### **ENGINE MECHANICAL**

### SECTION EM

G|

MA

ΕM

LC

EC

FE

CL

Μï

AT

PD

FA

### **CONTENTS**

| PRECAUTIONS                         | 2  |
|-------------------------------------|----|
| Parts Requiring Angular Tightening  | 2  |
| Liquid Gasket Application Procedure | 2  |
| PREPARATION                         | a  |
| Special Service Tools               | 3  |
| Commercial Service Tools            | ε  |
| OUTER COMPONENT PARTS               |    |
| COMPRESSION PRESSURE                | g  |
| Measurement of Compression Pressure | 9  |
| OIL PAN                             | 10 |
| Removal                             | 10 |
| Installation                        |    |
| TIMING CHAIN                        | 12 |
| Removal                             | 14 |
| Inspection                          | 16 |
| Installation                        | 17 |

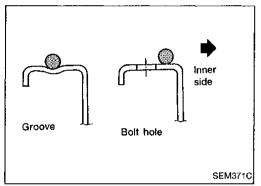
| OIL SEAL REPLACEMENT                  | 21 |
|---------------------------------------|----|
| CYLINDER HEAD                         | 23 |
| Removal and Installation              | 24 |
| Disassembly                           | 24 |
| Inspection                            | 24 |
| Assembly                              | 29 |
| Valve Clearance                       | 30 |
| ENGINE REMOVAL                        | 32 |
| Removal                               | 33 |
| CYLINDER BLOCK                        | 34 |
| Disassembly                           | 35 |
| Inspection                            | 36 |
| Assembly                              | 42 |
| SERVICE DATA AND SPECIFICATIONS (SDS) | 46 |
| General Specifications                | 46 |
| Inspection and Adjustment             | 46 |

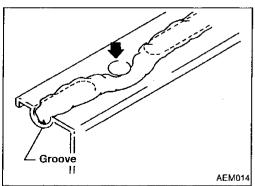
BR

RA

ST

BF


HA


EL,

IDX

### **Parts Requiring Angular Tightening**

- Tighten the following engine parts in an angular-tightening method, not in a torque-setting method. Otherwise, with the latter method, the dispersal of tightening force (axial bolt force) would be greater (two or three times).
- The bolts and nuts which require the angular-tightening method are as follows:
  - (1) Cylinder head bolts
  - (2) Main bearing cap bolts
  - (3) Connecting rod cap nuts
- The torque-setting values in this manual are for reference only. They are equivalent to those used when bolts and nuts are tightened with an angular-tightening method.
- Before tightening bolts and nuts, ensure thread and seat surfaces are clean and coated with engine oil.





### **Liquid Gasket Application Procedure**

- Remove all traces of old liquid gasket from mating surfaces and grooves using a scraper. Then completely clean any oil stains from these portions.
- Apply a continuous bead of liquid gasket to mating surfaces. (Use Genuine Liquid Gasket or equivalent.)
  - 1) Be sure liquid gasket is 3.5 to 4.5 mm (0.138 to 0.177 in) wide (for oil pan).
  - 2) Be sure liquid gasket is 2.0 to 3.0 mm (0.079 to 0.118 in) wide (in areas except oil pan).
- Apply liquid gasket to inner surface around hole perimeter area
  - (Assembly should be done within 5 minutes after coating.)
- Wait at least 30 minutes before refilling engine oil and engine coolant.

### **Special Service Tools**

| Tool number<br>(Kent-Moore No.)<br>Tool name                                      | Description |                                                                  | G        |
|-----------------------------------------------------------------------------------|-------------|------------------------------------------------------------------|----------|
| ST0501S000<br>( — )<br>Engine stand assembly<br>① ST05011000                      |             | Disassembling and assembling                                     | MA       |
| ( — )<br>Engine stand<br>② ST05012000                                             |             |                                                                  | EM       |
| ( — )<br>Base                                                                     | NT042       |                                                                  | LC<br>EC |
| KV10105001<br>( — )<br>Engine attachment                                          |             | When overhauling engine                                          | FE       |
|                                                                                   | NT031       |                                                                  | CL       |
| KV101092S0<br>( — )<br>Valve spring                                               | 0,          | Disassembling and assembling valve components                    | MT       |
| compressor  (i) KV10109210  (ii) Compressor                                       |             |                                                                  | AT<br>PD |
| <ul><li>② KV10109220</li><li>( — )</li><li>Adapter</li><li>③ KV10111200</li></ul> | 2 3         |                                                                  | FA       |
| ( — )<br>Adapter                                                                  | NT586       | ·                                                                | RA       |
| KV10116300<br>(J-38955)<br>Valve oil seal drift                                   |             | Installing valve oil seal a: 25 (0.98) dia. b: 14.4 (0.567) dia. | BR       |
|                                                                                   | e d         | c: 11.8 (0.465) dia.<br>d: 10 (0.39) dia.<br>e: 11 (0.43)        | ST       |
|                                                                                   | NT602       | f: 9 (0.35) Unit: mm (in)                                        | BĒ       |

HA

EL

 $\mathbb{I}\mathbb{D}\mathbb{X}$ 

**EM-3** 71

|                                                                                                                                                                                                                     | Special Service                                | Tools (Cont'd)                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|
| Tool number<br>(Kent-Moore No.)<br>Tool name                                                                                                                                                                        | Description                                    |                                                         |
| KV10110300 ( — ) Piston pin press stand assembly ① KV10110310 ( — ) Cap ② KV10110330 ( — ) Spacer ③ ST13030020 ( — ) Press stand ④ ST13030030 ( — ) Spring ⑤ KV10110340 ( — ) Drift ⑥ KV10110320 ( — ) Center shaft | (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c | Disassembling and assembling piston with connecting rod |
| EM03470000<br>(J8037)<br>Piston ring compressor                                                                                                                                                                     | NT044                                          | Installing piston assembly into cylinder bore           |
| (J36467)<br>Valve oil seal remover                                                                                                                                                                                  | NT034                                          | Displacement valve oil seal                             |
| KV10111100<br>(J37228)<br>Seal cutter                                                                                                                                                                               | NT046                                          | Removing oil pan                                        |
| WS39930000<br>( — )<br>Tube presser                                                                                                                                                                                 | NT052                                          | Pressing the tube of liquid gasket                      |

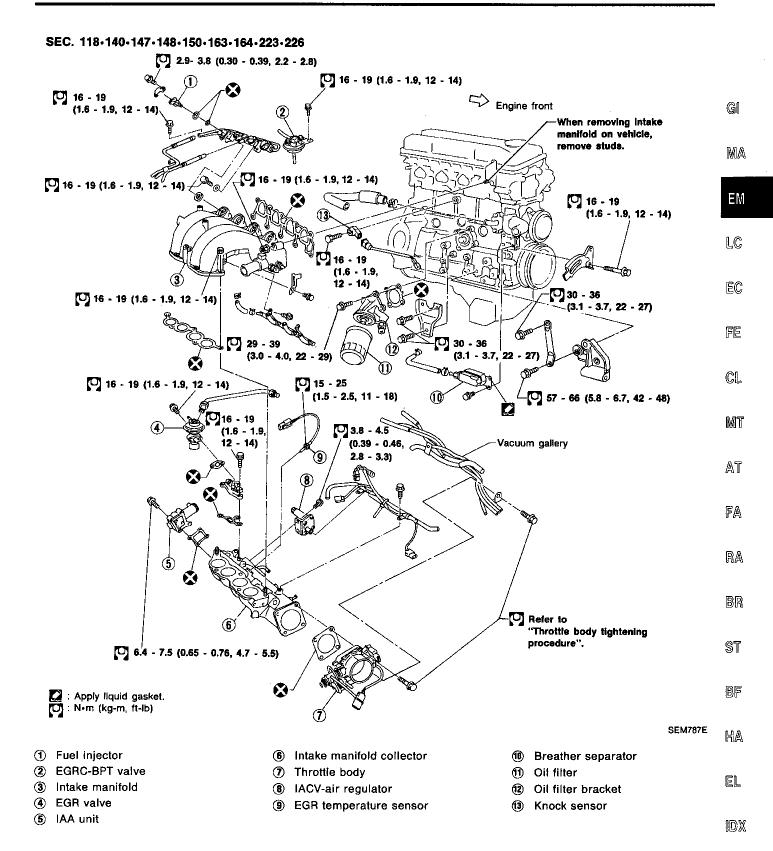
|                                                               | Special Service Too | ols (Cont'd)                                                   | I        |
|---------------------------------------------------------------|---------------------|----------------------------------------------------------------|----------|
| Tool number<br>(Kent-Moore No.)<br>Tool name                  | Description         |                                                                | •        |
| ST16610001<br>(J23907)<br>Pilot bushing puller                |                     | Removing crankshaft pilot pushing                              | GI<br>MA |
|                                                               | NT045               |                                                                | EM       |
| ST10120000<br>(J-24239-01)<br>Cylinder head bolt wrench       | b a                 | Loosening and tightening cylinder head bolt  a: 13 (0.51) dia. | LC       |
|                                                               | NT583 C             | b: 12 (0.47) c: 10 (0.39) Unit: mm (in)                        | EC       |
| KV101151S0<br>(J38972)                                        |                     | Changing valve lifter shims                                    | FE       |
| Lifter stopper set  ① KV10115110  (J38972-1)  Camshaft pliers |                     |                                                                | CL       |
| ② KV10115120<br>(J38972-2)                                    | 2                   |                                                                | MT       |
| Lifter stopper                                                | NT041               |                                                                | . AT     |
| KV10112100<br>Angle wrench                                    |                     | Tightening bolts for bearing cap, cylinder head, etc.          | PD       |
|                                                               |                     |                                                                | FA       |
|                                                               | NT014               |                                                                | RA       |

**EM-5** 73

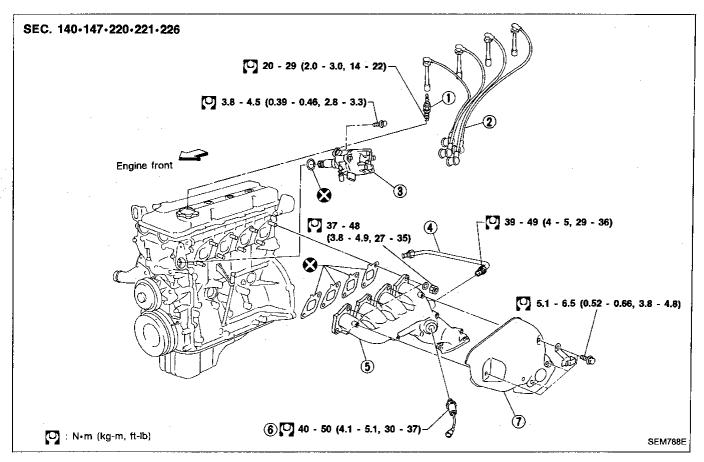
BR

ST

BF


HA

EL

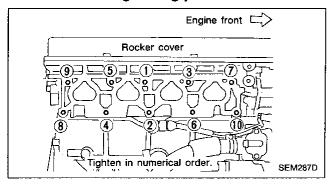

IDX

### **Commercial Service Tools**

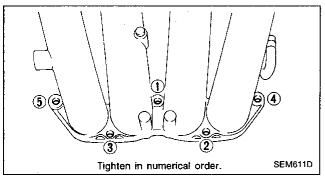
| Tool name             | Description                              |                                   |                                            |
|-----------------------|------------------------------------------|-----------------------------------|--------------------------------------------|
| Spark plug wrench     | 16 mm<br>(0.63 in)                       | Removing and i                    | installing spark plug                      |
| Pulley holder         | ALTORE                                   | Holding camsha<br>or loosening ca | ift pulley while tightening<br>mshaft bolt |
| Valve seat cutter set | NT035                                    | Finishing valve                   | seat dimensions                            |
| Piston ring expander  | NT030                                    | Removing and i                    | nstalling piston ring                      |
| Valve guide drift     | 11100                                    | Removing and i                    | nstalling valve guide                      |
|                       |                                          | Diameter:                         | mm (in)                                    |
|                       |                                          |                                   | Intake & Exhaust                           |
|                       | H + + + + + + + + + + + + + + + + + + +  | a                                 | 10.5 (0.413)                               |
|                       | NT015                                    | <u> </u>                          | 6.6 (0.260)                                |
| Valve guide reamer    | **************************************   | Reaming valve g                   | guide (①) or hole for<br>guide (②)         |
|                       | d, 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Diameter:                         | mm (in)                                    |
|                       | d <sub>2</sub>                           |                                   | Intake & Exhaust                           |
|                       | Tar 2                                    | d,                                | 7 (0.28)                                   |
|                       |                                          | d <sub>2</sub>                    | 11.175 (0.4400)                            |



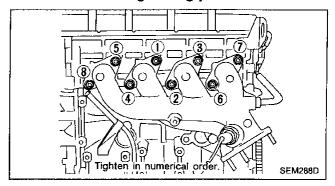
### **OUTER COMPONENT PARTS**



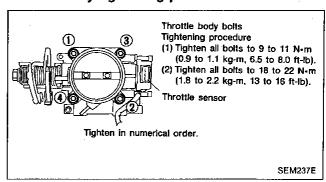

- 1 Spark plug
- 2 Ignition wire


- 3 Camshaft position sensor built into distributor
- 4 EGR tube

- ⑤ Exhaust manifold
- 6 Oxygen sensor
- ② Exhaust manifold cover


### Intake manifold tightening procedure



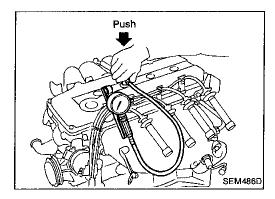

### Intake manifold collector tightening procedure



### Exhaust manifold tightening procedure



### Throttle body tightening procedure




### **Measurement of Compression Pressure**

- Warm up engine.
- 2. Turn ignition switch off.
- Release fuel pressure. Refer to "Releasing Fuel Pressure" in EC section.
- Remove all spark plugs.
- Disconnect distributor center cable.



GI:



- Attach a compression tester to No. 1 cylinder.
- 7. Depress accelerator pedal fully to keep throttle valve wide open.
- Crank engine and record highest gauge indication.
- Repeat the measurement on each cylinder as shown EC above.
- Always use a fully-charged battery to obtain specified engine speed.

Compression pressure: kPa (kg/cm<sup>2</sup>, psi)/rpm

**Standard** 

1,236 (12.6, 179)/300

Minimum

1,040 (10.6, 151)/300

Difference limit between cylinders

98 (1.0, 14)/300

- 10. If cylinder compression in one or more cylinders is low, do the following:
  - Pour a small amount of engine oil into cylinders through spark plug holes. Then retest compression.
- If adding oil improves cylinder compression, piston rings may be worn or damaged. If so, replace piston rings after checking piston.
- If pressure stays low, a valve may be sticking or seating improperly. Inspect and repair valve and valve seat. (Refer to SDS) If valve or valve seat is damaged excessively, replace them.
- There is leakage past the gasket surface if the following is observed. Compression in two adjacent cylinders is low and adding oil does not improve compression. If so, replace cylinder head gasket.

EM

FE

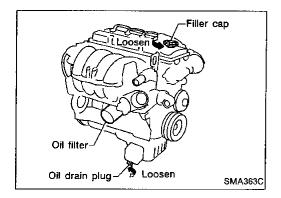
CL

MIT

PD

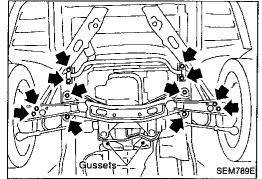
BR

ST

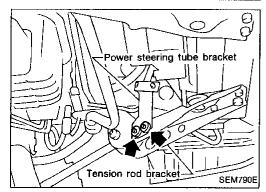

BF

AH

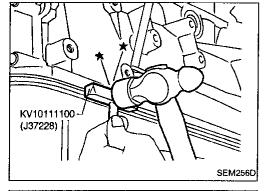
EL


IDX

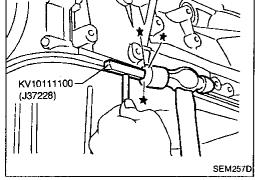
77 **EM-9** 



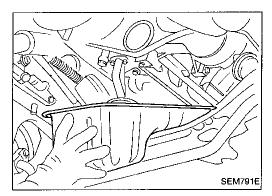

### Removal


- 1. Raise vehicle and support it with safety stands.
- 2. Drain engine oil.
- 3. Install engine slingers to cylinder head. Refer to "ENGINE REMOVAL" (EM-32).
- 4. Set a suitable hoist on engine slinger and hold the engine.




- 5. Remove the following parts.
- Tension rod bolts at transverse links
- Front stabilizer bar securing bolts and nuts from side member.
- Both left and right side engine mounting bolts. Refer to "ENGINE REMOVAL" (EM-32).
- Gussets
- 6. Disconnect steering shaft lower joint.




- Remove power steering tube bracket securing bolts at left tension rod bracket.
- 8. Remove front suspension member securing bolts while supporting with a jack.
- 9. Lower front suspension member by around 60 mm (2.36 in).

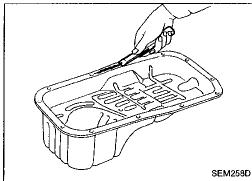


- 10. Remove oil pan.
- a. Insert Tool between cylinder block and oil pan.
- Do not drive seal cutter into oil pump or rear oil seal retainer portion, or aluminum mating face will be damaged.
- Do not insert screwdriver, or oil pan flange will be deformed.



b. Slide Tool by tapping its side with a hammer, and remove oil pan.




### Removal (Cont'd)

11. Pull out oil pan from the front while lowering the front suspension member.

Gľ.

MA

ΕM



### Installation

Before installing oil pan, remove all traces of liquid gasket from mating surface using a scraper.

EC

Also remove traces of liquid gasket from mating surface of cylinder block.

FE

SEM259D

Apply a continuous bead of liquid gasket to mating surface of oil pan.

MT

CL.

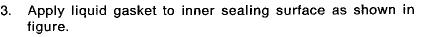
Use Genuine Liquid Gasket or equivalent.

AT

PD

EA

RA


Cut here. Liquid gasket Be sure liquid gasket bead is 3.5 to 4.5 mm (0.138 to 0.177 in) wide.

BR

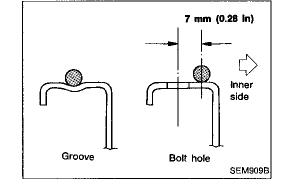
ST

BF

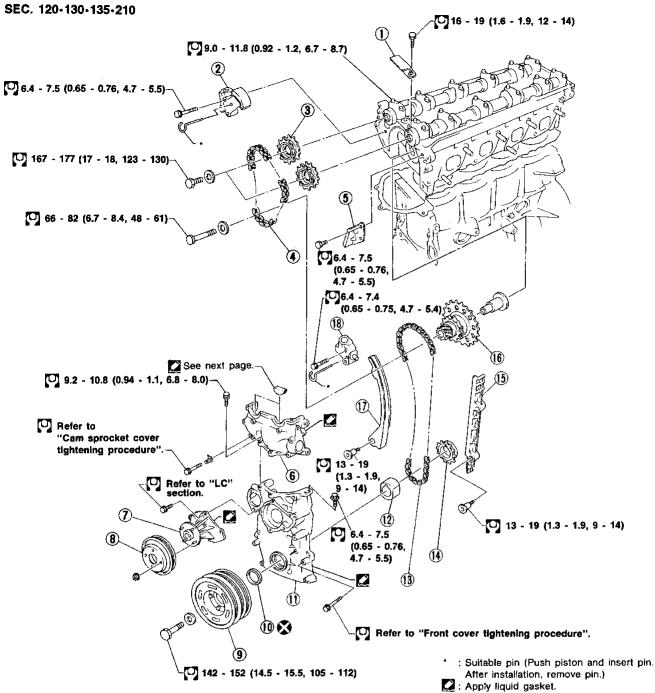
 $\mathbb{H}\mathbb{A}$ 



Attaching should be done within 5 minutes after coating.


EL

Install oil pan.


SLC906

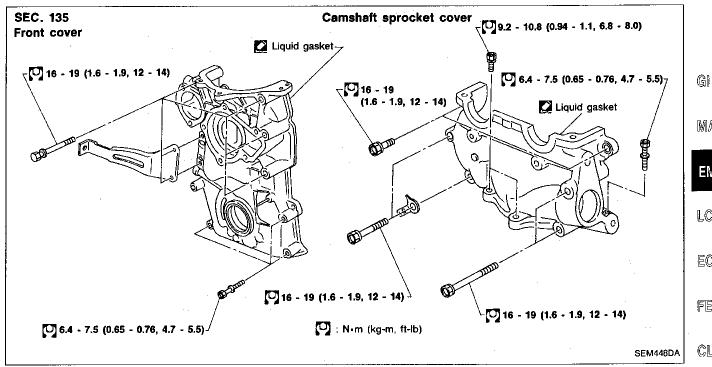
MDX



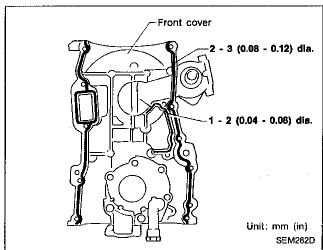


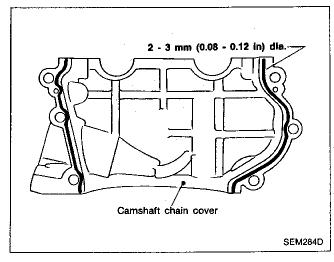
**EM-11** 79

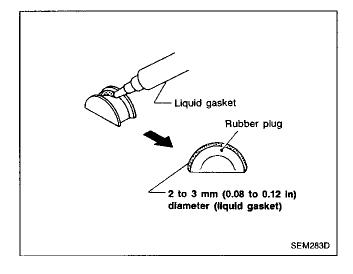



- ① Chain guide
- Upper timing chain tensioner
- 3 Cam sprocket
- (4) Upper timing chain
- Chain guide
- Upper front cover

- Water pump
- Water pump pulley
- (9) Crankshaft pulley
- 10 Front oil seal
- (f) Front cover
- Oil pump drive spacer


- (kg-m, ft-lb)


SEM792E


- (3) Lower timing chain
- (4) Crankshaft sprocket
- (5) Chain guide
- (6) Idler sprocket
- Chain tension arm
- 18 Lower timing chain tensioner



### Liquid gasket application places







MA

ΕM

LC

EC

FE

CL

MT

AT

PD

FA

RA

BR

ST

BF

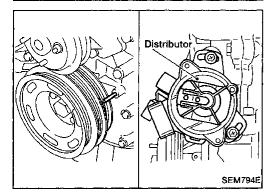
HA

EL

IDX

### **CAUTION:**

 After removing timing chain, do not turn crankshaft and camshaft separately, or valves will strike piston heads.


### Removal

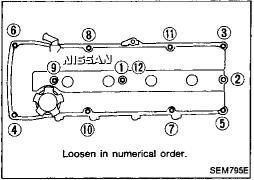
### **UPPER TIMING CHAIN**

- 1. Drain coolant from both cylinder block drain plug and radiator drain cock. Refer to MA section.
- 2. Drain engine oil from drain plug of oil pan.
- Remove vacuum hoses, fuel tubes, wires, harness and connectors and so on.
- 4. Remove exhaust manifold cover and front exhaust tube .
- 5. Remove the following parts.
- Air duct

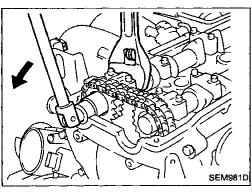
SEM793E

- · Cooling fan with coupling
- Radiator shroud
- 6. Disconnect injector harness connector and remove injector tube assembly with injectors.
- 7. Remove all spark plugs with high-tension cords.




Remove nuts from

engine room side.


Remove nuts from under -

vehicle side.

8. Set No. 1 piston at TDC on its compression stroke.



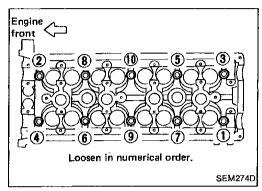
- 9. Remove rocker cover.
- 10. Remove distributor.



11. Remove cam sprocket.

## Intake camshaft 12 8 4 2 6 10 10 3 10 5 9 Exhaust camshaft Loosen in numerical order. Engine Loosen exhaust camshaft bracket in the same procedure. SEM271D.

### Removal (Cont'd)


- 12. Remove cam brackets and camshafts.
- These parts should be reassembled in their original positions.

GI

MA

OWN/A

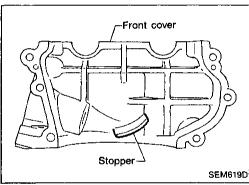
ΕM



13. Loosen cylinder head bolts.

 A warped or cracked cylinder head could result from LC removing in incorrect order.

Cylinder head bolts should be loosened in two or three steps.


EC

FE

CL

MT

AT



14. Remove cam sprocket cover

• Upper timing chain will not be disengaged from idler sprocket. For this reason, a stopper need not be used.

Cast portion of cam sprocket cover is located on lower side of idler sprocket so upper timing chain need not be disengaged from idler sprocket.

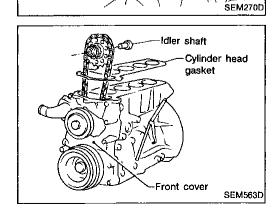
Remove upper chain tensioner.
 (Push piston and insert a suitable pin into pin hole.)

PD

16. Remove upper chain guides.

FA

- 17. Remove upper timing chain.
- 18. Remove idler sprocket bolt.


BR

RA

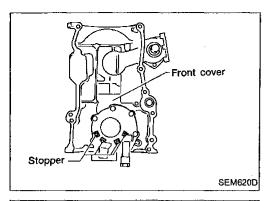
ST

BF

HA



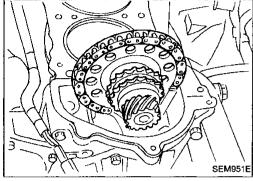
- 19. Remove cylinder head with intake manifold, intake manifold collector and exhaust manifold assembly.
- 20. Remove cylinder head gasket.


EL

 $\mathbb{I}\mathbb{D}\mathbb{X}$ 

### Removal (Cont'd)

• Lower timing chain will not be disengaged from crankshaft sprocket. For this reason, a stopper need not be used.


Cast portion of front cover is located on lower side of crankshaft sprocket so lower timing chain need not be disengaged from idler sprocket.

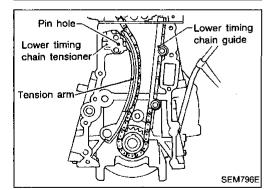


### **LOWER TIMING CHAIN**

1. Remove upper timing chain.

Refer to "UPPER TIMING CHAIN" in "Removal" (EM-14).

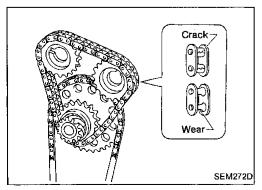


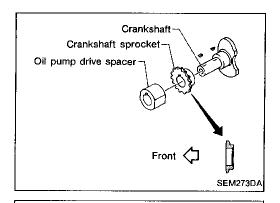

Suitable pullér

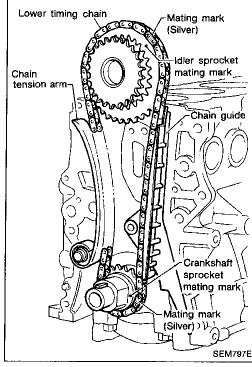
2. Remove oil pan.

### Refer to "Removal" in "OIL PAN" (EM-10).

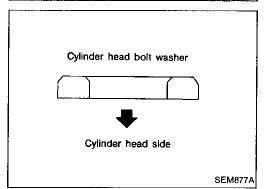
- 3. Remove oil strainer.
- 4. Remove the following parts.
- Power steering drive belt
- Alternator drive belt
- Air compressor drive belt
- Air compressor idler pulley
- 5. Remove crankshaft pulley.
- 6. Remove front cover.


SEM263D





- Remove the following parts.
- Lower timing chain tensioner (Push piston and insert a suitable pin into pin hole.)
- Chain tension arm
- Lower timing chain guide
- 8. Remove lower timing chain and idler sprocket.





Check for cracks and excessive wear at roller links. Replace chain if necessary.











### Installation

### **LOWER TIMING CHAIN**

- 1. Install crankshaft sprocket.
- Make sure that mating marks of crankshaft sprocket face front of engine.
- 2. Position crankshaft so that No. 1 piston is set at TDC.
- MA

EM

EC

FE

CL

MIT

AT

PD)

FA

RA

BR

ST

BF

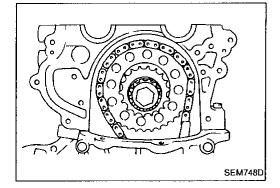
MA

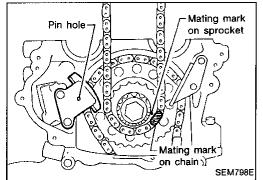
GI

- Install idler sprocket and lower timing chain.
- Set lower timing chain on the sprockets, aligning mating marks.
- Be careful not to damage cylinder head gasket when installing lower timing chain.
- 4. Install chain tension arm and chain guide.
- 5. Install lower timing chain tensioner.
- When installing, insert a suitable pin into pin hole to stop piston.
- After installation remove the pin to release piston.

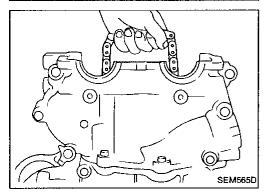
- 6. Install front cover.
- Apply a continuous bead of liquid gasket to front cover.
- Be careful not to damage cylinder head gasket.
- Be sure to install oil seal.
- 7. Install the following parts:
- Crankshaft pulley
- Oil strainer and oil pan
- Component parts below the engine
- Air compressor idler pulley
- New cylinder head gasket
- Idler shaft
- 8. Install cylinder head and temporarily tighten cylinder head bolts when installing front cover.
- Temporarily tighten cylinder head bolts. This is necessary to avoid damaging cylinder head gasket.
- Be sure to install washers between bolts and cylinder head.

IDX

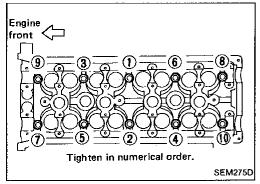

85


EM-17

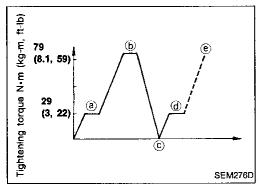
### Installation (Cont'd)


### **UPPER TIMING CHAIN**

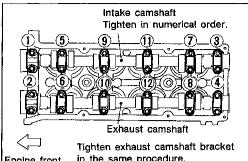
Install lower timing chain.
 Refer to "LOWER TIMING CHAIN" in "Installation" (EM-16).







- 2. Install upper timing chain, chain tensioner and chain guide.
- Set upper timing chain on the idler sprockets, aligning mating marks.
- When installing chain tensioner, insert a suitable pin into pin hole to stop piston.
- After installation remove the pin to release piston.




- 3. Install cam sprocket cover.
- Apply a continuous bead of liquid gasket to front cover.
- Be careful not to damage cylinder head gasket.
- Be careful upper timing chain does not slip or jump when installing cam sprocket cover.



- 4. Tighten cylinder head bolts.
- Tightening procedure
- a Tighten all bolts to 29 N·m (3.0 kg-m, 22 ft-lb).
- (b) Tighten all bolts to 79 N·m (8.1 kg-m, 59 ft-lb).
- © Loosen all bolts completely
- (f) Tighten all bolts to 25 to 34 N·m (2.5 to 3.5 kg-m, 18 to 25 ft-lb).
- Turn all bolts 86 to 91 degrees clockwise, or if an angle wrench is not available, tighten bolts to 75 to 84 N·m (7.6 to 8.6 kg-m, 55 to 62 ft-lb).



### Installation (Cont'd)



- Install camshafts and camshaft brackets.
- Tightening procedure
- Tighten all bolts to 2 N·m (0.2 kg-m, 1.4 ft-lb).
- Tighten all bolts to 9.0 to 11.8 N·m (0.92 to 1.2 kg-m, 6.7 to 8.7 ft-lb).



MA

EM

Install camshaft sprockets. Install chain guide between both camshaft sprockets.

LC

EC

FE

CL

Install rubber plugs as follows.

MT

(1) Apply liquid gasket to rubber plugs. (2) Install rubber plugs, then move them by hand to uniformly

AT

spread the gasket on cam sprocket cover surface. Rubber plugs should be installed flush with the cylinder head surface.

PD

Install chain guide between both camshaft sprockets.

FA

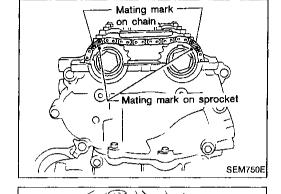
RA

10. Install distributor. Make sure that No. 1 piston is set at TDC and that distributor rotor is set at No. 1 cylinder spark position.

BR

ST

BF


HA

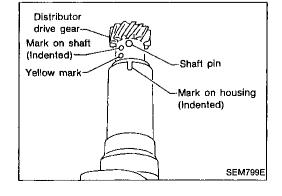
indented mark on housing as shown.

配

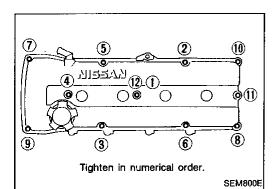
 $\mathbb{D}X$ 






SEM794E

Distributor


Good

SEM234EA

NG



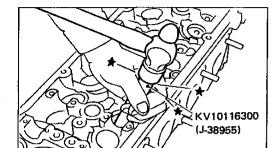
When installing distributor, align marks on shaft with



### Installation (Cont'd)

- 11. Install rocker cover.
- 12. Install all spark plugs with high-tension cords.
- 13. Connect injector harness connector and replace injector tube assembly with injectors.
- 14. Install the following parts.
- Radiator shroud
- · Cooling fan with coupling
- Air duct
- 15. Install vacuum hoses, fuel tubes, wires, harness and connectors and so on.

EM-20 88


### **VALVE OIL SEAL**

- Remove rocker cover.
- Remove camshaft. Refer to "TIMING CHAIN" (EM-12).
- Remove valve spring and valve oil seal with Tool or a suitable tool.

Piston concerned should be set at TDC to prevent valve from falling.

MA

GI.



Apply engine oil to new valve oil seal and install it with Tool.

ΕM LC

EC

FE

CL

MIT

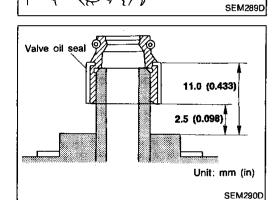
AT

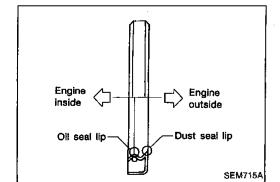
PD

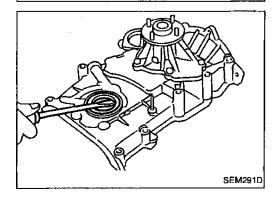
FA

RA

BR


ST


BF

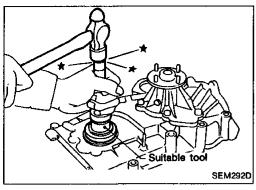

HA

EL

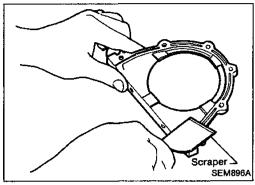
IDX





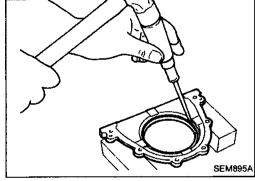



### **OIL SEAL INSTALLING DIRECTION**

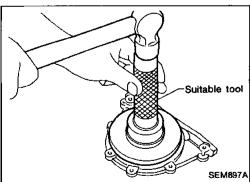

### **FRONT OIL SEAL**

- Remove radiator shroud and crankshaft pulley.
- Remove front oil seal
- Be careful not to damage crankshaft.

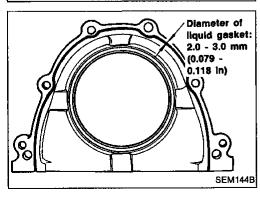
### OIL SEAL REPLACEMENT




3. Apply engine oil to new oil seal and install it using a suitable tool.



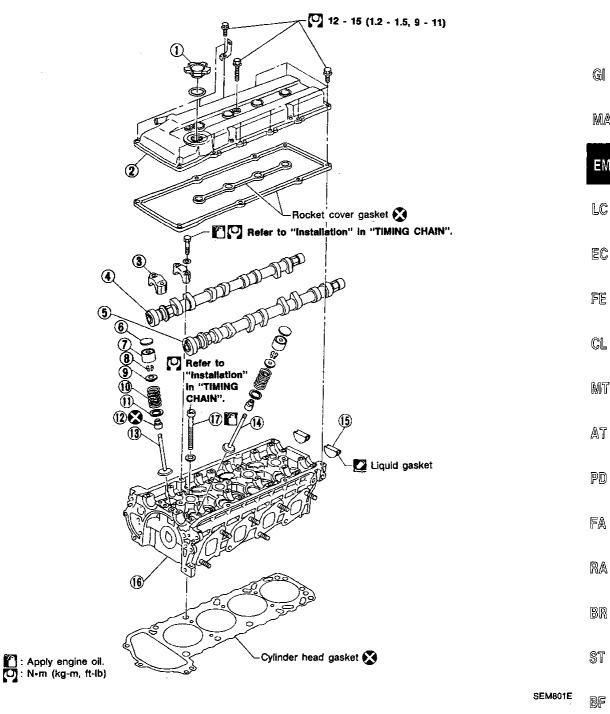

### **REAR OIL SEAL**


- 1. Remove drive plate or flywheel.
- 2. Remove rear oil seal retainer.
- 3. Remove traces of liquid gasket using scraper.



4. Remove rear oil seal from rear oil seal retainer.




5. Apply engine oil to new oil seal and install it using a suitable tool.



6. Apply a continuous bead of liquid gasket to rear oil seal retainer.

**EM-22** 90

SEC. 111-130



| <ol> <li>Oil filler cap</li> </ol> |
|------------------------------------|
|------------------------------------|

- 2 Rocker cover
- Camshaft bracket
- Intake camshaft
- Exhaust camshaft
- 6 Shim

- 7 Valve lifter
- Valve cotter
- Spring retainer
- Valve spring
- 1 Spring seat
- Valve oil seal

- intake valve
- Exhaust valve
- Rubber plug
- Cylinder head
- (7) Cylinder head bolt

HA

G

MA

 $\mathsf{EM}$ 

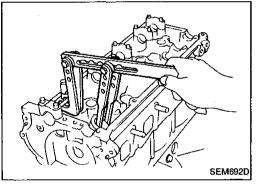
LC

EC

EL

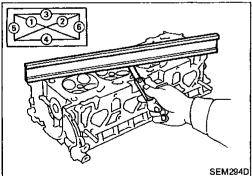
IDX

**EM-23** 


91

### **CAUTION:**

- Apply new engine oil to the sliding surfaces when installing sliding parts. Sliding parts include rocker arms, camshafts, oil seal, etc.
- Apply new engine oil to bolt thread and seat surfaces when tightening the following: Cylinder head bolts, camshaft sprocket bolts, crankshaft bracket bolts.
- Attach tags to valve lifters so as not to mlx them up.


### Removal and Installation

 Removal and installation procedures are the same as those for timing chain. Refer to "Removal" and "Installation" in "TIMING CHAIN" (EM-14, EM-17).



### Disassembly

- 1. Remove intake manifold, collector assembly and exhaust manifold. Refer to "Outer Component Parts" (EM-7).
- 2. Remove valve components with Tool.
- 3. Remove valve oil seal with a suitable tool.



### Inspection

### CYLINDER HEAD DISTORTION

Head surface flatness:

Standard Less than 0.03 mm (0.0012 in)

Limit 0.1 mm (0.004 in)

If beyond the specified limit, replace it or resurface it.

### Resurfacing limit:

The resurfacing limit of cylinder head is determined by the cylinder block resurfacing in an engine.

Amount of cylinder head resurfacing is "A".

Amount of cylinder block resurfacing is "B".

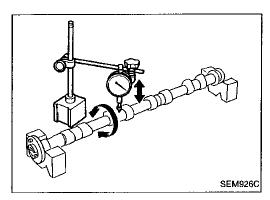
The maximum limit is as follows:

A + B = 0.2 mm (0.008 in)

After resurfacing cylinder head, check that camshaft rotates freely by hand. If resistance is felt, cylinder head must be replaced.

Nominal cylinder head height:

126.3 - 126.5 mm (4.972 - 4.980 in)


### CAMSHAFT VISUAL CHECK

Check camshaft for scratches, seizure and wear.

EM-24

92

### CYLINDER HEAD



### Inspection (Cont'd)

### **CAMSHAFT RUNOUT**

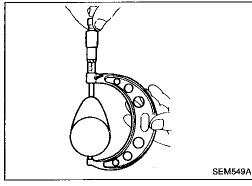
1. Measure camshaft runout at the center journal. Runout (Total indicator reading):

Standard:

Less than 0.02 mm (0.0008 in)

Limit:

0.04 mm (0.0016 in)


2. If it exceeds the limit, replace camshaft.

MA

EM

LC

G



### **CAMSHAFT CAM HEIGHT**

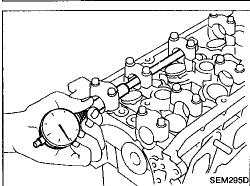
Measure camshaft cam height.

Standard cam height:

Intake & Exhaust

EC 42.415 - 42.605 mm (1.6699 - 1.6774 in)

Cam wear limit:


Intake & Exhaust

0.2 mm (0.008 in)

If wear is beyond the limit, replace camshaft.

CL

FE



### **CAMSHAFT JOURNAL CLEARANCE**

MIT

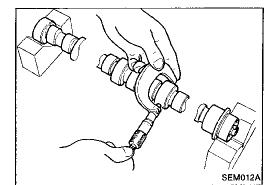
Install camshaft bracket and tighten bolts to the specified

AT

Measure inner diameter of camshaft bearing. Standard inner diameter:

#1 journal

28.000 - 28.025 mm (1.1024 - 1.1033 in)


#2 to #5 journals

24.000 - 24.025 mm (0.9449 - 0.9459 in)

FA

RA

PD)



Measure outer diameter of camshaft journal. Standard outer diameter:

#1 journal

27.935 - 27.955 mm (1.0998 - 1.1006 in)

BR

#2 to #5 journals

23.935 - 23.955 mm (0.9423 - 0.9431 in)

If clearance exceeds the limit, replace camshaft and/or cylinder head.

Camshaft journal clearance:

Standard 0.045 - 0.090 mm (0.0018 - 0.0035 in)

Limit 0.12 mm (0.0047 in)

BF

HA

EL

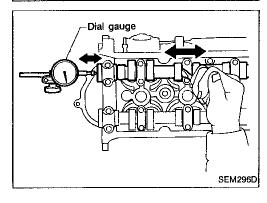
### **CAMSHAFT END PLAY**

Install camshaft and thermostat housing in cylinder head.

Measure camshaft end play.

Camshaft end play:

Standard


0.070 - 0.148 mm (0.0028 - 0.0058 in)

IDX

93

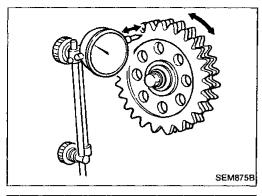
Limit

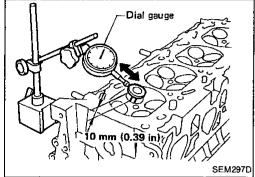
0.2 mm (0.008 in)



**EM-25** 

### **CYLINDER HEAD**

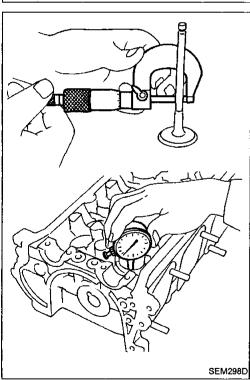

### Inspection (Cont'd)


### **CAMSHAFT SPROCKET RUNOUT**

- 1. Install sprocket on camshaft.
- 2. Measure camshaft sprocket runout.

Runout (Total indicator reading): Limit 0.15 mm (0.0059 in)

3. If it exceeds the limit, replace camshaft sprocket.



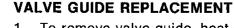



### **VALVE GUIDE CLEARANCE**

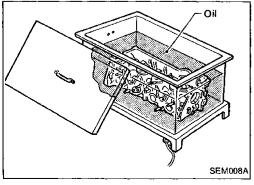
 Measure valve deflection in a parallel direction with rocker arm. (Valve and valve guide mostly wear in this direction.)

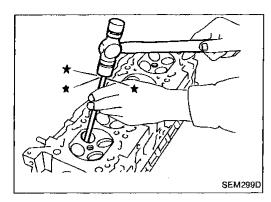
Valve deflection limit (Dial gauge reading): Intake & Exhaust 0.2 mm (0.008 in)




- 2. If it exceeds the limit, check valve to valve guide clearance.
- a. Measure valve stem diameter and valve guide inner diameter.
- b. Check that clearance is within specification.

### Valve to valve guide clearance:


Unit: mm (in)


|         | Standard                           | Limit         |
|---------|------------------------------------|---------------|
| Intake  | 0.020 - 0.053<br>(0.0008 - 0.0021) | 0.08 (0.0031) |
| Exhaust | 0.040 - 0.073<br>(0.0016 - 0.0029) | 0.1 (0.004)   |

c. If it exceeds the limit, replace valve or valve guide.



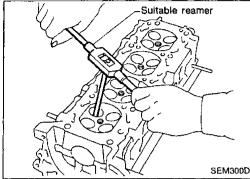
1. To remove valve guide, heat cylinder head to 120 to 140°C (248 to 284°F).





### Inspection (Cont'd)

 Drive out valve guide with a press [under a 20 kN (2 ton, 2.2 US ton, 2.0 Imp ton) pressure] or hammer and suitable tool.




MA

EM

LC.

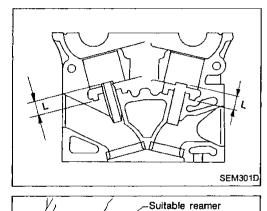
EC



3. Ream cylinder head valve guide hole.

Valve guide hole diameter (for service parts):

Intake


11.175 - 11.196 mm (0.4400 - 0.4408 in)

Exhaust

11.175 - 11.196 mm (0.4400 - 0.4408 in)

FE

CL



4. Heat cylinder head to 120 to 140°C (248 to 284°F) and press service valve guide onto cylinder head.

Projection "L":

13.3 - 13.9 mm (0.524 - 0.547 in)

AT

PD

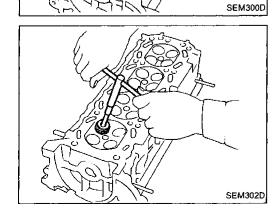
FA

5. Ream valve guide.

Finished size:

Intake & Exhaust

7.000 - 7.018 mm (0.2756 - 0.2763 in)


BR

RA

ST

BF

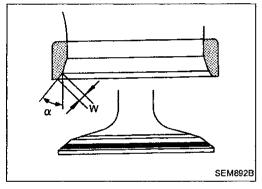
HA

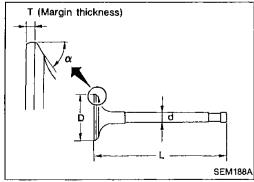


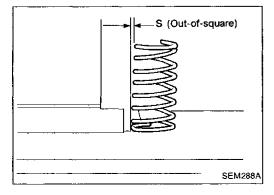
### **VALVE SEATS**

Check valve seats for any evidence of pitting at valve contact surface. Reset or replace if it has worn out excessively.

 Before repairing valve seats, check valve and valve guide for wear. If they have worn, replace them. Then correct valve seat


Cut with both hands to uniform the cutting surface.


### **CYLINDER HEAD**


### Recess diameter

SEM795A

# SEMOOBA







### Inspection (Cont'd)

### REPLACING VALVE SEAT FOR SERVICE PARTS

- Bore out old seat until it collapses. Boring should not continue beyond the bottom face of the seat recess in cylinder head. Set the machine depth stop to ensure this.
- 2. Ream cylinder head recess.

Reaming bore for service valve seat Oversize [0.5 mm (0.020 in)]:

> Intake 38.000 - 38.016 mm (1.4961 - 1.4967 in) Exhaust 32.700 - 32.716 mm (1.2874 - 1.2880 in)

Be sure to ream in circles concentric to the valve guide center. This will enable valve seat to fit correctly.

- 3. Heat cylinder head to 120 to 140°C (248 to 284°F).
- 4. Press fit valve seat until it seats on the bottom.

- Cut or grind valve seat using suitable tool at the specified dimensions as shown in SDS.
- 6. After cutting, lap valve seat with abrasive compound.
- 7. Check valve seating condition.

Seat face angle "a":

44°53' - 45°07' deg.

Contacting width "W":

Intake

1.48 - 1.63 mm (0.0583 - 0.0642 in)

**Exhaust** 

1.8 - 2.0 mm (0.071 - 0.079 in)

### **VALVE DIMENSIONS**

Check dimensions in each valve. For dimensions, refer to SDS (EM-46).

When valve head has been worn down to 0.5 mm (0.020 in) in margin thickness, replace valve.

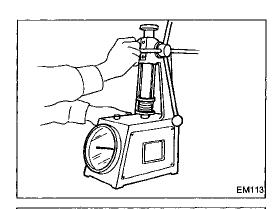
Grinding allowance for valve stem tip is 0.2 mm (0.008 in) or less.

### **VALVE SPRING**

### **Squareness**

1. Measure "S" dimension.

Out-of-square:


Less than 1.9 mm (0.075 in)

2. If it exceeds the limit, replace spring.

EM-28

96

### **CYLINDER HEAD**



### Inspection (Cont'd)

### **Pressure**

Check valve spring pressure.

Pressure: N (kg, lb) at height mm (in) Standard

548.70 (55.95, 123.37) at 26.0 (1.024)

Limit

More than 489.4 (49.9, 110.0) at 26.0 (1.024)

If it exceeds the limit, replace spring.

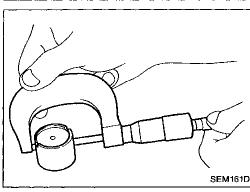
MA

GI

EΜ

### SEM160D

### **VALVE LIFTER AND VALVE SHIM**


1. Visually check contact and sliding surfaces for wear or scratches.

EC

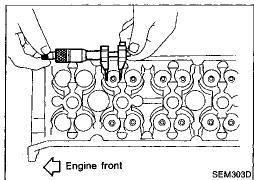
FE

CL

MT



Check diameter of valve lifter and valve lifter guide bore.Valve lifter diameter:


33.960 - 33.975 mm (1.3370 - 1.3376 in)

ΔT

PD

FA

RA

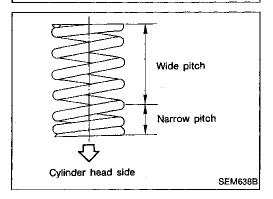


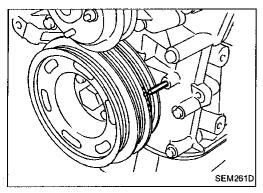
Lifter guide bore diameter: 34.000 - 34.021 mm (1.3386 - 1.3394 in) Valve lifter to valve lifter guide clearance: 0.025 - 0.061 mm (0.0010 - 0.0024 in)

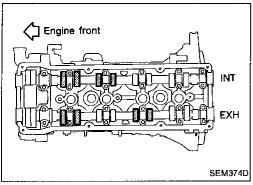
BR

ST

BF


HA


IDX


### Assembly

1. Instail valve component parts.

- Always use new valve oil seal. Refer to OIL SEAL REPLACEMENT (EM-21).
- Before installing valve oil seal, install valve spring seat.
- Install outer valve spring (uneven pitch type) with its narrow pitch side toward cylinder head side.
- After installing valve component parts, tap valve stem tip with plastic hammer to assure a proper fit.









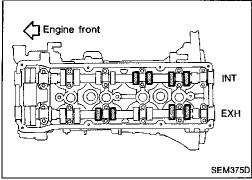
### CHECKING

Check valve clearance while engine is warm but not running.

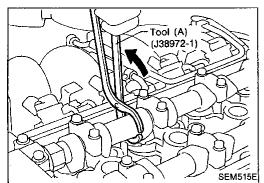
- 1. Remove rocker cover and all spark plugs.
- 2. Set No. 1 cylinder at TDC on its compression stroke.
- Align pointer with TDC mark on crankshaft pulley.
- Check that valve lifters on No. 1 cylinder are loose and valve lifters on No. 4 are tight.
   If not, turn crankshaft one revolution (360°) and align as

If not, turn crankshaft one revolution (360°) and align as above.

3. Check only those valves shown in the figure.




- Using a feeler gauge, measure clearance between valve lifter and camshaft.
- Record any valve clearance measurements which are out of specification. They will be used later to determine the required replacement adjusting shim.


Valve clearance (Hot):

Intake & Exhaust

0.33 - 0.41 mm (0.013 - 0.016 in)



- 4. Turn crankshaft one revolution (360°) and align mark on crankshaft pulley with pointer.
- 5. Check those valves shown in the figure.
- Use the same procedure as mentioned in step 3.
- If all valve clearances are within specification, install the following parts.
- Rocker cover
- All spark plugs



### **ADJUSTING**

Adjust valve clearance while engine is cold.

- 1. Turn crankshaft, to position cam lobe on camshaft of valve that must be adjusted upward.
- 2. Place Tool (A) around camshaft as shown in figure.
- 3. Rotate Tool (A) so that lifter is pushed down.

Before placing Tool (A), rotate notch toward center of cylinder head (See figure.), to simplify shim removal later.

CAUTION:

Be careful not to damage cam surface with Tool (A).

EM-30

98

### CYLINDER HEAD

### Tool (A) (J38972-1)Tool (B)

(J38972-2)

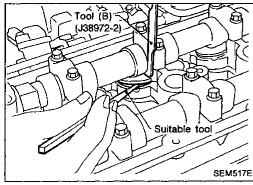
SEM516E

### Valve Clearance (Cont'd)

Place Tool (B) between camshaft and valve lifter to retain valve lifter.

### **CAUTION:**

Tool (B) must be placed as close to camshaft bracket as possible.




5. Remove Tool (A).

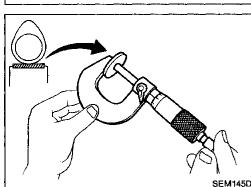
GI

MA

ĖΜ



Remove adjusting shim using a small screwdriver and a magnetic finger.


LC

EC

FE CL

MT

AT



- Determine replacement adjusting shim size following for-
- Using a micrometer determine thickness of removed shim.
- Calculate thickness of new adjusting shim so valve clearance comes within specified values.

R = Thickness of removed shim

N = Thickness of new shim

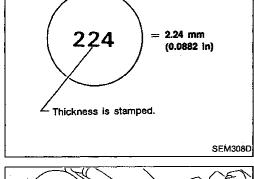
M = Measured valve clearance

Intake & Exhaust:

N = R + [M - 0.37 mm (0.0146 in)]

PD

FA


Shims are available in different thicknesses from 1.96 mm RA (0.0772 in) to 2.68 mm (0.1055 in) in increments of 0.02 mm

BR

(0.0008 in). Select new shim with thickness as close as possible to calculated value.

ST

BF

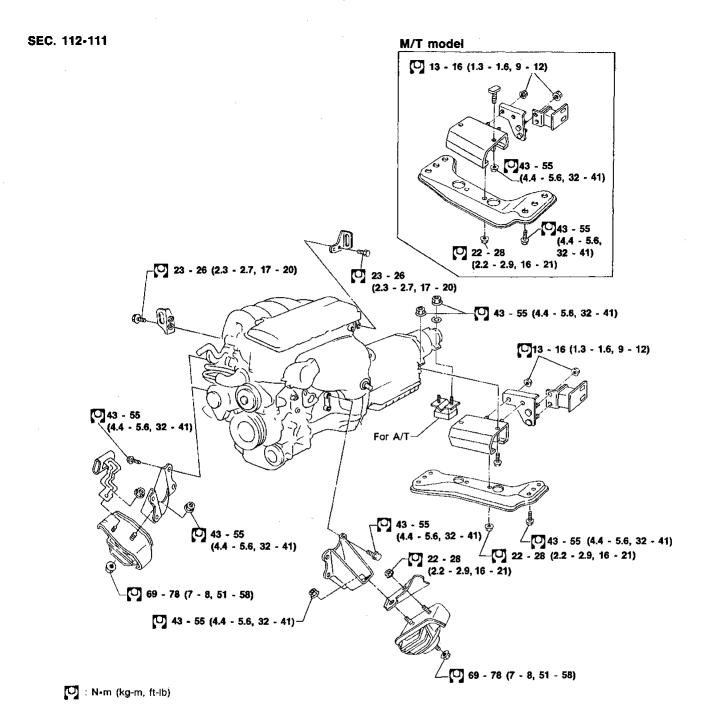


Install new shim using a suitable tool.

HA

Install with the surface on which the thickness is stamped facing down.

EL


- Place Tool (A) as mentioned in steps 2 and 3.
- 10. Remove Tool (B).
- 11. Remove Tool (A).

NOX

12. Recheck valve clearance. Refer to "CHECKING" (EM-30).

Tool (B) (J38972-213 SEM518E

> EM-31 99



### **WARNING:**

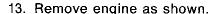
- Situate vehicle on a flat and solid surface.
- Place chocks at front and back of rear wheels.
- Do not remove engine until exhaust system has completely cooled off.
  - Otherwise, you may burn yourself and/or fire may break out in fuel line.
- For safety during subsequent steps, the tension of wires MA should be slackened against the engine.
- Before disconnecting fuel hose, release fuel pressure from fuel line.

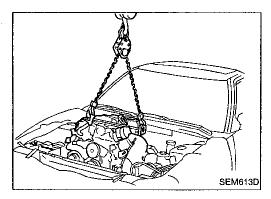
Refer to "Releasing Fuel Pressure" in EC section.

- Be sure to hoist engine and transmission in a safe manner.
- For engines not equipped with engine slingers, attach proper slingers and bolts described in PARTS CATALOG.

### **CAUTION:**

- When lifting engine, be careful not to strike adjacent parts, especially the following: Accelerator wire casing, brake lines, and brake master cylinder.
- In hoisting the engine, always use engine slingers in a safe manner.
- When removing the transmission assembly from engine, first remove the crankshaft position sensor (OBD) from the assembly.


Be careful not to damage sensor edge and ring gear teeth.


### Removal

1. Remove transmission.

### Refer to AT or MT section.

- 2. Remove engine under cover and hood.
- Drain coolant from both cylinder block drain plug, and radiator drain cock.
- 4. Drain engine oil from drain plug of oil pan.
- Remove vacuum hoses, fuel tubes, wires, harness and connectors and so on.
- Remove front exhaust tubes.
- 7. Remove radiator and shroud.
- 8. Remove drive belts.
- 9. Remove A/C compressor and power steering oil pump from engine.
- 10. Install engine slingers to cylinder head.
- 11. Set a suitable hoist on engine slinger.
- 12. Remove engine mounting bolts from both sides and then slowly raise engine.





EM-33 101

FA

RA

GI.

EM

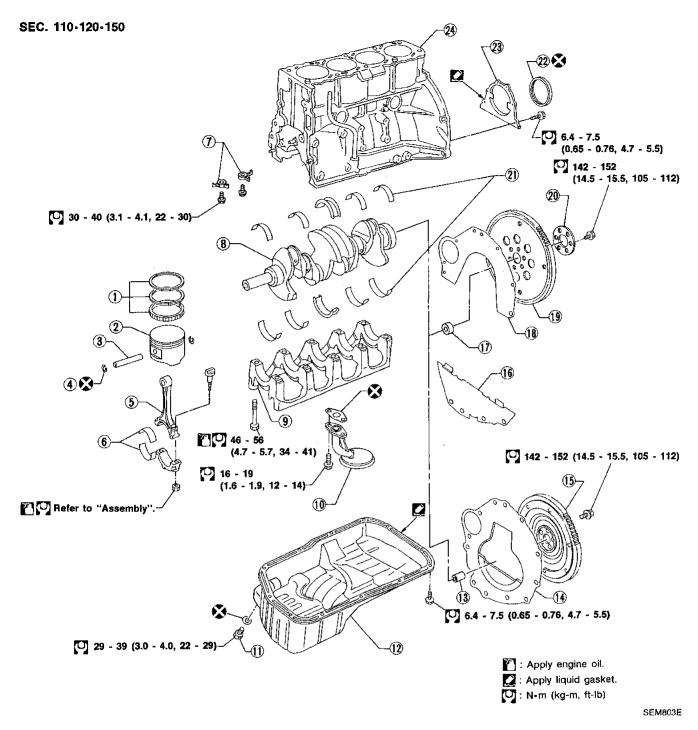
EC

严臣

MT

AT

PD)


BR

ST

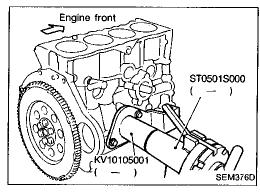
HA

EL

10))(



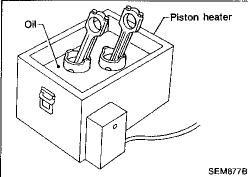
- 1 Piston rings
- 2 Piston
- 3 Piston pin
- 4 Snap ring
- (5) Connecting rod
- 6 Connecting rod bearing
- Oil jet
- 8 Crankshaft


- Main bearing cap
- (1) Oil strainer
- (f) Drain plug
- 12 Oil pan
- (3) Pilot bushing (M/T)
- (M/T)
- (15) Flywheel (M/T)
- (16) Dust cover (A/T)

- ① Pilot converter (A/T)
- (8) Rear plate (A/T)
- (9) Drive plate (A/T)
- 20 Drive plate reinforcement
- 21) Main bearing
- 22 Rear oil seal
- Rear oil seal retainer
- 24 Cylinder block

EM-34 102

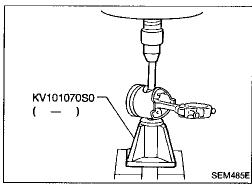
### **CAUTION:**


- When installing sliding parts (bearings, pistons, etc.), apply new engine oil to the sliding surfaces.
- Place removed parts such as bearings and bearing caps in their proper order and direction.
- Apply new engine oil to bolt thread and seat surfaces when tightening the following: connecting rod bolts and main bearing cap bolts.
- Do not allow any magnetic materials to contact the ring gear teeth of the flywheel/drive plate.

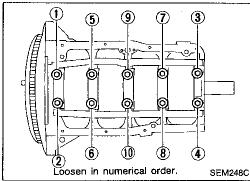


### **Disassembly**

### **PISTON AND CRANKSHAFT**


- Place engine on a work stand.
- 2. Remove timing chain.
  Refer to "Removal" in "TIMING CHAIN" (EM-14).




- 3. Remove pistons with connecting rods.
- When disassembling piston and connecting rod, remove snap rings. Then heat piston to 60 to 70°C (140 to 158°F), or use piston pin press stand at room temperature.



- When piston rings are not replaced, make sure that piston rings are mounted in their original positions.
- When piston rings are being replaced and no punchmark is present, piston rings can be mounted with either side up.



- 4. Remove main bearing beam and crankshaft.
- Before removing main bearing beam, measure crankshaft end play.
  - Bolts should be loosened in two or three steps.





GI

MA

ΕW

LC.

EC

FE

CL

MT

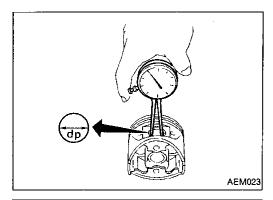
AT

PD)

FA

RA

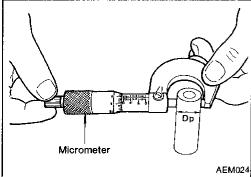
BR


ST

BF

HA

EL

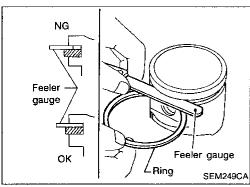

**EM-35** 103

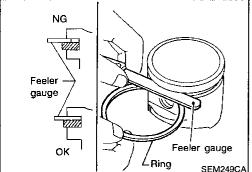


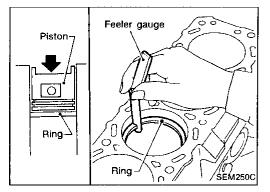
### Inspection

### **PISTON AND PISTON PIN CLEARANCE**

Measure inner diameter of piston pin hole "dp". Standard diameter "dp": 20.987 - 20.999 mm (0.8263 - 0.8267 in)





Measure outer diameter of piston pin "Dp". Standard diameter "Dp":


20.989 - 21.001 mm (0.8263 - 0.8268 in)

3. Calculate interference fit of piston pin to piston.

dp - Dp = 0 - 0.004 mm (0 - 0.0002 in)If it exceeds the above value, replace piston assembly with pin.







### PISTON RING SIDE CLEARANCE

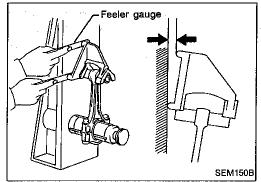
Side clearance: Top ring 0.040 - 0.080 mm (0.0016 - 0.0031 in) 0.030 - 0.070 mm (0.0012 - 0.0028 in)

Max. limit of side clearance:

0.1 mm (0.004 in)

If out of specification, replace piston and/or piston ring assem-

### PISTON RING END GAP


End gap: Top ring 0.28 - 0.52 mm (0.0110 - 0.0205 in) 2nd rina 0.45 - 0.69 mm (0.0177 - 0.0272 in) Oil ring 0.20 - 0.69 mm (0.0079 - 0.0272 in) Max. limit of ring gap: 1.0 mm (0.039 in)

If out of specification, replace piston ring. If gap still exceeds the limit even with a new ring, do the following: Rebore cylinder and use over-sized piston and piston rings.

### Refer to SDS (EM-51).

When replacing the piston, inspect cylinder block surface for scratches or seizure. If scratches or seizure are found, hone or replace the cylinder block.

> **EM-36** 104



#### Inspection (Cont'd)

#### **CONNECTING ROD BEND AND TORSION**

Bend:

Limit 0.15 mm (0.0059 in) per 100 mm (3.94 in) length

**Torsion:** 

Limit 0.30 mm (0.0118 in) per 100 mm (3.94 in) length

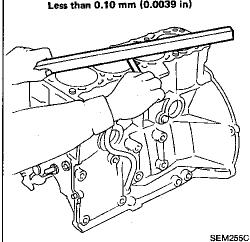
If it exceeds the limit, replace connecting rod assembly.

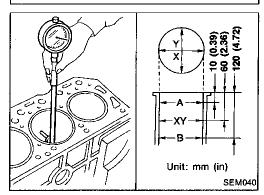
GI

MA

ΕM

LC


EC


FE

CL

MT

# Measuring points Distortion: Less than 0.10 mm (0.0039 in)





#### CYLINDER BLOCK DISTORTION AND WEAR

1. Clean upper face of cylinder block and measure the distortion.

Limit:

0.10 mm (0.0039 in)

If out of specification, resurface it.
 The resurfacing limit is determined by cylinder head resurfacing in engine.

Amount of cylinder head resurfacing is "A"

Amount of cylinder block resurfacing is "B"

The maximum limit is as follows:

A + B = 0.2 mm (0.008 in)Nominal cylinder block height

from crankshaft center:

246.95 - 247.05 mm (9.7224 - 9.7264 in)

3. If necessary, replace cylinder block.

PD

AT

FA

RA

BR

\$T

BF

HA

#### **PISTON-TO-BORE CLEARANCE**

1. Using a bore gauge, measure cylinder bore for wear, outof-round and taper.

Standard inner diameter:

89.000 - 89.030 mm (3.5039 - 3.5051 in)

Wear Ilmit:

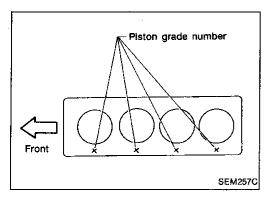
0.2 mm (0.008 in)

If it exceeds the limit, rebore all cylinders. Replace cylinder block if necessary.

Out-of-round (X - Y) standard:

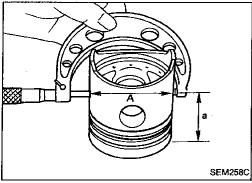
0.015 mm (0.0006 in)

Taper (A - B) standard:


0.01 mm (0.0004 in)

Check for scratches and seizure. If seizure is found, hone it.

IDX


EL

EM-37 105



#### Inspection (Cont'd)

 When replacing both cylinder block and piston with new ones, select piston making sure of grade numbers. Piston grade number should be the same as the grade number punched on cylinder block upper surface.



3. Measure piston skirt diameter.

Piston diameter "A":

Refer to SDS (EM-51).

Measuring point "a" (Distance from the top):

52 mm (2 05 in)

52 mm (2.05 in)

4. Check that piston-to-bore clearance is within specification.

Piston-to-bore clearance "B":

0.020 - 0.040 mm (0.0008 - 0.0016 in)

5. Determine piston oversize according to amount of cylinder wear.

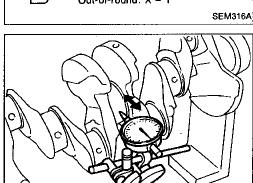
Oversize pistons are available for service. Refer to SDS (EM-51).

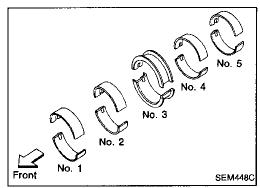
6. Cylinder bore size is determined by adding piston-to-bore clearance to piston diameter "A".

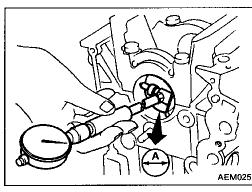
Rebored size calculation: D = A + B - C where,

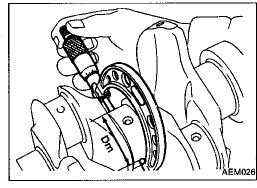
D: Bored diameter

A: Piston diameter as measured


**B:** Piston-to-bore clearance


C: Honing allowance 0.02 mm (0.0008 in)


- 7. Install main bearing caps, and tighten to the specified torque.
- Otherwise, cylinder bores may be distorted in final assembly.
- 8. Cut cylinder bores.
- When any cylinder needs boring, all other cylinders must also be bored.
- Do not cut too much out of cylinder bore at a time. Cut only 0.05 mm (0.0020 ln) or so in diameter at a time.
- Hone cylinders to obtain specified piston-to-bore clearance.
- 10. Measure finished cylinder bore for out-of-round and taper.
- Measurement should be done after cylinder bore cools down.


**EM-38** 106

# Taper: A - B Out-of-round: X - Y









#### Inspection (Cont'd)

#### **CRANKSHAFT**

- 1. Check crankshaft main and pin journals for score, wear or cracks.
- With a micrometer, measure journals for taper and out-ofround.

G

MA

EM

LC

EC

FE

CL

MIT

AT

FA

RA

BR

ST

BF

MA

EL

IDX

Out-of-round (X - Y):

Less than 0.005 mm (0.0002 in)

Taper (A - B):

Less than 0.002 mm (0.0001 ln)

Measure crankshaft runout.

Runout (Total indicator reading):

Less than 0.04 mm (0.0016 in)

**BEARING CLEARANCE** 

Main bearing

SEM254C

Use either of the following two methods. However, method "A" gives more reliable results and is preferred.

Method A (Using bore gauge & micrometer)

1. Set main bearings in their proper positions on cylinder block and main bearing cap.

Install main bearing cap to cylinder block.

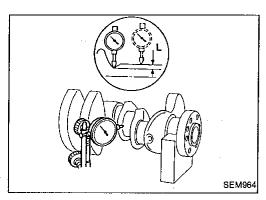
Tighten all bolts in correct order in two or three stages. Refer to "Assembly" (EM-42).

3. Measure inner diameter "A" of each main bearing.

Measure outer diameter "Dm" of each crankshaft main journal.

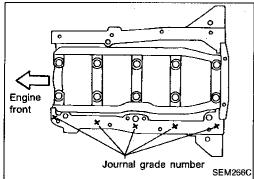
Calculate main bearing clearance. Main bearing clearance = A - Dm

Standard:

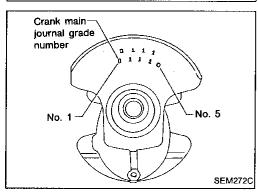

0.020 - 0.047 mm (0.0008 - 0.0019 in)

Limit: 0.1 mm (0.004 in)

- If it exceeds the limit, replace bearing.
- If clearance cannot be adjusted within the standard of any bearing, grind crankshaft journal and use undersized bearing.


107 **EM-39** 

#### Inspection (Cont'd)




- a. When grinding crankshaft journal, confirm that "L" dimension in fillet roll is more than the specified limit.

  "L": 0.1 mm (0.004 in)
- b. Refer to SDS (EM-52) for grinding crankshaft and available service parts.



- 8. If crankshaft is reused, measure main bearing clearance and select thickness of main bearings. If crankshaft is replaced with a new one, select thickness of main bearings as follows:
- a. Grade number of each cylinder block main journal is punched on the respective cylinder block. These numbers are punched in either Arabic or Roman numerals.



 Grade number of each crankshaft main journal is punched on crankshaft. These numbers are punched in either Arabic or Roman numerals.

c. Select main bearing with suitable thickness according to the following table.

#### Main bearing grade number:

| Crankshall issued and a sunt    | Main journal grade number |            |            |
|---------------------------------|---------------------------|------------|------------|
| Crankshaft journal grade number | 0                         | 1          | 2          |
| 0                               | 0 (Black)                 | 1 (Brown)  | 2 (Green)  |
| 1                               | 1 (Brown)                 | 2 (Green)  | 3 (Yellow) |
| 2                               | 2 (Green)                 | 3 (Yellow) | 4 (Blue)   |

For example:

Main journal grade number: 1

Crankshaft journal grade number: 2

Main bearing grade number = 1 + 2 = 3 (Yellow)

EM-40 108

# Inside micrometer

AEM027

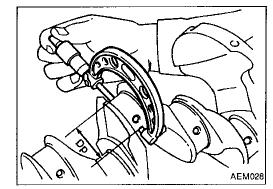
5.

#### Inspection (Cont'd)

#### Connecting rod bearing (Big end)

- 1. Install connecting rod bearing to connecting rod and cap.
- 2. Install connecting rod cap to connecting rod.

#### Tighten bolts to the specified torque.


3. Measure inner diameter "C" of each bearing.

GI

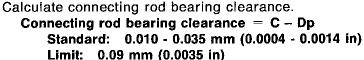
MA

EΜ





No. 4


SEM567B

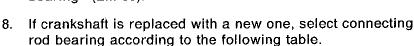
Crank pin

grade number

 Measure outer diameter "Dp" of each crankshaft pin journal.

LC




EC

6. If it exceeds the limit, replace bearing.

FE

 If clearance cannot be adjusted within the standard of any bearing, grind crankshaft journal and use undersized bearing. Refer to step 7 of "BEARING CLEARANCE — Main bearing" (EM-39).

CL.



MT

#### Connecting rod bearing grade number:

These numbers are punched in either Arabic or Roman numerals.

ט טייט

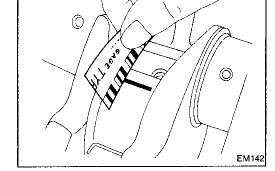
| Crank pin grade number | Connecting rod bearing grade number |  |
|------------------------|-------------------------------------|--|
| 0                      | 0 (No color)                        |  |
| 1                      | 1 (Brown)                           |  |
| 2                      | 2 (Green)                           |  |

.\_\_\_ PD \_\_\_\_ FA



RA

#### **CAUTION:**


 Do not turn crankshaft or connecting rod while plastigage is being inserted.

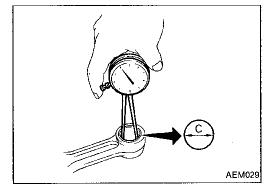
BR

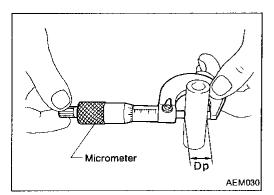
 When bearing clearance exceeds the specified limit, ensure that the proper bearing has been installed. If incorrect bearing clearance exists, use a thicker or undersized main bearing to ensure specified clearance.

ST






#### CONNECTING ROD BUSHING CLEARANCE (Small end)


Measure inner diameter "C" of bushing.

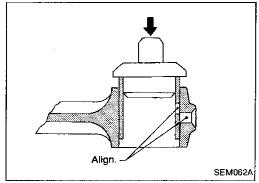
EL

HA

IDX






#### Inspection (Cont'd)

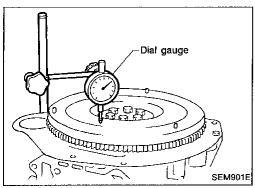
- 2. Measure outer diameter "Dp" of piston pin.
- 3. Calculate connecting rod bushing clearance.

C - Dp =

0.005 - 0.017 mm (0.0002 - 0.0007 in) (Standard) 0.023 mm (0.0009 in) (Limit)

If it exceeds the limit, replace connecting rod assembly and/or piston set with pin.




#### REPLACEMENT OF CONNECTING ROD BUSHING (Small end)

 Drive in small end bushing until it is flush with end surface of rod.

Be sure to align the oil holes.

After driving in small end bushing, ream the bushing. This
ensure that clearance between connecting rod bushing and
piston pin is the specified value.

Clearance between small end bushing and piston pln: 0.005 - 0.017 mm (0.0002 - 0.0007 in)



#### FLYWHEEL/DRIVE PLATE RUNOUT

Runout (Total indicator reading):

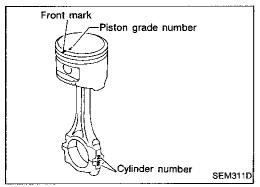
Flywheel (M/T model)


Less than 0.15 mm (0.0059 in)

Drive plate (A/T model)

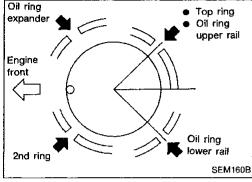
Less than 0.5 mm (0.020 in)

**CAUTION:** 


Do not allow any magnetic materials to contact the ring gear teeth.



#### Assembly


#### **PISTON**

1. Install new snap ring on one side of piston pin hole.



- 2. Heat piston to 60 to 70°C (140 to 158°F) and assemble piston, piston pin, connecting rod and new snap ring.
- Align the direction of piston and connecting rod.
- Numbers stamped on connecting rod and cap correspond to each cylinder.
- After assembly, make sure connecting rod swings smoothly.

## Punchmark side up if present





Set piston rings as shown.

#### **CAUTION:**

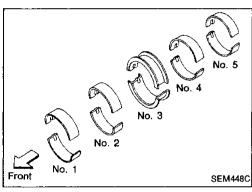
SEM264C

- When piston rings are not being replaced, make sure that piston rings are mounted in their original positions.
- When replacing piston rings, those without punchmarks can be mounted with either side up.



MA

EΜ


LC

EC

FE

CL,

MT



7

(9)

SEM267C



- Set main bearings in their proper positions on cylinder block and main bearing beam.
- Confirm that correct main bearings are used. Refer to AT "Inspection" of this section (EM-39).



FA

RA

BR

- Install crankshaft and main bearing beam and tighten bolts to the specified torque.
- Prior to tightening bearing cap bolts, place bearing cap in its proper position. This is done by shifting crankshaft in the axial direction.
- Tighten bearing cap bolts gradually in two or three stages. Start with center bearing and move outward sequentially.
- After securing bearing cap bolts, make sure crankshaft turns smoothly by hand.



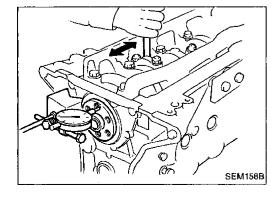
Measure crankshaft end play.

HA

Crankshaft end play:

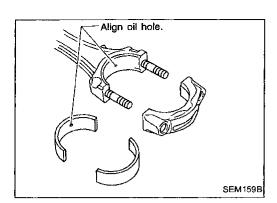
Standard

0.05 - 0.18 mm (0.0020 - 0.0071 in)

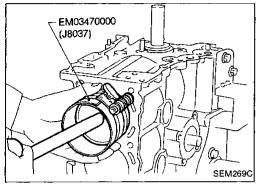

Limit

0.3 mm (0.012 in)

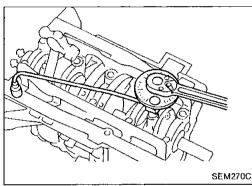
If beyond the limit, replace bearing with a new one.


IDX

EL,




**EM-43** 111

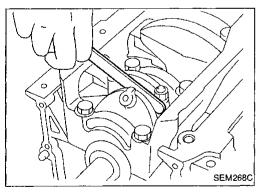

#### Assembly (Cont'd)



- 4. Install connecting rod bearings in connecting rods and connecting rod caps.
- Confirm that correct bearings are used. Refer to "Inspection" (EM-41).
- Install bearings so that oil hole in connecting rod aligns with oil hole of bearing.



- 5. Install pistons with connecting rods.
- a. Install them into corresponding cylinders with Tool.
- Be careful not to scratch cylinder wall by connecting rod.
- Arrange so that front mark on piston head faces toward front of engine.




b. Install connecting rod bearing caps.

Tighten connecting rod bearing cap nuts to the specified torque.

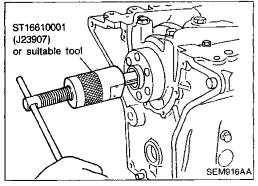
Connecting rod bearing nut:

- (1) Tighten to 14 to 16 N·m (1.4 to 1.6 kg-m, 10 to 12 ft-lb).
- (2) Tighten bolts 60 to 65 degrees clockwise with an angle wrench, or if an angle wrench is not available, tighten them to 38 to 44 N·m (3.9 to 4.5 kg-m, 28 to 33 ft-lb).



6. Measure connecting rod side clearance.

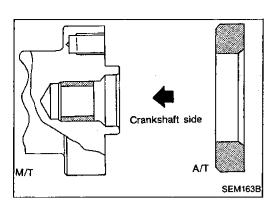
Connecting rod side clearance:


Standard

0.2 - 0.4 mm (0.008 - 0.016 in)

Limit

0.6 mm (0.024 ln)


If beyond the limit, replace connecting rod and/or crank-shaft.



#### REPLACING PILOT BUSHING

1. Remove pilot bushing (M/T) or pilot converter (A/T).

#### Assembly (Cont'd)



2. Install pilot bushing (M/T) or pilot converter (A/T).

Gl

MA

EM

LC

EC

FE

 $\mathbb{C}\mathsf{L}$ 

MT

AT

PD

FA

 $\mathbb{R}\mathbb{A}$ 

BR

ST

BF

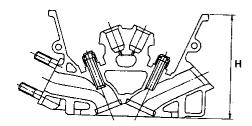
HA

EL

IDX

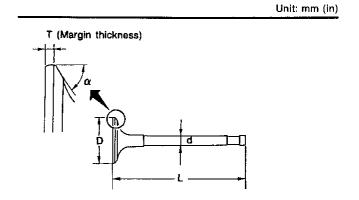
#### **General Specifications**

| Cylinder arrangeme      | ent         | In-line 4             |  |
|-------------------------|-------------|-----------------------|--|
| Displacement            | cm³ (cu in) | 2,389 (145.78)        |  |
| Bore and stroke mm (in) |             | 89 x 96 (3.50 x 3.78) |  |
| Valve arrangement       |             | DOHC                  |  |
| Firing order            |             | 1-3-4-2               |  |
| Number of piston ri     | ngs         |                       |  |
| Compression             |             | 2                     |  |
| Oil                     |             | 1                     |  |
| Number of main bearings |             | 5                     |  |
| Compression ratio       |             | 9.5                   |  |


#### **COMPRESSION PRESSURE**

|                                         | Unit: kPa (kg/cm², psi)/300 rpm |
|-----------------------------------------|---------------------------------|
| Compression pressure                    |                                 |
| Standard                                | 1,236 (12.6, 179)               |
| Minimum                                 | 1,040 (10.6, 151)               |
| Differential limit between cylinders    | 98 (1.0, 14)                    |
| - · · · - · · · · · · · · · · · · · · · | 98 (1.0, 14)                    |

#### Inspection and Adjustment VALVE


#### **CYLINDER HEAD**

### Unit: mm (in) Standard Limit Head surface distortion Less than 0.03 (0.0012) 0.1 (0.004)



Nominal cylinder head height: H = 126.3 - 126.5 (4.972 - 4.980)

SEM519E



|                                       | SEM188                               |  |
|---------------------------------------|--------------------------------------|--|
| Valve head diameter "D"               |                                      |  |
| Intake                                | 36.5 - 36.7 (1.437 - 1.445)          |  |
| Exhaust                               | 31.2 - 31.4 (1.228 - 1.236)          |  |
| Valve length "L"                      |                                      |  |
| Intake                                | 101.02 - 101.62<br>(3.9772 - 4.0008) |  |
| Exhaust                               | 98.52 - 99.72<br>(3.8787 - 3.9260)   |  |
| Valve stem diameter "d"               |                                      |  |
| Intake                                | 6.965 - 6.980 (0.2742 - 0.2748)      |  |
| Exhaust                               | 6.945 - 6.960 (0.2734 - 0.2740)      |  |
| Valve seat angle "a"                  |                                      |  |
| Intake & Exhaust                      | 45°15′ - 45°45′                      |  |
| Valve margin "T"                      |                                      |  |
| Intake                                | 0.95 - 1.25 (0.0374 - 0.0492)        |  |
| Exhaust                               | 1.15 - 1.45 (0.0453 - 0.0571)        |  |
| Valve margin "T" limit                | More than 0.5 (0.020)                |  |
| Valve stem end surface grinding limit | Less than 0.2 (0.008)                |  |

**EM-46** 114

#### Inspection and Adjustment (Cont'd)

#### Valve spring

| Free height                      | mm (in) | 44.6 (1.756)                              |
|----------------------------------|---------|-------------------------------------------|
| Pressure<br>N (kg, lb) at height | mm (in) |                                           |
| Standard                         |         | 548.70 (55.95, 123.37)<br>at 26.0 (1.024) |
| Limit                            | •       | 489.4 (49.9, 110.0)<br>at 26.0 (1.024)    |
| Out-of-square                    | mm (in) | Less than 1.9 (0.075)                     |

#### Valve lifter

|                                           | Unit: mm (in)                        |
|-------------------------------------------|--------------------------------------|
| Valve lifter outer diameter               | 33.960 - 33.975<br>(1.3370 - 1.3376) |
| Lifter guide inner diameter               | 34.000 - 34.021<br>(1.3386 - 1.3394) |
| Clearance between lifter and filter guide | 0.025 - 0.061<br>(0.0010 - 0.0024)   |

#### GI

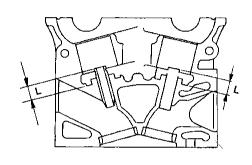
MA

#### Valve clearance adjustment

|--|

| Valve clearance (Hot) |                             |
|-----------------------|-----------------------------|
| Intake & Exhaust      | 0.33 - 0.41 (0.013 - 0.016) |




#### **Available shims**

LC

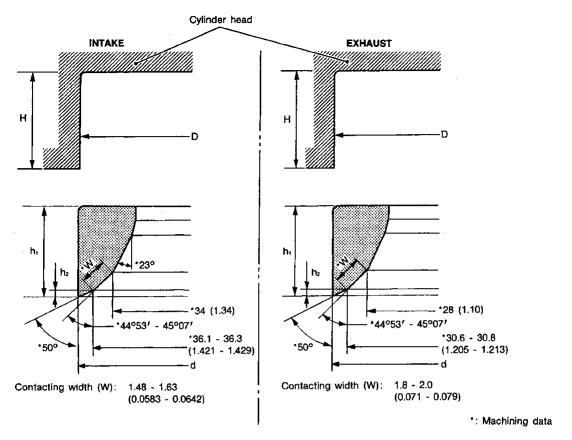
| Thickness mm (in) | Identification mark |                        |
|-------------------|---------------------|------------------------|
| 1.96 (0.0772)     | 196                 | FE                     |
| 1.98 (0.0780)     | 198                 | Lie                    |
| 2.00 (0.0787)     | 200                 |                        |
| 2.02 (0.0795)     | 202                 | CL                     |
| 2.04 (0.0803)     | 204                 |                        |
| 2.06 (0.0811)     | 206                 |                        |
| 2.08 (0.0819)     | 208                 | 8.05E                  |
| 2.10 (0.0827)     | 210                 | MT                     |
| 2.12 (0.0835)     | 212                 |                        |
| 2.14 (0.0843)     | 214                 | A 52                   |
| 2.16 (0.0850)     | 216                 | AT                     |
| 2.18 (0.0858)     | 218                 |                        |
| 2.20 (0.0866)     | 220                 | 50                     |
| 2.22 (0.0874)     | . 222               | PD                     |
| 2.24 (0.0882)     | 224                 |                        |
| 2.26 (0.0890)     | 226                 |                        |
| 2.28 (0.0898)     | 228                 | FA                     |
| 2.30 (0.0906)     | 230                 |                        |
| 2.32 (0.0913)     | 232                 |                        |
| 2.34 (0.0921)     | 234                 | $\mathbb{R}\mathbb{A}$ |
| 2.36 (0.0929)     | 236                 |                        |
| 2.38 (0.0937)     | 238                 |                        |
| 2.40 (0.0945)     | 240                 | BR                     |
| 2.42 (0.0953)     | 242                 |                        |
| 2.44 (0.0961)     | 244                 |                        |
| 2.46 (0.0969)     | 246                 | ST                     |
| 2.48 (0.0976)     | 248                 |                        |
| 2.50 (0.0984)     | 250                 |                        |
| 2.52 (0.0992)     | 252                 | BF                     |
| 2.54 (0.1000)     | 254                 |                        |
| 2.56 (0.1008)     | 256                 |                        |
| 2.58 (0.1016)     | 258                 | HA                     |
| 2.60 (0.1024)     | 260                 | u up u                 |
| 2.62 (0.1031)     | 262                 |                        |
| 2.64 (0.1039)     | <u>2</u> 64         | E'L                    |
| 2.66 (0.1047)     | 266                 | وطر کے                 |
| 2.68 (0.1055)     | 268                 |                        |
|                   |                     |                        |
|                   |                     | 1100                   |

#### Valve guide

Unit: mm (in)



SEM301D


|                                               |         |                                      | SEM301D                              |
|-----------------------------------------------|---------|--------------------------------------|--------------------------------------|
|                                               |         | Standard                             | Service                              |
| Valve guide                                   |         |                                      |                                      |
| Outer<br>diameter                             | Intake  | 11.023 - 11.034<br>(0.4340 - 0.4344) | 11.223 ~ 11.234<br>(0.4418 - 0.4423) |
|                                               | Exhaust | 11.023 - 11.034<br>(0.4340 - 0.4344) | 11.223 - 11.234<br>(0.4418 - 0.4423) |
| Valve guide                                   |         |                                      |                                      |
| Inner<br>diameter                             | Intake  | 7.000 - 7.018 (0.2756 - 0.2763)      |                                      |
| (Finished<br>size)                            | Exhaust | 7.000 - 7.018 (0.2756 - 0.2763)      |                                      |
| Cylinder head<br>valve guide<br>hole diameter | Intake  | 10.975 - 10.996<br>(0.4321 - 0.4329) | 11.175 - 11.196<br>(0.4400 - 0.4408) |
|                                               | Exhaust | 10.975 - 10.996<br>(0.4321 - 0.4329) | 11.175 - 11.196<br>(0.4400 - 0.4408) |
| Interference fit of valve guide               |         | 0.027 - 0.059 (0.0011 - 0.0023)      |                                      |
|                                               |         | Standard                             | Limit                                |
| Stem to guide clearance                       | Intake  | 0.020 - 0.053<br>(0.0008 - 0.0021)   | 0.08 (0.0031)                        |
|                                               | Exhaust | 0.040 - 0.073<br>(0.0016 - 0.0029)   | 0.1 (0.004)                          |
| Valve deflection limit                        |         | 0.2 (0.008)                          |                                      |
| Projection length "L"                         |         | 13.3 - 13.9 (0.524 - 0.547)          |                                      |
|                                               |         |                                      |                                      |

**EM-47** 115

#### Inspection and Adjustment (Cont'd)

#### Valve seat

Unit: mm (in)



SEM952E

|                                        |     | Standard                          | Service                           |
|----------------------------------------|-----|-----------------------------------|-----------------------------------|
| Outlinder hand and and area discussed  | In. | 37.500 - 37.516 (1.4764 - 1.4770) | 38.000 - 38.016 (1.4961 - 1.4967) |
| Cylinder head seat recess diameter (D) | Ex. | 32.200 - 32.216 (1.2677 - 1.2683) | 32.700 - 32.716 (1.2874 - 1.2880) |
| Value and interference fit             | In. | 0.064 - 0.096 (0                  | .0025 - 0.0038)                   |
| Valve seat interference fit E          |     | 0.064 - 0.096 (0.0025 - 0.0038)   |                                   |
| Valve seat outer diameter (d)          | In. | 37.580 - 37.596 (1.4795 - 1.4802) | 38.080 - 38.096 (1.4992 - 1.4998) |
|                                        | Ex. | 32.280 - 32.296 (1.2709 - 1.2715) | 32.780 - 32.796 (1.2905 - 1.2912) |
| Doolly (II)                            | in. | 6.1 - 6.3 (0.240 - 0.248)         |                                   |
| Depth (H) Ex.                          |     | 6.1 - 6.3 (0.240 - 0.248)         |                                   |
| Height (h <sub>1</sub> )               |     | 5.9 - 6.0 (0.232 - 0.236)         |                                   |
| Liniahi (h. )                          | In. | 0.44 - 0.64 (0.0173 - 0.0252)     |                                   |
| Height (h <sub>2</sub> )               | Ex. | 0.53 - 0.73 (0.0209 - 0.0287)     |                                   |

EM-48 116

#### Inspection and Adjustment (Cont'd)

#### **CYLINDER BLOCK**

10 (0.39) A 60 (2.36) XY 120 (4.72) H GI

MA

ΕM

LC

EC

FE

SEM447C

Unit: mm (in)

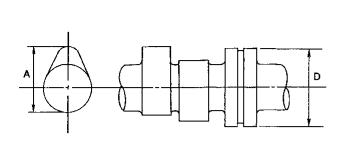
|                                          |                          |         |                                   |              | , ,    |
|------------------------------------------|--------------------------|---------|-----------------------------------|--------------|--------|
|                                          |                          |         | Standard                          | Limit        | M      |
| Distortion                               |                          |         | Less than 0.03 (0.0012)           | 0.1 (0.004)  |        |
|                                          |                          | Grade 1 | 89.000 - 89.010 (3.5039 - 3.5043) |              | <br>A1 |
|                                          | Inner diameter           | Grade 2 | 89.010 - 89.020 (3.5043 - 3.5047) | 0.2 (0.008)  |        |
| Cylinder bore                            |                          | Grade 3 | 89.020 - 89.030 (3.5047 - 3.5051) |              | P[     |
|                                          | Out-of-round (X – Y      |         | Less than 0.015 (0.0006)          | <u> </u>     |        |
|                                          | Taper (A – B)            |         | Less than 0.010 (0.0004)          |              |        |
| Difference in inne                       | r diameter between cylin | ders    | Less than 0.03 (0.0012)           | 0.2 (0.008)  | F/     |
| Cylinder block hei<br>(From crankshaft c | •                        |         | 246.95 - 247.05 (9.7224 - 9.7264) | 0.2 (0.008)* | R      |

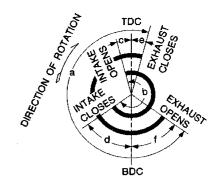
<sup>\*</sup> Total amount of cylinder head resurfacing and cylinder block resurfacing

BR

ST

BF


HA


EL

10X

#### Inspection and Adjustment (Cont'd)

#### **CAMSHAFT AND CAMSHAFT BEARING**

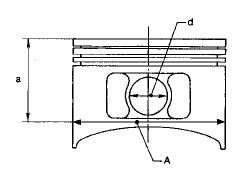




SEM568A

EM120

Unit: mm (in)


|                     | Standard                                                                         | Limit                                                                               |
|---------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Intake              | 42.415 - 42.605 (1.6699 - 1.6774)                                                | _                                                                                   |
| Exhaust             | 42.415 - 42.605 (1.6699 - 1.6774)                                                |                                                                                     |
|                     | ——————————————————————————————————————                                           | 0.2 (0.008)                                                                         |
|                     | 0.045 - 0.090 (0.0018 - 0.0035)                                                  | 0.12 (0.0047)                                                                       |
| #1 journal          | 28.000 - 28.025 (1.1024 - 1.1033)                                                |                                                                                     |
| #2 to #5<br>journal | 24.000 - 24.025 (0.9449 - 0.9459)                                                | _                                                                                   |
| #1 journal          | 27.935 - 27.955 (1.0998 - 1.1006)                                                |                                                                                     |
| #2 to #5<br>journal | 23.935 - 23.955 (0.9423 - 0.9431)                                                | _                                                                                   |
|                     | Less than 0.02 (0.0008)                                                          | 0.04 (0.0016)                                                                       |
|                     | 0.070 - 0.148 (0.0028 - 0.0058)                                                  | 0.2 (0.008)                                                                         |
| а                   | 232                                                                              |                                                                                     |
| b                   | 232                                                                              | _                                                                                   |
| С                   | -1                                                                               | _                                                                                   |
| d                   | 53                                                                               | _                                                                                   |
| е                   | 4                                                                                | <u> </u>                                                                            |
| f                   | 48                                                                               | _                                                                                   |
|                     | #1 journal #2 to #5 journal #1 journal #2 to #5 journal  #2 to #5 journal  a b c | Intake 42.415 - 42.605 (1.6699 - 1.6774)  Exhaust 42.415 - 42.605 (1.6699 - 1.6774) |

<sup>\*</sup> Total indicator reading

#### Inspection and Adjustment (Cont'd)

#### PISTON, PISTON RING AND PISTON PIN

#### **Piston**

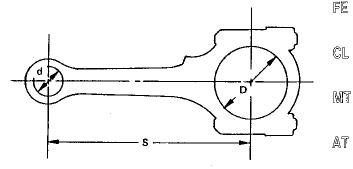


SEM804E

| Unit: | mm | (in) |
|-------|----|------|
|-------|----|------|

|                                   | Grade<br>No. 1                    | 88.970 - 88.980<br>(3.5027 - 3.5031)  |  |
|-----------------------------------|-----------------------------------|---------------------------------------|--|
| Standard                          | Grade<br>No. 2                    | 88.980 - 88.990<br>(3.5031 - 3.5035)  |  |
|                                   | Grade<br>No. 3                    | 88.990 - 89.000<br>(3.5035 - 3.5039)  |  |
| Service                           | 0.5<br>(0.020)                    | 89.470 - 89.500<br>(3.5224 - 3.5236)  |  |
| (Oversize)                        | 1.0<br>(0.039)                    | 89.970 - 90.000<br>(3.5421 - 3.5433)  |  |
|                                   | Approximately 52 (2.05)           |                                       |  |
| Piston pin hole diameter (d)      |                                   | 20.987 - 20.999 (0.8263 - 0.8267)     |  |
| Piston-to-cylinder bore clearance |                                   | 40 (0.0008 - 0.0016)                  |  |
|                                   | Service<br>(Oversize)<br>diameter | No. 1   Grade   No. 2   Grade   No. 3 |  |

#### Piston pin


Unit: mm (in)

|                                                   | Standard                             | Limit             |
|---------------------------------------------------|--------------------------------------|-------------------|
| Piston pin outer diameter                         | 20.989 - 21.001<br>(0.8263 - 0.8268) | _                 |
| Interference fit of piston pin to piston pin hole | 0 - 0.004<br>(0 - 0.0002)            | _                 |
| Piston pin to connecting rod bearing clearance    | 0.005 - 0.017<br>(0.0002 - 0.0007)   | 0.023<br>(0.0009) |

#### Piston ring

|           |                    |                                    | Unit: mm (in) |
|-----------|--------------------|------------------------------------|---------------|
|           |                    | Standard                           | Limit         |
| Side      | Тор                | 0.040 - 0.080<br>(0.0016 - 0.0031) | 0.1 (0.004)   |
| clearance | 2nd                | 0.030 - 0.070<br>(0.0012 - 0.0028) | 0.1 (0.004)   |
|           | Тор                | 0.28 - 0.52<br>(0.0110 - 0.0205)   | 1.0 (0.039)   |
| Ring gap  | 2nd                | 0.45 - 0.69<br>(0.0177 - 0.0272)   | 1.0 (0.039)   |
|           | Oil<br>(rail ring) | 0.20 - 0.69<br>(0.0079 - 0.0272)   | 1.0 (0.039)   |

#### **CONNECTING ROD**



SEM570A

Unit: mm (in)

|                                            |                                      |               | - 1-     |
|--------------------------------------------|--------------------------------------|---------------|----------|
|                                            | Standard                             | Limit         | F        |
| Center distance (S)                        | 164.95 - 165.05<br>(6.4941 - 6.4980) |               | R        |
| Bend<br>[per 100 mm (3.94 in)]             |                                      | 0.15 (0.0059) | _        |
| Torsion<br>[per 100 mm (3.94 in)]          | <u></u>                              | 0.30 (0.0118) | <u> </u> |
| Piston pin bushing inner diameter (d)*     | 21.000 - 21.012<br>(0.8268 - 0.8272) |               | Ş        |
| Connecting rod big end inner diameter (D)* | 53.000 - 53.013<br>(2.0866 - 2.0871) | _             | B        |
| Side clearance                             | 0.2 - 0.4<br>(0.008 - 0.016)         | 0.6 (0.024)   | n r      |

\* Without bearing

Gl

MA

EM

LC

EC

FE

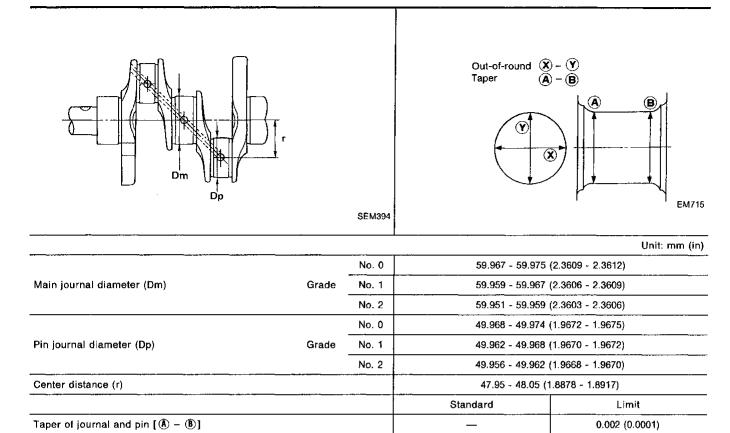
CL

PD

FA

BR

ST


BE

HA

EL

#### Inspection and Adjustment (Cont'd)

#### **CRANKSHAFT**



Runout [TIR]\*

Free end play

Fillet roil

#### **BEARING CLEARANCE**

Out-of-round of journal and pin [ (X) - (Y)]

# Standard Limit Main bearing clearance 0.020 - 0.047 (0.0008 - 0.0019) 0.1 (0.004) Connecting rod bearing clearance 0.010 - 0.035 (0.0004 - 0.0014) 0.09 (0.0035)

#### **AVAILABLE MAIN BEARING**

0.05 - 0.18 (0.0020 - 0.0071)

#### Standard

Unit: mm (in)

| Grade<br>number | Thickness<br>mm (in)               | Identification color |
|-----------------|------------------------------------|----------------------|
| 0               | 1.821 - 1.825<br>(0.0717 - 0.0719) | Black                |
| 1               | 1.825 - 1.829<br>(0.0719 - 0.0720) | Brown                |
| 2               | 1.829 - 1.833<br>(0.0720 - 0.0722) | Green                |
| 3               | 1.833 - 1.837<br>(0.0722 - 0.0723) | Yellow               |
| 4               | 1.837 - 1.841<br>(0.0723 - 0.0725) | Blue                 |

More than 0.1 (0.004)

0.005 (0.0002)

0.04 (0.0016)

0.3 (0.012)

**EM-52** 120

<sup>\*</sup> Total indicator reading

#### Inspection and Adjustment (Cont'd)

**Undersize** (service)

#### **Undersize** (service)

Unit: mm (in)

|          | Thickness         | Main journal diameter "Dm"   |
|----------|-------------------|------------------------------|
| 0.25     | 1.952 - 1.960     | Grind so that bearing clear- |
| (0.0098) | (0.0769 - 0.0772) | ance is the specified value. |

|                  |                                    | Unit: mm (in)                                                   |
|------------------|------------------------------------|-----------------------------------------------------------------|
|                  | Thickness                          | Crank pin journal<br>diameter "Dp"                              |
| 0.08<br>(0.0031) | 1.540 - 1.548<br>(0.0606 - 0.0609) |                                                                 |
| 0.12<br>(0.0047) | 1.560 - 1.568<br>(0.0614 - 0.0617) | Grind so that bear-<br>ing clearance is the<br>specified value. |
| 0.25<br>(0.0098) | 1.625 - 1.633<br>(0.0640 - 0.0643) |                                                                 |

#### **AVAILABLE CONNECTING ROD BEARING**

#### Standard

| Grade<br>number | Thickness<br>mm (in)               | Identification color |
|-----------------|------------------------------------|----------------------|
| 0               | 1.505 - 1.508<br>(0.0593 - 0.0594) | _                    |
| 1               | 1.508 - 1.511<br>(0.0594 - 0.0595) | Brown                |
| 2               | 1.511 - 1.514<br>(0.0595 - 0.0596) | Green                |

#### **MISCELLANEOUS COMPONENTS**

|                                 |        | Unit: mm (in)           |
|---------------------------------|--------|-------------------------|
| Camshaft sprocket runout [TIR]* |        | Less than 0.15 (0.0059) |
| Flywheel runout                 | [TIR]* | Less than 0.15 (0.0059) |
| Drive plate runout              | [TIR]* | Less than 0.5 (0.020)   |

<sup>\*</sup> Total indicator reading

MA

ΕM

GI

---

EC

CL

MT

AT

PD

FA

RA

BR

ST

BF

HA

EL