ECM terminal 51 and rear window defogger relay terminal 5 and 7. **CONDITION 1 CONDITION 2** CONDITION CONTINUITY CONNECTOR CONNECTOR **ECM ECM** Should exist. 1 Should not 2 exist. Ω Ω SEC125D 5. Also check harness for short to ground and short to power. OK or NG GO TO 6. OK

5 DETECT MALFUNCTIONING PART

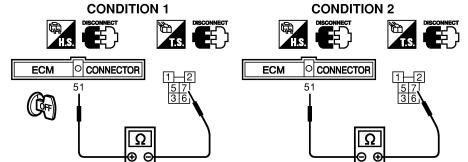
Check the following.

- Harness connectors B1, M5
- Harness connectors M229, F66
- Diode M35

NG

Harness for open and short between ECM and rear window defogger relay

GO TO 5.


Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK INTERMITTENT INCIDENT Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151. INSPECTION END

7	CHECK HEADLAMP FU	UNCTION			
 Start engine. Turn the lighting switch "ON" at 1st position with high beam. Check that headlamps are illuminated. 					
	OK or NG				
ОК	>	GO TO 8.			
NG	>	Refer to EL-38, "HEADLAMP (FOR USA)" or "EL-52, "HEADLAMP (FOR CANADA) — DAYTIME LIGHT SYSTEM".			

CHECK HEADLAMP INPUT SIGNAL CIRCUIT FOR OPEN OR SHORT

- 1. Stop engine.
- 2. Disconnect ECM harness connector.
- 3. Disconnect headlamp RH relay (Models for USA), daytime light control unit harness connector (Models for Canada).
- 4. Check harness continuity between ECM terminal 51 and headlamp LH relay terminal 7 under the following conditions (Models for USA).

CONDITION CONTINUITY 1 Should exist. Should not 2 exist.

SEC126D

5. Check harness continuity between ECM terminal 51 and daytime light control unit terminal 7 under the following conditions (Models for Canada).

CONDITION 1 CONDITION 2 CONNECTOR O CONNECTOR **ECM ECM** 51

CONDITION	CONTINUITY
1	Should exist.
2	Should not exist.

SEC127D

6. Also check harness for short to ground and short to power.

OK or NG

OK	>	GO TO 10.
NG	>	GO TO 9.

9 **DETECT MALFUNCTIONING PART**

Check the following.

- Harness connectors E81, M15
- Harness connectors M229, F66
- Diode E79
- Harness for open and short between ECM and headlamp RH relay or daytime light control unit

Repair open circuit or short to ground or short to power in harness or connectors.

10 CHECK INTERMITTENT INCIDENT Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-151. **INSPECTION END**

GI

MA

EM

LC

EC

FE

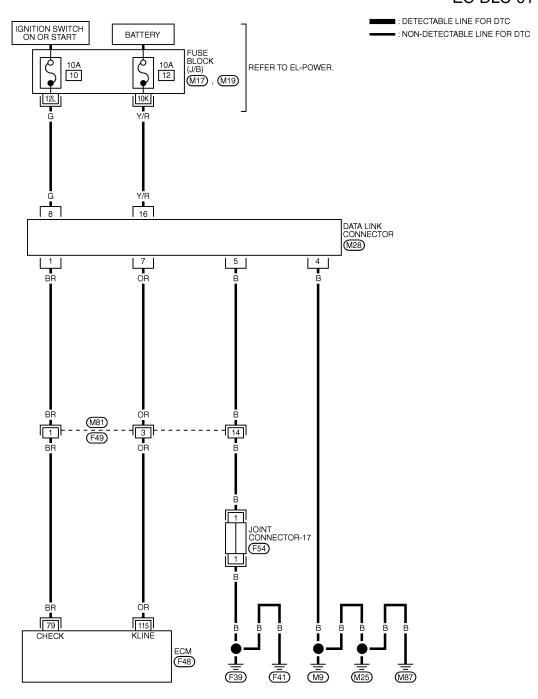
AT

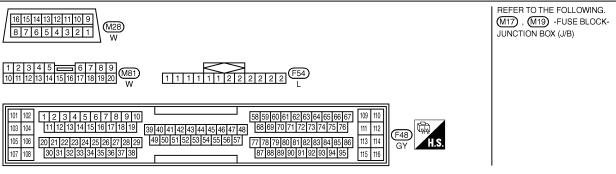
AX

SU

BT

HA


SC


EL

Wiring Diagram

NHEC0407

EC-DLC-01

MEC702D

SERVICE DATA AND SPECIFICATIONS (SDS)

Fuel Pressure Regulator

	Fuel Pressure	e Regulator	NHEC0408
Fuel pressure at idling kPa (kg/cr	Approximately 350 (3.7, 51)	200400	
	Idle Speed ar	nd Ignition Timing	NHEC0409
Target idle speed*1	No-load*2 (in "P" or N" position)	675±50 rpm	
Air conditioner: ON	In "P" or N" position	825 rpm or more	
Ignition timing*1	In "P" or N" position	15°±5° BTDC	
: Throttle position sensor harness connector: 2: Under the following conditions: Air conditioner switch: OFF Electric load: OFF (Lights, heater fan & 1) Steering wheel: Kept in straight-ahead p	rear window defogger)	w Sensor	
Supply voltage		Battery voltage (11 - 14)V	NHEC0411
Output voltage at idle		1.1 - 1.5*V	
Mass air flow (Using CONSULT-II or GST)		2.0 - 6.0 g·m/sec at idle*	
Engine is warmed up to normal operating to	omporature and running unde	7.0 - 20.0 g·m/sec at 2,500 rpm*	
Engine is warmed up to normal operating to		ant Temperature Sensor	NHEC0412
Temperature °C (°F)		Resistance k Ω	
20 (68)		2.1 - 2.9	
50 (122)		0.68 - 1.00	
90 (194)		0.236 - 0.260	
	Heated Oxyg	en Sensor 1 Heater	NHEC0414
Resistance [at 25°C (77°F)]		2.3 - 4.3Ω	
	Fuel Pump		
Resistance [at 25°C (77°F)]	-	0.2 - 5.0Ω	NHEC0415
	Injector		
			NHEC0417
Resistance [at 20°C (68°F)]		13.5 - 17.5Ω	
	Calculated Lo	oad Value	NHEC0420
		Calculated load value % (Using CONSULT-II or GST)	
At idle		10 - 35	
At 2,500 rpm		10 - 35	
	Intake Air Ter	mperature Sensor	NHEC0421
Temperature °C (°F)		Resistance kΩ	
20 (68)		2.1 - 2.9	
80 (176)		0.27 - 0.38	

SERVICE DATA AND SPECIFICATIONS (SDS)

Heated Oxygen Sensor 2 Heater

Heated Oxygen Sensor 2 Heater				
Resistance [at 25°C (77°F)]	2.3 - 4.3Ω			
Fue	el Tank Temperature Sensor	NHEC0424		
Temperature °C (°F)	Resistance kΩ			
20 (68)	2.3 - 2.7			
50 (122)	0.79 - 0.90			
Thi	rottle Control Motor	NHEC1332		
Resistance [at 25°C (77°F)]	Approximately 1 - 15Ω			
Cra Refer to "Component Inspection", EC-328.	ankshaft Position Sensor (POS)	NHEC1414		
Cal Refer to "Component Inspection", EC-337.	mshaft Position Sensor (PHASE)	NHEC0639		