

D

Е

F

Н

M

CONTENTS

QR	TROUBLE DIAGNOSIS77
INDEX FOR DTO	Trouble Diagnosis Introduction77
INDEX FOR DTC 1	_ Bro moposition r northy orient
Alphabetical Index 1	1 dii balo Ollari
DTC No. Index	Datio inspection
PRECAUTIONS2	Symptom watrix chart
Precautions for Supplemental Restraint System	Engine Control Component Parts Location 93
(SRS) "AIR BAG" and "SEAT BELT PRE-TEN-	Circuit Diagram97
SIONER" 2	ECM Harness Connector Terminal Layout 99
On Board Diagnostic (OBD) System of Engine and	ECM Terminals and Reference Value
A/T 2	
Precaution2	
Wiring Diagrams and Trouble Diagnosis 2	
PREPARATION 2	Maior Ochsor Nerellie Graph in Data Monto
Special Service Tools2	
Commercial Service Tools 2	
ENGINE CONTROL SYSTEM 2	DC3011pti011 120
System Diagram 2	8 Testing Condition125
Vacuum Hose Drawing2	9 Inspection Procedure
System Chart3	Diagnostic Procedure 126
Multiport Fuel Injection (MFI) System 3	1 TROUBLE DIAGNOSIS FOR INTERMITTENT INCI-
Electronic Ignition (EI) System 3	³ DENT129
Air Conditioning Cut Control 3	Description
Fuel Cut Control (at No Load and High Engine	Diagnostic Procedure
Speed) 3	4 POWER SUPPLY CIRCUIT FOR ECM
CAN communication 3	Wiring Diagram130
BASIC SERVICE PROCEDURE 3	Diagnostic Procedure
Idle Speed and Ignition Timing Check 3	B DTC U1000, U1001 CAN COMMUNICATION LINE 137
Idle Speed/Ignition Timing/Idle Mixture Ratio	Description
Adjustment 3	On Board Diagnosis Logic137
Accelerator Pedal Released Position Learning 4	9 DTC Confirmation Procedure
Throttle Valve Closed Position Learning 4	9 Wiring Diagram138
Idle Air Volume Learning4	9 Diagnostic Procedure
Fuel Pressure Check 5	1 DTC P0011 IVT CONTROL140
ON BOARD DIAGNOSTIC (OBD) SYSTEM5	Description
Introduction5	4 CONSULT-II Reference Value in Data Monitor Mode
Two Trip Detection Logic 5	. 140
Emission-related Diagnostic Information 5	5 On Board Diagnosis Logic141
VIS (Nissan Vehicle Immobilizer System — NATS) 6	B DTC Confirmation Procedure
Malfunction Indicator Lamp (MIL) 6	
OBD System Operation Chart 7	2

DTC P0031, P0032 HO2S1 HEATER	143	On Board Diagnosis Logic	.176
Description	143	DTC Confirmation Procedure	.176
CONSULT-II Reference Value in Data Monitor Mode		Diagnostic Procedure	
	143	Component Inspection	
On Board Diagnosis Logic		Removal and Installation	
DTC Confirmation Procedure		DTC P0127 IAT SENSOR	179
Wiring Diagram		Component Description	
Diagnostic Procedure	146	On Board Diagnosis Logic	179
Component Inspection		DTC Confirmation Procedure	
Removal and Installation	147	Diagnostic Procedure	180
DTC P0037, P0038 HO2S2 HEATER	148	Component Inspection	180
Description	148	Removal and Installation	
CONSULT-II Reference Value in Data Monitor Mode		DTC P0128 THERMOSTAT FUNCTION	
	148	On Board Diagnosis Logic	
On Board Diagnosis Logic	148	DTC Confirmation Procedure	
DTC Confirmation Procedure	148	Diagnostic Procedure	.182
Wiring Diagram	150	Component Inspection	183
Diagnostic Procedure	151	Removal and Installation	.183
Component Inspection	152	DTC P0132 HO2S1	.184
Removal and Installation		Component Description	.184
DTC P0101 MAF SENSOR	153	CONSULT-II Reference Value in Data Monitor Mode	Э
Component Description	153		.184
CONSULT-II Reference Value in Data Monitor Mode		On Board Diagnosis Logic	184
٠	153	DTC Confirmation Procedure	
On Board Diagnosis Logic	153	Wiring Diagram	186
DTC Confirmation Procedure		Diagnostic Procedure	
Overall Function Check	155	Component Inspection	
Wiring Diagram	156	Removal and Installation	
Diagnostic Procedure		DTC P0133 HO2S1	
Component Inspection		Component Description	
Removal and Installation		CONSULT-II Reference Value in Data Monitor Mode	
DTC P0102, P0103 MAF SENSOR			.190
Component Description		On Board Diagnosis Logic	
CONSULT-II Reference Value in Data Monitor Mode		DTC Confirmation Procedure	
	160	Overall Function Check	
On Board Diagnosis Logic		Wiring Diagram	
DTC Confirmation Procedure		Diagnostic Procedure	
Wiring Diagram		Component Inspection	
Diagnostic Procedure		Removal and Installation	
Component Inspection		DTC P0134 HO2S1	
Removal and Installation		Component Description	
DTC P0112, P0113 IAT SENSOR		CONSULT-II Reference Value in Data Monitor Mode	
Component Description		CONCOLI III CICIONO VAIGONI DALA MONILO IMOGN	.199
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Wiring Diagram		Overall Function Check	
Diagnostic Procedure		Wiring Diagram	
Component Inspection		Diagnostic Procedure	
Removal and Installation		Component Inspection	
DTC P0117, P0118 ECT SENSOR		Removal and Installation	
		DTC P0138 HO2S2	
Component Description On Board Diagnosis Logic		Component Description	
DTC Confirmation Procedure		CONSULT-IIReference Value in Data Monitor Mode	
		CONSULT-IT Reference value ITD ata MONITOF MODE	
Wiring Diagram		On Roard Diagnosis Logic	.206
Diagnostic Procedure		On Board Diagnosis Logic	
Component Inspection		DTC Confirmation Procedure	
Removal and Installation		Overall Function Check	
DTC P0125 ECT SENSOR		Wiring Diagram	
Description	1/0	Diagnostic Procedure	.∠∪9

į	(Į	;	

D

Е

G

Н

 \mathbb{N}

Α

DTC P0222, P0223 TP SENSOR256

Component Description256

DTC P0139 HO2S2		CONSULT-II Reference Value in Data Monitor Me	ode
Component Description	212		. 256
CONSULT-II Reference Value in Data Monitor Mod	de	On Board Diagnosis Logic	256
	. 212	DTC Confirmation Procedure	256
On Board Diagnosis Logic	212	Wiring Diagram	258
DTC Confirmation Procedure		Diagnostic Procedure	259
Overall Function Check		Component Inspection	
Wiring Diagram		Remove and Installation	
Diagnostic Procedure		DTC P0226 APP SENSOR	
Component Inspection		Component Description	
Removal and Installation		CONSULT-II Reference Value in Data Monitor Me	
DTC P0171 FUEL INJECTION SYSTEM FUNCTION		OONOOLI III CICICICE Valdelii Datawoiiitoi wi	. 262
On Board Diagnosis Logic		On Board Diagnosis Logic	
		DTC Confirmation Procedure	
DTC Confirmation Procedure			
Wiring Diagram		Wiring Diagram	
Diagnostic Procedure		Diagnostic Procedure	
DTC P0172 FUEL INJECTION SYSTEM FUNCTION		Component Inspection	
On Board Diagnosis Logic		Remove and Installation	
DTC Confirmation Procedure		DTC P0227, P0228 APP SENSOR	
Wiring Diagram		Component Description	
Diagnostic Procedure		CONSULT-II Reference Value in Data Monitor Me	ode
DTC P0181 FTT SENSOR			. 268
Component Description	231	On Board Diagnosis Logic	268
On Board Diagnosis Logic	231	DTC Confirmation Procedure	268
DTC Confirmation Procedure	231	Wiring Diagram	270
Diagnostic Procedure	232	Diagnostic Procedure	271
Component Inspection		Component Inspection	
Removal and Installation		Removal and Installation	
DTC P0182. P0183 FTT SENSOR	233	DTC P0300 - P0304 MULTIPLE CYLINDER MI	S-
DTC P0182, P0183 FTT SENSOR		DTC P0300 - P0304 MULTIPLE CYLINDER MIF FIRE. NO. 1 - 4 CYLINDER MISFIRE	
Component Description	233	FIRE, NO. 1 - 4 CYLINDER MISFIRE	274
Component Description On Board Diagnosis Logic	233 233	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic	 274 274
Component Description	233 233 233	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure	274 274 274
Component Description	233 233 233 234	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure	274 274 274 275
Component Description	233 233 233 234 235	FIRE, NO. 1 - 4 CYLINDER MISFIRE	274 274 274 275 279
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection	233 233 233 234 235 236	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description	274 274 275 279 279
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation	233 233 233 234 235 236	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic	274 274 275 279 279 279
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE	233 233 233 234 235 236	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure	274 274 275 279 279 279 279
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION	233 233 233 234 235 236 236	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram	274 274 275 279 279 279 279 280
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION System Description	233 233 233 234 235 236 236 237	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure	274 274 275 279 279 279 279 280 281
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION	233 233 233 234 235 236 236 237 de	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection	274 274 275 279 279 279 279 280 281 282
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION System Description CONSULT-II Reference Value in Data Monitor Mode	233 233 233 234 235 236 236 237 de . 237	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation	274 274 275 279 279 279 280 281 282 282
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION System Description CONSULT-II Reference Value in Data Monitor Mod	233 233 234 235 236 236 237 de 237 de 237	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0335 CKP SENSOR (POS)	274 274 275 279 279 279 279 280 281 282 282
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION System Description CONSULT-II Reference Value in Data Monitor Mod	233 233 234 235 236 236 237 de 237 de 237	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0335 CKP SENSOR (POS) Component Description	274 274 275 279 279 279 280 281 282 282 283
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION System Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic Overall Function Check Wiring Diagram	233 233 234 235 236 236 237 de	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0335 CKP SENSOR (POS)	274 274 275 279 279 279 280 281 282 282 283 ode
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION System Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic Overall Function Check Wiring Diagram Diagnostic Procedure	233 233 234 235 236 236 237 de	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0335 CKP SENSOR (POS) Component Description CONSULT-II Reference Value in Data Monitor Metallation	274 274 275 279 279 279 280 281 282 282 283 ode 283
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION System Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic Overall Function Check Wiring Diagram	233 233 234 235 236 236 237 de	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0335 CKP SENSOR (POS) Component Description	274 274 275 279 279 279 280 281 282 282 283 ode 283
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION System Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic Overall Function Check Wiring Diagram Diagnostic Procedure	233 233 234 235 236 236 237 de	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0335 CKP SENSOR (POS) Component Description CONSULT-II Reference Value in Data Monitor Metallation	274 274 275 279 279 279 280 281 282 282 283 ode
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION System Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic Overall Function Check Wiring Diagram Diagnostic Procedure Main 12 Causes of Overheating	233 233 234 235 236 236 237 de	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0335 CKP SENSOR (POS) Component Description CONSULT-II Reference Value in Data Monitor Money Consultance (Pos) On Board Diagnosis Logic	274 274 275 279 279 280 281 282 282 283 ode 283 283
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION System Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic Overall Function Check Wiring Diagram Diagnostic Procedure Main 12 Causes of Overheating Component Inspection	233 233 234 235 236 236 237 de	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0335 CKP SENSOR (POS) Component Description CONSULT-II Reference Value in Data Monitor Medical Confirmation Procedure	274 274 275 279 279 280 281 282 282 283 283 283 283 283
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION System Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic Overall Function Check Wiring Diagram Diagnostic Procedure Main 12 Causes of Overheating Component Inspection DTC P0221 TP SENSOR	233 233 234 235 236 236 237 de 237 de 237 de 242 242 242 249	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0335 CKP SENSOR (POS) Component Description CONSULT-II Reference Value in Data Monitor Mo	274 274 275 279 279 279 280 281 282 282 283 ode
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION System Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic Overall Function Check Wiring Diagram Diagnostic Procedure Main 12 Causes of Overheating Component Inspection DTC P0221 TP SENSOR Component Description	233 233 234 235 236 236 237 de 237 de 237 de 242 242 242 249	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0335 CKP SENSOR (POS) Component Description CONSULT-II Reference Value in Data Monitor Medical Confirmation Procedure Wiring Diagram On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram	274 274 275 279 279 279 280 281 282 283 ode
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION System Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic Overall Function Check Wiring Diagram Diagnostic Procedure Main 12 Causes of Overheating Component Inspection DTC P0221 TP SENSOR Component Description CONSULT-II Reference Value in Data Monitor Mod	233 233 234 235 236 236 237 de	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0335 CKP SENSOR (POS) Component Description CONSULT-II Reference Value in Data Monitor Mo	274 274 275 279 279 279 280 281 282 282 283 ode
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION System Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic Overall Function Check Wiring Diagram Diagnostic Procedure Main 12 Causes of Overheating Component Inspection DTC P0221 TP SENSOR Component Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic	233 233 234 235 236 236 237 de	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0335 CKP SENSOR (POS) Component Description CONSULT-II Reference Value in Data Monitor Mo	274 274 275 279 279 279 280 281 282 282 283 283 283 283 283 283 283
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION System Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic Overall Function Check Wiring Diagram Diagnostic Procedure Main 12 Causes of Overheating Component Inspection DTC P0221 TP SENSOR Component Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic	233 233 234 235 236 236 237 de	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0335 CKP SENSOR (POS) Component Description CONSULT-II Reference Value in Data Monitor Mo	274 274 275 279 279 280 281 282 282 283 283 283 283 283 283 283 283 283 289 289 290
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION System Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic Overall Function Check Wiring Diagram Diagnostic Procedure Main 12 Causes of Overheating Component Inspection DTC P0221 TP SENSOR Component Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic Orneonent Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram	233 233 234 235 236 236 237 de	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0335 CKP SENSOR (POS) Component Description CONSULT-II Reference Value in Data Monitor Mo	274 274 275 279 279 280 281 282 282 283 283 283 283 283 283 283 289 289 290 290
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION System Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic Overall Function Check Wiring Diagram Diagnostic Procedure Main 12 Causes of Overheating Component Inspection DTC P0221 TP SENSOR Component Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Wiring Diagram Diagnostic Procedure	233 233 234 235 236 236 237 de	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0335 CKP SENSOR (POS) Component Description CONSULT-II Reference Value in Data Monitor Mo	274 274 275 279 279 280 281 282 282 283 283 283 283 283 283 283 289 290 290
Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION System Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic Overall Function Check Wiring Diagram Diagnostic Procedure Main 12 Causes of Overheating Component Inspection DTC P0221 TP SENSOR Component Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic Orneonent Description CONSULT-II Reference Value in Data Monitor Mod On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram	233 233 234 235 236 236 237 de	FIRE, NO. 1 - 4 CYLINDER MISFIRE On Board Diagnosis Logic DTC Confirmation Procedure Diagnostic Procedure DTC P0327, P0328 KS Component Description On Board Diagnosis Logic DTC Confirmation Procedure Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation DTC P0335 CKP SENSOR (POS) Component Description CONSULT-II Reference Value in Data Monitor Mo	274 274 275 279 279 279 280 281 282 283 283 283 283 285 286 288 289 290 290 290

Component Inspection	294	DTC P0455 EVAP CONTROL SYSTEM	340
Removal and Installation	295	On Board Diagnosis Logic	340
DTC P0420 THREE WAY CATALYST FUNCTION	ON.296	DTC Confirmation Procedure	340
On Board Diagnosis Logic	296	Diagnostic Procedure	342
DTC Confirmation Procedure	296	DTC P0456 EVAP CONTROL SYSTEM	348
Overall Function Check	297	On Board Diagnosis Logic	348
Diagnostic Procedure	298	DTC Confirmation Procedure	349
DTC P0441 EVAP CONTROL SYSTEM	300	Overall Function Check	350
System Description		Diagnostic Procedure	351
On Board Diagnosis Logic	300	Component Inspection	356
DTC Confirmation Procedure	300	DTC P0460 FUEL LEVEL SENSOR	357
Overall Function Check	301	Component Description	
Diagnostic Procedure		On Board Diagnosis Logic	357
DTC P0442 EVAP CONTROL SYSTEM		DTC Confirmation Procedure	
On Board Diagnosis Logic		Wiring Diagram	
DTC Confirmation Procedure		Diagnostic Procedure	
Diagnostic Procedure		Removal and Installation	
Component Inspection		DTC P0461 FUEL LEVEL SENSOR	
DTC P0444, P0445 EVAP CANISTER PURGE V		Component Description	
UME CONTROL SOLENOID VALVE		On Board Diagnosis Logic	
Description		Overall Function Check	
CONSULT-IIReference Value in Data Monitor M		DTC P0462, P0463 FUEL LEVEL SENSOR	
	. 314	Component Description	
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Wiring Diagram		Wiring Diagram	
Diagnostic Procedure		Diagnostic Procedure	
Component Inspection		Removal and Installation	
Removal and Installation		DTC P0500 VSS	
DTC P0447 EVAP CANISTER VENT CONTRO		Description	
VALVE		On Board Diagnosis Logic	
Component Description		DTC Confirmation Procedure	
CONSULT-II Reference Value in Data Monitor N		Overall Function Check	
	. 320	Diagnostic Procedure	
On Board Diagnosis Logic		DTC P0506 ISC SYSTEM	
DTC Confirmation Procedure		Description	
Wiring Diagram		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
Component Inspection		Diagnostic Procedure	
DTCP0452EVAPCONTROLSYSTEMPRESSU		DTC P0507 ISC SYSTEM	
SENSOR		Description	
Component Description		On Board Diagnosis Logic	
CONSULT-II Reference Value in Data Monitor N		DTC Confirmation Procedure	
On Board Diagnosia Logia	. 327	Diagnostic Procedure	
On Board Diagnosis Logic DTC Confirmation Procedure		Component Description	
		·	
Wiring Diagram		On Board Diagnosis Logic DTC Confirmation Procedure	
Diagnostic Procedure			
Component Inspection DTCP0453EVAPCONTROLSYSTEMPRESSU		Diagnostic Procedure DTC P0650 MIL	
SENSOR		Component Description	
Component Description			
CONSULT-II Reference Value in Data Monitor M		On Board Diagnosis Logic DTC Confirmation Procedure	
	.333	Wiring Diagram	
On Board Diagnosis Logic		Diagnostic Procedure	
DTC Confirmation Procedure		DTC P1065 ECM POWER SUPPLY	3 22
Wiring Diagram		Component Description	
Diagnostic Procedure		On Board Diagnosis Logic	
Component Inspection		DTC Confirmation Procedure	
Component moreonon		ווווווווווווווווווווווווווווווווווווו	502

Wiring Diagram3		416
Diagnostic Procedure 3	84 Overall Function Check	416
DTC P1102 MAF SENSOR 3	86 Diagnostic Procedure	417
Component Description 3	86 Component Inspection	419
CONSULT-II Reference Value in Data Monitor Mode	Removal and Installation	
. 3	86 DTC P1144 HO2S1	421
On Board Diagnosis Logic3		
DTC Confirmation Procedure 3	86 CONSULT-II Reference Value in Data Monitor Mod	de
Wiring Diagram3	88	. 421
Diagnostic Procedure3		
Component Inspection 3		422
Removal and Installation3		422
DTC P1111 IVT CONTROL SOLENOID VALVE 3	92 Diagnostic Procedure	423
Component Description 3	92 Component Inspection	425
CONSULT-II Reference Value in Data Monitor Mode	Removal and Installation	426
	92 DTC P1146 HO2S2	427
On Board Diagnosis Logic3	92 Component Description	427
DTC Confirmation Procedure 3	92 CONSULT-II Reference Value in Data Monitor Mod	de
Wiring Diagram3	93	. 427
Diagnostic Procedure 3	94 On Board Diagnosis Logic	427
Component Inspection 3	95 DTC Confirmation Procedure	427
Removal and Installation 3	95 Overall Function Check	428
DTC P1121 ELECTRIC THROTTLE CONTROL	Wiring Diagram	429
ACTUATOR 3	96 Diagnostic Procedure	430
Component Description 3	96 Component Inspection	432
On Board Diagnosis Logic3		
DTC Confirmation Procedure 3	96 DTC P1147 HO2S2	434
Diagnostic Procedure 3	97 Component Description	434
DTC P1122 ELECTRIC THROTTLE CONTROL	CONSULT-II Reference Value in Data Monitor Mod	de
FUNCTION 3	98	. 434
Description 3	98 On Board Diagnosis Logic	434
On Board Diagnosis Logic3	98 DTC Confirmation Procedure	434
DTC Confirmation Procedure 3	98 Overall Function Check	435
Wiring Diagram 3	99 Wiring Diagram	436
Diagnostic Procedure 4	.00 Diagnostic Procedure	437
Component Inspection 4	.04 Component Inspection	439
Remove and Installation 4		
DTCP1124,P1126THROTTLECONTROL MOTOR	DTC P1148 CLOSED LOOP CONTROL	441
RELAY 4	On Board Diagnosis Logic	441
Component Description 4	.05 DTC Confirmation Procedure	441
CONSULT-II Reference Value in Data Monitor Mode	Overall Function Check	441
. 4	.05 Diagnostic Procedure	442
On Board Diagnosis Logic4		443
DTC Confirmation Procedure 4		
Wiring Diagram4	.07 CONSULT-II Reference Value in Data Monitor Mod	de
Diagnostic Procedure 4	.08	. 443
DTC P1128 THROTTLE CONTROL MOTOR 4		
Component Description 4	10 Overall Function Check	444
On Board Diagnosis Logic4		446
DTC Confirmation Procedure 4		
Wiring Diagram4	Main 12 Causes of Overheating	452
Diagnostic Procedure4		453
Component Inspection 4	14 DTC P1223, P1224 TP SENSOR	454
Removal and Installation 4	14 Component Description	
DTC P1143 HO2S14	15 CONSULT-II Reference Value in Data Monitor Mod	de
Component Description 4	15	. 454
CONSULT-II Reference Value in Data Monitor Mode	On Board Diagnosis Logic	454
. 4	DTC Confirmation Procedure	

Wiring Diagram456

On Board Diagnosis Logic415

Diagnostic Procedure	457		.490
Component Inspection	459	On Board Diagnosis Logic	490
Remove and Installation	459	DTC Confirmation Procedure	
DTC P1225 TP SENSOR	460	Overall Function Check	492
Component Description	460	Wiring Diagram	493
On Board Diagnosis Logic	460	Diagnostic Procedure	494
DTC Confirmation Procedure		Component Inspection	
Diagnostic Procedure	461	DTC P1456 EVAP CONTROL SYSTEM	497
Remove and Installation	461	On Board Diagnosis Logic	497
DTC P1226 TP SENSOR	462	DTC Confirmation Procedure	498
Component Description	462	Overall Function Check	499
On Board Diagnosis Logic		Diagnostic Procedure	500
DTC Confirmation Procedure		Component Inspection	
Diagnostic Procedure		DTC P1464 FUEL LEVEL SENSOR	
Remove and Installation		Component Description	
DTC P1227, P1228 APP SENSOR		On Board Diagnosis Logic	
Component Description		DTC Confirmation Procedure	
CONSULT-II Reference Value in Data Monitor Mo		Wiring Diagram	
	.464	Diagnostic Procedure	
On Board Diagnosis Logic	_	Removal and Installation	
DTC Confirmation Procedure		DTC P1490 VACUUM CUT VALVE BYPASS VALV	
Wiring Diagram		Description	
Diagnostic Procedure		CONSULT-II Reference Value in Data Monitor Mod	
Component Inspection		CONCOLL INCOLORON VALAGINI DALAMONILO IMOL	.509
Remove and Installation		On Board Diagnosis Logic	
DTC P1229 SENSOR POWER SUPPLY		DTC Confirmation Procedure	
On Board Diagnosis Logic		Wiring Diagram	
DTC Confirmation Procedure		Diagnostic Procedure	
Wiring Diagram		Component Inspection	
Diagnostic Procedure		DTC P1491 VACUUM CUT VALVE BYPASS VALV	
DTC P1442 EVAP CONTROL SYSTEM		Description	
On Board Diagnosis Logic		CONSULT-IIReference Value in Data Monitor Mod	
DTC Confirmation Procedure		CONSOLT-ITTEREFERENCE VARIAETT DATA WORTHON WOO	.516
		On Board Diagnosis Logic	
Diagnostic Procedure DTC P1444 EVAP CANISTER PURGE VOLUME		DTC Confirmation Procedure	
CONTROL SOLENOID VALVE		Overall Function Check	
Description		Wiring Diagram	
CONSULT-II Reference Value in Data Monitor Mo		Diagnostic Procedure	
CONSOLT-IT Reference value in Data Worldon	.476		
On Poord Diagnosis Logic	_	Component Inspection DTC P1564 ASCD STEERING SWITCH	
On Board Diagnosis Logic DTC Confirmation Procedure			
		CONSULT Up for a pool Value in Pote Maniter Man	
Wiring Diagram		CONSULT-II Reference Value in Data Monitor Mod	
Diagnostic Procedure		On Donal Diamania Lania	.525
Component Inspection		On Board Diagnosis Logic	
Removal and Installation		DTC Confirmation Procedure	
DTC P1446 EVAP CANISTER VENT CONTROL		Wiring Diagram	
VALVE		Diagnostic Procedure	
Component Description		Component Inspection	
CONSULT-II Reference Value in Data Monitor Mo		DTC P1572 ASCD BRAKE SWITCH	
0.0.10	. 484	Component Description	
On Board Diagnosis Logic		CONSULT-IIReference Value in Data Monitor Mod	
DTC Confirmation Procedure			.532
Wiring Diagram		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
Component Inspection		Wiring Diagram	
DTC P1448 EVAP CANISTER VENT CONTROL		Diagnostic Procedure	
VALVE		Component Inspection	
Component Description		DTC P1574 ASCD VEHICLE SPEED SENSOR.	
CONSULT-II Reference Value in Data Monitor Mo	do	Component Description	E 12

D

Е

F

Α

. 590

G	
Н	
I	

N	1	ī	
I١	V	l	

Diagnostic Procedure	593
Component Inspection	
Removal and Installation	
REFRIGERANT PRESSURE SENSOR	
Component Description	
Wiring Diagram	
Diagnostic Procedure	
Removal and Installation	
ELECTRICAL LOAD SIGNAL	600
Description	
Diagnostic Procedure	
ASCD BRAKE SWITCH	
Component Description	
CONSULT-II Reference Value in Data Monitor Mo	ode
	. 601
Wiring Diagram	
Diagnostic Procedure	603
ASCD INDICATOR	
Component Description	
CONSULT-II Reference Value in Data Monitor Mo	ode
	. 609
Wiring Diagram	
Diagnostic Procedure	
DATA LINK CONNECTOR	612
Wiring Diagram	
EVAPORATIVE EMISSION SYSTEM	
Description	
Component Inspection	616
How to Detect Fuel Vapor Leakage	
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY	617
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR)	617
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description	617 619
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure	617 619 620
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection	617 619 620 622
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION	617 619 620 622 625
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description	617 619 620 622 625
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description Component Inspection	617 619 620 622 625 625
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description Component Inspection AUTOMATIC SPEED CONTROL DEVICE (ASC	617 619 620 625 625 625 625
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description Component Inspection AUTOMATIC SPEED CONTROL DEVICE (ASC System Description	617 619 620 625 625 625 627
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description Component Inspection AUTOMATIC SPEED CONTROL DEVICE (ASC System Description Component Description	617 619 620 625 625 625 627 627
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description Component Inspection AUTOMATIC SPEED CONTROL DEVICE (ASC System Description Component Description SERVICE DATA AND SPECIFICATIONS (SDS)	617 619 620 625 625 625 627 628 629
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description Component Inspection AUTOMATIC SPEED CONTROL DEVICE (ASC System Description Component Description SERVICE DATA AND SPECIFICATIONS (SDS) Fuel Pressure	617 619 620 625 625 625 627 628 629
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description Component Inspection AUTOMATIC SPEED CONTROL DEVICE (ASC System Description Component Description SERVICE DATA AND SPECIFICATIONS (SDS) Fuel Pressure Idle Speed and Ignition Timing	617 619 620 625 625 625 627 628 629
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description Component Inspection AUTOMATIC SPEED CONTROL DEVICE (ASC System Description Component Description SERVICE DATA AND SPECIFICATIONS (SDS) Fuel Pressure Idle Speed and Ignition Timing Calculated Load Value	617 619 620 625 625 625 627 627 629 629
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description Component Inspection AUTOMATIC SPEED CONTROL DEVICE (ASC System Description Component Description SERVICE DATA AND SPECIFICATIONS (SDS) Fuel Pressure Idle Speed and Ignition Timing Calculated Load Value Mass Air Flow Sensor	617 619 620 625 625 625 627 627 628 629 629
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description Component Inspection AUTOMATIC SPEED CONTROL DEVICE (ASC System Description Component Description SERVICE DATA AND SPECIFICATIONS (SDS) Fuel Pressure Idle Speed and Ignition Timing Calculated Load Value Mass Air Flow Sensor Intake Air Temperature Sensor	617 619 620 625 625 625 627 627 629 629 629
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description Component Inspection AUTOMATIC SPEED CONTROL DEVICE (ASC System Description Component Description SERVICE DATA AND SPECIFICATIONS (SDS) Fuel Pressure Idle Speed and Ignition Timing Calculated Load Value Mass Air Flow Sensor Intake Air Temperature Sensor Engine Coolant Temperature Sensor	617 619 620 625 625 625 627 628 629 629 629
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description Component Inspection AUTOMATIC SPEED CONTROL DEVICE (ASC System Description Component Description SERVICE DATA AND SPECIFICATIONS (SDS) Fuel Pressure Idle Speed and Ignition Timing Calculated Load Value Mass Air Flow Sensor Intake Air Temperature Sensor Engine Coolant Temperature Sensor Heated Oxygen Sensor 1 Heater	617 619 620 625 625 625 627 627 629 629 629 629
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description Component Inspection AUTOMATIC SPEED CONTROL DEVICE (ASC System Description Component Description SERVICE DATA AND SPECIFICATIONS (SDS) Fuel Pressure Idle Speed and Ignition Timing Calculated Load Value Mass Air Flow Sensor Intake Air Temperature Sensor Engine Coolant Temperature Sensor Heated Oxygen Sensor 1 Heater Heated Oxygen sensor 2 Heater	617 619 620 625 625 625 627 627 629 629 629 629 629
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description Component Inspection AUTOMATIC SPEED CONTROL DEVICE (ASC System Description Component Description SERVICE DATA AND SPECIFICATIONS (SDS) Fuel Pressure Idle Speed and Ignition Timing Calculated Load Value Mass Air Flow Sensor Intake Air Temperature Sensor Engine Coolant Temperature Sensor Heated Oxygen Sensor 1 Heater Heated Oxygen sensor 2 Heater Crankshaft Position Sensor (POS)	617 619 620 625 625 625 627 628 629 629 629 629 629
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description Component Inspection AUTOMATIC SPEED CONTROL DEVICE (ASC System Description Component Description SERVICE DATA AND SPECIFICATIONS (SDS) Fuel Pressure Idle Speed and Ignition Timing Calculated Load Value Mass Air Flow Sensor Intake Air Temperature Sensor Engine Coolant Temperature Sensor Heated Oxygen Sensor 1 Heater Heated Oxygen sensor 2 Heater Crankshaft Position Sensor (POS) Camshaft Position Sensor (PHASE)	617 619 620 625 625 625 627 627 629 629 629 629 629 629 629
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description Component Inspection AUTOMATIC SPEED CONTROL DEVICE (ASC System Description Component Description SERVICE DATA AND SPECIFICATIONS (SDS) Fuel Pressure Idle Speed and Ignition Timing Calculated Load Value Mass Air Flow Sensor Intake Air Temperature Sensor Engine Coolant Temperature Sensor Heated Oxygen Sensor 1 Heater Heated Oxygen sensor 2 Heater Crankshaft Position Sensor (POS) Camshaft Position Sensor (PHASE) Throttle Control Motor	617 619 620 625 625 625 627 627 629 629 629 629 629 629 629 629
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description Component Inspection AUTOMATIC SPEED CONTROL DEVICE (ASC System Description Component Description SERVICE DATA AND SPECIFICATIONS (SDS) Fuel Pressure Idle Speed and Ignition Timing Calculated Load Value Mass Air Flow Sensor Intake Air Temperature Sensor Engine Coolant Temperature Sensor Heated Oxygen Sensor 1 Heater Heated Oxygen sensor 2 Heater Crankshaft Position Sensor (POS) Camshaft Position Sensor (PHASE) Throttle Control Motor Injector	617 619 620 625 625 625 625 627 628 629 629 629 629 629 629 629 629
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description Component Inspection AUTOMATIC SPEED CONTROL DEVICE (ASC System Description Component Description SERVICE DATA AND SPECIFICATIONS (SDS) Fuel Pressure Idle Speed and Ignition Timing Calculated Load Value Mass Air Flow Sensor Intake Air Temperature Sensor Engine Coolant Temperature Sensor Heated Oxygen Sensor 1 Heater Heated Oxygen sensor 2 Heater Crankshaft Position Sensor (POS) Camshaft Position Sensor (PHASE) Throttle Control Motor	617 619 620 625 625 625 625 627 628 629 629 629 629 629 629 629 629
How to Detect Fuel Vapor Leakage ON BOARD REFUELING VAPOR RECOVERY (ORVR) System Description Diagnostic Procedure Component Inspection POSITIVE CRANKCASE VENTILATION Description Component Inspection AUTOMATIC SPEED CONTROL DEVICE (ASC System Description Component Description SERVICE DATA AND SPECIFICATIONS (SDS) Fuel Pressure Idle Speed and Ignition Timing Calculated Load Value Mass Air Flow Sensor Intake Air Temperature Sensor Engine Coolant Temperature Sensor Heated Oxygen Sensor 1 Heater Heated Oxygen sensor 2 Heater Crankshaft Position Sensor (POS) Camshaft Position Sensor (PHASE) Throttle Control Motor Injector	617 619 620 625 625 625 625 627 628 629 629 629 629 629 629 629 629

CONSULT-II Reference Value in Data Monitor Mode

Wiring Diagram591

On Board Diagnosis Logic	
DTC Confirmation Procedure	542
Diagnostic Procedure	543
DTC P1706 PNP SWITCH	544
Component Description	
CONSULT-II Reference Value in Data Monitor M	
	. 544
On Board Diagnosis Logic	
DTC Confirmation Procedure	
Overall Function Check	
Wiring Diagram	
Diagnostic Procedure	
DTC P1805 BRAKE SWITCH	
Description	
CONSULT-II Reference Value in Data Monitor M	
	. 548
On Board Diagnosis Logic	
DTC Confirmation Procedure	548
Wiring Diagram	549
Diagnostic Procedure	550
Component Inspection	
IGNITION SIGNAL	553
Component Description	
Wiring Diagram	
Diagnostic Procedure	
Component Inspection	
Removal and Installation	
VIAS	
Description	
CONSULT-II Reference Value in Data Monitor M	
CONSULT-II Reference value in Data Monitor M	
	. 565
Wiring Diagram	. 565 566
Wiring Diagram Diagnostic Procedure	. 565 566 568
Wiring Diagram Diagnostic Procedure Component Inspection	. 565 566 568 571
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation	. 565 566 568 571 572
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT	. 565 566 568 571 572
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description	. 565 566 568 571 572 573
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT	. 565 566 568 571 572 573 lode
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M	. 565 566 568 571 572 573 lode . 573
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram	. 565 566 568 571 572 573 lode 573
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M	. 565 566 568 571 572 573 lode 573
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram	. 565 566 568 571 572 573 lode 573 574
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure	. 565 566 568 571 572 573 lode . 573 574 575
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure Component Inspection	. 565 566 571 572 573 lode . 573 574 575 578
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation	. 565 566 568 571 572 573 lode . 573 574 575 578 578
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation START SIGNAL	. 565 566 568 571 572 573 lode . 573 574 575 578 578
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation START SIGNAL CONSULT-II Reference Value in Data Monitor M	. 565 566 568 571 572 573 lode 573 574 575 578 578 578 lode 579
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation START SIGNAL CONSULT-II Reference Value in Data Monitor M Wiring Diagram	. 565 566 568 571 572 573 lode 573 574 575 578 578 579 lode 579 580
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation START SIGNAL CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure	. 565 566 568 571 572 573 lode 574 575 578 578 579 lode 579 580 581
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation START SIGNAL CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure FUEL PUMP CIRCUIT	565 566 568 571 572 573 lode 573 574 575 578 578 579 lode 580 581 583
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation START SIGNAL CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure FUEL PUMP CIRCUIT Description	565 566 568 571 572 573 lode 574 575 578 578 578 579 lode 580 581 583
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation START SIGNAL CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure FUEL PUMP CIRCUIT	. 565 566 568 571 572 573 lode 574 575 578 578 579 lode 580 581 583 lode
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation START SIGNAL CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure FUEL PUMP CIRCUIT Description CONSULT-II Reference Value in Data Monitor M	. 565 566 568 571 572 573 lode 573 574 575 578 578 579 lode 580 581 583 lode 583
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation START SIGNAL CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure FUEL PUMP CIRCUIT Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure FUEL PUMP CIRCUIT Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram	. 565 566 568 571 572 573 lode
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation START SIGNAL CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure FUEL PUMP CIRCUIT Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure FUEL PUMP CIRCUIT Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure	. 565 566 568 571 572 573 lode 573 574 575 578 578 579 lode 580 581 583 lode 583 583
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation START SIGNAL CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure FUEL PUMP CIRCUIT Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure Component Inspection	. 565 566 568 571 572 573 lode 573 574 575 578 578 578 580 581 583 lode 583 583
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation START SIGNAL CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure FUEL PUMP CIRCUIT Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation	. 565 566 568 571 572 573 lode 573 574 575 578 578 578 580 581 583 lode 583 583 583
Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation INJECTOR CIRCUIT Component Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure Component Inspection Removal and Installation START SIGNAL CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure FUEL PUMP CIRCUIT Description CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure CONSULT-II Reference Value in Data Monitor M Wiring Diagram Diagnostic Procedure Component Inspection	. 565 566 568 571 572 573 lode 574 575 578 578 578 580 581 583 lode 583 lode 583 lode 583

Revision: May 2004

VQ		Testing Condition	750
INDEX FOR DTO		Inspection Procedure	
INDEX FOR DTC		Diagnostic Procedure	
Alphabetical Index		TROUBLE DIAGNOSIS FOR INTERMITTEN	
DTC No. Index		DENT	
PRECAUTIONS		Description	
Precautions for Supplemental Restraint Syste		Diagnostic Procedure	
(SRS) "AIR BAG" and "SEAT BELT PRE-TEN		POWER SUPPLY CIRCUIT FOR ECM	
SIONER"		Wiring Diagram	
On Board Diagnostic (OBD) System of Engine		Diagnostic Procedure	
A/T		DTC U1000, U1001 CAN COMMUNICATION	
Precaution		Description	
Wiring Diagrams and Trouble Diagnosis		On Board Diagnosis Logic	
PREPARATION		DTC Confirmation Procedure	
Special Service Tools		Wiring Diagram	
Commercial Service Tools		Diagnostic Procedure	
ENGINE CONTROL SYSTEM		DTC P0011, P0021 IVT CONTROL	764
System Diagram		Description	
Vacuum Hose Drawing		CONSULT-II Reference Value in Data Monito	rMode
System Chart			.764
Multiport Fuel Injection (MFI) System		On Board Diagnosis Logic	765
Electronic Ignition (EI) System		DTC Confirmation Procedure	765
Air Conditioning Cut Control		Wiring Diagram	766
Fuel Cut Control (at No Load and High Engine		Diagnostic Procedure	769
Speed)		Component Inspection	771
CAN communication		Removal and Installation	771
BASIC SERVICE PROCEDURE		DTC P0031, P0032, P0051, P0052 HO2S1 HE	ATER 772
Idle Speed and Ignition Timing Check	656	Description	
Idle Speed/Ignition Timing/Idle Mixture Ratio		CONSULT-II Reference Value in Data Monito	
Adjustment	657		.772
Accelerator Pedal Released Position Learning	667	On Board Diagnosis Logic	772
Throttle Valve Closed Position Learning	668	DTC Confirmation Procedure	
Idle Air Volume Learning	668	Wiring Diagram	
Fuel Pressure Check	670	Diagnostic Procedure	
ON BOARD DIAGNOSTIC (OBD) SYSTEM	672	Component Inspection	
Introduction	672	Removal and Installation	
Two Trip Detection Logic	672	DTC P0037, P0038, P0057, P0058 HO2S2 HE	
Emission-related Diagnostic Information	673	Description	
NVIS (Nissan Vehicle Immobilizer System—NA	TS)	CONSULT-II Reference Value in Data Monito	
	.688	CONCOLI III COLORO VALGO III DALA MOLINO	.780
Malfunction Indicator Lamp (MIL)	688	On Board Diagnosis Logic	
OBD System Operation Chart		DTC Confirmation Procedure	
TROUBLE DIAGNOSIS		Wiring Diagram	
Trouble Diagnosis Introduction		Diagnostic Procedure	
DTC Inspection Priority Chart		Component Inspection	
Fail-safe Chart		Removal and Installation	
Basic Inspection		DTC P0101 MAF SENSOR	
Symptom Matrix Chart		Component Description	
Engine Control Component Parts Location		CONSULT-IIReference Value in Data Monito	
Circuit Diagram		CONSULT-ITREFERENCE VALUE IT DATA WORTHO	
ECM Harness Connector Terminal Layout		On Poord Diagnosis Logic	.788
ECM Terminals and Reference Value		On Board Diagnosis Logic	
CONSULT-II Function		DTC Confirmation Procedure	
Generic Scan Tool (GST) Function		Overall Function Check	
CONSULT-II Reference Value in Data Monitor		Wiring Diagram	
Major Sensor Reference Graph in Data Monit		Diagnostic Procedure	
Mode		Component Inspection	
TROUBLE DIAGNOSIS - SPECIFICATION VAL		Removal and Installation	
Description		DTC P0102, P0103 MAF SENSOR	
D03011pti011	1 30	Component Description	/96

CONSULT-II Reference Value in Data Monitor N	Mode	Diagnostic Procedure	830	
	. 796	Component Inspection		Α
On Board Diagnosis Logic	796	Removal and Installation	833	
DTC Confirmation Procedure	796	DTC P0133, P0153 HO2S1	834	
Wiring Diagram		Component Description		EC
Diagnostic Procedure	799	CONSULT-II Reference Value in Data Monitor Mo	ode	
Component Inspection	801		. 834	
Removal and Installation		On Board Diagnosis Logic	834	
DTC P0107, P0108 ABSOLUTE PRESSURE	SEN-	DTC Confirmation Procedure	835	С
SOR	802	Overall Function Check	836	
Component Description		Wiring Diagram		
On Board Diagnosis Logic		Diagnostic Procedure	840	D
DTC Confirmation Procedure	802	Component Inspection	843	
Diagnostic Procedure	803	Removal and Installation	844	
DTC P0112, P0113 IAT SENSOR	804	DTC P0134, P0154 HO2S1	845	Е
Component Description	804	Component Description	845	
On Board Diagnosis Logic	804	CONSULT-II Reference Value in Data Monitor Mo	ode	
DTC Confirmation Procedure	804		. 845	_
Wiring Diagram	806	On Board Diagnosis Logic	845	F
Diagnostic Procedure	807	DTC Confirmation Procedure	846	
Component Inspection	808	Overall Function Check	846	
Removal and Installation	808	Wiring Diagram	848	G
DTC P0117, P0118 ECT SENSOR	809	Diagnostic Procedure	851	
Component Description	809	Component Inspection	853	
On Board Diagnosis Logic	809	Removal and Installation	854	Н
DTC Confirmation Procedure	810	DTC P0138, P0158 HO2S2	855	
Wiring Diagram	811	Component Description	855	
Diagnostic Procedure	812	CONSULT-II Reference Value in Data Monitor Mo	ode	
Component Inspection			. 855	- 1
Removal and Installation		On Board Diagnosis Logic	855	
DTC P0125 ECT SENSOR	814	DTC Confirmation Procedure	855	
Component Description	814	Overall Function Check	856	J
On Board Diagnosis Logic	814	Wiring Diagram	857	
DTC Confirmation Procedure	814	Diagnostic Procedure	860	
Wiring Diagram	816	Component Inspection	863	K
Diagnostic Procedure	817	Removal and Installation	864	
Component Inspection	817	DTC P0139, P0159 HO2S2	865	
Removal and Installation	817	Component Description	865	1
DTC P0127 IAT SENSOR	818	CONSULT-II Reference Value in Data Monitor Mo	ode	_
Component Description	818		. 865	
On Board Diagnosis Logic		On Board Diagnosis Logic	865	
DTC Confirmation Procedure	818	DTC Confirmation Procedure	865	M
Wiring Diagram	820	Overall Function Check	866	
Diagnostic Procedure	821	Wiring Diagram	867	
Component Inspection	822	Diagnostic Procedure	870	
Removal and Installation		Component Inspection	873	
DTC P0128 THERMOSTAT FUNCTION	823	Removal and Installation		
On Board Diagnosis Logic		DTC P0171, P0174 FUEL INJECTION SYSTEM	/	
DTC Confirmation Procedure	823	FUNCTION	875	
Diagnostic Procedure	823	On Board Diagnosis Logic	875	
Component Inspection	824	DTC Confirmation Procedure	875	
Removal and Installation	824	Wiring Diagram	877	
DTC P0132, P0152 HO2S1	825	Diagnostic Procedure		
Component Description		DTC P0172, P0175 FUEL INJECTION SYSTEM		
CONSULT-II Reference Value in Data Monitor N	Mode	FUNCTION		
	. 825	On Board Diagnosis Logic		
On Board Diagnosis Logic		DTC Confirmation Procedure	883	
DTC Confirmation Procedure	826	Wiring Diagram		
Wiring Diagram	827	Diagnostic Procedure	887	

DTC P0181 FTT SENSOR	890	DTC Confirmation Procedure	926
Component Description	890	Diagnostic Procedure	927
On Board Diagnosis Logic	890	DTC P0327, P0328 KS	932
DTC Confirmation Procedure		Component Description	
Wiring Diagram		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
Component Inspection		Wiring Diagram	
Removal and Installation		Diagnostic Procedure	
DTC P0182, P0183 FTT SENSOR		Component Inspection	
Component Description		Removal and Installation	
On Board Diagnosis Logic		DTC P0335 CKP SENSOR (POS)	
DTC Confirmation Procedure		Component Description	
Wiring Diagram		CONSULT-II Reference Value in Data Monito	
Diagnostic Procedure			.936
Component Inspection		On Board Diagnosis Logic	
Removal and Installation		DTC Confirmation Procedure	
DTC P0221 TP SENSOR	899	Wiring Diagram	
Component Description		Diagnostic Procedure	939
CONSULT-II Reference Value in Data Monito	orMode	Component Inspection	
	.899	Removal and Installation	
On Board Diagnosis Logic	899	DTC P0340, P0345 CMP SENSOR (PHASE)943
DTC Confirmation Procedure	899	Component Description	943
Wiring Diagram	901	On Board Diagnosis Logic	943
Diagnostic Procedure	902	DTC Confirmation Procedure	943
Component Inspection	904	Wiring Diagram	944
Removal and Installation		Diagnostic Procedure	947
DTC P0222, P0223 TP SENSOR	906	Component Inspection	949
Component Description		Removal and Installation	950
CONSULT-II Reference Value in Data Monito	orMode	DTC P0420, P0430 THREE WAY CATALYST I	FUNC-
	. 906	TION	951
On Board Diagnosis Logic	906	On Board Diagnosis Logic	951
DTC Confirmation Procedure	906	DTC Confirmation Procedure	951
Wiring Diagram	908	Overall Function Check	952
Diagnostic Procedure	909	Diagnostic Procedure	953
Component Inspection	911	DTC P0441 EVAP CONTROL SYSTEM	955
Removal and Installation	912	System Description	955
DTC P0226 APP SENSOR	913	On Board Diagnosis Logic	955
Component Description	913	DTC Confirmation Procedure	
CONSULT-II Reference Value in Data Monito	orMode	Overall Function Check	956
	.913	Diagnostic Procedure	957
On Board Diagnosis Logic	913	DTC P0442 EVAP CONTROL SYSTEM	
DTC Confirmation Procedure		On Board Diagnosis Logic	
Wiring Diagram		DTC Confirmation Procedure	
Diagnostic Procedure		Diagnostic Procedure	
Component Inspection		Component Inspection	
Removal and Installation		DTC P0444, P0445 EVAP CANISTER PURGE	
DTC P0227, P0228 APP SENSOR		UME CONTROL SOLENOID VALVE	
Component Description		Description	
CONSULT-II Reference Value in Data Monito		CONSULT-II Reference Value in Data Monito	
	.920		.970
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Wiring Diagram		Wiring Diagram	
Diagnostic Procedure		Diagnostic Procedure	
Component Inspection		Component Inspection	
Removal and Installation		Removal and Installation	
DTC P0300 - P0306 MULTIPLE CYLINDER		DTC P0447 EVAP CANISTER VENT CONTI	
FIRE, NO. 1 - 6 CYLINDER MISFIRE		VALVE	
On Board Diagnosis Logic		Component Description	
20a. a 2.ag. 10010 Log.0		- cpcc 2000//pt/0//	

С

 D

Е

G

Н

Κ

 \mathbb{N}

Α

Overall Function Check1025

	. 976	Diagnostic Procedure	
On Board Diagnosis Logic	976	DTC P0506 ISC SYSTEM	1027
DTC Confirmation Procedure	976	Description	1027
Wiring Diagram		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
Component Inspection		Diagnostic Procedure	
DTCP0452EVAPCONTROLSYSTEMPRESS		DTC P0507 ISC SYSTEM	1029
SENSOR		Description	
Component Description		On Board Diagnosis Logic	
CONSULT-II Reference Value in Data Monitor N	Лode	DTC Confirmation Procedure	
	. 983	Diagnostic Procedure	
On Board Diagnosis Logic		DTC P0550 PSP SENSOR	
DTC Confirmation Procedure		Component Description	
Wiring Diagram		CONSULT-II Reference Value in Data Monitor Mo	de
Diagnostic Procedure			1031
Component Inspection		On Board Diagnosis Logic	
DTCP0453EVAPCONTROLSYSTEMPRESS		DTC Confirmation Procedure	
SENSOR		Wiring Diagram	
Component Description		Diagnostic Procedure	
CONSULT-II Reference Value in Data Monitor N	Лode	Component Inspection	
	. 989	DTC P0605 ECM	
On Board Diagnosis Logic		Component Description	
DTC Confirmation Procedure		On Board Diagnosis Logic	
Wiring Diagram		DTC Confirmation Procedure	
Diagnostic Procedure		Diagnostic Procedure	
Component Inspection		DTC P0650 MIL	
DTC P0455 EVAP CONTROL SYSTEM		Component Description	
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Diagnostic Procedure		Wiring Diagram	
DTC P0456 EVAP CONTROL SYSTEM		Diagnostic Procedure	
On Board Diagnosis Logic		DTC P1065 ECM POWER SUPPLY	
DTC Confirmation Procedure		Component Description	
Overall Function Check		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
Component Inspection		Wiring Diagram	
DTC P0460 FUEL LEVEL SENSOR	1013	Diagnostic Procedure	
Component Description		DTC P1102 MAF SENSOR	
On Board Diagnosis Logic		Component Description	
DTC Confirmation Procedure		CONSULT-II Reference Value in Data Monitor Mo	de
Wiring Diagram			1047
Diagnostic Procedure		On Board Diagnosis Logic	
Removal and Installation		DTC Confirmation Procedure	-
DTC P0461 FUEL LEVEL SENSOR		Wiring Diagram	
Component Description		Diagnostic Procedure	
On Board Diagnosis Logic		Component Inspection	
Overall Function Check		Removal and Installation	1052
DTC P0462, P0463 FUEL LEVEL SENSOR		DTC P1121 ELECTRIC THROTTLE CONTROL	
Component Description		ACTUATOR	
On Board Diagnosis Logic		Component Description	
DTC Confirmation Procedure	1020	On Board Diagnosis Logic	
Wiring Diagram		DTC Confirmation Procedure	
Diagnostic Procedure		Diagnostic Procedure	1054
Removal and Installation		DTC P1122 ELECTRIC THROTTLE CONTROL	
DTC P0500 VSS	1025	FUNCTION	1055
Description		Description	
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure	1025	DTC Confirmation Procedure	1055

CONSULT-IIReference Value in Data Monitor Mode

Wiring Diagram	1056	Wiring Diagram	1097
Diagnostic Procedure		Diagnostic Procedure	
Component Inspection		Component Inspection	
Remove and Installation		Removal and Installation	
DTC P1124, P1126 THROTTLE CONTROL	MOTOR	DTC P1148, P1168 CLOSED LOOP CONTROL	1105
RELAY		On Board Diagnosis Logic	
Component Description	1062	DTC Confirmation Procedure	
CONSULT-II Reference Value in Data Mon		Overall Function Check	1105
	1062	Diagnostic Procedure	1106
On Board Diagnosis Logic	1062	DTC P1211 ABS/TCS CONTROL UNIT	1107
DTC Confirmation Procedure		Description	1107
Wiring Diagram	1064	On Board Diagnosis Logic	1107
Diagnostic Procedure	1065	DTC Confirmation Procedure	
DTC P1128 THROTTLE CONTROL MOT	OR1067	Diagnostic Procedure	1107
Component Description	1067	DTC P1212 ABS/TCS COMMUNICATION LINE	1108
On Board Diagnosis Logic	1067	Description	1108
DTC Confirmation Procedure	1067	On Board Diagnosis Logic	1108
Wiring Diagram	1068	DTC Confirmation Procedure	1108
Diagnostic Procedure	1069	Diagnostic Procedure	1108
Component Inspection	1070	DTC P1217 ENGINE OVER TEMPERATURE	1109
Removal and Installation	1071	System Description	1109
DTC P1143, P1163 HO2S1	1072	CONSULT-II Reference Value in Data Monitor Mo	ode
Component Description	1072		1109
CONSULT-II Reference Value in Data Mon	itorMode	On Board Diagnosis Logic	1110
	1072	Overall Function Check	1110
On Board Diagnosis Logic	1072	Wiring Diagram	1112
DTC Confirmation Procedure	1073	Diagnostic Procedure	1113
Overall Function Check	1073	Main 12 Causes of Overheating	1119
Diagnostic Procedure	1074	Component Inspection	1119
Component Inspection	1076	DTC P1223, P1224 TP SENSOR	1120
Removal and Installation	1077	Component Description	
DTC P1144, P1164 HO2S1	1078	CONSULT-II Reference Value in Data Monitor Mo	ode
Component Description			1120
CONSULT-II Reference Value in Data Mon		On Board Diagnosis Logic	
	1078	DTC Confirmation Procedure	
On Board Diagnosis Logic		Wiring Diagram	
DTC Confirmation Procedure		Diagnostic Procedure	
Overall Function Check		Component Inspection	
Diagnostic Procedure		Removal and Installation	
Component Inspection		DTC P1225 TP SENSOR	
Removal and Installation		Component Description	
DTC P1146, P1166 HO2S2		On Board Diagnosis Logic	
Component Description		DTC Confirmation Procedure	
CONSULT-II Reference Value in Data Mon		Diagnostic Procedure	
0.5.15:	1085	Removal and Installation	
On Board Diagnosis Logic		DTC P1226 TP SENSOR	
DTC Confirmation Procedure		Component Description	
Overall Function Check		On Board Diagnosis Logic	
Wiring Diagram		DTC Confirmation Procedure	
Diagnostic Procedure		Diagnostic Procedure	
Component Inspection		Removal and Installation	
Removal and Installation		DTC P1227, P1228 APP SENSOR	
DTC P1147, P1167 HO2S2		CONSULT Up of composition	
CONSULT Up of consol Value in Data Man		CONSULT-II Reference Value in Data Monitor Mo	
CONSULT-II Reference Value in Data Mon		On Roard Diagnosis Logic	1131
On Roard Diagnosis Logic	1095	On Board Diagnosis Logic DTC Confirmation Procedure	
On Board Diagnosis Logic DTC Confirmation Procedure			
Overall Function Check		Wiring Diagram Diagnostic Procedure	
		DIGUITO TOUGUIT	

Diagnostic Procedure		Λ
Component Inspection DTC P1491 VACUUM CUT VALVE BYPASS VALV	II/9 /E1100	Α
Description		
CONSULT-II Reference Value in Data Monitor Mo		
CONCOLL III CICIOLO VAIGEII DALAWOI III OI WO	1180	EC
On Board Diagnosis Logic		
DTC Confirmation Procedure		
Overall Function Check		С
Wiring Diagram		
Diagnostic Procedure		
Component Inspection		D
DTC P1564 ASCD STEERING SWITCH	1188	
Component Description		
CONSULT-II Reference Value in Data Monitor Mo		Е
	1188	
On Board Diagnosis Logic	1188	
DTC Confirmation Procedure		
Wiring Diagram	1190	F
Diagnostic Procedure	1192	
Component Inspection		
DTC P1572 ASCD BRAKE SWITCH	1195	G
Component Description		
CONSULT-II Reference Value in Data Monitor Mo	de	
	1195	Н
On Board Diagnosis Logic		
DTC confirmation Procedure		
Wiring Diagram		
Diagnostic Procedure		'
Component Inspection		
DTC P1574 ASCD VEHICLE SPEED SENSOR		
Component Description		J
On Board Diagnosis Logic		
DTC Confirmation Procedure		
Diagnostic Procedure		K
DTC P1706 PNP SWITCH		
Component DescriptionCONSULT-II Reference Value in Data Monitor Mo	1208	
CONSULT-ITREFERENCE VALUE IN DATA MONITOR MO		L
On Board Diagnosis Logic	1208	
DTC Confirmation Procedure		
Overall Function Check		M
Wiring Diagram		
Diagnostic Procedure	1211	
DTC P1800 VIAS CONTROL SOLENOID VALVI		
Description		
On Board Diagnosis Logic		
CONSULT-II Reference Value in Data Monitor Mo		
	1214	
DTC Confirmation Procedure	1214	
Wiring Diagram		
Diagnostic Procedure	1216	
Component Inspection		
Removal and Installation	1218	
DTC P1805 BRAKE SWITCH		
Description		
CONSULT-II Reference Value in Data Monitor Mo	de	

Component Inspection1136 Removal and Installation1136 DTC P1229 SENSOR POWER SUPPLY1137

DTC Confirmation Procedure	1219	Diagnostic Procedure	1268
Wiring Diagram	1220	Removal and Installation	
Diagnostic Procedure	1221	ELECTRICAL LOAD SIGNAL	1271
Component Inspection	1223	Description	1271
IGNITION SIGNAL	1224	Diagnostic Procedure	1271
Component Description	1224	ASCD BRAKE SWITCH	1272
Wiring Diagram	1225	Component Description	1272
Diagnostic Procedure	1230	CONSULT-IIReference Value in Data Monitor Mo	de
Component Inspection	1234		1272
Removal and Installation	1235	Wiring Diagram	1273
VIAS	1236	Diagnostic Procedure	1275
Description	1236	ASCD INDICATOR	1282
CONSULT-II Reference Value in Data Monito	orMode	Component Description	1282
	1237	CONSULT-IIReference Value in Data Monitor Mo	de
Wiring Diagram	1238		1282
Diagnostic Procedure	1239	Wiring Diagram	1283
Component Inspection	1242	Diagnostic Procedure	1284
Removal and Installation	1243	DATA LINK CONNECTOR	1285
INJECTOR CIRCUIT	1244	Wiring Diagram	
Component Description	1244	EVAPORATIVE EMISSION SYSTEM	1286
CONSULT-II Reference Value in Data Monito	orMode	Description	1286
	1244	Component Inspection	1289
Wiring Diagram	1245	How to Detect Fuel Vapor Leakage	1290
Diagnostic Procedure	1246	ON BOARD REFUELING VAPOR RECOVERY	
Component Inspection	1249	(ORVR)	
Removal and Installation	1249	System Description	1292
START SIGNAL	1250	Diagnostic Procedure	1293
CONSULT-II Reference Value in Data Monito	orMode	Component Inspection	
	1250	POSITIVE CRANKCASE VENTILATION	
Wiring Diagram	1251	Description	1298
Diagnostic Procedure		Component Inspection	
FUEL PUMP CIRCUIT		AUTOMATIC SPEED CONTROL DEVICE (ASC	
Description		System Description	
CONSULT-II Reference Value in Data Monito	orMode	Component Description	
	1254	SERVICE DATA AND SPECIFICATIONS (SDS)	
Wiring Diagram		Fuel Pressure	
Diagnostic Procedure		Idle Speed and Ignition Timing	
Component Inspection		Calculated Load Value	
Removal and Installation		Mass Air Flow Sensor	
ELECTRONIC CONTROLLED ENGINE MO		Intake Air Temperature Sensor	
System Description		Engine Coolant Temperature Sensor	
CONSULT-II Reference Value in Data Monito	orMode	Heated Oxygen Sensor 1 Heater	
	1261	Heated Oxygen sensor 2 Heater	
Wiring Diagram		Crankshaft Position Sensor (POS)	
Diagnostic Procedure		Camshaft Position Sensor (PHASE)	
REFRIGERANT PRESSURE SENSOR		Throttle Control Motor	
Component Description		Injector	
Wiring Diagram	1267	Fuel Pump	1303

INDEX FOR DTC

[QR]

INDEX FOR DTC

PFP:00024

Alphabetical Index

UBS002NR

Α

EC

NOTE:

If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-137, "DTC U1000, U1001 CAN COMMUNICATION LINE".

	DT	DTC*1		
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	Reference page	С
A/T 1ST GR FNCTN	P0731	0731	<u>AT-124</u>	_
A/T 2ND GR FNCTN	P0732	0732	<u>AT-129</u>	– D
A/T 3RD GR FNCTN	P0733	0733	<u>AT-134</u>	
A/T 4TH GR FNCTN	P0734	0734	<u>AT-139</u>	E
A/T TCC S/V FNCTN	P0744	0744	<u>AT-151</u>	
APP SEN 1/CIRC* ⁵	P0227	0227	EC-268	
APP SEN 1/CIRC* ⁵	P0228	0228	EC-268	- F
APP SEN 2/CIRC* ⁵	P1227	1227	EC-464	
APP SEN 2/CIRC* ⁵	P1228	1228	EC-464	G
APP SENSOR*5	P0226	0226	EC-262	
ASCD BRAKE SW	P1572	1572	EC-532	- Н
ASCD SW	P1564	1564	EC-525	
ASCD VHL SPD SEN	P1574	1574	EC-542	_
ATF TEMP SEN/CIRC	P0710	0710	<u>AT-109</u>	_
BRAKE SW/CIRCUIT	P1805	1805	<u>EC-548</u>	
CAN COMM CIRCUIT	U1000	1000* ⁶	<u>EC-137</u>	J
CAN COMM CIRCUIT	U1001	1001* ⁶	EC-137	
CKP SEN/CIRCUIT	P0335	0335	EC-283	
CLOSED LOOP-B1	P1148	1148	EC-441	– K
CMP SEN/CIRC-B1	P0340	0340	EC-290	_
CTP LEARNING	P1225	1225	EC-460	L
CTP LEARNING	P1226	1226	EC-462	
CYL 1 MISFIRE	P0301	0301	EC-274	B. /
CYL 2 MISFIRE	P0302	0302	EC-274	- N
CYL 3 MISFIRE	P0303	0303	EC-274	
CYL 4 MISFIRE	P0304	0304	EC-274	
ECM	P0605	0605	<u>EC-375</u>	
ECM BACK UP/CIRC	P1065	1065	EC-382	_
ECT SEN/CIRCUIT*5	P0117	0117	<u>EC-171</u>	
ECT SEN/CIRCUIT*5	P0118	0118	<u>EC-171</u>	
ECT SENSOR	P0125	0125	EC-176	_
ENG OVER TEMP	P0217	0217	EC-237	
ENG OVER TEMP	P1217	1217	EC-443	_
ENGINE SPEED SIG	P0725	0725	<u>AT-120</u>	
ETC ACTR* ⁵	P1121	1121	<u>EC-396</u>	_
ETC FUNCTION/CIRC*5	P1122	1122	EC-398	

	DTC	DTC*1		
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	Reference page	
ETC MOT	P1128	1128	EC-410	
ETC MOT PWR	P1124	1124	EC-405	
ETC MOT PWR* ⁵	P1126	1126	<u>EC-405</u>	
EVAP GROSS LEAK	P0455	0455	EC-340	
EVAP PURG FLOW/MON	P0441	0441	EC-300	
EVAP SMALL LEAK	P0442	0442	EC-306	
EVAP SMALL LEAK	P1442	1442	EC-474	
EVAP SYS PRES SEN	P0452	0452	EC-327	
EVAP SYS PRES SEN	P0453	0453	EC-333	
EVAP VERY SML LEAK	P0456	0456	EC-348	
EVAP VERY SML LEAK	P1456	1456	EC-497	
FTT SEN/CIRCUIT	P0182	0182	EC-233	
FTT SEN/CIRCUIT	P0183	0183	EC-233	
FTT SENSOR	P0181	0181	EC-231	
FUEL LEV SEN SLOSH	P0460	0460	EC-357	
FUEL LEVEL SEN/CIRC	P1464	1464	EC-506	
FUEL LEVEL SENSOR	P0461	0461	EC-362	
FUEL LEVL SEN/CIRC	P0462	0462	EC-364	
FUEL LEVL SEN/CIRC	P0463	0463	EC-364	
FUEL SYS-LEAN-B1	P0171	0171	EC-219	
FUEL SYS-RICH-B1	P0172	0172	EC-225	
HO2S1 (B1)	P0132	0132	EC-184	
HO2S1 (B1)	P0133	0133	EC-190	
HO2S1 (B1)	P0134	0134	EC-199	
HO2S1 (B1)	P1143	1143	EC-415	
HO2S1 (B1)	P1144	1144	EC-421	
HO2S1 HTR (B1)	P0031	0031	EC-143	
HO2S1 HTR (B1)	P0032	0032	EC-143	
HO2S2 (B1)	P0138	0138	EC-206	
HO2S2 (B1)	P0139	0139	EC-212	
HO2S2 (B1)	P1146	1146	EC-427	
HO2S2 (B1)	P1147	1147	EC-434	
HO2S2 HTR (B1)	P0037	0037	EC-148	
HO2S2 HTR (B1)	P0038	0038	EC-148	
AT SEN/CIRCUIT	P0112	0112	EC-166	
AT SEN/CIRCUIT	P0113	0113	EC-166	
AT SENSOR	P0127	0127	EC-179	
INT/V TIM CONT-B1	P0011	0011	EC-140	
NT/V TIM V/CIR-B1	P1111	1111	EC-392	
SC SYSTEM	P0506	0506	EC-371	
SC SYSTEM	P0507	0507	EC-373	
KNOCK SEN/CIRC-B1	P0327	0327	EC-279	

	DTC	DTC*1		
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	Reference page	
KNOCK SEN/CIRC-B1	P0328	0328	EC-279	E
L/PRESS SOL/CIRC	P0745	0745	<u>AT-159</u>	
MAF SEN/CIRCUIT	P0101	0101	EC-153	_
MAF SEN/CIRCUIT*5	P0102	0102	EC-160	_
MAF SEN/CIRCUIT*5	P0103	0103	EC-160	_
MAF SENSOR*5	P1102	1102	EC-386	_
MIL/CIRC	P0650	0650	EC-378	_
MULTI CYL MISFIRE	P0300	0300	EC-274	_
NATS MALFUNCTION	P1610 - P1615	1610 - 1615	EC-68	_
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	No DTC	Flashing* ⁴	EC-69	_
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	0000	_	_
O/R CLTCH SOL/CIRC	P1760	1760	<u>AT-180</u>	_
P-N POS SW/CIRCUIT	P1706	1706	EC-544	_
PNP SW/CIRC	P0705	0705	<u>AT-103</u>	=
PURG VOLUME CONT/V	P0444	0444	EC-314	_
PURG VOLUME CONT/V	P0445	0445	EC-314	_
PURG VOLUME CONT/V	P1444	1444	EC-476	
SENSOR POWER/CIRC*5	P1229	1229	EC-470	
SFT SOL A/CIRC	P0750	0750	<u>AT-165</u>	_
SFT SOL B/CIRC	P0755	0755	<u>AT-170</u>	_
TCC SOLENOID/CIRC	P0740	0740	<u>AT-146</u>	_
THERMSTAT FNCTN	P0128	0128	EC-182	_
TP SEN 1/CIRC* ⁵	P0222	0222	EC-256	
TP SEN 1/CIRC* ⁵	P0223	0223	EC-256	_
TP SEN 2/CIRC* ⁵	P1223	1223	EC-454	_
TP SEN 2/CIRC* ⁵	P1224	1224	EC-454	
TP SENSOR*5	P0221	0221	EC-249	_
TPV SEN/CIRC A/T	P1705	1705	<u>AT-175</u>	-
TW CATALYST SYS-B1	P0420	0420	EC-296	_
VC CUT/V BYPASS/V	P1491	1491	EC-516	_
VC/V BYPASS/V	P1490	1490	EC-509	_
VEH SPD SEN/CIR AT* ⁷	P0720	0720	<u>AT-115</u>	_
VEH SPEED SEN/CIRC* ⁷	P0500	0500	EC-369	_
VENT CONTROL VALVE	P0447	0447	EC-320	_
VENT CONTROL VALVE	P1446	1446	EC-484	_
VENT CONTROL VALVE	P1448	1448	EC-490	-

^{*1: 1}st trip DTC No. is the same as DTC No.

^{*2:} These numbers are prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), these numbers are controlled by NISSAN.

DTC No. Index

NOTE:

If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-137, "DTC U1000, U1001 CAN COMMUNICATION LINE".

DTO	<i>-</i> 1	Items	
CONSULT-II GST* ²	ECM* ³	(CONSULT-II screen terms)	Reference page
No DTC	Flashing* ⁴	NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	EC-69
U1000	1000* ⁶	CAN COMM CIRCUIT	EC-137
U1001	1001* ⁶	CAN COMM CIRCUIT	EC-137
P0000	0000	NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	_
P0011	0011	INT/V TIM CONT-B1	EC-140
P0031	0031	HO2S1 HTR (B1)	EC-143
P0032	0032	HO2S1 HTR (B1)	EC-143
P0037	0037	HO2S2 HTR (B1)	EC-148
P0038	0038	HO2S2 HTR (B1)	EC-148
P0101	0101	MAF SEN/CIRCUIT	EC-153
P0102	0102	MAF SEN/CIRCUIT*5	EC-160
P0103	0103	MAF SEN/CIRCUIT*5	EC-160
P0112	0112	IAT SEN/CIRCUIT	<u>EC-166</u>
P0113	0113	IAT SEN/CIRCUIT	EC-166
P0117	0117	ECT SEN/CIRCUIT*5	EC-171
P0118	0118	ECT SEN/CIRCUIT*5	EC-171
P0125	0125	ECT SENSOR	<u>EC-176</u>
P0127	0127	IAT SENSOR	EC-179
P0128	0128	THERMSTAT FNCTN	EC-182
P0132	0132	HO2S1 (B1)	EC-184
P0133	0133	HO2S1 (B1)	EC-190
P0134	0134	HO2S1 (B1)	EC-199
P0138	0138	HO2S2 (B1)	EC-206
P0139	0139	HO2S2 (B1)	EC-212
P0171	0171	FUEL SYS-LEAN-B1	EC-219
P0172	0172	FUEL SYS-RICH-B1	EC-225
P0181	0181	FTT SENSOR	EC-231
P0182	0182	FTT SEN/CIRCUIT	EC-233
P0183	0183	FTT SEN/CIRCUIT	EC-233
P0217	0217	ENG OVER TEMP	EC-237
P0221	0221	TP SENSOR* ⁵	EC-249
P0222	0222	TP SEN 1/CIRC*5	EC-256

^{*4:} When engine is running.

^{*5:} When the fail-safe operation occurs, the MIL illuminates.

^{*6:} The troubleshooting for this DTC needs CONSULT-II.

^{*7:} When the fail-safe operations for both self-diagnoses occur, the MIL illuminates.

INDEX FOR DTC

[QR]

DTC	:*1	lacina		Λ
ONSULT-II GST* ²	ECM*3	Items (CONSULT-II screen terms)	Reference page	A
P0223	0223	TP SEN 1/CIRC*5	EC-256	EC
P0226	0226	APP SENSOR*5	EC-262	
P0227	0227	APP SEN 1/CIRC*5	<u>EC-268</u>	=
P0228	0228	APP SEN 1/CIRC* ⁵	<u>EC-268</u>	– C
P0300	0300	MULTI CYL MISFIRE	EC-274	_
P0301	0301	CYL 1 MISFIRE	EC-274	D
P0302	0302	CYL 2 MISFIRE	EC-274	=
P0303	0303	CYL 3 MISFIRE	EC-274	_
P0304	0304	CYL 4 MISFIRE	EC-274	_ E
P0327	0327	KNOCK SEN/CIRC-B1	EC-279	_
P0328	0328	KNOCK SEN/CIRC-B1	EC-279	F
P0335	0335	CKP SEN/CIRCUIT	EC-283	_
P0340	0340	CMP SEN/CIRC-B1	EC-290	_
P0420	0420	TW CATALYST SYS-B1	EC-296	- G
P0441	0441	EVAP PURG FLOW/MON	EC-300	_
P0442	0442	EVAP SMALL LEAK	EC-306	- Н
P0444	0444	PURG VOLUME CONT/V	EC-314	_
P0445	0445	PURG VOLUME CONT/V	EC-314	=
P0447	0447	VENT CONTROL VALVE	EC-320	_
P0452	0452	EVAP SYS PRES SEN	EC-327	=
P0453	0453	EVAP SYS PRES SEN	EC-333	– J
P0455	0455	EVAP GROSS LEAK	EC-340	_
P0456	0456	EVAP VERY SML LEAK	EC-348	_
P0460	0460	FUEL LEV SEN SLOSH	EC-357	K
P0461	0461	FUEL LEVEL SENSOR	EC-362	_
P0462	0462	FUEL LEVL SEN/CIRC	EC-364	_
P0463	0463	FUEL LEVL SEN/CIRC	EC-364	_
P0500	0500	VEH SPEED SEN/CIRC* ⁷	EC-369	_
P0506	0506	ISC SYSTEM	EC-371	M
P0507	0507	ISC SYSTEM	EC-373	=
P0605	0605	ECM	EC-375	=
P0650	0650	MIL/CIRC	EC-378	=
P0705	0705	PNP SW/CIRC	<u>AT-103</u>	_
P0710	0710	ATF TEMP SEN/CIRC	<u>AT-109</u>	_
P0720	0720	VEH SPD SEN/CIR AT* ⁷	<u>AT-115</u>	_
P0725	0725	ENGINE SPEED SIG	<u>AT-120</u>	_
P0731	0731	A/T 1ST GR FNCTN	AT-124	=
P0732	0732	A/T 2ND GR FNCTN	AT-129	_
P0733	0733	A/T 3RD GR FNCTN	<u>AT-134</u>	_
P0734	0734	A/T 4TH GR FNCTN	AT-139	_
P0740	0740	TCC SOLENOID/CIRC	<u>AT-146</u>	_
P0744	0744	A/T TCC S/V FNCTN	AT-151	_

DTC*1			
CONSULT-II GST*2 ECM*3		ltems (CONSULT-II screen terms)	Reference page
P0745	0745	L/PRESS SOL/CIRC	<u>AT-159</u>
P0750	0750	SFT SOL A/CIRC	<u>AT-165</u>
P0755	0755	SFT SOL B/CIRC	<u>AT-170</u>
P1065	1065	ECM BACK UP/CIRC	EC-382
P1102	1102	MAF SENSOR*5	EC-386
P1111	1111	INT/V TIM V/CIR-B1	EC-392
P1121	1121	ETC ACTR*5	EC-396
P1122	1122	ETC FUNCTION/CIRC*5	<u>EC-398</u>
P1124	1124	ETC MOT PWR	EC-405
P1126	1126	ETC MOT PWR*5	EC-405
P1128	1128	ETC MOT FWR	EC-410
P1143	1143	HO2S1 (B1)	EC-415
P1144	1143	HO2S1 (B1)	EC-421
P1144	1144	HO2S2 (B1)	EC-427
P1147	1147	HO2S2 (B1)	EC-434
P1148	1147	CLOSED LOOP-B1	EC-441
P1217	1217	ENG OVER TEMP	EC-443
P1223	1217		EC-454
		TP SEN 2/CIRC*5	
P1224	1224	TP SEN 2/CIRC* ⁵	<u>EC-454</u>
P1225	1225	CTP LEARNING	<u>EC-460</u>
P1226	1226	CTP LEARNING	<u>EC-462</u>
P1227	1227	APP SEN 2/CIRC*5	EC-464
P1228	1228	APP SEN 2/CIRC*5	EC-464
P1229	1229	SENSOR POWER/CIRC*5	EC-470
P1442	1442	EVAP SMALL LEAK	EC-474
P1444	1444	PURG VOLUME CONT/V	EC-476
P1446	1446	VENT CONTROL VALVE	EC-484
P1448	1448	VENT CONTROL VALVE	EC-490
P1456	1456	EVAP VERY SML LEAK	EC-497
P1464	1464	FUEL LEVEL SEN/CIRC	EC-506
P1490	1490	VC/V BYPASS/V	EC-509
P1491	1491	VC CUT/V BYPASS/V	EC-516
P1564	1564	ASCD SW	EC-525
P1572	1572	ASCD BRAKE SW	EC-532
P1574	1574	ASCD VHL SPD SEN	EC-542
P1610 - P1615	1610 - 1615	NATS MALFUNCTION	<u>EC-68</u>
P1705	1705	TPV SEN/CIRC A/T	<u>AT-175</u>
P1706	1706	P-N POS SW/CIRCUIT	<u>EC-544</u>
P1760	1760	O/R CLTCH SOL/CIRC	<u>AT-180</u>
P1805	1805	BRAKE SW/CIRCUIT	EC-548

^{*1: 1}st trip DTC No. is the same as DTC No.

^{*2:} These numbers are prescribed by SAE J2012.

INDEX FOR DTC

[QR]

*3: In Diagnostic Test Mode II (Self-diagnostic results), these numbers are controlled by NISSAN.

- *4: When engine is running.
- *5: When the fail-safe operation occurs, the MIL illuminates.
- *6: The troubleshooting for this DTC needs CONSULT-II.
- *7: When the fail-safe operations for both self-diagnoses occur, the MIL illuminates.

EC

Α

С

D

Е

F

G

Н

1

n

[QR]

PRECAUTIONS PFP:00001

Precautions for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

UBS002N

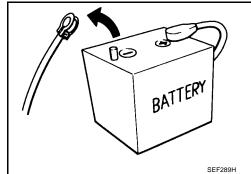
The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. Information necessary to service the system safely is included in the SRS and SB section of this Service Manual.

WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN/INFINITI dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the SRS section.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or harness connectors.

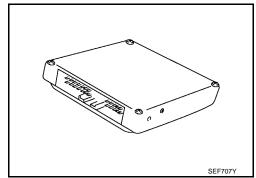
On Board Diagnostic (OBD) System of Engine and A/T

UBS002NL

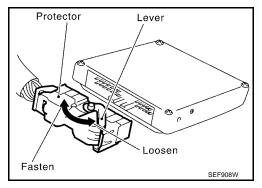

The ECM has an on board diagnostic system. It will light up the malfunction indicator (MIL) to warn the driver of a malfunction causing emission deterioration.

CAUTION:

- Be sure to turn the ignition switch OFF and disconnect the battery ground cable before any repair
 or inspection work. The open/short circuit of related switches, sensors, solenoid valves, etc. will
 cause the MIL to light up.
- Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will
 cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease,
 dirt, bent terminals, etc.)
- Certain systems and components, especially those related to OBD, may use a new style slidelocking type harness connector. For description and how to disconnect, refer to <u>PG-64</u>, "<u>HAR-NESS CONNECTOR</u>".
- Be sure to route and secure the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MIL to light up due to the short circuit.
- Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
 may cause the MIL to light up due to the malfunction of the fuel injection system, etc.
- Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and TCM (Transmission control module) before returning the vehicle to the customer.

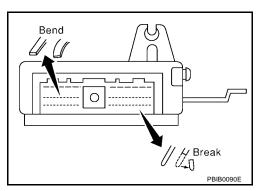

Precaution

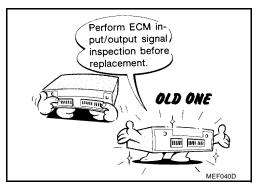
- Always use a 12 volt battery as power source.
- Do not attempt to disconnect battery cables while engine is running.
- Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect battery ground cable. Failure to do so may damage the ECM because battery voltage is applied to ECM even if ignition switch is turned off.
- Before removing parts, turn ignition switch OFF and then disconnect battery ground cable.



- Do not disassemble ECM.
- If battery cable is disconnected, the memory will return to the initial ECM values.

The ECM will now start to self-control at its initial values. Engine operation can vary slightly when the cable is disconnected. However, this is not an indication of a problem. Do not replace parts because of a slight variation.


 When connecting ECM harness connector, fasten it securely with a lever as far as it will go as shown at right.



 When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).

Make sure that there are not any bends or breaks on ECM pin terminal, when connecting pin connectors.

- Securely connect ECM harness connectors.
 - A poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs.
- Keep engine control system harness at least 10 cm (4 in) away from adjacent harness, to prevent engine control system malfunctions due to receiving external noise, degraded operation of ICs, etc.
- Keep engine control system parts and harness dry.
- Before replacing ECM, perform "ECM Terminals and Reference Value" inspection and make sure ECM functions properly. Refer to EC-99.
- Handle mass air flow sensor carefully to avoid damage.
- Do not disassemble mass air flow sensor.
- Do not clean mass air flow sensor with any type of detergent.
- Do not disassemble electric throttle control actuator.
- Even a slight leak in the air intake system can cause serious problems.
- Do not shock or jar the camshaft position sensor (PHASE), crankshaft position sensor (POS).

Revision: May 2004 EC-23 2002 Altima

EC

Α

D

Е

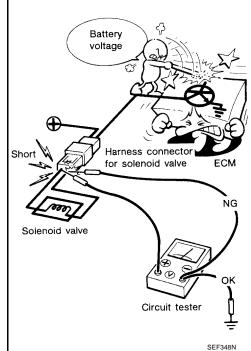
G

Н

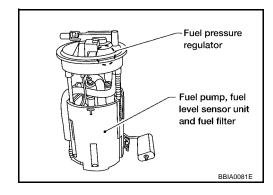
I

J

K

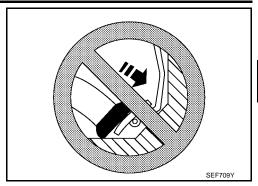

L

After performing each TROUBLE DIAGNOSIS, perform "DTC Confirmation Procedure" or "Overall Function Check".

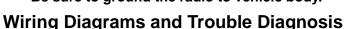

The DTC should not be displayed in the "DTC Confirmation Procedure" if the repair is completed. The "Overall Function Check" should be a good result if the repair is completed.

- When measuring ECM signals with a circuit tester, never allow the two tester probes to contact.
 Accidental contact of probes will cause a short circuit and damage the ECM power transistor.
- Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

- Do not operate fuel pump when there is no fuel in lines.
- Tighten fuel hose clamps to the specified torque.


Α

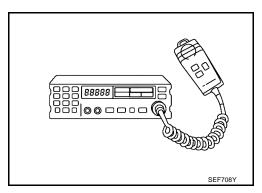
EC


D

Е

- Do not depress accelerator pedal when starting.
- Immediately after starting, do not rev up engine unnecessarily.
- Do not rev up engine just prior to shutdown.

- When installing C.B. ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on installation location.
- Keep the antenna as far as possible from the electronic control units.
- Keep the antenna feeder line more than 20 cm (8 in) away from the harness of electronic controls. Do not let them run parallel for a long distance.
- Adjust the antenna and feeder line so that the standingwave radio can be kept smaller.
- Be sure to ground the radio to vehicle body.



When you read wiring diagrams, refer to the following:

- GI-12, "How to Read Wiring Diagrams"
- PG-3, "POWER SUPPLY ROUTING CIRCUIT" for power distribution circuit

When you perform trouble diagnosis, refer to the following:

- GI-10, "HOW TO FOLLOW TEST GROUPS IN TROUBLE DIAGNOSES"
- GI-25, "How to Perform Efficient Diagnosis for an Electrical Incident"

LIBS002NW

[QR]

PREPARATION PFP:00002

Special Service Tools

UBS002NX

The cetual change	of Kant Maara taala ma	v diffar from those c	of special service tools illustrated here	
The actual shapes	OF Kent-Moore look ma	iv omer nom mose c	DI SDECIAL SELVICE TOOIS HIUSTIALEO HELE	

Tool number Tool name	Description	
KV10117100 Heated oxygen sensor wrench	S-NT379	Loosening or tightening heated oxygen sensors with 22 mm (0.87 in) hexagon nut
KV10114400 Heated oxygen sensor wrench	3-NT636	Loosening or tightening heated oxygen sensors a: 22 mm (0.87 in)
Fuel pressure gauge kit (J44321)	LEC642	Checking fuel pressure
Fuel filler cap adapter (J45356)		Checking fuel tank vacuum relief valve opening pressure
	S-NT815	

Commercial Service Tools

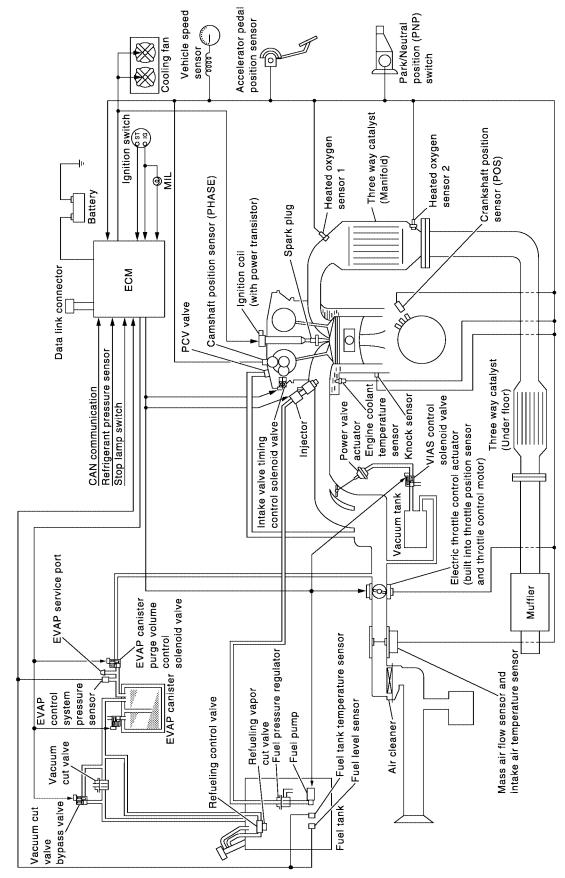
UBS002NY

Tool name (Kent- Moore No.)	Description	
Quick connector re- lease (J45488)	PBIC0198E	Removing fuel tube quick connectors in engine room (Available in SEC. 164 of PARTS CATALOG: Part No. 16441 6N210)
Leak detector (J41416)	S-NT703	Locating the EVAP leak

PREPARATION

[QR]

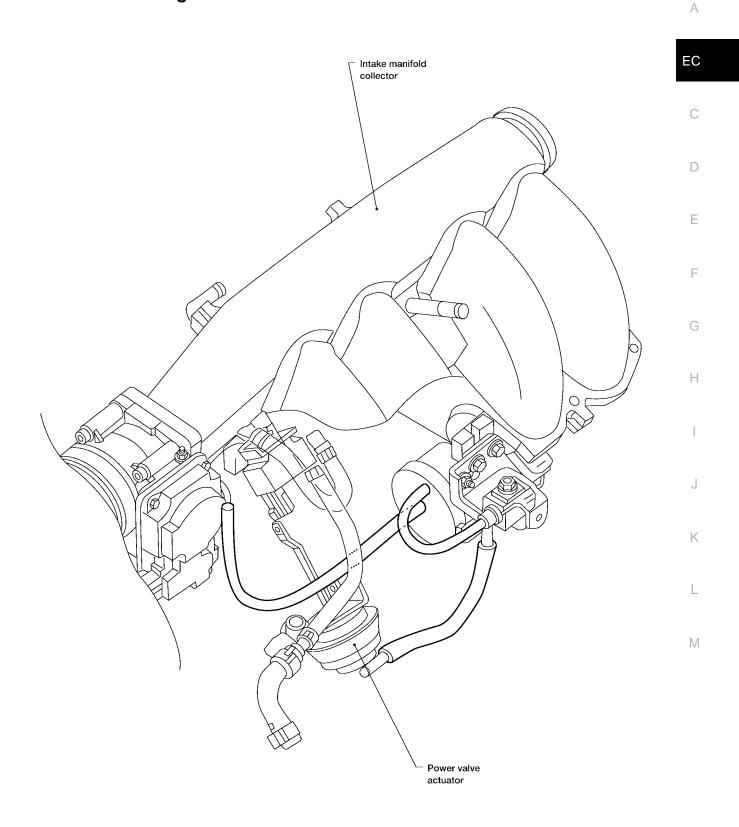
		[QIV]
Tool name (Kent- Moore No.)	Description	
EVAP service port adapter (J41413-OBD)		Applying positive pressure through EVAP service port
	S-NT704	
Socket wrench	19 mm	Removing and installing engine coolant tempera- ture sensor
	19 mm (0.75 in) More than 32 mm (1.26 in)	
Oxygen sensor thread cleaner ie: (J-43897-18)	a Mating b surface shave	Reconditioning the exhaust system threads before installing a new oxygen sensor. Use with antiseize lubricant shown below.
(J-43897-12)	cylinder	a: 18 mm diameter with pitch 1.5 mm for Zirco- nia Oxygen Sensor b: 12 mm diameter with pitch 1.25 mm for Tita- nia Oxygen Sensor
Anti-seize lubricant	S-NT778	Lubricating oxygen sensor thread cleaning tool
ie: (Permatex TM 133AR or equivalent meeting MIL specifica- tion MIL-A-907)		when reconditioning exhaust system threads.
,	S-NT779	


Κ

 $oxedsymbol{\mathbb{L}}$

ENGINE CONTROL SYSTEMSystem Diagram

PFP:23710


UBS002NZ

[QR]

Vacuum Hose Drawing

IBS00200

BBIA0050E

Refer to EC-28, "System Diagram" for Vacuum Control System.

ENGINE CONTROL SYSTEM

[QR]

System Chart UBS00201

Input (Sensor)	ECM Function	Output (Actuator)
Camshaft position sensor (PHASE)	Fuel injection & mixture ratio control	Fuel injectors
 Crankshaft position sensor (POS) 	Electronic ignition system	Power transistor
Mass air flow sensor	Fuel pump control	Fuel pump relay *4
Engine coolant temperature sensor	ASCD vehicle speed control	Electric throttle control actuator
Heated oxygen sensor 1 The contract of t	On board diagnostic system	MIL (On the instrument panel)
Throttle position sensor Assolution position consor	Power valve control	VIAS control solenoid valve
Accelerator pedal position sensorPark/neutral position (PNP) switch	Heated oxygen sensor 1 heater control	Heated oxygen sensor 1 heater
Intake air temperature sensor	Heated oxygen sensor 2 heater control	Heated oxygen sensor 2 heater
Power steering oil pressure switchIgnition switch	EVAP canister purge flow control	EVAP canister purge volume control solenoid valve
Battery voltage	Air conditioning cut control	Air conditioner relay *4
 Knock sensor 	Cooling fan control	Cooling fan relays *4
Refrigerant pressure sensor		
Stop lamp switch		
ASCD steering switch		
ASCD brake switch		
ASCD clutch switch		
• Fuel level sensor*1		EVAP canister vent control valve
EVAP control system pressure sensor	ON BOARD DIAGNOSIS for EVAP system	Vacuum cut valve bypass valve
Fuel tank temperature sensor*1		• vacuum cut vaive bypass vaive
 Heated oxygen sensor 2 *2 		
 TCM (Transmission control module) *3 		
Air conditioner switch*3		
Vehicle speed sensor*3		
Electrical load signal*3		

^{*1:} These sensors are not used to control the engine system. They are used only for the on board diagnosis.

^{*2:} This sensor is not used to control the engine system under normal conditions.

^{*3:} The signals are sent to the ECM through CAN communication line.

^{*4:} These relays are built into IPDM E/R.

ENGINE CONTROL SYSTEM

[QR]

Multiport Fuel Injection (MFI) System INPUT/OUTPUT SIGNAL CHART

UBS00202

Sensor	Input Signal to ECM	ECM function	Actuator	
Crankshaft position sensor (POS)	Engine speed			
Camshaft position sensor (PHASE)	Engine speed and piston position			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Heated oxygen sensor 1	Density of oxygen in exhaust gas			
Throttle position sensor	Throttle position			
Accelerator pedal position sensor	Accelerator pedal position	Fuel injec-		
Park/neutral position (PNP) switch	Gear position	tion & mix- ture ratio	Fuel injectors	
Ignition switch	Start signal	control		
Knock sensor	Engine knocking condition			
Battery	Battery voltage			
Power steering oil pressure switch	Power steering operation			
Heated oxygen sensor 2 *1	Density of oxygen in exhaust gas			
Vehicle speed sensor *2	Vehicle speed			(
Air conditioner switch *2	Air conditioner operation			

^{*1:} Under normal conditions, this sensor is not for engine control operation.

SYSTEM DESCRIPTION

The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from both the crankshaft position sensor and the mass air flow sensor.

VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION

In addition, the amount of fuel injected is compensated to improve engine performance under various operating conditions as listed below.

<Fuel increase>

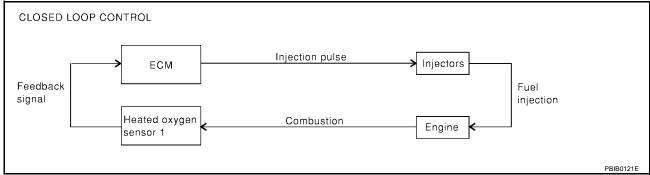
- During warm-up
- When starting the engine
- During acceleration
- Hot-engine operation
- When selector lever is changed from "N" to "D" (A/T models)
- High-load, high-speed operation

<Fuel decrease>

- During deceleration
- During high engine speed operation

D

Е


Н

J

 \mathbb{N}

^{*2:} This signal is sent to the ECM through CAN communication line.

MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The three way catalyst (manifold) can then better reduce CO, HC and NOx emissions. This system uses heated oxygen sensor 1 in the exhaust manifold to monitor if the engine operation is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about heated oxygen sensor 1, refer to EC-184. This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition.

Heated oxygen sensor 2 is located downstream of the three way catalyst (manifold). Even if the switching characteristics of heated oxygen sensor 1 shift, the air-fuel ratio is controlled to stoichiometric by the signal from heated oxygen sensor 2.

Open Loop Control

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

- Deceleration and acceleration
- High-load, high-speed operation
- Malfunction of heated oxygen sensor 1 or its circuit
- Insufficient activation of heated oxygen sensor 1 at low engine coolant temperature
- High engine coolant temperature
- During warm-up
- After shifting from "N" to "D" (A/T models)
- When starting the engine

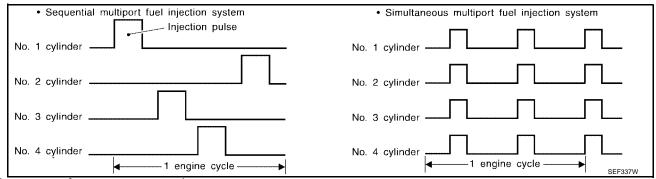
MIXTURE RATIO SELF-LEARNING CONTROL

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from heated oxygen sensor 1. This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both manufacturing differences (i.e., mass air flow sensor hot film) and characteristic changes during operation (i.e., injector clogging) directly affect mixture ratio.

Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.

"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short term fuel trim and long term fuel trim.

"Short term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from heated oxygen sensor 1 indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean.


"Long term fuel trim" is overall fuel compensation carried out long-term to compensate for continual deviation of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences, wear over time and changes in the usage environment.

[QR]

Α

EC

FUEL INJECTION TIMING

Two types of systems are used.

Sequential Multiport Fuel Injection System

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

Simultaneous Multiport Fuel Injection System

Fuel is injected simultaneously into all four cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.

The four injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

FUEL SHUT-OFF

Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.

Electronic Ignition (EI) System INPUT/OUTPUT SIGNAL CHART

UBS00203

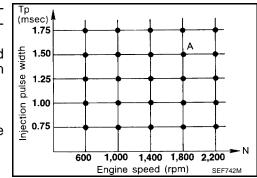
Н

M

Sensor	Input Signal to ECM	ECM func- tion	Actuator	
Crankshaft position sensor (POS)	Engine speed			
Camshaft position sensor (PHASE)	Engine speed and piston position			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Throttle position sensor	Throttle position	Ignition		
Accelerator pedal position sensor	Accelerator pedal position	timing con-	Power transistor	
Ignition switch	Start signal	trol		
Knock sensor	Engine knocking			
Park/neutral position (PNP) switch	Gear position			
Battery	Battery voltage			
Vehicle speed sensor	Vehicle speed			

SYSTEM DESCRIPTION

The ignition timing is controlled by the ECM to maintain the best airfuel ratio for every running condition of the engine. The ignition timing data is stored in the ECM. This data forms the map shown.


The ECM receives information such as the injection pulse width and camshaft position sensor signal. Computing this information, ignition signals are transmitted to the power transistor.

e.g., N: 1,800 rpm, Tp: 1.50 msec

A °BTDC

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.

- At starting
- During warm-up
- At idle

- At low battery voltage
- During acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

Air Conditioning Cut Control INPUT/OUTPUT SIGNAL CHART

UBS002O4

Sensor	Input Signal to ECM	ECM function	Actuator		
Air conditioner switch	Air conditioner "ON" signal				
Throttle position sensor	Throttle valve opening angle				
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed				
Engine coolant temperature sensor	Engine coolant temperature	Air conditioner	Air conditioner relay		
Ignition switch	Start signal	Cut control			
Refrigerant pressure sensor	Refrigerant pressure				
Power steering oil pressure switch	Power steering operation				
Vehicle speed sensor	Vehicle speed				

SYSTEM DESCRIPTION

This system improves engine operation when the air conditioner is used. Under the following conditions, the air conditioner is turned off.

- When the accelerator pedal is fully depressed.
- When cranking the engine.
- At high engine speeds.
- When the engine coolant temperature becomes excessively high.
- When operating power steering during low engine speed or low vehicle speed.
- When engine speed is excessively low.
- When refrigerant pressure is excessively low or high.

Fuel Cut Control (at No Load and High Engine Speed) INPUT/OUTPUT SIGNAL CHART

UBS00205

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Park/neutral position (PNP) switch	Neutral position Throttle position		
Throttle position sensor			
Accelerator pedal position sensor	Accelerator pedal position	Fuel cut	
Engine coolant temperature sensor	Engine coolant temperature	control	Fuel injectors
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed		
Vehicle speed sensor	Vehicle speed		

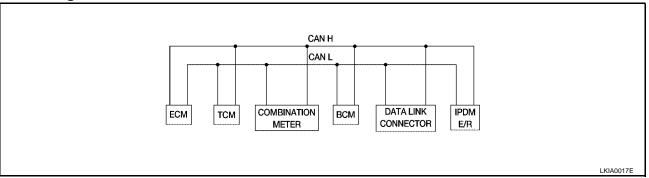
SYSTEM DESCRIPTION

If the engine speed is above 1,800 rpm with no load (for example, in neutral and engine speed over 1,800 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed. Fuel cut will operate until the engine speed reaches 1,500 rpm, then fuel cut is cancelled.

NOTE

This function is different from deceleration control listed under "Multiport Fuel Injection (MFI) System", EC-31.

CAN communication SYSTEM DESCRIPTION


UBS00206

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many elec-

tronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

FOR A/T MODELS

System Diagram

Input/Output Signal Chart

T: Transmit R: Receive

T: Transmit					
Signals	ECM	TCM	COMBINATION METER	ВСМ	IPDM E/R
Engine speed signal	Т	R	R		R
Engine coolant temperature signal	Т	R	R		
Accelerator pedal position signal	Т	R			R
Fuel consumption monitor signal	Т		R		
A/T warning lamp signal		Т	R		
A/T position indicator signal	R	Т	R	R ^(R range only)	
Air conditioner switch signal	R			Т	
Air conditioner compressor signal	R				Т
A/C compressor request signal	Т				R
Blower fan switch signal	R ^(QR25DE)			Т	
Cooling fan motor operation signal	R			Т	
Cooling Fan Speed Request signal	Т				R
Position Lights Request			R	Т	R
Position Lights Status				R	Т
Low Beam Request				Т	R
Low Beam Status	R			R	Т
High Beam Request			R	Т	R
High Beam Status	R			R	Т
Front Fog Lights Request				Т	R
Front Fog Light Status				R	Т
OD cancel switch signal		R	Т		R
Brake switch signal		R	Т		
√ehicle speed signal	R		Т		
vernore speed signal	R		Т	R	
Oil Pressure Switch			R		Т
Sleep Request1			R	Т	
Sleep Request2				Т	R
N range switch signal		R	Т		

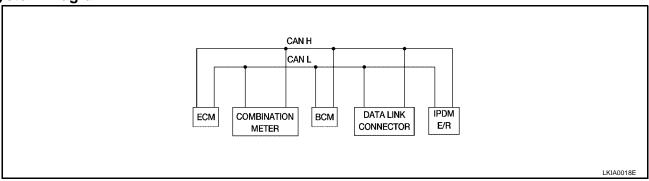
Revision: May 2004 EC-35 2002 Altima

EC

С

D

Е


F

Н

Signals	ECM	ТСМ	COMBINATION METER	ВСМ	IPDM E/R
P range switch signal		R	Т		
Seat belt buckle switch signal			Т	R	
Door switch signal			R	Т	R
Tail lamp request			R	Т	R
Turn indicator signal			R	Т	
Buzzer output signal			R	Т	
Trunk switch signal			R	Т	
ASCD main switch signal	Т		R		
ASCD cruise signal	Т		R		
Wiper operation				R	Т
Wiper stop position signal				R	Т
Rear window defogger switch signal				Т	R
Rear window defogger control signal	R				Т

FOR M/T MODELS

Input/Output Signal Chart

T: Transmit R: Receive

Signals	ECM	COMBINATION METER	ВСМ	IPDM E/R
Engine speed signal	Т	R		R
Engine coolant temperature signal	Т	R		
Fuel consumption monitor signal	Т	R		
Air conditioner switch signal	R		Т	
Air conditioner compressor signal	R			Т
A/C compressor request signal	Т			R
Blower fan switch signal	R ^(QR25DE)		Т	
Cooling fan motor operation signal	R			Т
Cooling Fan Speed Request signal	Т			R
Position Lights Request		R	Т	R
Position Lights Status			R	Т
Low Beam Request			Т	R
Low Beam Status	R		R	Т
High Beam Request		R	Т	R
High Beam Status	R		R	Т
Front Fog Lights Request			Т	R

ENGINE CONTROL SYSTEM

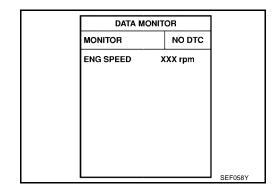
[QR]

Н

				[_
Signals	ECM	COMBINATION METER	ВСМ	IPDM E/R	A
Front Fog Light Status			R	Т	
Vehicle speed signal	R	Т			EC
Oil Pressure Switch		R		Т	- EC
Sleep Request 1		R	Т		_
Sleep Request 2			Т	R	С
Seat belt buckle switch signal		Т	R		_
Door switch signal		R	Т	R	_
Tail lamp request		R	Т	R	- D
Turn indicator signal		R	Т		_
Buzzer output signal		R	Т		E
Trunk switch signal		R	Т		_
ASCD main switch signal	Т	R			_
ASCD cruise signal	Т	R			F
Wiper operation			R	Т	_
Wiper stop position signal			R	Т	- G
Rear window defogger switch signal			Т	R	_
Rear window defogger control signal	R			Т	=

 $oxedsymbol{\mathbb{L}}$

UBS00207


BASIC SERVICE PROCEDURE

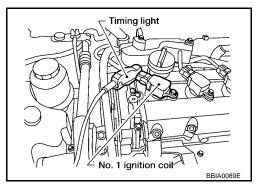
PFP:00018

Idle Speed and Ignition Timing Check IDLE SPEED

(P) With CONSULT-II

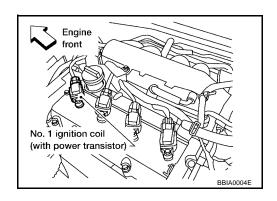
Check idle speed in "DATA MONITOR" mode with CONSULT-II.

6 With GST


Check idle speed in "MODE 1" with GST.

IGNITION TIMING

Any of following two methods may be used.


Method A

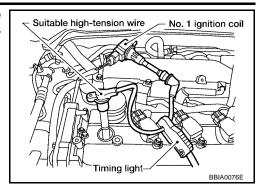
- 1. Remove the engine cover (if equipped)
- 2. Slide the harness protector of ignition coil No. 1 to access the wires.
- 3. Attach timing light to the wires.
- 4. Check ignition timing.

Method B

1. Remove No. 1 ignition coil.

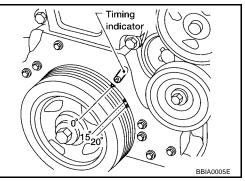
Α

EC


D

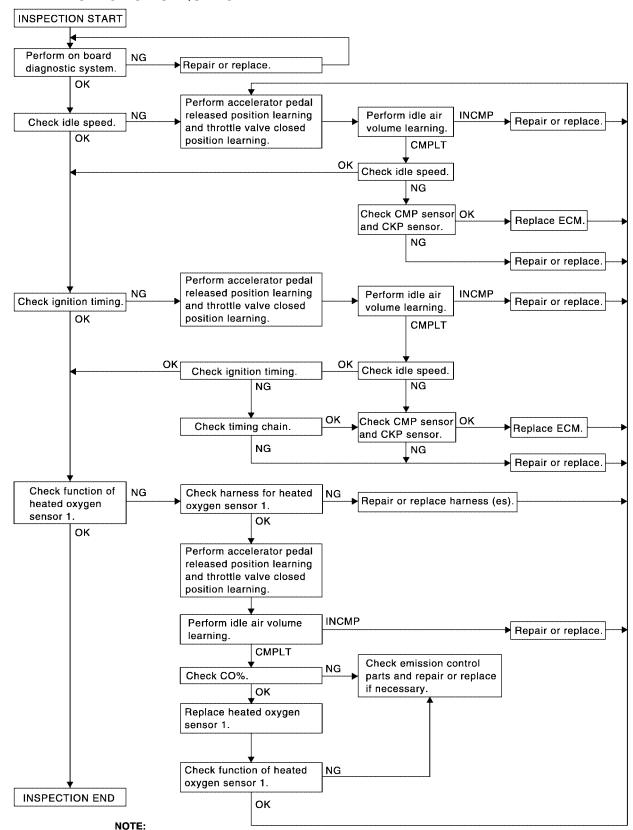
Е

Н


M

Connect No. 1 ignition coil and No. 1 spark plug with suitable high-tension wire as shown, and attach timing light clamp to this wire.

3. Check ignition timing.


Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment PREPARATION

UBS00208

- 1. Make sure that the following parts are in good order.
 - Battery
 - Ignition system
 - Engine oil and coolant levels
 - Fuses
 - ECM harness connector
 - Vacuum hoses
 - Air intake system (Oil filler cap, oil level gauge, etc.)
 - Fuel pressure
 - Engine compression
 - Throttle valve
 - Evaporative emission system
- 2. On air conditioner equipped models, checks should be carried out while the air conditioner is "OFF".
- 3. On automatic transmission equipped models, when checking idle rpm, ignition timing and mixture ratio, checks should be carried out while shift lever is in "N" position.
- 4. When measuring "CO" percentage, insert probe more than 40 cm (15.7 in) into tail pipe.
- 5. Turn off headlamps, heater blower, rear window defogger.

Keep front wheels pointed straight ahead.

OVERALL INSPECTION SEQUENCE

If a vehicle contains a part which is operating outside of design specifications with no MIL illumination, the part shall not be replaced prior to emission testing unless it is determined that the part has been tampered with or abused in such a way that the diagnostic system cannot reasonably be expected to detect the resulting malfunction.

Α

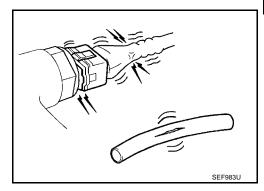
EC

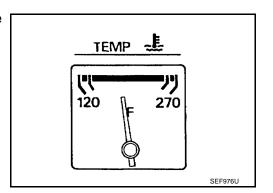
D

Е

F

Н

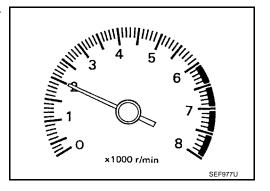

M


INSPECTION PROCEDURE

1. INSPECTION START

1. Check service records for any recent repairs that may indicate a related problem, or a current need for scheduled maintenance.

- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Wiring harness for improper connections, pinches and cut
- Vacuum hoses for splits, kinks and improper connections
- Hoses and ducts for leaks
- Air cleaner clogging
- Gasket
- 3. Confirm that electrical or mechanical loads are not applied.
- Headlamp switch is OFF.
- Air conditioner switch is OFF.
- Rear window defogger switch is OFF.
- Steering wheel is in the straight-ahead position, etc.
- Start engine and warm it up until engine coolant temperature indicator points the middle of gauge.
 Ensure engine stays below 1,000 rpm.



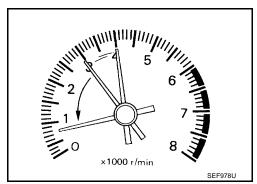
- 5. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 6. Make sure that no DTC is displayed with CONSULT-II or GST.

OK or NG

OK >> GO TO 3.

NG >> GO TO 2.

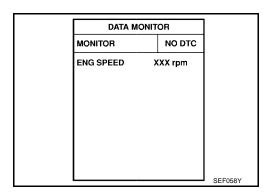
2. REPAIR OR REPLACE


Repair or replace components as necessary according to corresponding "Diagnostic Procedure".

>> GO TO 3.

3. CHECK TARGET IDLE SPEED

(P) With CONSULT-II


- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.

3. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

M/T: 700 \pm 50 rpm

A/T: 700 \pm 50 rpm (in "P" or "N" position)

W Without CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.
- 3. Check idle speed.

M/T: 700 \pm 50 rpm

A/T: 700 \pm 50 rpm (in "P" or "N" position)

OK or NG

OK >> GO TO 10. NG >> GO TO 4.

4. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-49, "Accelerator Pedal Released Position Learning".

>> GO TO 5.

5. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-49, "Throttle Valve Closed Position Learning" .

>> GO TO 6.

BASIC SERVICE PROCEDURE

[QR]

	[Qiv]	
6. PERFORM IDLE AIR VOLUME LEARNING		Δ
Perform <u>EC-49, "Idle Air Volume Learning"</u> . Which is the result CMPLT or INCMP?		
CMPLT or INCMP		EC
CMPLT>> GO TO 7. INCMP>> 1. Follow the construction of "Idle Air Volume Learning". 2. GO TO 4.	•	С
7. CHECK TARGET IDLE SPEED AGAIN		
With CONSULT-II		D
 Start engine and warm it up to normal operating temperature. Read idle speed in "DATA MONITOR" mode with CONSULT-II. 		Е
M/T: 700 \pm 50 rpm A/T: 700 \pm 50 rpm (in "P" or "N" position)		F
Without CONSULT-IIStart engine and warm it up to normal operating temperature.Check idle speed.		G
M/T: 700 \pm 50 rpm A/T: 700 \pm 50 rpm (in "P" or "N" position)		Н
OK or NG OK >> GO TO 10. NG >> GO TO 8.		ı
8. DETECT MALFUNCTIONING PART		
Check the following.		J
 Check camshaft position sensor (PHASE) and circuit. Refer to <u>EC-290</u>. Check crankshaft position sensor (POS) and circuit. Refer to <u>EC-283</u>. 		K
OK or NG OK >> GO TO 9.		
NG >> 1. Repair or replace. 2. GO TO 4.		L
9. CHECK ECM FUNCTION		1. //
		M

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of a problem, but this is the rarely the case.)
- 2. Perform initialization of NVIS (NATS) system and registration of NVIS (NATS) ignition key IDs. Refer to EC-68, "VIS (Nissan Vehicle Immobilizer System — NATS)"

>> GO TO 4.

10. CHECK IGNITION TIMING

- 1. Run engine at idle.
- 2. Check ignition timing with a timing light.

M/T: $15 \pm 5^{\circ}$ BTDC

A/T: $15 \pm 5^{\circ}$ BTDC (in "P" or "N" position)

OK or NG

OK (With CONSULT-II)>>GO TO 19. OK (Without CONSULT-II)>>GO TO 20. NG >> GO TO 11.

11. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-49, "Accelerator Pedal Released Position Learning".

>> GO TO 12.

12. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-49, "Throttle Valve Closed Position Learning".

>> GO TO 13.

13. PERFORM IDLE AIR VOLUME LEARNING

Perform EC-49, "Idle Air Volume Learning".

Which is the result CMPLT or INCMP?

CMPLT or INCMP

CMPLT>> GO TO 14.

INCMP >> 1. Follow the construction of "Idle Air Volume Learning".

2. GO TO 4.

14. CHECK TARGET IDLE SPEED AGAIN

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

M/T: 700 \pm 50 rpm

A/T: 700 \pm 50 rpm (in "P" or "N" position)

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed.

M/T: 700 \pm 50 rpm

A/T: 700 \pm 50 rpm (in "P" or "N" position)

OK or NG

OK >> GO TO 15. NG >> GO TO 17.

[QR]

EC

D

Н

M

15. CHECK IGNITION TIMING AGAIN

1. Run engine at idle.

2. Check ignition timing with a timing light.

M/T: $15 \pm 5^{\circ}$ BTDC

A/T: $15 \pm 5^{\circ}$ BTDC (in "P" or "N" position)

OK or NG

OK (With CONSULT-II)>>GO TO 19.

OK (Without CONSULT-II)>>GO TO 20.

NG >> GO TO 16.

16. CHECK TIMING CHAIN INSTALLATION

Check timing chain installation. Refer to EM-47, "TIMING CHAIN" .

OK or NG

OK >> GO TO 17.

NG >> 1. Repair the timing chain installation.

2. GO TO 4.

17. DETECT MALFUNCTIONING PART

Check the following.

- Check camshaft position sensor (PHASE) and circuit. Refer to EC-290.
- Check crankshaft position sensor (POS) and circuit. Refer to EC-283.

OK or NG

OK >> GO TO 18.

NG >> 1. Repair or replace.

2. GO TO 4.

18. CHECK ECM FUNCTION

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of a problem, but this is the rarely the case.)
- Perform initialization of NVIS (NATS) system and registration of NVIS (NATS) ignition key IDs. Refer to <u>EC-68</u>, "VIS (Nissan Vehicle Immobilizer System — NATS)"

>> GO TO 4.

19. CHECK HEATED OXYGEN SENSOR 1 SIGNAL

(P) With CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. See "HO2S1 MNTR (B1)" in "DATA MONITOR" mode.
- Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the monitor fluctuates between LEAN and RICH more than 5 times during 10 seconds.

1 time: $RICH \rightarrow LEAN \rightarrow RICH$

2 times: $RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH$

OK or NG

OK >> INSPECTION END

NG (Monitor does not fluctuate.)>>GO TO 21.

NG (Monitor fluctuates less than 5 times.)>>GO TO 28.

DATA MONI	DATA MONITOR			
MONITOR	NO DTC			
ENG SPEED	XXX rpm			
MAS A/F SE-B1	xxx v			
COOLAN TEMP/S	XXX °C			
HO2S1 (B1)	XXX V			
HO2S1 MNTR (B1)	LEAN			
		SEF64		

20. check heated oxygen sensor 1 signal

Without CONSULT-II

- 1. Stop engine and set ECM to Self-diagnostic mode II (Heated oxygen sensor 1 monitor). Refer to EC-70, "HOW TO SWITCH DIAGNOSTIC TEST MODE".
- 2. Start engine and run it at about 2,000 rpm for about 2 minutes under no-load.
- 3. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the MIL comes on more than 5 times during 10 seconds.

OK or NG

OK >> INDPECTION END

NG (MIL does not come on)>>GO TO 21.

NG (MIL comes on less than 5 times)>>GO TO 28.

21. CHECK HEATED OXYGEN SENSOR 1 HARNESS

- 1. Turn ignition switch "OFF" and disconnect battery ground cable.
- 2. Disconnect ECM harness connector.
- Disconnect heated oxygen sensor 1 harness connector.
- 4. Check harness continuity between ECM terminal 92 and heated oxygen sensor 1 terminal 1. Refer to EC186, "Wiring Diagram".

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

NG

OK >> GO TO 22.

>> 1. Repair or replace harness between ECM and heated oxygen sensor 1.

2. GO TO 4.

22. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- Reconnect ECM harness connector.
- 2. Perform EC-49, "Accelerator Pedal Released Position Learning".

>> GO TO 23.

23. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-49, "Throttle Valve Closed Position Learning".

>> GO TO 24.

24. PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-49, "Idle Air Volume Learning".

Which is the result CMPLT or INCMP?

CMPLT or INCMP

CMPLT (With CONSULT-II)>>GO TO 25.

CMPLT (Without CONSULT-II)>>GO TO 26.

INCMP >> 1. Follow the construction of "Idle Air Volume Learning".

2. GO TO 4.

[QR]

25. снеск "со"%

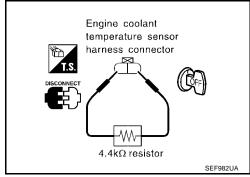
(II) With CONSULT-II

- 1. Start engine and warm it up until engine coolant temperature indicator points the middle of gauge.
- 2. Turn ignition switch "OFF", wait at least 10 seconds and then turn "ON".
- 3. Select "ENG COOLANT TEMP" in "ACTIVE TEST" mode.
- 4. Set "ENG COOLANT TEMP" to 5°C (41°F) by touching "DWN" and "Qd".
- 5. Start engine and rev it (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed.
- 6. Check "CO"%.

Idle CO: 0.3 – 9.5% and engine runs smoothly.

OK or NG

OK >> GO TO 28. NG >> GO TO 27.


26. снеск "со"%

W Without CONSULT-II

- 1. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge.
- 2. Turn ignition switch "OFF".
- 3. Disconnect engine coolant temperature sensor harness connector.
- 4. Connect a resistor (4.4 $k\Omega$) between terminals of engine coolant temperature sensor harness connector.
- 5. Start engine and rev it (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed.
- 6. Check "CO"%.

Idle CO: 0.3 - 9.5% and engine runs smoothly.

After checking "CO"%, turn ignition switch "OFF", disconnect the
resistor from the terminals of engine coolant temperature sensor
harness connector, and then connect engine coolant temperature sensor harness connector to engine coolant temperature
sensor.

ACTIVE TEST

MONITOR

XXX rpm

XXX msec

ENG COOLANT TEMP

ENG SPEED

INJ PULSE-B1

IGN TIMING

OK or NG

OK >> GO TO 28. NG >> GO TO 27.

27. RECONNECT HEATED OXYGEN SENSOR 1 HARNESS CONNECTOR

- 1. Turn ignition switch "OFF".
- Reconnect heated oxygen sensor 1 harness connector.

>> GO TO 31.

28. REPLACE HEATED OXYGEN SENSOR 1

- 1. Stop engine.
- Replace heated oxygen sensor 1.

With CONSULT-II>>GO TO 29. Without CONSULT-II>>GO TO 30.

EC

C

D

Е

SEF172Y

G

Н

1

J

K

29. CHECK HEATED OXYGEN SENSOR 1 SIGNAL

(P) With CONSULT-II

- 1. Start engine and warm it up until engine coolant temperature indicator points the middle of gauge.
- 2. See "HO2S1 MNTR (B1)" in "DATA MONITOR" mode.
- 3. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the monitor fluctuates between LEAN and RICH more than 5 times during 10 seconds.

1 time: $RICH \rightarrow LEAN \rightarrow RICH$

2 times: $RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH$

OK or NG

OK >> GO TO 4. NG >> GO TO 31.

30. CHECK HEATED OXYGEN SENSOR 1 SIGNAL

Without CONSULT-II

- Set ECM to Self-diagnostic mode II (Heated oxygen sensor 1 monitor). Refer to <u>EC-70, "HOW TO SWITCH DIAGNOSTIC TEST MODE"</u>.
- 2. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the MIL comes on more than 5 times during 10 seconds.

OK or NG

OK >> GO TO 4. NG >> GO TO 31.

31. DETECT MALFUNCTIONING PART

Check the following.

- Check fuel pressure regulator and repair or replace if necessary. Refer to EC-51, "Fuel Pressure Check".
- Check mass air flow sensor and its circuit, and repair or replace if necessary. Refer to <u>EC-153</u>, <u>EC-160</u> and <u>EC-386</u>.
- Check injector and its circuit, and repair or replace if necessary. Refer to <u>EC-573</u>.
- Check engine coolant temperature sensor and its circuit, and repair or replace if necessary. Refer to <u>EC-171</u> and <u>EC-176</u>.

OK or NG

OK >> GO TO 33. NG >> 1. Repair or replace. 2. GO TO 32.

32. ERASE UNNECESSARY DTC

After this inspection, unnecessary DTC might be displayed.

Erase the stored memory in ECM and TCM. Refer to $\underline{\text{EC-67}}$, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION" and $\underline{\text{AT-38}}$.

>> GO TO 4.

33. CHECK ECM FUNCTION

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of a problem, but this is the rarely the case.)
- 2. Perform initialization of NVIS (NATS) system and registration of NVIS (NATS) ignition key IDs. Refer to EC-68, "VIS (Nissan Vehicle Immobilizer System NATS)".

>> GO TO 4.

BASIC SERVICE PROCEDURE

[QR]

Accelerator Pedal Released Position Learning DESCRIPTION

"Accelerator Pedal Released Position Learning" is an operation to learn the fully released position of the accelerator pedal by monitoring the accelerator pedal position sensor output signal. It must be performed each time harness connector of accelerator pedal position sensor or ECM is disconnected.

EC

Α

OPERATION PROCEDURE

- 1. Make sure that accelerator pedal is fully released.
- Turn ignition switch "ON" and wait at least 2 seconds.
- Turn ignition switch "OFF" wait at least 10 seconds.
- Turn ignition switch "ON" and wait at least 2 seconds.
- Turn ignition switch "OFF" wait at least 10 seconds.

Throttle Valve Closed Position Learning DESCRIPTION

"Throttle Valve Closed Position Learning" is an operation to learn the fully closed position of the throttle valve by monitoring the throttle position sensor output signal. It must be performed each time harness connector of electric throttle control actuator or ECM is disconnected.

Е

OPERATION PROCEDURE

- 1. Make sure that accelerator pedal is fully released.
- Turn ignition switch "ON".

Turn ignition switch "OFF" wait at least 10 seconds. Make sure that throttle valve moves during above 10 seconds by confirming the operating sound.

Idle Air Volume Learning DESCRIPTION

UBS002OB

"Idle Air Volume Learning" is an operation to learn the idle air volume that keeps each engine within the specific range. It must be performed under any of the following conditions:

- Each time electric throttle control actuator or ECM is replaced.
- Idle speed or ignition timing is out of specification.

PREPARATION

Before performing "Idle Air Volume Learning", make sure that all of the following conditions are satisfied. Learning will be cancelled if any of the following conditions are missed for even a moment.

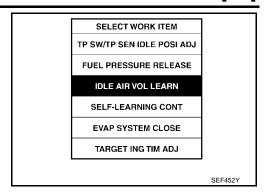
- Battery voltage: More than 12.9V (At idle)
- Engine coolant temperature: 70 95°C (158 203°F)
- PNP switch: ON
- Electric load switch: OFF

(Air conditioner, headlamp, rear window defogger)

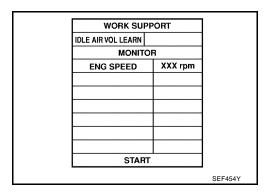
On vehicles equipped with daytime light systems, set lighting switch to the 1st position to light only small lamps.

- Steering wheel: Neutral (Straight-ahead position)
- Vehicle speed: Stopped
- Transmission: Warmed-up

For A/T models with CONSULT-II, drive vehicle until "FLUID TEMP SE" in "DATA MONITOR" mode of "A/ T" system indicates less than 0.9V.

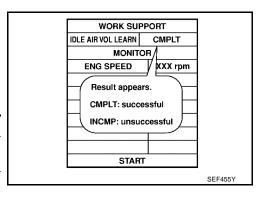

For A/T models without CONSULT-II and M/T models, drive vehicle for 10 minutes.

OPERATION PROCEDURE


(P) With CONSULT-II

- 1. Perform EC-49, "Accelerator Pedal Released Position Learning".
- 2. Perform EC-49, "Throttle Valve Closed Position Learning".
- Start engine and warm it up to normal operating temperature.
- Check that all items listed under the topic "PRE-CONDITIONING" (previously mentioned) are in good order.

5. Select "IDLE AIR VOL LEARN" in "WORK SUPPORT" mode.



6. Touch "START" and wait 20 seconds.

- 7. Make sure that "CMPLT" is displayed on CONSULT-II screen. If "INCMP" is displayed, "Idle Air Volume Learning" will not be carried out successfully. In this case, find the cause of the problem by referring to the "Diagnostic Procedure" below.
- 8. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.

ITEM	SPECIFICATION
Idle speed	M/T: 700±50 rpm A/T: 700±50 rpm (in "P" or "N" position)
Ignition timing	M/T: 15±5° BTDC A/T: 15±5° BTDC (in "P" or "N" position)

⋈ Without CONSULT-II

NOTE

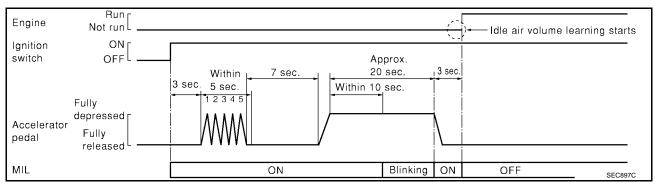
- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.
- 1. Perform EC-49, "Accelerator Pedal Released Position Learning".
- 2. Perform EC-49, "Throttle Valve Closed Position Learning".
- Start engine and warm it up to normal operating temperature.
- 4. Check that all items listed under the topic "PRE-CONDITIONING" (previously mentioned) are in good order.
- 5. Turn ignition switch "OFF" and wait at least 10 seconds.
- 6. Confirm that accelerator pedal is fully released, turn ignition switch "ON" and wait 3 seconds.
- 7. Repeat the following procedure quickly five times within 5 seconds.
- a. Fully depress the accelerator pedal.
- b. Fully release the accelerator pedal.
- 8. Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 20 seconds until the MIL stops blinking and turned ON.
- Fully release the accelerator pedal within 3 seconds after the MIL goes off.

[QR]

Α

EC

Е


Н

UBS002OC

M

10. Start engine and let it idle.

11. Wait 20 seconds.

12. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.

ITEM	SPECIFICATION
Idle speed	M/T: 700±50 rpm A/T: 700±50 rpm (in "P" or "N" position)
Ignition timing	M/T: 15±5° BTDC A/T: 15±5° BTDC (in "P" or "N" position)

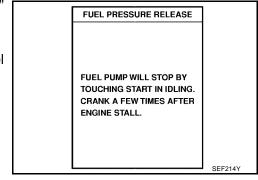
13. If idle speed and ignition timing are not within the specification, the result will be incomplete. In this case, find the cause of the problem by referring to the "Diagnostic Procedure" below.

DIAGNOSTIC PROCEDURE

If idle air volume learning cannot be performed successfully, proceed as follows:

- 1. Check that throttle valve is fully closed.
- Check PCV valve operation.
- 3. Check that downstream of throttle valve is free from air leakage.
- 4. When the above three items check out OK, engine component parts and their installation condition are questionable. Check and eliminate the cause of the problem.
 It is useful to perform EC-125, "TROUBLE DIAGNOSIS SPECIFICATION VALUE".
- 5. If any of the following conditions occur after the engine has started, eliminate the cause of the problem and perform "Idle air volume learning" all over again:
- Engine stalls.
- Erroneous idle.

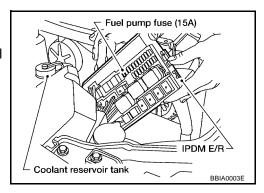
Fuel Pressure Check FUEL PRESSURE RELEASE


Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger.

NOTE

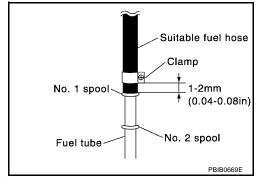
Prepare pans or saucers under the disconnected fuel line because the fuel may spill out. The fuel pressure cannot be completely released because L31 models do not have fuel return system.

(P) With CONSULT-II


- 1. Turn ignition switch "ON".
- Perform "FUEL PRESSURE RELEASE" in "WORK SUPPORT" mode with CONSULT-II.
- Start engine.
- 4. After engine stalls, crank it two or three times to release all fuel pressure.
- Turn ignition switch "OFF".

Revision: May 2004 EC-51 2002 Altima

⋈ Without CONSULT-II


- Remove fuel pump fuse located in IPDM E/R.
- 2. Start engine.
- After engine stalls, crank it two or three times to release all fuel pressure.
- 4. Turn ignition switch "OFF".
- Reinstall fuel pump fuse after servicing fuel system.

FUEL PRESSURE CHECK

CAUTION:

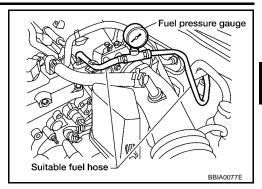
- The fuel hose connection method used when taking fuel pressure check must not be used for other purposes.
- Be careful not to scratch or put debris around connection area when servicing, so that the quick connector maintains sealability with O-rings inside.
- Do not perform fuel pressure check with electrical systems operating (i.e. lights, rear defogger, A/C, etc.). Fuel pressure gauge may indicate false readings due to varying engine load and changes in manifold vacuum.
- 1. Release fuel pressure to zero. Refer to EC-51, "FUEL PRESSURE RELEASE" .
- 2. Prepare fuel hose for fuel pressure check, and connect fuel pressure gauge.
 - Use suitable fuel hose for fuel pressure check (genuine NISSAN fuel hose without quick connector).
 - To avoid unnecessary force or tension to hose, use moderately long fuel hose for fuel pressure check.
 - Do not use the fuel hose for checking fuel pressure with damage or cracks on it.
 - Use Pressure Gauge to check fuel pressure.
- 3. Remove fuel hose. Refer to EM-18, "INTAKE MANIFOLD".
 - Do not twist or kink fuel hose because it is plastic hose.
 - Do not remove fuel hose from quick connector.
 - Keep the original fuel hose to be free from intrusion of dust or foreign substances with a suitable cover.
- 4. Install the fuel pressure gauge as shown in the figure.
 - Wipe off oil or dirt from hose insertion part using cloth moistened with gasoline.
 - Apply proper amount of gasoline between top of the fuel tube and No.1 spool.
 - Insert fuel hose for fuel pressure check until it touches the No.1 spool on fuel tube.
 - Use NISSAN genuine hose clamp (part number: 16439 N4710 or 16439 40U00).
 - When reconnecting fuel line, always use new clamps.
 - When reconnecting fuel hose, check the original fuel hose for damage and abnormality.
 - Use a torque driver to tighten clamps.

BASIC SERVICE PROCEDURE

[QR]

Install hose clamp to the position within 1 - 2 mm (0.04 - 0.08 in).

Tightening torque: 1 - 1.5 N⋅m (0.1 - 0.15 kg-m, 9 - 13 in-lb)


- Make sure that clamp screw does not contact adjacent parts.
- 5. After connecting fuel hose for fuel pressure check, pull the hose with a force of approximately 98 N (10 kg, 22 lb) to confirm fuel tube does not come off.
- 6. Turn ignition switch "ON", and check for fuel leakage.
- 7. Start engine and check for fuel leakage.
- 8. Read the indication of fuel pressure gauge.
 - Do not perform fuel pressure check with system operating. Fuel pressure gauge may indicate false readings.
 - During fuel pressure check, confirm for fuel leakage from fuel connection every 3 minutes.

At idling: Approximately 350 kPa (3.7 kg/cm², 51 psi)

- 9. If result is unsatisfactory, go to next step.
- 10. Check the following.
 - Fuel hoses and fuel tubes for clogging
 - Fuel filter for clogging
 - Fuel pump
 - Fuel pressure regulator for clogging

If OK, replace fuel pressure regulator.

If NG, repair or replace.

EC

Α

С

D

F

Е

Н

ı

PFP:00028

Introduction

UBS002OD

The ECM has an on board diagnostic system, which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

Emission-related diagnostic information	SAE Mode
Diagnostic Trouble Code (DTC)	Mode 3 of SAE J1979
Freeze Frame data	Mode 2 of SAE J1979
System Readiness Test (SRT) code	Mode 1 of SAE J1979
1st Trip Diagnostic Trouble Code (1st Trip DTC)	Mode 7 of SAE J1979
1st Trip Freeze Frame data	
Test values and Test limits	Mode 6 of SAE J1979
Calibration ID	Mode 9 of SAE J1979

The above information can be checked using procedures listed in the table below.

×: Applicable —: Not applicable

	DTC	1st trip DTC	Freeze Frame data	1st trip Freeze Frame data	SRT code	Test value	
CONSULT-II	×	×	×	×	×	_	
GST	×	×*1	×	_	×	×	
ECM	×	×*2	_	_	_	_	

^{*1: 1}st trip DTCs for self-diagnoses concerning SRT items cannot be shown on the GST display.

The malfunction indicator lamp (MIL) on the instrument panel lights up when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode. (Refer to EC-82.)

Two Trip Detection Logic

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the ECM memory. The MIL will not light up at this stage. <1st trip>

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in the ECM memory, and the MIL lights up. The MIL lights up at the same time when the DTC is stored. <2nd trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to light up or blink the MIL, and store DTC and Freeze Frame data, even in the 1st trip, as shown below.

×: Applicable —: Not applicable

						,		т арриоавіо	
	MIL				D.	TC	1st trip DTC		
Items	1st trip		2nd trip		1 at tria	On al triin	1 at trip	2nd trip	
	Blinking	Lighting up	Blinking	Lighting up	1st trip displaying	2nd trip displaying	1st trip displaying	display- ing	
Coolant overtemperature enrichment protection — DTC: P0217	_	×	_	_	×	_	_	_	
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0304 is being detected	×	_	_	_	_	_	×	_	
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0304 is being detected	_	_	×	_	_	×	_	_	
Throttle control motor — DTC: P1128	_	×	_	_	×	_	_	_	
Closed loop control — DTC: P1148	_	×	_	_	×	_	_	_	
Fail-safe items (Refer to EC-82.)	_	×	_	_	×	_	×	_	
Except above	_		_	×		×	×	_	

^{*2:} When DTC and 1st trip DTC simultaneously appear on the display, they cannot be clearly distinguished from each other.

[QR]

Emission-related Diagnostic Information EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS

UBS0020F

Items	DTC*1 *2			Test value/		Reference
(CONSULT-II screen terms)	CONSULT-II GST	ECM	SRT code	Test limit (GST only)	1st trip DTC	page
CAN COMM CIRCUIT	U1000	1000*6	_	_	×	EC-137
CAN COMM CIRCUIT	U1001	1001*6	_	_	×	EC-137
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	0000	_	_	_	_
INT/V TIM CONT-B1	P0011	0011	_	_	×	EC-140
HO2S1 HTR (B1)	P0031	0031	×	×	×* ⁵	EC-143
HO2S1 HTR (B1)	P0032	0032	×	×	×* ⁵	EC-143
HO2S2 HTR (B1)	P0037	0037	×	×	×* ⁵	EC-148
HO2S2 HTR (B1)	P0038	0038	×	×	×* ⁵	EC-148
MAF SEN/CIRCUIT	P0101	0101	_	_	×	EC-153
MAF SEN/CIRCUIT*3	P0102	0102	_	_	_	EC-160
MAF SEN/CIRCUIT*3	P0103	0103	_	_	_	EC-160
IAT SEN/CIRCUIT	P0112	0112	_	_	×	EC-166
IAT SEN/CIRCUIT	P0113	0113	_	_	×	EC-166
ECT SEN/CIRCUIT*3	P0117	0117	_	_	_	EC-171
ECT SEN/CIRCUIT*3	P0118	0118	_	_	_	EC-171
ECT SENSOR	P0125	0125	_	_	×	EC-176
IAT SENSOR	P0127	0127	_	_	×	EC-179
THERMSTAT FNCTN	P0128	0128	_	_	×	EC-182
HO2S1 (B1)	P0132	0132	×	×	×* ⁵	EC-184
HO2S1 (B1)	P0133	0133	×	×	×* ⁵	EC-190
HO2S1 (B1)	P0134	0134	×	×	×* ⁵	EC-199
HO2S2 (B1)	P0138	0138	×	×	×* ⁵	EC-206
HO2S2 (B1)	P0139	0139	×	×	×* ⁵	EC-212
FUEL SYS-LEAN-B1	P0171	0171	_	_	×	EC-219
FUEL SYS-RICH-B1	P0172	0172	_	_	×	EC-225
FTT SENSOR	P0181	0181	_	_	×	EC-231
FTT SEN/CIRCUIT	P0182	0182	_	_	×	EC-233
FTT SEN/CIRCUIT	P0183	0183	_	_	×	EC-233
ENG OVER TEMP	P0217	0217	_	_	×	EC-237
TP SENSOR*3	P0221	0221	_	_	_	EC-249
TP SEN 1/CIRC*3	P0222	0222	_	_	_	EC-256
TP SEN 1/CIRC*3	P0223	0223	_	_	_	EC-256
APP SENSOR*3	P0226	0226	_	_	_	EC-262
APP SEN 1/CIRC*3	P0227	0227	_	_	_	EC-268
APP SEN 1/CIRC*3	P0228	0228	_	_	_	EC-268
MULTI CYL MISFIRE	P0300	0300	_	_	×	EC-274

						[QR]	
	DTC*1 *2			Test value/			
Items (CONSULT-II screen terms)	CONSULT-II GST	ECM	SRT code	Test limit (GST only)	1st trip DTC	Reference page	
CYL 1 MISFIRE	P0301	0301	_	_	×	EC-274	
CYL 2 MISFIRE	P0302	0302	_	_	×	EC-274	
CYL 3 MISFIRE	P0303	0303	_	_	×	EC-274	
CYL 4 MISFIRE	P0304	0304	_	_	×	EC-274	
KNOCK SEN/CIRC-B1	P0327	0327	_	_	×	EC-279	
KNOCK SEN/CIRC-B1	P0328	0328	_	_	×	EC-279	
CKP SEN/CIRCUIT	P0335	0335	_	_	×	EC-283	
CMP SEN/CIRC-B1	P0340	0340	_	_	×	EC-290	
TW CATALYST SYS-B1	P0420	0420	×	×	×* ⁵	EC-296	
EVAP PURG FLOW/MON	P0441	0441	×	×	×* ⁵	EC-300	
EVAP SMALL LEAK	P0442	0442	×	×	×* ⁵	EC-306	
PURG VOLUME CONT/V	P0444	0444	_	_	×	EC-314	
PURG VOLUME CONT/V	P0445	0445	_	_	×	EC-314	
VENT CONTROL VALVE	P0447	0447	_	_	×	EC-320	
EVAP SYS PRES SEN	P0452	0452	_	_	×	EC-327	
EVAP SYS PRES SEN	P0453	0453	_	_	×	EC-333	
EVAP GROSS LEAK	P0455	0455	_	×	×* ⁵	EC-340	
EVAP VERY SML LEAK	P0456	0456	×* ⁴	×	×* ⁵	EC-348	
FUEL LEV SEN SLOSH	P0460	0460	_	_	×	EC-357	
FUEL LEVEL SENSOR	P0461	0461	_	_	×	EC-362	
FUEL LEVL SEN/CIRC	P0462	0462	_	_	×	EC-364	
FUEL LEVL SEN/CIRC	P0463	0463	_	_	×	EC-364	
VEH SPEED SEN/CIRC*6	P0500	0500	_	_	×	EC-369	
ISC SYSTEM	P0506	0506	_	_	×	EC-371	
ISC SYSTEM	P0507	0507	_	_	×	EC-373	
ECM	P0605	0605	_	_	×	EC-375	
MIL/CIRC	P0650	0650	_	_	×	EC-378	
PNP SW/CIRC	P0705	0705	_	_	×	<u>AT-103</u>	
ATF TEMP SEN/CIRC	P0710	0710	_	_	×	<u>AT-109</u>	
VEH SPD SEN/CIR AT*6	P0720	0720	_	_	×	<u>AT-115</u>	
ENGINE SPEED SIG	P0725	0725	_	_	×	<u>AT-120</u>	
A/T 1ST GR FNCTN	P0731	0731	_	_	×	<u>AT-124</u>	
A/T 2ND GR FNCTN	P0732	0732	_	_	×	<u>AT-129</u>	
A/T 3RD GR FNCTN	P0733	0733	_	_	×	<u>AT-134</u>	
A/T 4TH GR FNCTN	P0734	0734	_	_	×	<u>AT-139</u>	
TCC SOLENOID/CIRC	P0740	0740	_	_	×	<u>AT-146</u>	
A/T TCC S/V FNCTN	P0744	0744	_	_	×	AT-151	
L/PRESS SOL/CIRC	P0745	0745	_	_	×	AT-159	
SFT SOL A/CIRC	P0750	0750	_	_	×	<u>AT-165</u>	
SFT SOL B/CIRC	P0755	0755	_	_	×	<u>AT-170</u>	
ECM BACK UP/CIRC	P1065	1065	_	_	×	EC-382	

[QR]

						נעתן	_
	DTC	*1 * 2		Test value/		·	
Items (CONSULT-II screen terms)	CONSULT-II GST	ECM	SRT code	Test limit (GST only)	1st trip DTC	Reference page	e A EC T T T T T T T T T T T T T
MAF SENSOR*3	P1102	1102	_	_	_	EC-386	FC
INT/V TIM V/CIR-B1	P1111	1111	_	_	×	EC-392	
ETC ACTR*3	P1121	1121	_	_	_	EC-396	
ETC FUNCTION/CIRC*3	P1122	1122	_	_	_	EC-398	С
ETC MOT PWR	P1124	1124	_	_	×	EC-405	
ETC MOT PWR*3	P1126	1126	_	_	_	EC-405	D
ETC MOT	P1128	1128	_	_	_	EC-410	
HO2S1 (B1)	P1143	1143	×	×	×* ⁵	EC-415	_
HO2S1 (B1)	P1144	1144	×	×	×* ⁵	EC-421	
HO2S2 (B1)	P1146	1146	×	×	×* ⁵	EC-427	
HO2S2 (B1)	P1147	1147	×	×	×* ⁵	EC-434	F
CLOSED LOOP-B1	P1148	1148	_	_	_	EC-441	
ENG OVER TEMP	P1217	1217	_	_	×	EC-443	G
TP SEN 2/CIRC*3	P1223	1223	_	_	_	EC-454	
TP SEN 2/CIRC*3	P1224	1224	_	_	_	EC-454	Ц
CTP LEARNING	P1225	1225	_	_	×	EC-460	
CTP LEARNING	P1226	1226	_	_	×	EC-462	
APP SEN 2/CIRC*3	P1227	1227	_	_	_	EC-464	
APP SEN 2/CIRC*3	P1228	1228	_	_	_	EC-464	
SENSOR POWER/CIRC*3	P1229	1229	_	_	_	EC-470	J
EVAP SMALL LEAK	P1442	1442	×	×	×* ⁵	EC-474	
PURG VOLUME CONT/V	P1444	1444	_	_	×	EC-476	K
VENT CONTROL VALVE	P1446	1446	_	_	×	EC-484	I.
VENT CONTROL VALVE	P1448	1448	_	_	×	EC-490	
EVAP VERY SML LEAK	P1456	1456	×* ⁴	×	×* ⁵	EC-497	L
FUEL LEVEL SEN/CIRC	P1464	1464	_	_	×	EC-506	
VC/V BYPASS/V	P1490	1490	_	_	×	EC-509	M
VC CUT/V BYPASS/V	P1491	1491	_	_	×	EC-516	
ASCD SW	P1564	1564	_	_	×	EC-525	
ASCD BRAKE SW	P1572	1572	_	_	×	EC-532	
ASCD VHL SPD SEN	P1574	1574	_	_	×	EC-542	
TPV SEN/CIRC A/T	P1705	1705	_	_	×	<u>AT-175</u>	
P-N POS SW/CIRCUIT	P1706	1706	_	_	×	EC-544	
O/R CLTCH SOL/CIRC	P1760	1760	_	_	×	<u>AT-180</u>	
BRAKE SW/CIRCUIT	P1805	1805	_	_	×	EC-548	

^{*1: 1}st trip DTC No. is the same as DTC No.

^{*2:} These numbers are prescribed by SAE J2012.

^{*3:} When the fail-safe operation occurs, the MIL illuminates.

^{*4:} SRT code will not be set if the self-diagnostic result is NG.

^{*5:} These are not displayed with GST.

^{*6:} When the fail-safe operations for both self-diagnoses occur at the same time, the MIL illuminates.

DTC AND 1ST TRIP DTC

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip DTC will not be displayed.

If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MIL will not light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory and the MIL lights up. In other words, the DTC is stored in the ECM memory and the MIL lights up when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MIL during the 1st trip, the DTC and 1st trip DTC are stored in the ECM memory.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in <u>EC-67, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.

For malfunctions in which 1st trip DTCs are displayed, refer to EC-55, "EMISSION-RELATED DIAGNOSTIC <a href="INFORMATION ITEMS". These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-II.

1st trip DTC is specified in Mode 7 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a problem. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in "Work Flow" procedure Step II, refer to EC-78, "WORK FLOW". Then perform "DTC Confirmation Procedure" or "Overall Function Check" to try to duplicate the problem. If the malfunction is duplicated, the item requires repair.

How to Read DTC and 1st Trip DTC

DTC and 1st trip DTC can be read by the following methods.

(P) WITH CONSULT-II

WITH GST

CONSULT-II or GST (Generic Scan Tool) Examples: P0340, P1148, P1706, etc.

These DTCs are prescribed by SAE J2012.

(CONSULT-II also displays the malfunctioning component or system.)

NO TOOLS

The number of blinks of the MIL in the Diagnostic Test Mode II (Self-Diagnostic Results) indicates the DTC. Example: 0340, 1148, 1706, etc.

These DTCs are controlled by NISSAN.

- 1st trip DTC No. is the same as DTC No.
- Output of a DTC indicates a malfunction. However, GST or the Diagnostic Test Mode II do not indicate whether the malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT-II can identify malfunction status as shown below. Therefore, using CONSULT-II (if available) is recommended.

A sample of CONSULT-II display for DTC and 1st trip DTC is shown below. DTC or 1st trip DTC of a malfunction is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-II. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be "0".

If a 1st trip DTC is stored in the ECM, the time data will be "[1t]".

	SELF DIAG RESULTS		:	SELF DIAG RESU		
	DTC RESULTS	TIME	DT	TC RESULTS	TIME	
DTC	MAF SEN/CIRCUIT [P0101]	0	MAI 1st trip	F SEN/CIRCUIT [P0101]	1t	
display			DTC display			
						SEC7

[QR]

EC

Е

M

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed, base fuel schedule and intake air temperature at the moment a malfunction is detected.

Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data. The data, stored together with the DTC data, are called freeze frame data and displayed on CONSULT-II or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-II screen, not on the GST. For details, see <u>EC-110</u>, "Freeze Frame Data and 1st Trip Freeze Frame Data".

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the following priorities to update the data.

Priority	Items			
1	Freeze frame data	Misfire — DTC: P0300 - P0304 Fuel Injection System Function — DTC: P0171, P0172		
2	Except the above items (Includes A/T related items)			
3	1st trip freeze frame d	ata		

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was stored in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is stored in the ECM memory, 1st trip freeze data is no longer stored (because only one freeze frame data or 1st trip freeze frame data can be stored in the ECM). If freeze frame data is stored in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in EC-55, "EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS".

SYSTEM READINESS TEST (SRT) CODE

System Readiness Test (SRT) code is specified in Mode 1 of SAE J1979.

As part of an enhanced emissions test for Inspection & Maintenance (I/M), certain states require the status of SRT be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "INCMP", use the information in this Service Manual to set the SRT to "CMPLT".

In most cases the ECM will automatically complete its self-diagnosis cycle during normal usage, and the SRT status will indicate "CMPLT" for each application system. Once set as "CMPLT", the SRT status remains "CMPLT" until the self-diagnosis memory is erased.

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern; the SRT will indicate "INCMP" for these items.

NOTE:

The SRT will also indicate "INCMP" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

If, during the state emissions inspection, the SRT indicates "CMPLT" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "INCMP" for one or more of the SRT items the vehicle is returned to the customer untested.

NOTE:

If MIL is "ON" during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "CMPLT" for all test items. Therefore, it is important to check SRT ("CMPLT") and DTC (No DTCs) before the inspection.

SRT Item

The table below shows required self-diagnostic items to set the SRT to "CMPLT".

SRT item (CONSULT-II indication)	Perfor- mance Priority*1	Required self-diagnostic items to set the SRT to "CMPLT"	Corresponding DTC No.
CATALYST	2	Three way catalyst function	P0420
EVAP SYSTEM	1	EVAP control system	P0442, P1442
	2	EVAP control system	P0456, P1456
	2	EVAP control system purge flow monitoring	P0441
HO2S	2	Heated oxygen sensor 1	P0132
		Heated oxygen sensor 1	P0133
		Heated oxygen sensor 1	P0134
		Heated oxygen sensor 1	P1143
		Heated oxygen sensor 1	P1144
		Heated oxygen sensor 2	P0138
		Heated oxygen sensor 2	P0139
		Heated oxygen sensor 2	P1146
		Heated oxygen sensor 2	P1147
HO2S HTR	2	Heated oxygen sensor 1 heater	P0031, P0032
		Heated oxygen sensor 2 heater	P0037, P0038

^{*1:} If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure), one by one based on the priority for models with CONSULT-II.

SRT Set Timing

SRT is set as "CMPLT" after self-diagnosis has been performed one or more times. Completion of SRT is done regardless of whether the result is OK or NG. The set timing is different between OK and NG results and is shown in the table below.

Self-diagnosis result		Example					
		Diagnosis Ignition cycle					
		Diagnosis	\leftarrow ON \rightarrow OFF	\leftarrow ON \rightarrow	$OFF \leftarrow ON \rightarrow O$	$OFF \leftarrow ON \rightarrow$	
All OK	Case 1	P0400	OK (1)	— (1)	OK (2)	— (2)	
		P0402	OK (1)	— (1)	— (1)	OK (2)	
		P1402	OK (1)	OK (2)	— (2)	— (2)	
		SRT of EGR	"CMPLT"	"CMPLT"	"CMPLT"	"CMPLT"	
	Case 2	P0400	OK (1)	— (1)	— (1)	— (1)	
		P0402	— (0)	— (0)	OK (1)	— (1)	
		P1402	OK (1)	OK (2)	— (2)	— (2)	
		SRT of EGR	"INCMP"	"INCMP"	"CMPLT"	"CMPLT"	
NG exists	Case 3	P0400	OK	OK	_	_	
		P0402	_	_	_	_	
		P1402	NG	_	NG	NG (Consecutive NG)	
		(1st trip) DTC	1st trip DTC	_	1st trip DTC	DTC (= MIL "ON"	
		SRT of EGR	"INCMP"	"INCMP"	"INCMP"	"CMPLT"	

OK: Self-diagnosis is carried out and the result is OK. NG: Self-diagnosis is carried out and the result is NG.

^{—:} Self-diagnosis is not carried out.

[QR]

When all SRT related self-diagnoses showed OK results in a single cycle (Ignition OFF-ON-OFF), the SRT will indicate "CMPLT". → Case 1 above

When all SRT related self-diagnoses showed OK results through several different cycles, the SRT will indicate "CMPLT" at the time the respective self-diagnoses have at least one OK result. \rightarrow Case 2 above

If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indicate "CMPLT". → Case 3 above

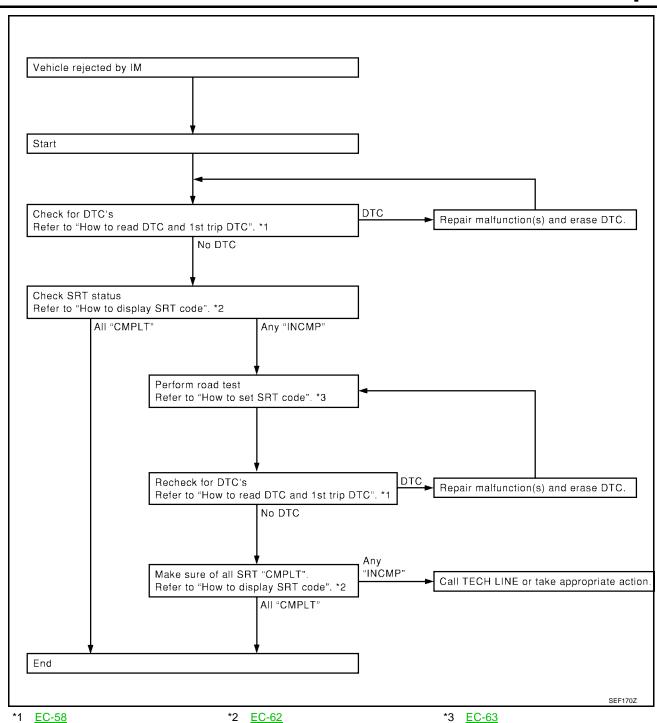
The table above shows that the minimum number of cycles for setting SRT as "INCMP" is one (1) for each self-diagnosis (Case 1 & 2) or two (2) for one of self-diagnoses (Case 3). However, in preparation for the state emissions inspection, it is unnecessary for each self-diagnosis to be executed twice (Case 3) for the following

- The SRT will indicate "CMPLT" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "CMPLT" of the SRT only with OK self-diagnosis results.
- When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to "CMPLT" of SRT, the self-diagnosis memory must be erased from ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "INCMP".

SRT can be set as "CMPLT" together with the DTC(s). Therefore, DTC check must always be carried out prior to the state emission inspection even though the SRT indicates "CMPLT".

SRT Service Procedure

If a vehicle has failed the state emissions inspection due to one or more SRT items indicating "INCMP", review the flowchart diagnostic sequence on the next page.


EC-61 Revision: May 2004 2002 Altima

EC

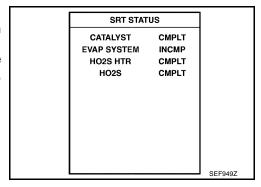
D

Е

Н

How to Display SRT Code

(P) WITH CONSULT-II


Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-II.

For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-II screen; for items whose SRT codes are not set, "INCMP" is displayed.

A sample of CONSULT-II display for SRT code is shown at right. "INCMP" means the self-diagnosis is incomplete and SRT is not set. "CMPLT" means the self-diagnosis is complete and SRT is set.

WITH GST

Selecting Mode 1 with GST (Generic Scan Tool)

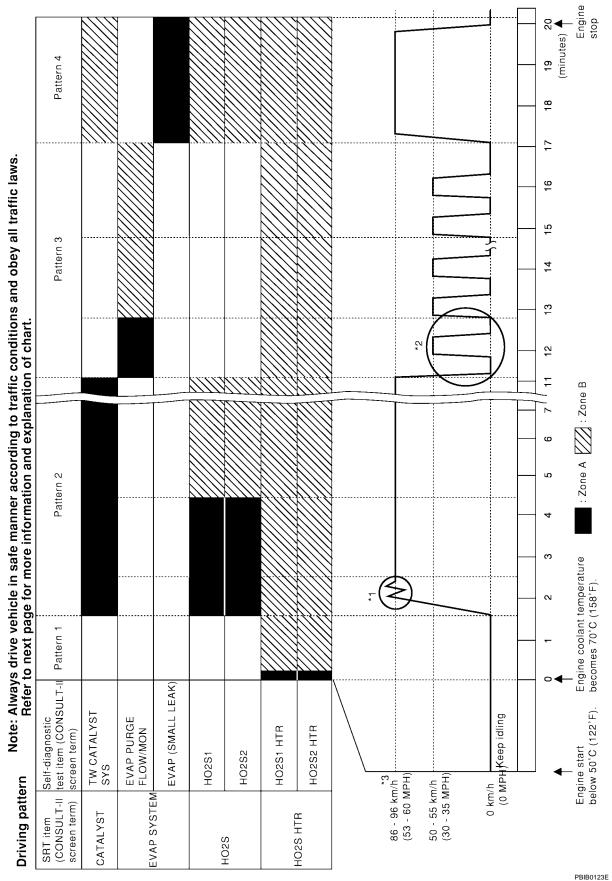
[QR]

How to Set SRT Code

To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

Perform corresponding DTC Confirmation Procedure one by one based on "Performance Priority" in the table EC on EC-60, "SRT Item".

® WITHOUT CONSULT-II


The most efficient driving pattern in which SRT codes can be properly set is explained on the next page. The driving pattern should be performed one or more times to set all SRT codes.

 D

Е

Н

[QR1

The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.

Zone A refers to the range where the time, required for the diagnosis under normal conditions*, is the

Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.

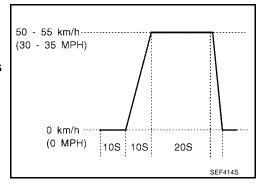
*: Normal conditions refer to the following:

- Sea level
- Flat road
- Ambient air temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions. Under different conditions [For example: ambient air temperature other than 20 - 30°C (68 - 86°F)], diagnosis may also be performed.

Pattern 1:

- The engine is started at the engine coolant temperature of -10 to 35°C (14 to 95°F) (where the voltage between the ECM terminal 93 and ground is 3.0 - 4.3V).
- The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminal 93 and ground is lower than 1.4V).
- The engine is started at the fuel tank temperature of warmer than 0°C (32°F) (where the voltage between the ECM terminal 70 and ground is less than 4.1V).

Pattern 2:


When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted. In this case, the time required for diagnosis may be extended.

Pattern 3:

The driving pattern outlined in *2 must be repeated at least 3 times.

Pattern 4:

- Tests are performed after the engine has been operated for at least 17 minutes.
- The accelerator pedal must be held very steady during steady-state driving.
- If the accelerator pedal is moved, the test must be conducted all over again.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Operate the vehicle in the following driving pattern.
- 1. Decelerate vehicle to 0 km/h (0 MPH) and let engine idle.
- Repeat driving pattern shown at right at least 10 times.
- During acceleration, hold the accelerator pedal as steady as possible.
- *3: Checking the vehicle speed with GST is advised.

Suggested Transmission Gear Position for A/T Models

Set the selector lever in the "D" position with the overdrive switch turned ON.

Suggested upshift speeds for M/T models

Shown below are suggested vehicle speeds for shifting into a higher gear. These suggestions relate to fuel economy and vehicle performance. Actual upshift speeds will vary according to road conditions, the weather and individual driving habits.

EC

Е

D

G

Н

K

	For normal acceleration in low altitude areas [less than 1,219 m (4,000 ft)]:	For quick acceleration in low altitude areas	For high attitude areas [over 1,219m (4,000 ft)]:
Gear change	ACCEL shift point km/h (MPH)	km/h (MPH)	km/h (MPH)
1st to 2nd	24 (15)	24 (15)	24 (15)
2nd to 3rd	29 (18)	40 (25)	40 (25)
3rd to 4th	48 (30)	58 (36)	64 (40)
4th to 5th	62 (39)	64 (40)	75 (45)

Suggested Maximum Speed in Each Gear

Downshift to a lower gear if the engine is not running smoothly, or if you need to accelerate.

Do not exceed the maximum suggested speed (shown below) in any gear. For level road driving, use the highest gear suggested for that speed. Always observe posted speed limits and drive according to the road conditions to ensure safe operation. Do not over-rev the engine when shifting to a lower gear as it may cause engine damage or loss of vehicle control.

Gear	km/h (MPH)
1st	48 (30)
2nd	88 (55)
3rd	_
4th	_
5th	_

TEST VALUE AND TEST LIMIT (GST ONLY — NOT APPLICABLE TO CONSULT-II)

The following is the information specified in Mode 6 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is "OK" or "NG" while being monitored by the ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored.

Items for which these data (test value and test limit) are displayed are the same as SRT code items (30 test items).

These data (test value and test limit) are specified by Test ID (TID) and Component ID (CID) and can be displayed on the GST screen.

				×: Applicable -	 Not applicable
SRT item	Solf diagnostic test item	Test value (Test value (GST display)		Application
SKT Item	Self-diagnostic test item	TID	CID	Test limit	Application
CATALYST	There was actal at function	01H	01H	Max.	×
CATALTST	Three way catalyst function	02H	81H	Min.	×
	EVAP control system (Small leak)	05H	03H	Max.	×
EVAP SYSTEM	EVAP control system purge flow monitoring	06H	83H	Min.	×
	EVAP control system (Very small leak)	07H	03H	Max.	×
	Heated oxygen sensor 1	09H	04H	Max.	×
		0AH	84H	Min.	×
		0BH	04H	Max.	×
		0CH	04H	Max.	×
HO2S		0DH	04H	Max.	×
		19H	86H	Min.	×
	Heated oxygen sensor 2	1AH	86H	Min.	×
		1BH	06H	Max.	×
		1CH	06H	Max.	×

[QR]

Α

EC

Е

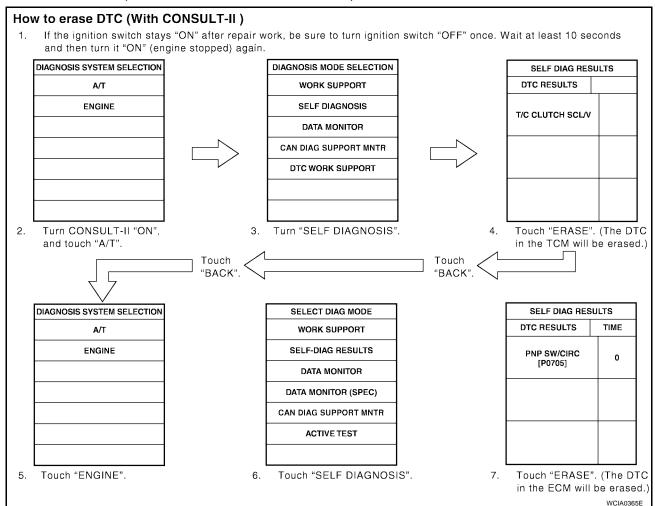
Н

M

SRT item	Self-diagnostic test item	Test value (GST display)		Test limit	Application
SIXT ILEIT	Self-diagnostic test item	TID	CID	rest iiiiit	Application
	Heated oxygen sensor 1 heater	29H	08H	Max.	×
HO2S HTR		2AH	88H	Min.	×
110231111		2DH	0AH	Max.	×
	Heated oxygen sensor 2 heater	2EH	8AH	Min.	×

HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION

(A) How to Erase DTC (With CONSULT-II)


The emission related diagnostic information in the ECM can be erased by selecting "ERASE" in the "SELF-DIAG RESULTS" mode with CONSULT-II.

If DTCs are displayed for both ECM and TCM (Transmission control module), they need to be erased individually from the ECM and TCM (Transmission control module).

NOTE:

If the DTC is not for A/T related items (see EC-15), skip steps 2 through 4.

- 1. If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 10 seconds and then turn it "ON" (engine stopped) again.
- 2. Turn CONSULT-II "ON" and touch "A/T".
- 3. Touch "SELF-DIAG RESULTS".
- Touch "ERASE". [The DTC in the TCM (Transmission control module) will be erased.] Then touch "BACK" twice.
- 5. Touch "ENGINE".
- 6. Touch "SELF-DIAG RESULTS".
- 7. Touch "ERASE". (The DTC in the ECM will be erased.)

Mathematical Holds How to Erase DTC (With GST)

The emission related diagnostic information in the ECM can be erased by selecting Mode 4 with GST.

NOTE:

If the DTC is not for A/T related items (see EC-15), skip step 2.

- 1. If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 10 seconds and then turn it "ON" (engine stopped) again.
- Perform "SELF-DIAGNOSTIC PROCEDURE (Without CONSULT-II)" in AT section titled "TROUBLE DIAGNOSIS", "Self-diagnosis". (The engine warm-up step can be skipped when performing the diagnosis only to erase the DTC.)
- 3. Select Mode 4 with GST (Generic Scan Tool).

How to Erase DTC (No Tools)

- 1. If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once.
- Wait at least 10 seconds and then turn it "ON" (engine stopped) again.
- 3. Change the diagnostic test mode from Mode II to Mode I by depressing the accelerator pedal. Refer to EC-70, "HOW TO SWITCH DIAGNOSTIC TEST MODE".
- If the battery is disconnected, the emission-related diagnostic information will be lost after approx. 24 hours.
- The following data are cleared when the ECM memory is erased.
- 1. Diagnostic trouble codes
- 2. 1st trip diagnostic trouble codes
- 3. Freeze frame data
- 4. 1st trip freeze frame data
- 5. System readiness test (SRT) codes
- Test values
- Others

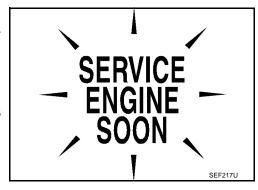
Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

VIS (Nissan Vehicle Immobilizer System — NATS)

UBS002OG

- If the security indicator lights up with the ignition switch in the "ON" position or "NATS MALFUNCTION" is displayed on "SELF-DIAG RESULTS" screen, perform self-diagnostic results mode with CONSULT-II using NATS program card. Refer to <u>BL-116</u>, "NVIS(NISSAN Vehicle Immobilizer System-NATS)".
- Confirm no self-diagnostic results of NVIS (NATS) is displayed before touching "ERASE" in "SELF-DIAG RESULTS" mode with CONSULT-II.
- When replacing ECM, initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs must be carried out with CONSULT-II using NATS program card.

Therefore, be sure to receive all keys from vehicle owner. Regarding the procedures of NVIS (NATS) initialization and NVIS (NATS) ignition key ID registration, refer to CONSULT-II operation manual, IVIS/NVIS.


[QR]

UBS002OH

Malfunction Indicator Lamp (MIL) DESCRIPTION

The MIL is located on the instrument panel.

- The MIL will light up when the ignition switch is turned ON without the engine running. This is a bulb check. If the MIL does not light up, refer to DI-22, "WARNING LAMPS", or see EC-378.
- 2. When the engine is started, the MIL should go off. If the MIL remains on, the on board diagnostic system has detected an engine system malfunction.

ON BOARD DIAGNOSTIC SYSTEM FUNCTION

The on board diagnostic system has the following four functions

Diagnostic Test Mode	KEY and ENG. Status	Function	Explanation of Function
Mode I	Ignition switch in "ON" position Engine stopped	BULB CHECK	This function checks the MIL bulb for damage (blown, open circuit, etc.). If the MIL does not come on, check MIL circuit.
	Engine running	MALFUNCTION WARNING	This is a usual driving condition. When a malfunction is detected twice in two consecutive driving cycles (two trip detection logic), the MIL will light up to inform the driver that a malfunction has been detected. The following malfunctions will light up or blink the MIL in the 1st trip. "Coolant overtemperature enrichment protection" "Misfire (Possible three way catalyst damage)" "Closed loop control" "Throttle control motor" Fail-safe mode
Mode II	Ignition switch in "ON" position Engine stopped	SELF-DIAGNOSTIC RESULTS	This function allows DTCs and 1st trip DTCs to be read.
	Engine running	HEATED OXYGEN SENSOR 1 MONITOR	This function allows the fuel mixture condition (lean or rich), monitored by heated oxygen sensor 1, to be read.

MIL Flashing Without DTC

If the ECM is in Diagnostic Test Mode II, MIL may flash when engine is running. In this case, check ECM diagnostic test mode. EC-70, "HOW TO SWITCH DIAGNOSTIC TEST MODE".

How to switch the diagnostic test (function) modes, and details of the above functions are described later. EC-70, "HOW TO SWITCH DIAGNOSTIC TEST MODE".

The following emission-related diagnostic information is cleared when the ECM memory is erased.

EC-69 2002 Altima Revision: May 2004

EC

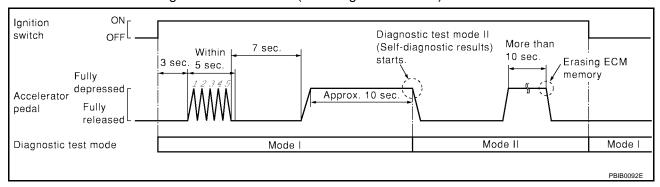
Α

D

Е

Н

- Diagnostic trouble codes
- 2. 1st trip diagnostic trouble codes
- 3. Freeze frame data
- 4. 1st trip freeze frame data
- 5. System readiness test (SRT) codes
- Test values
- 7. Others


HOW TO SWITCH DIAGNOSTIC TEST MODE

NOTE:

- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.
- Always ECM returns to Diagnostic Test Mode I after ignition switch is turned "OFF".

How to Set Diagnostic Test Mode II (Self-diagnostic Results)

- 1. Confirm that accelerator pedal is fully released, turn ignition switch "ON" and wait 3 seconds.
- 2. Repeat the following procedure quickly five times within 5 seconds.
- a. Fully depress the accelerator pedal.
- b. Fully release the accelerator pedal.
- 3. Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 10 seconds until the MIL starts blinking.
- Fully release the accelerator pedal.
 ECM has entered to Diagnostic Test Mode II (Self-diagnostic results).

How to Set Diagnostic Test Mode II (Heated Oxygen Sensor 1 Monitor)

- 1. Set the ECM in Diagnostic Test Mode II (Self-diagnostic results). Refer to EC-70, "How to Set Diagnostic Test Mode II (Self-diagnostic Results)".
- 2. Start Engine.
 - ECM has entered to Diagnostic Test Mode II (Heated oxygen sensor 1 monitor).
 - ECM will start heated oxygen sensor 1 monitoring from the bank 1 sensor.

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

- Set ECM in Diagnostic Test Mode II (Self-diagnostic results). Refer to <u>EC-70</u>, "How to <u>Set Diagnostic Test Mode II (Self-diagnostic Results)"</u>.
- Fully depress the accelerator pedal and keep it for more than 10 seconds.The emission-related diagnostic information has been erased from the backup memory in the ECM.
- 3. Fully release the accelerator pedal, and confirm the DTC 0000 is displayed.

DIAGNOSTIC TEST MODE I — BULB CHECK

In this mode, the MIL on the instrument panel should stay ON. If it remains OFF, check the bulb. Refer to <u>DI-22</u>, "WARNING LAMPS" or see <u>EC-378</u>.

[QR]

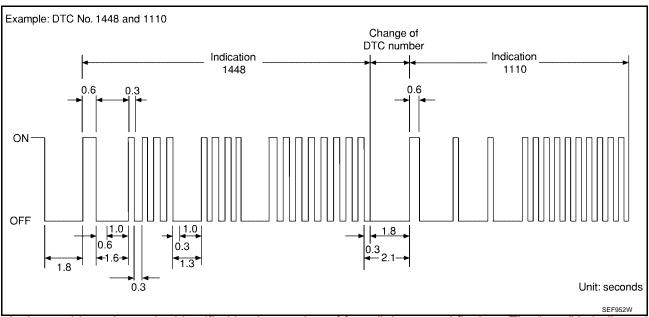
Α

EC

D

Е

M


DIAGNOSTIC TEST MODE I — MALFUNCTION WARNING

MIL	Condition
ON	When the malfunction is detected or the ECM's CPU is malfunctioning.
OFF	No malfunction.

These DTC numbers are clarified in Diagnostic Test Mode II (SELF-DIAGNOSTIC RESULTS)

DIAGNOSTIC TEST MODE II — SELF-DIAGNOSTIC RESULTS

In this mode, the DTC and 1st trip DTC are indicated by the number of blinks of the MIL as shown below. The DTC and 1st trip DTC are displayed at the same time. If the MIL does not illuminate in diagnostic test mode I (Malfunction warning), all displayed items are 1st trip DTCs. If only one code is displayed when the MIL illuminates in diagnostic test mode II (SELF-DIAGNOSTIC RESULTS), it is a DTC; if two or more codes are displayed, they may be either DTCs or 1st trip DTCs. DTC No. is same as that of 1st trip DTC. These unidentified codes can be identified by using the CONSULT-II or GST. A DTC will be used as an example for how to read a code.

A particular trouble code can be identified by the number of four-digit numeral flashes. The "zero" is indicated by the number of ten flashes. The length of time the 1,000th-digit numeral flashes on and off is 1.2 seconds consisting of an ON (0.6-second) - OFF (0.6-second) cycle.

The 100th-digit numeral and lower digit numerals consist of a 0.3-second ON and 0.3-second OFF cycle.

A change from one digit numeral to another occurs at an interval of 1.0-second OFF. In other words, the later numeral appears on the display 1.3 seconds after the former numeral has disappeared.

A change from one trouble code to another occurs at an interval of 1.8-second OFF.

In this way, all the detected malfunctions are classified by their DTC numbers. The DTC "0000" refers to no malfunction. (See $\underline{\text{EC-15}}$, "INDEX FOR DTC")

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

The DTC can be erased from the back up memory in the ECM by depressing accelerator pedal. Refer to EC-70, "How to Erase Diagnostic Test Mode II (Self-diagnostic Results)".

- If the battery is disconnected, the DTC will be lost from the backup memory after approx 24 hours.
- Be careful not to erase the stored memory before starting trouble diagnoses.

DIAGNOSTIC TEST MODE II — HEATED OXYGEN SENSOR 1 MONITOR

In this mode, the MIL displays the condition of the fuel mixture (lean or rich) which is monitored by the heated oxygen sensor 1.

MIL	Fuel mixture condition in the exhaust gas	Air fuel ratio feedback control condition	
ON	Lean Closed loop system		
OFF	Rich	Closed loop system	
*Remains ON or OFF	Any condition	Open loop system	

To check the heated oxygen sensor 1 function, start engine in the Diagnostic Test Mode II and warm it up until engine coolant temperature indicator points to the middle of the gauge.

Next run engine at about 2,000 rpm for about 2 minutes under no-load conditions. Then make sure that the MIL comes ON more than 5 times within 10 seconds with engine running at 2,000 rpm under no-load.

OBD System Operation Chart RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS

UBS00201

- When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MIL will come on. For details, refer to EC-54, "Two Trip Detection Logic".
- The MIL will go off after the vehicle is driven 3 times with no malfunction. The drive is counted only when
 the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting,
 the counter will reset.
- The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern C) without the same malfunction recurring. The "TIME" in "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-II will count the number of times the vehicle is driven.
- The 1st trip DTC is not displayed when the self-diagnosis results in "OK" for the 2nd trip.

SUMMARY CHART

Items	Fuel Injection System	Misfire	Other
MIL (goes off)	3 (pattern B)	3 (pattern B)	3 (pattern B)
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)

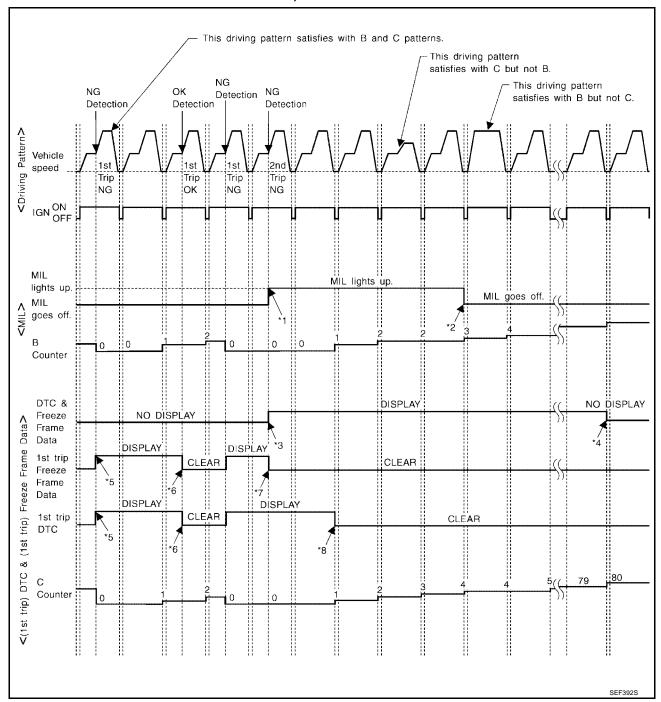
For details about patterns "B" and "C" under "Fuel Injection System" and "Misfire", see $\underline{\text{EC-}74}$.

For details about patterns "A" and "B" under "Other", see EC-76.

^{*:} Maintains conditions just before switching to open loop.

^{*1:} Clear timing is at the moment OK is detected.

^{*2:} Clear timing is when the same malfunction is detected in the 2nd trip.


EC

Е

Н

M

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction. (The DTC and the freeze frame data still remain in ECM.)
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *8: 1st trip DTC will be cleared when vehicle is driven once (pattern C) without the same malfunction after DTC is stored in ECM.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *6: The 1st trip DTC and the 1st trip freeze frame data will be cleared at the moment OK is detected.

ON BOARD DIAGNOSTIC (OBD) SYSTEM

[QR]

EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern B>

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunction.
- The MIL will go off when the B counter reaches 3. (*2 in "OBD SYSTEM OPERATION CHART")

<Driving Pattern C>

Driving pattern C means the vehicle operation as follows:

The following conditions should be satisfied at the same time:

Engine speed: (Engine speed in the freeze frame data) ±375 rpm

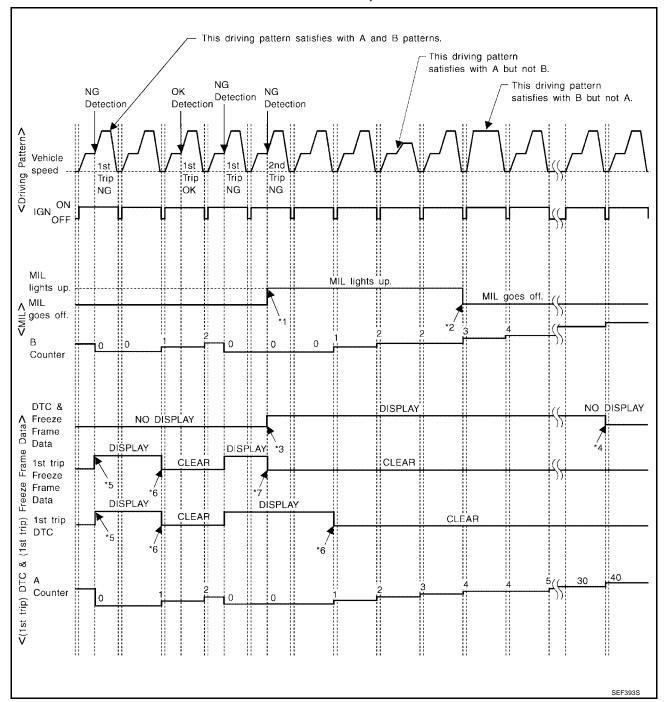
Calculated load value: (Calculated load value in the freeze frame data) x (1±0.1) [%]

Engine coolant temperature (T) condition:

- When the freeze frame data shows lower than 70°C (158°F), "T" should be lower than 70°C (158°F).
- When the freeze frame data shows higher than or equal to 70°C (158°F), "T" should be higher than or equal to 70°C (158°F).

Example:

If the stored freeze frame data is as follows:


Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F)

To be satisfied with driving pattern C, the vehicle should run under the following conditions:

Engine speed: 475 - 1,225 rpm, Calculated load value: 27 - 33%, Engine coolant temperature: more than 70°C (158°F)

- The C counter will be cleared when the malfunction is detected regardless of (1).
- The C counter will be counted up when (1) is satisfied without the same malfunction.
- The DTC will not be displayed after C counter reaches 80.
- The 1st trip DTC will be cleared when C counter is counted once without the same malfunction after DTC is stored in ECM.

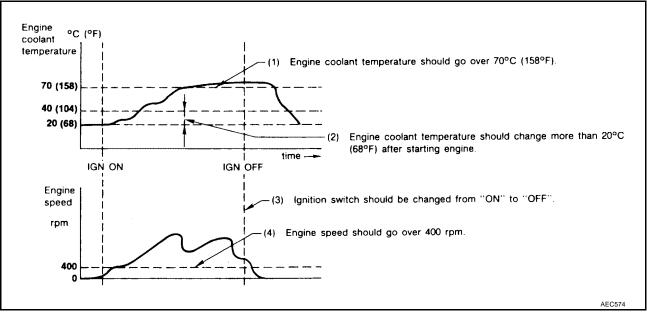
RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction.

 (The DTC and the freeze frame data still remain in ECM.)
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *6: 1st trip DTC will be cleared after vehicle is driven once (pattern B) without the same malfunction.

Е


J

K

M

EXPLANATION FOR DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE < EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern A>

- The A counter will be cleared when the malfunction is detected regardless of (1) (4).
- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

<Driving Pattern B>

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MIL will go off when the B counter reaches 3 (*2 in "OBD SYSTEM OPERATION CHART").

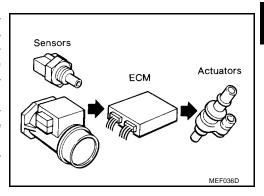
PFP:00004

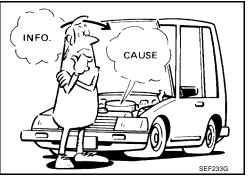
Trouble Diagnosis Introduction INTRODUCTION

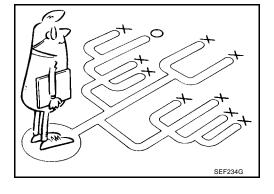
UBS002OJ

EC

Е


Н


The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no problems such as vacuum leaks, fouled spark plugs, or other problems with the engine. It is much more difficult to diagnose a problem that occurs intermittently rather than continuously. Most intermittent problems are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.


A visual check only may not find the cause of the problems. A road test with CONSULT-II (or GST) or a circuit tester connected should be performed. Follow the "Work Flow" on EC-78.

Before undertaking actual checks, take a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such problems, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A "Diagnostic Worksheet" like the example on $\underline{\mathsf{EC-81}}$ should be used.

Start your diagnosis by looking for "conventional" problems first. This will help troubleshoot driveability problems on an electronically controlled engine vehicle.

M

Revision: May 2004 EC-77 2002 Altima

WORK FLOW Flow Chart

*7 EC-125

Descriptio	n for Work Flow
STEP	DESCRIPTION
STEPI	Get detailed information about the conditions and the environment when the incident/symptom occurred using the "DIAGNOSTIC WORK SHEET", <u>EC-80</u> .
STEP II	Before confirming the concern, check and write down (print out using CONSULT-II or GST) the (1st trip) DTC and the (1st trip) freeze frame data, then erase the DTC and the data. (Refer to EC-67 .) The (1st trip) DTC and the (1st trip) freeze frame data can be used when duplicating the incident at STEP III & IV. If the incident cannot be verified, perform EC-129 . "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". Study the relationship between the cause, specified by (1st trip) DTC, and the symptom described by the customer. (The "Symptom Matrix Chart" will be useful. See EC-89 .) Also check related service bulletins for information.
STEP III	Try to confirm the symptom and under what conditions the incident occurs. The "DIAGNOSTIC WORK SHEET" and the freeze frame data are useful to verify the incident. Connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform EC-129 , "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". If the malfunction code is detected, skip STEP IV and perform STEP V.
STEP IV	Try to detect the (1st trip) DTC by driving in (or performing) the "DTC Confirmation Procedure". Check and read the (1st trip) DTC and (1st trip) freeze frame data by using CONSULT-II or GST. During the (1st trip) DTC verification, be sure to connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform EC-129 , "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".
	In case the "DTC Confirmation Procedure" is not available, perform the "Overall Function Check" instead. The (1st trip) DTC cannot be displayed by this check, however, this simplified "check" is an effective alternative. The "NG" result of the "Overall Function Check" is the same as the (1st trip) DTC detection.
STEP V	Take the appropriate action based on the results of STEP I through IV. If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC PXXXX. If the normal code is indicated, proceed to the BASIC INSPECTION. (Refer to EC-84.) If COSULT-II is available, perform "DATA MONITOR (SPEC)" mode with CONSULT-II and proceed to the "TOROUBLE DIAGNOSIS – SPECIFICATION VALUE". (Refer to EC-125.) (If malfunction is detected, proceed to "PERAIR/REPLACE".) Then perform inspections according to the Symptom Matrix Chart. (Refer to EC-89.)
STEP VI	Identify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the system for mechanical binding, loose connectors or wiring damage using (tracing) "Harness Layouts". Gently shake the related connectors, components or wiring harness with CONSULT-II set in "DATA MONITOR (AUTO TRIG)" mode. Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CONSULT-II. Refer to EC-99, EC-120. The "Diagnostic Procedure" in EC section contains a description based on open circuit inspection. A short circuit inspection is also required for the circuit check in the Diagnostic Procedure. For details, refer to "Circuit Inspection" in GI-25, "How to Perform Efficient Diagnosis for an Electrical Incident". Repair or replace the malfunction parts.
	If malfunctioning part cannot be detected, perform <u>EC-129</u> . "TROUBLE DIAGNOSIS FOR INTERMITTENT INCI- <u>DENT"</u> .
STEP VII	Once you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and circumstances which resulted in the customer's initial complaint. Perform the "DTC Confirmation Procedure" and confirm the normal code [DTC No. P0000] is detected. If the incident is still detected in the final check, perform STEP VI by using a method different from the previous one. Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) (1st trip) DTC in ECM and TCM (Transmission control module). (Refer to EC-67, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION" and AT-38, "HOW TO ERASE DTC".)

DIAGNOSTIC WORKSHEET

Description

There are many operating conditions that lead to the malfunction of engine components. A good grasp of such conditions can make troubleshooting faster and more accurate.

In general, each customer feels differently about a problem. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one on the next page in order to organize all the information for troubleshooting.

Some conditions may cause the MIL to come on steady or blink and DTC to be detected. Examples:

- Vehicle ran out of fuel, which caused the engine to misfire.
- Fuel filler cap was left off or incorrectly screwed on, allowing fuel to evaporate into the atmosphere.

KEY POINTS

WHAT Vehicle & engine model
WHEN Date, Frequencies
WHERE..... Road conditions
HOW Operating conditions,
Weather conditions,

Symptoms

SEF907L

[QR]

Α

EC

C

 D

Е

Н

M

Worksheet Sample

Customer name MR/MS Model & Year VIN									
Engine # Trans. Mileage									
Incident Date	;	Manuf. Date	In Service Date						
Fuel and fuel	filler cap	☐ Vehicle ran out of fuel causing misfire☐ Fuel filler cap was left off or incorrectly screwed on.							
	☐ Startability	☐ Impossible to start ☐ No combus ☐ Partial combustion affected by th ☐ Partial combustion NOT affected ☐ Possible but hard to start ☐ Other	hrottle position d by throttle position						
Symptoms	☐ Idling	☐ No fast idle ☐ Unstable ☐ H☐ Others [High idle ☐ Low idle]						
- ,	☐ Driveability	☐ Stumble ☐ Surge ☐ Knock☐ Intake backfire ☐ Exhaust backfi☐ Others [
☐ At the time of start ☐ While idling ☐ While accelerating ☐ While decelerating ☐ Use after stopping ☐ While loading									
Incident occu	urrence	☐ Just after delivery ☐ Recently ☐ In the morning ☐ At night ☐ In the daytime							
Frequency		☐ All the time ☐ Under certain conditions ☐ Sometimes							
Weather con	ditions	☐ Not affected							
	Weather	☐ Fine ☐ Raining ☐ Snowing	Others [
	Temperature	☐ Hot ☐ Warm ☐ Cool ☐	Cold Humid °F						
			After warm-up						
Engine condi	itions	Engine speed 0 2,000	4,000 6,000 8,000 rpm						
Road condition	ons	☐ In town ☐ In suburbs ☐ Highway ☐ Off road (up/down)							
Driving condi	itions	 Not affected At starting While idling While accelerating While accelerating While decelerating While turning (RH/LH) 							
Malfunction i	ndicator lamp	Vehicle speed							

MTBL0017

DTC Inspection Priority Chart

I IBS0020K

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

NOTE:

If DTC U1000 and/or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000 and U1001. Refer to $\frac{\text{EC-}137}{\text{C}}$.

UBS002OL

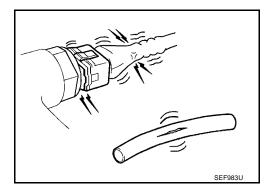
		נעולן
Priority	Detected items (DTC)	
1	U1000 U1001 CAN communication line	
	• P0101 P0102 P0103 P1102 Mass air flow sensor	
	P0112 P0113 P0127 Intake air temperature sensor	
	P0117 P0118 P0125 Engine coolant temperature sensor	
	P0128 Thermostat function	
	P0181 P0182 P0183 Fuel tank temperature sensor	
	P0221 P0222 P0223 P1223 P1224 P1225 P1226 P1229 Throttle position sensor	
	P0226 P0227 P0228 P1227 P1228 Accelerator pedal position sensor	
	• P0327 P0328 Knock sensor	
	P0335 Crankshaft position sensor (POS)	
	P0340 Camshaft position sensor (PHASE)	
	P0460 P0461 P0462 P0463 P1464 Fuel level sensor	
	P0500 Vehicle speed sensor	
	● P0605 ECM	
	• P1610-P1615 NATS	
	P1706 Park/Neutral position (PNP) switch	
2	P0031 P0032 Heated oxygen sensor 1 heater	
	P0037 P0038 Heated oxygen sensor 2 heater	
	P0132 P0133 P0134 P1143 P1144 Heated oxygen sensor 1	
	• P0138 P0139 P1146 P1147 Heated oxygen sensor 2	
	P0217 Coolant overtemperature enrichment protection	
	P0441 EVAP control system purge flow monitoring	
	P0444 P0445 P1444 EVAP canister purge volume control solenoid valve	
	P0447 P1446 P1448 EVAP canister vent control valve	
	P0452 P0453 EVAP control system pressure sensor	
	P0506 P0507 Idle speed control system	
	● P0650 MIL	
	 P0705-P0725, P0740-P0755, P1705 P1760 A/T related sensors and solenoid valves 	
	P1065 ECM power supply	
	P1111 Intake valve timing control solenoid valve	
	P1122 Electric throttle control function	
	P1124 P1126 P1128 Electric throttle control actuator	
	P1490 P1491 Vacuum cut valve bypass valve	
	P1805 Brake switch	
3	P0011 Intake valve timing control	
•	P0171 P0172 Fuel injection system function	
	• P0300 - P0304 Misfire	
	P0420 Three way catalyst function	
	P0442/P1442 P0456/P1456 EVAP control system (SMALL LEAK, VERY SMALL LEAK)	
	P0455 EVAP control system (GROSS LEAK)	
	• P0731-P0734 A/T function	
	P1121 Electric throttle control actuator	
	P1148 Closed loop control	
	P1217 Engine over temperature (OVERHEAT)	
	P1564 ASCD steering switch	
	P1504 ASCD steeling switch P1572 ASCD brake switch	
	P1574 ASCD vehicle speed sensor	
	שו ואין איני איני איני איני איני איני איני א	

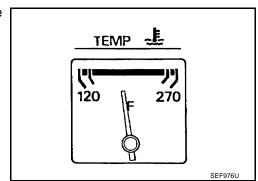
Fail-safe Chart

The ECM enters fail-safe mode, if any of the following malfunctions is detected. When the ECM enters the fail-safe mode, the MIL illuminates.

[QR]

DTC No.	Detected items	Engine operating condition in fail-s	afe mode					
P0102 P0103 P1102	Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.						
P0117 P0118	Engine coolant tempera- ture sensor circuit	ignition switch "ON" or "START".	determined by ECM based on the time after turning colant temperature decided by ECM.					
		Condition	Engine coolant temperature decided (CONSULT- II display)					
		Just as ignition switch is turned ON or Start	40°C (104°F)					
		More than approx. 4 minutes after ignition ON or Start	80°C (176°F)					
		Except as shown above 40 - 80°C (104 - 176°F) (Depends on the time)						
		When the fail-safe system for engine coolant temperature sensor is activated, the cool ing fan operates while engine is running.						
P0221 P0222 P0223 P1223 P1224	Throttle position sensor	The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees. The ECM regulates an opening speed of approx. 5 seconds to an opening of 10 degrees. So, the acceleration will be poor.						
P0226 P0227 P0228 P1227 P1228	Accelerator pedal position sensor	in order for the idle position to be w	tle control actuator in regulating the throttle opening vithin +10 degrees. eed of approx. 5 seconds to an opening of 10					
P1121	Electric throttle control actuator (ECM detect the throttle valve is stuck open.)	While the vehicle is driving, it slows down gradually by fuel cut. After the vehicle stops, the engine stalls. The engine can restart in "N" or "P" position, and engine speed will not exceed 1,000 rpm or more.						
P1122	Electric throttle control function	ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.						
P1126	Throttle control relay	ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.						
P1229	Sensor power supply	ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.						

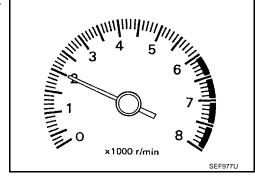

M


Basic Inspection

UBS002OM

1. INSPECTION START

- Check service records for any recent repairs that may indicate a related problem, or a current need for scheduled maintenance.
- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Wiring harness for improper connections, pinches and cut
- Vacuum hoses for splits, kinks and improper connections
- Hoses and ducts for leaks
- Air cleaner clogging
- Gasket
- 3. Confirm that electrical or mechanical loads are not applied.
- Headlamp switch is OFF.
- Air conditioner switch is OFF.
- Rear window defogger switch is OFF.
- Steering wheel is in the straight-ahead position, etc.
- Start engine and warm it up until engine coolant temperature indicator points the middle of gauge. Ensure engine stays below 1,000 rpm.



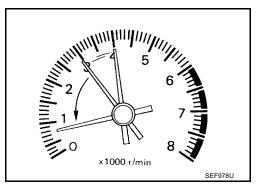
- 5. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 6. Make sure that no DTC is displayed with CONSULT-II or GST.

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

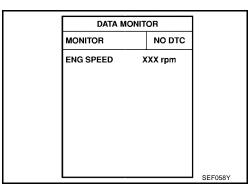
2. REPAIR OR REPLACE

Repair or replace components as necessary according to corresponding "Diagnostic Procedure".


>> GO TO 3.

[QR]

3. CHECK TARGET IDLE SPEED


(II) With CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.

3. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

M/T: 700 \pm 50 rpm A/T: 700 \pm 50 rpm (in "P" or "N" position)

Without CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.
- 3. Check idle speed.

M/T: 700 \pm 50 rpm A/T: 700 \pm 50 rpm (in "P" or "N" position)

OK or NG

OK >> GO TO 10. NG >> GO TO 4.

4. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-49, "Accelerator Pedal Released Position Learning".

>> GO TO 5.

5. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

- 1. Stop engine.
- Perform EC-49, "Throttle Valve Closed Position Learning".

>> GO TO 6.

EC

С

D

Е

F

G

Н

K

M

6. PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-49, "Idle Air Volume Learning".

Which is the result CMPLT or INCMP

CMPLT or INCMP

CMPLT>> GO TO 7.

INCMP >> 1. Follow the construction of "Idle Air Volume Learning".

2. GO TO 4.

7. CHECK TARGET IDLE SPEED AGAIN

(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

```
M/T: 700 \pm 50 rpm A/T: 700 \pm 50 rpm (in "P" or "N" position)
```

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed.

```
M/T: 700 \pm 50 rpm A/T: 700 \pm 50 rpm (in "P" or "N" position)
```

OK or NG

OK >> GO TO 10. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Check camshaft position sensor (PHASE) and circuit. Refer to <u>EC-290</u>.
- Check crankshaft position sensor (POS) and circuit. Refer to EC-283.

OK or NG

```
OK >> GO TO 9.
NG >> 1. Repair or replace.
2. GO TO 4.
```

9. CHECK ECM FUNCTION

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of a problem, but this is the rarely the case.)
- 2. Perform initialization of NATS system and registration of NATS ignition key IDs. Refer to <u>EC-68</u>, "VIS (Nissan Vehicle Immobilizer System NATS)".

>> GO TO 4.

[QR]

10. CHECK IGNITION TIMING 1. Run engine at idle. 2. Check ignition timing with a timing light. EC M/T: $15 \pm 5^{\circ}$ BTDC A/T: $15 \pm 5^{\circ}$ BTDC (in "P" or "N" position) OK or NG OK >> INSPECTION END NG >> GO TO 11. D 11. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING 1. Stop engine. Е 2. Perform EC-49, "Accelerator Pedal Released Position Learning". >> GO TO 12. 12. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING 1. Stop engine. 2. Perform EC-49, "Throttle Valve Closed Position Learning". Н >> GO TO 13. 13. PERFORM IDLE AIR VOLUME LEARNING Refer to EC-49, "Idle Air Volume Learning". Which is the result CMPLT or **INCMP** CMPLT or INCMP CMPLT>> GO TO 14. INCMP >> 1. Follow the construction of "Idle Air Volume Learning". 2. GO TO 4. 14. CHECK TARGET IDLE SPEED AGAIN (P) With CONSULT-II 1. Start engine and warm it up to normal operating temperature. M 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II. M/T: $700 \pm 50 \text{ rpm}$ A/T: 700 \pm 50 rpm (in "P" or "N" position) **⋈** Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Check idle speed. M/T: $700 \pm 50 \text{ rpm}$ A/T: 700 \pm 50 rpm (in "P" or "N" position) OK or NG OK >> GO TO 15. NG >> GO TO 17.

15. CHECK IGNITION TIMING AGAIN

- 1. Run engine at idle.
- 2. Check ignition timing with a timing light.

```
M/T: 15 \pm 5^{\circ} BTDC A/T: 15 \pm 5^{\circ} BTDC (in "P" or "N" position)
```

OK or NG

```
OK >> INSPECTION END NG >> GO TO 16.
```

16. CHECK TIMING CHAIN INSTALLATION

Check timing chain installation. Refer to EM-47, "TIMING CHAIN" .

OK or NG

```
OK >> GO TO 17.
NG >> 1. Repair the timing chain installation.
2. GO TO 4.
```

17. DETECT MALFUNCTIONING PART

Check the following.

- Check camshaft position sensor (PHASE) and circuit. Refer to EC-290.
- Check crankshaft position sensor (POS) and circuit. Refer to EC-283.

OK or NG

```
OK >> GO TO 18.
NG >> 1. Repair or replace.
2. GO TO 4.
```

18. CHECK ECM FUNCTION

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of a problem, but this is the rarely the case.)
- 2. Perform initialization of NATS system and registration of NATS ignition key IDs. Refer to <u>EC-68</u>, "VIS (<u>Nissan Vehicle Immobilizer System NATS</u>)".

>> GO TO 4.

[QR]

Symptom Matrix Chart SYSTEM — BASIC ENGINE CONTROL SYSTEM

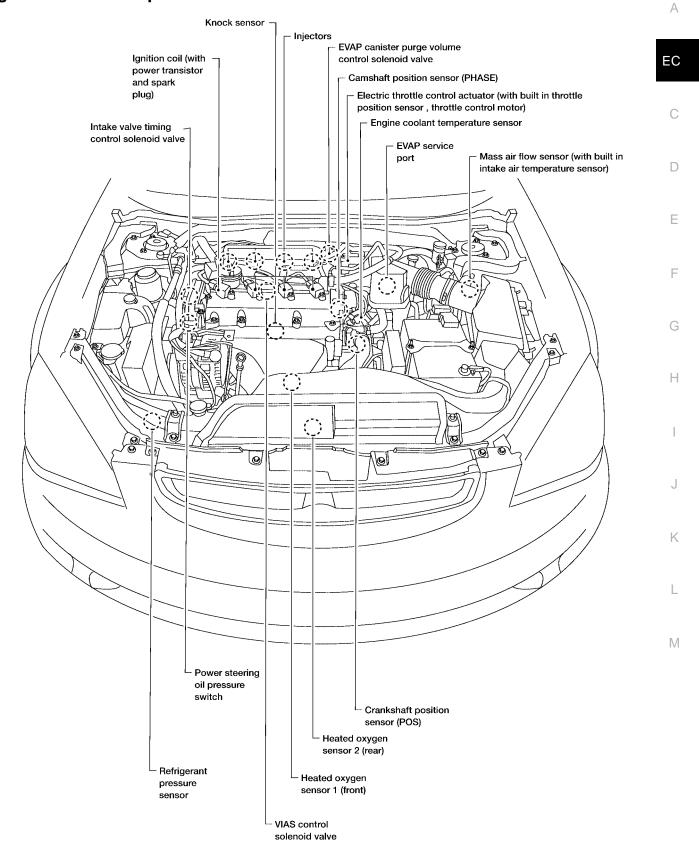
UBS002ON

				1		1	S	MPT	OM		1	T		T		
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	
Warrant	y symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА		
Fuel	Fuel pump circuit	1	1	2	3	2		2	2			3		2	EC-583	
	Fuel pressure regulator system	3	3	4	4	4	4	4	4	4		4			EC-51	
	Injector circuit	1	1	2	3	2		2	2			2			EC-573	
	Evaporative emission system	3	3	4	4	4	4	4	4	4		4			EC-613	
Air	Positive crankcase ventilation system	3	3	4	4	4	4	4	4	4		4	1		EC-625	
	Incorrect idle speed adjustment	3	3				1	1	1	1		1			EC-84	
	Electric throttle control actuator	1	1	2	3	3	2	2	2	2		2		2	EC-396, EC-398, EC-405, EC-410	
Ignition	Incorrect ignition timing adjustment	3	3	1	1	1		1	1			1			EC-84	
	Ignition circuit	1	1	2	2	2		2	2			2			EC-553	
Main po	wer supply and ground circuit	2	2	3	3	3		3	3		2	3			EC-130	
Mass ai	r flow sensor circuit	1	1	2	2	2		2	2			2			EC-153, EC-160, EC-386	
Engine	coolant temperature sensor circuit	1	1	2	2	2	3	2	2	3	1	2			EC-171, EC-176	
Throttle	position sensor circuit		1	2		2	2	2	2	2		2			EC-249, EC-256, EC-454, EC-460, EC-462, EC-470	
Acceler	ator pedal position sensor circuit			3	2	1	2			2					EC-262, EC-268, EC-464	
Heated	Heated oxygen sensor 1 circuit		1	2	3	2		2	2			2			EC-184, EC-190, EC-199, EC-415, EC-421	
Knock s	ensor circuit			2	2							3			EC-279	
Cranksh	naft position sensor (POS) circuit	2	2												EC-283	
Camsha	aft position sensor (PHASE) circuit	2	2												EC-290	

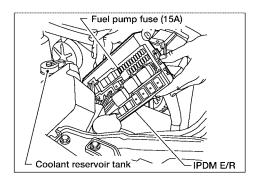
														[4,7]
						S١	/MPT	ОМ						
	HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Vehicle speed signal circuit		2	3		3						3			EC-369
Power steering oil pressure switch circuit		2				3	3	3	3					EC-590
ECM	2	2	3	3	3	3	3	3	3	3	3			EC-375, EC-382
Intake valve timing control solenoid valve circuit	3	3	2		1	3	2	2	3		3			EC-392
VIAS control solenoid valve circuit					1									EC-564
PNP switch circuit			3		3	3	3	3	3		3			EC-544
Start signal circuit	2													EC-579
Refrigerant pressure sensor circuit		2				3	3	3	3		4			EC-595
Electrical load signal circuit						3	3	3	3					EC-600
Air conditioner circuit	2	2	3	3	3	3	3	3	3		3		2	MTC-28

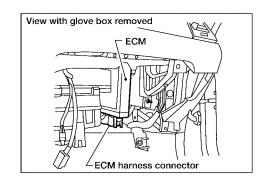
^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

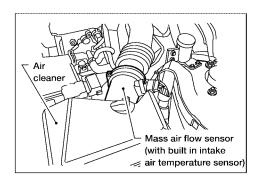
SYSTEM — ENGINE MECHANICAL & OTHER

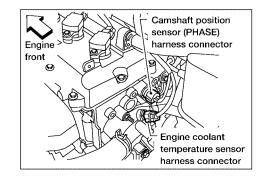

							S'	YMPT	ОМ							Α
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	C D
Warranty s	symptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА		F
Fuel	Fuel tank														FL-8	
	Fuel piping	5		5	5	5		5	5			5			EC-1122, EM-31	G
	Vapor lock		5												_	
	Valve deposit														_	Н
	Poor fuel (Heavy weight gasoline, Low octane)	5		5	5	5		5	5			5			_	
Air	Air duct														<u>EM-16</u>	
	Air cleaner														<u>EM-16</u>	
	Air leakage from air duct (Mass air flow sensor —electric throttle control actuator)		5	5		5		5	5			5			<u>EM-16</u>	J
	Electric throttle control actuator	5			5		5			5					EM-18	
	Air leakage from intake manifold/ Collector/Gasket														<u>EM-18</u>	K
Cranking	Battery	1	1	1		1		1	1			1		1	<u>SC-4</u>	
	Generator circuit	_	'	'		'		'	•					'	<u>SC-25</u>	L
	Starter circuit	3													<u>SC-9</u>	
	Signal plate/Flywheel/Drive plate	6													EM-69	M
	PNP switch	4													MT-12 or AT-103	
Engine	Cylinder head	-	-	-	-	-		_	-			-			EM EE	
	Cylinder head gasket	5	5	5	5	5		5	5		4	5	3		<u>EM-55</u>	
	Cylinder block															
	Piston												4			
	Piston ring	6	6	6	6	6		e	6			e			EM 60	
	Connecting rod	О	О	О	О	О		6	О			6			<u>EM-69</u>	
	Bearing															
	Crankshaft															

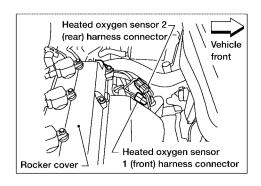
							S١	/MPT	OM						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty s	symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Valve	Timing chain														<u>EM-47</u>
mecha- nism	Camshaft														EM-36
1110111	Intake valve timing control	5	5	5	5	5		5	5			5			EM-47
	Intake valve												3		EM EE
	Exhaust valve												3		<u>EM-55</u>
Exhaust	Exhaust manifold/Tube/Muffler/ Gasket	5	5	5	5	5		5	5			5			EM-23, EX- 3
	Three way catalyst														<u> </u>
Lubrica- tion	Oil pan/Oil strainer/Oil pump/Oil filter/Oil gallery	5	5	5	5	5		5	5			5	2		EM-25, LU- 8 , LU-9 , LU-4
	Oil level (Low)/Filthy oil														LU-6
Cooling	Radiator/Hose/Radiator filler cap														<u>CO-12</u>
	Thermostat									5					CO-20
	Water pump														CO-18
	Water gallery	5	5	5	5	5		5	5		2	5			<u>CO-9</u>
	Cooling fan									5					<u>CO-12</u>
	Coolant level (low)/Contaminated coolant														<u>CO-10</u>
NVIS (NIS NATS)	SAN Vehicle Immobilizer System —	1	1												EC-68 or BL-116

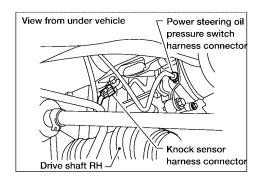

^{1 - 6:} The numbers refer to the order of inspection.

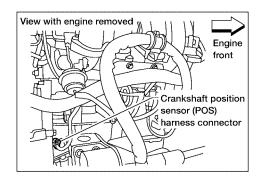

Engine Control Component Parts Location

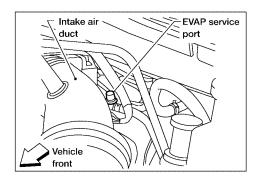

UBS00200




BBIA0001E





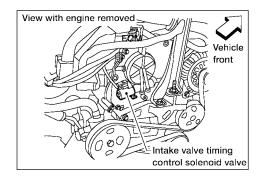


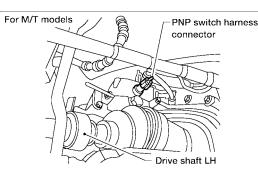
BBIA0090E

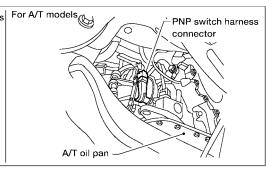
EC

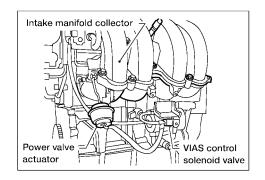
C

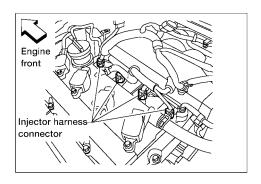
D

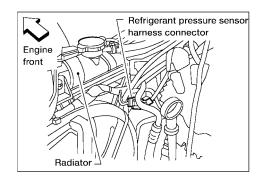

Е

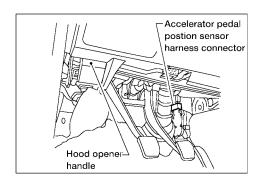

Н

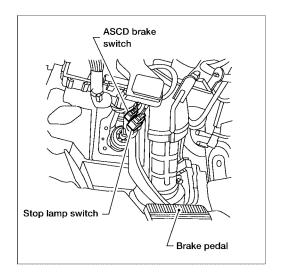

M

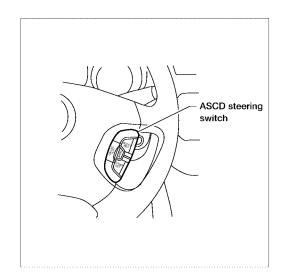

Α

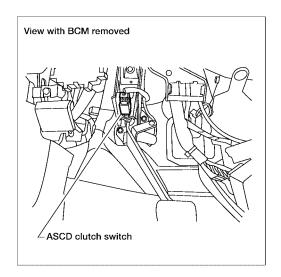

EVAP cansiter purge volume control solenoid valve

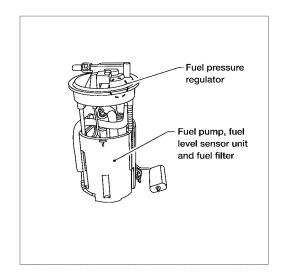


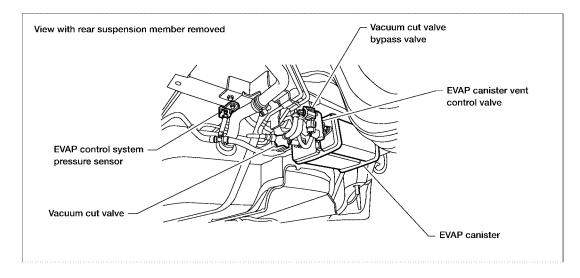


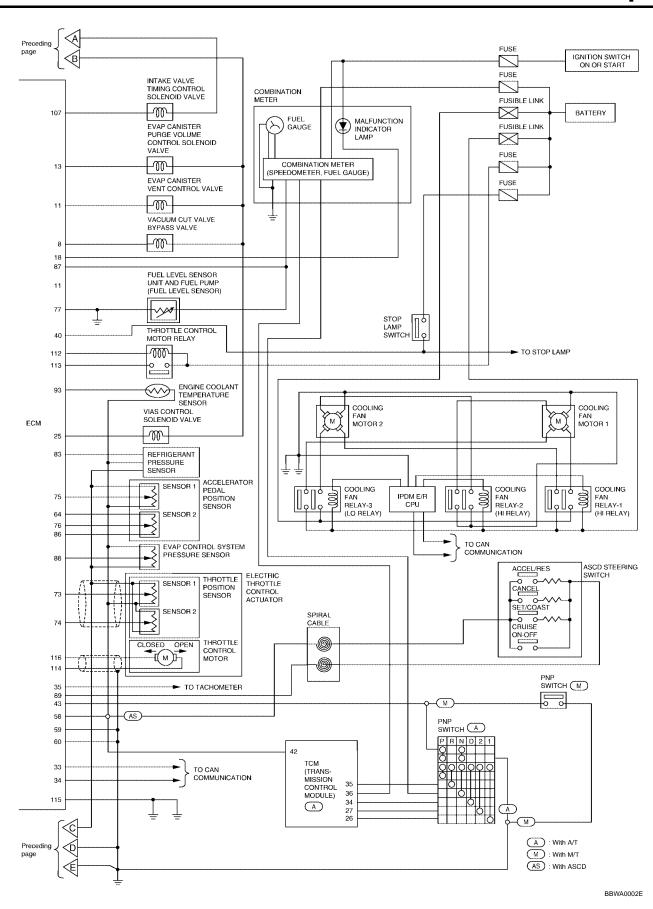









BBIA0224E



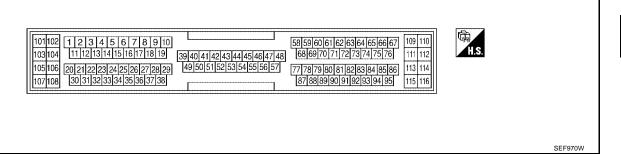
BBIA0092E

BBWA0001E

Circuit Diagram UBS002OP Α FUSE EC DATA LINK CONNECTOR IGNITION SWITCH \triangleright FUSE FUSE 50 C 41 42 FUSE FUSIBLE -ത്ത 101 D 102 ത്ത NO. 4 Е INJECTOR HEATED OXYGEN 95 2 FUEL PUMP RELAY HEATED OXYGEN SENSOR 1 (FRONT) 92 -000 29 FUSE [(M)] IMMOBILIZER CONTROL UNIT ASCD CLUTCH SWITCH (M) ASCD BRAKE SWITCH FUEL LEVEL SENSOR UNIT AND FUEL PUMP (FUEL PUMP) 31 CONDENSER-1 **\Phi** Н W FUSE 20 109 111 12 ECM RELAY MASS AIR FLOW SENSOR 65 72 BATTERY 80 ₲ P ECM ·(VV) 84 INTAKE AIR TEMPERATURE SENSOR FUSE CONDENSER-2 22 23 24 IGNITION COIL (WITH POWER TRANSISTOR) 108 حلالك ملالك ملالك -WW -ww <u>_</u> <u>_</u> CAMSHAFT POSITION SENSOR (PHASE) 62 M CRANKSHAFT POSITION SENSOR (POS) SPARK PLUG NO. 1 SPARK SPARK SPARK SPARI PLUG NO. 3 SPARI PLUG NO. 2 PLUG NO. 4 71 82 KNOCK KNOCK SENSOR POWER STEERING OIL PRESSURE SWITCH (A) : With A/T 70 (M): With M/T FUEL LEVEL SENSOR UNIT AND FUEL PUMP (FUEL TANK TEMPERATURE SENSOR) page

ECM Harness Connector Terminal Layout

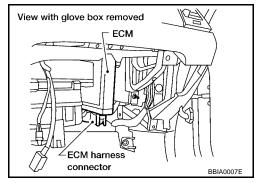
UBS002OQ

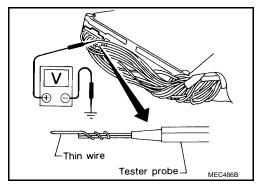

Α

EC

Е

Н


M


ECM Terminals and Reference Value PREPARATION

UBS002OR

- 1. ECM is located behind the glove box. For this inspection, remove glove box.
- Remove ECM harness protector.

- 3. Perform all voltage measurements with the connector connected. Extend tester probe as shown to perform tests easily.
 - Open harness securing clip to make testing easier.
 - Use extreme care not to touch 2 pins at one time.
 - Data is for comparison and may not be exact.

ECM INSPECTION TABLE

Specification data are reference values and are measured between each terminal and body ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	OR/B	Heated oxygen sensor 1 heater	[Engine is running]Warm-up condition.Engine speed is below 3,600 rpm.	Approximately 7.0V → 10.0 V/Div 50 ms/Div T PBIB0519E
			[Engine is running] ● Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)

		11	ROUBLE DIAGNOSIS	[QR]
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
4	P/B	Heated oxygen sensor 2 heater	 [Engine is running] Engine speed is below 3,600 rpm. After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more. 	0 - 1.0V
			 [Ignition switch "ON"] Engine stopped [Engine is running] Engine speed is above 3,600 rpm. 	BATTERY VOLTAGE (11 - 14V)
8	BR	Vacuum cut valve bypass valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
11	OR	EVAP canister vent control valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
12	R	Counter current return	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
13	PU/R	EVAP canister purge volume control solenoid	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)★ → 10.0V/Div 50 ms/Div PBIB0050E
		valve	 [Engine is running] Engine speed is about 2,000 rpm (More than 100 seconds after starting engine) 	Approximately 10V★
18	LG/B	MIL	[Ignition switch "ON"] [Engine is running]	0 - 1.0V BATTERY VOLTAGE
			• Idle speed	(11 - 14V)
20	W/B	ECM relay (Self shut-off)	[Engine is running][Ignition switch "OFF"]For 3 seconds after turning ignition switch "OFF"	0 - 1.0V
		(co. o.u. o.i.)	[Ignition switch "OFF"]● 3 seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)

				[QR]	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	Α
21 22	Y/R G/R	Ignition signal No. 1 Ignition signal No. 2	[Engine is running] ■ Warm-up condition ■ Idle speed	0 - 0.1V★	EC C
23 24	L/R G/Y	Ignition signal No. 3 Ignition signal No. 4	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - 0.2V★	D E F
25	Y/G	VIAS control solenoid valve	[Engine is running] ● Idle speed [Engine is running]	BATTERY VOLTAGE (11 - 14V)	G
29	B/OR	Fuel pump relay	 Engine speed is above 5,000 rpm [Ignition switch "ON"] For 1 seconds after turning ignition switch "ON" [Engine is running] 	0 - 1.0V	Н
			 [Ignition switch "ON"] More than 1 seconds after turning ignition switch "ON". 	BATTERY VOLTAGE (11 - 14V)	J
33	L	CAN communication line	[Ignition switch "ON"]	Approximately 2.6 - 3.2V Output voltage varies with the communication status.	K
34	Y	CAN communication line	[Ignition switch "ON"]	Approximately 1.7 - 2.3V Output voltage varies with the communication status.	L
40	R/G	Stop lamp switch	 [Engine is running] Brake pedal fully released [Engine is running] Brake pedal depressed 	Approximately 0V BATTERY VOLTAGE (11 - 14V)	M
41	BR/W	Start signal	[Ignition switch "ON"] [Ignition switch "START"]	Approximately 0V 9 - 14V	
42	R	Ignition switch	[Ignition switch "OFF"]	BATTERY VOLTAGE (11 - 14V)	
	0/5 / 1 =		[Ignition switch "ON"] ■ Shift lever position is "P" or "N" (A/T models), "Neutral" (M/T models).	Approximately 0V	
43	G/R (A/T) G/W (M/T)	PNP switch	[Ignition switch "ON"] • Except the above gear position	A/T models BATTERY VOLTAGE (11 - 14V) M/T models Approximately 5V	

				[417]
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
46	G	Power steering oil	[Engine is running]Steering wheel is being turned	Approximately 0V
40	J	pressure switch	[Engine is running]Steering wheel is not being turned	BATTERY VOLTAGE (11 - 14V)
50	OR	Data link connector	[Ignition switch "ON"] CONSULT-II or GST is disconnected.	Approximately 5V
56	G/B (A/T)	ASCD brake switch	[Ignition switch "ON"] Brake pedal is depressed Clutch pedal is depressed (M/T models)	Approximately 0V
50	G/R (M/T)	ASCD DIAKE SWILLI	[Ignition switch "ON"] Brake pedal is fully released Clutch pedal is fully released (M/T models)	BATTERY VOLTAGE (11 - 14V)
58	В	Sensors' ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
59 60 106 108	B B B	ECM ground	[Engine is running] • Idle speed	Engine ground
62	W	Camshaft position sen-	[Engine is running] • Warm-up condition • Idle speed	1.0 - 4.0V★ 1.0 - 4.0V★
02	V	sor (PHASE)	[Engine is running] ● Engine speed is 2,000 rpm.	1.0 - 4.0 V★ → 5.0 V/Div 20 ms/Div T PBIB0526E
64	OR	Accelerator pedal position sensor 2 power supply	[Ignition switch "ON"]	Approximately 2.5V
65	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V
66	W/L	Power supply for ECM (Buck-up)	[Ignition switch "OFF"]	BATTERY VOLTAGE (11 - 14V)
70	P/L	Fuel tank temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with fuel tank temperature.

				[QR]	i.
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	А
74	W	[Engine is running] ■ Warm-up condition ■ Idle speed		Approximately 3V★ SVDiv 1 ms/Div 1 PBIB0527E	C
71	NAL NO. COLOR ITEM COLOR IEngine is running warm-up cond lide speed Crankshaft position sensor (POS) IEngine is running warm-up cond lide speed is speed is speed is warm-up cond lide speed is warm-up cond lide speed is warm-up cond lide speed is warm-up cond lignition switch warm-up cond lide speed is warm-up cond lignition switch warm-up cond lide speed is warm-up cond lignition switch warm-up cond lide speed is warm-up cond lignition switch warm-up cond lide speed is warm-up cond lignition switch warm-up cond lide speed lignition switch warm-up cond lide speed lignition switch warm-up cond lide speed lignition switch warm-up cond lide sp	[Engine is running] ● Engine speed is 2,000 rpm	Approximately 3V★ → → → → → → → → → → → → → → → → → → →	E F	
72	w	Mass air flow sensor	[Engine is running] ■ Warm-up condition ■ Idle speed [Engine is running] ■ Warm-up condition	1.1 - 1.5V 1.6 - 2.0V	G
72	W	Throttle position	 Engine speed is 2,500 rpm. [Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal fully released 	More than 0.36V	ı
73	VV	sensor 1	 [Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal fully depressed 	Approximately 3V Approximately 3V Approximately 3V Approximately 3V 1.1 - 1.5V PBIB0528E	J K
74	G		 [Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal fully released 	Less than 4.75V	L
		sensor 2	 [Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal fully depressed 	More than 0.36V	M
75	W	1	[Ignition switch "ON"] ■ Accelerator pedal fully released	0.41 - 0.71V	
			Accelerator pedal fully depressed	Approximately 3V Approximately 3V Approximately 3V Approximately 3V PBIB0527E Approximately 3V 1.6 - 2.0V More than 0.36V Less than 4.75V Less than 4.75V More than 0.36V 0.41 - 0.71V More than 4.2V 0.21 - 0.36V More than 2.1V	
76	W/B	1	Accelerator pedal fully released [Ignition switch "ON"]		
	- (-		Accelerator pedal fully depressed [Engine is running]		
77	B/R	Fuel level sensor ground		Approximately 0V	

		.,	ROUBLE DIAGNOSIS	[QR	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
80	В	Mass air flow sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	
82	W	Knock sensor	[Engine is running] • Idle speed	Approximately 2.5V	
83	W	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower switch are "ON". (Compressor operates.) 	1.0 - 4.0V	
84	Y/G	Intake air temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with intake air temperature.	
86	G	Accelerator pedal position sensor 2 ground	[Ignition switch "ON"]	Approximately 0V	
87	G/B	Fuel level sensor	[Ignition switch "ON"]	Approximately 0 - 4.8V Output voltage varies with fue level.	
88	W	EVAP control system pressure sensor	[Ignition switch "ON"]	Approximately 1.8 - 4.8V	
			[Ignition switch "ON"] • ASCD steering switch is "OFF".	Approximately 4.0V	
			[Ignition switch "ON"] ● CRUISE switch is "ON".	Approximately 0V	
89	G/Y	G/Y	ASCD steering switch	[Ignition switch "ON"] ● CANCEL switch is "ON".	Approximately 1V
			[Ignition switch "ON"] • SET/COAST switch is "ON".	Approximately 2V	
			[Ignition switch "ON"] ● RESUME/ACCEL switch is "ON".	Approximately 3V	
90	W	Accelerator pedal posi-	[Ignition switch "ON"] • Accelerator pedal fully released	0.41 - 0.71V	
90	VV	tion sensor signal output	[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 4.2V	
92	W	Heated oxygen sensor 1	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Period cally change)	
93	Υ	Engine coolant tempera- ture sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with engine coolant temperature.	
95	W	Heated oxygen sensor 2	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V	

				[QK]	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	А
101 102	R/B R/W	Injector No. 1 Injector No. 2	[Engine is running]Warm-up conditionIdle speed	BATTERY VOLTAGE (11 - 14V)★ ⇒10.0 V/Div 50 ms/Div T	C D
103 104	R/Y R/L	Injector No. 3 Injector No. 4	BATTERY VOLTAGE (11 - 14V)★ [Engine is running] • Warm-up condition • Engine speed is 2,000 rpm [Engine is running] • Warm-up condition • Idle speed Approximately 9V★ e timing con-	(11 - 14V)★	E
107	G	Intake valve timing control solenoid valve	Warm-up condition	BATTERY VOLTAGE (11 - 14V)	G H I
109 111	R/G R/G	Power supply for ECM	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)	K
112	OR	Throttle control motor relay	[Ignition switch "OFF"] [Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V) 0 - 1.0V	L
113	R	Throttle control motor relay power supply	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)	
114	Y	Throttle control motor (Open)	[Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal is depressing	0 - 14V★	M

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)			
115	В	Throttle control motor ground	[Engine is running] ● Idle speed	Approximately 0V			
116	BR	Throttle control motor (Close)	[Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal is releasing	0 - 14V★ 10.0 V/Div 200 us/Div T PBIB0534E			

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

CONSULT-II Function FUNCTION

UBS002OS

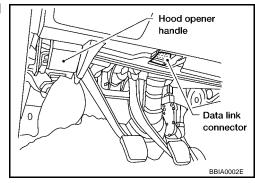
Diagnostic test mode	Function
Work support	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-II unit.
Self-diagnostic results	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly.*1
Data monitor	Input/Output data in the ECM can be read.
Data monitor (SPEC)	Input/Output of the specification for Basic fuel schedule, AFM, A/F feedback control value and the other data monitor items can be read.
CAN diagnostic support monitor	The results of transmit/receive diagnosis of CAN communication can be read.
Active test	Diagnostic Test Mode in which CONSULT-II drives some actuators apart from the ECMs and also shifts some parameters in a specified range.
Function test	This mode is used to inform customers when their vehicle condition requires periodic maintenance.
DTC & SRT confirmation	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.
ECM part number	ECM part number can be read.

^{*1} The following emission-related diagnostic information is cleared when the ECM memory is erased.

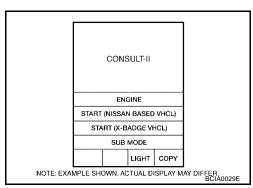
- 1. Diagnostic trouble codes
- 2. 1st trip diagnostic trouble codes
- 3. Freeze frame data
- 4. 1st trip freeze frame data
- 5. System readiness test (SRT) codes
- 6. Test values
- 7. Others

[QR]

ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION


					DIAC	SNOSTIC	TEST MO	DE			A
			WORK		AGNOSTIC SULTS	DATA	DATA		DTC & SRT CONFIRMATION		
		Item	SUP- PORT	DTC*1 FRAME DATA*2		MONI- TOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT	EC
		Crankshaft position sensor (POS)		×	×	×	×				•
		Camshaft position sensor (PHASE)		×		×	×				_
		Mass air flow sensor		×		×	×				D
		Engine coolant temperature sensor		×	×	×	×	×			=
		Heated oxygen sensor 1		×		×	×		×	×	Е
		Heated oxygen sensor 2		×		×	×		×	×	-
		Vehicle speed sensor		×	×	×	×				-
		Accelerator pedal position sensor		×		×	×				F
TS		Throttle position sensor		×		×	×				-
PAR		Fuel tank temperature sensor		×		×	×	×			G
NENT		EVAP control system pressure sensor		×		×	×				
PO		Intake air temperature sensor		×		×	×				Н
S	INPUT	Knock sensor		×							-
7	Z	Refrigerant pressure sensor				×	×				-
Ä		Ignition switch (start signal)				×	×				
ENGINE CONTROL COMPONENT PARTS		Closed throttle position switch (accelerator pedal position sensor signal)				×	×				J
Ш		Air conditioner switch				×	×				-
		Park/neutral position (PNP) switch		×		×	×				1/
		Stop lamp switch		×		×	×				K
		Power steering oil pressure switch				×	×				=
		Battery voltage				×	×				L
		Load signal				×	×				-
		Fuel level sensor		×		×	×				-
		ASCD steering switch		×		×	×				M
		ASCD brake switch		×		×	×				-

		DIAGNOSTIC TEST MODE							
		WORK	SELF-DIAGNOSTIC RESULTS		DATA	DATA MONI- TOR (SPEC)	ACTIVE TEST	DTC & SRT CONFIRMATION	
	Item		DTC*1	FREEZE FRAME DATA*2	MONI- TOR			SRT STATUS	DTC WORK SUP- PORT
	Injectors				×	×	×		
	Power transistor (Ignition timing)				×	×	×		
တ	Throttle control motor relay		×		×	×			
ART	Throttle control motor		×						
ENGINE CONTROL COMPONENT PARTS	EVAP canister purge volume control solenoid valve		×		×	×	×		×
NO.	Air conditioner relay				×	×			
	Fuel pump relay	×			×	×	×		
OL COM	Cooling fan relay		×		×	×	×		
1 R	Heated oxygen sensor 1 heater		×		×	×		×	
Ö	Heated oxygen sensor 2 heater		×		×	×		×	
삘	EVAP canister vent control valve		×		×	×	×		
9	Vacuum cut valve bypass valve		×		×	×	×		×
亩	Intake valve timing control solenoid valve		×		×	×	×		
	VIAS control solenoid valve				×	×	×		
	Calculated load value			×	×	×			

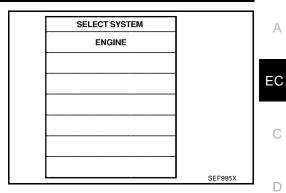

X: Applicable

CONSULT-II INSPECTION PROCEDURE

- 1. Turn ignition switch OFF.
- 2. Connect "CONSULT-II" to data link connector, which is located under LH dash panel.
- 3. Turn ignition switch ON.

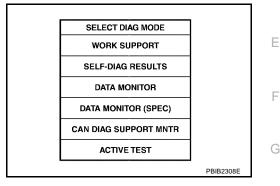
4. Touch "START".

^{*1:} This item includes 1st trip DTCs.


^{*2:} This mode includes 1st trip freeze frame data or freeze frame data. The items appear on CONSULT-II screen in freeze frame data mode only if a 1st trip DTC or DTC is detected. For details, refer to <u>EC-59</u>.

TROUBLE DIAGNOSIS

[QR]


Н

5. Touch "ENGINE".

6. Perform each diagnostic test mode according to each service procedure.

For further information, see the CONSULT-II Operation Manual.

WORK SUPPORT MODE

Work Item

WORK ITEM	CONDITION	USAGE
FUEL PRESSURE RELEASE	FUEL PUMP WILL STOP BY TOUCHING "START" DUR- ING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.	When releasing fuel pressure from fuel line
IDLE AIR VOL LEARN	THE IDLE AIR VOLUME THAT KEEPS THE ENGINE WITHIN THE SPECIFIED RANGE IS MEMORIZED IN ECM.	When learning the idle air volume
SELF-LEARNING CONT	THE COEFFICIENT OF SELF-LEARNING CONTROL MIXTURE RATIO RETURNS TO THE ORIGINAL COEF- FICIENT.	When clearing the coefficient of self-learning control value
EVAP SYSTEM CLOSE	OPEN THE VACUUM CUT VALVE BYPASS VALVE AND CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN ORDER TO MAKE EVAP SYSTEM CLOSE UNDER THE FOLLOWING CONDITIONS. • IGN SW "ON"	When detecting EVAP vapor leak point of EVAP system
	ENGINE NOT RUNNING	
	• AMBIENT TEMPERATURE IS ABOVE 0°C (32°F).	
	NO VACUUM AND NO HIGH PRESSURE IN EVAP SYSTEM	
	• FUEL TANK TEMP. IS MORE THAN 0°C (32°F).	
	WITHIN 10 MINUTES AFTER STARTING "EVAP SYSTEM CLOSE"	
	 WHEN TRYING TO EXECUTE "EVAP SYSTEM CLOSE" UNDER THE CONDITION EXCEPT ABOVE, CONSULT- II WILL DISCONTINUE IT AND DISPLAY APPROPRI- ATE INSTRUCTION. 	
	NOTE: WHEN STARTING ENGINE, CONSULT-II MAY DISPLAY "BATTERY VOLTAGE IS LOW. CHARGE BATTERY", EVEN IN USING CHARGED BATTERY.	

WORK ITEM	CONDITION	USAGE
TARGET IDLE RPM ADJ*	IDLE CONDITION	When setting target idle speed
TARGET IGN TIM ADJ*	IDLE CONDITION	When adjusting target ignition timing After adjustment, confirm target ignition timing with a timing light.

^{*:} This function is not necessary in the usual service procedure.

SELF-DIAG RESULTS MODE

Self Diagnostic Item

Regarding items of "DTC and 1st trip DTC", refer to EC-15, "INDEX FOR DTC".)

Freeze Frame Data and 1st Trip Freeze Frame Data

Freeze frame data item*1	Description
DIAG TROUBLE CODE [PXXXX]	The engine control component part/control system has a trouble code, it is displayed as "PXXXX". (Refer to EC-15 . "INDEX FOR DTC".)
FUEL SYS-B1	 "Fuel injection system status" at the moment a malfunction is detected is displayed. One mode in the following is displayed. "MODE 2": Open loop due to detected system malfunction "MODE 3": Open loop due to driving conditions (power enrichment, deceleration enrichment) "MODE 4": Closed loop - using oxygen sensor(s) as feedback for fuel control "MODE 5": Open loop - has not yet satisfied condition to go to closed loop
CAL/LD VALUE [%]	The calculated load value at the moment a malfunction is detected is displayed.
COOLANT TEMP [°C] or [°F]	The engine coolant temperature at the moment a malfunction is detected is displayed.
L-FUEL TRIM-B1 [%]	 "Long-term fuel trim" at the moment a malfunction is detected is displayed. The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule than short-term fuel trim.
S-FUEL TRIM-B1 [%]	 "Short-term fuel trim" at the moment a malfunction is detected is displayed. The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel schedule.
ENGINE SPEED [rpm]	The engine speed at the moment a malfunction is detected is displayed.
VHCL SPEED [km/h] or [mph]	The vehicle speed at the moment a malfunction is detected is displayed.
B/FUEL SCHDL [msec]	The base fuel schedule at the moment a malfunction is detected is displayed.
INT/A TEMP SE [°C] or [°F]	The intake air temperature at the moment a malfunction is detected is displayed.

^{*1:} The items are the same as those of 1st trip freeze frame data.

TROUBLE DIAGNOSIS

[QR]

DATA MONITOR MODE Monitored Item

EC

С

D

Е

G

Н

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
ENG SPEED [rpm]	×	×	Indicates the engine speed computed from the signals of the crankshaft posi- tion sensor (POS) and camshaft posi- tion sensor (PHASE).	 Accuracy becomes poor if engine speed drops below the idle rpm. If the signal is interrupted while the engine is running, an abnormal value may be indicated.
MAS A/F SE-B1 [V]	×	×	The signal voltage of the mass air flow sensor is displayed.	When the engine is stopped, a certain value is indicated.
B/FUEL SCHDL [msec]		×	"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	
A/F ALPHA-B1 [%]		×	The mean value of the air-fuel ratio feedback correction factor per cycle is indicated.	 When the engine is stopped, a certain value is indicated. This data also includes the data for the air-fuel ratio learning control.
COOLAN TEMP/S [°C] or [°F]	×	×	The engine coolant temperature (determined by the signal voltage of the engine coolant temperature sensor) is displayed.	When the engine coolant tempera- ture sensor is open or short-cir- cuited, ECM enters fail-safe mode. The engine coolant temperature determined by the ECM is dis- played.
HO2S1 (B1) [V]	×	×	The signal voltage of the heated oxygen sensor 1 is displayed.	
HO2S2 (B1) [V]	×	×	The signal voltage of the heated oxygen sensor 2 is displayed.	
HO2S1 MNTR (B1) [RICH/LEAN]	×	×	Display of heated oxygen sensor 1 signal during air-fuel ratio feedback control: RICH means the mixture became "rich", and control is being affected toward a leaner mixture. LEAN means the mixture became "lean", and control is being affected toward a rich mixture.	 After turning ON the ignition switch, "RICH" is displayed until air-fuel mixture ratio feedback control begins. When the air-fuel ratio feedback is clamped, the value just before the clamping is displayed continuously.
HO2S2 MNTR (B1) [RICH/LEAN]	×		Display of heated oxygen sensor 2 signal: RICH means the amount of oxygen after three way catalyst is relatively small. LEAN means the amount of oxygen after three way catalyst is relatively large.	When the engine is stopped, a certain value is indicated.
VHCL SPEED SE [km/h] or [mph]	×	×	The vehicle speed computed from the vehicle speed signal is displayed.	
BATTERY VOLT [V]	×	×	The power supply voltage of ECM is displayed.	
ACCEL SEN 1 [V]	×	×	The accelerator pedal position sensor in all yellogs is displayed.	
ACCEL SEN 2 [V]	×		signal voltage is displayed.	
THRTL SEN 1 [V]	×	×	The throttle position sensor signal voltage is displayed.	
THRTL SEN 2 [V]	×		ago lo diopiayou.	

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
FUEL T/TEMP SE [°C] or [°F]	×		The fuel temperature (determined by the signal voltage of the fuel tank temperature sensor) is displayed.	
INT/A TEMP SE [°C] or [°F]	×	×	The intake air temperature (determined by the signal voltage of the intake air temperature sensor) is indicated.	
EVAP SYS PRES [V]	×		The signal voltage of EVAP control system pressure sensor is displayed.	
ABSOL PRES/SE [V]	×		The signal voltage of EVAP control system pressure sensor is displayed.	
FUEL LEVEL SE [V]	×		The signal voltage of the fuel level sensor is displayed.	
START SIGNAL [ON/OFF]	×	×	Indicates [ON/OFF] condition from the starter signal.	 After starting the engine, [OFF] is displayed regardless of the starte signal.
CLSD THL POS [ON/OFF]	×	×	 Indicates idle position [ON/OFF] computed by ECM according to the accelerator pedal position sensor signal. 	
AIR COND SIG [ON/OFF]	×	×	 Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioner signal. 	
P/N POSI SW [ON/OFF]	×	×	 Indicates [ON/OFF] condition from the park/neutral position (PNP) switch sig- nal. 	
PW/ST SIGNAL [ON/OFF]	×	×	 [ON/OFF] condition of the power steer- ing oil pressure switch as determined by the power steering oil pressure signal is indicated. 	
LOAD SIGNAL [ON/OFF]	×	×	 Indicates [ON/OFF] condition from the electrical load signal. ON Rear window defogger switch is ON and/or lighting switch is in 2nd posi- tion. OFF Both rear window defogger switch and lighting switch are OFF. 	
IGNITION SW [ON/OFF]	×	×	Indicates [ON/OFF] condition from ignition switch.	
HEATER FAN SW [ON/OFF]	×		 Indicates [ON/OFF] condition from the heater fan switch signal. 	
BRAKE SW [ON/OFF]	×		 Indicates [ON/OFF] condition from the stop lamp switch signal. 	
INJ PULSE-B1 [msec]		×	 Indicates the actual fuel injection pulse width compensated by ECM according to the input signals. 	When the engine is stopped, a certain computed value is indi- cated.
IGN TIMING [BTDC]		×	 Indicates the ignition timing computed by ECM according to the input signals. 	When the engine is stopped, a certain value is indicated.
CAL/LD VALUE [%]			"Calculated load value" indicates the value of the current airflow divided by peak airflow.	
MASS AIRFLOW [g·m/s]			Indicates the mass airflow computed by ECM according to the signal voltage of the mass air flow sensor.	

Α

EC

С

D

Е

G

Н

 \mathbb{N}

				ပြော
Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
PURG VOL C/V [%]			 Indicates the EVAP canister purge volume control solenoid valve control value computed by the ECM according to the input signals. The opening becomes larger as the 	
INT/V TIM (B1) [°CA]			value increases. Indicates [°CA] of intake camshaft advanced angle.	
INT/V SOL (B1) [%]			The control condition of the intake valve timing control solenoid valve (determined by ECM according to the input signals) is indicated. ON intake valve timing control is operating. OFF Intake valve timing control is not operating.	
VIAS S/V [ON/OFF]			The control condition of the VIAS control solenoid valve (determined by ECM according to the input signals) is indicated. ON VIAS control solenoid valve is operating. OFF VIAS control solenoid valve is not operating.	
AIR COND RLY [ON/OFF]		×	The air conditioner relay control condition (determined by ECM according to the input signals) is indicated.	
FUEL PUMP RLY [ON/OFF]		×	 Indicates the fuel pump relay control condition determined by ECM according to the input signals. 	
VC/V BYPASS/V [ON/OFF]			The control condition of the vacuum cut valve bypass valve (determined by ECM according to the input signals) is indicated. ON Open OFF Closed	
VENT CONT/V [ON/OFF]			The control condition of the EVAP canister vent control valve (determined by ECM according to the input signals) is indicated. ON Closed OFF Open	
THRTL RELAY [ON/OFF]			Indicates the throttle control motor relay control condition determined by the ECM according to the input signals.	
COOLING FAN [HI/LOW/OFF]			 Indicates the condition of the cooling fan (determined by ECM according to the input signals). HI High speed operation LOW Low speed operation OFF Stop 	
HO2S1 HTR (B1) [ON/OFF]			 Indicates [ON/OFF] condition of heated oxygen sensor 1 heater determined by ECM according to the input signals. 	
HO2S2 HTR (B1) [ON/OFF]			 Indicates [ON/OFF] condition of heated oxygen sensor 2 heater determined by ECM according to the input signals. 	

				الا
Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
IDL A/V LEARN [YET/CMPLT/ INCMP]			Display the condition of idle air volume learning YET Idle air volume learning has not been performed yet. CMPLT Idle air volume learning has already been performed successfully. INCMP Idle air volume learning has not been performed successfully.	
TRVL AFTER MIL [km] or [mile]			Distance traveled while MIL is activated.	
AC PRESS SEN [V]			The signal voltage from the refrigerant pressure sensor is displayed.	
VHCL SPEED SE [km/h] or [mph]			The vehicle speed computed from the vehicle speed signal sent from TCM is displayed.	
SET VHCL SPD [km/h] or [mph]			The preset vehicle speed is displayed.	
MAIN SW [ON/OFF]			Indicates [ON/OFF] condition from CRUISE switch signal.	
CANCEL SW [ON/OFF]			Indicates [ON/OFF] condition from CAN- CEL switch signal.	
RESUME/ACC SW [ON/OFF]			Indicates [ON/OFF] condition from ACCEL/RES switch signal.	
SET SW [ON/OFF]			Indicates [ON/OFF] condition from COAST/SET switch signal.	
BRAKE SW1 SW [ON/OFF]			Indicates [ON/OFF] condition from ASCD brake switch signal, and ASCD clutch switch signal (M/T models).	
BRAKE SW2 SW [ON/OFF]			Indicates [ON/OFF] condition of stop lamp switch signal.	
VHCL SPD CUT [NON/CUT]			 Indicates the vehicle cruise condition. NON Vehicle speed is maintained at the ASCD set speed. CUT Vehicle speed increased to excessively high compared with the ASCD set speed, and ASCD operation is cut off. 	
LO SPEED CUT [NON/CUT]			Indicates the vehicle cruise condition. NON Vehicle speed is maintained at the ASCD set speed. CUT Vehicle speed decreased to excessively low compared with the ASCD set speed, and ASCD operation is cut off.	
AT OD MONITOR [ON/OFF]			 Indicates [ON/OFF] condition of A/T O/D according to the input signal from the TCM. 	
AT OD CANCEL [ON/OFF]			Indicates [ON/OFF] condition of A/T O/D cancel signal sent from the TCM.	
CRUISE LAMP [ON/OFF]			Indicates [ON/OFF] condition of CRUISE lamp determined by the ECM according to the input signals.	
SET LAMP [ON/OFF]			Indicates [ON/OFF] condition of SET lamp determined by the ECM according to the input signals.	

TROUBLE DIAGNOSIS

[QR]

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
Voltage [V]				
Frequency [msec], [Hz] or [%]				 Only "#" is displayed if item is unable to be measured. Figures with "#"s are temporary ones. They are the same figures as an actual piece of data which
DUTY-HI			Voltage, frequency, duty cycle or pulse	
DUTY-LOW			width measured by the probe.	
PLS WIDTH-HI				was just previously measured.
PLS WIDTH-LOW				

NOTE:

• Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

DATA MONITOR (SPEC) MODE

Monitored Item

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
ENG SPEED [rpm]	×		 Indicates the engine speed computed from the signal of the crankshaft position sensor (POS). 	
MAS A/F SE-B1 [V]	×	×	The signal voltage of the mass air flow sensor specification is displayed.	When engine is running specification range is indicated.
B/FUEL SCHDL [msec]			 "Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board cor- rection. 	When engine is running specification range is indicated.
A/F ALPHA-B1 [%]		×	 The mean value of the air-fuel ratio feed- back correction factor per cycle is indi- cated. 	 When engine is running specification range is indicated. This data also includes the data for the air-fuel ratio learning control.

NOTE:

• Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

ACTIVE TEST MODE

Test Item

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
FUEL INJEC- TION	 Engine: Return to the original trouble condition Change the amount of fuel injection using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	 Harness and connectors Fuel injectors Heated oxygen sensor 1
IGNITION TIM- ING	 Engine: Return to the original trouble condition Timing light: Set Retard the ignition timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Perform "Idle Air Volume Learning".
POWER BAL- ANCE	 Engine: After warming up, idle the engine. A/C switch "OFF" Shift lever "N" Cut off each injector signal one at a time using CONSULT-II. 	Engine runs rough or dies.	 Harness and connectors Compression Fuel injectors Power transistor Spark plugs Ignition coils

EC-115 Revision: May 2004 2002 Altima

EC

Α

 D

C

Е

Н

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
COOLING FAN	Ignition switch: ONTurn the cooling fan "ON" and "OFF" with CONSULT-II.	Cooling fan moves and stops.	Harness and connectorsCooling fan relayCooling fan motor
ENG COOLANT TEMP	 Engine: Return to the original trouble condition Change the engine coolant temperature using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	 Harness and connectors Engine coolant temperature sensor Fuel injectors
FUEL PUMP RELAY	 Ignition switch: ON (Engine stopped) Turn the fuel pump relay "ON" and "OFF" using CONSULT-II and listen to operating sound. 	Fuel pump relay makes the operating sound.	Harness and connectors Fuel pump relay
VIAS SOL VALVE	 Ignition switch: ON Turn solenoid valve "ON" and "OFF" with CONSULT-II and listen for operating sound. 	Solenoid valve makes an operating sound.	Harness and connectors Solenoid valve
PURG VOL CONT/V	 Engine: After warming up, run engine at 1,500 rpm. Change the EVAP canister purge volume control solenoid valve opening percent using CONSULT-II. 	Engine speed changes according to the opening percent.	Harness and connectors Solenoid valve
FUEL/T TEMP SEN	Change the fuel tank temperature	using CONSULT-II.	
VENT CON- TROL/V	 Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" with the CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connectors Solenoid valve
VC/V BYPASS/V	 Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" with the CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connectors Solenoid valve
V/T ASSIGN ANGLE	 Engine: Return to the original trouble condition Change intake valve timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connectors Intake valve timing control solenoid valve

DTC & SRT CONFIRMATION MODE SRT STATUS Mode

For details, refer to EC-59, "SYSTEM READINESS TEST (SRT) CODE".

SRT Work Support Mode

This mode enables a technician to drive a vehicle to set the SRT while monitoring the SRT status.

Α

EC

Е

Н

K

M

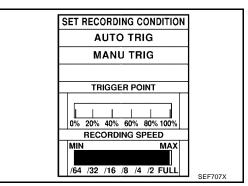
DTC Work Support Mode

Test mode	Test item	Condition	Reference page
	PURGE FLOW P0441		EC-300
	EVAP SML LEAK P0442/P1442		EC-306, EC-474
EVAP SYSTEM	EVAP V/S SML LEAK P0456/P1456		EC-348, EC-497
	PURG VOL CN/V P1444		EC-476
	VC CUT/V BP/V P1491		EC-516
	HO2S1 (B1) P0133	Refer to corresponding	EC-190
HO2S1	HO2S1 (B1) P0134	trouble diagnosis for DTC.	EC-199
HU251	HO2S1 (B1) P1143		EC-415
	HO2S1 (B1) P1144		EC-421
H02S2	HO2S2 (B1) P0139		EC-212
	HO2S2 (B1) P1146		EC-427
	HO2S2 (B1) P1147		EC-434

REAL TIME DIAGNOSIS IN DATA MONITOR MODE (RECORDING VEHICLE DATA) Description

CONSULT-II has two kinds of triggers and they can be selected by touching "SETTING" in "DATA MONITOR" mode.

- 1. "AUTO TRIG" (Automatic trigger):
 - The malfunction will be identified on the CONSULT-II screen in real time.

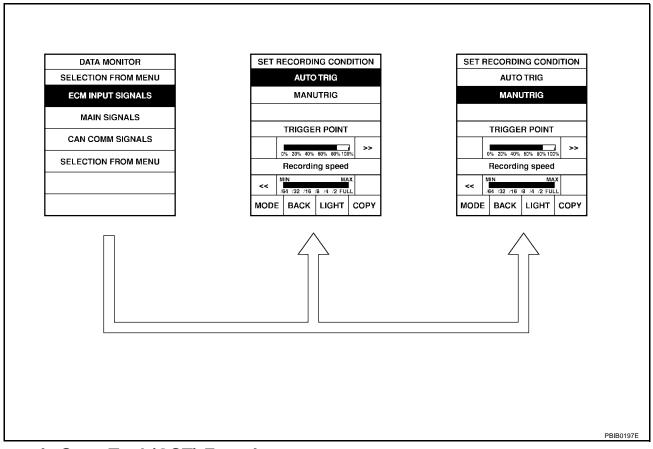

In other words, DTC/1st trip DTC and malfunction item will be displayed if the malfunction is detected by ECM.

At the moment a malfunction is detected by ECM, "MONITOR" in "DATA MONITOR" screen is changed to "Recording Data ... xx%" as shown at right, and the data after the malfunction detection is recorded. Then when the percentage reached 100%, "REAL-TIME DIAG" screen is displayed. If "STOP" is touched on the screen during "Recording Data ... xx%", "REAL-TIME DIAG" screen is also displayed.

The recording time after the malfunction detection and the recording speed can be changed by "TRIGGER POINT" and "Recording Speed". Refer to CONSULT-II OPERATION MANUAL.

- 2. "MANU TRIG" (Manual trigger):
 - DTC/1st trip DTC and malfunction item will not be displayed automatically on CONSULT-II screen even though a malfunction is detected by ECM.
 - DATA MONITOR can be performed continuously even though a malfunction is detected.

DATA MONI	DATA MONITOR	
Recording Data11%	NO DTC	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	XXX V	
COOLAN TEMP/S	XXX °C	
HO2S1 (B1)	XXX V	
VHCL SPEED SE	(XX km/h	
		SEF705Y

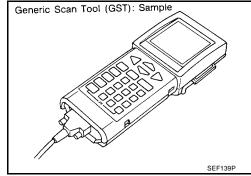

Operation

- "AUTO TRIG"
 - While trying to detect the DTC/1st trip DTC by performing the "DTC Confirmation Procedure", be sure
 to select to "DATA MONITOR (AUTO TRIG)" mode. You can confirm the malfunction at the moment it is
 detected.
 - While narrowing down the possible causes, CONSULT-II should be set in "DATA MONITOR (AUTO TRIG)" mode, especially in case the incident is intermittent.

When you are inspecting the circuit by gently shaking (or twisting) the suspicious connectors, components and harness in the "DTC Confirmation Procedure", the moment a malfunction is found the DTC/1st trip DTC will be displayed. (Refer to "Incident Simulation Tests" in GI-25, "How to Perform Efficient Diagnosis for an Electrical Incident".)

2. "MANU TRIG"

• If the malfunction is displayed as soon as "DATA MONITOR" is selected, reset CONSULT-II to "MANU TRIG". By selecting "MANU TRIG" you can monitor and store the data. The data can be utilized for further diagnosis, such as a comparison with the value for the normal operating condition.


Generic Scan Tool (GST) Function DESCRIPTION

UBS002OT

Generic Scan Tool (OBDII scan tool) complying with SAE J1978 has 8 different functions explained below.

ISO9141 is used as the protocol.

The name "GST" or "Generic Scan Tool" is used in this service manual.

FUNCTION

Diagnostic test mode		Function
MODE 1 READINESS TESTS		This mode gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, and system status information.
MODE 2	(FREEZE DATA)	This mode gains access to emission-related data value which were stored by ECM during the freeze frame. For details, refer to EC-59, "FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA".
MODE 3	DTCs	This mode gains access to emission-related power train trouble codes which were stored by ECM.

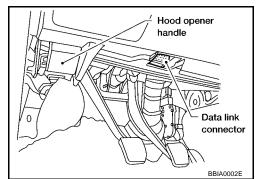
Α

EC

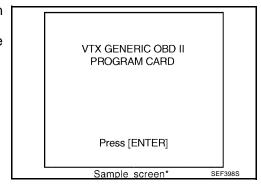
C

 D

Е


Н

M


Di	agnostic test mode	Function
MODE 4	CLEAR DIAG INFO	This mode can clear all emission-related diagnostic information. This includes: Clear number of diagnostic trouble codes (MODE 1) Clear diagnostic trouble codes (MODE 3) Clear trouble code for freeze frame data (MODE 1) Clear freeze frame data (MODE 2) Reset status of system monitoring test (MODE 1) Clear on board monitoring test results (MODE 6 and 7)
MODE 6	(ON BOARD TESTS)	This mode accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.
MODE 7	(ON BOARD TESTS)	This mode enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.
MODE 8	_	This mode can close EVAP system in ignition switch "ON" position (Engine stopped). When this mode is performed, the following parts can be opened or closed. • EVAP canister vent control valve open • Vacuum cut valve bypass valve closed In the following conditions, this mode cannot function. • Low ambient temperature • Low battery voltage • Engine running • Ignition switch "OFF" • Low fuel temperature • Too much pressure is applied to EVAP system
MODE 9	(CALIBRATION ID)	This mode enables the off-board test device to request specific vehicle information such as Vehicle Identification Number (VIN) and Calibration IDs.

GST INSPECTION PROCEDURE

- 1. Turn ignition switch OFF.
- 2. Connect "GST" to data link connector, which is located under LH dash panel near the fuse box cover.
- 3. Turn ignition switch ON.

- 4. Enter the program according to instruction on the screen or in the operation manual.
- (*: Regarding GST screens in this section, sample screens are shown.)

Perform each diagnostic mode according to each service proce-

For further information, see the GST Operation Manual of the tool maker.

OBD II FUNCTIONS

F0: DATA LIST

F1: FREEZE DATA

F2: DTCs

F3: SNAPSHOT

F4: CLEAR DIAG INFO

F5: O2 TEST RESULTS

F6: READINESS TESTS

F7: ON BOARD TESTS F8: EXPAND DIAG PROT

F9: UNIT CONVERSION

Sample screen*

UBS002OU

SEF416S

CONSULT-II Reference Value in Data Monitor

Specification data are reference values.

Specification data are output/input values which are detected or supplied by the ECM at the connector.

* Specification data may not be directly related to their components signals/values/operations.
i.e. Adjust ignition timing with a timing light before monitoring IGN TIMING, because the monitor may show the specification data in spite of the ignition timing not being adjusted to the specification data. This IGN TIMING monitors the data calculated by the ECM

according to the signals input from the camshaft position sensor and other ignition timing related sensors

MONITOR ITEM	CONDITION		SPECIFICATION
ENG SPEED	 Tachometer: Connect Run engine and compare tachometer indication with the CONSULT-II value. 		Almost the same speed as the CONSULT-II value.
MAS A/F SE-B1	 Engine: After warming up Air conditioner switch: OFF Shift lever: N No-load 	2,500 rpm	Approx. 1.1 - 1.5V Approx. 1.6 - 2.0V
B/FUEL SCHDL	 Engine: After warming up Shift lever: N Air conditioner switch: OFF No-load 	2,000 rpm	2.5 - 3.5 msec 2.5 - 3.5 msec
A/F ALPHA-B1	• Engine: After warming up Maintaining engine speed at 2,000 rpm		54% - 155%
COOLAN TEMP/S	Engine: After warming up		More than 70°C (158°F)
HO2S1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 (B1)	Engine: After warming up	Revving engine from idle to 3,000 rpm quickly.	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times dur ing 10 seconds.
HO2S2 MNTR (B1)	Engine: After warming up	Revving engine from idle to 3,000 rpm quickly.	$LEAN \longleftrightarrow RICH$
VEH SPEED SE	Turn drive wheels and compare s SULT-II value.	speedometer indication with the CON-	Almost the same speed as the CONSULT-II value
BATTERY VOLT	Ignition switch: ON (Engine stop)	ped)	11 - 14V
ACCEL SEN1	Ignition switch: ON	Accelerator pedal: Fully released	0.41 - 0.71V
ACCEL SEN2	(engine stopped)	Accelerator pedal: Fully depressed	More than 4.2V
THRTL SEN1	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	More than 0.36V
THRTL SEN1	Shift lever:D (A/T model)1st (M/T model)	Accelerator pedal: Fully depressed	Less than 4.75V
EVAP SYS PRES	Ignition switch: ON		Approx. 1.8 - 4.8V
ABSOL PRES/SE	Ignition switch: ON		Approx. 4.4V

TROUBLE DIAGNOSIS

[QR]

MONITOR ITEM	CONDITION		SPECIFICATION	=
START SIGNAL	ullet Ignition switch: ON $ o$ START $ o$	ON	$OFF \to ON \to OFF$	
CLOD THE DOG	- Institute and the CNI	Accelerator pedal: Fully released	ON	
CLSD THL POS	Ignition switch: ON	Accelerator pedal: Slightly depressed	OFF	=
	F . A6	Air conditioner switch: OFF	OFF	
AIR COND SIG	Engine: After warming up, idle the engine	Air conditioner switch: ON (Compressor operates.)	ON	
P/N POSI SW	Ignition switch: ON	Shift lever: P or N (A/T model) Neutral (M/T model)	ON	
		Shift lever: Except above	OFF	<u></u>
PW/ST SIGNAL	Engine: After warming up, idle	Steering wheel is in neutral position. (Forward direction)	OFF	
	the engine	Steering wheel is turned.	ON	
LOAD SIGNAL	a Ignition quitable ON	Rear window defogger switch is ON and/or lighting switch is in 2nd.	ON	
LOAD SIGNAL	Ignition switch: ON	Rear window defogger switch is OFF and lighting switch is OFF.	OFF	
IGNITION SW	• Ignition switch: $ON \rightarrow OFF \rightarrow OI$	N	$ON \to OFF \to ON$	
HEATER FAN SW	Engine: After warming up, idle	Heater fan is operating.	ON	
HEATER FAIN SW	the engine	Heater fan is not operating	OFF	
BRAKE SW	a Ignition quitable ON	Brake pedal: Fully released	OFF	
	Ignition switch: ON	Brake pedal: Slightly depressed	ON	
	Engine: After warming up	Idle	2.0 - 3.0 msec	
INJ PULSE-B1	Shift lever: NAir conditioner switch: OFFNo-load	2,000 rpm	1.9 - 2.9 msec	
	Engine: After warming up	Idle	10° - 20° BTDC	<u> </u>
IGN TIMING	Shift lever: NAir conditioner switch: OFFNo-load	2,000 rpm	25° - 45° BTDC	
	Engine: After warming up	Idle	10% - 35%	
CAL/LD VALUE	Shift lever: NAir conditioner switch: OFFNo-load	2,500 rpm	10% - 35%	
	Engine: After warming up	Idle	1.0 - 4.0 g·m/s	
MASS AIRFLOW	Shift lever: NAir conditioner switch: OFFNo-load	2,500 rpm	4.0 - 10.0 g⋅m/s	
	Engine: After warming up Shift lever: N	Idle	0%	
PURG VOL C/V	Air conditioner switch: OFFNo-load	2,000 rpm	20 - 30%	
	Engine: After warming up	Idle	−5° - 5°CA	
INT/V TIM (B1)	Shift lever: NAir conditioner switch: OFFNo-load	2,000 rpm	Approx. 0° - 20°CA	

			[QR]
MONITOR ITEM	CON	NDITION	SPECIFICATION
	Engine: After warming up	Idle	0% - 2%
INT/V SOL (B1)	Shift lever: NAir conditioner switch: OFFNo-load	2,000 rpm	Approx. 25% - 60%
	• Engine: After warming up, idle	Air conditioner switch: OFF	OFF
AIR COND RLY	Engine: After warming up, idle the engine	Air conditioner switch: ON (Compressor operates)	ON
\/\AC CA/	F	Idle	OFF
VIAS S/V	Engine: After warming up	More than 5,000 rpm	ON
	For 1 seconds after turning ignition	on switch ON	ON
FUEL PUMP RLY	Engine running or cranking		ON
	Except above conditions		OFF
VC/V BYPAS S/V	Ignition switch: ON		OFF
VENT CONT/V	Ignition switch: ON		OFF
THRTL RELAY	Ignition switch: ON		ON
		Engine coolant temperature is 94°C (201°F) or less	OFF
COOLING FAN	 Engine: After warming up, idle the engine Air conditioner switch: OFF 	Engine coolant temperature is between 95°C (203°F) and 99°C (210°F)	LOW
		Engine coolant temperature is 100°C (212°F) or more	HIGH
	Engine: After warming up	ON	
HO2S1 HTR (B1)	• Engine speed: Below 3,600 rpm	OII	
	• Engine speed: Above 3,600 rpm	OFF	
HO2S2 HTR (B1)	 Engine speed: Below 3,600 rpm [After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more] 		ON
	• Engine speed: Above 3,600 rpm		OFF
TRVL AFTER MIL	Ignition switch: ON	Vehicle has traveled after MIL has turned ON.	0 - 65,535 km (0 - 40,723 mile)
	Ignition switch: ON (Engine stopp)	ped)	Approx. 0V
AC PRESS SEN	Engine: Idle Air conditioner switch: OFF		1.0 - 4.0V
VEH SPEED SE	Turn drive wheels and compare s SULT-II value.	speedometer indication with the CON-	Almost the same speed as the CONSULT-II value
SET VHCL SPD	Engine: Running	ASCD: Operating	The preset vehicle speed is displayed.
MANINI OVA	1 22 21 01	CRUISE switch: Depressed	ON
MAIN SW	Ignition switch: ON	CRUISE switch: Released	OFF
0.1105; 5;;;	1	CANCEL switch: Depressed	ON
CANCEL SW	Ignition switch: ON	CANCEL switch: Released	OFF
		ACCEL/RES switch: Depressed	ON
RESUME/ACC SW	Ignition switch: ON	ACCEL/RES switch: Released	OFF
		COAST/SET switch: Depressed	ON
SET SW	Ignition switch: ON	COAST/SET switch: Released	OFF
		Brake pedal: Fully released	OFF
BRAKE SW1	Ignition switch: ON	Brake pedal: Slightly depressed	ON

Α

EC

D

F

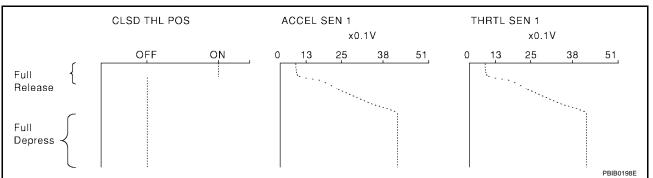
Н

K

M

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW2	Ignition switch: ON	Brake pedal: Fully released	OFF
BIARL SW2	• Igrition switch. ON	Brake pedal: Slightly depressed	ON
CRUISE LAMP	Ignition switch: ON	CRUISE lamp: Illuminated	ON
CIVOISE LAIVIF	• Igrition switch. ON	CRUISE lamp: Not illuminated	OFF
OFT LAMP	Ignition switch: ON	SET lamp: Illuminated	ON
SET LAMP		SET lamp: Not illuminated	OFF

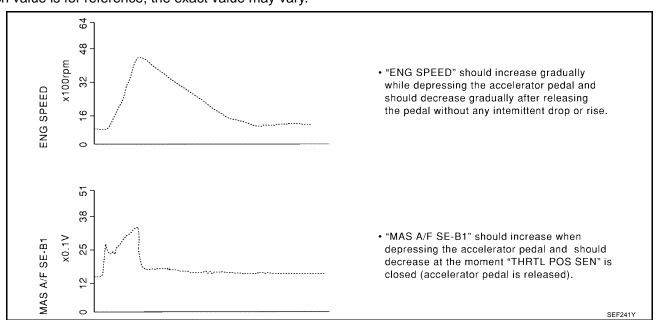
Major Sensor Reference Graph in Data Monitor Mode

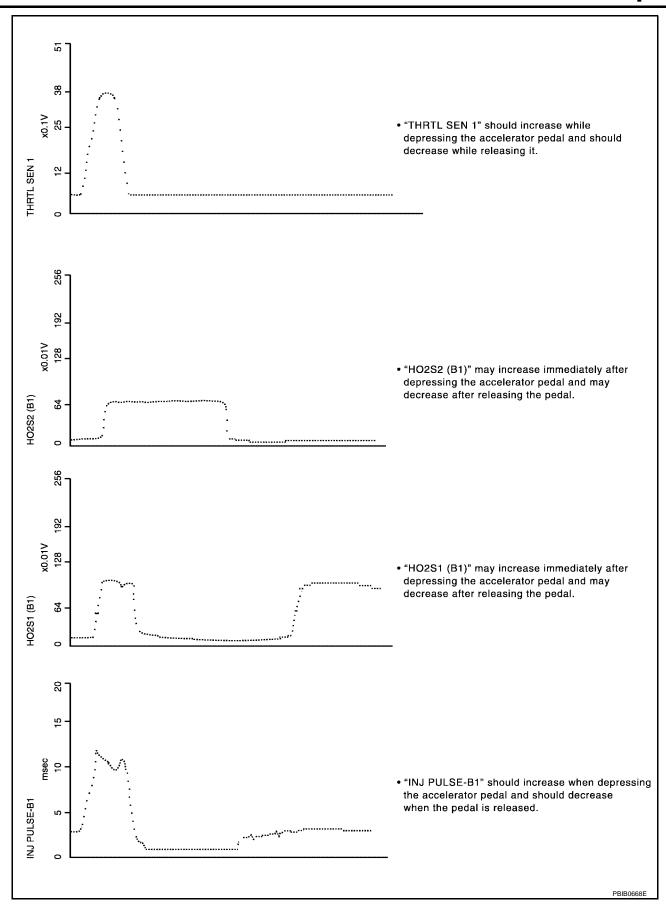

UBS002OV

The following are the major sensor reference graphs in "DATA MONITOR" mode.

CLSD THL POS, ACCEL SEN 1, THRTL SEN 1

Below is the data for "CLSD THL POS", "ACCEL SEN 1" and "THRTL SEN 1" when depressing the accelerator pedal with the ignition switch "ON" and with selector lever in "D" position (A/T models) or with shift lever in "1st" position (M/T models).


The signal of "ACCEL SEN 1" and "THRTL SEN 1" should rise gradually without any intermittent drop or rise after "CLSD THL POS" is changed from "ON" to "OFF".


ENG SPEED, MAS A/F SE-B1, THRTL SEN 1, HO2S2 (B1), HO2S1 (B1), INJ PULSE-B1

Below is the data for "ENG SPEED", "MAS A/F SE-B1", "THRTL SEN 1", "HO2S2 (B1)", "HO2S1 (B1)" and "INJ PULSE-B1" when revving engine quickly up to 4,800 rpm under no load after warming up engine sufficiently.

Each value is for reference, the exact value may vary.

Revision: May 2004 EC-123 2002 Altima

TROUBLE DIAGNOSIS - SPECIFICATION VALUE

[QR]

TROUBLE DIAGNOSIS - SPECIFICATION VALUE

PFP:00031

Description

The specification (SP) value indicates the tolerance of the value that is displayed in "DATA MONITOR (SPEC)" mode of CONSULT-II during normal operation of the Engine Control System. When the value in "DATA MONITOR (SPEC)" mode is within the SP value, the Engine Control System is confirmed OK. When the value in "DATA MONITOR (SPEC)" mode is NOT within the SP value, the Engine Control System may have one or more malfunctions.

EC

D

Е

Н

M

Α

The SP value is used to detect malfunctions that may affect the Engine Control System, but will not light the MIL.

The SP value will be displayed for the following three items:

- B/FUEL SCHDL (The fuel injection pulse width programmed into ECM prior to any learned on board correction)
- A/F ALPHA-B1 (The mean value of air-fuel ratio feedback correction factor per cycle)
- MAS A/F SE-B1 (The signal voltage of the mass air flow sensor)

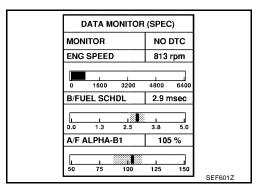
Testing Condition

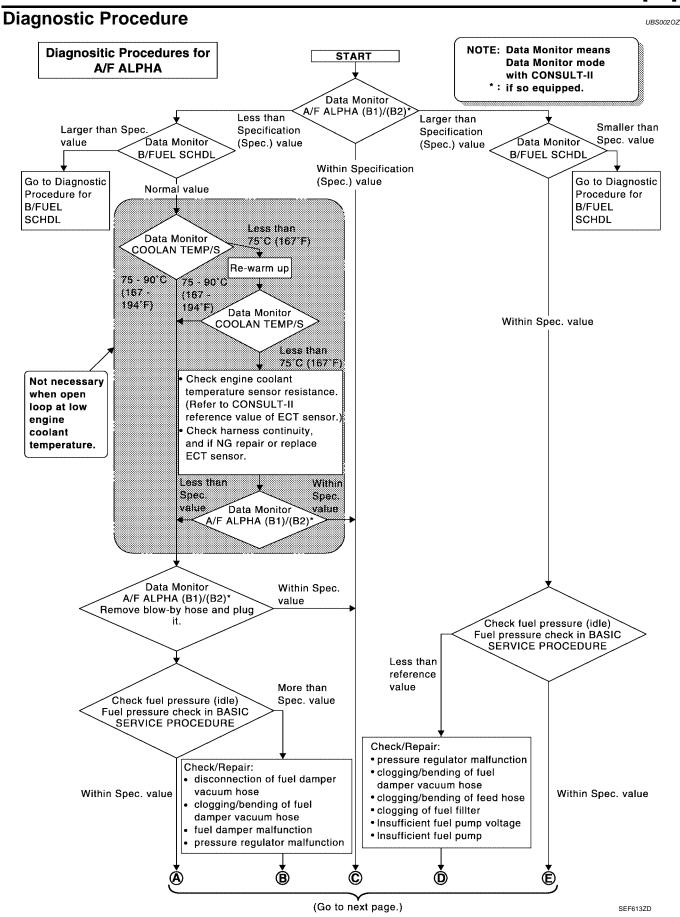
LIBS0020X

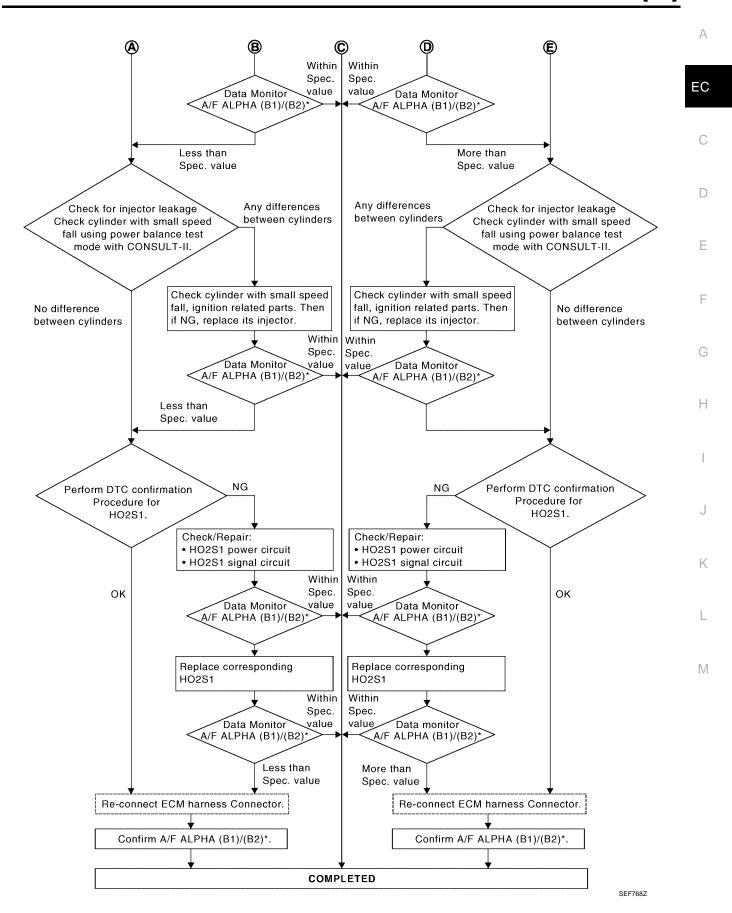
- Vehicle driven distance: More than 5,000 km (3,017 miles)
- Barometric pressure: 98.3 104.3 kPa (1.003 1.064 kg/cm², 14.25 15.12 psi)
- Atmospheric temperature: 20 30°C (68 86°F)
- Engine coolant temperature: 75 95°C (167 203°F)
- Transmission: Warmed-up*1
- Electrical load: Not applied*2
- Engine speed: Idle

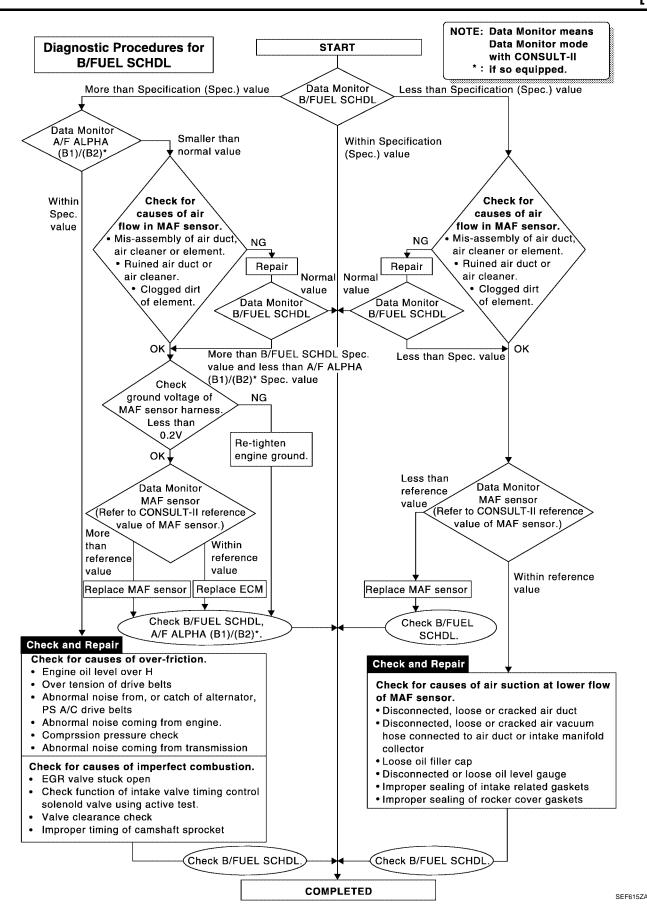
*1: For A/T models with CONSULT-II, after the engine is warmed up to normal operating temperature, drive vehicle until "FLUID TEMP SE" (A/T fluid temperature sensor signal) indicates more than 60°C (140°F). For A/T models without CONSUT-II and M/T models, after the engine is warmed up to normal operating temperature, drive vehicle for 5 minutes.

*2: Rear window defogger switch, air conditioner switch, lighting switch are "OFF". Steering wheel is straight ahead.


Inspection Procedure


UBS002OY


NOTE:


Perform "DATA MONITOR (SPEC)" mode in maximum scale display.

- Perform <u>EC-84, "Basic Inspection"</u>.
- 2. Confirm that the testing conditions indicated above are met.
- 3. Select "B/FUEL SCHDL", "A/F ALPHA-B1" and "MAS A/F SE-B1" in "DATA MONITOR (SPEC)" mode with CONSULT-II.
- 4. Make sure that monitor items are within the SP value.
- 5. If NG, go to EC-126, "Diagnostic Procedure".

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT

[QR]

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT

PFP:00006

Description

LIBS002P0

Intermittent incidents (I/I) may occur. In many cases, the problem resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on (1st trip) DTC visits. Realize also that the most frequent cause of I/I occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific problem area.

EC

Α

Common I/I Report Situations

STEP in Work Flow	Situation			
II	The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other than "0" or "[1t]".			
III	The symptom described by the customer does not recur.			
IV	(1st trip) DTC does not appear during the DTC Confirmation Procedure.			
VI	The Diagnostic Procedure for PXXXX does not indicate the problem area.			

Diagnostic Procedure

UBS002P1

1. INSPECTION START

G

Е

Erase (1st trip) DTCs. Refer to <u>EC-67</u>, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMA-TION" .

Н

>> GO TO 2.

2. CHECK GROUND TERMINALS

Check ground terminals for corroding or loose connection.

Refer to GI-25, "How to Perform Efficient Diagnosis for an Electrical Incident", "Incident Simulation Tests".

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. SEARCH FOR ELECTRICAL INCIDENT

Perform GI-25, "How to Perform Efficient Diagnosis for an Electrical Incident", "Incident Simulation Tests".

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

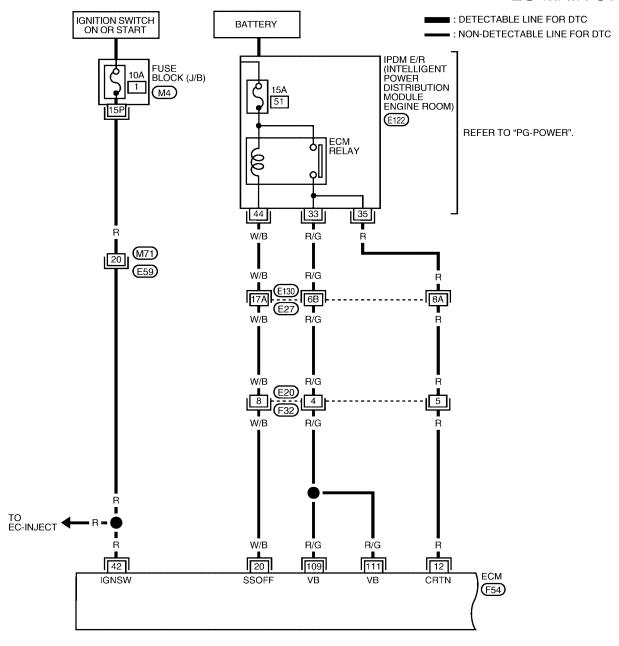
M

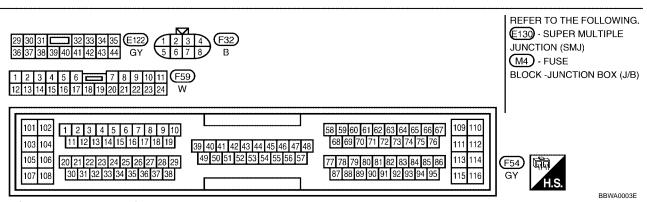
4. CHECK CONNECTOR TERMINALS

Refer to GI-22, "How to Check Terminal", "HOW TO PROBE CONNECTORS", "How to Check Enlarged Contact Spring of Terminal".

OK or NG

OK >> INSPECTION END


NG >> Repair or replace connector.


POWER SUPPLY CIRCUIT FOR ECM Wiring Diagram

PFP:24110

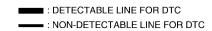
UBS002P2

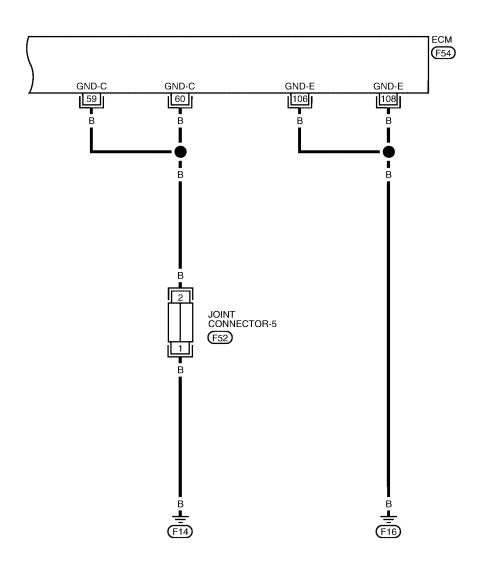
EC-MAIN-01

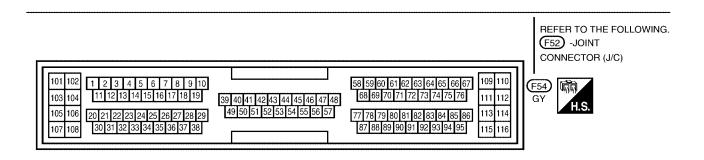
Specification data are reference values and are measured between each terminal and ground.

POWER SUPPLY CIRCUIT FOR ECM

[QR]


CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
12	R	Counter current return	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)	С
		/B ECM relay (Self shut-off)	[Engine is running] [Ignition switch "OFF"]	0 - 1.0V	
20	W/B		• For 3 seconds after turning ignition switch "OFF"		D
			[Ignition switch "OFF"]3 seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)	F
			[Ignition switch "OFF"]	OV	_
42 R	R	Ignition switch	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)	F
109 111	R/G R/G	Power supply for ECM	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)	·

Н

EC-MAIN-02

BBWA0004E

POWER SUPPLY CIRCUIT FOR ECM

[QR]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
59 60 106 108	B B B	ECM ground	[Engine is running] • Idle speed	Engine ground

Diagnostic Procedure

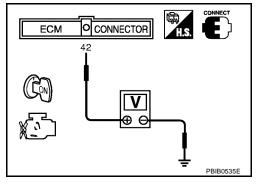
1. INSPECTION START

Start engine.

Is engine running?

Yes or No

Yes >> GO TO 7. No >> GO TO 2.


2. CHECK ECM POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch "OFF" and then "ON".
- Check voltage between ECM terminal 42 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M71, F59
- Fuse block (J/B) connector M4
- 10A fuse
- Harness for open or short between ECM and fuse
 - >> Repair harness or connectors.

4. CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT-I

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminals 59, 60, 106, 108 and engine ground.
 Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to power in harness or connectors.

Revision: May 2004 EC-133 2002 Altima

D

UBS002P3

EC

Е

F

G

Н

I

J

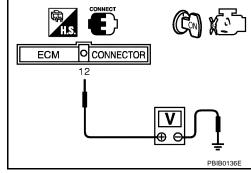
K

L

5. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-5
- Harness for open or short between ECM and ground
 - >> Repair harness or connectors.


6. CHECK ECM POWER SUPPLY CIRCUIT-II

- 1. Reconnect ECM harness connector.
- 2. Turn ignition switch "ON".
- Check voltage between ECM terminal 12 and ground with CON-SULT-II or tester.

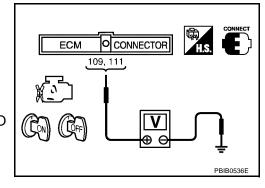
Voltage: Battery voltage

OK or NG

OK >> Go to <u>EC-553</u>, "<u>IGNITION SIGNAL</u>". NG >> GO TO 7.

7. CHECK ECM POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch "ON" and then "OFF".
- 2. Check voltage between ECM terminals 109, 111 and ground with CONSULT-II or tester.


Voltage: After turning ignition switch "OFF", battery voltage will exist for a few seconds, then drop approximately 0V.

OK or NG

OK >> GO TO 8.

NG (Battery voltage does not exist.)>>GO TO 10.

NG (Battery voltage exists for more than a few seconds.)>>GO TO 18.

8. CHECK ECM POWER SUPPLY CIRCUIT-IV

- 1. Disconnect IPDM E/R harness connector.
- 2. Check harness continuity between ECM terminal 12 and IPDM E/R terminal 35. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 18. NG >> GO TO 9.

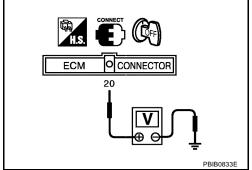
POWER SUPPLY CIRCUIT FOR ECM

[QR]

9. DETECT MALFUNCTIONING PART

Check the following.

- Harness or connectors E130, E27
- Harness or connectors E20, F32
- Harness for open or short between ECM and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.


10. CHECK ECM POWER SUPPLY CIRCUIT-V

- Turn ignition switch "OFF". 1.
- Check voltage between ECM terminal 20 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 11. NG >> GO TO 13.

11. CHECK ECM POWER SUPPLY CIRCUIT-VI

- Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector.
- 3. Check harness continuity between ECM terminals 109, 111 and IPDM E/R terminal 33. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 16. NG >> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- Harness or connectors E130, E27
- Harness or connectors E20, F32
- Harness for open or short between ECM and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

Е

EC

Н

13. CHECK ECM POWER SUPPLY CIRCUIT-VII

- 1. Disconnect IPDM E/R harness connector.
- Check harness continuity between ECM terminal 20 and IPDM E/R terminal 44. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 15. NG >> GO TO 14.

14. DETECT MALFUNCTIONING PART

Check the following.

- Harness or connectors E130, E27
- Harness or connectors E20, F32
- Harness for open or short between ECM and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

15. CHECK 15A FUSE

- 1. Disconnect 15A fuse from IPDM E/R.
- 2. Check 15A fuse.

OK or NG

OK >> GO TO 18. NG >> Replace 15A fuse.

16. CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT-II

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminals 59, 60, 106, 108 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 18. NG >> GO TO 17.

17. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-5
- Harness for open or short between ECM and ground

>> Repair or replace.

18. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> Replace IPDM E/R.

NG >> Repair open circuit or short to power in harness or connectors.

Revision: May 2004 EC-136 2002 Altima

DTC U1000, U1001 CAN COMMUNICATION LINE

[QR]

DTC U1000, U1001 CAN COMMUNICATION LINE

PFP:23710

Description

EC

D

Е

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

On Board Diagnosis Logic

UBS002P5

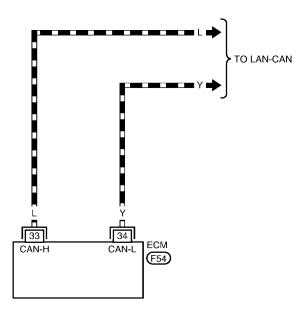
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
U1000 1000	CAN communication	ECM cannot communicate to other control unit.	Harness or connectors (CAN communication line is open or
U1001 1001	line	 ECM cannot communicate for more than the specified time. 	shorted)

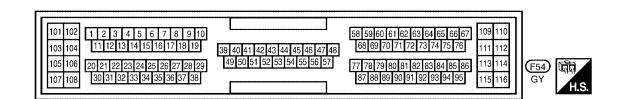
DTC Confirmation Procedure

UBS002P6

- Turn ignition switch "ON" and wait at least 3 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- If 1st trip DTC is detected, go to EC-139, "Diagnostic Procedure".

Н


[QR]


Wiring Diagram

UBS002P7

EC-CAN-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC
: DATA LINE

BBWA0005E

DTC U1000, U1001 CAN COMMUNICATION LINE

[QR]

Diagnostic Procedure

UBS002P8

EC

Α

D

С

Е

F

G

Н

J

K

L


DTC P0011 IVT CONTROL

Description SYSTEM DESCRIPTION

PFP:23796

UBS002P9

Sensor	Input signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS)	- Engine speed		
Camshaft position sensor (PHASE)	- Engine speed	Intake valve timing control Intake valve timing control	Intake valve timing control
Engine coolant temperature sensor	Engine coolant temperature		solenoid valve
Vehicle speed sensor	Vehicle speed		

This mechanism hydraulically controls cam phases continuously with the fixed operating angle of the intake

The ECM receives signals such as crankshaft position, camshaft position, engine speed, and engine coolant temperature. Then, the ECM sends ON/OFF pulse duty signals to the intake valve timing control solenoid valve depending on driving status. This makes it possible to control the shut/open timing of the intake valve to increase engine torque in low/mid speed range and output in high-speed range.

CONSULT-II Reference Value in Data Monitor Mode

UBS002PA

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
INT/V TIM (B1)	Engine: After warming up Shift lever: N	Idle	−5° - 5°CA
	Air conditioner switch: OFFNo-load	2,000 rpm	Approx. 0° - 20°CA
INT/V SOL (B1)	Engine: After warming up	Idle	0% - 2%
	Shift lever: NAir conditioner switch: OFFNo-load	2,000 rpm	Approx. 25% - 60%

DTC P0011 IVT CONTROL

[QR]

On Board Diagnosis Logic

BSUUSEB

DTC No.	Trouble diagnosis name	Detecting condition	Possible cause
P0011 0011	Intake valve timing control performance	There is a gap between angle of target and phase-control angle degree.	 Crankshaft position sensor (POS) Camshaft position sensor (PHASE) Accumulation of debris to the signal pick-up portion of the camshaft

EC

FAIL-SAFE MODE

ECM enters in fail-safe mode when the malfunction is detected.

Detected items	Engine operating condition in fail-safe mode
Intake valve timing control	The signal is not energized to the solenoid valve and the valve control does not function

-

Е

DTC Confirmation Procedure

UBS002PC

CAUTION:

Always drive at a safe speed.

NOTE

- If DTC P0011 is displayed with DTC P1111, first perform trouble diagnosis for "DTC P1111". See <u>EC-392</u>.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10V and 16V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Maintain the following conditions for at least 20 consecutive seconds.

ENG SPEED	1,700 - 3,175 rpm (A constant rotation is maintained.)
COOLANT TEMPS	70 - 105°C (158 - 221°F)
Selector lever	1st or 2nd position
Driving location uphill	Driving vehicle uphill (Increased engine load will help maintain the driving conditions required for this test.)

DATA MON		
MONITOR	NO DTC	
ENG SPEED COOLAN TEMP/S	XXX rpm	
		SEF174

4. If 1st trip DTC is detected, go to EC-141, "Diagnostic Procedure"

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

UBS002PD

M

1. CHECK CRANKSHAFT POSITION SENSOR (POS)

Refer to EC-288, "Component Inspection".

OK or NG

OK >> GO TO 2.

NG >> Replace crankshaft position sensor (POS).

2. CHECK CAMSHAFT POSITION SENSOR (PHASE)

Refer to EC-294, "Component Inspection".

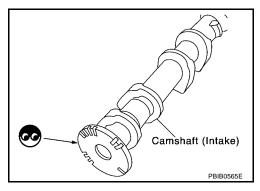
OK or NG

OK >> GO TO 3.

NG >> Replace camshaft position sensor (PHASE).

3. CHECK CAMSHAFT (INTAKE)

Check the following.


- Accumulation of debris to the signal plate of camshaft rear end
- Chipping signal plate of camshaft rear end

OK or NG

OK >> GO TO 4.

NG >> Remove

>> Remove debris and clean the signal plate of camshaft rear end or replace camshaft.

4. CHECK INTERMITTENT INCIDENT

Refer to <u>EC-129</u>, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". For wiring diagram refer to CKP sensor (POS) <u>EC-285</u> and CMP sensor (PHASE) <u>EC-291</u>.

>> INSPECTION END

DTC P0031, P0032 HO2S1 HEATER

[QR]

DTC P0031, P0032 HO2S1 HEATER

PFP:22690

Description SYSTEM DESCRIPTION

UBS002PE

Sensor	Input Signal to ECM	ECM function	Actuator	
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed	Heated oxygen sensor 1	Heated oxygen sensor 1 heater	
Engine coolant temperature sensor	Engine coolant temperature	heater control	Treated Oxygen Sensor Theater	

EC

Α

The ECM performs ON/OFF duty control of the heated oxygen sensor 1 heater corresponding to the engine speed and engine coolant temperature. The duty percent varies with engine coolant temperature when engine is started.

D

OPERATION

	_	
	_	

Engine speed rpm	Heated oxygen sensor 1 heater	
Above 3,600	OFF	
Below 3,600	ON	

CONSULT-II Reference Value in Data Monitor Mode

UBS002PF

Specification data are reference values.

Н

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S1 HTR (B1)	Engine: After warming upEngine speed: Below 3,600 rpm	ON
	• Engine speed: Above 3,600 rpm	OFF

On Board Diagnosis Logic

ın	00	าว	_
JB	30	JZ.	7

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0031 0031	Heated oxygen sensor 1 heater control circuit low	The current amperage in the heated oxygen sensor 1 heater circuit is out of the normal range. (An excessively low voltage signal is sent to ECM through the heated oxygen sensor 1 heater.)	Harness or connectors (The heated oxygen sensor 1 heater circuit is open or shorted.) Heater oxygen sensor 1 heater	K
P0032 0032	Heated oxygen sensor 1 heater control circuit high	The current amperage in the heated oxygen sensor 1 heater circuit is out of the normal range. (An excessively high voltage signal is sent to ECM through the heated oxygen sensor 1 heater.)	Harness or connectors (The heated oxygen sensor 1 heater circuit is shorted.) Heater oxygen sensor 1 heater	L M

DTC Confirmation Procedure

UBS002PH

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

(II) WITH CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 10 seconds.

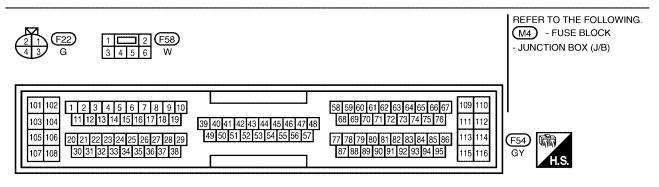
DTC P0031, P0032 HO2S1 HEATER

[QR]

- 3. Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 4. Start engine and run it for at least 6 seconds at idle speed.
- 5. f 1st trip DTC is detected, go to EC-146, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC


ENG SPEED XXX rpm

SEF058Y

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Start engine and run it for at least 6 seconds at idle speed.
- 4. Turn ignition switch "OFF" and wait at least 10 seconds.
- 5. Start engine and run it for at least 6 seconds at idle speed.
- 6. Select "MODE 3" with GST.
- 7. If DTC is detected, go to EC-146, "Diagnostic Procedure".
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

[QR] **Wiring Diagram** Α EC-HO2S1H-01 **IGNITION SWITCH** : DETECTABLE LINE FOR DTC ON OR START EC : NON-DETECTABLE LINE FOR DTC FUSE BLOCK (J/B) REFER TO "PG-POWER". 15A 15 C (M4) D Е R/Y HEATED OXYGEN SENSOR 1 (FRONT) (F22) 4 OR/B Н

ECM

(F54)

BBWA0010E

M

92

O2SFR

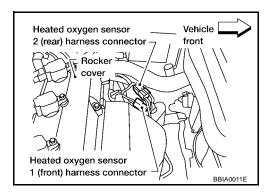
OR/B

O2HFR

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	OR/B	Heated oxygen sensor 1 heater	[Engine is running]Warm-up condition.Engine speed is below 3,600 rpm.	Approximately 7.0V
			[Engine is running]	BATTERY VOLTAGE
			 Engine speed is above 3,600 rpm. 	(11 - 14V)

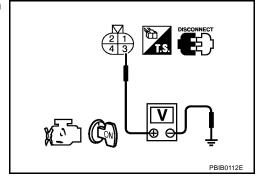

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. CHECK HO2S1 POWER SUPPLY CIRCUIT

UBS002PJ

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 1 harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between HO2S1 terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M70, F58
- Fuse block (J/B) connector M4
- 15A fuse
- Harness for open or short between heated oxygen sensor 1 and fuse

>> Repair harness or connectors.

3. CHECK HO2S1 OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 2 and HO2S1 terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK HEATED OXYGEN SENSOR 1 HEATER

Refer to EC-147, "Component Inspection".

OK or NG

OK >> GO TO 5.

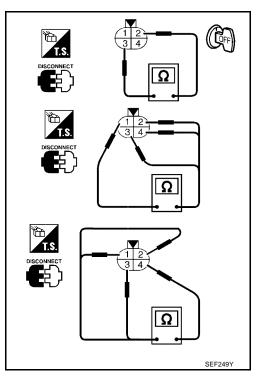
>> Replace heated oxygen sensor 1. NG

5. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection **HEATED OXYGEN SENSOR 1 HEATER**


1. Check resistance between HO2S1 terminals as follows.

Terminal No.	Resistance
2 and 3	2.3 - 4.3 Ω at 25°C (77°F)
1 and 2, 3, 4	∞ Ω
4 and 1, 2, 3	(Continuity should not exist)

If NG, replace heated oxygen sensor 1.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation **HEATED OXYGEN SENSOR 1**

Refer to EM-23, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

EC-147 Revision: May 2004 2002 Altima

EC

D

Е

Н

LIBS002PK

M

UBS002PL

DTC P0037, P0038 HO2S2 HEATER

[QR]

DTC P0037, P0038 HO2S2 HEATER

PFP:226A0

Description SYSTEM DESCRIPTION

UBS002PM

Sensor	Input Signal to ECM	ECM function	Actuator	
Camshaft position sensor (PHASE)	Engine speed	Heated oxygen sensor 2	Heated oxygen sensor 2 heater	
Crankshaft position sensor (POS)	Lingine speed	heater control	Tieateu Oxygen Senson Z neatei	

The ECM performs ON/OFF control of the heated oxygen sensor 2 heater corresponding to the engine speed.

OPERATION

Engine speed rpm	Heated oxygen sensor 2 heater
Above 3,600	OFF
Below 3,600	ON

CONSULT-II Reference Value in Data Monitor Mode

LIBSOOSPA

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S2 HTR (B1)	 Engine speed: Below 3,600 rpm [After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more] 	ON
	Engine speed: Above 3,600 rpm	OFF

On Board Diagnosis Logic

UBS002PO

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0037 0037	Heated oxygen sensor 2 heater control circuit low	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range. (An excessively low voltage signal is sent to ECM through the heated oxygen sensor 1 heater.)	Harness or connectors (The heated oxygen sensor 1 heater circuit is open or shorted.) Heater oxygen sensor 1 heater
P0038 0038	Heated oxygen sensor 2 heater control circuit high	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range. (An excessively high voltage signal is sent to ECM through the heated oxygen sensor 1 heater.)	Harness or connectors (The heated oxygen sensor 1 heater circuit is shorted.) Heater oxygen sensor 1 heater

DTC Confirmation Procedure

UBS002PP

NOTE:

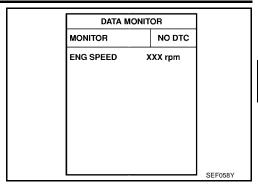
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine.
- 3. Drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.


DTC P0037, P0038 HO2S2 HEATER

[QR]

4.	Stop vehicle	and let	enaine	idle for	at least 6	seconds.

5. If 1st trip DTC is detected, go to EC-151, "Diagnostic Procedure"

.

WITH GST

- 1. Start engine.
- 2. Drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 3. Stop vehicle and let engine idle for at least 6 seconds.
- 4. Turn ignition switch "OFF" and wait at least 10 seconds.
- 5. Start engine.
- 6. Drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 7. Stop vehicle and let engine idle for at least 6 seconds.
- 8. Select "MODE 3" with GST.
- If DTC is detected, go to <u>EC-151</u>, "<u>Diagnostic Procedure</u>".
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

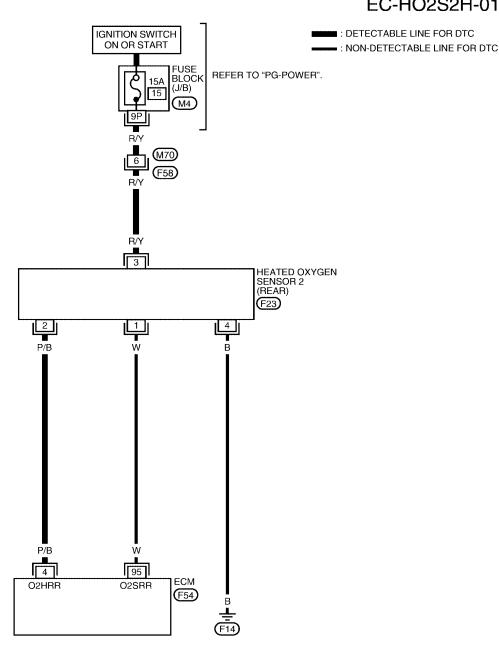
Α

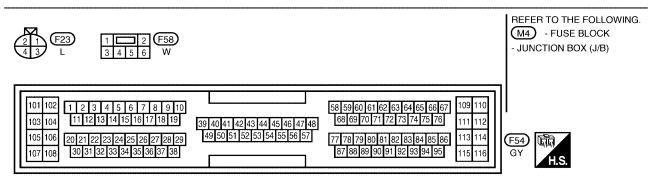
EC

D

Е

G


<


L

M

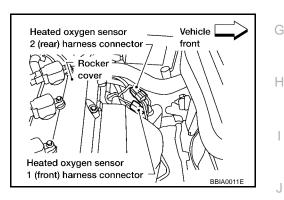
Wiring Diagram

EC-HO2S2H-01

BBWA0012E

UBS002PR

CAUTION:

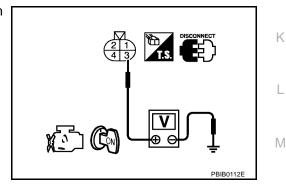

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
	D.(D.	Heated oxygen sen-	 [Engine is running] ● Engine speed is below 3,600 rpm. ● After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more. 	0 - 1.0V	С
4	P/B	sor 2 heater	[Ignition switch "ON"] ● Engine stopped [Engine is running] ● Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)	D E

Diagnostic Procedure

1. CHECK HO2S2 POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 2 harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between HO2S2 terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M70, F58
- Fuse block (J/B) connector M4
- 15A fuse
- Harness for open or short between heated oxygen sensor 2 and fuse
 - >> Repair harness or connectors.

$3.\,$ check ho2s2 output signal circuit for open and short

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 4 and HO2S2 terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair harness or connectors.

4. CHECK HEATED OXYGEN SENSOR 2 HEATER

Refer to EC-152, "Component Inspection".

OK or NG

OK >> GO TO 5.

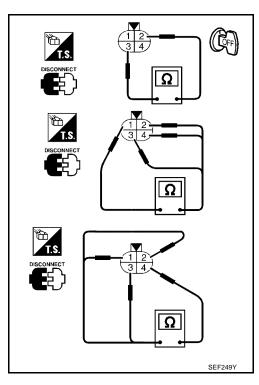
NG >> Replace heated oxygen sensor 2.

5. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2 HEATER


1. Check resistance between HO2S2 terminals as follows.

Terminal No.	Resistance
2 and 3	2.3 - 4.3 Ω at 25°C (77°F)
1 and 2, 3, 4	Ω
4 and 1, 2, 3	(Continuity should not exist)

2. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

UBS002PT

LIBS002PS

Removal and Installation HEATED OXYGEN SENSOR 2

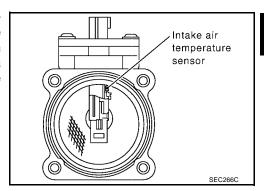
Refer to EX-3, "EXHAUST SYSTEM (QR25DE)".

DTC P0101 MAF SENSOR

PFP:22680

Component Description

UBS002PU


EC

D

Е

Н

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the greater the heat loss. Therefore, the ECM must supply more electric current to maintain the temperature of the hot film as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

UBS002PV

Specification data are reference values.

MONITOR ITEM	C	NOITION	SPECIFICATION	
	Engine: After warming up	Idle	Approx. 1.1 - 1.5V	
MAS A/F SE-B1	Air conditioner switch: OFFShift lever: NNo-load	2,500 rpm	Approx. 1.6 - 2.0V	
	Engine: After warming up	Idle	10% - 35%	
CAL/LD VALUE	Shift lever: NAir conditioner switch: OFFNo-load	2,500 rpm	10% - 35%	
	Engine: After warming up	Idle	1.0 - 4.0 g·m/s	
MASS AIRFLOW	Shift lever: NAir conditioner switch: OFFNo-load	2,500 rpm	4.0 - 10.0 g⋅m/s	

On Board Diagnosis Logic

UBS002PW

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause	
		A)	A high voltage from the sensor is sent to ECM under light load driving condition.	Harness or connectors (The sensor circuit is open or shorted.)	L
D0404	Mass air flow sensor cir-			Mass air flow sensor	
P0101 0101	cuit range/performance problem	В)	A low voltage from the sensor is sent to ECM under heavy load driving condition.	 Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor 	M

DTC Confirmation Procedure

UBS002PX

Perform "PROCEDURE FOR MALFUNCTION A" first.

If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B".

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A

NOTE:

If engine will not start or stops soon, wait at least 10 seconds with engine stopped (Ignition switch "ON") instead of running engine at idle speed.

(II) With CONSULT-II

- Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and warm it up to normal operating temperature.
- 4. Run engine for at least 10 seconds at idle speed.
- If 1st trip DTC is detected, go to <u>EC-157</u>, "<u>Diagnostic Procedure</u>"

DATA MONITOR

MONITOR

NO DTC

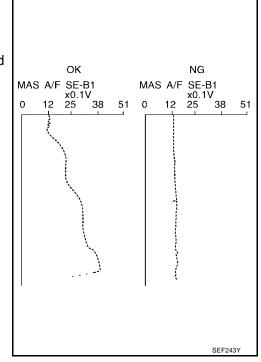
ENG SPEED XXX rpm
COOLAN TEMP/S XXX °C

With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION B

CAUTION:


Always drive vehicle at a safe speed.

(With CONSULT-II

- Turn ignition switch "ON".
- 2. Start engine and warm it up to normal operating temperature.

 If engine cannot be started, go to EC-157, "Diagnostic Procedure".
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- 4. Check the voltage of "MAS A/F SE-B1" with "DATA MONITOR".
- 5. Increases engine speed to about 4,000 rpm.
- 6. Monitor the linear voltage rise in response to engine speed increases.

If NG, go to <u>EC-157</u>, "<u>Diagnostic Procedure</u>". If OK, go to following step.

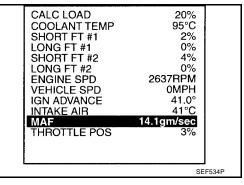
DTC P0101 MAF SENSOR

[QR]

Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	More than 2,000 rpm
THRTL SEN 1	More than 3V
THRTL SEN 2	More than 3V
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

If 1st trip DTC is detected, go to <u>EC-157</u>, "<u>Diagnostic Procedure</u>"


DATA MON	IITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm
VHCL SPEED SE	XXX km/h
THRTL SEN 1	xxx v
THRTL SEN 2	xxx v

Overall Function Check PROCEDURE FOR MALFUNCTION B

Use this procedure to check the overall function of the mass air flow sensor circuit. During this check, a 1st trip DTC might not be confirmed.

With GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MODE 1" with GST.
- 3. Check the mass air flow sensor signal with "MODE 1".
- 4. Check for linear mass air flow sensor signal value rise in response to increases to about 4,000 rpm in engine speed.
- 5. If NG, go to EC-157, "Diagnostic Procedure".

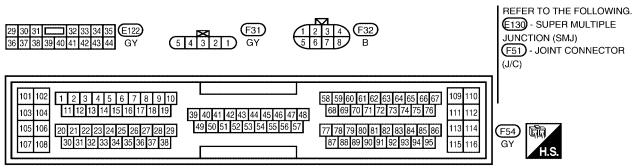
Α

EC

D

Е

F


UBS002PY

Н

L

M

Wiring Diagram EC-MAFS-01 BATTERY : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC IPDM E/R (INTELLIGENT POWER DISTRIBUTION MODULE ENGINE ROOM) 51 REFER TO "PG-POWER". (E122) ECM RELAY QΠ 33 44 w/B R/G R/G 6B MASS AIR FLOW SENSOR W/B R/G (F31) 3 W/B R/G W/B R/G JOINT CONNECTOR-4 R/G (F51) W/B R/G R/G 20 109 80 111 65 72 ECM SSOFF VΒ VB **AVCC** QA (F54) REFER TO THE FOLLOWING.

BBWA0006E

DTC P0101 MAF SENSOR

[QR]

D

Е

Н

M

UBS002Q0

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	E
NO.	OOLOIK				
65	R	Sensor's power sup- ply	[Ignition switch "ON"]	Approximately 5V	
			[Engine is running]		-
		Mass air flow sensor	Warm-up condition	1.1 - 1.5V	
70	10/		Idle speed		
72 W	VV		[Engine is running]		-
			Warm-up condition	1.6 - 2.0V	
			• Engine speed is 2,500 rpm.		
			[Engine is running]		-
80	В	B Mass air flow sensor	Warm-up condition	Approximately 0V	
		ground	Idle speed		_

Diagnostic Procedure

1. INSPECTION START

Which malfunction (A or B) is duplicated?

A or B

A >> GO TO 3.

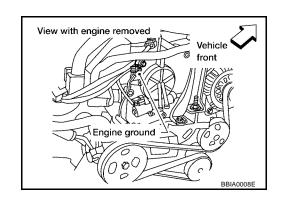
B >> GO TO 2.

2. CHECK INTAKE SYSTEM

Check the following for connection.

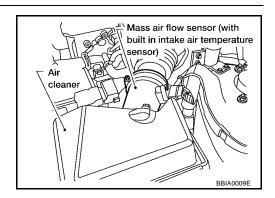
- Air duct
- Vacuum hoses
- Intake air passage between air duct to intake manifold

OK or NG


OK >> GO TO 3.

NG >> Reconnect the parts.

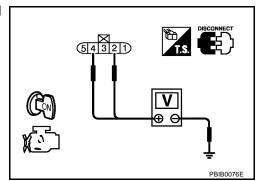
3. RETIGHTEN GROUND SCREWS


- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 4.

4. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect MAF sensor harness connector.
- 2. Turn ignition switch "ON".



Check voltage between MAF sensor terminals 2, 4 and ground with CONSULT-II or tester.

Terminal	Voltage
2	Approximately 5V
4	Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- Joint connector-4
- Harness for open or short between mass air flow sensor and IPDM E/R
- Harness for open or short between mass air flow sensor and ECM
 - >> Repair harness or connectors.

6. CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between MAF sensor terminal 3 and ECM terminal 80. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

D

Е

UBS002Q1

$7.\,$ CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between MAF sensor terminal 1 and ECM terminal 72. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

$8.\,$ CHECK MASS AIR FLOW SENSOR

Refer to EC-159, "Component Inspection".

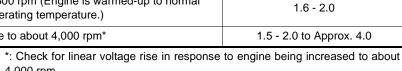
OK or NG

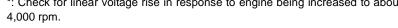
OK >> GO TO 9.

NG >> Replace mass air flow sensor.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END


Component Inspection MASS AIR FLOW SENSOR

Reconnect harness connectors disconnected.

- Start engine and warm it up to normal operating temperature.
- Check voltage between ECM terminal 72 (Mass air flow sensor signal) and ground.

Condition	Voltage V
Ignition switch "ON" (Engine stopped.)	Approx. 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.1 - 1.5
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.6 - 2.0
Idle to about 4,000 rpm*	1.5 - 2.0 to Approx. 4.0

- 4. If the voltage is out of specification, proceed the following.
- Turn ignition switch "OFF". a.
- Disconnect mass air flow sensor harness connector and reconnect it again. b.
- Perform steps 2 and 3 again. C.
- If NG, remove mass air flow sensor from air duct. Check hot film for damage or dust.
- If NG, clean or replace mass air flow sensor.

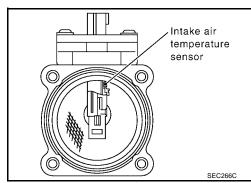
Removal and Installation MASS AIR FLOW SENSOR

Refer to EM-16, "AIR CLEANER AND AIR DUCT" .

ECM CONNECTOR PBIB0537E

M

UBS002Q2


UBS002Q3

DTC P0102, P0103 MAF SENSOR

Component Description

PFP:22680

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the greater the heat loss. Therefore, the ECM must supply more electric current to maintain the temperature of the hot film as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

UBS002Q4

Specification data are reference values.

MONITOR ITEM	COI	NDITION	SPECIFICATION
	Engine: After warming up	Idle	Approx. 1.1 - 1.5V
MAS A/F SE-B1	Air conditioner switch: OFF		
WING THE GE BY	Shift lever: N	2,500 rpm	Approx. 1.6 - 2.0V
	No-load		
	Engine: After warming up	Idle	10% - 35%
CAL/LD VALUE	Shift lever: N		
OADID VALUE	Air conditioner switch: OFF	2,500 rpm	10% - 35%
	No-load		
	Engine: After warming up	Idle	1.0 - 4.0 g·m/s
MASS AIRFLOW	Shift lever: N		
WAGG AIRT LOW	Air conditioner switch: OFF	2,500 rpm	4.0 - 10.0 g⋅m/s
	No-load		

On Board Diagnosis Logic

UBS002Q5

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0102 0102	Mass air flow sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor
P0103 0103	Mass air flow sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode	
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.	

DTC Confirmation Procedure

UBS002Q6

NOTE:

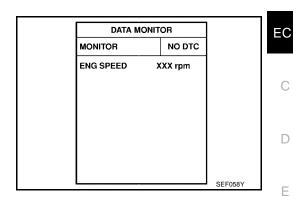
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

DTC P0102, P0103 MAF SENSOR

[QR]

Α

D

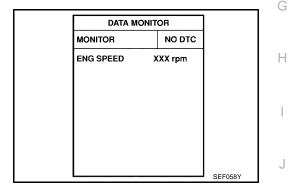

Е

F

PROCEDURE FOR DTC P0102

(P) With CONSULT-II

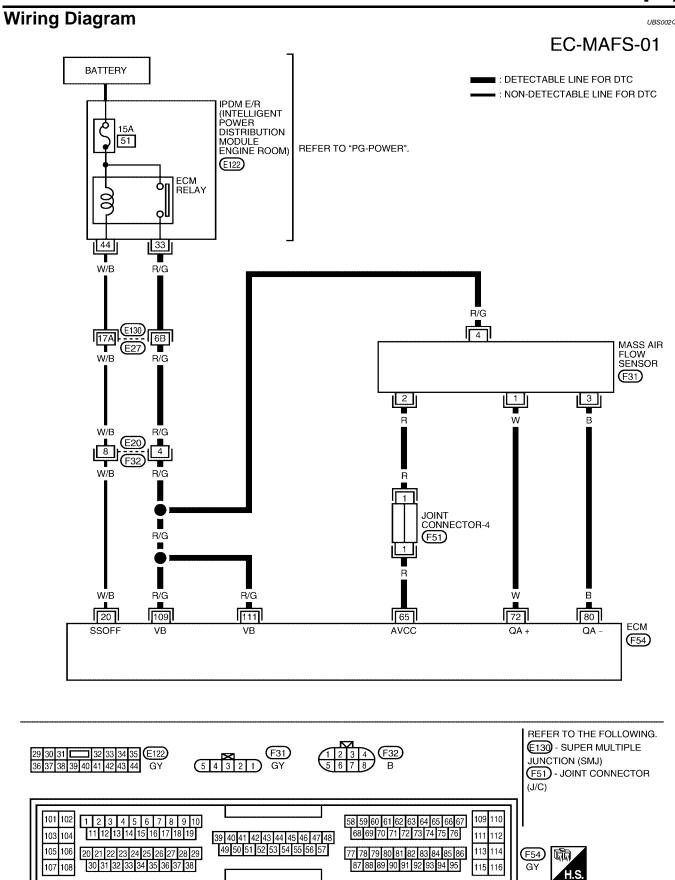
- Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait 5 seconds at most.
- If DTC is detected, go to EC-163, "Diagnostic Procedure".


With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR DTC P0103

(P) With CONSULT-II


- 1. Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- 4. If DTC is detected, go to EC-163, "Diagnostic Procedure". If DTC is not detected, go to next step.
- Start engine and wait at least 5 seconds.
- If DTC is detected, go to EC-163, "Diagnostic Procedure".

With GST

Follow the procedure "With CONSULT-II" above.

M

BBWA0006E

DTC P0102, P0103 MAF SENSOR

[QR]

Н

UBS002Q8

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

_		_		-	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
65	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V	
72	W	Mass air flow sensor	[Engine is running] ■ Warm-up condition ■ Idle speed [Engine is running] ■ Warm-up condition	1.1 - 1.5V 1.6 - 2.0V	C
80	В	Mass air flow sensor ground	 Engine speed is 2,500 rpm. [Engine is running] Warm-up condition Idle speed 	Approximately 0V	E

Diagnostic Procedure

1. INSPECTION START

Which malfunction (P0102 or P0103) is duplicated?

P0102 or P0103

P0102 >> GO TO 2.

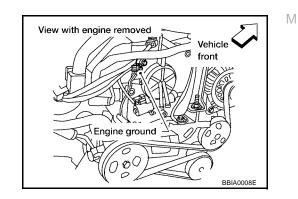
P0103 >> GO TO 3.

2. CHECK INTAKE SYSTEM

Check the following for connection.

- Air duct
- Vacuum hoses
- Intake air passage between air duct to intake manifold

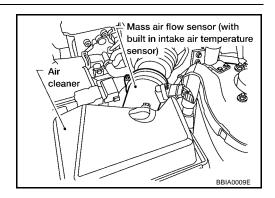
OK or NG


OK >> GO TO 3.

NG >> Reconnect the parts.

3. RETIGHTEN GROUND SCREWS

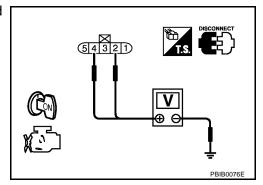
- Turn ignition switch "OFF".
- Loosen and retighten engine ground screws.


>> GO TO 4.

EC-163 2002 Altima Revision: May 2004

4. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect MAF sensor harness connector.
- 2. Turn ignition switch "ON".



3. Check voltage between MAF sensor terminals 2, 4 and ground with CONSULT-II or tester.

Terminal	Voltage
2	Approximately 5V
4	Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- Joint connector-4
- Harness for open or short between ECM relay and mass air flow sensor
- Harness for open or short between mass air flow sensor and ECM
 - >> Repair harness or connectors.

6. CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Disconnect ECM harness connector.
- Check harness continuity between MAF sensor terminal 3 and ECM terminal 80. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

D

Е

UBS002Q9

$7.\,$ CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between MAF sensor terminal 1 and ECM terminal 72. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK MASS AIR FLOW SENSOR

Refer to EC-165, "Component Inspection".

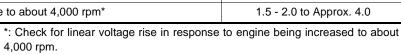
OK or NG

OK >> GO TO 9.

NG >> Replace mass air flow sensor.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection MASS AIR FLOW SENSOR

Reconnect harness connectors disconnected.

- 2. Start engine and warm it up to normal operating temperature.
- Check voltage between ECM terminal 72 (Mass air flow sensor signal) and ground.

Condition	Voltage V
Ignition switch "ON" (Engine stopped.)	Approx. 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.1 - 1.5
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.6 - 2.0
Idle to about 4,000 rpm*	1.5 - 2.0 to Approx. 4.0

- 4. If the voltage is out of specification, proceed the following.
- 4. If the voltage is out of specification, proceed the follow
- a. Turn ignition switch "OFF".
- b. Disconnect mass air flow sensor harness connector and reconnect it again.
- c. Perform steps 2 and 3 again.
- 5. If NG, remove mass air flow sensor from air duct. Check hot film for damage or dust.
- If NG, clean or replace mass air flow sensor.

Removal and Installation MASS AIR FLOW SENSOR

Refer to EM-16, "AIR CLEANER AND AIR DUCT" .

ECM OCONNECTOR

72

C H

PBIB0537E

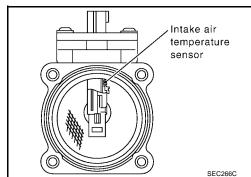
ļ

M

UBS002QA

Revision: May 2004 EC-165 2002 Altima

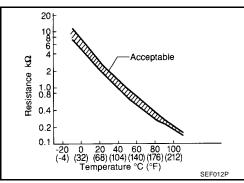
UBS002QB


DTC P0112, P0113 IAT SENSOR

Component Description

PFP:22630

The intake air temperature sensor is built into mass air flow sensor. The sensor detects intake air temperature and transmits a signal to the FCM


The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance k Ω
-10 (14)	4.43	7.9 - 9.3
25 (77)	3.32	1.9 - 2.1
80 (176)	1.23	0.31 - 0.37

^{*:} These data are reference values and are measured between ECM terminal 84 (Intake air temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

UBS002QC

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0112 0112	Intake air tempera- ture sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0113 0113	Intake air tempera- ture sensor circuit high input	An excessively low voltage from the sensor is sent to ECM.	Intake air temperature sensor

DTC Confirmation Procedure

UBS002QD

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-169, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

DTC P0112, P0113 IAT SENSOR

[QR]

WITH GST

Follow the procedure "With CONSULT-II" above.

EC

Α

С

D

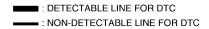
Е

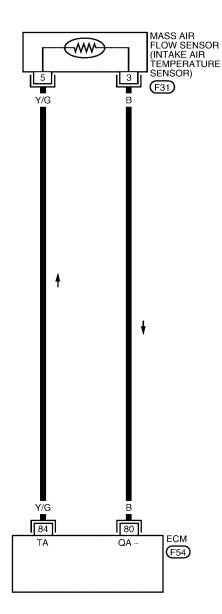
F

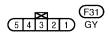
G

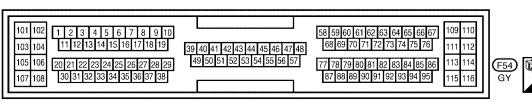
Н

1

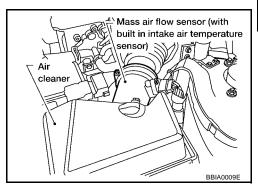

K


M


Wiring Diagram


UBS002QE

EC-IATS-01

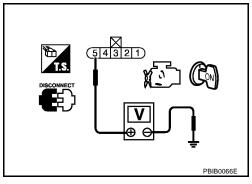

BBWA0007E

UBS002QF

Diagnostic Procedure

1. CHECK INTAKE AIR TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- Turn ignition switch "OFF".
- 2. Disconnect mass air flow sensor (intake air temperature sensor is built-into) harness connector.
- 3. Turn ignition switch "ON".


4. Check voltage between MAF sensor terminal 5 and ground.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 2.

NG >> Repair harness or connectors.

2. CHECK INTAKE AIR TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between MAF sensor terminal 3 and ECM terminal 80. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair harness or connectors.

3. CHECK INTAKE AIR TEMPERATURE SENSOR

Refer to EC-170, "Component Inspection".

OK or NG

OK >> GO TO 4.

NG >> Replace mass air flow sensor (with intake air temperature sensor).

4. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

EC

Α

D

Е

F

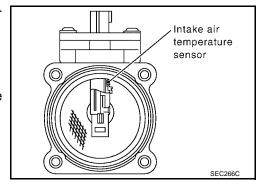
G

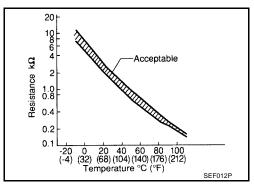
Н

K

L

M


Component Inspection INTAKE AIR TEMPERATURE SENSOR


UBS002QG

1. Check resistance between intake air temperature sensor terminals 3 and 5 under the following conditions.

Intake air temperature °C (°F)	Resistance kΩ
25 (77)	1.9 - 2.1

2. If NG, replace mass air flow sensor (with intake air temperature sensor).

Removal and Installation MASS AIR FLOW SENSOR

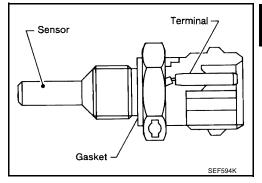
UBS002QH

Refer to EM-16, "AIR CLEANER AND AIR DUCT".

DTC P0117, P0118 ECT SENSOR

PFP:22630

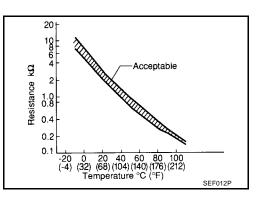
Component Description


UBS002QI

EC

Е

Н


The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance k Ω
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 93 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

UBS002QJ

These self-diagnoses have the one trip detection logic.

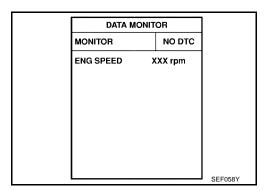
DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause	K
P0117 0117	Engine coolant temperature sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors	L
P0118 0118	Engine coolant temperature sen- sor circuit high input	An excessively high voltage from the sensor is sent to ECM.	(The sensor circuit is open or shorted.) Engine coolant temperature sensor	M

FAIL-SAFE MODE

When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode	
	Engine coolant temperature will be determined by ECM based on the time after turning ignition switch "ON" or "START". CONSULT-II displays the engine coolant temperature decided by ECM.	
	Condition	Engine coolant temperature decided (CONSULT-II display)
Engine coolant temper-	Just as ignition switch is turned ON or Start	40°C (104°F)
ature sensor circuit	More than approx. 4 minutes after ignition ON or Start	80°C (176°F)
	Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)
	When the fail-safe system for engine coolant tempera while engine is running.	ature sensor is activated, the cooling fan operates

DTC Confirmation Procedure

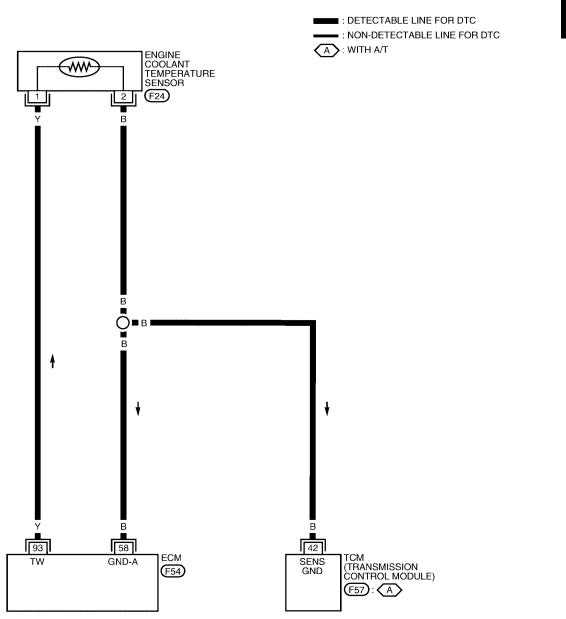

UBS002QK

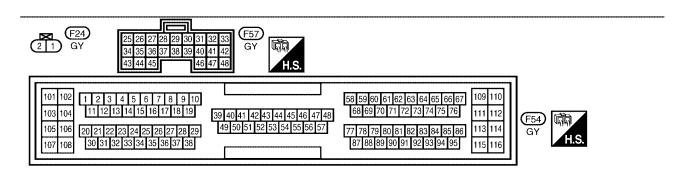
NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- 4. If DTC is detected, go to EC-174, "Diagnostic Procedure".




WITH GST

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram

EC-ECTS-01

BBWA0008E

EC

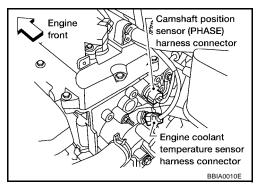
Α

C

D

Е

Н


M

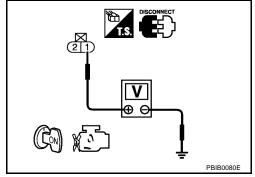
UBS002QM

Diagnostic Procedure

1. CHECK ECT SENSOR POWER SUPPLY CIRCUIT

- Turn ignition switch "OFF".
- 2. Disconnect engine coolant temperature (ECT) sensor harness connector.
- 3. Turn ignition switch "ON".

Check voltage between ECT sensor terminal 1 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 2.

NG >> Repair ope

>> Repair open circuit or short to ground or short to power in harness or connectors.

2. CHECK ECT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- Check harness continuity between ECT sensor terminal 2 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. DETECT MALFUNCTIONING PART

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

NG >> GO 10 3.

Check the following.

- Harness for open or short between engine coolant temperature sensor and ECM
- Harness for open or short between engine coolant temperature sensor and TCM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-175, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace engine coolant temperature sensor.

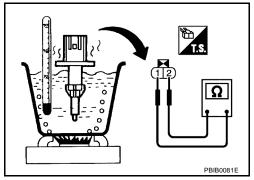
UBS002QN

EC

D

Е

Н


5. CHECK INTERMITTENT INCIDENT

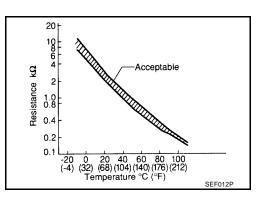
Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection ENGINE COOLANT TEMPERATURE SENSOR

1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

<Reference data>


Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 93 (Engine coolant temperature sensor) and ground.

If NG, replace engine coolant temperature sensor.

Removal and Installation ENGINE COOLANT TEMPERATURE SENSOR

Refer to CO-20, "THERMOSTAT AND THERMOSTAT HOUSING".

UBS002Q0

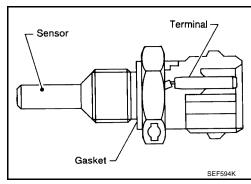
M

Revision: May 2004 EC-175 2002 Altima

DTC P0125 ECT SENSOR

PFP:22630

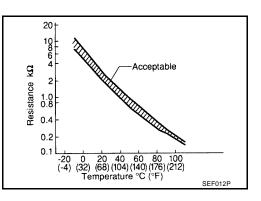
Description


UBS002QP

NOTE:

If DTC P0125 is displayed with P0117 or P0118, first perform the trouble diagnosis for DTC P0117 or P0118. Refer to EC-171.

COMPONENT DESCRIPTION


The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 93 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

UBS002QQ

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0125 0125	Insufficient engine cool- ant temperature for closed loop fuel control	 Voltage sent to ECM from the sensor is not practical, even when some time has passed after starting the engine. Engine coolant temperature is insufficient for closed loop fuel control. 	 Harness or connectors (High resistance in the circuit) Engine coolant temperature sensor Thermostat

DTC Confirmation Procedure

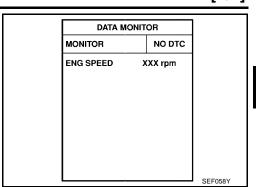
UBS002QR

CAUTION:

Be careful not to overheat engine.

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.


(II) WITH CONSULT-II

1. Turn ignition switch "ON".

DTC P0125 ECT SENSOR

[QR]

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Check that "COOLAN TEMP/S" is above 10°C (50°F). If it is above 10°C (50°F), the test result will be OK. If it is below 10°C (50°F), go to following step.
- Start engine and run it for 65 minutes at idle speed.
 If "COOLAN TEMP/S" increases to more than 10°C (50°F) within 65 minutes, stop engine because the test result will be OK.
- 5. If 1st trip DTC is detected, go to <u>EC-177, "Diagnostic Procedure"</u>

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

1. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-177, "Component Inspection".

OK or NG

OK >> GO TO 2.

NG >> Replace engine coolant temperature sensor.

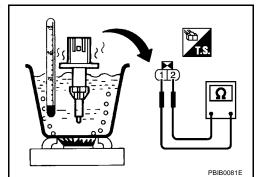
2. CHECK THERMOSTAT OPERATION

When the engine is cold [lower than 70°C (158°F)] condition, grasp lower radiator hose and confirm the engine coolant does not flow.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace thermostat. Refer to CO-20, "THERMOSTAT AND THERMOSTAT HOUSING" .


3. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

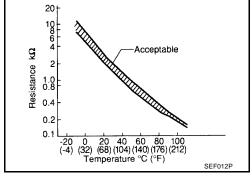
Component Inspection ENGINE COOLANT TEMPERATURE SENSOR

1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

Α

EC

Е


UBS002QS

Н

UBS002Q1

M

<reference data=""></reference>		
Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 93 (Engine coolant temperature sensor) and ground.

2. If NG, replace engine coolant temperature sensor.

Removal and Installation ENGINE COOLANT TEMPERATURE SENSOR

Refer to CO-20, "THERMOSTAT AND THERMOSTAT HOUSING".

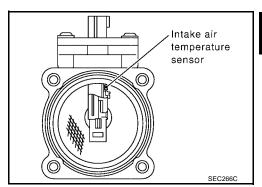
UBS002QU

DTC P0127 IAT SENSOR

PFP:22630

Component Description

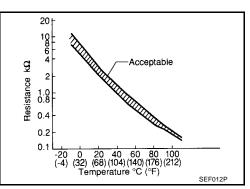
UBS002QV


EC

Е

Н

The intake air temperature sensor is built into mass air flow sensor. The sensor detects intake air temperature and transmits a signal to the ECM.


The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.43	7.9 - 9.3
25 (77)	3.32	1.9 - 2.1
80 (176)	1.23	0.31 - 0.37

^{*:} These data are reference values and are measured between ECM terminal 84 (Intake air temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

JBS002	?QW	

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0127 0127	Intake air temperature too high	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signal from engine coolant temperature sensor.	Harness or connectors (The sensor circuit is open or shorted)Intake air temperature sensor

DTC Confirmation Procedure

UBS002QX

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

M

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(III) WITH CONSULT-II

- Wait until engine coolant temperature is less than 90°C (194°F)
- Turn ignition switch "ON".

- Select "DATA MONITOR" mode with CONSULT-II.
- c. Check the engine coolant temperature.
- d. If the engine coolant temperature is not less than 90°C (194°F), turn ignition switch "OFF" and cool down engine.
 - Perform the following steps before engine coolant temperature is above 90°C (194°F).
- 2. Turn ignition switch "ON".
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- 4. Start engine.
- Hold vehicle speed at more than 70 km/h (43 MPH) for 100 consecutive seconds.
- If 1st trip DTC is detected, go to <u>EC-180, "Diagnostic Procedure"</u>.

® WITH GST

Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure

1. CHECK INTAKE AIR TEMPERATURE SENSOR

Refer to EC-180, "Component Inspection".

OK or NG

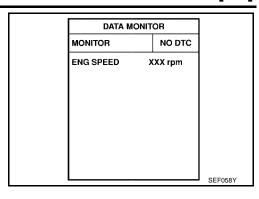
OK >> GO TO 2.

NG >> Replace mass air flow sensor (with intake air temperature sensor).

2. CHECK INTERMITTENT INCIDENT

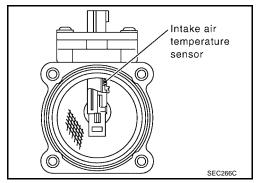
Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

Refer to EC-168, "Wiring Diagram".


>> INSPECTION END

Component Inspection INTAKE AIR TEMPERATURE SENSOR

1. Check resistance between intake air temperature sensor terminals 3 and 5 under the following conditions.


Intake air temperature °C (°F)	Resistance kΩ
25 (77)	1.9 - 2.1

2. If NG, replace mass air flow sensor (with intake air temperature sensor).

UBS002QY

UBS002QZ

DTC P0127 IAT SENSOR

[QR]

Removal and Installation MASS AIR FLOW SENSOR

UBS002R0

Refer to EM-16, "AIR CLEANER AND AIR DUCT" .

EC

Α

С

 D

Е

F

G

Н

1

K

L

[QR]

DTC P0128 THERMOSTAT FUNCTION

On Board Diagnosis Logic

PFP:21200

Engine coolant temperature has not risen enough to open the thermostat even though the engine has run long enough.

This is due to a leak in the seal or the thermostat stuck open.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0128 0128	Thermostat function	The engine coolant temperature does not reach to specified temperature even though the engine has run long enough.	Thermostat function Leakage from sealing portion of thermostat Engine coolant temperature sensor

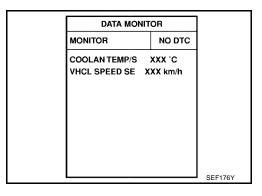
DTC Confirmation Procedure

UBS002R2

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:


- For best results, perform at ambient temperature of −10°C (14°F) or higher.
- For best results, perform at engine coolant temperature of −10°C (14°F) to 60°C (140°F).

(II) WITH CONSULT-II

- Replace thermostat with new one. Refer to <u>CO-20, "THERMOSTAT AND THERMOSTAT HOUSING"</u>.
 Use only a genuine NISSAN thermostat as a replacement. If an incorrect thermostat is used, the MIL may come on.
- 2. Turn ignition switch "ON".
- Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- 4. Check that the "COOLAN TEMP/S" is above 60°C (140°F). If it is below 60°C (140°F), go to following step. If it is above 60°C (140°F), stop engine and cool down the engine to less than 60°C (140°F), then retry from step 1.
- Drive vehicle for 10 consecutive minutes under the following conditions.

VHCL SPEED SE	80 - 120 km/h (50 - 75 MPH)
If 4 = t tois DTO is also set	- d

If 1st trip DTC is detected, go to EC-182, "Diagnostic Procedure"

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

UBS002R3

1. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-183, "Component Inspection".

OK or NG

OK >> INSPECTION END

NG >> Replace engine coolant temperature sensor.

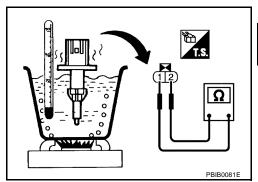
DTC P0128 THERMOSTAT FUNCTION

[QR]

Component Inspection ENGINE COOLANT TEMPERATURE SENSOR

UBS002R4

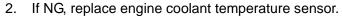
Α


EC

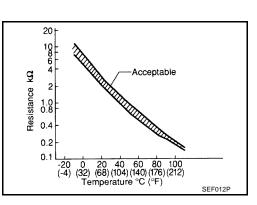
C

D

Е


1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

<Reference data>


Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ		
-10 (14)	4.4	7.0 - 11.4		
20 (68)	3.5	2.1 - 2.9		
50 (122)	2.2	0.68 - 1.00		
90 (194)	0.9	0.236 - 0.260		

^{*:} These data are reference values and are measured between ECM terminal 93 (Engine coolant temperature sensor) and ground.

Removal and Installation ENGINE COOLANT TEMPERATURE SENSOR

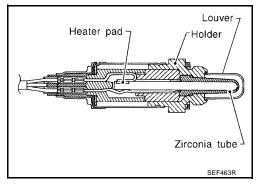
Refer to CO-20, "THERMOSTAT AND THERMOSTAT HOUSING".

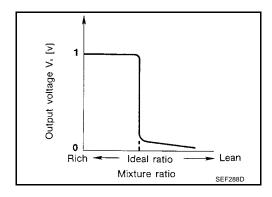
UBS002R5

Н

K

L


DTC P0132 HO2S1


PFP:22690

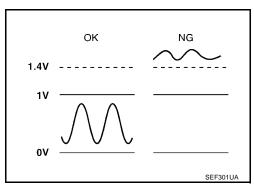
Component Description

UBS002R6

The heated oxygen sensor 1 is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

UBS002R7


Specification data are reference values.

MONITOR ITEM	C	CONDITION					
HO2S1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ Approx. 0.6 - 1.0V				
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.				

On Board Diagnosis Logic

UBS002R8

To judge the malfunction, the diagnosis checks that the heated oxygen sensor 1 output is not inordinately high.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0132	Heated oxygen sensor	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors
0132	1 circuit high voltage		(The sensor circuit is open or shorted) Heated oxygen sensor 1

DTC P0132 HO2S1

[QR]

DTC Confirmation Procedure

UBS002R9

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Turn ignition switch "ON".
- 4. Select "DATA MONITOR" mode with CONSULT-II.

Restart engine and let it idle for 2 minutes.

If 1st trip DTC is detected, go to <u>EC-187, "Diagnostic Procedure"</u>

DATA MONITOR

MONITOR

NO DTC

ENG SPEED XXX rpm
COOLAN TEMP/S XXX °C

WITH GST

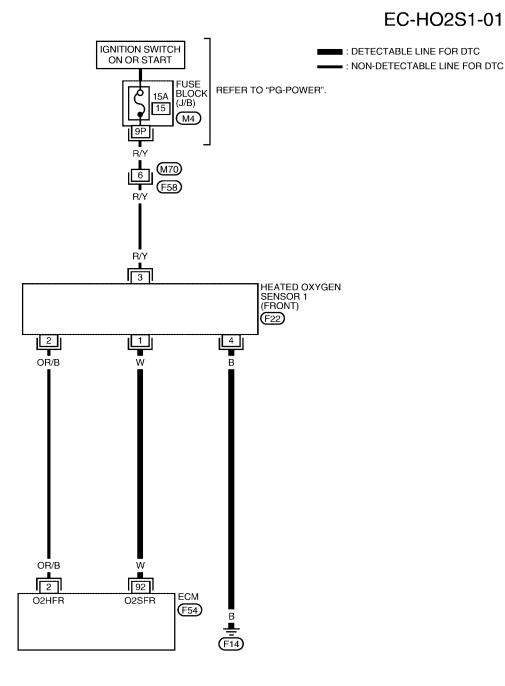
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Restart engine and let it idle for 2 minutes.
- 4. Turn ignition switch "OFF" and wait at least 10 seconds.
- 5. Restart engine and let it idle for 2 minutes.
- 6. Select "MODE 3" with GST.
- 7. If DTC is detected, go to EC-187, "Diagnostic Procedure".
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

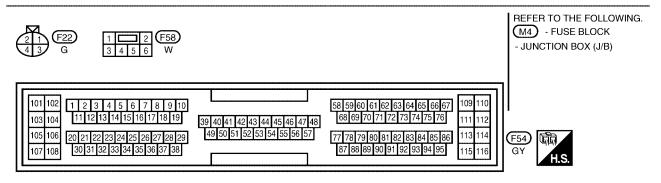
EC

Α

Е

G


Н


J

K

Wiring Diagram

EC-HO2S1-01

BBWA0009E

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
92	OR/B	Heated oxygen sensor 1	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)

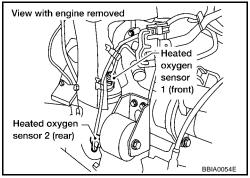
Diagnostic Procedure

UBS002RB

EC

Е

Н


M

1. RETIGHTEN HEATED OXYGEN SENSOR 1

Loosen and retighten heated oxygen sensor 1.

Tightening torque: 40 - 50 N·m (4.1 - 5.1 kg-m, 30 - 37 ft-lb)

>> GO TO 2.

2. CHECK HO2S1 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Check harness continuity between HO2S1 terminal 4 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to power in harness or connectors.

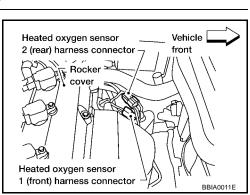
3. CHECK HO2S1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect heated oxygen sensor 1 harness connector.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 92 and HO2S1 terminal 1.

Refer to Wiring Diagram.

Continuity should exist.

 Check harness continuity between ECM terminal 92 or HO2S1 terminal 1 and ground. Refer to Wiring Diagram.


Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK HO2S1 CONNECTOR FOR WATER

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 1 harness connector.
- 3. Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 5.

NG >> Repair or replace harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 1

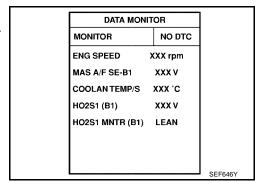
Refer to EC-188, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace heated oxygen sensor 1.

6. CHECK INTERMITTENT INCIDENT


Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 1

UBS002RC

- (P) With CONSULT-II
- 1. Start engine and warm it up to normal operating temperature.
- Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- Touch "RECORD" on CONSULT-II screen.

- Check the following.
 - "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.
 5 times (cycles) are counted as shown at right.
 - "HO2S1 (B1)" voltage goes above 0.6V at least once.
 - "HO2S1 (B1)" voltage goes below 0.3V at least once.
 - "HO2S1 (B1)" voltage never exceeds 1.0V.

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R R means HO2S1 MNTR (B1) indicates RICH L means HO2S1 MNTR (B1) indicates LEAN

SEF217YA

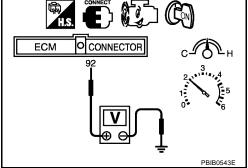
Trigger	ENG SPEED	HO2S1 (B1)		128	,	Ma> ●	dimun		,	`.	,-	`.	,	`.	 Maximum voltage should be over 0.6V
	rpm	V	•		/	\ \	ĺ	Ϊ.	- /	<i>)</i>	1)	- /	,	at least one time.
XXX	XXX	XXX	1												at loadt one time.
XXX	XXX	XXX					1	ι	•	t	1	1	•	Y	
XXX	XXX	XXX													
XXX	XXX	XXX		64		1			•		•	•		•	N. C
XXX	XXX	XXX		_	ι.										 Minimum voltage
XXX	XXX	XXX			ji ;	í	- 1	į.	í	ì	i	ļ.	i	ļ	should be below 0.30V
XXX	XXX	XXX			1 i	1	i	1	i	1	i	- 1	i	,	at least one time.
XXX	XXX	XXX			1 !	١.	!	i	!	ì	!	i	- !	i	
XXX	XXX	XXX			\ \ / -	į	- /	į	i	,	i	`\	<i>i</i>	,	
XXX	XXX	XXX			N.	١,	J.	,		``	a '	,	1	`_	
XXX	XXX	XXX								-	• Mini	mum			
XXX	XXX	XXX	1	0-											

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 92 [HO2S1 (B1) signal] and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least one time.
 - The minimum voltage is below 0.3V at least one time.
 - The voltage never exceeds 1.0V.


1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V 2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 1

Refer to EM-23, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

Α

EC

D

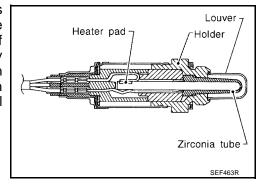
G

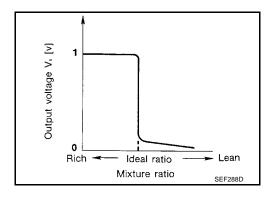
F

Н

|

UBS002RD


DTC P0133 HO2S1


PFP:22690

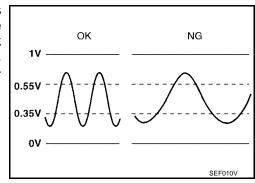
Component Description

UBS002RE

The heated oxygen sensor 1 is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

UBS002RF


Specification data are reference values.

MONITOR ITEM	CON	SPECIFICATION	
HO2S1 (B1)	• Engine: After warming up Maintaining engine speed at 2,000 rpm		0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times dur- ing 10 seconds.

On Board Diagnosis Logic

UBS002RG

To judge the malfunction of heated oxygen sensor 1, this diagnosis measures response time of heated oxygen sensor 1 signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and heated oxygen sensor 1 temperature index. Judgment is based on whether the compensated time (heated oxygen sensor 1 cycling time index) is inordinately long or not.

Α

D

Е

Н

M

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0133 0133	Heated oxygen sensor 1 circuit slow response	The response of the voltage signal from the sensor takes more than the specified time.	 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 1 Heated oxygen sensor 1 heater Fuel pressure Injectors Intake air leaks Exhaust gas leaks PCV valve Mass air flow sensor

DTC Confirmation Procedure

UBS002RH

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above –10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) WITH CONSULT-II

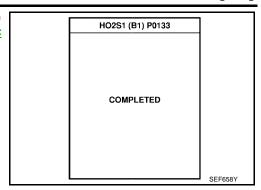
1. Start engine and warm it up to normal operating temperature.

- 2. Stop engine and wait at least 10 seconds.
- 3. Turn ignition switch "ON" and select "HO2S1 (B1) P0133" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4. Touch "START".
- 5. Start engine and let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 5.

HO2S1 (B1) P0		
OUT OF CONDI		
MONITOR		
ENG SPEED		
B/FUEL SCHDL		
COOLAN TEMP/S		
VHCL SPEED SEN	0550007	
		SEF338Z


When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 20 to 50 seconds.)

ENG SPEED	1,200 - 3,200 rpm
Vehicle speed	More than 80 km/h (50 MPH)
B/FUEL SCHDL	1.9 - 13.0 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

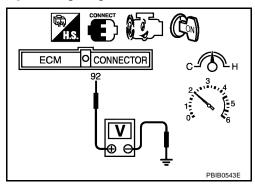
HO2S1 (B1) P0		
TESTING		
MONITOR		
ENG SPEED		
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S		
VHCL SPEED SEN	XXX km/h	
	·	SEF339Z

 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to <u>EC-194, "Diagnostic</u> <u>Procedure"</u>.

Overall Function Check

LIBERRADE

Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.


WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 92 [HO2S1(B1) signal] and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.

1 time:
$$0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$$

times: \rightarrow 0 - 0.3V

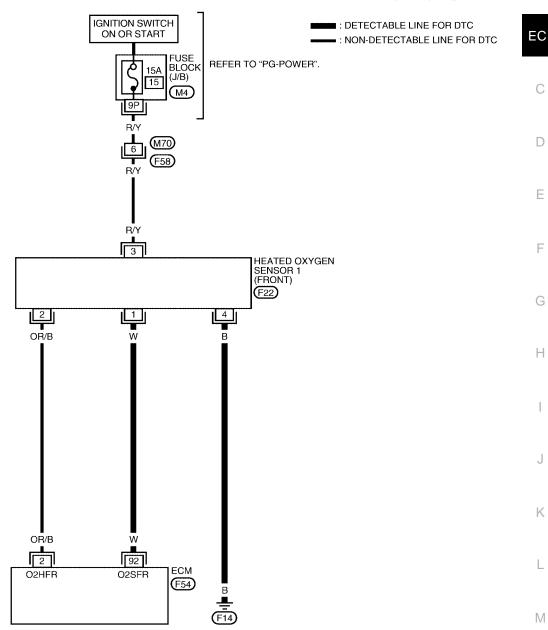
4. If NG, go to EC-194, "Diagnostic Procedure".

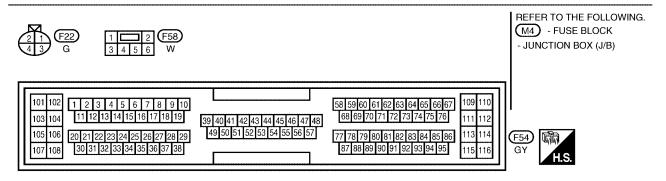
[QR]

Α

C

D


Е


Н

M

Wiring Diagram

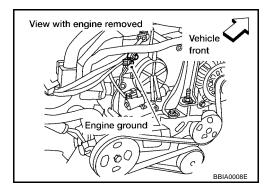
EC-HO2S1-01

BBWA0009E

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
92	W	Heated oxygen sensor 1	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)

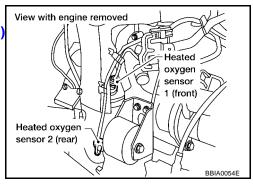

Diagnostic Procedure

UBS002RK

1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

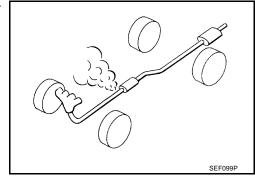


2. RETIGHTEN HEATED OXYGEN SENSOR 1

Loosen and retighten heated oxygen sensor 1.

Tightening torque: 40 - 50 N·m (4.1 - 5.1 kg-m, 30 - 37 ft-lb)

>> GO TO 3.


3. CHECK FOR EXHAUST AIR LEAK

- Start engine and run it at idle.
- 2. Listen for an exhaust air leak before three way catalyst (Manifold).

OK or NG

OK >> GO TO 4.

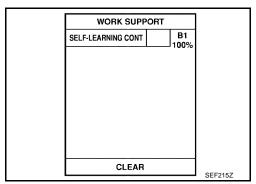
NG >> Repair or replace.

[QR]

4. CHECK FOR INTAKE AIR LEAK

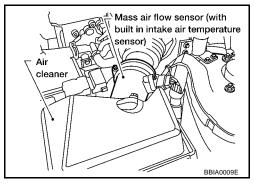
Listen for an intake air leak after the mass air flow sensor.

OK or NG


OK >> GO TO 5.

NG >> Repair or replace.

$5.\,$ clear the self-learning data


(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF".
- Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to EC-67, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".
- 7. Make sure DTC P0000 is displayed.
- Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Yes or No

Yes >> Perform trouble diagnosis for DTC P0171 or DTC P0172 (Refer to EC-219 or EC-225).

>> GO TO 6. No

6. CHECK HO2S1 GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- Check harness continuity between HO2S1 terminal 4 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to power in harness or connectors.

EC

Е

Н

UBS002RL

$7.\,$ CHECK HO2S1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect heated oxygen sensor 1 harness connector.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 92 and HO2S1 terminal 1.

Refer to Wiring Diagram.

Continuity should exist.

 Check harness continuity between ECM terminal 92 or HO2S1 terminal 1 and ground. Refer to Wiring Diagram.

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK HEATED OXYGEN SENSOR 1 HEATER

Refer to EC-147, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace malfunctioning heated oxygen sensor 1.

9. CHECK MASS AIR FLOW SENSOR

Refer to EC-159, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace mass air flow sensor.

10. CHECK PCV VALVE

Refer to EC-625, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> Replace PCV valve.

11. CHECK HEATED OXYGEN SENSOR 1

Refer to EC-196, "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> Replace heated oxygen sensor 1.

12. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 1

(With CONSULT-II

Revision: May 2004

1. Start engine and warm it up to normal operating temperature.

Heated oxygen sensor
2 (rear) harness connector

Rocker
cover

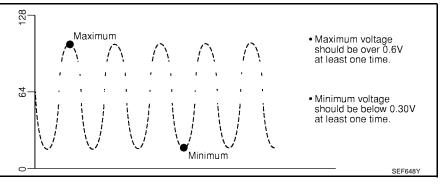
Heated oxygen sensor
1 (front) harness connector

Α

EC

Е

Н


- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

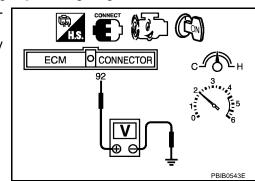
DATA MON	DATA MONITOR						
MONITOR NO DTC							
ENG SPEED	XXX rpm]					
MAS A/F SE-B1	xxx v						
COOLAN TEMP/S	XXX °C						
HO2S1 (B1)	xxx v						
HO2S1 MNTR (B1)	LEAN						
		SE					

- 6. Check the following.
 - "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.
 5 times (cycles) are counted as shown at right.
 - "HO2S1 (B1)" voltage goes above 0.6V at least once.
 - "HO2S1 (B1)" voltage goes below 0.3V at least once.
 - "HO2S1 (B1)" voltage never exceeds 1.0V.

cycle 1 2 3 4 5 HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R
R means HO2S1 MNTR (B1) indicates RICH L means HO2S1 MNTR (B1) indicates LEAN
SEF217YA

Trigger	ENG	HO2S1
	SPEED	(B1)
	rpm	V
XXX	XXX	XXX

CAUTION:


- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 92 [HO2S1 (B1) signal] and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least one time.
 - The minimum voltage is below 0.3V at least one time.
 - The voltage never exceeds 1.0V.

1 time: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 1

UBS002RM

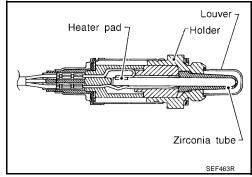
Refer to EM-23, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

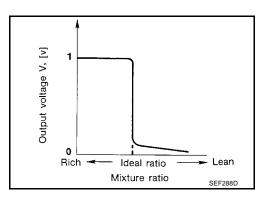
DTC P0134 H02S1

PFP:22690

Component Description

UBS002RN


Α


EC

Е

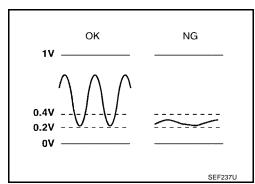
Н

The heated oxygen sensor 1 is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

UBS002RO

Specification data are reference values.


MONITOR ITEM	CON	SPECIFICATION	
HO2S1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times dur- ing 10 seconds.

On Board Diagnosis Logic

UBS002RP

M

Under the condition in which the heated oxygen sensor 1 signal is not input, the ECM circuits will read a continuous approximately 0.3V. Therefore, for this diagnosis, the time that output voltage is within 200 to 400 mV range is monitored, and the diagnosis checks that this time is not inordinately long.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0134 0134	Heated oxygen sensor 1 circuit high no activity detected	The voltage from the sensor is constantly approx. 0.3V.	 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 1

DTC Confirmation Procedure

UBS002RQ

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

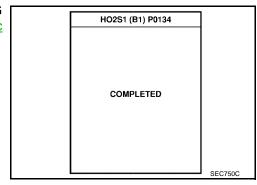
(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "HO2S1 (B1) P0134" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START".
- 4. Let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 4.

HO2S1 (B1) PO)134	
OUT OF CONDI		
MONITOR		
ENG SPEED		
B/FUEL SCHDL		
COOLAN TEMP/S		
VHCL SPEED SEN	PBIB0544E	
		FDIBU344E


When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 10 to 60 seconds.)

ENG SPEED	1,200 - 3,200 rpm
Vehicle speed	More than 64 km/h (40 MPH)
B/FUEL SCHDL	1.9 - 13.0 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

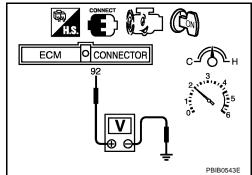
 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to <u>EC-203</u>, "<u>Diagnostic</u> Procedure".

HO2S1 (B1) PO	HO2S1 (B1) P0134					
TESTING	TESTING					
MONITOR	MONITOR					
ENG SPEED	ENG SPEED XXX rpm					
B/FUEL SCHDL	B/FUEL SCHDL XXX msec					
COOLAN TEMP/S						
VHCL SPEED SEN	XXX km/h	PBIB0545E				

Overall Function Check

UBS002RR

Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.


WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 92 [HO2S1 (B1) signal] and engine ground.

DTC P0134 H02S1

[QR]

- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage does not remain in the range of 0.2 0.4V.
- 4. If NG, go to EC-203, "Diagnostic Procedure".

Α

EC

С

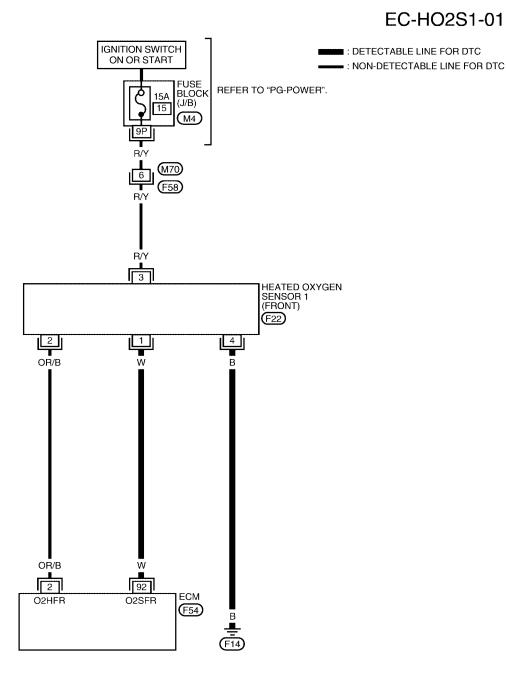
D

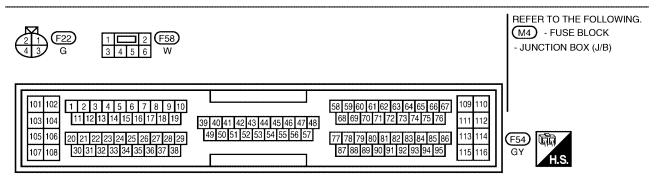
Е

F

G

Н


.


K

L

Wiring Diagram

EC-HO2S1-01

BBWA0009E

[QR]

CAUTION:

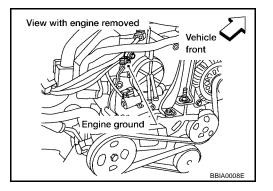
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
92	W	Heated oxygen sensor 1	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)

Diagnostic Procedure

UBS002RT

EC


Е

M

- 1. INSPECTION START
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

Turn ignition switch "OFF".

2. CHECK HO2S1 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Check harness continuity between HO2S1 terminal 4 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to power in harness or connectors.

3. CHECK HO2S1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 92 and HO2S1 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Check harness continuity between ECM terminal 92 or HO2S1 terminal 1 and ground. Refer to Wiring Diagram.

Continuity should not exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK HEATED OXYGEN SENSOR 1

Refer to EC-204, "Component Inspection".

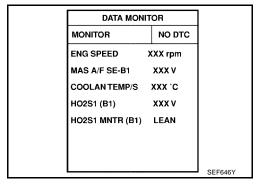
OK or NG

OK >> GO TO 5.

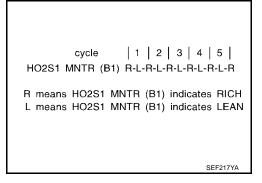
NG >> Replace heated oxygen sensor 1.

5. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 1


UBS002RU

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

- Check the following.
 - "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.
 5 times (cycles) are counted as shown at right.
 - "HO2S1 (B1)" voltage goes above 0.6V at least once.
 - "HO2S1 (B1)" voltage goes below 0.3V at least once.
 - "HO2S1 (B1)" voltage never exceeds 1.0V.

	ENG SPEED	HO2S1 (B1)		128	,		imur /	n ~\	1	`\	1	Ņ	/	`\	 Maximum voltage should be over 0.6V
I VVV I	rpm	V			i	i	- /	1	i	,	i	,	i	;	at least one time.
XXX	XXX	XXX													
XXX	XXX	XXX			'	•	1	ı	,	ı	ı	•	•	1	
XXX	XXX	XXX													
XXX	XXX	XXX	1	- 54		1	:	1	•	1	•	•		•	A. 42 - 14
XXX	XXX	XXX		_	i .										 Minimum voltage should be below 0.30V
XXX	XXX	XXX			ji ;	i	- ;	į	- 1	į	- ;	١.	- 1	Ļ	
XXX	XXX	XXX			l		i	1	i	1	i	١,	i	1	at least one time.
XXX	XXX	XXX	1		IV I	1	!	,	!	ì	!	i	!	i	
XXX	XXX	XXX	1		[i /	i	- /	, j	1	į.	- /	1	- /	i	
XXX	XXX	XXX	1		1人/	١,	j	Ι,	,	١,	ď	,	Ų.	`_	
XXX	XXX	XXX	1								• Mini	mun	า		
XXX	XXX	XXX	1	0-											SEF648Y

CAUTION:

• Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

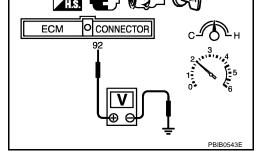
Α

EC

D

Е

• Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.


⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 92 [HO2S1 (B1) signal] and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least one time.
 - The minimum voltage is below 0.3V at least one time.
 - The voltage never exceeds 1.0V.

1 time: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V 2 times: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V \to 0.6 - 1.0V

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 1

Refer to EM-23, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

Н

J

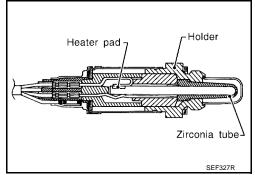
K

M

Revision: May 2004 EC-205 2002 Altima

DTC P0138 HO2S2 PFP:226A0

Component Description


UBS002RW

The heated oxygen sensor 2, after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

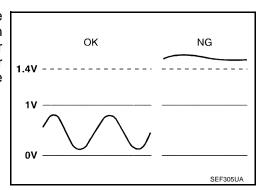
Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

UBS002RX


Specification data are reference values.

MONITOR ITEM	CON	SPECIFICATION	
HO2S2 (B1)	Engine: After warming up	Revving engine from idle to 3,000 rpm quickly.	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1)	Engine: After warming up	Revving engine from idle to 3,000 rpm quickly.	$LEAN \longleftrightarrow RICH$

On Board Diagnosis Logic

UBS002RY

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the voltage is unusually high during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0138 0138	Heated oxygen sensor 2 circuit high voltage	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2

DTC Confirmation Procedure

UBS002RZ

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

[QR]

(P) WITH CONSULT-II

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 3. Stop vehicle with engine running.
- 4. Let engine idle for 1 minute.
- If 1st trip DTC is detected, go to <u>EC-209, "Diagnostic Procedure"</u>

DATA MONITOR

MONITOR NO DTC

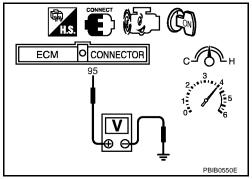
ENG SPEED XXXX rpm

UB\$002\$0

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

CAUTION:


Always drive vehicle at a safe speed.

® WITH GST

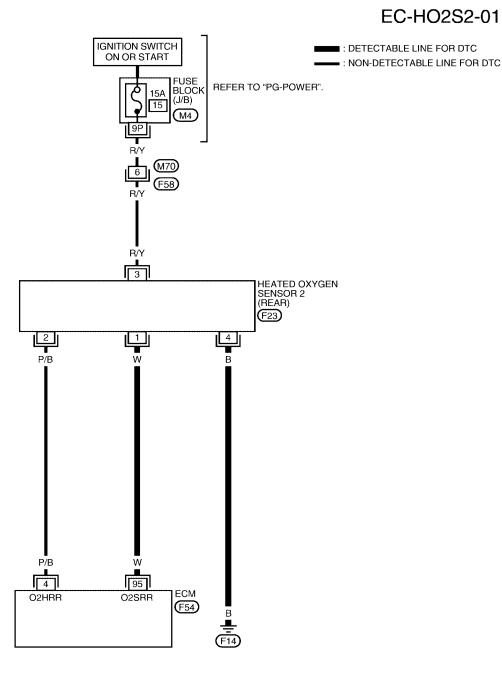
- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 95 [HO2S2 (B1) signal] and engine ground.
- 4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.

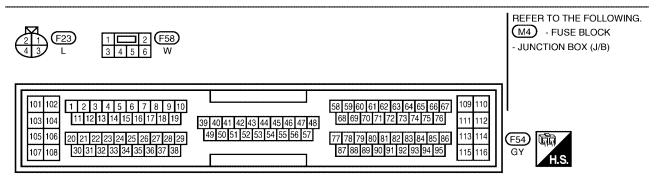
(Depress and release accelerator pedal as soon as possible.) The voltage should be below 1.4V during this procedure.

If NG, go to <u>EC-209</u>, "<u>Diagnostic Procedure</u>".

А

EC


Е


F

Н

Wiring Diagram

EC-HO2S2-01

BBWA0011E

[QR]

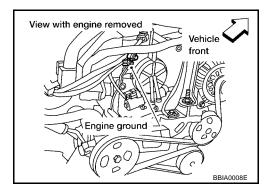
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
95	W	Heated oxygen sensor 2	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V

EC

Е


UBS002S2

Diagnostic Procedure

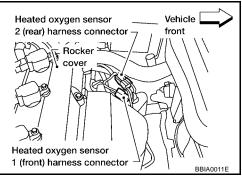
1. RETIGHTEN GROUND SCREWS

- Turn ignition switch "OFF". 1.
- Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 2 harness connector.
- 3. Check harness continuity between HO2S2 terminal 4 and engine ground. Refer to Wiring Diagram.


Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to power in harness or connectors.

M

3. CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 95 and HO2S2 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Check harness continuity between ECM terminal 95 or HO2S2 terminal 1 and ground. Refer to Wiring Diagram.

Continuity should not exist.

4. Also check harness for short to ground or short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK HARNESS CONNECTOR

Check HO2S2 harness connector for water.

Water should not exist.

OK or NG

OK >> GO TO 5.

NG >> Repair or replace harness connector.

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-210, "Component Inspection".

OK or NG

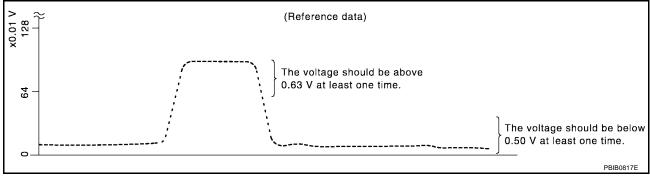
OK >> GO TO 6.

NG >> Replace heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection HEATED OXYGEN SENSOR 2

UBS002S3

- (P) With CONSULT-II
- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.

		1
ACTIVE TEST		
FUEL INJECTION	25 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S1 (B1)	xxx v	
HO2S2 (B1)	xxx v	
HO2S1 MNTR (B1)	RICH	
HO2S2 MNTR (B1)	RICH	
		SEF662Y

4. Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)" should be above 0.63V at least once when the "FUEL INJECTION" is +25%.

"HO2S2 (B1)" should be below 0.50V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

• Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

 Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 95 [HO2S2 (B1) signal] and engine ground.
- 4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.

(Depress and release accelerator pedal as soon as possible.)

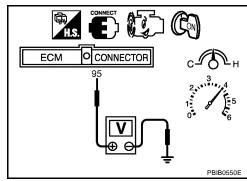
The voltage should be above 0.63V at least once during this procedure.

If the voltage is above 0.63V at step 4, step 5 is not necessary.

5. Keep vehicle idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in "D" position with "OD" OFF (A/T), 3rd gear position (M/T).

The voltage should be below 0.50V at least once during this

The voltage should be below 0.50V at least once during this procedure.



- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

Refer to EX-3, "EXHAUST SYSTEM (QR25DE)".

EC

Α

(

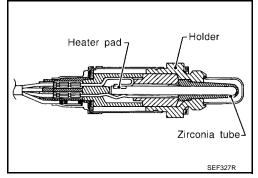
D

Е

IZ

DTC P0139 HO2S2 PFP:226A0

Component Description


UBS002S5

The heated oxygen sensor 2, after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

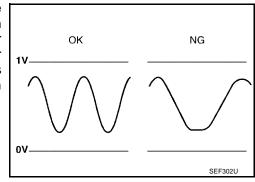
Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

UBS002S6


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1)	Engine: After warming up	Revving engine from idle to 3,000 rpm quickly.	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1)	Engine: After warming up	Revving engine from idle to 3,000 rpm quickly.	$LEAN \longleftrightarrow RICH$

On Board Diagnosis Logic

UBS002S7

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the switching response of the sensor's voltage is faster than specified during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0139	Heated oxygen sensor	It takes more time for the sensor to respond between rich and lean than the specified time.	 Harness or connectors
0139	2 circuit slow response		(The sensor circuit is open or shorted) Heated oxygen sensor 2 Fuel pressure Injectors Intake air leaks

DTC Confirmation Procedure

UBS002S8

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Open engine hood before conducting following procedure.

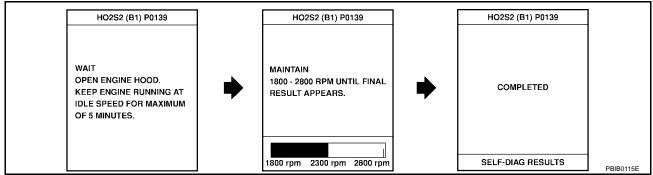
(II) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Turn ignition switch "ON".
- 4. Select "DATA MONITOR" mode with CONSULT-II.

[QR]

Α

EC


Е

Н

K

M

- 5. Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).
- 6. Select "HO2S2 (B1) P0139" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 7. Start engine and following the instruction of CONSULT-II.

- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 If "NG" is displayed, refer to <u>EC-215</u>, "<u>Diagnostic Procedure</u>".
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- a. Stop engine and cool down until "COOLAN TEMP/S" indicates less than 70°C (158°F).
- b. Turn ignition switch "ON".
- c. Select "DATA MONITOR" mode with CONSULT-II.
- d. Start engine.
- e. Return to step 6 again when the "COOLAN TEMP/S" reaches to 70°C (158°F).

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

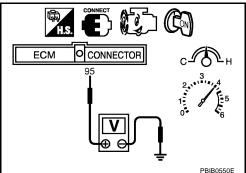
CAUTION:

Always drive vehicle at a safe speed.

S WITH GST

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- Set voltmeter probes between ECM terminal 95 [HO2S2 (B1) signal] and engine ground.
- 4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.

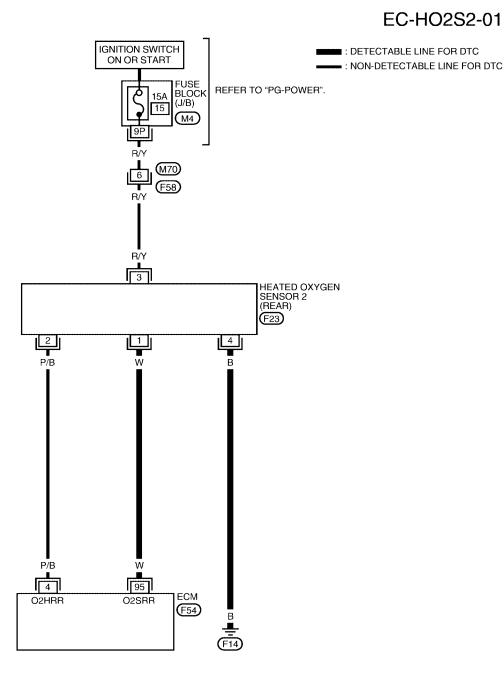
(Depress and release accelerator pedal as soon as possible.)

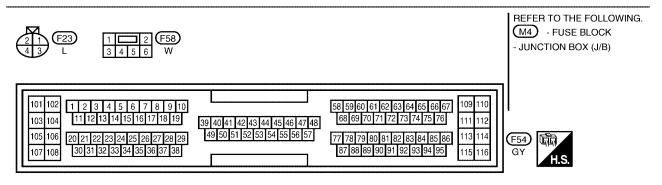

The voltage should change at more than 0.06V for 1 second during this procedure.

If the voltage can be confirmed in step 4, step 5 is not necessary.

 Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in "D" position with "OD" OFF (A/T), 3rd gear position (M/T).

The voltage should change at more than 0.06V for 1 second during this procedure.


6. If NG, go to EC-215, "Diagnostic Procedure".



<u>:</u>

Wiring Diagram

EC-HO2S2-01

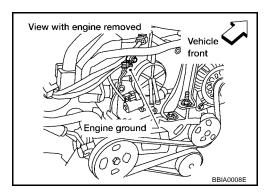
BBWA0011E

DTC P0139 HO2S2

[QR]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
95	W	Heated oxygen sensor 2	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

EC

C

D

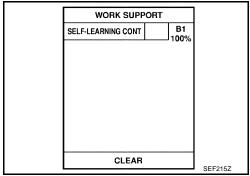
UBS002SB

Е

G

Н

ı


<

L

2. clear the self-learning data

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Mass air flow sensor (with

built in intake air temperature

BBIA0009E

Without CONSULT-II

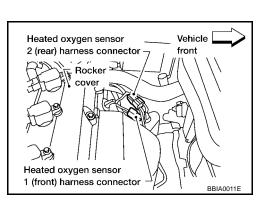
- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to EC-67, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

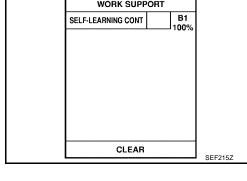
Yes >> Perform trouble diagnosis for DTC P0171 or P0172. Refer to EC-219 or EC-225.

Nο >> GO TO 3.

$3.\,$ check ho2s2 ground circuit for open and short

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 2 harness connector.
- Check harness continuity between HO2S2 terminal 4 and engine ground. Refer to Wiring Diagram.


Continuity should exist.


4. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to power in harness or connectors.

DTC P0139 HO2S2

[QR]

4. CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Disconnect ECM harness connector.

2. Check harness continuity between ECM terminal 95 and HO2S2 terminal 1. Refer to Wiring Diagram.

EC

Continuity should exist.

Check harness continuity between ECM terminal 95 or HO2S2 terminal 1 and ground. Refer to Wiring Diagram.

Continuity should not exist.

4. Also check harness for short to ground or short to power.

D

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

Е

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-217, "Component Inspection".

OK or NG

OK >> GO TO 6.

G

NG >> Replace heated oxygen sensor 2.

. .

6. CHECK INTERMITTENT INCIDENT

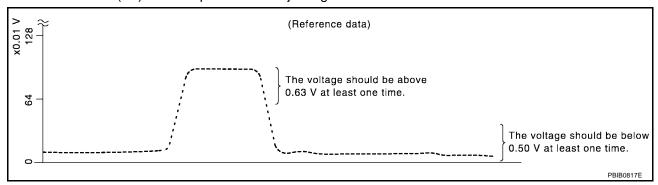
Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2

UBS002SC

(P) With CONSULT-II


- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.

M

3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.

ACTIVE TES	Т	
FUEL INJECTION	25 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S1 (B1)	xxx v	
HO2S2 (B1)	xxx v	
HO2S1 MNTR (B1)	RICH	
HO2S2 MNTR (B1)	RICH	
		SEF662Y

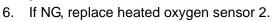
Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)" should be above 0.63V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)" should be below 0.50V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II


- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeter probes between ECM terminal 95 [HO2S2 (B1) signal] and engine ground.
- 4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.

(Depress and release accelerator pedal as soon as possible.)
The voltage should be above 0.63V at least once during this procedure.

If the voltage is above 0.63V at step 4, step 5 is not necessary.

 Keep vehicle idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in "D" position with "OD" OFF (A/T), 3rd gear position (M/T).
 The voltage should be below 0.50V at least once during this

The voltage should be below 0.50V at least once during this procedure.

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

UBS002SD

Refer to EX-3, "EXHAUST SYSTEM (QR25DE)".

DTC P0171 FUEL INJECTION SYSTEM FUNCTION

[QR]

DTC P0171 FUEL INJECTION SYSTEM FUNCTION

PFP:16600

On Board Diagnosis Logic

UBS002SE

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensor 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios.

EC

D

Е

Н

M

Α

In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the ECM judges the condition as the fuel injection system malfunction and light up the MIL (2 trip detection logic).

Sensor	Input Signal to ECM	ECM function	Actuator
Heated oxygen sensors 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injec- tion control	Fuel injectors

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0171 0171	Fuel injection system too lean	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too lean.) 	 Intake air leaks Heated oxygen sensor 1 Injectors Exhaust gas leaks Incorrect fuel pressure Lack of fuel Mass air flow sensor Incorrect PCV hose connection

DTC Confirmation Procedure

LIBS002SE

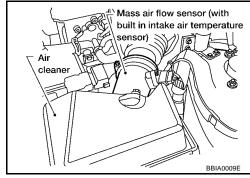
NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

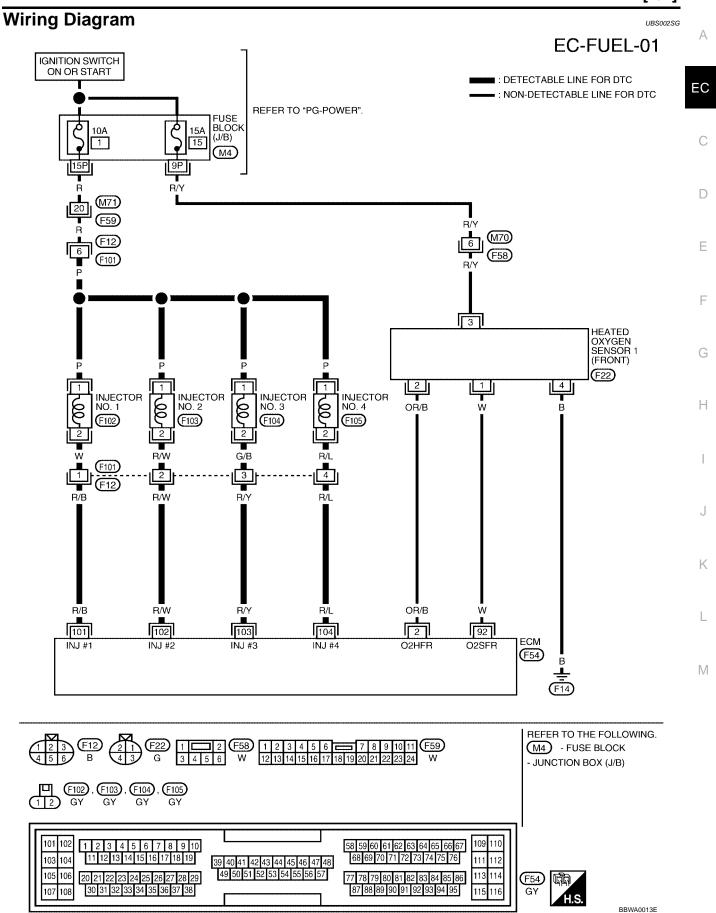
(II) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON" and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-II.
- Clear the self-learning control coefficient by touching "CLEAR".
- 5. Select "DATA MONITOR" mode with CONSULT-II.
- Start engine again and let it idle for at least 10 minutes.
 The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to EC-222, "Diagnostic Procedure"
- 7. If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
- 8. Crank engine while depressing accelerator pedal. If engine starts, go to EC-222, "Diagnostic Procedure". If engine does not start, check exhaust and intake air leak visually.

WORK SUPPORT SELF-LEARNING CONT B1 100% CLEAR


WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 10 seconds.


DTC P0171 FUEL INJECTION SYSTEM FUNCTION

[QR]

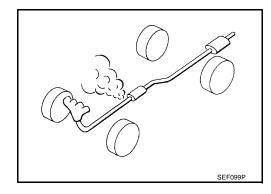
- 3. Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness con-
- 5. Select "MODE 3" with GST. Make sure DTC P0102 is detected.
- Select "MODE 4" with GST and erase the DTC P0102.
- 7. Start engine again and let it idle for at least 10 minutes.
- Select "MODE 7" with GST. The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to EC-222, "Diagnostic Procedure".
- has a malfunction.
- 9. If it is difficult to start engine at step 7, the fuel injection system 10. Crank engine while depressing accelerator pedal. If engine starts, go to EC-222, "Diagnostic Procedure". If engine does not start, check exhaust and intake air leak visually.

[QR]

[QR]

Diagnostic Procedure

1. CHECK EXHAUST AIR LEAK


UBS002SH

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust air leak before three way catalyst.

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK FOR INTAKE AIR LEAK AND PCV HOSE

- 1. Listen for an intake air leak after the mass air flow sensor.
- 2. Check PCV hose connection.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK HEATED OXYGEN SENSOR 1 CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Disconnect corresponding heated oxygen sensor 1 (HO2S1) harness connector.
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between ECM terminal 92 and HO2S1 terminal 1.

Refer to Wiring Diagram.

Continuity should exist.

 Check harness continuity between ECM terminal 92 or HO2S1 terminal 1 and ground. Refer to Wiring Diagram.

fer to Wiring Diagram. Continuity should not exist.

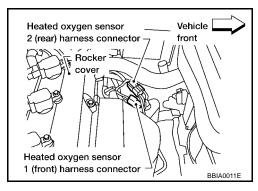
6. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK FUEL PRESSURE


- 1. Release fuel pressure to zero. Refer to EC-51, "FUEL PRESSURE RELEASE" .
- 2. Install fuel pressure gauge and check fuel pressure. Refer to <u>EC-51, "Fuel Pressure Check"</u>.

At idling: Approximately 350 kPa (3.7 kg/cm², 51 psi)

OK or NG

OK >> GO TO 5.

NG >> Follow the construction of "FUEL PRESSURE CHECK".

DTC P0171 FUEL INJECTION SYSTEM FUNCTION

[QR]

EC

D

Е

Н

K

5. CHECK MASS AIR FLOW SENSOR

(II) With CONSULT-II

1. Install all removed parts.

2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II.

1.0 - 4.0 g·m/sec: at idling 4.0 - 10 g·m/sec: at 2,500 rpm

With GST

1. Install all removed parts.

2. Check mass air flow sensor signal in MODE 1 with GST.

1.0 - 4.0 g·m/sec: at idling 4.0 - 10 g·m/sec: at 2,500 rpm

OK or NG

OK >> GO TO 6.

NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-160, "DTC P0102, P0103 MAF SENSOR".

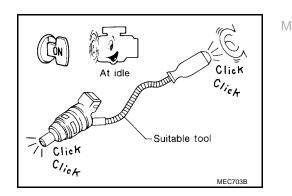
6. CHECK FUNCTION OF INJECTORS

(P) With CONSULT-II

1. Start engine.

Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.

3. Make sure that each circuit produces a momentary engine speed drop.


ACTIVE TEST		
POWER BALANCE		
MONITOR	}	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
•	-	PBIB0133E

⋈ Without CONSULT-II

1. Start engine.

2. Listen to each injector operating sound.

Clicking noise should be heard.

OK or NG

OK >> GO TO 7.

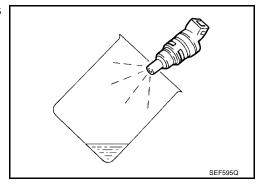
NG >> Perform trouble diagnosis for <u>EC-573</u>, "INJECTOR CIRCUIT".

Revision: May 2004 EC-223 2002 Altima

7. CHECK INJECTOR

- 1. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 2. Turn ignition switch "OFF".
- 3. Disconnect injector harness connectors.
- Remove injector gallery assembly. Refer to <u>EM-31, "FUEL INJECTOR AND FUEL TUBE"</u>. Keep fuel hose and all injectors connected to injector gallery. The injector harness connectors should remain connected.
- 5. Disconnect all ignition coil harness connectors.
- 6. Prepare pans or saucers under each injector.
- 7. Crank engine for about 3 seconds. Make sure that fuel sprays out from injectors.

Fuel should be sprayed evenly for each injector.


OK or NG

OK :

>> GO TO 8.

NG

>> Replace injectors from which fuel does not spray out. Always replace O-ring with new ones.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0172 FUEL INJECTION SYSTEM FUNCTION

[QR]

DTC P0172 FUEL INJECTION SYSTEM FUNCTION

PFP:16600

On Board Diagnosis Logic

UBS002SI

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensors 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios.

EC

D

Е

Н

M

А

In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the ECM judges the condition as the fuel injection system malfunction and light up the MIL (2 trip detection logic).

Sensor	Input Signal to ECM	ECM function	Actuator
Heated oxygen sensors 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injec- tion control	Fuel injectors

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0172 0172	Fuel injection system too rich	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too rich.) 	 Heated oxygen sensor 1 Injectors Exhaust gas leaks Incorrect fuel pressure Mass air flow sensor

DTC Confirmation Procedure

UBS002SJ

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

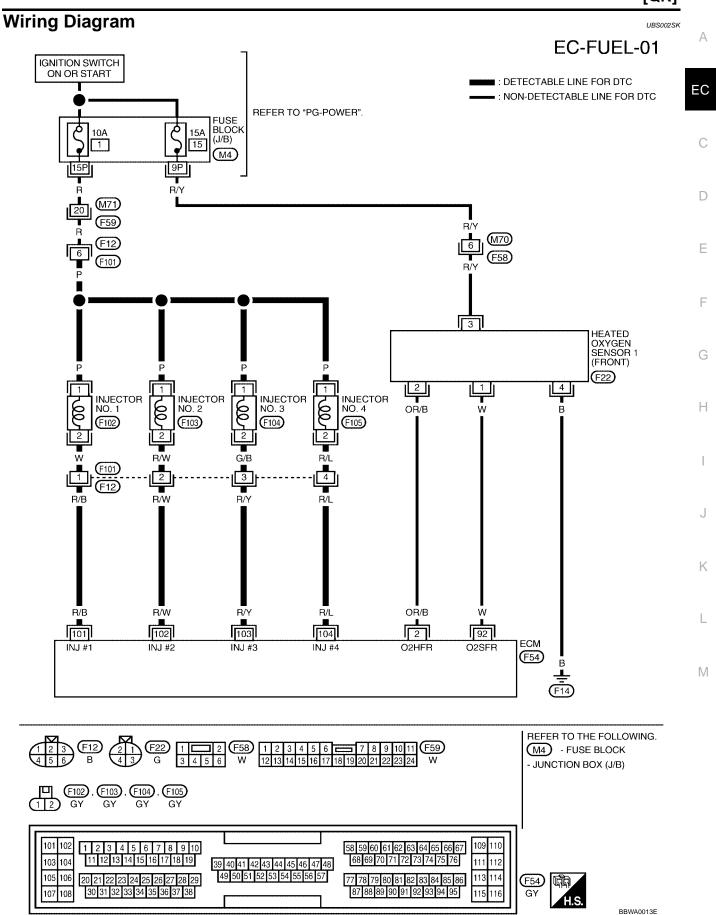
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Turn ignition switch "ON" and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-II.
- 4. Clear the self-learning control coefficient by touching "CLEAR".
- 5. Select "DATA MONITOR" mode with CONSULT-II.
- Start engine again and let it idle for at least 10 minutes.
 The 1st trip DTC P0172 should be detected at this stage, if a malfunction exists. If so, go to EC-228, "Diagnostic Procedure"
- 7. If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
- Crank engine while depressing accelerator pedal.
 If engine starts, go to <u>EC-228</u>, "<u>Diagnostic Procedure</u>". If engine does not start, remove ignition plugs and check for fouling, etc.

V	WORK SUPPO	ORT
SELF-LEA	ARNING CONT	B1 100%


WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.

DTC P0172 FUEL INJECTION SYSTEM FUNCTION


[QR]

- 3. Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Select "MODE 3" with GST. Make sure DTC P0102 is detected.
- 6. Select "MODE 4" with GST and erase the DTC P0102.
- 7. Start engine again and let it idle for at least 10 minutes.
- 8. Select "MODE 7" with GST. The 1st trip DTC P0172 should be detected at this stage, if a malfunction exists. If so, go to EC-228, "Diagnostic Procedure".
- 9. If it is difficult to start engine at step 7, the fuel injection system has a malfunction.

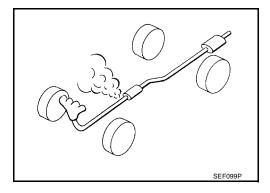
Crank engine while depressing accelerator pedal.
 If engine starts, go to <u>EC-228</u>, "<u>Diagnostic Procedure</u>". If engine does not start, check exhaust and intake air leak visually.

[QR]

[QR]

Diagnostic Procedure

1. CHECK EXHAUST AIR LEAK


UBS002SL

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust air leak before three way catalyst.

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK FOR INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK HEATED OXYGEN SENSOR 1 CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect corresponding heated oxygen sensor 1 (HO2S1) harness connector.
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between ECM terminal 92 and HO2S1 terminal 1.

Refer to Wiring Diagram.

Continuity should exist.

5. Check harness continuity between ECM terminal 92 or HO2S1 terminal 1 and ground.

Refer to Wiring Diagram.

Continuity should not exist.

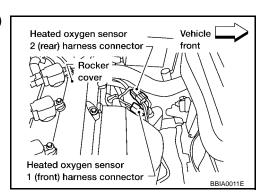
6. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK FUEL PRESSURE


- Release fuel pressure to zero. Refer to <u>EC-51, "FUEL PRESSURE RELEASE"</u>.
- 2. Install fuel pressure gauge and check fuel pressure. Refer to EC-51, "Fuel Pressure Check" .

At idling: 350 kPa (3.7 kg/cm2, 51 psi)

OK or NG

OK >> GO TO 5.

NG >> Follow the construction of "FUEL PRESSURE CHECK".

DTC P0172 FUEL INJECTION SYSTEM FUNCTION

[QR]

EC

D

Е

Н

M

5. CHECK MASS AIR FLOW SENSOR

(II) With CONSULT-II

1. Install all removed parts.

2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II.

1.0 - 4.0 g·m/sec: at idling 4.0 - 10 g·m/sec: at 2,500 rpm

With GST

1. Install all removed parts.

2. Check mass air flow sensor signal in MODE 1 with GST.

1.0 - 4.0 g·m/sec: at idling 4.0 - 10 g·m/sec: at 2,500 rpm

OK or NG

OK >> GO TO 6.

NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-160, "DTC P0102, P0103 MAF SENSOR".

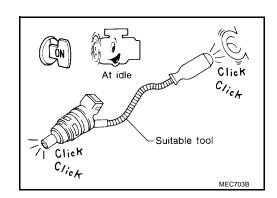
6. CHECK FUNCTION OF INJECTORS

(P) With CONSULT-II

1. Start engine.

2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.

3. Make sure that each circuit produces a momentary engine speed drop.


	ACTIVE TEST		
	POWER BALANCE		
	MONITOR		
	ENG SPEED	XXX rpm	
	MAS A/F SE-B1	xxx v	
-			
<u> </u>			
L		. I	PBIB0133E

⋈ Without CONSULT-II

1. Start engine.

Listen to each injector operating sound.

Clicking noise should be heard.

OK or NG

OK >> GO TO 7.

NG >> Perform trouble diagnosis for <u>EC-573</u>, "INJECTOR CIRCUIT".

Revision: May 2004 EC-229 2002 Altima

DTC P0172 FUEL INJECTION SYSTEM FUNCTION

[QR]

7. CHECK INJECTOR

- 1. Remove injector assembly. Refer to <u>EM-31, "FUEL INJECTOR AND FUEL TUBE"</u>. Keep fuel hose and all injectors connected to injector gallery.
- 2. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- Disconnect injector harness connectors.
 The injector harness connectors should remain connected.
- 4. Disconnect all ignition coil harness connectors.
- 5. Prepare pans or saucers under each injectors.
- Crank engine for about 3 seconds. Make sure fuel does not drip from injector.

OK or NG

OK (Does not drip.)>>GO TO 8.

NG (Drips.)>>Replace the injectors from which fuel is dripping. Always replace O-ring with new one.

8. CHECK INTERMITTENT INCIDENT

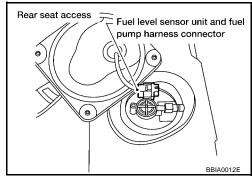
Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0181 FTT SENSOR

PFP:22630

Component Description


UBS002SM

EC

Е

Н

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Fluid temperature °C (°F)	Voltage* V	Resistance $k\Omega$
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} These data are reference values and are measured between ECM terminal 70 (Fuel tank temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may lead to ECM's transistor damage. Use ground other than ECM, such as engine ground.

On Board Diagnosis Logic

UBS002SN

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0181 0181	Fuel tank temperature sensor circuit range/ performance	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signals from engine coolant temperature sensor and intake air temperature sensor.	 Harness or connectors (The sensor circuit is open or shorted) Fuel tank temperature sensor

DTC Confirmation Procedure

UBS002SO

M

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II

- 1. Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Check "COOLAN TEMP/S" value.

 If "COOLAN TEMP/S" is less than 60°C (140°F), the result will be OK.

 If "COOLAN TEMP/S" is above 60°C (140°F), as to the following.

If "COOLAN TEMP/S" is above 60°C (140°F), go to the following step.

- 4. Cool engine down until "COOLAN TEMP/S" signal is less than 60°C (140°F).
- Wait at least 10 seconds.
- 6. If 1st trip DTC is detected, go to EC-232, "Diagnostic Procedure"

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm COOLAN TEMP/S XXX C

B WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P0181 FTT SENSOR

[QR]

Diagnostic Procedure

1. CHECK FUEL TANK TEMPERATURE SENSOR

UBS002SP

UBS002SQ

Refer to EC-232, "Component Inspection".

OK or NG

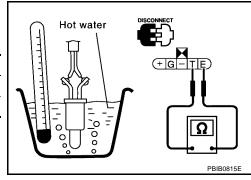
OK >> GO TO 2.

NG >> Replace fuel tank temperature sensor.

2. CHECK INTERMITTENT INCIDENT

Perform <u>EC-129</u>, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" . Refer to <u>EC-234</u>, "Wiring Diagram" .

>> INSPECTION END


Component Inspection FUEL TANK TEMPERATURE SENSOR

1. Remove fuel level sensor unit.

2. Check resistance between fuel level sensor unit and fuel pump terminals **T** and **E** by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance kΩ
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

If NG, replace fuel level sensor unit.

UBS002SR

Removal and Installation FUEL TANK TEMPERATURE SENSOR

Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

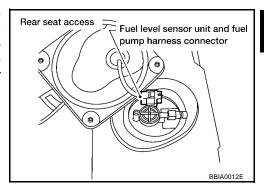
Revision: May 2004 EC-232 2002 Altima

[QR]

DTC P0182, P0183 FTT SENSOR

PFP:22630

Component Description


UBS002SS

EC

Е

Н

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Fluid temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} These data are reference values and are measured between ECM terminal 70 (Fuel tank temperature sensor) and ground.

20 | Acceptable | Seponson | Acceptable | Ac

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may lead to ECM's transistor damage. Use ground other than ECM, such as engine ground.

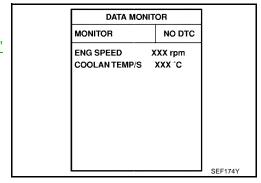
On Board Diagnosis Logic

UBS002ST

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0182 0182	Fuel tank temperature sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0183 0183	Fuel tank temperature sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Fuel tank temperature sensor

DTC Confirmation Procedure

UBS002SU

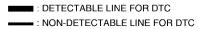

M

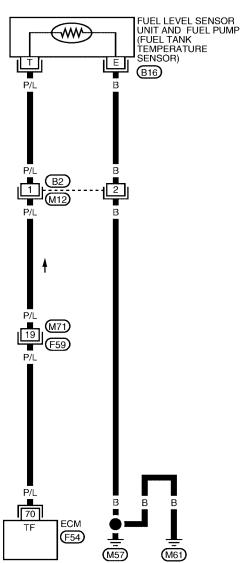
NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

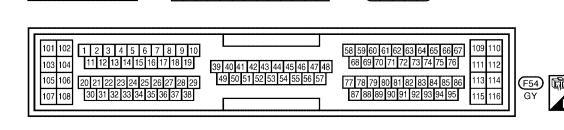
(P) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- If 1st trip DTC is detected, go to <u>EC-235</u>, "<u>Diagnostic Procedure</u>"


WITH GST


Follow the procedure "WITH CONSULT-II" above.

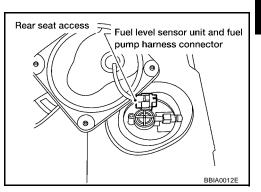
Wiring Diagram


UBS002SV

EC-FTTS-01

1 2 3 4 5 6 7 M12 1 2 3 4 5 6 7 7 8 9 10 11 F59 B16
8 9 10 11 12 13 14 15 16 W 12 13 14 15 16 17 18 19 20 21 22 23 24 W E T - G + GY

BBWA0014E

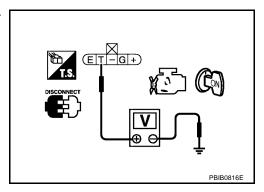

[QR]

UBS002SW

Diagnostic Procedure

1. CHECK POWER SUPPLY

- Turn ignition switch "OFF".
- 2. Disconnect fuel level sensor unit and fuel pump harness connector.
- 3. Turn ignition switch "ON".



Check voltage between fuel level sensor unit and fuel pump terminal **T** and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B2, M12
- Harness connectors M71, F59
- Harness for open or short between ECM and fuel level sensor unit and fuel pump
 - >> Repair harness or connector.

3. CHECK GROUND CIRCUIT

- Turn ignition switch "OFF".
- Check harness continuity between fuel level sensor unit and fuel pump terminal E and body ground. 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B2, M12
- Harness for open or short between fuel level sensor unit and fuel pump and ground.

>> Repair harness or connector.

EC-235 2002 Altima Revision: May 2004

EC

Α

Е

Н

M

UBS002SX

5. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-236, "Component Inspection".

OK or NG

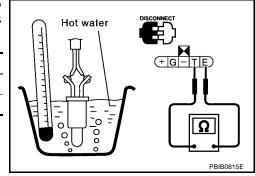
OK >> GO TO 6.

NG >> Replace fuel tank temperature sensor.

6. CHECK INTERMITTENT INCIDENT

Perform EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END


Component Inspection FUEL TANK TEMPERATURE SENSOR

Remove fuel level sensor unit.

2. Check resistance between fuel level sensor unit and fuel pump terminals **T** and **E** by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance k Ω
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

If NG, replace fuel level sensor unit.

UBS002SY

Removal and Installation FUEL TANK TEMPERATURE SENSOR

Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

DTC P0217 COOLANT OVERTEMPERATURE ENRICHMENT PROTECTION

PFP:00019

System Description

UBS002SZ

EC

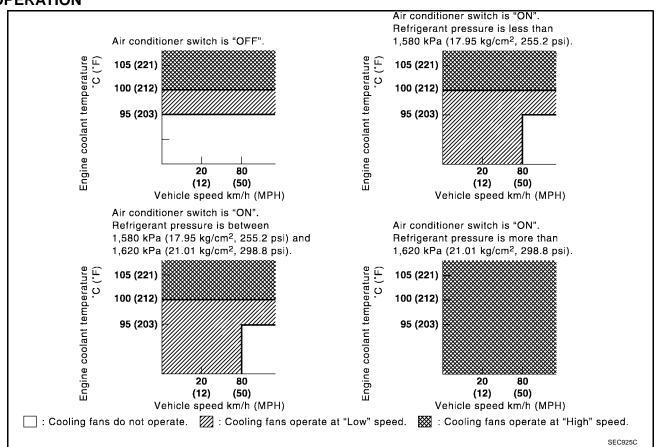
Е

Н

M

NOTE:

If DTC P0217 is displayed with DTC U1000 ,U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-137, "DTC U1000, U1001 CAN COMMUNICATION LINE".


COOLING FAN CONTROL

Sensor	Input Signal to ECM	ECM function	Actuator	
/ehicle speed sensor Vehicle speed*				
Engine coolant temperature sensor	Engine coolant temperature		Cooling fan relay(s)	
Air conditioner switch	Air conditioner "ON" signal*	Cooling fan control		
Ignition switch	Start signal	00111101		
Refrigerant pressure sensor	Refrigerant pressure			

^{*:} These signals are sent to ECM through CAN communication line.

The ECM controls the cooling fan corresponding to the vehicle speed, engine coolant temperature, refrigerant pressure, and air conditioner ON signal. The control system has 3-step control [HIGH/LOW/OFF]. The ECM controls cooling fan relays through CAN communication line.

OPERATION

CONSULT-II Reference Value in Data Monitor Mode

UBS002T0

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up, idle	Air conditioner switch: OFF	OFF
AIR COND SIG	the engine	Air conditioner switch: ON (Compressor operates.)	ON

MONITOR ITEM	CONDITION		SPECIFICATION
		Engine coolant temperature is 94°C (201°F) or less	OFF
COOLING FAN	 Engine: After warming up, idle the engine Air conditioner switch: OFF 	Engine coolant temperature is between 95°C (203°F) and 99°C (210°F)	LOW
		Engine coolant temperature is 100°C (212°F) or more	HIGH

On Board Diagnosis Logic

LIBS002T1

This diagnosis checks whether the engine coolant temperature is extraordinary high, even when the load is not heavy.

When malfunction is detected, the malfunction indicator lamp (MIL) will light up even in the first trip.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0217 0217	Engine coolant over temperature condition	Engine coolant temperature is excessively high under normal engine speed.	 Harness or connectors (The cooling fan circuit is open or shorted) Cooling fan Thermostat Improper ignition timing Engine coolant temperature sensor Blocked radiator Blocked front end (Improper fitting of nose mask) Crushed vehicle frontal area (Vehicle frontal is collided but not repaired) Blocked air passage by improper installation of front fog lamp or fog lamps Improper mixture ratio of coolant Damaged bumper For more information, refer to EC-247, "Main 12 Causes of Overheating"

CAUTION:

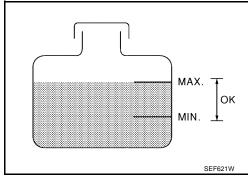
When a malfunction is indicated, be sure to replace the coolant. Refer to MA-14, "Changing Engine Coolant" . Also, replace the engine oil. Refer to LU-7, "Changing Engine Oil" .

- 1. Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Be sure to use coolant with the proper mixture ratio. Refer to MA-13, "ANTI-FREEZE COOLANT MIXTURE RATIO".
- 2. After refilling coolant, run engine to ensure that no water-flow noise is emitted.

Overall Function Check

UBS002T2

Use this procedure to check the overall function of the coolant overtemperature enrichment protection check, a DTC might not be confirmed.


WARNING:

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high-pressure fluid escaping from the radiator.

Wrap a thick cloth around the cap. Carefully remove the cap by turning it a quarter turn to allow builtup pressure to escape. Then turn the cap all the way off.

(P) WITH CONSULT-II

- Check the coolant level and mixture ratio (using coolant tester) in the reservoir tank and radiator.
 - Allow engine to cool before checking coolant level and mixture ratio.
 - If the coolant level in the reservoir and/or radiator is below the proper range, go to EC-242, "Diagnostic Procedure".
 - If the coolant mixture ratio is out of the range of 45 to 55%, replace the coolant in the following procedure MA-14, "Changing Engine Coolant".
- Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute like pouring coolant from a kettle. Be sure to use coolant with the proper mixture ratio. Refer to MA-13, "ANTI-FREEZE COOLANT MIXTURE RATIO".

- b. After refilling coolant, run engine to ensure that no water-flow noise is emitted.
- After checking or replacing coolant, go to step 3 below. C.
- 2. Ask the customer if engine coolant has been added. If it has been added, go to EC-242, "Diagnostic Pro-<u>cedure</u>". After repair, go to the next step.
- 3. Start engine and let it idle.
- Make sure that A/C switch is "OFF" and air conditioner is not operating. If NG, check air conditioner circuit. Refer to MTC-28, "TROUBLE DIAGNOSIS". After repair, go to the next step.
- Perform "ENG COOLANT TEMP" in "ACTIVE TEST" mode with CONSULT-II at idle.
- Set "ENG COOLANT TEMP" to 95°C (203°F) and make sure that cooling fan operates at low speed. If NG, go to EC-242, "Diagnostic Procedure".
- Set "ENG COOLANT TEMP" to 100°C (212°F) and make sure that cooling fan operates at high speed. If NG, go to EC-242, "Diagnostic Procedure". After repair, go to the next step.
- Check for blocked coolant passage.
- Warm up engine to normal operating temperature, then grasp radiator upper hose and lower hose and make sure that coolant flows.
 - If NG, go to EC-242, "Diagnostic Procedure". After repair, go to the next step.
 - Be extremely careful not to touch any moving or adjacent parts.
- Check for blocked radiator air passage.
- When market fog lamps have been installed, check for damaged fans and clogging in the condenser and radiator.
- b. Check the front end for clogging caused by insects or debris.
- Check for improper fitting of front-end cover, damaged radiator grille or bumper, damaged vehicle front. If NG, take appropriate action and then go to the next step.
- Check function of ECT sensor.
 - Refer to EC-175, "Component Inspection".
 - If NG, replace ECT sensor and go to the next step.
- Check ignition timing. Refer to EC-84, "Basic Inspection". Make sure that ignition timing is 15°±5° at idle.
- If NG, refer to EC-84, "Basic Inspection", and then recheck.

WITH GST

- Check the coolant level and mixture ratio (using coolant tester) in the reservoir tank and radiator. Allow engine to cool before checking coolant level and mixture ratio.
 - If the coolant level in the reservoir and/or radiator is below the proper range, and go to EC-242, "Diagnostic Procedure".
 - If the coolant mixture ratio is out of the range of 45 to 55%, replace the coolant in the following procedure MA-14, "Changing Engine Coolant".
- Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute like pouring coolant from a kettle. Be sure to use coolant with the proper mixture ratio. Refer to MA-13, "ANTI-FREEZE COOL-ANT MIXTURE RATIO".
- After refilling coolant, run engine to ensure that no water-flow noise is emitted.

EC-239 2002 Altima Revision: May 2004

EC

Α

Е

Н

M

- After checking or replacing coolant, go to step 3 below.
- 2. Ask the customer if engine coolant has been added. If it has been added, go to <u>EC-242, "Diagnostic Procedure"</u>. After repair, go to the next step.
- 3. Start engine and let it idle.
- 4. Make sure that A/C switch is "OFF" and air conditioner is not operating. If NG, check air conditioner circuit. Refer to MTC-28, "TROUBLE DIAGNOSIS". After repair, go to the next step.
- 5. Turn ignition switch "OFF".
- 6. Disconnect engine coolant temperature sensor harness connector.
- 7. Connect 150Ω resistor to engine coolant temperature sensor.
- Start engine and make sure that cooling fan operates.

Be careful not to overheat engine.

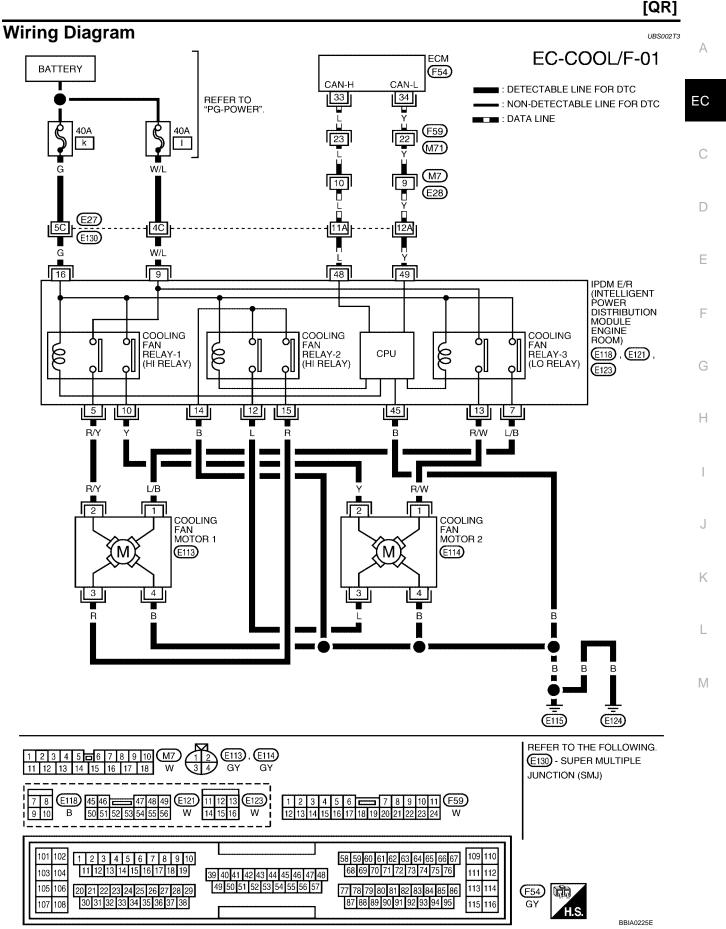
If NG, go to EC-242, "Diagnostic Procedure" . After repair, go to the next step.

- Check for blocked coolant passage.
- a. Warm up engine to normal operating temperature, then grasp radiator upper hose and lower hose and make sure that coolant flows.

If NG, go to EC-242, "Diagnostic Procedure". After repair, go to the next step.

Be extremely careful not to touch any moving or adjacent parts.

- 10. Check for blocked radiator air passage.
- a. When market fog lamps have been installed, check for damaged fans and clogging in the condenser and radiator.
- b. Check the front end for clogging caused by insects or debris.
- c. Check for improper fitting of front-end cover, damaged radiator grille or bumper, damaged vehicle front. If NG, take appropriate action and then go to the next step.
- Check function of ECT sensor.


Refer to EC-175, "Component Inspection".

If NG, replace ECT sensor and go to the next step.

12. Check ignition timing. Refer to <a>EC-84, "Basic Inspection".

Make sure that ignition timing is 15°±5° at idle.

If NG, refer to EC-84, "Basic Inspection", and then recheck.

Diagnostic Procedure

1. INSPECTION START

Do you have CONSULT-II?

Yes or No

Yes >> GO TO 2.

No >> GO TO 4.

2. CHECK COOLING FAN LOW SPEED OPERATION

With CONSULT-II

- 1. Start engine and let it idle.
- 2. Select "COOLING FAN" in "ACTIVE TEST" mode with CONSULT-II and touch "LOW" on the CONSULT-II screen.
- 3. Make sure that cooling fans-1 and -2 operate at low speed.

OK or NG

OK >> GO TO 3.

NG >> Check cooling fan low speed control circuit. (Go to <u>EC-245</u>, "PROCEDURE A" .)

ACTIVE TE	ST	
COOLING FAN	LOW	
MONITOF	}	
COOLAN TEMP/S	XXX °C	
		SEF784Z

UBS002T4

3. CHECK COOLING FAN HIGH SPEED OPERATION

(II) With CONSULT-II

- 1. Touch "HIGH" on the CONSULT-II screen.
- 2. Make sure that cooling fans-1 and -2 operate at higher speed than low speed.

OK or NG

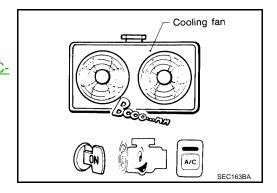
NG

OK >> GO TO 6.

>> Check cooling fan high speed control circuit. (Go to <u>EC-247</u>, "PROCEDURE B" .)

ACTIVE TE	ST	
COOLING FAN	HIGH	
MONITOR	1	
COOLAN TEMP/S	XXX °C	
		SEF785Z

4. CHECK COOLING FAN LOW SPEED OPERATION


Without CONSULT-II

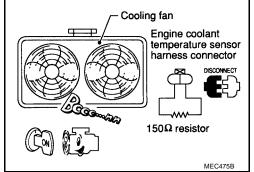
- 1. Start engine and let it idle.
- 2. Turn air conditioner switch "ON".
- Turn blower fan switch "ON".
- 4. Make sure that cooling fans-1 and -2 operate at low speed.

OK or NG

OK >> GO TO 5.

NG >> Check cooling fan low speed control circuit. (Go to <u>EC-</u>245, "PROCEDURE A" .)

5. CHECK COOLING FAN HIGH SPEED OPERATION


⊗ Without CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Turn air conditioner switch and blower fan switch "OFF".
- 3. Disconnect engine coolant temperature sensor harness connector.
- 4. Connect 150Ω resistor to engine coolant temperature sensor harness connector.
- 5. Restart engine and make sure that cooling fans-1 and -2 operate at higher speed than low speed.

OK or NG

OK >> GO TO 6.

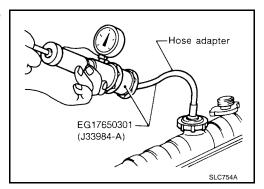
NG >> Check cooling fan high speed control circuit. (Go to <u>EC-</u>247, "PROCEDURE B" .)

6. CHECK COOLING SYSTEM FOR LEAK

Apply pressure to the cooling system with a tester, and check if the pressure drops.

Testing pressure: 157 kPa (1.6 kg/cm², 23 psi)

CAUTION:


Higher than the specified pressure may cause radiator damage. Pressure should not drop.

OK or NG

OK >> GO TO 7.

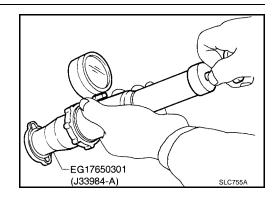
NG >> Check the following for leak.

- Hose
- Radiator
- Water pump Refer to <u>CO-18</u>, "WATER PUMP"

7. CHECK RADIATOR CAP

Apply pressure to cap with a tester.

Radiator cap relief pressure: 59 - 98 kPa


(0.6 - 1.0 kg/cm², 9 - 14

psi)

OK or NG

OK >> GO TO 8.

NG >> Replace radiator cap.

EC

Е

Н

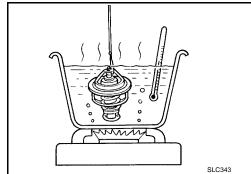
L

M

8. CHECK THERMOSTAT

- 1. Check valve seating condition at normal room temperatures. **It should seat tightly.**
- 2. Check valve opening temperature and valve lift.

Valve opening temperature: 82°C (180°F) [standard]
Valve lift: More than 8 mm/95°C (0.31 in/203°F)


3. Check if valve is closed at 5°C (9°F) below valve opening temperature.

For details, refer to $\underline{\text{CO-20}}$, "THERMOSTAT AND THERMOSTAT HOUSING" .

OK or NG

OK >> GO TO 9.

NG >> Replace thermostat.

9. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-175, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace engine coolant temperature sensor.

10. CHECK MAIN 12 CAUSES

If the cause cannot be isolated, go to EC-247, "Main 12 Causes of Overheating" .

>> INSPECTION END

PROCEDURE A


1. CHECK POWER SUPPLY CIRCUIT

- Turn ignition switch "OFF". 1.
- 2. Disconnect IPDM E/R harness connectors E118 and E123.
- Check voltage between IPDM E/R terminals 9, 16 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. >> GO TO 2. NG

2. DETECT MALFUNCTIONING PART

Check the following.

- 40A fusible links
- Harness connectors E27, E130
- Harness for open or short between IPDM E/R and battery
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK COOLING FAN MOTORS CIRCUIT

- Disconnect cooling fan motor-1 harness connector and cooling fan motor-2 harness connector.
- 2. Check harness continuity between cooling fan motor-1 terminal 1 and IPDM E/R terminal 7, cooling fan motor-1 terminal 4 and body ground. Refer to wiring diagram.

Continuity should exist.

- 3. Also check harness for short to ground and short to power.
- Check harness continuity between cooling fan motor-2 terminal 1 and IPDM E/R terminal 13, cooling fan motor-2 terminal 4 and body ground.

Refer to wiring diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK COOLING FAN MOTORS

Refer to EC-248, "COOLING FAN MOTORS-1 AND -2".

OK or NG

OK >> GO TO 5.

NG >> Replace cooling fan motors.

Radiator Vehicle front Cooling fan motor-1 harness connector Cooling fan motor-2 harness connector BBIA0078E

EC

Α

Е

Н

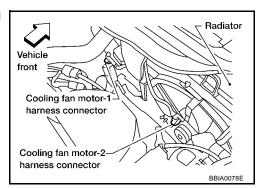
M

5. CHECK INTERMITTENT INCIDENT

Perform EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" . OK or NG $\,$

OK >> Replace IPDM E/R. Refer to <u>PG-14, "IPDM E/R (INTELLIGENT POWER DISTRIBUTION MOD-ULE ENGINE ROOM)"</u>.

NG >> Repair or replace harness or connector.


PROCEDURE B

1. CHECK COOLING FAN MOTORS CIRCUIT

- 1. Turn ignition switch "OFF".
- Disconnect cooling fan motor-1 harness connector and cooling fan motor-2 harness connector.
- Check harness continuity between the following; cooling fan motor-1 terminal 2 and IPDM E/R terminal 5, cooling fan motor-1 terminal 3 and IPDM E/R terminal 15, IPDM E/R terminal 14 and body ground. Refer to wiring diagram.

Continuity should exist.

- 4. Also check harness for short to ground and short to power.
- Check harness continuity between the following; cooling fan motor-2 terminal 2 and IPDM E/R terminal 10, cooling fan motor-2 terminal 3 and IPDM E/R terminal 12, IPDM E/R terminal 14 and body ground. Refer to wiring diagram.

Continuity should exist.

6. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 2.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

2. CHECK COOLING FAN MOTORS

Refer to EC-248, "Component Inspection".

OK or NG

OK >> GO TO 3.

NG >> Replace cooling fan motors.

3. CHECK INTERMITTENT INCIDENT

Perform EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK

>> Replace IPDM E/R. Refer to PG-14, "IPDM E/R (INTELLIGENT POWER DISTRIBUTION MOD-ULE ENGINE ROOM)".

NG >> Repair or replace harness connectors.

Main 12 Causes of Overheating

UBS002T5

Α

EC

Е

Н

K

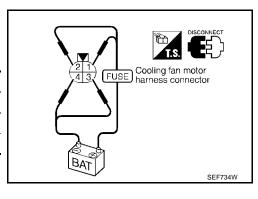
M

Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	Blocked radiatorBlocked condenserBlocked radiator grilleBlocked bumper	Visual	No blocking	_
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See MA-13, "ANTI- FREEZE COOLANT MIX- TURE RATIO" .
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See MA-14, "Changing Engine Coolant".
	4	Radiator cap	Pressure tester	59 - 98 kPa (0.6 - 1.0 kg/cm ² , 9 - 14 psi) (Limit)	See <u>CO-11</u> , "CHECKING RADIATOR CAP".

Engine	Step	Inspection item	Equipment	Standard	Reference page
ON* ²	5	Coolant leaks	Visual	No leaks	See <u>CO-10</u> , "CHECKING COOLING SYSTEM FOR LEAKS".
ON* ²	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	See CO-20, "THERMO- STAT AND THERMO- STAT HOUSING", and CO-12, "RADIATOR".
ON* ¹	7	Cooling fan	CONSULT-II	Operating	See trouble diagnosis for DTC P0217 (EC-237).
OFF	8	Combustion gas leak	Color checker chemical tester 4 Gas analyzer	Negative	_
ON* ³	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	See MA-14, "Changing Engine Coolant" .
OFF* ⁴	10	Coolant return from reservoir tank to radia- tor	Visual	Should be initial level in reservoir tank	See CO-10, "CHECKING RESERVOIR LEVEL".
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	See <u>EM-55</u> , "CYLINDER <u>HEAD"</u> .
	12	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	See <u>EM-55</u> , "CYLINDER HEAD" .

^{*1:} Turn the ignition switch ON.

For more information, refer to CO-7, "OVERHEATING CAUSE ANALYSIS" .


Component Inspection COOLING FAN MOTORS-1 AND -2

- 1. Disconnect cooling fan motor harness connectors.
- 2. Supply cooling fan motor terminals with battery voltage and check operation.

	Speed	Term	ninals
Speed		(+)	(–)
Cooling fan motor	Low	1	4
Cooling latt filotol	High	1, 2	3, 4

Cooling fan motor should operate.

If NG, replace cooling fan motor.

UBS002T6

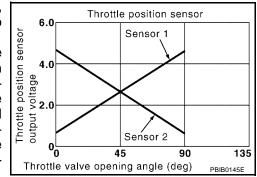
^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

[QR]

UBS002T7


DTC P0221 TP SENSOR

PFP:16119

Component Description

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

UBS002T8

Specification data are reference values.

MONITOR ITEM	CON	SPECIFICATION	
THRTL SEN1	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	More than 0.36V
THRTL SEN2	Shift lever:D (A/T model)1st (M/T model)	Accelerator pedal: Fully depressed	Less than 4.75V

On Board Diagnosis Logic

UBS002T9

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0221 0221	Throttle position sensor circuit range/performance problem	Rationally incorrect voltage is sent to ECM compared with the signals from TP sensor 1 and TP sensor 2.	 Harness or connector (The TP sensor 1 and 2 circuit is open or shorted.) Electric throttle control actuator (TP sensor 1 and 2)

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10

The ECM regulates an opening speed of approx. 5 seconds to an opening of 10 degrees.

So, the acceleration will be poor.

DTC Confirmation Procedure

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

WITH CONSULT-II

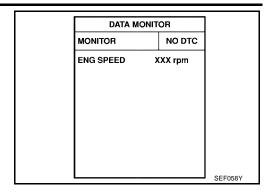
1. Turn ignition switch "ON".

EC

А

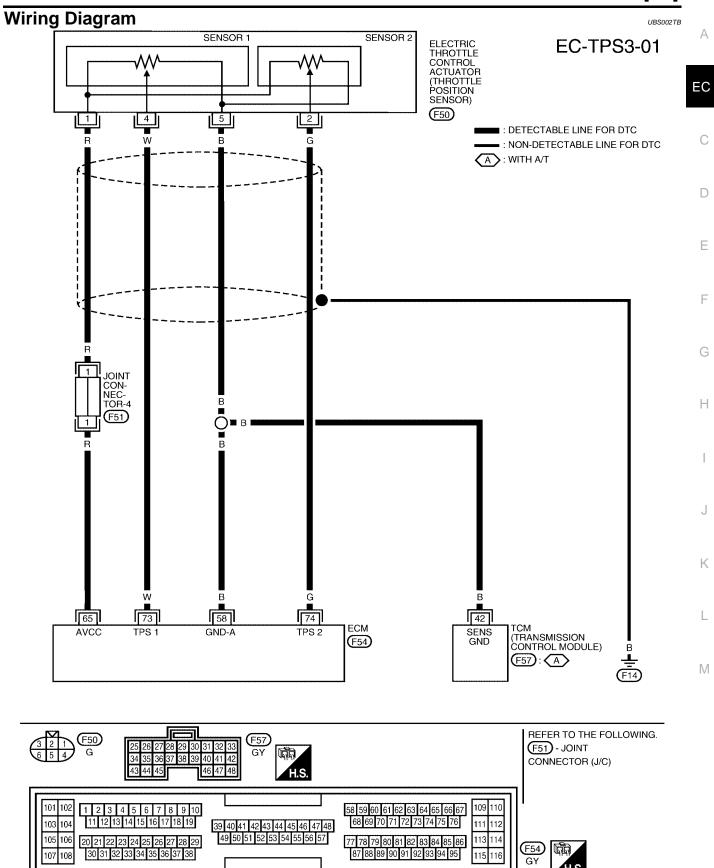
Е

M


UBS002TA

2002 Altima

DTC P0221 TP SENSOR


[QR]

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-252, "Diagnostic Procedure" .

WITH GST

Follow the procedure "WITH CONSULT-II" above.

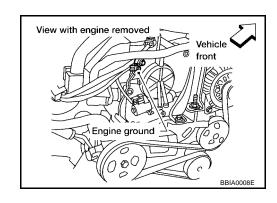
BBWA0189E

UBS002TC

CAUTION:

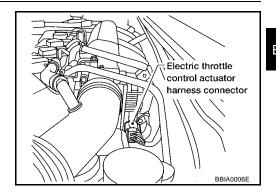
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
58	В	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
65	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V
73	w	Throttle position sensor 1	 [Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal fully released 	More than 0.36V
			 [Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal fully depressed 	Less than 4.75V
74	G	Throttle position sensor 2	 [Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal fully released 	Less than 4.75V
			 [Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal fully depressed 	More than 0.36V


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

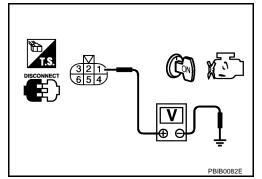
1. Turn ignition switch "OFF".


2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch "ON".



Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

>> GO TO 4. OK NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-4
- Harness for open or short between electric throttle control actuator and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

f 4. CHECK THROTTLE POSITION SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- 2. Check harness continuity between electric throttle control actuator terminal 5 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between electric throttle control actuator and ECM
- Harness for open or short between electric throttle control actuator and TCM

>> Repair open circuit or short to ground or short to power in harness or connectors.

EC

D

Е

K

M

6. CHECK THROTTLE POSITION SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 73 and electric throttle control actuator terminal 4, ECM terminal 74 and electric throttle control actuator terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK THROTTLE POSITION SENSOR

Refer to EC-254, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> GO TO 8.

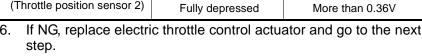
8. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-49, "Throttle Valve Closed Position Learning".
- 3. Perform EC-49, "Idle Air Volume Learning".

>> INSPECTION END

9. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection THROTTLE POSITION SENSOR

UBS002TD

- 1. Reconnect all harness connectors disconnected.
- 2. Perform EC-49, "Throttle Valve Closed Position Learning".
- Turn ignition switch "ON".
- 4. Set selector lever to "D" position (A/T models) or "1st" position (M/T models).
- Check voltage between ECM terminals 73 (TP sensor 1), 74 (TP sensor 2) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
73	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
74	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- Perform EC-49, "Throttle Valve Closed Position Learning".
- 8. Perform <u>EC-49</u>, "Idle Air Volume Learning".

DTC P0221 TP SENSOR

[QR]

Remove and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-18, "INTAKE MANIFOLD".

UBS002TE

EC

Α

D

С

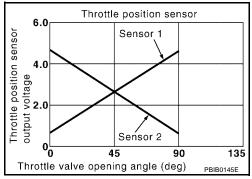
Е

G

Н

M

DTC P0222, P0223 TP SENSOR


PFP:16119

Component Description

UBS002TF

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

UBS002TG

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	More than 0.36V
THRTL SEN1	Shift lever:D (A/T model)1st (M/T model)	Accelerator pedal: Fully depressed	Less than 4.75V

On Board Diagnosis Logic

UBS002TH

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0222 0222	Throttle position sensor 1 circuit low input	An excessively low voltage from the TP sensor 1 is sent to ECM.	Harness or connectors (The TP sensor 1 circuit is open or
P0223 0223	Throttle position sensor 1 circuit high input	An excessively high voltage from the TP sensor 1 is sent to ECM.	shorted.) • Electric throttle control actuator (TP sensor 1)

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters in fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

DTC Confirmation Procedure

UBS002TI

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

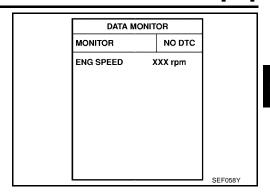
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(III) WITH CONSULT-II

1. Turn ignition switch "ON".

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.


The ECM regulates an opening speed of approx. 5 seconds to an opening of 10 degrees.

So, the acceleration will be poor.

DTC P0222, P0223 TP SENSOR

[QR]

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-259, "Diagnostic Procedure".

WITH GST

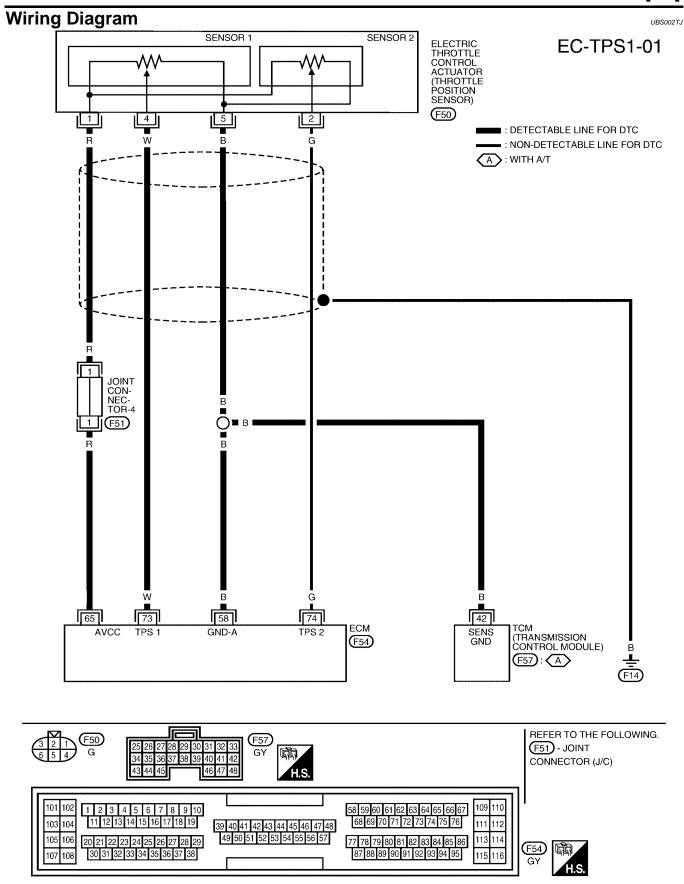
Follow the procedure "WITH CONSULT-II" above.

EC

Α

D

С


Е

Н

<

-

M

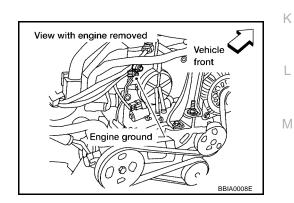
BBWA0024E

UBS002TK

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

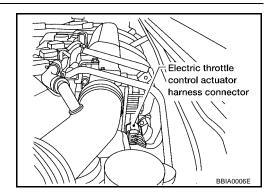
					_
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
58	В	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	С
65	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V	=
70	73 W Throttle position sensor 1		 [Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal fully released 	More than 0.36V	D E
73		Throttle position sensor 1	 [Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal fully depressed 	Less than 4.75V	F
			 [Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal fully released 	Less than 4.75V	G
74	74 G Throttle position sensor 2	 [Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal fully depressed 	More than 0.36V		


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

1. Turn ignition switch "OFF".

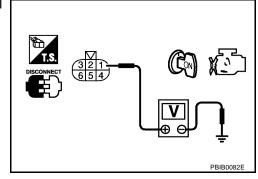
2. Loosen and retighten engine ground screws.


>> GO TO 2.

Revision: May 2004 EC-259 2002 Altima

2. CHECK THROTTLE POSITION SENSOR 1 POWER SUPPLY CIRCUIT

- Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch "ON".



 Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-4
- Harness for open or short between electric throttle control actuator and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK THROTTLE POSITION SENSOR 1 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between electric throttle control actuator terminal 5 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between electric throttle control actuator and ECM
- Harness for open or short between electric throttle control actuator and TCM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

$6.\,$ check throttle position sensor 1 input signal circuit for open and short

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 73 and electric throttle control actuator terminal 4. Refer to Wiring Diagram.

EC

Α

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

/. CHECK THROTTLE POSITION SENSOR

Refer to EC-261, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> GO TO 8.

Е

8. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform <u>EC-49</u>, "Throttle Valve Closed Position Learning".
- Perform EC-49, "Idle Air Volume Learning".

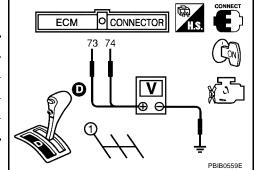
Н

>> INSPECTION END

9. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection THROTTLE POSITION SENSOR

LIBS002TI

M

- Reconnect all harness connectors disconnected.
- 2. Perform EC-49, "Throttle Valve Closed Position Learning".
- Turn ignition switch "ON". 3.
- Set selector lever to "D" position (A/T models) or "1st" position (M/T models). 4.
- Check voltage between ECM terminals 73 (TP sensor 1), 74 (TP sensor 2) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
73	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
74	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- If NG, replace electric throttle control actuator and go to the next step.
- Perform EC-49, "Throttle Valve Closed Position Learning". 7.
- Perform EC-49, "Idle Air Volume Learning".

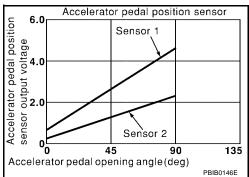
Remove and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-18, "INTAKE MANIFOLD".

EC-261 Revision: May 2004 2002 Altima

UBS002TM

DTC P0226 APP SENSOR


PFP:18002

Component Description

UBS002TN

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

UBS002TO

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN1	Ignition switch: ON	Accelerator pedal: Fully released	0.41 - 0.71V
ACCEL SEN2 (engine stopped)	(engine stopped)	Accelerator pedal: Fully depressed	More than 4.2V
CLSD THL POS	- Ignition switch: ON	Accelerator pedal: Fully released	ON
CLSD THE POS	Ignition switch: ON	Accelerator pedal: Slightly depressed	OFF

On Board Diagnosis Logic

UBS002TP

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0226 0226	Accelerator pedal position sensor circuit range/performance problem	Rationally incorrect voltage is sent to ECM compared with the signals from APP sensor 1 and APP sensor 2.	 Harness or connector (The APP sensor 1 and 2 circuit is open or shorted.) Accelerator pedal position sensor 1 and 2

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters in fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

DTC Confirmation Procedure

UBS002TQ

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

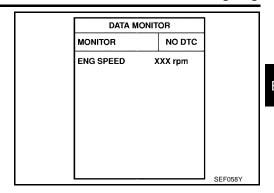
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

1. Turn ignition switch "ON".

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.


The ECM regulates an opening speed of approx. 5 seconds to an opening of 10 degrees.

So, the acceleration will be poor.

DTC P0226 APP SENSOR

[QR]

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-265, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

С

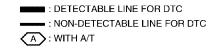
Α

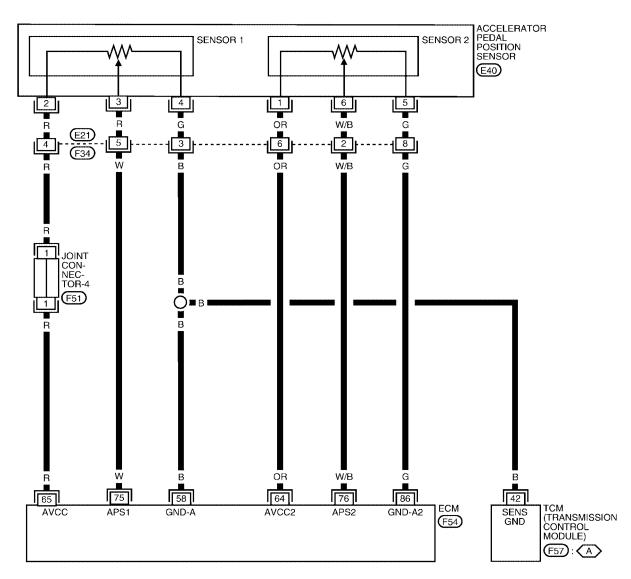
D

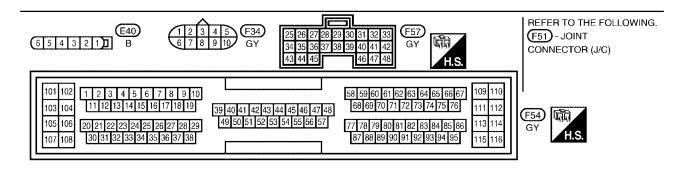
 \cup

Е

Н


L


M


Wiring Diagram

UBS002TR

EC-APPS3-01

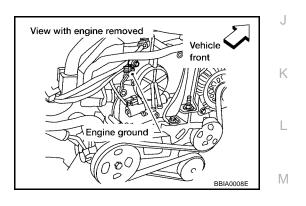
BBWA0561E

UBS002TS

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

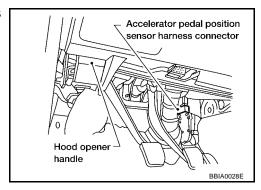
_		-		-	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
58	В	Sensors' ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	С
64	OR	Accelerator pedal position sensor 2 power supply	[Ignition switch "ON"]	Approximately 2.5V	D
65	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V	
75	W	Accelerator pedal posi-	[Ignition switch "ON"] • Accelerator pedal fully released	0.41 - 0.71V	Е
75	VV	tion sensor 1	[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 4.2V	F
76 W/B	Accelerator pedal position sensor 2	tion sensor 2 [Ignition switch "ON"]		0.21 - 0.36V	0
			[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 2.1V	G
86	G	Accelerator pedal position sensor 2 ground	[Ignition switch "ON"]	Approximately 0V	Н


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

1. Turn ignition switch "OFF".

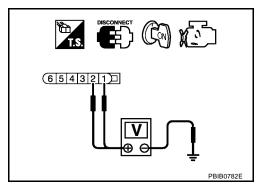
2. Loosen and retighten engine ground screws.


>> GO TO 2.

Revision: May 2004 EC-265 2002 Altima

2. Check app sensor power supply circuit

- Disconnect accelerator pedal position (APP) sensor harness connector.
- 2. Turn ignition switch "ON".



3. Check voltage between APP sensor terminals 1, 2 and ground with CONSULT-II or tester.

APP sensor terminal	Voltage (V)
1	Approximately 2.5
2	Approximately 5

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. detect malfunctioning part

Check the following.

- Harness connectors E21, F34
- Joint connector-4
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK APP SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between APP sensor terminal 4, 5 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E21, F34
- Harness for open or short between ECM and accelerator pedal position sensor
- Harness for open or short between TCM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK APP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 75 and APP sensor terminal 3, ECM terminal 76 and APP sensor terminal 6. Refer to Wiring Diagram.

EC

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7. D

Е

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E21, F34
- Harness for open or short between ECM and accelerator pedal position sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK APP SENSOR

Refer to EC-273, "Component Inspection".

OK or NG

OK >> GO TO 9.

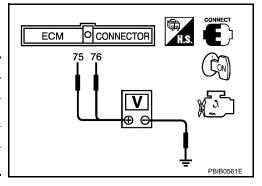
NG >> Replace accelerator pedal assembly.

Н

M

9. CHECK INTERMITTENT INCIDENT

Refer to EC-130, "POWER SUPPLY CIRCUIT FOR ECM".


UBS002TT

>> INSPECTION END

Component Inspection ACCELERATOR PEDAL POSITION SENSOR

- Reconnect all harness connectors disconnected.
- 2. Turn ignition switch "ON".
- Check voltage between ECM terminals 75 (APP sensor 1 signal), 76 (APP sensor 2 signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
75	Fully released	0.41 - 0.71V
(Accelerator pedal position sensor 1)	Fully depressed	More than 4.2V
76 (Accelerator pedal position sensor 2)	Fully released	0.21 - 0.36V
	Fully depressed	More than 2.1V

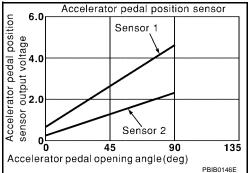
If NG, replace accelerator pedal assembly.

Remove and Installation ACCELERATOR PEDAL

Refer to ACC-2, "ACCELERATOR CONTROL SYSTEM".

UBS002TU

DTC P0227, P0228 APP SENSOR


PFP:18002

Component Description

UBS002TV

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

UBS002TW

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN1	Ignition switch: ON	Accelerator pedal: Fully released	0.41 - 0.71V
ACCEL SENT	(engine stopped)	Accelerator pedal: Fully depressed	More than 4.2V
CLSD THL POS	• Ignition quitable ON	Accelerator pedal: Fully released	ON
CLSD THE POS	Ignition switch: ON	Accelerator pedal: Slightly depressed	OFF

On Board Diagnosis Logic

UBS002TX

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0227 0227	Accelerator pedal position sensor 1 circuit low input	An excessively low voltage from the APP sensor 1 is sent to ECM.	Harness or connectors (The APP sensor 1 circuit is open or shorted.)
P0228 0228	Accelerator pedal position sensor 1 circuit high input	An excessively high voltage from the APP sensor 1 is sent to ECM.	,

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters in fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

So, the acceleration will be poor.

DTC Confirmation Procedure

UBS002TY

NOTE:

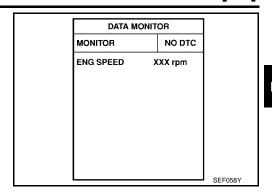
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

WITH CONSULT-II

1. Turn ignition switch "ON".


The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates an opening speed of approx. 5 seconds to an opening of 10 degrees.

DTC P0227, P0228 APP SENSOR

[QR]

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-271, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

С

Α

D

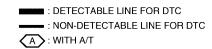
Е

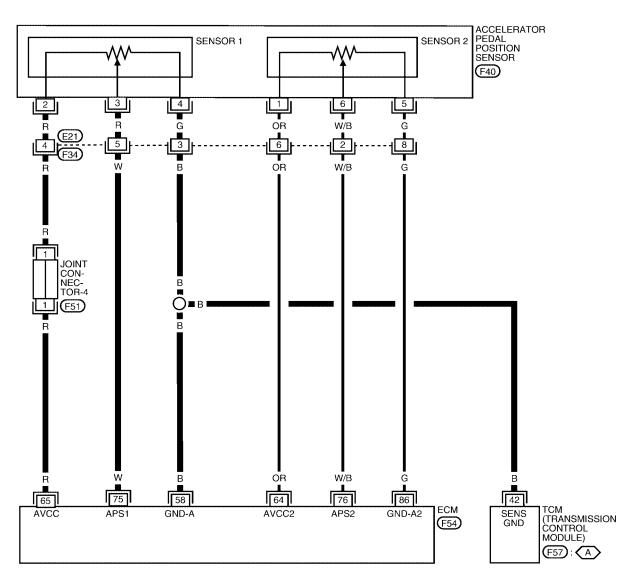
F

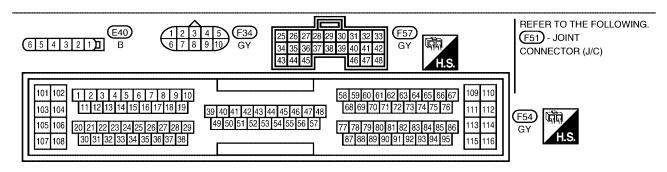
G

Н

<


L


M


Wiring Diagram

JBS002TZ

EC-APPS1-01

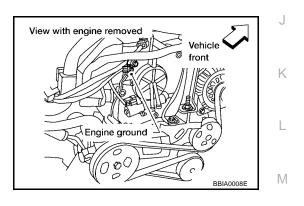
BBWA0045E

UBS002U0

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

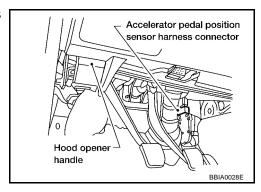
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
58	В	Sensors' ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	С
64	OR	Accelerator pedal position sensor 2 power supply	[Ignition switch "ON"]	Approximately 2.5V	D
65	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V	
75	W	Accelerator pedal posi-	[Ignition switch "ON"] • Accelerator pedal fully released	0.41 - 0.71V	Е
75	VV	tion sensor 1	[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 4.2V	F
76	W/B	W/B Accelerator pedal position sensor 2	[Ignition switch "ON"] • Accelerator pedal fully released	0.21 - 0.36V	
76			[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 2.1V	G
86	G	Accelerator pedal position sensor 2 ground	[Ignition switch "ON"]	Approximately 0V	Н


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

1. Turn ignition switch "OFF".

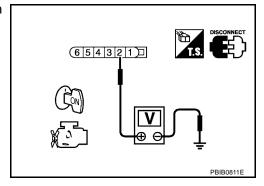
2. Loosen and retighten engine ground screws.


>> GO TO 2.

Revision: May 2004 EC-271 2002 Altima

2. CHECK APP SENSOR 1 POWER SUPPLY CIRCUIT

- Disconnect accelerator pedal position (APP) sensor harness connector.
- 2. Turn ignition switch "ON".



Check voltage between APP sensor terminal 2 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E21, F34
- Joint connector-4
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK APP SENSOR 1 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Check harness continuity between APP sensor terminal 4 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E21, F34
- Harness for open or short between ECM and accelerator pedal position sensor
- Harness for open or short between TCM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK APP SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Disconnect ECM harness connector.

2. Check harness continuity between ECM terminal 75 and APP sensor terminal 3. Refer to Wiring Diagram.

EC

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

D

Е

7. DETECT MALFUNCTIONING PART

Check the following.

Harness connectors E21, F34

Harness for open or short between ECM and accelerator pedal position sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK APP SENSOR

Refer to EC-273, "Component Inspection".

OK or NG

OK >> GO TO 9.

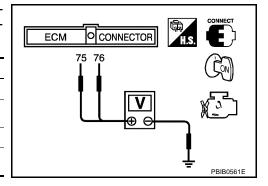
NG >> Replace accelerator pedal assembly.

Н

9. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

M


UBS002111

>> INSPECTION END

Component Inspection ACCELERATOR PEDAL POSITION SENSOR

- Reconnect all harness connectors disconnected.
- 2. Turn ignition switch "ON".
- Check voltage between ECM terminals 75 (APP sensor 1 signal), 76 (APP sensor 2 signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
75	Fully released	0.41 - 0.71V
(Accelerator pedal position sensor 1)	Fully depressed	More than 4.2V
76	Fully released	0.21 - 0.36V
(Accelerator pedal position sensor 2)	Fully depressed	More than 2.1V

If NG, replace accelerator pedal assembly.

Removal and Installation ACCELERATOR PEDAL

Refer to ACC-2, "ACCELERATOR CONTROL SYSTEM".

UBS002U2

[QR]

DTC P0300 - P0304 MULTIPLE CYLINDER MISFIRE, NO. 1 - 4 CYLINDER MIS-**FIRE**

On Board Diagnosis Logic

UBS002U3

When a misfire occurs, engine speed will fluctuate. If the engine speed fluctuates enough to cause the crankshaft position (CKP) sensor (POS) signal to vary, ECM can determine that a misfire is occurring.

Sensor	Input Signal to ECM	ECM function
Crankshaft position sensor (POS)	Engine speed	On board diagnosis of misfire

The misfire detection logic consists of the following two conditions.

One Trip Detection Logic (Three Way Catalyst Damage)

On the first trip that a misfire condition occurs that can damage the three way catalyst (TWC) due to overheating, the MIL will blink.

When a misfire condition occurs, the ECM monitors the CKP sensor (POS) signal every 200 engine revolutions for a change.

When the misfire condition decreases to a level that will not damage the TWC, the MIL will turn off. If another misfire condition occurs that can damage the TWC on a second trip, the MIL will blink. When the misfire condition decreases to a level that will not damage the TWC, the MIL will remain on.

If another misfire condition occurs that can damage the TWC, the MIL will begin to blink again.

Two Trip Detection Logic (Exhaust quality deterioration)

For misfire conditions that will not damage the TWC (but will affect vehicle emissions), the MIL will only light when the misfire is detected on a second trip. During this condition, the ECM monitors the CKP sensor signal every 1,000 engine revolutions.

A misfire malfunction can be detected on any one cylinder or on multiple cylinders.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0300 0300	Multiple cylinder misfire detected	Multiple cylinder misfire.	Improper spark plug Insufficient compression
P0301 0301	No.1 cylinder misfire detected	No. 1 cylinder misfires.	Incorrect fuel pressure The injector circuit is open or shorted
P0302 0302	No. 2 cylinder misfire detected	No. 2 cylinder misfires.	Fuel injectors Intake air leak
P0303 0303	No. 3 cylinder misfire detected	No. 3 cylinder misfires.	The ignition signal circuit is open or shorted
P0304 0304	No. 4 cylinder misfire detected	No. 4 cylinder misfires.	Lack of fuelDrive plate or flywheelHeated oxygen sensor 1

DTC Confirmation Procedure

UBS002U4

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(III) WITH CONSULT-II

- Turn ignition switch "ON", and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 10 seconds.

[QR]

4.	Start engine again and drive at 1,500 to 3,000 rpm for at least 3
	minutes.

Hold the accelerator pedal as steady as possible.

NOTE:

Refer to the freeze frame data for the test driving conditions.

5. If 1st trip DTC is detected, go to <u>EC-275, "Diagnostic Procedure"</u>

DATA MONITOR

MONITOR

NO DTC

ENG SPEED XXX rpm
COOLAN TEMP/S XXX 'C
VHCL SPEED SE XXX km/h
B/FUEL SCHDL XXX msec

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

1. CHECK FOR INTAKE AIR LEAK

- 1. Start engine and run it at idle speed.
- 2. Listen for the sound of the intake air leak.

OK or NG

OK >> GO TO 2.

NG >> Discover air leak location and repair.

2. CHECK FOR EXHAUST SYSTEM CLOGGING

Stop engine and visually check exhaust tube, three way catalyst and muffler for dents.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace it.

-

Α

EC

D

Е

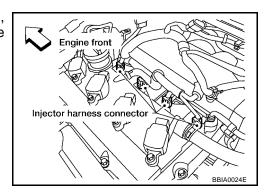
Н

UBS002U5

M

[QR]

3. perform power balance test


(P) With CONSULT-II

- 1. Perform "POWER BALANCE" in "ACTIVE TEST" mode.
- 2. Is there any cylinder which does not produce a momentary engine speed drop?

ACTIVE TES	ST	
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		PBIB0133E

Without CONSULT-II

When disconnecting each injector harness connector one at a time, is there any cylinder which does not produce a momentary engine speed drop?

Yes or No

Yes >> GO TO 4. No >> GO TO 7.

4. CHECK INJECTOR

Does each injector make an operating sound at idle? Yes or No

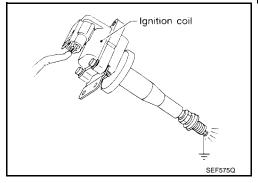
Yes >> GO TO 5.

No >> Check injector(s) and circuit(s). Refer to <u>EC-573</u>, "INJECTOR CIRCUIT".

At idle Click
Click
Click
Click
Click
Suitable tool

[QR]

5. CHECK IGNITION SPARK


- 1. Disconnect ignition coil assembly from rocker cover.
- 2. Connect a known good spark plug to the ignition coil assembly.
- 3. Place end of spark plug against a suitable ground and crank engine.
- 4. Check for spark.

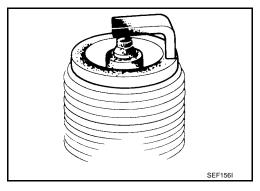
OK or NG

OK >> GO TO 6.

NG >> Check

>> Check ignition coil, power transistor and their circuits. Refer to EC-553, "IGNITION SIGNAL".

6. CHECK SPARK PLUGS


Remove the spark plugs and check for fouling, etc.

OK or NG

OK >> GO TO 7.

NG

>> Repair or replace spark plug(s) with standard type one(s). For spark plug type, refer to MA-19, "Changing Spark Plugs (Platinum - Tipped Type)".

7. CHECK COMPRESSION PRESSURE

Check compression pressure. Refer to EM-55, "CHECKING COMPRESSION PRESSURE".

 Standard:
 1,190 kPa (12.1 kg/cm², 172 psi)/250 rpm

 Minimum:
 990 kPa (10.1 kg/cm², 144 psi)/250 rpm

 Difference between each
 98 kPa (1.0 kg/cm², 14 psi)/250 rpm

cylinder:

Cyllilaer

OK or NG

OK >> GO TO 8.

NG >> Check pistons, piston rings, valves, valve seats and cylinder head gaskets.

8. CHECK FUEL PRESSURE

- Install all removed parts.
- 2. Release fuel pressure to zero. Refer to EC-51, "FUEL PRESSURE RELEASE" .
- 3. Install fuel pressure gauge and check fuel pressure. Refer to EC-51, "Fuel Pressure Check".

At idle: Approx. 350 kPa (3.7 kg/cm², 51 psi)

OK or NG

OK >> GO TO 9.

NG >> Follow the construction of "FUEL PRESSURE CHECK".

EC

Е

_

Н

Κ

L

M

IV

[QR]

9. CHECK IGNITION TIMING

Check the following items. Refer to EC-84, "Basic Inspection".

Items	Specifications		
Target idle speed	A/T	700 \pm 50 rpm (in "P" or "N" position)	
rarger rule speed	M/T	700 ± 50 rpm	
Ignition timing	A/T	15 ± 5° BTDC (in "P" or "N" position)	
ignition timing	M/T	15 ± 5° BTDC	

OK or NG

OK >> GO TO 10.

NG >> Follow the "Basic Inspection".

10. CHECK HEATED OXYGEN SENSOR 1

Refer to EC-188, "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> GO TO 11.

11. CHECK MASS AIR FLOW SENSOR

(P) With CONSULT-II

Check mass air flow sensor signal in "DATA MONITOR" mode with CONSULT-II.

1.4 - 4.0 g·m/sec: at idling 4.0 - 10.0 g·m/sec: at 2,500 rpm

With GST

Check mass air flow sensor signal in MODE 1 with GST.

1.4 - 4.0 g·m/sec: at idling 4.0 - 10.0 g·m/sec: at 2,500 rpm

OK or NG

NG

OK >> GO TO 12.

>> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-160, "DTC P0102, P0103 MAF SENSOR".

12. CHECK SYMPTOM MATRIX CHART

Check items on the rough idle symptom in EC-89, "Symptom Matrix Chart".

OK or NG

OK >> GO TO 13.

NG >> Repair or replace.

13. ERASE THE 1ST TRIP DTC

Some tests may cause a 1st trip DTC to be set.

Erase the 1st trip DTC from the ECM memory after performing the tests. Refer to <u>EC-67</u>, "HOW TO ERASE <u>EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.

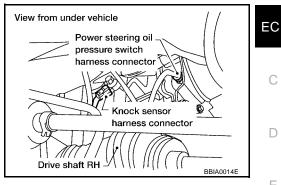
>> GO TO 14.

14. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0327, P0328 KS


PFP:22060

Component Description

UBS002U6

Α

The knock sensor is attached to the cylinder block. It senses engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM.

On Board Diagnosis Logic

LIBS002LI7

Е

M

The MIL will not light for knock sensor malfunction.

DTC No.	Trouble Diagnosis Name	DTC Detected Condition	Possible Cause
P0327 0327	Knock sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0328 0328	Knock sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Knock sensor

DTC Confirmation Procedure

UBS002U8

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

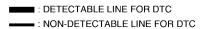
TESTING CONDITION:

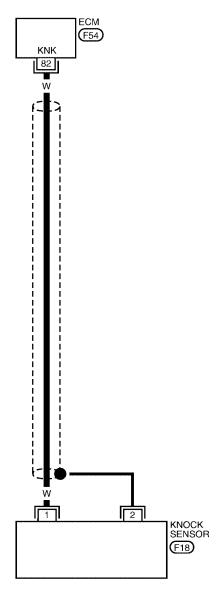
Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(III) WITH CONSULT-II

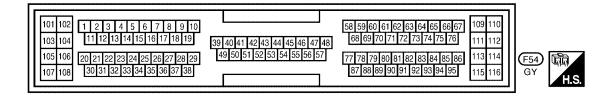
- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II. 1.
- Start engine and run it for at least 5 seconds at idle speed.
- If 1st trip DTC is detected, go to EC-281, "Diagnostic Procedure"

DATA M	ONITOR
MONITOR NO DTC	
ENG SPEED	XXX rpm


WITH GST


Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram


UBS002U9

EC-KS-01

F18

BBWA0016E

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
82	W	Knock sensor	[Engine is running] ● Idle speed	Approximately 2.5V

Diagnostic Procedure

UBS002UA

1. CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT-I

EC

Е

Н

M

- 1. Turn ignition switch "OFF".
- Disconnect ECM harness connector.
- 3. Check resistance between ECM terminal 82 and engine ground. Refer to Wiring Diagram.

NOTE:

It is necessary to use an ohmmeter which can measure more than 10 $\text{M}\Omega.$

Resistance: Approximately 530 - 590k Ω [at 20°C (68°F)]

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> GO TO 2.

2. Check knock sensor input signal circuit-ii

- Disconnect knock sensor harness connector.
- 2. Check harness continuity between ECM terminal 82 and knock sensor terminal 1.

Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power

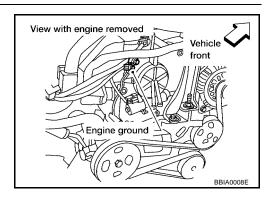
in harness or connectors.

Power steering oil pressure switch harness connector Knock sensor harness connector Drive shaft RH

3. CHECK KNOCK SENSOR

Refer to EC-282, "Component Inspection".

OK or NG


OK >> GO TO 5.

NG >> Replace knock sensor.

4. RETIGHTEN GROUND SCREWS

Loosen and retighten engine ground screws.

>> GO TO 5.

5. CHECK INTERMITTENT INCIDENT

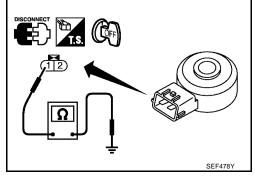
Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection KNOCK SENSOR

UBS002UB

Check resistance between knock sensor terminal 1 and ground.


NOTE:

It is necessary to use an ohmmeter which can measure more than 10 $\text{M}\Omega.$

Resistance: Approximately 530 - 590k Ω [at 20°C (68°F)]

CAUTION:

Do not use any knock sensors that have been dropped or physically damaged. Use only new ones.

UBS002UC

Removal and Installation KNOCK SENSOR

Refer to EM-69, "CYLINDER BLOCK".

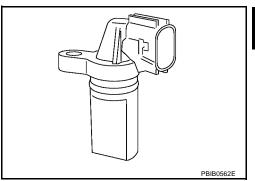
UBS002UD

PFP:23731

DTC P0335 CKP SENSOR (POS)

Component Description

The crankshaft position sensor (POS) is located on the cylinder block rear housing facing the gear teeth (cogs) of the signal plate at the end of the crankshaft. It detects the fluctuation of the engine revolution.


The sensor consists of a permanent magnet and Hall IC.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
ENG SPEED-	 Tachometer: Connect Run engine and compare tachometer indication with the CONSULT-II value. 	Almost the same speed as the CONSULT-II value.

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0335 0335	Crankshaft position sensor (POS) circuit	The crankshaft position sensor (POS) signal is not detected by the ECM during the first few seconds of engine cranking.	Harness or connectors	
		 The proper pulse signal from the crankshaft position sensor (POS) is not sent to ECM while the engine is running. The crankshaft position sensor (POS) signal 	(The sensor circuit is open or shorted)Crankshaft position sensor (POS)Signal plate	
		is not in the normal pattern during engine running.		ŀ

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch "ON".

(II) WITH CONSULT-II

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2. Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.
- If 1st trip DTC is detected, go to EC-286, "Diagnostic Procedure"

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm

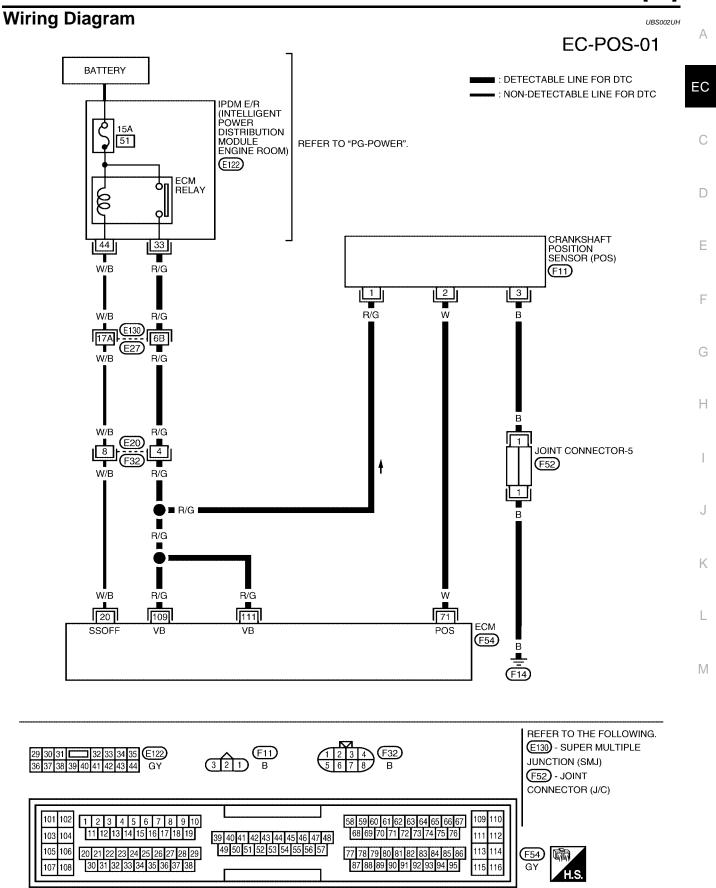
EC

Α

Е

LIBS002LIE

UBS002UF


Н

DTC P0335 CKP SENSOR (POS)

[QR]

WITH GST

Follow the procedure "WITH CONSULT-II" above.

BBWA0017E

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
71	W	Crankshaft position sensor (POS)	[Engine is running] • Warm-up condition • Idle speed	Approximately 3V★ → SV/Div 1 me/Div T PBIB0527E
			[Engine is running] ● Engine speed is 2,000 rpm	Approximately 3V★ → 5.0 V/Div 1 ma/Div PBIB0528E

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

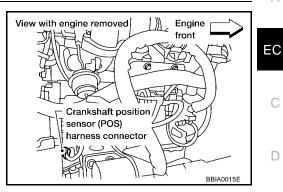
Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

UBS002UI

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

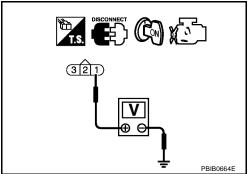

Α

Е

Н

$2.\,$ check crankshaft position (ckp) sensor (pos) power supply circuit

- Disconnect crankshaft position (CKP) sensor (POS) harness connector.
- Turn ignition switch "ON".


Check voltage between CKP sensor (POS) terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- Harness for open or short between crankshaft position sensor (POS) and ECM
- Harness for open or short between crankshaft position sensor (POS) and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK CKP (POS) GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF". 1.
- Check harness continuity between CKP sensor (POS) terminal 3 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-5
- Harness for open or short between crankshaft position sensor (POS) and engine ground
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

M

6. CHECK CKP SENSOR (POS) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 71 and CKP sensor (POS) terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK CRANKSHAFT POSITION SENSOR (POS)

Refer to EC-288, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace crankshaft position sensor (POS).

8. CHECK GEAR TOOTH

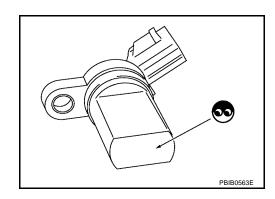
Visually check for chipping signal plate gear tooth.

OK or NG

OK >> GO TO 9.

NG >> Replace the signal plate.

9. CHECK INTERMITTENT INCIDENT


Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection CRANKSHAFT POSITION SENSOR (POS)

UBS002UJ

- 1. Loosen the fixing bolt of the sensor.
- 2. Disconnect crankshaft position sensor (POS) harness connector.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.

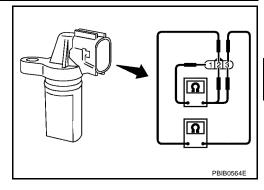
DTC P0335 CKP SENSOR (POS)

[QR]

Α

EC

С


D

Е

5. Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
1 (+) - 2 (-)	
1 (+) - 3 (-)	Except 0 or ∞
2 (+) - 3 (-)	

6. If NG, replace crankshaft position sensor (POS).

UBS002UK

Removal and Installation CRANKSHAFT POSITION SENSOR (POS)

Refer to EM-69, "CYLINDER BLOCK" .

F

Н

|

. .

L

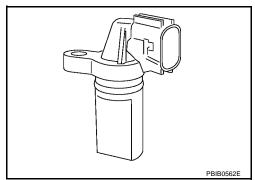
DTC P0340 CMP SENSOR (PHASE)

Component Description

PFP:23731

UBS002UL

The camshaft position sensor (PHASE) senses the retraction with intake valve camshaft to identify a particular cylinder. The camshaft position sensor (PHASE) senses the piston position.


When the crankshaft position sensor (POS) system becomes inoperative, the camshaft position sensor (PHASE) provides various controls of engine parts instead, utilizing timing of cylinder identification signals.

The sensor consists of a permanent magnet and Hall IC.

When engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

On Board Diagnosis Logic

UBS002UM

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0340 0340	Camshaft position sensor (PHASE) circuit	 The cylinder No. signal is not sent to ECM for the first few seconds during engine cranking. The cylinder No. signal is not set to ECM during engine running. The cylinder No. signal is not in the normal pattern during engine running. 	Harness or connectors (The sensor circuit is open or shorted) Camshaft position sensor (PHASE) Camshaft (Intake) Starter motor (Refer to SC-9.) Starting system circuit (Refer to SC-9.) Dead (Weak) battery

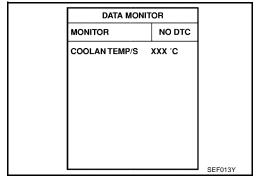
DTC Confirmation Procedure

UBS002UN

NOTE:

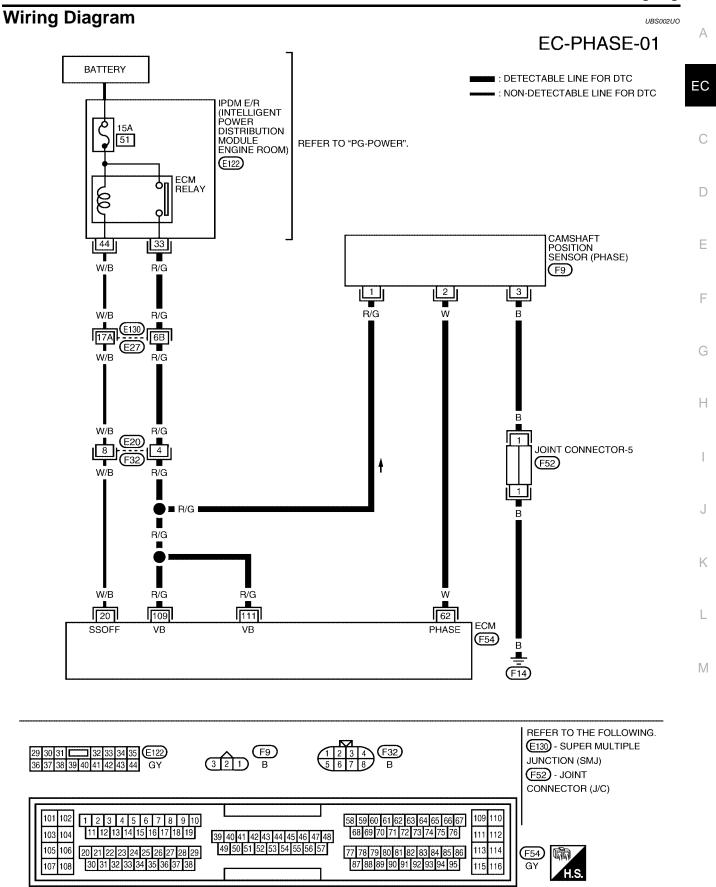
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:


Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch "ON".

(III) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.
- 4. If 1st trip DTC is detected, go to EC-292, "Diagnostic Procedure"


If 1st trip DTC is not detected, go to next step.

- Maintaining engine speed at more than 800 rpm for at least 5 seconds.
- 6. If 1st trip DTC is detected, go to EC-292, "Diagnostic Procedure"

B WITH GST

Follow the procedure "WITH CONSULT-II" above.

BBWA0018E

LIBS002LIP

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
	W	Camshaft position	[Engine is running] • Warm-up condition • Idle speed	1.0 - 4.0V★
62	W	sensor (PHASE)	[Engine is running] ● Engine speed is 2,000 rpm.	1.0 - 4.0 V★ >> 5.0 V/Div 20 ms/Div T PBIB0526E

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

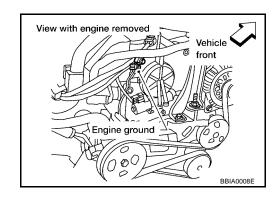
1. CHECK STARTING SYSTEM

Turn ignition switch to "START" position.

Does the engine turn over?

Does the starter motor operate?

Yes or No

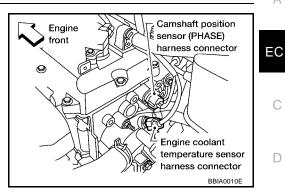

Yes >> GO TO 2.

No >> Check starting system. (Refer to <u>SC-9, "STARTING SYSTEM"</u>.)

2. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch OFF.
- Loosen and retighten engine ground screws.

>> GO TO 3.

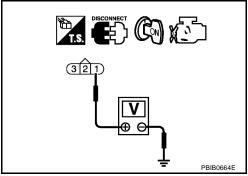


Α

Е

$3.\,$ check camshaft position (cmp) sensor (phase) power supply circuit

- Disconnect camshaft position (CMP) sensor (PHASE) harness connector.
- Turn ignition switch "ON".


Check voltage between CMP sensor (PHASE) terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- Harness for open or short between camshaft position sensor (PHASE) and ECM
- Harness for open or short between camshaft position sensor (PHASE) and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK CMP SENSOR (PHASE) GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF". 1.
- Check harness continuity between CMP sensor (PHASE) terminal 3 and engine ground. 2.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-5
- Harness for open or short between camshaft position sensor (PHASE) and engine ground
 - >> Repair open circuit or short to power in harness or connectors.

Н

$7.\,$ CHECK CMP SENSOR (PHASE) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 62 and CMP sensor (PHASE) terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground or short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK CAMSHAFT POSITION SENSOR (PHASE)

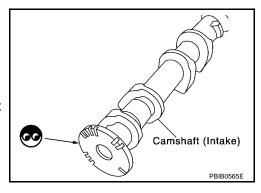
Refer to EC-294, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace camshaft position sensor (PHASE).

9. CHECK CAMSHAFT (INTAKE)


Check the following.

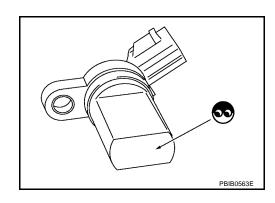
- Accumulation of debris to the signal plate of camshaft rear end
- Chipping signal plate of camshaft rear end

OK or NG

OK >> GO TO 10.

NG >> Remove debris and clean the signal plate of camshaft rear end or replace camshaft.

10. CHECK INTERMITTENT INCIDENT


Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection CAMSHAFT POSITION SENSOR (PHASE)

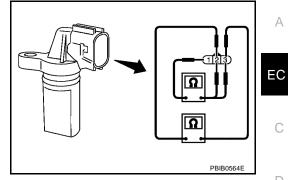
UBS002UQ

- 1. Loosen the fixing bolt of the sensor.
- 2. Disconnect camshaft position sensor (PHASE) harness connector.
- 3. Remove the sensor.
- Visually check the sensor for chipping.

DTC P0340 CMP SENSOR (PHASE)

[QR]

Α


С

D

Е

Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
1 (+) - 2 (-)	
1 (+) - 3 (-)	Except 0 or ∞
2 (+) - 3 (-)	

UBS002UR

Removal and Installation CAMSHAFT POSITION SENSOR (PHASE)

Refer to EM-36, "CAMSHAFT".

F

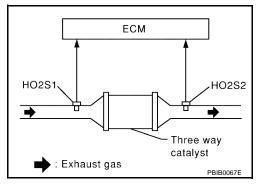
G

Н

Κ

UBS002US

DTC P0420 THREE WAY CATALYST FUNCTION


On Board Diagnosis Logic

PFP:20905

The ECM monitors the switching frequency ratio of heated oxygen sensors 1 and 2.

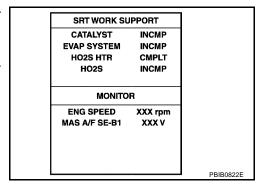
A three way catalyst (Manifold) with high oxygen storage capacity will indicate a low switching frequency of heated oxygen sensor 2. As oxygen storage capacity decreases, the heated oxygen sensor 2 switching frequency will increase.

When the frequency ratio of heated oxygen sensors 1 and 2 approaches a specified limit value, the three way catalyst (Manifold) malfunction is diagnosed.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0420 0420	Catalyst system effi- ciency below threshold	 Three way catalyst (Manifold) does not operate properly. Three way catalyst (Manifold) does not have enough oxygen storage capacity. 	 Three way catalyst (Manifold) Exhaust tube Intake air leaks Fuel injectors Fuel injector leaks Spark plug Improper ignition timing

DTC Confirmation Procedure

UBS002UT


NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

TESTING CONDITION:

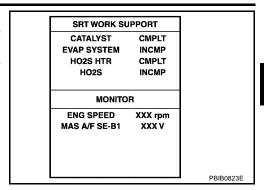
- Open engine hood before conducting the following procedure.
- Do not hold engine speed for more than the specified minutes below.
- 1. Turn ignition switch "ON".
- 2. Select "DTC & SRT CONFIRMATION" then "SRT WORK SUP-PORT" mode with CONSULT-II.
- Start engine.
- 4. Rev engine up to 2,000 to 3,000 rpm and hold it for 3 consecutive minutes then release the accelerator pedal completely. If "INCMP" of "CATALYST" changed to "COMPLT", go to step 7
- 5. Wait 5 seconds at idle.

DTC P0420 THREE WAY CATALYST FUNCTION

[QR]

Α

EC


Е

Н

M

 Rev engine up to 2,000 to 3,000 rpm and maintain it until "INCMP" of "CATALYST" changes to "CMPLT" (It will take approximately 5 minutes).

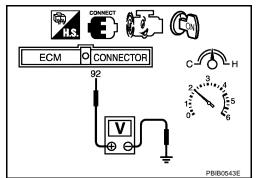
If not "CMPLT", stop engine and cool it down to less than 70°C (158°F) and then retest from step 1.

- 7. Select "SELF-DIAG RESULTS" mode with CONSULT-II.
- Confirm that the 1st trip DTC is not detected.
 If the 1st trip DTC is detected, go to <u>EC-298</u>, "<u>Diagnostic Procedure</u>".

		•
SELF DIAG RES	JLTS	
DTC RESULTS	TIME]
NO DTC IS DETECTED		
FURTHER TESTING		
MAY BE REQUIRED.		
-		•
		SEF535Z

Overall Function Check

UBS002UU


Use this procedure to check the overall function of the three way catalyst (Manifold). During this check, a 1st trip DTC might not be confirmed.

CAUTION:

Always drive vehicle at a safe speed.

WITH GST

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3. Set voltmeters probes between ECM terminal 92 [HO2S1 signal] and engine ground, and ECM terminal 95 [HO2S2 signal] and engine ground.
- 4. Keep engine speed at 2,000 rpm constant under no load.

5. Make sure that the voltage switching frequency (high & low) between ECM terminal 95 and engine ground is very less than that of ECM terminal 92 and engine ground.

Switching frequency ratio = A/B

A: Heated oxygen sensor 2 voltage switching frequency B: Heated oxygen sensor 1 voltage switching frequency

This ratio should be less than 0.75.

If the ratio is greater than above, it means three way catalyst does not operate properly. Go to $\underline{\text{EC-298}}$, "Diagnostic Procedure".

NOTE:

If the voltage at terminal 92 does not switch periodically more than 5 times within 10 seconds at step 5, perform trouble diagnosis for "DTC P0133" first. (See <u>EC-190</u>.)

ECM O CONNECTOR C H

Revision: May 2004 EC-297 2002 Altima

DTC P0420 THREE WAY CATALYST FUNCTION

[QR]

Diagnostic Procedure

1. CHECK EXHAUST SYSTEM

UBS002UV

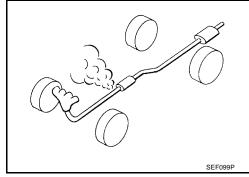
Visually check exhaust tubes and muffler for dent.

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK EXHAUST AIR LEAK


1. Start engine and run it at idle.

2. Listen for an exhaust air leak before the three way catalyst (Manifold).

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

4. CHECK IGNITION TIMING

Check the following items. Refer to EC-84, "Basic Inspection".

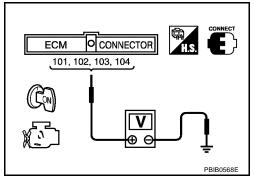
Items	Specifications		
Ignition timing	A/T	$15^{\circ} \pm 5^{\circ}$ BTDC (in "P" or "N" position)	
ignition timing	M/T	15° ± 5° BTDC	
Target idle speed	A/T	700 ± 50 rpm (in "P" or "N" position)	
Target luie speed	M/T	700 ± 50 rpm	

OK or NG

OK >> GO TO 5.

NG >> Follow the "Basic Inspection".

5. CHECK INJECTORS


- 1. Refer to Wiring Diagram for Injectors, EC-574.
- 2. Stop engine and then turn ignition switch "ON".
- 3. Check voltage between ECM terminals 101, 102, 103, 104 and ground with CONSULT-II or tester.

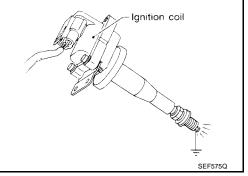
Battery voltage should exist.

OK or NG

OK >> GO TO 6.

NG >> Perform <u>EC-575</u>, "Diagnostic Procedure".

6. CHECK IGNITION SPARK


- 1. Turn ignition switch "OFF".
- 2. Disconnect ignition coil assembly from rocker cover.
- 3. Connect a known good spark plug to the ignition coil assembly.
- 4. Place end of spark plug against a suitable ground and crank engine.
- 5. Check for spark.

OK or NG

OK >> GO TO 7.

NG

>> Check ignition coil with power transistor and their circuit. Refer to EC-553, "IGNITION SIGNAL".

7. CHECK INJECTOR

- Turn ignition switch "OFF".
- 2. Remove injector assembly.

Refer to EM-31, "FUEL INJECTOR AND FUEL TUBE".

Keep fuel hose and all injectors connected to injector gallery.

- 3. Disconnect all ignition coil harness connectors.
- Turn ignition switch "ON".

Make sure fuel does not drip from injector.

OK or NG

OK (Does not drip.)>>GO TO 8.

NG (Drips.)>>Replace the injector(s) from which fuel is dripping.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

Trouble is fixed.>>INSPECTION END

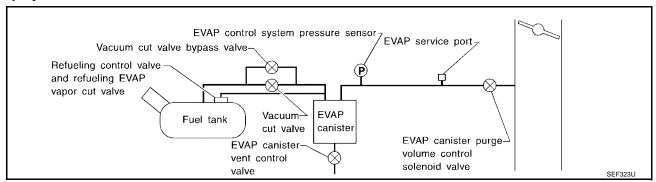
Trouble is not fixed.>>Replace three way catalyst (Manifold).

EC

Е

Н

K


DTC P0441 EVAP CONTROL SYSTEM

System Description

PFP:14950

NOTE:

If DTC P0441 is displayed with P0226, P0227, P0228, P1227 or P1228, perform trouble diagnosis for displayed other DTC.

In this evaporative emission (EVAP) control system, purge flow occurs during non-closed throttle conditions. Purge volume is related to air intake volume. Under normal purge conditions (non-closed throttle), the EVAP canister purge volume control solenoid valve is open to admit purge flow. Purge flow exposes the EVAP control system pressure sensor to intake manifold vacuum.

On Board Diagnosis Logic

UBS002UX

Under normal conditions (non-closed throttle), sensor output voltage indicates if pressure drop and purge flow are adequate. If not, a fault is determined.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
				EVAP canister purge volume control solenoid valve stuck closed
		EVAP control system pressure sensor and the circuit		
		EVAP control system does not operate prop-	Loose, disconnected or improper con- nection of rubber tube	
P0441	EVAP control system		Blocked rubber tube	
0441	incorrect purge flow		Cracked EVAP canister	
			EVAP canister purge volume control solenoid valve circuit	
				Accelerator pedal position sensor
			Blocked purge port	
		EVAP canister vent control valve		

DTC Confirmation Procedure

UBS002UY

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Always perform test at a temperature of 0°C (32°F) or more.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Start engine and let it idle for at least 70 seconds.
- Select "PURG FLOW P0441" of "EVAPORATIVE SYSTEM" in "DTC CONFIRMATION" mode with CON-SULT-II.

Α

EC

D

Е

K

5. Touch "START". If "COMPLETED" is displayed, go to step 7.

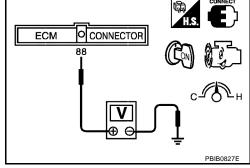
6. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 35 seconds.)

Selector lever	Suitable position
Vehicle speed	32 - 120 km/h (20 - 75 MPH)
ENG SPEED	500 - 3,800 rpm
B/FUEL SCHDL	1.0 - 10.0 msec
Engine coolant temperature	70 - 100°C (158 - 212°F)

If "TESTING" is not changed for a long time, retry from step 2.

PURG FLOW F	0441		PURG FLOW P0441			PURG FLOW P0441	
OUT OF COND	ITION		TESTING				
MONITOR	1	•	MONITOR		•	COMPLETED	
ENG SPEED	XXX rpm	,	ENG SPEED	XXX rpm	r		
B/FUEL SCHDL	XXX msec		B/FUEL SCHDL	XXX msec			
COOLAN TEMP/S	xxx °c		COOLAN TEMP/S	xxx .c			
VHCL SPEED SE	XXX km/h		VHCL SPEED SE	XXX km/h			PBIB0826

 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-302, "Diagnostic Procedure".


Overall Function Check

Use this procedure to check the overall monitoring function of the EVAP control system purge flow monitoring. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Lift up drive wheels.
- 2. Start engine (TCS switch "OFF") and warm it up to normal operating temperature.
- 3. Turn ignition switch "OFF", wait at least 10 seconds.
- 4. Start engine and wait at least 70 seconds.
- 5. Set voltmeter probes to ECM terminals 88 (EVAP control system pressure sensor signal) and ground.
- 6. Check EVAP control system pressure sensor value at idle speed and note it.
- Establish and maintain the following conditions for at least 1 minute.

Air conditioner switch	ON
Steering wheel	Fully turned
Headlamp switch	ON
Rear window defogger switch	ON
Engine speed	Approx. 3,000 rpm
Gear position	Any position other than "P", "N" or "R"

- 8. Verify that EVAP control system pressure sensor value stays 0.1V less than the value at idle speed (measured at step 6) for at least 1 second.
- 9. If NG, go to EC-302, "Diagnostic Procedure".

Revision: May 2004 EC-301 2002 Altima

DTC P0441 EVAP CONTROL SYSTEM

[QR]

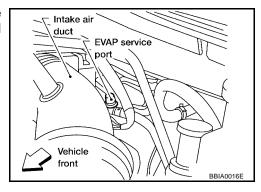
UBS002V0

Diagnostic Procedure

1. CHECK EVAP CANISTER

Turn ignition switch "OFF".

2. Check EVAP canister for cracks.


OK or NG

OK (With CONSULT-II)>>GO TO 2.
OK (Without CONSULT-II)>>GO TO 3.
NG >> Replace EVAP canister.

2. CHECK PURGE FLOW

(II) With CONSULT-II

- Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge.
- 2. Start engine and let it idle.

- 3. Select "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.
- 4. Rev engine up to 2,000 rpm.
- 5. Touch "Qd" and "Qu" on CONSULT-II screen to adjust "PURG VOL CONT/V" opening and check vacuum existence.

PURG VOL CONT/V	Vacuum
100.0%	Should exist.
0.0%	Should not exist.

ACTIVE TEST

OK or NG

OK >> GO TO 7. NG >> GO TO 4.

3. CHECK PURGE FLOW

(P) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum gauge indication when revving engine up to 2,000 rpm.

Vacuum should exist.

Release the accelerator pedal fully and let idle.

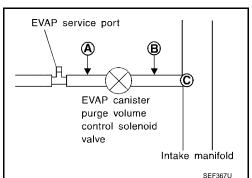
Vacuum should not exist.

OK or NG

>> GO TO 7. OK NG >> GO TO 4.

4. CHECK EVAP PURGE LINE

- 1. Turn ignition switch "OFF".
- 2. Check EVAP purge line for improper connection or disconnection. Refer to EC-614, "EVAPORATIVE EMISSION LINE DRAWING".

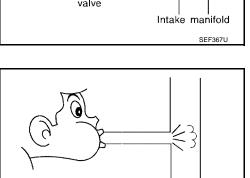

OK or NG

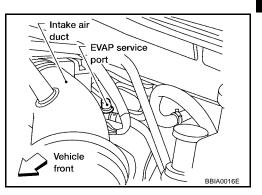
OK (With CONSULT-II)>>GO TO 5. OK (Without CONSULT-II)>>GO TO 6.

NG >> Repair it.

5. CHECK EVAP PURGE HOSE AND PURGE PORT

- Disconnect purge hoses connected to EVAP service port A and EVAP canister purge volume control solenoid valve B.
- Blow air into each hose and EVAP purge port C.




3. Check that air flows freely.

OK or NG

OK >> GO TO 6.

NG >> Repair or clean hoses and/or purge port.

EC

Е

Н

6. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

ACTIVE TES	т	
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XX %	
HO2S1 MNTR (B1)	LEAN	
	l	PBIB082

7. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-319, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace EVAP canister purge volume control solenoid valve.

8. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE

- 1. Turn ignition switch "OFF".
- Check disconnection or improper connection of hose connected to EVAP control system pressure sensor.OK or NG

OK >> GO TO 9. NG >> Repair it.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- 1. Disconnect EVAP control system pressure sensor harness connector.
- Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 10.

NG >> Replace EVAP control system pressure sensor.

10. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION

Refer to "DTC Confirmation Procedure" for DTC P0452 (EC-327) and P0453 (EC-333).

OK or NG

OK >> GO TO 11.

NG >> Replace EVAP control system pressure sensor.

11. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 12.

NG >> Clean the rubber tube using an air blower.

DTC P0441 EVAP CONTROL SYSTEM [QR] 12. CHECK EVAP CANISTER VENT CONTROL VALVE Refer to EC-325, "Component Inspection". OK or NG OK >> GO TO 13. NG >> Replace EVAP canister vent control valve. 13. CHECK EVAP PURGE LINE Inspect EVAP purge line (pipe and rubber tube). Check for evidence of leaks. Refer to EC-614, "EVAPORATIVE EMISSION LINE DRAWING". D OK or NG OK >> GO TO 14. NG >> Replace it. 14. CLEAN EVAP PURGE LINE Clean EVAP purge line (pipe and rubber tube) using air blower. F >> GO TO 15. 15. CHECK INTERMITTENT INCIDENT Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". >> INSPECTION END

EC-305 2002 Altima Revision: May 2004

EC

Е

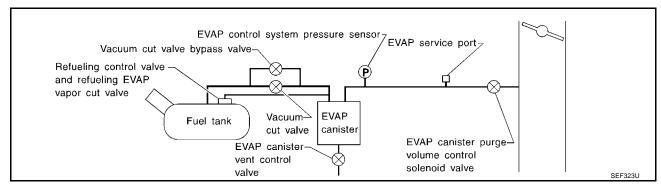
Н

UBS002V1

DTC P0442 EVAP CONTROL SYSTEM

On Board Diagnosis Logic

PFP:14950


NOTE:

If DTC P0442 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-490.)

This diagnosis detects leaks in the EVAP purge line using engine intake manifold vacuum.

If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge volume control solenoid valve, under the following "Vacuum test" conditions.

The vacuum cut valve bypass valve is opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP canister vent control valve will then be closed to shut the EVAP purge line off. The EVAP canister purge volume control solenoid valve is opened to depressurize the EVAP purge line using intake manifold vacuum. After this occurs, the EVAP canister purge volume control solenoid valve will be closed.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0442 0442	EVAP control system small leak detected (negative pressure)	EVAP control system has a leak, EVAP control system does not operate properly.	Possible cause Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent Blocked or bent rubber tube to EVAP control system pressure sensor Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged Water separator EVAP canister is saturated with water EVAP control system pressure sensor Fuel level sensor and the circuit Refueling control valve

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

UBS002V2

EC

D

Е

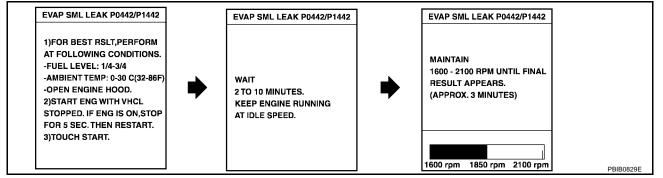
Н

NOTE:

- If DTC P0442 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See <u>EC-490</u>.)
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).


(P) WITH CONSULT-II

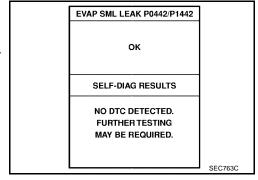
- Turn ignition switch "ON".
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 4. Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 30°C (32 - 86°F)

Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

NOTE:


If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to <u>EC-84</u>, "Basic Inspection".

6. Make sure that "OK" is displayed.

If "NG" is displayed, refer to EC-308, "Diagnostic Procedure".

NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

WITH GST

NOTE:

Be sure to read the explanation of "Driving Pattern" on <u>EC-64</u> before driving vehicle.

Start engine.

- 2. Drive vehicle according to "Driving Pattern", EC-64.
- 3. Stop vehicle.
- 4. Select "MODE 1" with GST.

If SRT of EVAP system is not set yet, go to the following step.

If SRT of EVAP system is set, the result will be OK.

- 5. Turn ignition switch "OFF" and wait at least 10 seconds.
- 6. Start engine.

It is not necessary to cool engine down before driving.

- 7. Drive vehicle again according to the "Driving Pattern", EC-64.
- 8. Stop vehicle.
- 9. Select "MODE 3" with GST.

If P0442 is displayed on the screen, go to EC-308, "Diagnostic Procedure".

If P0441 is displayed on the screen, go to "Diagnostic Procedure" for DTC P0441, EC-302.

If P0441 and P0442 are not displayed on the screen, go to the following step.

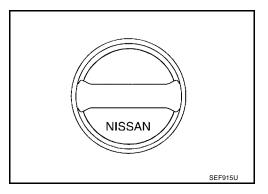
10. Select "MODE 1" with GST.

If SRT of EVAP system is set, the result will be OK.

If SRT of EVAP system is not set, go to step 6.

Diagnostic Procedure

UBS002V3


1. CHECK FUEL FILLER CAP DESIGN

- 1. Turn ignition switch "OFF".
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

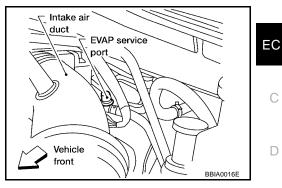
NG >> GO TO 4.

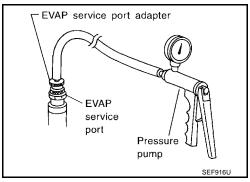
4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-616. "FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FULLER CAP)".

OK or NG

OK >> GO TO 5.

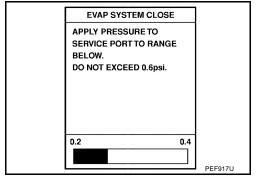

NG >> Replace fuel filler cap with a genuine one.


5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely.

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

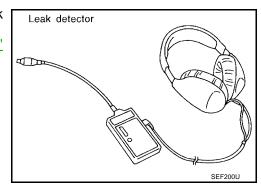

Models with CONSULT-II>>GO TO 6. Models without CONSULT-II>>GO TO 7.

6. CHECK FOR EVAP LEAK

(II) With CONSULT-II

- 1. Turn ignition switch "ON".
- Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.



Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-614, "EVAPORATIVE EMISSION LINE DRAWING"

OK or NG

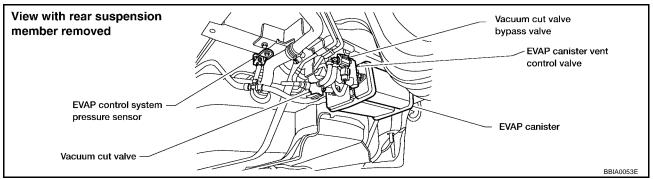
OK >> GO TO 8.

NG >> Repair or replace.

Α

D

Е


Н

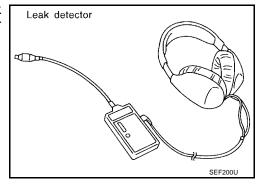
K

7. CHECK FOR EVAP LEAK

⋈ Without CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-614, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

8. CHECK WATER SEPARATOR

Refer to EC-313, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace water separator.

9. CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT

Refer to EC-490, "DTC Confirmation Procedure".

OK or NG

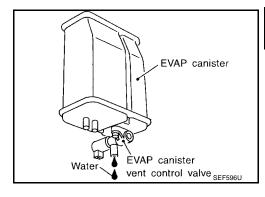
OK >> GO TO 10.

NG >> Repair or replace EVAP canister vent control valve and O-ring or harness/connector.

DTC P0442 EVAP CONTROL SYSTEM

[QR]

10. CHECK IF EVAP CANISTER SATURATED WITH WATER


- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 11.

No (With CONSULT-II)>>GO TO 13.

No (Without CONSULT-II)>>GO TO 14.

11. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK (With CONSULT-II)>>GO TO 13.

OK (Without CONSULT-II)>>GO TO 14.

NG >> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection

>> Repair hose or replace EVAP canister.

13. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

ACTIVE TEST		
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XX %	
HO2S1 MNTR (B1)	LEAN	
		PBIB0828E

EC

D

Е

F

Н

J

K

14. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 17. NG >> GO TO 15.

15. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-29, "Vacuum Hose Drawing" .

OK or NG

OK >> GO TO 16.

NG >> Repair or reconnect the hose.

16. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-319, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace EVAP canister purge volume control solenoid valve.

17. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-232, "Component Inspection".

OK or NG

OK >> GO TO 18.

NG >> Replace fuel level sensor unit.

18. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-332, "Component Inspection".

OK or NG

OK >> GO TO 19.

NG >> Replace EVAP control system pressure sensor.

19. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to EC-614, "EVAPORATIVE EMISSION LINE DRAWING" .

OK or NG

OK >> GO TO 20.

NG >> Repair or reconnect the hose.

20. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 21.

DTC P0442 EVAP CONTROL SYSTEM

[QR]

21. CHECK REFUELING EVAP VAPOR LINE

Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to EC-619, "ON BOARD REFUELING VAPOR RECOVERY (ORVR)"

EC

OK or NG

OK >> GO TO 22.

NG >> Repair or replace hoses and tubes.

Е

Н

22. Check signal line and recirculation line

Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 23.

NG >> Repair or replace hoses, tubes or filler neck tube.

23. CHECK REFUELING CONTROL VALVE

Refer to EC-622, "Component Inspection".

OK or NG

OK >> GO TO 24.

NG >> Replace refueling control valve with fuel tank.

24. CHECK FUEL LEVEL SENSOR

Refer to DI-21, "FUEL LEVEL SENSOR UNIT CHECK" .

OK or NG

OK >> GO TO 25.

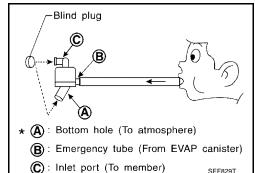
NG >> Replace fuel level sensor unit.

25. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

LIBS002V4

M


>> INSPECTION END

Component Inspection WATER SEPARATOR

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that **A** and **C** are not clogged by blowing air into **B** with **A**, and then **C** plugged.
- 5. In case of NG in items 2 4, replace the parts.

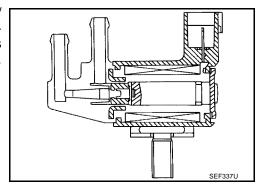
NOTE:

Do not disassemble water separator.

[QR]

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Description SYSTEM DESCRIPTION


UBS002V5

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature	EVAP can-	
Ignition switch	Start signal	ister purge	EVAP canister purge volume
Throttle position sensor	Throttle position	flow con-	control solenoid valve
Accelerator pedal position sensor	Closed throttle position	trol	
Heated oxygen sensors 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)		
Vehicle speed sensor	Vehicle speed		

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/ OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

CONSULT-II Reference Value in Data Monitor Mode

UBS002V6

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	0%
PURG VOL C/V	Shift lever: N		
TORG VOL O/V	 Air conditioner switch: OFF 	2,000 rpm	20 - 30%
	No-load		

[QR]

On Board Diagnosis Logic

UBS002V7

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0444 0444	EVAP canister purge volume control solenoid valve circuit open	An excessively low voltage signal is sent to ECM through the valve	Harness or connectors (The sensor circuit is open or shorted.) EVAP canister purge volume control solenoid valve
P0445 0445	EVAP canister purge volume control solenoid valve circuit shorted	An excessively high voltage signal is sent to ECM through the valve	Harness or connectors (The sensor circuit is shorted.) EVAP canister purge volume control solenoid valve

DTC Confirmation Procedure

BS002V8

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

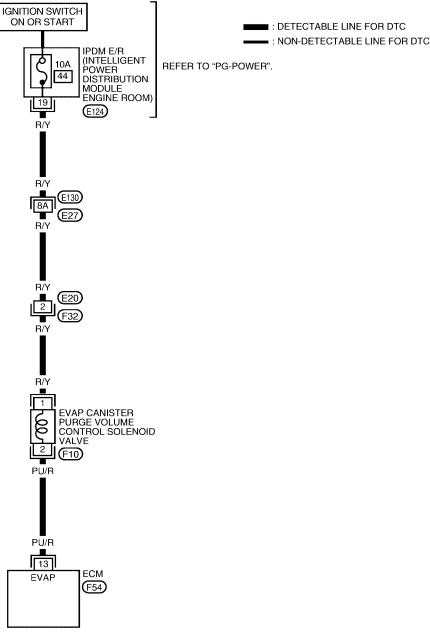
Before performing the following procedure, confirm battery voltage is more than 11V at idle.

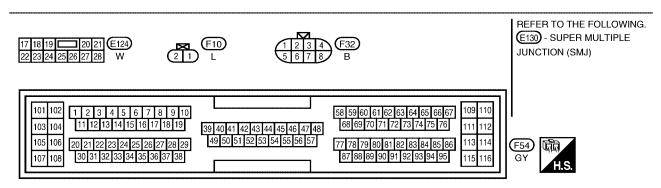
(P) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 13 seconds.
- 4. If 1st trip DTC is detected, go to EC-317, "Diagnostic Procedure"

DATA M	ONITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm

® WITH GST


Follow the procedure "WITH CONSULT-II" above.


M

Revision: May 2004 EC-315 2002 Altima

Wiring Diagram

EC-PGC/V-01

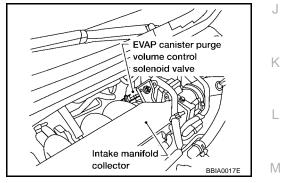
WBWA0001E

[QR]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

		`			_
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
13	PU/R	EVAP canister purge volume control solenoid	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)★ Solution Solution PBIB0050E	C D
		valve	 [Engine is running] Engine speed is about 2,000 rpm (More than 100 seconds after starting engine) 	Approximately 10V★ → 10.0 V/Div 50 ms/Div T PBIB0520E	F

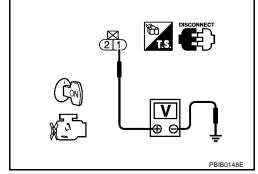

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

UBS002VA

1. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIR-CUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect EVAP canister purge volume control solenoid valve harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

[QR]

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- IPDM E/R connector E124
- 10A fuse
- Harness for open or short between EVAP canister purge volume control solenoid valve and fuse
 - >> Repair harness or connectors.

3. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIR-CUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 13 and EVAP canister purge volume control solenoid valve terminal 2.

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK (With CONSULT-II)>>GO TO 4.

OK (Without CONSULT-II)>>GO TO 5.

NG >> Repair open circuit or short to ground and short to power in harness or connectors.

$4.\,$ CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

	ACTIVE TES	ST	
P	URG VOL CONT/V	XXX %	
	MONITOR		
	ENG SPEED	XXX rpm	
	A/F ALPHA-B1	XXX %	
	HO2S1 MNTR (B1)	LEAN	
		<u> </u>	PBIB0569I

5. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-319, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace EVAP canister purge volume control solenoid valve.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

[QR]

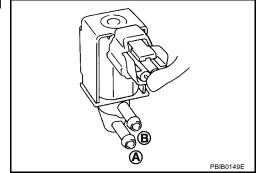
Component Inspection EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

UBS002VB

Α

EC

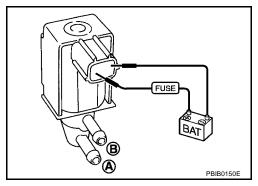
C


D

Е

(II) With CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.


Condition (PURG VOL CONT/V value)	Air passage continuity between A and B
100.0%	Yes
0.0%	No

⊗ Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Removal and Installation EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EM-18, "INTAKE MANIFOLD".

UBS002VC

S002VC

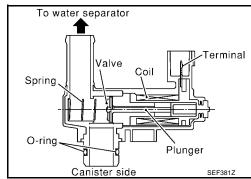
K

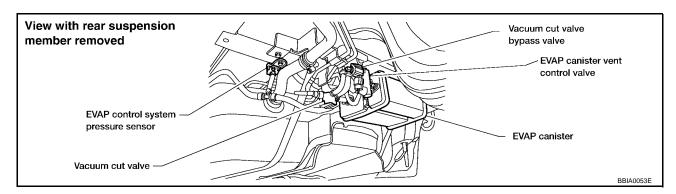
Н

UBS002VD

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

Component Description


PFP:14935


The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

UBS002VE

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	• Ignition switch: ON	OFF

On Board Diagnosis Logic

UBS002VF

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0447 0447	EVAP canister vent control valve circuit open	An improper voltage signal is sent to ECM through EVAP canister vent control valve.	 Harness or connectors (The valve circuit is open or shorted.) EVAP canister vent control valve

DTC Confirmation Procedure

UBS002VG

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

(III) WITH CONSULT-II

1. Turn ignition switch "ON".

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

[QR]

Select "DATA MONITOR" mode with CONSUI	NSL	h CON	mode with	MONITOR"	elect "DATA	2.
--	-----	-------	-----------	----------	-------------	----

- 3. Start engine and wait at least 8 seconds.
- 4. If 1st trip DTC is detected, go to EC-323, "Diagnostic Procedure"

DATA MONITOR
MONITOR NO DTC
ENG SPEED XXX rpm

SEF058Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

D

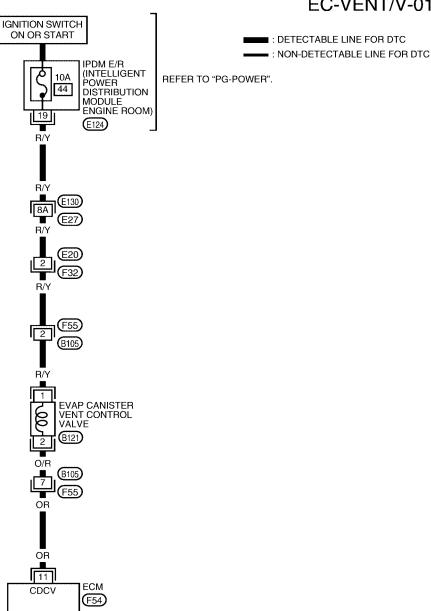
С

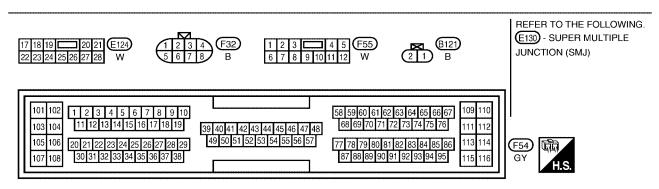
Е

F

G

Н


<


L

Wiring Diagram

UBS002VH

EC-VENT/V-01

BBWA0020E

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

[QR]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
11	OR	EVAP canister vent control valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS002VI

EC

D

Е

1. INSPECTION START

Do you have CONSULT-II?

Yes or No

Yes >> GO TO 2. No >> GO TO 3.

2. CHECK EVAP CANISTER VENT CONTROL VALVE CIRCUIT

(II) With CONSULT-II

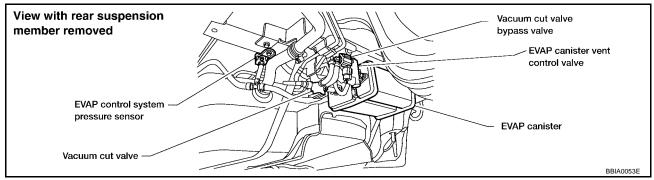
- 1. Turn ignition switch "OFF" and then turn "ON".
- 2. Select "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Touch "ON/OFF" on CONSULT-II screen.
- 4. Check for operating sound of the valve. Clicking noise should be heard.

OK or NG

OK >> GO TO 7. NG >> GO TO 3.

ACTIVE TEST	
VENT CONTROL/V	OFF
MONITOR	1
ENG SPEED	XXX rpm
A/F ALPHA-B1	XXX %
HO2S1 (B1)	XXX V

G

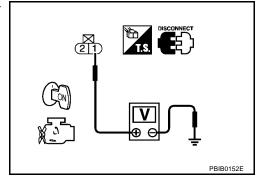

ı

Н

/

3. CHECK EVAP CANISTER VENT CONTROL VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect EVAP canister vent control valve harness connector.



- 3. Turn ignition switch "ON".
- 4. Check voltage between EVAP canister vent control valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B105, F55
- Harness connectors F32, E20
- Harness connectors E27, E130
- IPDM E/R harness connector E124
- 10A fuse
- Harness for open or short between EVAP canister vent control valve and fuse
 - >> Repair harness or connectors.

5. CHECK EVAP CANISTER VENT CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 11 and EVAP canister vent control valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

[QR]

EC

D

Е

Н

K

M

UBS002VJ

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B105, F55
- Harness for open or short between EVAP canister vent control valve and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 8.

NG >> Clean the rubber tube using an air blower.

8. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-325, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace EVAP canister vent control valve.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection EVAP CANISTER VENT CONTROL VALVE

(P) With CONSULT-II

- 1. Remove EVAP canister vent control valve from EVAP canister.
- 2. Check portion **B** of EVAP canister vent control valve for being rusted.
- 3. Reconnect harness connectors disconnected.
- 4. Turn ignition switch "ON".

- 5. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 6. Check air passage continuity and operation delay time.

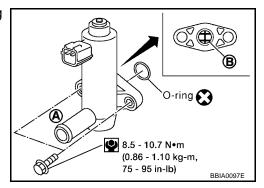
Condition Air passage continuity between A a	
ON	No
OFF	Yes

Operation takes less than 1 second.

Make sure new O-ring is installed properly.

If NG, go to next step.

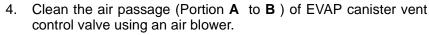
7. Clean the air passage (Portion **A** to **B**) of EVAP canister vent control valve using an air blower.

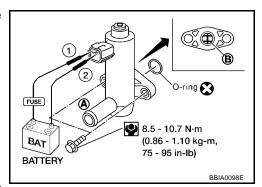

ACTIVE TES	ACTIVE TEST		
VENT CONTROL/V	OFF		
MONITOR			
ENG SPEED	XXX rpm		
A/F ALPHA-B1	XXX %		
HO2S1 (B1)	xxx v		
		PBIB0834E	

Revision: May 2004 EC-325 2002 Altima

8. Perform inspection again.

⋈ Without CONSULT-II


- 1. Remove EVAP canister vent control valve from EVAP canister.
- Check portion B of EVAP canister vent control valve for being rusted.

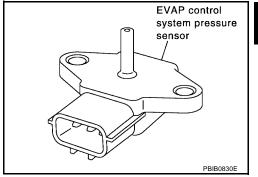

3. Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

Operation takes less than 1 second. Make sure new O-ring is installed properly. If NG, go to next step.

DTC P0452 EVAP CONTROL SYSTEM PRESSURE SENSOR

[QR]


DTC P0452 EVAP CONTROL SYSTEM PRESSURE SENSOR

PFP:25085

Component Description

UBS002VK

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases. The EVAP control system pressure sensor is not used to control the engine system. It is used only for on board diagnosis.

EC

D

Е

Н

M

CONSULT-II Reference Value in Data Monitor Mode

UBS002VL

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	• Ignition switch: ON	Approx. 3.4V

On Board Diagnosis Logic

UBS002VM

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0452 0452	EVAP control system pressure sensor low input	An excessively low voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor

DTC Confirmation Procedure

UBS002VN

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

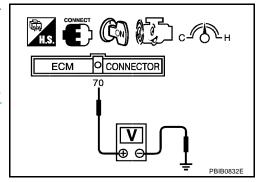
TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Turn ignition switch "ON".
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- 5. Make sure that "FUEL T/TEMP SE" is more than 0°C (32°F).
- Start engine and wait at least 20 seconds. If 1st trip DTC is detected, go to EC-330, "Diagnostic Procedure"

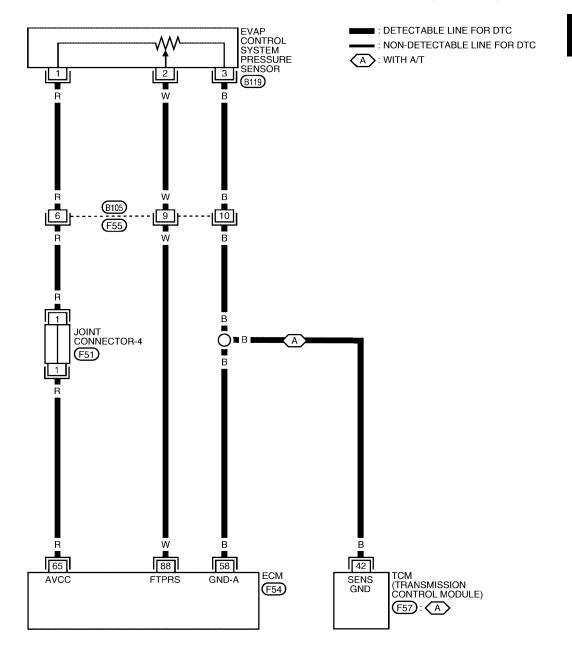
DATA MON	DATA MONITOR	
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
COOLAN TEMP/S	XXX °C	
FUELT/TMP SE	xxx °C	
		SEF194Y

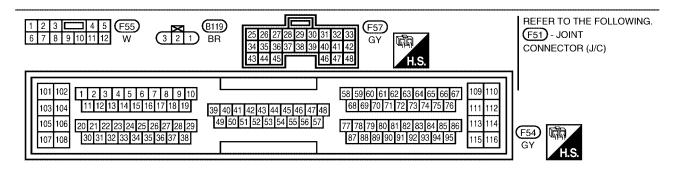

WITH GST

Start engine and warm it up to normal operating temperature.

DTC P0452 EVAP CONTROL SYSTEM PRESSURE SENSOR

[QR]


- 2. Check that voltage between ECM terminal 70 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3. Turn ignition switch "OFF" and wait at least 10 seconds.
- 4. Start engine and wait at least 20 seconds.
- Select "MODE 7" with GST.
 If 1st trip DTC is detected, go to <u>EC-330</u>, "<u>Diagnostic Procedure</u>"



UBS002VO

Wiring Diagram

EC-PRE/SE-01

BBWA0021E

EC

Α

D

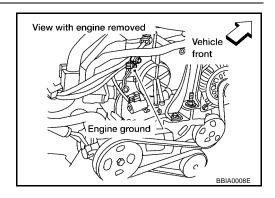
Е

Н

CAUTION:

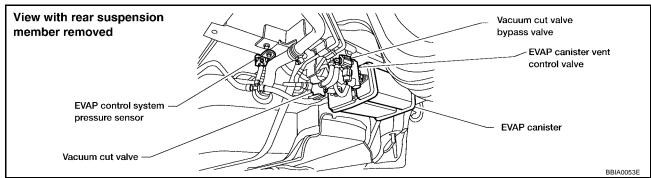
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
58	В	Sensors' ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
65	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V
88	W	EVAP control system pressure sensor	[Ignition switch "ON"]	Approximately 1.8 - 4.8V


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

UBS002VP


Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK CONNECTOR

1. Disconnect EVAP control system pressure sensor harness connector.

Check sensor harness connector for water.

Water should not exist.

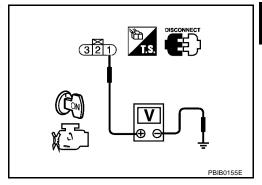
OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness connector.

DTC P0452 EVAP CONTROL SYSTEM PRESSURE SENSOR

[QR]


3. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "ON".
- 2. Check voltage between EVAP control system pressure sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B105, F55
- Joint connector-4
- Harness for open or short between EVAP control system pressure sensor and ECM

>> Repair harness or connectors.

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- 2. Check harness continuity between EVAP control system pressure sensor terminal 3 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B105, F55
- Harness for open or short between EVAP control system pressure sensor and ECM
- Harness for open or short between EVAP control system pressure sensor and TCM

>> Repair open circuit or short to ground or short to power in harness or connectors.

EC

Е

F

Н

J

1 \

7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 88 and EVAP control system pressure sensor terminal
 2.

Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B105, F55
- Harness for open or short between ECM and EVAP control system pressure sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-332, "Component Inspection".

OK or NG

OK >> GO TO 10.

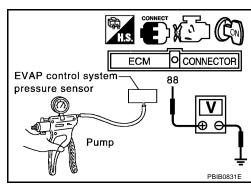
NG >> Replace EVAP control system pressure sensor.

10. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection EVAP CONTROL SYSTEM PRESSURE SENSOR

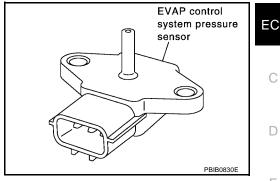

UBS002VQ

- 1. Remove EVAP control system pressure sensor with its harness connector connected.
- Remove hose from EVAP control system pressure sensor.
- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch "ON" and check output voltage between ECM terminal 88 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply vacuum below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- If NG, replace EVAP control system pressure sensor.


DTC P0453 EVAP CONTROL SYSTEM PRESSURE SENSOR

PFP:25085

Component Description

UBS002VR

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases. The EVAP control system pressure sensor is not used to control the engine system. It is used only for on board diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

LIBS002VS

Е

Н

M

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 1.8 - 4.8V

On Board Diagnosis Logic

UBS002VT

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0453 0453	EVAP control system pressure sensor high input	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor EVAP canister vent control valve EVAP canister Water separator Rubber hose from EVAP canister vent control valve to water separator

DTC Confirmation Procedure

UBS002VU

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

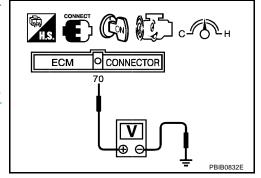
TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Turn ignition switch "ON".
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- 5. Make sure that "FUEL T/TEMP SE" is more than 0°C (32°F).
- 6. Wait at least 10 seconds.
- 7. If 1st trip DTC is detected, go to EC-336, "Diagnostic Procedure"

DATA MONI	DATA MONITOR		
MONITOR	NO DTC		
ENG SPEED	XXX rpm		
COOLAN TEMP/S	XXX °C		
FUEL T/TMP SE	xxx °C		
		SEF194Y	


WITH GST

1. Start engine and warm it up to normal operating temperature.

DTC P0453 EVAP CONTROL SYSTEM PRESSURE SENSOR

[QR]

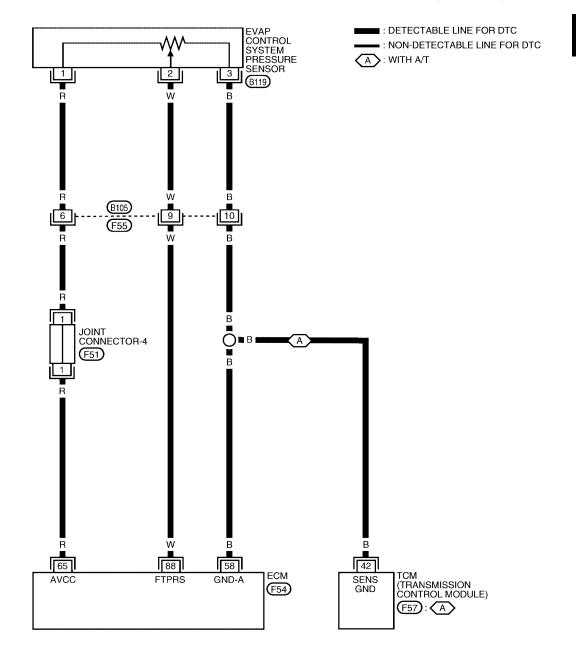
- 2. Check that voltage between ECM terminal (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3. Turn ignition switch "OFF" and wait at least 10 seconds.
- 4. Wait at least 10 seconds.
- 5. Select "MODE 7" with GST.
- 6. If 1st trip DTC is detected, go to EC-336, "Diagnostic Procedure"

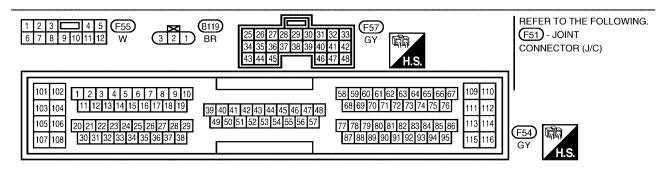
UBS002VV

Α

EC

D


Е


Н

M

Wiring Diagram

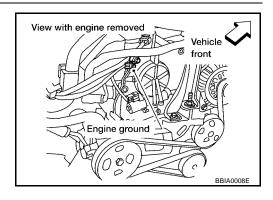
EC-PRE/SE-01

BBWA0021E

CAUTION:

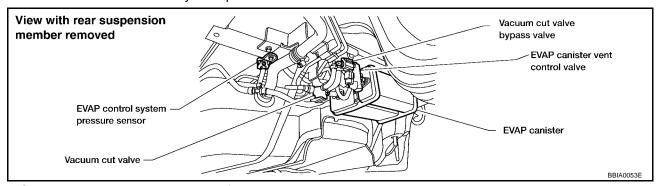
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
58	В	Sensors' ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
65	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V
88	W	EVAP control system pressure sensor	[Ignition switch "ON"]	Approximately 1.8 - 4.8V


Diagnostic Procedure

UBS002VW

1. RETIGHTEN GROUND SCREWS


Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK CONNECTOR

Disconnect EVAP control system pressure sensor harness connector.

Check sensor harness connector for water.

Water should not exist.

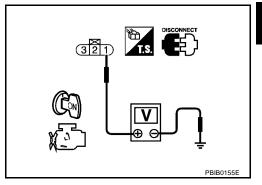
OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness connector.

DTC P0453 EVAP CONTROL SYSTEM PRESSURE SENSOR

[QR]


3. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "ON".
- 2. Check voltage between EVAP control system pressure sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B105, F55
- Joint connector-4
- Harness for open or short between EVAP control system pressure sensor and ECM

>> Repair harness or connectors.

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- 2. Check harness continuity between EVAP control system pressure sensor terminal 3 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B105, F55
- Harness for open or short between EVAP control system pressure sensor and ECM
- Harness for open or short between EVAP control system pressure sensor and TCM

>> Repair open circuit or short to ground or short to power in harness or connectors.

EC

С

Е

F

Н

J

K

7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 88 and EVAP control system pressure sensor terminal 2.

Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B105, F55
- Harness for open or short between ECM and EVAP control system pressure sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 10.

NG >> Clean the rubber tube using an air blower.

10. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-325, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> Replace EVAP canister vent control valve.

11. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-339, "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> Replace EVAP control system pressure sensor.

12. CHECK RUBBER TUBE

Check obstructed rubber tube connected to EVAP canister vent control valve.

OK or NG

OK >> GO TO 13.

NG >> Clean rubber tube using an air blower, repair or replace rubber tube.

13. check water separator

Refer to EC-313, "Component Inspection".

OK or NG

OK >> GO TO 14.

NG >> Replace water separator.

DTC P0453 EVAP CONTROL SYSTEM PRESSURE SENSOR

[QR]

EC

Е

UBS002VX


M

14. CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

Yes or No

Yes >> GO TO 15. No >> GO TO 17.

15. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK >> GO TO 17. NG >> GO TO 16.

16. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection

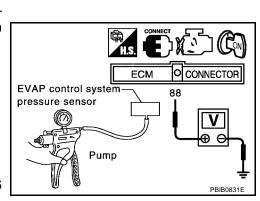
>> Repair hose or replace EVAP canister.

17. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection EVAP CONTROL SYSTEM PRESSURE SENSOR


1. Remove EVAP control system pressure sensor with its harness connector connected.

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch "ON" and check output voltage between ECM terminal 88 and ground under the following conditions.

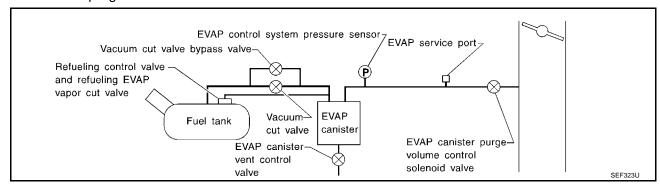
Applied vacuum kPa (mmHg, inHg)	Voltage V	
Not applied	1.8 - 4.8	
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value	

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply vacuum below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- 5. If NG, replace EVAP control system pressure sensor.

UBS002VY

DTC P0455 EVAP CONTROL SYSTEM


On Board Diagnosis Logic

PFP:14950

NOTE:

If DTC P0455 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (EC-490.)

This diagnosis detects a very large leak (fuel filler cap fell off etc.) in EVAP system between the fuel tank and EVAP canister purge volume control solenoid valve.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0455 0455	EVAP control system gross leak detected	EVAP control system has a very large leak such as fuel filler cap fell off, EVAP control system does not operate properly.	 Fuel filler cap remains open or fails to close. Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent. Blocked or bent rubber tube to EVAP control system pressure sensor Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged. EVAP control system pressure sensor Refueling control valve ORVR system leaks

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

UBS002VZ

CAUTION:

Never remove fuel filler cap during the DTC Confirmation Procedure.

DTC P0455 EVAP CONTROL SYSTEM

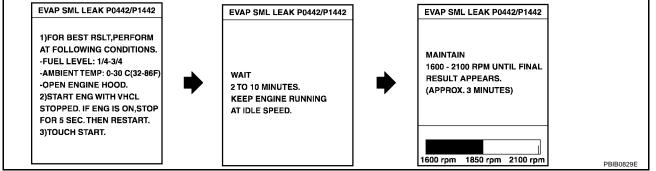
[QR]

NOTE:

- If DTC P0455 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (EC-490.)
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Open engine hood before conducting the following procedures.

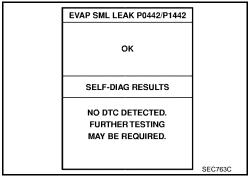

(III) WITH CONSULT-II

- 1. Tighten fuel filler cap securely until ratcheting sound is heard.
- 2. Turn ignition switch "ON".
- 3. Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 5. Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 60°C (32 - 140°F)

Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.


NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to EC-84, "Basic Inspection".

7. Make sure that "OK" is displayed.

If "NG" is displayed, select "SELF-DIAG RESULTS" mode and make sure that "EVAP GROSS LEAK [P0455]" is displayed. If it is displayed, refer to EC-342, "Diagnostic Procedure".

If P0442 is displayed, perform "Diagnostic Procedure" for DTC P0442, EC-308.

WITH GST

NOTE:

Be sure to read the explanation of "Driving Pattern" on EC-64 before driving vehicle.

- Start engine.
- Drive vehicle according to "Driving Pattern", EC-64.
- 3. Stop vehicle.
- Select "MODE 1" with GST.
 - If SRT of EVAP system is not set yet, go to the following step.

EC-341 2002 Altima Revision: May 2004

EC

D

Е

Н

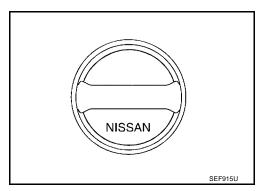
- If SRT of EVAP system is set, the result will be OK.
- 5. Turn ignition switch "OFF" and wait at least 10 seconds.
- 6. Start engine.

It is not necessary to cool engine down before driving.

- 7. Drive vehicle again according to the "Driving Pattern", EC-64.
- 8. Stop vehicle.
- 9. Select "MODE 3" with GST.
 - If P0455 is displayed on the screen, go to <a>EC-342, "Diagnostic Procedure".
 - If P0442 or P1442 is displayed on the screen, go to "Diagnostic Procedure", for DTC P0442, EC-308.
 - If P0441 is displayed on the screen, go to "Diagnostic Procedure" for DTC P0441, EC-302.
 - If P0455, P0441, P0442 and P1442 are not displayed on the screen, go to the following step.
- 10. Select "MODE 1" with GST.
 - If SRT of EVAP system is set, the result will be OK.
 - If SRT of EVAP system is not set, go to step 6.

Diagnostic Procedure

UBS002W0


1. CHECK FUEL FILLER CAP DESIGN

- 1. Turn ignition switch "OFF".
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-616, "FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FULLER CAP)" .

OK or NG

OK >> GO TO 5.

NG >> Replace fuel filler cap with a genuine one.

DTC P0455 EVAP CONTROL SYSTEM

[QR]

5. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks, improper connection or disconnection.

Refer to EC-614, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 6.

NG >> Repair or reconnect the hose.

6. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

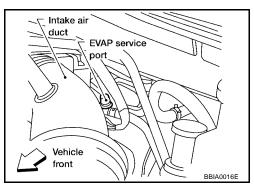
>> GO TO 7.

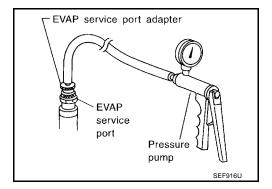
7. CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT

Refer to EC-490, "DTC Confirmation Procedure".

OK or NG

OK >> GO TO 8.


NG >> Repair or replace EVAP canister vent control valve and O-ring or harness/connector.


8. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely.

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

Models with CONSULT-II>>GO TO 9.
Models without CONSULT-II>>GO TO 10.

EC

D

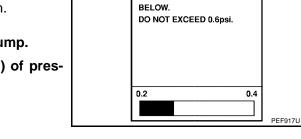
F

Е

Н

ı

K

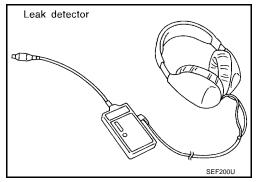

9. CHECK FOR EVAP LEAK

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

NOTF:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.



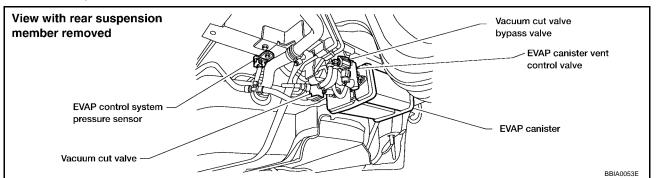
 Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to <u>EC-614</u>, "<u>EVAPORATIVE EMISSION LINE DRAWING</u>"

OK or NG

OK >> GO TO 11.

NG >> Repair or replace.

EVAP SYSTEM CLOSE


APPLY PRESSURE TO

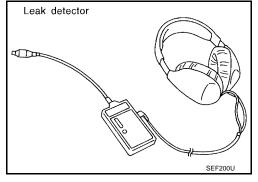
SERVICE PORT TO RANGE

10. CHECK FOR EVAP LEAK

⋈ Without CONSULT-II

- Turn ignition switch "OFF".
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)

Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-614, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 12.

NG >> Repair or replace.

11. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 14.

NG >> GO TO 13.

ACTIVE TES	ACTIVE TEST		
PURG VOL CONT/V	XXX %		
MONITOR			
ENG SPEED	XXX rpm		
A/F ALPHA-B1	XX %		
HO2S1 MNTR (B1)	LEAN		
L	L	PBIB0828E	

EC

D

Е

Н

12. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 15. NG >> GO TO 13.

13. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-29, "Vacuum Hose Drawing" .

OK or NG

OK (With CONSULT-II)>>GO TO 14.

OK (Without CONSULT-II)>>GO TO 15.

NG >> Repair or reconnect the hose.

14. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

	ACTIVE TE		
	PURG VOL CONT/V	XXX %	
	MONITOR	l	
	ENG SPEED	XXX rpm	
	A/F ALPHA-B1	XX %	
	HO2S1 MNTR (B1)	LEAN	
· ·			PBIB0828E

15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-319, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace EVAP canister purge volume control solenoid valve.

16. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-232, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace fuel level sensor unit.

DTC P0455 EVAP CONTROL SYSTEM

[QR]

M

Revision: May 2004 EC-347 2002 Altima

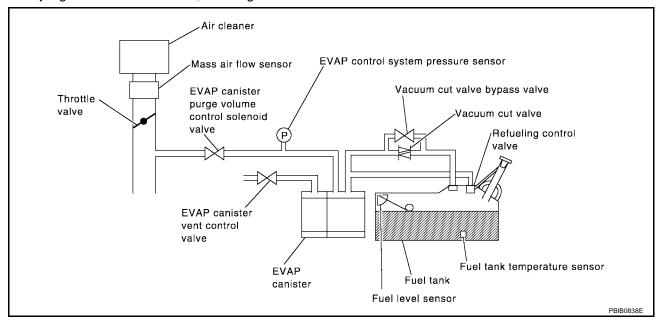
UBS002W1

DTC P0456 EVAP CONTROL SYSTEM

On Board Diagnosis Logic

PFP:14950

This diagnosis detects leaks in the EVAP purge line using engine intake manifold vacuum.


If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge volume control solenoid valve, under the following "Vacuum test" conditions.

The vacuum cut valve bypass valve is opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP canister vent control valve will then be closed to shut the EVAP purge line off. The EVAP canister purge volume control solenoid valve is opened to depressurize the EVAP purge line using intake manifold vacuum. After this occurs, the EVAP canister purge volume control solenoid valve will be closed.

If ECM judges a leak which corresponds to a very small leak, the very small leak P0456 will be detected.

If ECM judges a leak equivalent to a small leak, EVAP small leak P0442 will be detected.

If ECM judges there are no leaks, the diagnosis will be OK.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
			Incorrect fuel tank vacuum relief valve	
			Incorrect fuel filler cap used	I
			Fuel filler cap remains open or fails to close.	
			Foreign matter caught in fuel filler cap.	
			Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.	
			Foreign matter caught in EVAP canister vent control valve.	
			EVAP canister or fuel tank leaks	
			EVAP purge line (pipe and rubber tube) leaks	
			EVAP purge line rubber tube bent	
Evaporative emission		Blocked or bent rubber tube to EVAP control system pressure sensor		
0456	control system very	ystem very k (negative EVAP system does not operate prop-	Loose or disconnected rubber tube	
456	small leak (negative		EVAP canister vent control valve and the circuit	
	pressure check)		EVAP canister purge volume control solenoid valve and the circuit	
			Fuel tank temperature sensor	
			O-ring of EVAP canister vent control valve is missing or damaged	
		Water separator		
			EVAP canister is saturated with water	
			EVAP control system pressure sensor	
			Refueling control valve	
			ORVR system leaks	
			Fuel level sensor and the circuit	
			Foreign matter caught in EVAP canister purge vol- ume control solenoid valve	

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

UBS002W2

NOTE:

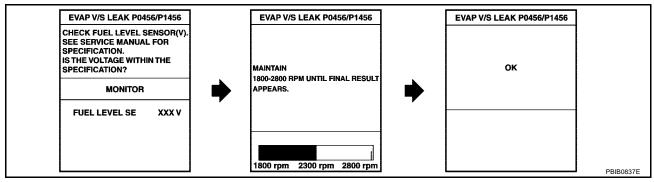
- If DTC P0456 is displayed with P0442, perform TROUBLE DIAGNOSIS FOR DTC P0456 first.
- After repair, make sure that the hoses and clips are installed properly.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- If any of following conditions are met just before the DTC confirmation procedure, leave the vehicle for more than 1 hour.
- Fuel filler cap is removed.
- Refilled or drained the fuel.
- EVAP component parts is/are removed.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) WITH CONSULT-II

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2. Make sure the following conditions are met.


FUEL LEVEL SE: 0.25 - 1.15V

COOLAN TEMP/S: 0 - 32°C (32 - 90°F) FUEL T/TMP SE: 0 - 35°C (32 - 95°F) INT A/TEMP SE: More than 0°C (32°F)

If NG, turn ignition switch "OFF" and leave the vehicle in a cool place (soak the vehicle) or refilling/draining fuel until the output voltage condition of the "FUEL LEVEL SE" meets within the range above and leave the vehicle for more than 1 hour. Then start from step 1).

- 3. Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON".
- Select "EVAP V/S LEAK P0456/P1456" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

6. Make sure that "OK" is displayed.

If "NG" is displayed, refer to EC-351, "Diagnostic Procedure".

NOTE:

- If the engine speed cannot be maintained within the range displayed on CONSULT-II screen, go to <u>EC-84</u>, "<u>Basic Inspection</u>".
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

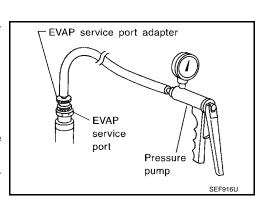
Overall Function Check

UBS002W3

WITH GST

Use this procedure to check the overall function of the EVAP very small leak function. During this check, a 1st trip DTC might not be confirmed.

CAUTION:


- Never use compressed air, doing so may damage the EVAP system.
- Do not start engine.
- Do not exceeded 4.12 kPa (0.042 kg/cm², 0.6 psi).
- 1. Attach the EVAP service port adapter securely to the EVAP service port.
- 2. Set the pressure pump and a hose.
- 3. Also set a vacuum gauge via 3-way connector and a hose.
- Turn ignition switch "ON".
- Connect GST and select MODE 8.
- 6. Using MODE 8 control the EVAP canister vent control valve (close) and vacuum cut valve bypass valve (open).
- 7. Apply pressure and make sure the following conditions are satisfied.

Pressure to be applied: 2.7 kPa (20 mmHg, 0.79 inHg)

Time to be waited after the pressure drawn in to the EVAP system and the pressure to be dropped: 60 seconds and the pressure should not be dropped more than 0.4 kPa (3 mmHg, 0.12 inHg). If NG, go to EC-351, "Diagnostic Procedure".

If OK, go to next step.

- 8. Disconnect GST.
- 9. Start engine and warm it up to normal operating temperature.

DTC P0456 EVAP CONTROL SYSTEM

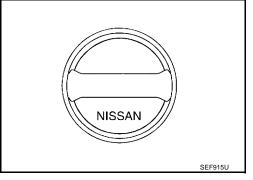
[QR]

- 10. Turn ignition switch "OFF" and wait at least 10 seconds.
- 11. Restart engine and let it idle for 90 seconds.
- 12. Keep engine speed at 2,000 rpm for 30 seconds.
- 13. Turn ignition switch "OFF".

NOTE:

For more information, refer to GST instruction manual.

Diagnostic Procedure


1. CHECK FUEL FILLER CAP DESIGN

- 1. Turn ignition switch "OFF".
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-616, "Component Inspection".

OK or NG

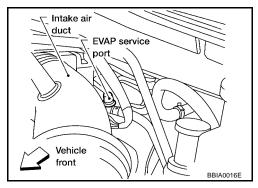
OK >> GO TO 5.

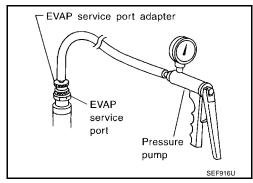
NG >> Replace fuel filler cap with a genuine one.

EC

Α

Е


D

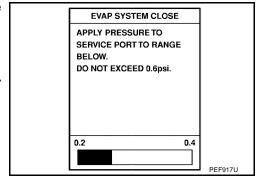

5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely.

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

Models with CONSULT-II>>GO TO 6.
Models without CONSULT-II>>GO TO 7.

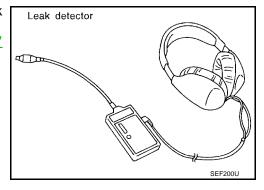

6. CHECK FOR EVAP LEAK

(II) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

NOTE:

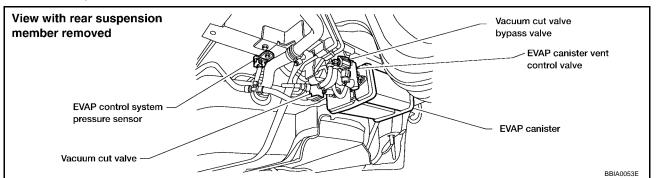
- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.


4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details.

Refer to EC-614, "EVAPORATIVE EMISSION LINE DRAWING"

OK or NG

OK >> GO TO 8.

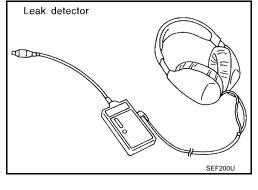

NG >> Repair or replace.

7. CHECK FOR EVAP LEAK

W Without CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-614, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

8. CHECK WATER SEPARATOR

Refer to EC-313, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace water separator.

9. CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT

Refer to EC-496, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Repair or replace EVAP canister vent control valve and O-ring or harness/connector.

EC

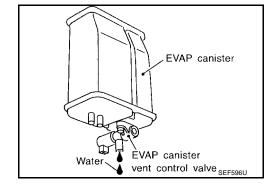
С

D

F

Н

J


K

10. CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 11. No (With CONSULT-II)>>GO TO 13. No (Without CONSULT-II)>>GO TO 14.

11. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK (With CONSULT-II)>>GO TO 13. OK (Without CONSULT-II)>>GO TO 14. NG >> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection

>> Repair hose or replace EVAP canister.

13. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

ACTIVE TES	T	
PURG VOL CONT/V		
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XX %	
HO2S1 MNTR (B1)	LEAN	

		PBIB0828

DTC P0456 EVAP CONTROL SYSTEM

[QR]

14. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

>> GO TO 17. OK NG >> GO TO 15.

15. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-29, "Vacuum Hose Drawing".

OK or NG

OK >> GO TO 16.

NG >> Repair or reconnect the hose.

16. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-319, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace EVAP canister purge volume control solenoid valve.

17. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-232, "FUEL TANK TEMPERATURE SENSOR".

OK or NG

OK >> GO TO 18.

NG >> Replace fuel level sensor unit.

18. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-332, "Component Inspection".

OK or NG

OK >> GO TO 19.

NG >> Replace EVAP control system pressure sensor.

19. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to EC-614, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 20.

NG >> Repair or reconnect the hose.

20. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 21.

EC-355 Revision: May 2004 2002 Altima

EC

Α

D

Е

Н

21. CHECK REFUELING EVAP VAPOR LINE

Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to EC-619, "ON BOARD REFUELING VAPOR RECOVERY (ORVR)"

OK or NG

OK >> GO TO 22.

NG >> Repair or replace hoses and tubes.

22. CHECK SIGNAL LINE AND RECIRCULATION LINE

Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 23.

NG >> Repair or replace hoses, tubes or filler neck tube.

23. CHECK REFUELING CONTROL VALVE

Refer to EC-622, "Component Inspection".

OK or NG

OK >> GO TO 24.

NG >> Replace refueling control valve with fuel tank.

24. CHECK FUEL LEVEL SENSOR

Refer to DI-21, "FUEL LEVEL SENSOR UNIT CHECK".

OK or NG

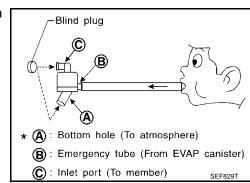
OK >> GO TO 25.

NG >> Replace fuel level sensor unit.

25. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection WATER SEPARATOR

UBS002W5

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that **A** and **C** are not clogged by blowing air into **B** with **A**, and then **C** plugged.
- In case of NG in items 2 4, replace the parts.

NOTE:

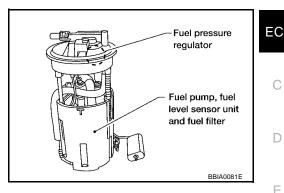
Do not disassemble water separator.

DTC P0460 FUEL LEVEL SENSOR

[QR]

DTC P0460 FUEL LEVEL SENSOR

PFP:25060


Component Description

UBS002W6

Α

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnosis Logic

UBS002W7

Е

Н

M

When the vehicle is parked, naturally the fuel level in the fuel tank is stable. It means that output signal of the fuel level sensor does not change. If ECM senses sloshing signal from the sensor, fuel level sensor malfunction is detected.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0460 0460	Fuel level sensor circuit noise	Even though the vehicle is parked, a signal being varied is sent from the fuel level sensor to ECM.	Harness or connectors (The sensor circuit is open or shorted)Fuel level sensor

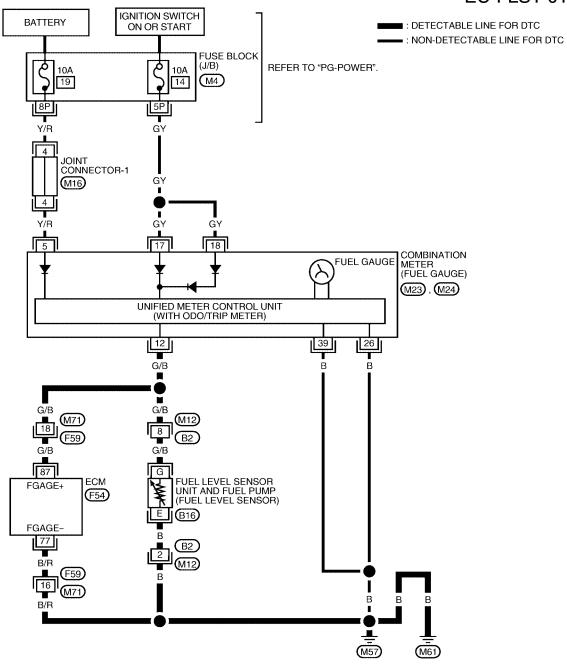
DTC Confirmation Procedure

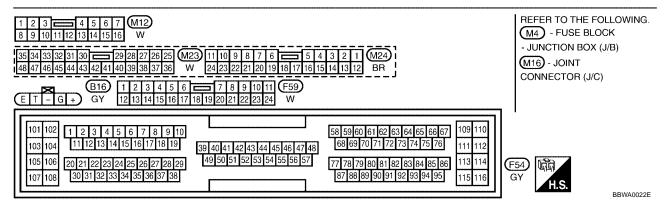
UBS002W8

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait maximum of 2 consecutive minutes.
- 4. If 1st trip DTC is detected, go to EC-359, "Diagnostic Procedure"


DATA MONITOR		
MONITOR	NO DTC	
FUEL T/TMP SE	XXX °C	
FUEL LEVEL SE	XXX V	
	SEF195Y	


WITH GST

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram

EC-FLS1-01

DTC P0460 FUEL LEVEL SENSOR

[QR]

EC

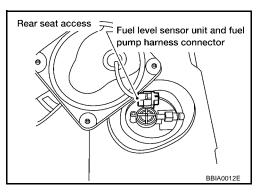
Е

Н

M

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

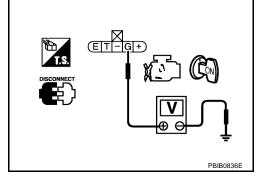

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
77	B/R	Fuel level sensor ground	[Engine is running] ● Idle speed	Approximately 0V
87	G/B	Fuel level sensor	[Ignition switch "ON"]	Approximately 0 - 4.8V Output voltage varies with fuel level.

Diagnostic Procedure

UBS002WA

1. CHECK FUEL LEVEL SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect fuel level sensor unit and fuel pump harness connector.
- 3. Turn ignition switch "ON".



Check voltage between fuel level sensor unit and fuel pump terminal G and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M12, B2
- Harness for open or short between combination meter and fuel level sensor until and fuel pump
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK FUEL LEVEL SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Check harness continuity between fuel level sensor unit and fuel pump terminal E and body ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M12, B2
- Harness for open or short between fuel level sensor unit and fuel pump and body ground
 - >> Repair open circuit or short to power in harness or connectors.

5. CHECK FUEL LEVEL SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 87 and fuel level sensor unit and fuel pump terminal G, ECM terminal 77 and fuel level sensor unit and fuel pump terminal E.
 Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground or short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M12, B2
- Harness connectors M71, F59
- Harness for open or short between ECM and fuel level sensor unit and fuel pump
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK FUEL LEVEL SENSOR

Refer to DI-21, "FUEL LEVEL SENSOR UNIT CHECK".

OK or NG

OK >> GO TO 8.

NG >> Replace fuel level sensor unit.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0460 FUEL LEVEL SENSOR

[QR]

Removal and Installation FUEL LEVEL SENSOR

UBS002WB

Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

EC

Α

С

D

Е

F

G

Н

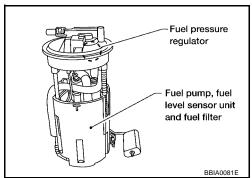
1

J

K

L

UBS002WC


DTC P0461 FUEL LEVEL SENSOR

Component Description

PFP:25060

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnosis Logic

UBS002WD

Driving long distances naturally affect fuel gauge level.

This diagnosis detects the fuel gauge malfunction of the gauge not moving even after a long distance has been driven.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0461 0461	Fuel level sensor circuit range/performance	The output signal of the fuel level sensor does not change within the specified range even though the vehicle has been driven a long distance.	Harness or connectors (The sensor circuit is open or shorted)Fuel level sensor

Overall Function Check

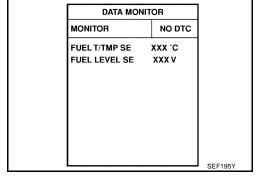
UBS002WE

Use this procedure to check the overall function of the fuel level sensor function. During this check, a 1st trip DTC might not be confirmed.

WARNING:

When performing following procedure, be sure to observe the handling of the fuel. Refer to $\underline{\text{FL-8}}$. "FUEL TANK".

TESTING CONDITION:

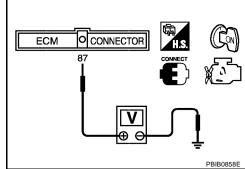

Before starting overall function check, preparation of draining fuel and refilling fuel is required.

(WITH CONSULT-II

NOTE:

Start from step 11, if it is possible to confirm that the fuel cannot be drained by 30 $\,\ell$ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

- 1. Prepare a fuel container and a spare hose.
- 2. Release fuel pressure from fuel line, refer to <a>EC-51, "FUEL PRESSURE RELEASE".
- 3. Remove the fuel feed hose on the fuel level sensor unit.
- Connect a spare fuel hose where the fuel feed hose was removed.
- 5. Turn ignition switch "OFF" and wait at least 10 seconds then turn "ON".
- Select "FUEL LEVEL SE" in "DATA MONITOR" mode with CONSULT-II.
- 7. Check "FUEL LEVEL SE" output voltage and note it.
- 8. Select "FUEL PUMP" in "ACTIVE TEST" mode with CONSULT-II.
- 9. Touch "ON" and drain fuel approximately 30 $\,\ell$ (7-7/8 US gal, 6-5/8 Imp gal) and stop it.
- 10. Fill fuel into the fuel tank for 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- 11. Check "FUEL LEVEL SE" output voltage and note it.
- Check "FUEL LEVEL SE" output voltage and confirm whether the voltage changes more than 0.03V during step 7 to 11.
 If NG, check the fuel level sensor, refer to <u>DI-21, "FUEL LEVEL SENSOR UNIT CHECK"</u>.


WITH GST

NOTE:

Start from step 11, if it is possible to confirm that the fuel cannot be drained by 30 $\,\ell$ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

- 1. Prepare a fuel container and a spare hose.
- 2. Release fuel pressure from fuel line, refer to EC-51, "FUEL PRESSURE RELEASE".
- 3. Remove the fuel feed hose on the fuel level sensor unit.
- 4. Connect a spare fuel hose where the fuel feed hose was removed.
- 5. Turn ignition switch "OFF".
- 6. Set voltmeters probe between ECM terminal 87 (fuel level sensor signal) and ground.
- 7. Turn ignition switch "ON".
- Check voltage between ECM terminal 87 and ground and note it.
- 9. Drain fuel by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) from the fuel tank using proper equipment.
- 10. Fill fuel into the fuel tank for 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- 11. Confirm that the voltage between ECM terminal 69 and ground changes more than 0.03V during step 8 10.

If NG, check component of fuel level sensor, refer to DI-21, "FUEL LEVEL SENSOR UNIT CHECK".

EC

Α

D

Е

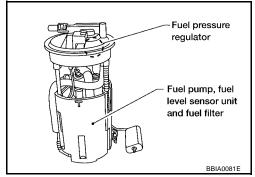
F

G

Н

L

DTC P0462, P0463 FUEL LEVEL SENSOR


Component Description

PFP:25060

UBS002WF

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the FCM

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnosis Logic

UBS002WG

ECM receives two signals from the fuel level sensor circuit.

One is fuel level sensor power supply circuit, and the other is fuel level sensor ground circuit.

This diagnosis indicates the former, to detect open or short circuit malfunction.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0462 0462	Fuel level sensor circuit low input	An excessively low voltage is sent from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted)
P0463 0463	Fuel level sensor circuit high input	An excessively high voltage is sent from the sensor is sent to ECM.	Fuel level sensor

DTC Confirmation Procedure

UBS002WH

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at ignition switch "ON".

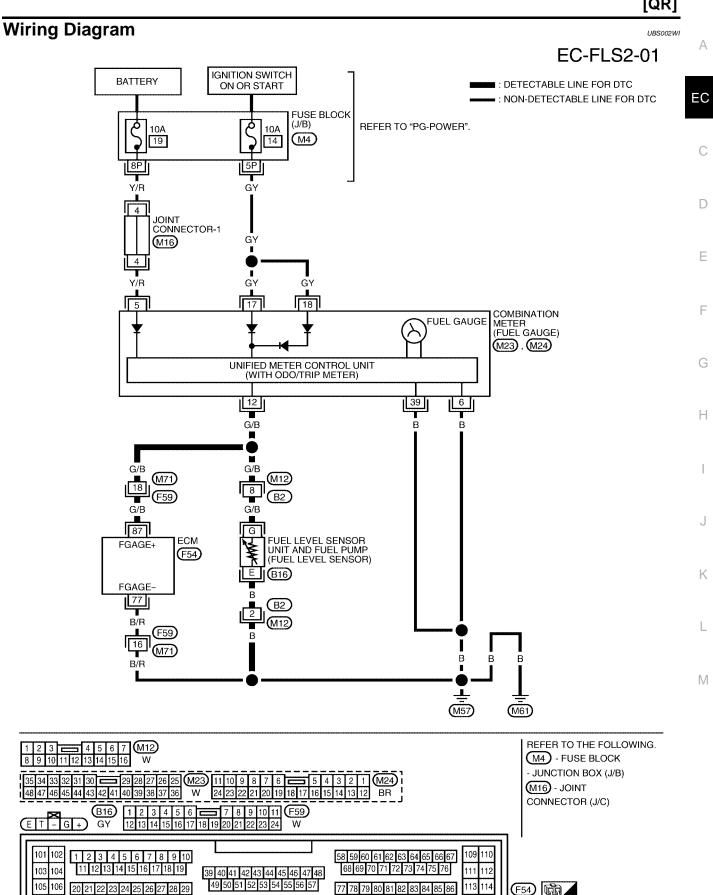
(P) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- If 1st trip DTC is detected, go to <u>EC-366</u>, "<u>Diagnostic Procedure</u>"

DATA MONITOR

MONITOR

NO DTC


FUEL T/TMP SE XXX °C

FUEL LEVEL SE XXX V

WITH GST

Follow the procedure "WITH CONSULT-II" above.

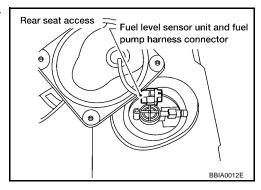
BBWA0023E

Specification data are reference values and are measured between each terminal and ground.

107 108

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

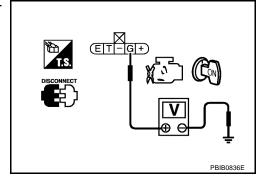

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
77	B/R	Fuel level sensor ground	[Engine is running] ● Idle speed	Approximately 0V
87	G/B	Fuel level sensor	[Ignition switch "ON"]	Approximately 0 - 4.8V Output voltage varies with fuel level.

Diagnostic Procedure

UBS002WJ

1. CHECK FUEL LEVEL SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect fuel level sensor unit and fuel pump harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between fuel level sensor unit and fuel pump terminal **G** and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M12, B2
- Harness for open or short between combination meter and fuel level sensor unit and fuel pump
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0462, P0463 FUEL LEVEL SENSOR

[QR]

$3.\,$ check fuel level sensor ground circuit for open and short

1. Turn ignition switch "OFF".

2. Check harness continuity between fuel level sensor unit and fuel pump terminal **E** and body ground. Refer to Wiring Diagram.

EC

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

D

4. DETECT MALFUNCTIONING PART

Check the following.

Harness connectors M12, B2

Harness for open or short between fuel level sensor unit and fuel pump and body ground

F

Е

>> Repair open circuit or short to power in harness or connectors.

G

$5.\,$ CHECK FUEL LEVEL SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Disconnect ECM harness connector.

Check harness continuity between ECM terminal 87 and fuel level sensor unit and fuel pump terminal G. Refer to Wiring Diagram.

- 11

Continuity should exist.

3. Also check harness for short to ground or short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M12, B2
- Harness connectors M71, F59

Harness for open or short between ECM and fuel level sensor unit and fuel pump

>> Repair open circuit or short to ground or short to power in harness or connectors.

M

7. CHECK FUEL LEVEL SENSOR

Refer to DI-21, "FUEL LEVEL SENSOR UNIT CHECK".

OK or NG

OK >> GO TO 8.

NG >> Replace fuel level sensor.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0462, P0463 FUEL LEVEL SENSOR

[QR]

Removal and Installation FUEL LEVEL SENSOR

UBS002WK

Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

DTC P0500 VSS PFP:32702

Description

UBS002WL

NOTE:

If DTC P0500 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-137, "DTC U1000, U1001 CAN COMMUNICATION LINE".

The vehicle speed sensor is installed in the transaxle. It contains a pulse generator which provides a vehicle speed signal to the combination meter. The combination meter then sends a signal to the ECM through CAN communication line.

On Board Diagnosis Logic

UBS002WM

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0500 0500	Vehicle speed sensor	The almost 0 km/h (0 MPH) signal from vehicle speed sensor is sent to ECM even when vehicle is being driven.	Harness or connectors (The CAN communication line is open or shorted)
			 Harness or connectors (The vehicle speed sensor circuit is open or shorted)
			Vehicle speed sensor
			Combination meter

DTC Confirmation Procedure

LIBS002WN

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Steps 1 and 2 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(II) WITH CONSULT-II

- 1. Start engine.
- Read "VHCL SPEED SE" in "DATA MONITOR" mode with CONSULT-II. The vehicle speed on CONSULT-II should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.

If NG, go to EC-370, "Diagnostic Procedure".

If OK, go to following step.

- 3. Select "DATA MONITOR" mode with CONSULT-II.
- Warm engine up to normal operating temperature.
- Maintain the following conditions for at least 60 consecutive seconds.

ENG SPEED	1,200 - 6,000 rpm
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	6.0 - 31.8 msec
Selector lever	Suitable position
PW/ST SIGNAL	OFF

6. If 1st trip DTC is detected, go to EC-370, "Diagnostic Procedure"

DATA MON	IITC	R
MONITOR		NO DTC
ENG SPEED	X	(X rpm
COOLAN TEMP/S	х	xx °c
B/FUEL SCHDL	хx	X msec
PW/ST SIGNAL		OFF
VHCL SPEED SE	хх	X km/h

Overall Function Check

UBS002WO

Use this procedure to check the overall function of the vehicle speed sensor circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

1. Lift up drive wheels.

EC-369 2002 Altima Revision: May 2004

EC

Α

Е

- 2. Start engine.
- Read vehicle speed sensor signal in "MODE 1" with GST.
 The vehicle speed sensor on GST should be able to exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.
- 4. If NG, go to EC-370, "Diagnostic Procedure".

Diagnostic Procedure

UBS002WP

1. CHECK VEHICLE SPEED SENSOR CIRCUIT

Refer to DI-19, "Vehicle Speed System".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK COMBINATION METER

Check combination meter function.

Refer to DI-4, "COMBINATION METERS".

>> INSPECTION END

DTC P0506 ISC SYSTEM

PFP:23781

UBS002WQ

Description

NOTE:

If DTC P0506 is displayed with other DTC, first perform the trouble diagnosis for the other DTC displayed.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner, power steering and cooling fan operation, etc.).

On Board Diagnosis Logic

UBS002WR

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0506 0506	Idle speed control sys- tem RPM lower than expected	The idle speed is less than the target idle speed by 100 rpm or more.	Electric throttle control actuator Intake air leak

DTC Confirmation Procedure

UBS002WS

NOTE:

- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform EC-49, "Idle Air Volume Learning", before conducting "DTC Confirmation Procedure". For the target idle speed, refer to the EC-629, "SERVICE DATA AND SPECIFICATIONS (SDS)".

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above -10° C (14°F).

(III) WITH CONSULT-II

- Open engine hood.
- Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 10 seconds. 3.
- Turn ignition switch "ON" again and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 1 minute at idle speed.
- If 1st trip DTC is detected, go to EC-372, "Diagnostic Procedure"

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC-371 2002 Altima Revision: May 2004

EC

А

D

Е

DTC P0506 ISC SYSTEM

[QR]

Diagnostic Procedure

1. CHECK INTAKE AIR LEAK

Start engine and let it idle.

2. Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 2.

NG >> Discover air leak location and repair.

2. REPLACE ECM

- 1. Stop engine.
- 2. Replace ECM.
- 3. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to EC-68, "VIS (Nissan Vehicle Immobilizer System NATS)".
- 4. Perform EC-49, "Accelerator Pedal Released Position Learning" .
- 5. Perform EC-49, "Throttle Valve Closed Position Learning".
- 6. Perform EC-49, "Idle Air Volume Learning".

>> INSPECTION END

DTC P0507 ISC SYSTEM

PFP:23781

Description

UBS002WU

А

EC

D

Е

M

NOTE:

If DTC P0507 is displayed with other DTC, first perform the trouble diagnosis for the other DTC displayed.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner, power steering and cooling fan operation, etc.).

On Board Diagnosis Logic

UBS002WV

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0507 0507	Idle speed control system RPM higher than expected	The idle speed is more than the target idle speed by 200 rpm or more.	Electric throttle control actuator
			Intake air leak
			 PCV system

DTC Confirmation Procedure

UBS002WW

NOTE:

- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform <u>EC-49</u>, "Idle Air Volume Learning", before conducting "DTC Confirmation Procedure". For the target idle speed, refer to the <u>EC-629</u>, "SERVICE DATA AND SPECIFICATIONS (SDS)".

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above -10°C (14°F).

(III) WITH CONSULT-II

- 1. Open engine hood.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch "OFF" and wait at least 10 seconds.
- 4. Turn ignition switch "ON" again and select "DATA MONITOR" mode with CONSULT-II.
- 5. Start engine and run it for at least 1 minute at idle speed.
- 6. If 1st trip DTC is detected, go to EC-374, "Diagnostic Procedure"

DATA N
MONITOR
ENG SPEED COOLANTEMP
COOLAN TEMP

WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P0507 ISC SYSTEM

[QR]

UBS002WX

Diagnostic Procedure

1. CHECK PCV HOSE CONNECTION

Confirm that PCV hose is connected correctly.

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK INTAKE AIR LEAK

- 1. Start engine and let it idle.
- 2. Listen for an intake air leak after the mass air flow sensor.

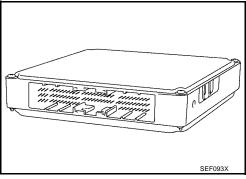
OK or NG

OK >> GO TO 3.

NG >> Discover air leak location and repair.

3. REPLACE ECM

- 1. Stop engine.
- 2. Replace ECM.
- 3. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to EC-68, "VIS (Nissan Vehicle Immobilizer System NATS)".
- 4. Perform EC-49, "Accelerator Pedal Released Position Learning".
- 5. Perform EC-49, "Throttle Valve Closed Position Learning".
- 6. Perform EC-49, "Idle Air Volume Learning".


>> INSPECTION END

DTC P0605 ECM PFP:23710

Component Description

UBS002WY

The ECM consists of a microcomputer and connectors for signal input and output and for power supply. The ECM controls the engine.

On Board Diagnosis Logic

LIBS002WZ

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
P0605 0605	Engine control module	A)	ECM calculation function is malfunctioning.	
		B)	ECM EEP-ROM system is malfunctioning.	• ECM
		C)	ECM self shut-off function is malfunctioning.	

FAIL-SAFE MODE

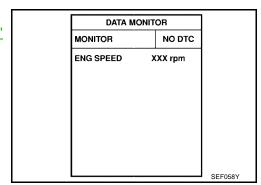
ECM enters fail-safe mode when malfunction A is detected.

Detected items	Engine operation condition in fail-safe mode
Malfunction A	ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

UBS002X0

Perform "PROCEDURE FOR MALFUNCTION A" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B". If there is no problem on "PROCEDURE FOR MALFUNCTION B", perform "PROCEDURE FOR MALFUNCTION C".


NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- If 1st trip DTC is detected, go to EC-376, "Diagnostic Procedure"

With GST

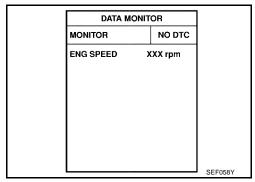
Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II

1. Turn ignition switch "ON" and wait at least 1 second.

EC-375 2002 Altima Revision: May 2004


EC

Е

Н

UBS002X1

- Select "DATA MONITOR" mode with CONSULT-II.
- Turn ignition switch "OFF", wait at least 10 seconds, and then turn "ON".
- 4. If 1st trip DTC is detected, go to EC-376, "Diagnostic Procedure"

With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION C

(With CONSULT-II

- 1. Turn ignition switch "ON" and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Turn ignition switch "OFF", wait at least 10 seconds, and then turn "ON".
- 4. Repeat step 3 procedure, 32 times.
- 5. If 1st trip DTC is detected, go to EC-376, "Diagnostic Procedure"

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm

With GST

Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure

1. INSPECTION START

(II) With CONSULT-II

- 1. Turn ignition switch "ON".
- Select "SELF DIAG RESULTS" mode with CONSULT-II.
- Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure". See <u>EC-375</u>.
- 5. Is the 1st trip DTC P0605 displayed again?

6 With GST

- 1. Turn ignition switch "ON".
- 2. Select MODE 4 with GST.
- Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure". See <u>EC-375</u>.
- 5. Is the 1st trip DTC P0605 displayed again?

Yes or No

>> GO TO 2. Yes

>> INSPECTION END No

DTC P0605 ECM

[QR]

$\overline{2}$. REPLACE ECM

- 1. Replace ECM.
- 2. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to EC-68, "VIS (Nissan Vehicle Immobilizer System NATS)".
- 3. Perform EC-49, "Accelerator Pedal Released Position Learning".
- 4. Perform EC-49, "Throttle Valve Closed Position Learning".
- 5. Perform EC-49, "Idle Air Volume Learning".

>> INSPECTION END

EC

С

D

Е

Н

/

L

DTC P0650 MIL PFP:24810

Component Description

UBS002X2

Malfunction Indicator Lamp (MIL) is located on the instrument panel. When the ignition switch is turned ON without engine running, MIL will light up. This is a bulb check. When the engine is started, MIL should go off. If MIL remains on, the on board diagnostic system has detected an engine system malfunction.

On Board Diagnosis Logic

UBS002X3

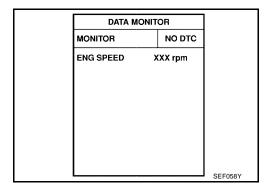
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0650 0650	Malfunction indicator (MIL) control circuit	 An excessively high voltage is sent to ECM through the MIL circuit under the condition that calls for MIL light up. An excessively low voltage is sent to ECM through the MIL circuit under the condition that calls for MIL not to light up. 	Harness or connectors (MIL circuit is open or shorted.) MIL

FAIL-SAFE MODE

ECM enters in fail-safe mode when both DTC P0650 and another DTC, which calls for MIL to light up, are detected at the same time.

Detected items	Engine operating condition in fail-safe mode
MIL circuit	Engine speed will not rise more than 2,500 rpm due to the fuel cut

DTC Confirmation Procedure


UBS002X4

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch "ON" and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-380, "Diagnostic Procedure".

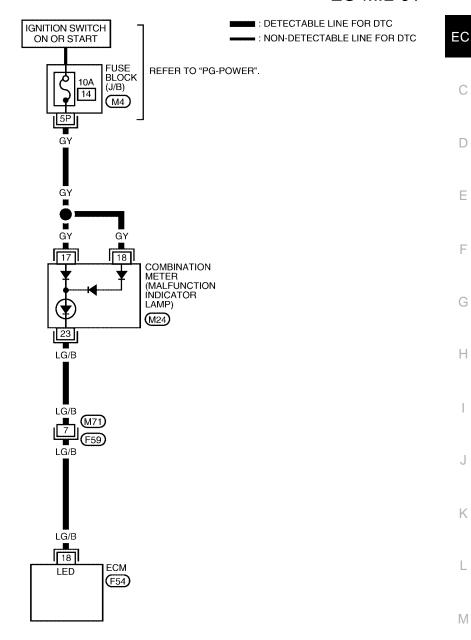
WITH GST

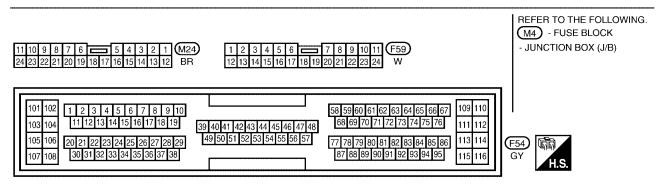
Follow the procedure "WITH CONSULT-II" above.

Α

C

D


Е


Н

M

Wiring Diagram UBS002X5

EC-MIL-01

BBWA0025E

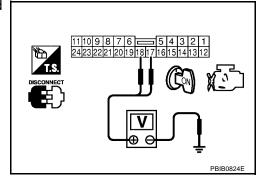
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Ignition switch "ON"]	0 - 1.0V
18 LG/B MIL		MIL	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)
			• rule speed	(11 174)

Diagnostic Procedure

UBS002X6


1. CHECK MIL POWER SUPPLY

- 1. Turn ignition switch "OFF".
- 2. Disconnect combination meter harness connector.
- 3. Turn ignition switch "ON".
- 4. Check voltage between combination meter terminal 17, 18 and ground with CONSULT-II or tester

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector M4
- 10A fuse
- Harness for open or short between fuse block (J/B) and combination meter
 - >> Repair harness or connectors.

3. CHECK MIL OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 18 and combination meter terminal 23. Refer to Wiring Diagram.

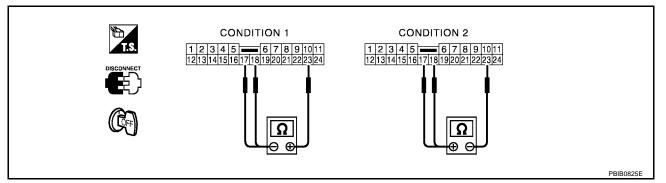
Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART


Check the following.

- Harness connectors M71, F59
- Harness for open or short between ECM and combination meter
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK COMBINATION METER

- 1. Turn ignition switch "OFF".
- 2. Disconnect combination meter harness connector.
- Check continuity under the following conditions. 3.

CONDITION	Combination meter terminal No. (Polarity)	Continuity	
1	23 (+) - 17 (–)	Should exist.	
ı	23 (+) - 18 (–)	Should exist.	
2	17 (+) - 23 (–)	Should not exist.	
2	18 (+) - 23 (–)	Should not exist.	

OK or NG

OK >> GO TO 6.

NG >> Replace combination meter. Refer to DI-4, "COMBINATION METERS" .

6. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

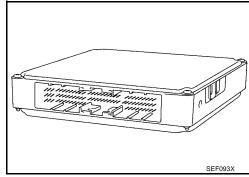
>> INSPECTION END

EC

Е

D

Н


UBS002X7

DTC P1065 ECM POWER SUPPLY

Component Description

PFP:23710

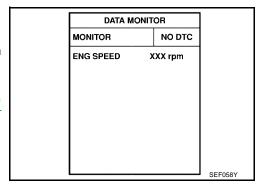
Battery voltage is supplied to the ECM even when the ignition switch is turned OFF for the ECM memory function of the DTC memory, the air fuel ratio feedback compensation value memory, the idle air volume learning value memory, etc.

On Board Diagnosis Logic

UBS002X8

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1065 1065	ECM power supply circuit	ECM back up RAM system does not function properly.	 Harness or connectors [ECM power supply (back-up) circuit is open or shorted.] ECM

DTC Confirmation Procedure


UBS002X9

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch "ON" and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. Turn ignition switch "OFF", wait at least 10 seconds, and then turn "ON".
- 5. Repeat steps 3 and 4 four times.
- If 1st trip DTC is detected, go to <u>EC-384, "Diagnostic Procedure"</u>

WITH GST

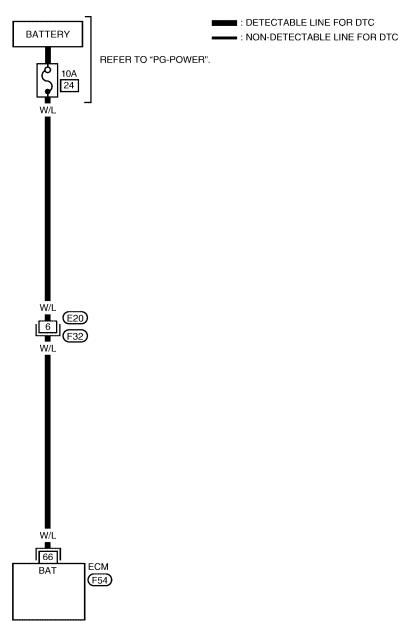
Follow the procedure "WITH CONSULT-II" above.

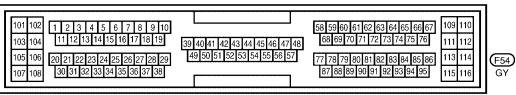
Wiring Diagram

Α

EC

C


D


Е

Н

M

EC-ECM/PW-01

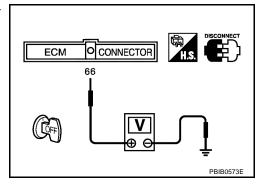
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
66	W/L	Power supply for ECM (Buck-up)	[Ignition switch "OFF"]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS002XB


1. CHECK ECM POWER SUPPLY

- Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check voltage between ECM terminal 66 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E20, F32
- 10A fuse
- Harness for open or short between ECM and battery
 - >> Repair or replace harness or connectors.

3. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> GO TO 4.

NG >> Repair or replace harness or connectors.

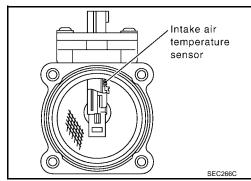
DTC P1065 ECM POWER SUPPLY [QR] 4. PERFORM DTC CONFIRMATION PROCEDURE (P) With CONSULT-II 1. Turn ignition switch "ON". EC 2. Select "SELF DIAG RESULTS" mode with CONSULT-II. 3. Touch "ERASE". 4. Perform "DTC Confirmation Procedure". See <u>EC-382</u>. 5. Is the 1st trip DTC P1065 displayed again? **With GST** D 1. Turn ignition switch "ON". 2. Select MODE 4 with GST. Е 3. Touch "ERASE". 4. Perform "DTC Confirmation Procedure". See EC-382. 5. Is the 1st trip DTC P1065 displayed again? Yes or No Yes >> GO TO 5. >> INSPECTION END No 5. REPLACE ECM 1. Replace ECM.

2. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to EC-68, "VIS (Nissan Vehicle Immobilizer System — NATS)".

3. Perform EC-49, "Accelerator Pedal Released Position Learning".

- 4. Perform EC-49, "Throttle Valve Closed Position Learning".
- 5. Perform EC-49, "Idle Air Volume Learning".

>> INSPECTION END


DTC P1102 MAF SENSOR

Component Description

PFP:22680

UBS002XC

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the greater the heat loss. Therefore, the ECM must supply more electric current to maintain the temperature of the hot film as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

UBS002XD

Specification data are reference values.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	Approx. 1.1 - 1.5V
MAS A/F SE-B1	Air conditioner switch: OFFShift lever: NNo-load	2,500 rpm	Approx. 1.6 - 2.0V
	Engine: After warming up	Idle	10% - 35%
CAL/LD VALUE	Shift lever: NAir conditioner switch: OFFNo-load	2,500 rpm	10% - 35%
	Engine: After warming up	Idle	1.0 - 4.0 g·m/s
MASS AIRFLOW	Shift lever: NAir conditioner switch: OFFNo-load	2,500 rpm	4.0 - 10.0 g·m/s

On Board Diagnosis Logic

UBS002XE

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1102 1102	Mass air flow sensor circuit range/performance problem	A voltage from the sensor is constantly approx.1.0V when engine is running.	Harness or connectors (The sensor circuit is open or shorted.)Mass air flow sensor

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

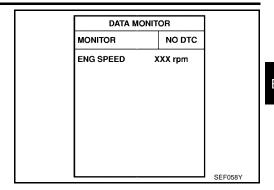
Detected items	Engine operating condition in fail-safe mode	
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.	

DTC Confirmation Procedure

UBS002XF

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.


(P) WITH CONSULT-II

1. Turn ignition switch "ON".

DTC P1102 MAF SENSOR

[QR]

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait 5 seconds at most.
- 4. If DTC is detected, go to EC-389, "Diagnostic Procedure".

WITH GST

Follow the procedure "With CONSULT-II" above.

EC

Α

D

С

Е

F

G

Н

.

L

Wiring Diagram EC-MAFS-01 BATTERY : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC IPDM E/R (INTELLIGENT POWER DISTRIBUTION MODULE ENGINE ROOM) 51 REFER TO "PG-POWER". (E122) ECM RELAY QЦ 33 44 w/B R/G R/G 6B MASS AIR FLOW SENSOR W/B R/G (F31) 3 W/B R/G W/B R/G JOINT CONNECTOR-4 R/G (F51) W/B R/G R/G 20 109 80 111 65 72 ECM SSOFF VΒ VB **AVCC** QA (F54) REFER TO THE FOLLOWING. €130 - SUPER MULTIPLE JUNCTION (SMJ) F51) - JOINT CONNECTOR (J/C) 109 110 101 102 58 59 60 61 62 63 64 65 66 67 1 2 3 4 5 6 7 8 9 10 103 104 11 12 13 14 15 16 17 18 19 111 112

BBWA0006E

113 114

F54)

77 78 79 80 81 82 83 84 85 86

87 88 89 90 91 92 93 94 95

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

105 106

108

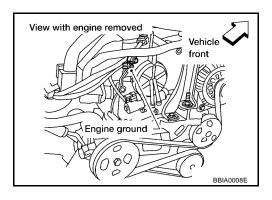
20 21 22 23 24 25 26 27 28 29

DTC P1102 MAF SENSOR

[QR]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
65	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V
72	W	Mass air flow sensor	 [Engine is running] Warm-up condition Idle speed [Engine is running] Warm-up condition Engine speed is 2,500 rpm. 	1.1 - 1.5V 1.6 - 2.0V
80	В	Mass air flow sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

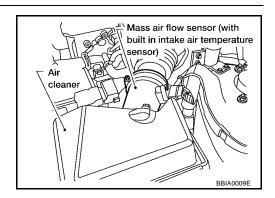
- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

EC

D

Е

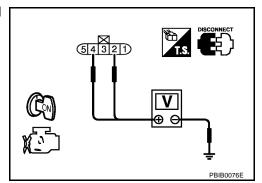

UBS002XH

Н

Κ

2. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect MAF sensor harness connector.
- 2. Turn ignition switch "ON".



3. Check voltage between MAF sensor terminals 2, 4 and ground with CONSULT-II or tester.

Terminal	Voltage
2	Approximately 5V
4	Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- Joint connector-4
- Harness for open or short between mass air flow sensor and IPDM E/R
- Harness for open or short between mass air flow sensor and ECM
 - >> Repair harness or connectors.

4. CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between MAF sensor terminal 3 and ECM terminal 80. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between MAF sensor terminal 1 and ECM terminal 72. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK MASS AIR FLOW SENSOR

Refer to EC-391, "Component Inspection".

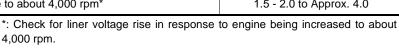
OK or NG

OK >> GO TO 7.

NG >> Replace mass air flow sensor.

7. CHECK INTERMITTENT INCIDENT

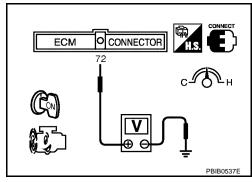
Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection MASS AIR FLOW SENSOR

Reconnect harness connectors disconnected.

- Start engine and warm it up to normal operating temperature.
- Check voltage between ECM terminal 72 (Mass air flow sensor signal) and ground.


Condition	Voltage V
Ignition switch "ON" (Engine stopped.)	Approx. 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.1 - 1.5
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.6 - 2.0
Idle to about 4,000 rpm*	1.5 - 2.0 to Approx. 4.0

- 4. If the voltage is out of specification, proceed the following.
- Turn ignition switch "OFF". a.
- Disconnect mass air flow sensor harness connector and reconnect it again. b.
- Perform steps 2 and 3 again. C.
- If NG, remove mass air flow sensor from air duct. Check hot film for damage or dust.
- If NG, clean or replace mass air flow sensor.

Removal and Installation MASS AIR FLOW SENSOR

Refer to EM-16, "AIR CLEANER AND AIR DUCT" .

EC

D

Е

UBS002XI

M

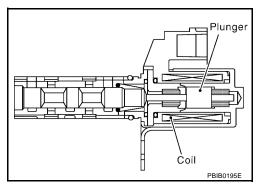
UBS002XJ

UBS002XK

DTC P1111 IVT CONTROL SOLENOID VALVE

Component Description

PFP:23796


Intake valve timing control solenoid valve is activated by ON/OFF pulse duty (ratio) signals from the ECM.

The intake valve timing control solenoid valve changes the oil amount and direction of flow through intake valve timing control unit or stops oil flow.

The longer pulse width advances valve angle.

The shorter pulse width retards valve angle.

When ON and OFF pulse widths become equal, the solenoid valve stops oil pressure flow to fix the intake valve angle at the control position.

CONSULT-II Reference Value in Data Monitor Mode

UBS002XI

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	0% - 2%
INT/V SOL (B1)	Shift lever: N		Approx. 25% - 60%
IIVI/V GOL (DI)	Air conditioner switch: OFF	2,000 rpm	
	No-load		

On Board Diagnosis Logic

UBS002XM

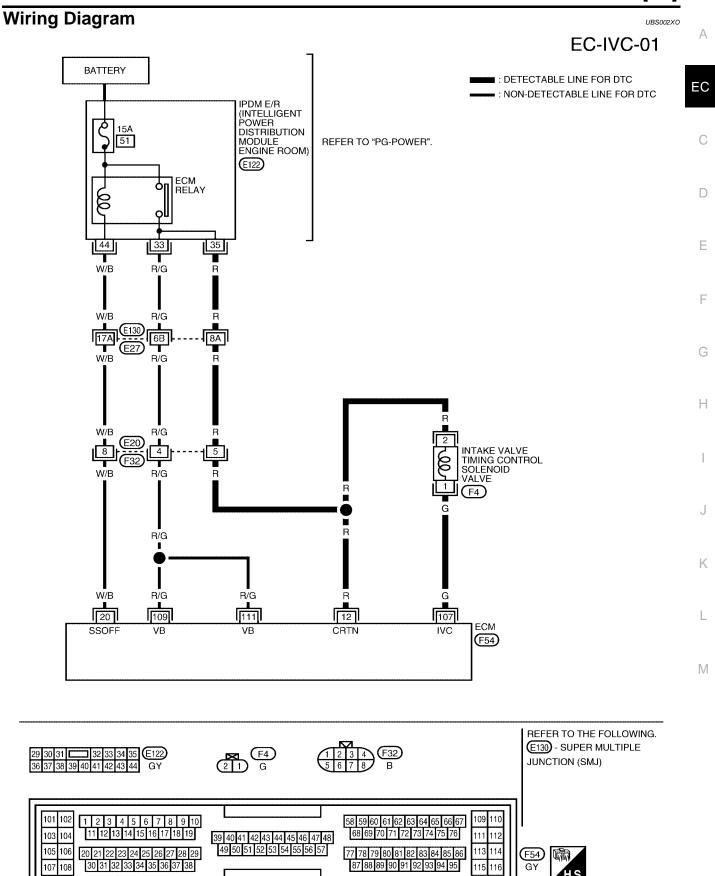
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1111 1111	Intake valve timing con- trol solenoid valve cir- cuit	An improper voltage is sent to the ECM through intake valve timing control solenoid valve.	Harness or connectors (Intake valve timing control solenoid valve circuit is open or shorted.) Intake valve timing control solenoid valve

DTC Confirmation Procedure

UBS002XN

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.


(P) WITH CONSULT-II

- Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-394, "Diagnostic Procedure"

DATA M	ONITOR]
MONITOR	NO DTC	
ENG SPEED	XXX rpm	1
		SEF058Y

WITH GST

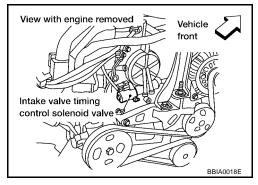
Following the procedure "WITH CONSULT-II" above.

BBWA0027E

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)
107	G	Intake valve timing control solenoid valve	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm	Approximately 9V★
				PBIB0532E

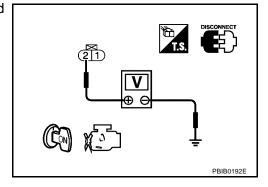

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

UBS002XP

1. CHECK POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect intake valve timing control solenoid valve harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between intake valve timing control solenoid valve terminal 2 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTION PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- Harness for open or short between intake valve timing control solenoid valve and IPDM E/R
- Harness for open or short between intake valve timing control solenoid valve and ECM

>> Repair or replace harness or connectors.

DTC P1111 IVT CONTROL SOLENOID VALVE

[QR]

Α

EC

D

Е

Н

3. CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 107 and intake valve timing control solenoid valve terminal 1. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Refer to EC-395, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace intake valve timing control solenoid valve.

5. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection INTAKE VALVE TIMING CONTROL SOLENOID VALVE

1. Disconnect intake valve timing control solenoid valve harness connector.

2. Check resistance between intake valve timing control solenoid valve terminals 1 and 2.

Terminals	Resistance	
1 and 2	Approximately 8Ω at 20°C (68°F)	
1 or 2 and ground	${}^{\infty}\!\Omega$ (Continuity should not exist)	

UBS002XR

M

LIBS002XO

Removal and Installation INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Refer to EM-47, "TIMING CHAIN".

UBS002XS

DTC P1121 ELECTRIC THROTTLE CONTROL ACTUATOR

PFP:16119

Component Description

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The throttle position sensor detects the throttle valve position, and the opening and closing speed of the throttle valve and feeds the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

UBS002XT

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
P1121 Electric throttle 1121 actuator		A)	Electric throttle control actuator does not function properly due to the return spring malfunction.	
	Electric throttle control actuator	B)	Throttle valve opening angle in fail-safe mode is not in specified range.	Electric throttle control actuator
		C)	ECM detect the throttle valve is stuck open. This self-diagnosis has the one trip detection logic.	

FAIL-SAFE MODE

When the malfunction A or B is detected, the ECM enters in fail-safe mode.

When the malfunction C is detected, the ECM enters in fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode	
Malfunction A	The ECM controls the electric throttle actuator by regulating the throttle opening around the idle position. The engine speed will not rise more than 2,000 rpm.	
Malfunction B	ECM controls the electric throttle control actuator by regulating the throttle opening to 20 degrees or less.	
Malfunction C	While the vehicle is driving, it slows down gradually by fuel cut. After the vehicle stops, the engine stalls. The engine can restart in "N" or "P" position, and engine speed will not exceed 1,000 rpm or more.	

DTC Confirmation Procedure

UBS002XU

NOTE:

- Perform "PROCEDURE FOR MALFUNCTION A AND B" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION C".
 If there is no problem on "PROCEDURE FOR MALFUNCTION A AND B", perform "PROCEDURE FOR MALFUNCTION C".
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A AND B

(P) With CONSULT-II

- 1. Turn ignition witch "ON" and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Shift selector lever to "D" position (A/T), "1st" position (M/T) and wait at least 2 seconds.
- 4. Turn ignition switch "OFF", wait at least 10 seconds, and then turn "ON".
- 5. If 1st trip DTC is detected, go to EC-400, "Diagnostic Procedure"

DATA MONITOR

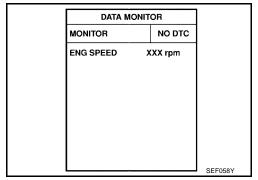
MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

DTC P1121 ELECTRIC THROTTLE CONTROL ACTUATOR

[QR]


With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION C

(With CONSULT-II

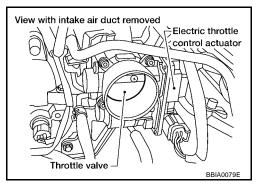
- 1. Turn ignition switch "ON" and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Shift selector lever to "D" position (A/T), "1st" position (M/T) and wait at least 2 seconds.
- 4. Shift selector lever to "N" or "P" position.
- 5. Start engine and let it idle for 3 seconds.
- 6. If DTC is detected, go to EC-400, "Diagnostic Procedure".

With GST

Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure

1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY


- Remove the intake air duct.
- 2. Check if a foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG

>> Remove the foreign matter and clean the electric throttle control actuator inside.

2. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- Replace the electric throttle control actuator.
- 2. Perform EC-49, "Throttle Valve Closed Position Learning".
- Perform <u>EC-49</u>, "Idle Air Volume Learning".

>> INSPECTION END

EC

Α

Е

UBS002XV

Н

K

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

[QR]

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

PFP:16119

Description

UBS002XW

NOTE:

If DTC P1122 is displayed with DTC P1121 or 1126, first perform the trouble diagnosis for DTC P1121 or P1126. Refer to $\frac{EC-396}{EC-405}$ or $\frac{EC-405}{EC-405}$.

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feedback to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

UBS002XX

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1122 1122	Electric throttle control performance problem	Electric throttle control function does not operate properly.	 Harness or connectors (Throttle control motor circuit is open or shorted) Electric throttle control actuator

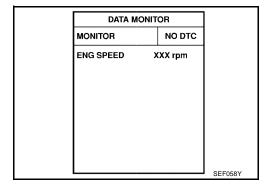
FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

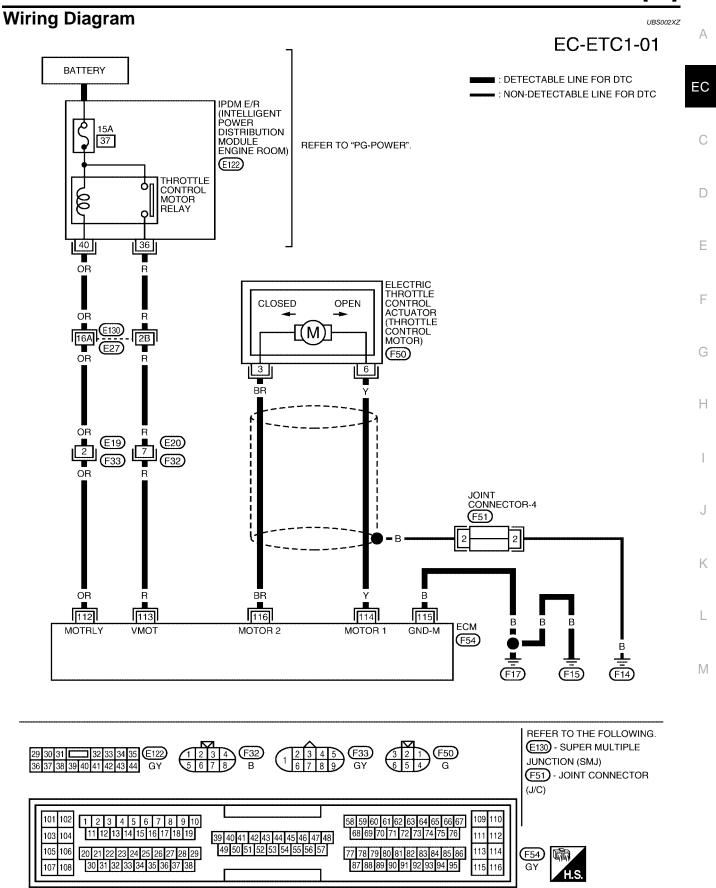
ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure


UBS002X

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.


(II) WITH CONSULT-II

- 1. Turn ignition switch "ON" and wait at least 2 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 5 seconds.
- If DTC is detected, go to <u>EC-400, "Diagnostic Procedure"</u>.

WITH GST

Follow the procedure "WITH CONSULT-II" above.

BBWA0041E

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

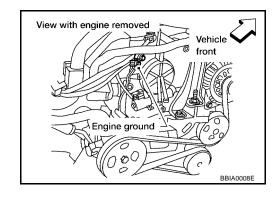
[QR]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
112	OR	Throttle control motor relay	[Ignition switch "OFF"]	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch "ON"]	0 - 1.0V
113	R	Throttle control motor relay power supply	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
114	Υ	Throttle control motor (Open)	 [Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal is depressing 	0 - 14V★
115	В	Throttle control motor ground	[Engine is running] • Idle speed	Approximately 0V
116	BR	Throttle control motor (Close)	[Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal is releasing	0 - 14V★

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

UBS002Y0

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

[QR]

$2.\,$ check throttle control motor ground circuit for open and short

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 115 and engine ground. Refer to Wiring Diagram.

EC

Α

Continuity should exist.

3. Also check harness for short to power.

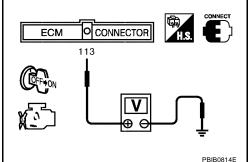
OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to power in harness or connectors.

D

Е


Н

M

3. CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-I

- 1. Reconnect harness connectors disconnected.
- Check voltage between ECM terminal 113 and ground following conditions with CONSULT-II or tester.

Ignition switch	Voltage
OFF	Approximately 0V
ON	Battery voltage (11 - 14V)

OK or NG

OK >> GO TO 11. NG >> GO TO 4.

4. CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-II

- Disconnect ECM harness connector. 1.
- Disconnect IPDM E/R harness connector E122. 2.
- 3. Check continuity between ECM terminal 113 and IPDM E/R terminal 36. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

>> GO TO 6. OK

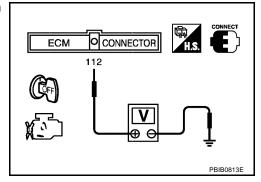
NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- Harness for open or short between ECM and IPDM E/R
 - >> Repair or replace harness or connectors.

EC-401 Revision: May 2004 2002 Altima


6. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-I

- 1. Reconnect all harness connectors disconnected.
- 2. Turn ignition switch "OFF".
- 3. Check voltage between ECM terminal 112 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10. NG >> GO TO 7.

7. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-II

- 1. Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector E122.
- Check continuity between ECM terminal 112 and IPDM E/R terminal 40. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E19, F33
- Harness for open or short between ECM and IPDM E/R
 - >> Repair or replace harness or connectors.

9. CHECK FUSE

Check 15A fuse.

OK or NG

OK >> GO TO 10.

NG >> Replace 15A fuse.

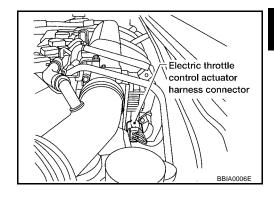
10. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> Replace IPDM E/R. Refer to PG-<u>PG-14, "IPDM E/R (INTELLIGENT POWER DISTRIBUTION MODULE ENGINE ROOM)"</u>.

NG >> Repair or replace harness or connectors.


DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

[QR]

11. CHECK THROTTLE CONTROL MOTOR OUTPUT SIGNAL CIRCUIT FOR OPEN OR SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect electric throttle control actuator harness connector.
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

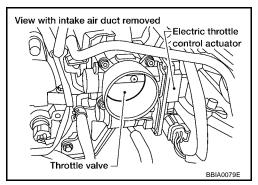
Electric throttle control actuator terminal	ECM terminal	Continuity
2	114	Should not exist
3	116	Should exist
6	114	Should exist
O	116	Should not exist

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 12.

NG >> Repair or replace.


12. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY

- 1. Remove the intake air duct.
- 2. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 13.

NG >> Remove the foreign matter and clean the electric throttle control actuator inside.

13. CHECK THROTTLE CONTROL MOTOR

Refer to EC-404, "Component Inspection".

OK or NG

OK >> GO TO 14.

NG >> GO TO 15.

14. CHECK SHIELD CIRCUIT

- 1. Disconnect joint connector-4
- Check the following.
- Continuity between joint connector-4 terminal 2 and ground.
- Joint connector-4

(Refer to PG-37, "Harness Layout" .)

Continuity should exist.

- 3. Also check harness for short to power.
- 4. Then reconnect joint connector-4.

OK or NG

OK >> GO TO 15.

NG >> Repair open circuit or short to power in harness or connectors.

Revision: May 2004 EC-403 2002 Altima

EC

D

Е

F

G

Н

|

K

15. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

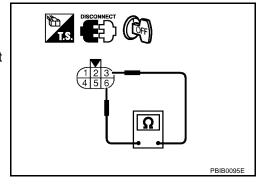
OK >> GO TO 16.

NG >> Repair or replace harness or connectors.

16. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-49, "Throttle Valve Closed Position Learning".
- 3. Perform <u>EC-49</u>, "Idle Air Volume Learning".

>> INSPECTION END


Component Inspection THROTTLE CONTROL MOTOR

UBS002Y1

- Disconnect electric throttle control actuator harness connector.
- 2. Check resistance between terminals 3 and 6.

Resistance: Approximately 1 - 15 Ω [at 25 °C (77°F)]

- If NG, replace electric throttle control actuator and go to next step.
- 4. Perform EC-49, "Throttle Valve Closed Position Learning".
- 5. Perform EC-49, "Idle Air Volume Learning".

UBS002Y2

Remove and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-18, "INTAKE MANIFOLD".

DTC P1124, P1126 THROTTLE CONTROL MOTOR RELAY

[QR]

DTC P1124, P1126 THROTTLE CONTROL MOTOR RELAY

PFP:16119

Component Description

Power supply for the Throttle Control motor is provided to the ECM via throttle control motor relay. The throttle control motor relay is ON/OFF controlled by the ECM. When the ignition switch is turned ON, the ECM sends an ON signal to throttle control motor relay and battery voltage is provided to the ECM. When the ignition switch is turned OFF, the ECM sends an OFF signal to throttle control motor relay and battery voltage is not provided to the ECM.

Α

CONSULT-II Reference Value in Data Monitor Mode

UBS002Y4

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
THRTL RELAY	Ignition switch: ON	ON

UBS002Y5

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1124 1124	Throttle control motor relay circuit short	ECM detect the throttle control motor relay is stuck ON.	Harness or connectors (Throttle control motor relay circuit is shorted)
			Throttle control motor relay
P1126 1126	Throttle control motor relay circuit open	ECM detects a voltage of power source for throttle control motor is excessively low. This self-diagnosis has the one trip detection logic.	Harness or connectors (Throttle control motor relay circuit is open) Throttle control motor relay

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode (for DTC P1124). When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up (for DTC P1126).

Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR DTC P1124

TESTING CONDITION:

M

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

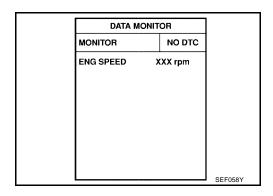
With CONSULT-II

- 1. Turn ignition switch "ON" and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- If 1st trip DTC is detected, go to EC-408, "Diagnostic Procedure"

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm

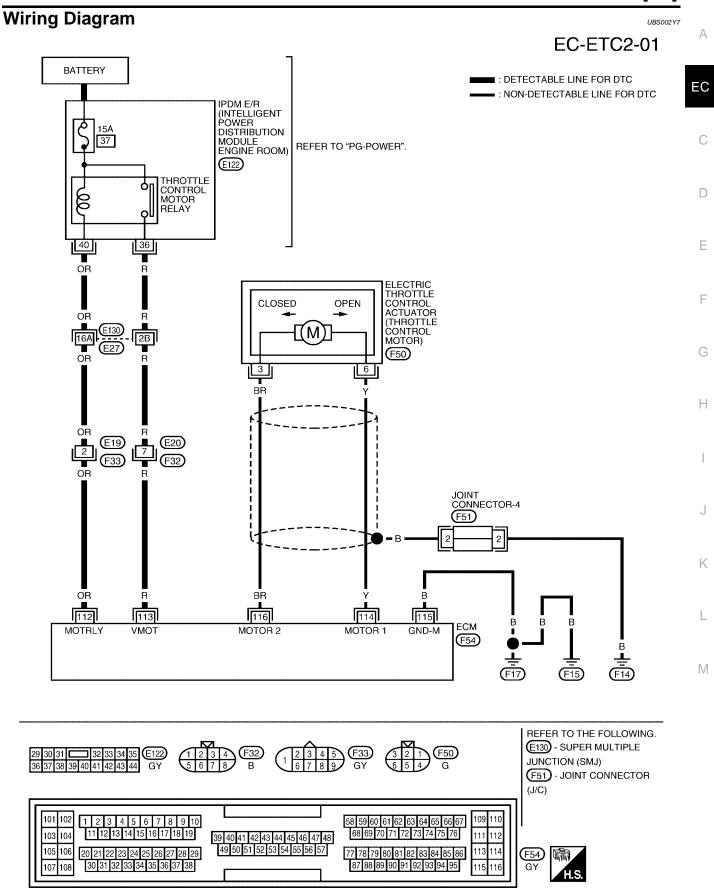
DTC P1124, P1126 THROTTLE CONTROL MOTOR RELAY

[QR]


®With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR DTC P1126


With CONSULT-II

- 1. Turn ignition switch "ON" and wait at least 2 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 5 seconds.
- 4. If DTC is detected, go to EC-408, "Diagnostic Procedure".

With GST

Follow the procedure "With CONSULT-II" above.

BBWA0042E

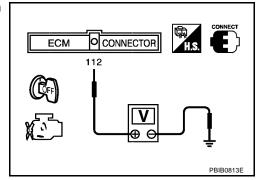
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
112	OR	Throttle control motor relay	[Ignition switch "OFF"]	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch "ON"]	0 - 1.0V
113	R	Throttle control motor relay power supply	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS002Y8


1. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch "OFF".
- 2. Check voltage between ECM terminal 112 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 2.

2. Check throttle control motor relay power supply circuit-ii

- 1. Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector E122.
- Check continuity between ECM terminal 112 and IPDM E/R terminal 40. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E19, F33
- Harness for open or short between ECM and IPDM E/R

>> Repair or replace harness or connectors.

4. CHECK FUSE

Check 15A fuse.

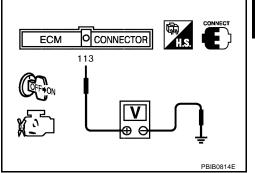
OK or NG

OK >> GO TO 8.

NG >> Replace 15A fuse.

DTC P1124, P1126 THROTTLE CONTROL MOTOR RELAY

[QR]


5. CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-I

- 1. Reconnect all harness connectors disconnected.
- Check voltage between ECM terminal 113 and ground following conditions with CONSULT-II or tester.

Ignition switch	Voltage
OFF	Approximately 0V
ON	Battery voltage (11 - 14V)

OK or NG

OK >> GO TO 8. NG >> GO TO 6.

6. CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-II

- 1. Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector E122.
- Check continuity between ECM terminal 113 and IPDM E/R terminal 36. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- Harness for open or short between ECM and IPDM E/R

>> Repair or replace harness or connectors.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> Replace IPDM E/R. Refer to <u>PG-14</u>, "IPDM E/R (INTELLIGENT POWER DISTRIBUTION MOD-<u>ULE ENGINE ROOM)"</u>.

NG >> Repair or replace harness or connectors.

С

EC

Α

Е

D

F

Н

17

M

. .

DTC P1128 THROTTLE CONTROL MOTOR

[QR]

DTC P1128 THROTTLE CONTROL MOTOR

PFP:16119

Component Description

UBS002Y9

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feed-back to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

UBS002YA

This self-diagnosis has the one trip detection logic.

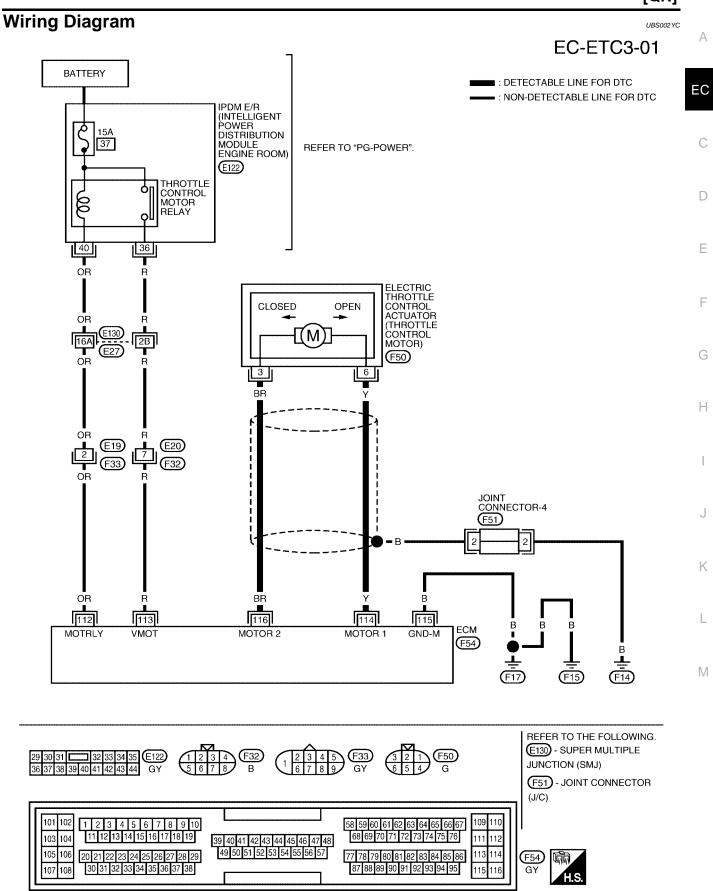
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1128 1128	Throttle control motor circuit short	ECM detects short both circuits between ECM and throttle control motor.	 Harness or connectors (Throttle control motor circuit is shorted.) Electric throttle control actuator (Throttle control motor)

DTC Confirmation Procedure

UBS002YB

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.


(P) WITH CONSULT-II

- 1. Turn ignition switch "ON" and wait at least 2 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 5 seconds.
- 4. If DTC is detected, go to EC-412, "Diagnostic Procedure".

DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
		i

WITH GST

Follow the procedure "WITH CONSULT-II" above.

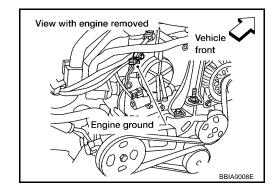
BBWA0043E

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
114	Y	Throttle control motor (Open)	[Ignition switch "ON"] • Shift lever position is "D" (A/T model) • Shift lever position is "1st" (M/T model) • Accelerator pedal is depressing	0 - 14 V★
116	BR	Throttle control motor (Close)	[Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal is releasing	0 - 14 V★

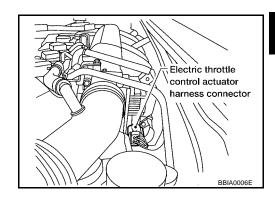
^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

UBS002YD

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.


>> GO TO 2.

$2.\,$ check throttle control motor output signal circuit for open or short

- 1. Turn ignition switch "OFF".
- 2. Disconnect electric throttle control actuator harness connector.
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

Electric throttle control actuator terminal	ECM terminal	Continuity
3	114	Should not exist
	116	Should exist
6	114	Should exist
O	116	Should not exist

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK THROTTLE CONTROL MOTOR

Refer to EC-414, "Component Inspection" .

OK or NG

OK >> GO TO 4. NG >> GO TO 6.

4. CHECK SHIELD CIRCUIT

- 1. Disconnect joint connector-4
- Check the following.
- Continuity between joint connector-4 terminal 2 and ground.
- Joint connector-4 (Refer to <u>PG-37, "Harness Layout"</u>.)

Continuity should exist.

- 3. Also check harness for short to power.
- 4. Then reconnect joint connector-4.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to power in harness or connectors.

5. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> GO TO 6.

NG >> Repair or replace harness or connectors.

6. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-49, "Throttle Valve Closed Position Learning".
- 3. Perform EC-49, "Idle Air Volume Learning".

>> INSPECTION END

Revision: May 2004 EC-413 2002 Altima

EC

D

Е

F

G

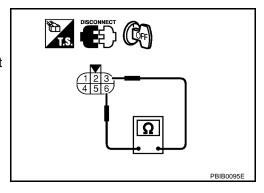
Н

1

. .

DTC P1128 THROTTLE CONTROL MOTOR

[QR]


Component Inspection THROTTLE CONTROL MOTOR

UBS002YE

- Disconnect electric throttle control actuator harness connector.
- 2. Check resistance between terminals 3 and 6.

Resistance: Approximately 1 - 15 Ω [at 25 °C (77°F)]

- 3. If NG, replace electric throttle control actuator and go to next step.
- 4. Perform EC-49, "Throttle Valve Closed Position Learning".
- 5. Perform EC-49, "Idle Air Volume Learning".

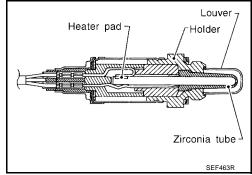
UBS002YF

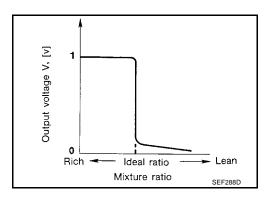
Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-18, "INTAKE MANIFOLD".

PFP:22690

Component Description


UBS002YG


EC

Е

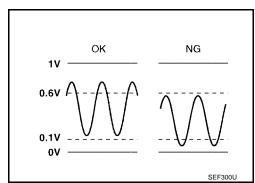
Н

The heated oxygen sensor 1 is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

UBS002YH

Specification data are reference values.


MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1)	• Engine: After warming up Maintaining engine speed at 2,000 rpm		0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times dur- ing 10 seconds.

On Board Diagnosis Logic

UBS002YI

M

To judge the malfunction, the output from the heated oxygen sensor 1 is monitored to determine whether the "rich" output is sufficiently high and whether the "lean" output is sufficiently low. When both the outputs are shifting to the lean side, the malfunction will be detected.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1143 1143	Heated oxygen sensor 1 lean shift monitoring	The maximum and minimum voltage from the sensor are not reached to the specified voltages.	 Heated oxygen sensor 1 Heated oxygen sensor 1 heater Fuel pressure Injectors Intake air leaks

DTC Confirmation Procedure

UBS002YJ

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above –10°C (14°F).
- Before performing following procedure, confirm that battery voltage is more than 11V at idle.

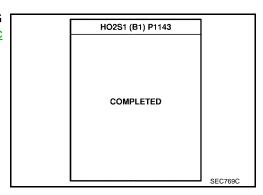
(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine and wait at least 10 seconds.
- 3. Turn ignition switch "ON" and select "HO2S1 (B1) P1143" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4. Touch "START".
- 5. Start engine and let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 5.

HO2S1 (B1) P1	1143	
OUT OF CONDI	TION	
MONITOR		
ENG SPEED XXX rpm		
B/FUEL SCHDL XXX msec		
COOLAN TEMP/S XXX °C		
VHCL SPEED SEN	XXX km/h	DD1D0540E
•		PBIB0546E


When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)

ENG SPEED	1,200 - 3,200 rpm
Vehicle speed	Less than 100 km/h (62 MPH)
B/FUEL SCHDL	1.9 - 13.0 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

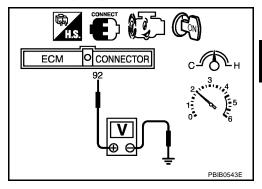
7. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-417, "Diagnostic Procedure".

HO2S1 (B1) P1	143	
TESTING		
MONITOR		
ENG SPEED XXX rpm		
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S XXX °C		
VHCL SPEED SEN	XXX km/h	PBIB0547E

Overall Function Check

UBS002YK

Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

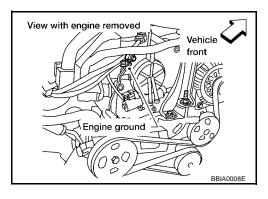

WITH GST

Start engine and warm it up to normal operating temperature.

DTC P1143 HO2S1

[QR]

- Set voltmeter probes between ECM terminal 92 [HO2S1(B1) signal] and engine ground.
- Check one of the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is over 0.1V at least one time.
- If NG, go to EC-417, "Diagnostic Procedure".

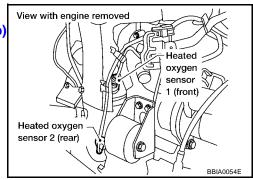

UBS002YL

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch "OFF".
- Loosen and retighten engine ground screws.

>> GO TO 2.



2. RETIGHTEN HEATED OXYGEN SENSOR 1

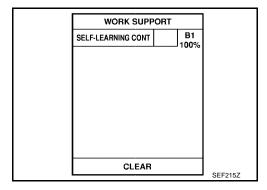
Loosen and retighten heated oxygen sensor 1.

Tightening torque: 40 - 50 N·m (4.1 - 5.1 kg-m, 30 - 37 ft-lb)

>> GO TO 3.

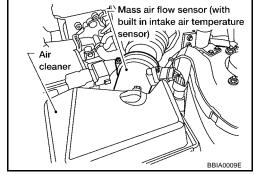
EC

D


Е

Н

3. clear the self-learning data


(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-67</u>, "<u>HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION</u>".
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

Yes or No

Yes \Rightarrow Perform trouble diagnosis for DTC P0171. Refer to $\underline{\text{EC-219}}$. No \Rightarrow GO TO 4.

4. CHECK HEATED OXYGEN SENSOR 1 HEATER

Refer to EC-147, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace heated oxygen sensor 1.

5. CHECK HEATED OXYGEN SENSOR 1

Refer to EC-419, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace heated oxygen sensor 1.

6. CHECK INTERMITTENT INCIDENT

Refer to <u>EC-129</u>, "<u>TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT</u>". For circuit, refer to EC-186, "Wiring Diagram".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 1

UBS002YM

Α

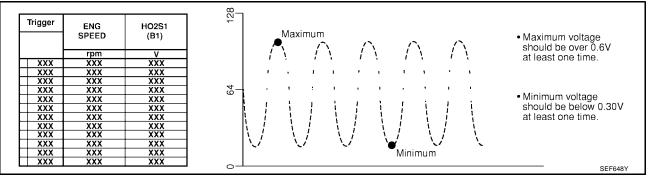
EC

D

Е

Н

M


(P) With CONSULT-II

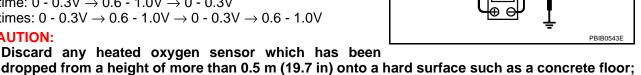
- 1. Start engine and warm it up to normal operating temperature.
- Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

DATA MON	ITOR		
MONITOR	NO	DTC	
ENG SPEED	XXX r _l	om	
MAS A/F SE-B1	xxx	v	
COOLAN TEMP/S	XXX	c	
HO2S1 (B1)	XXX	v	
HO2S1 MNTR (B1)	LEA	N	
			SEF646

- 6. Check the following.
 - "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.
 5 times (cycles) are counted as shown at right.
 - "HO2S1 (B1)" voltage goes above 0.6V at least once.
 - "HO2S1 (B1)" voltage goes below 0.3V at least once.
 - "HO2S1 (B1)" voltage never exceeds 1.0V.

cycle 1 2 3 4 5 HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R-L-R
R means HO2S1 MNTR (B1) indicates RICH L means HO2S1 MNTR (B1) indicates LEAN
SEF217YA

CAUTION:


- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 92 [HO2S1 (B1) signal] and engine ground.

- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least one time.
 - The minimum voltage is below 0.3V at least one time.
 - The voltage never exceeds 1.0V.

1 time: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$ 2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V **CAUTION:** • Discard any heated oxygen sensor which has been

CONNECTOR

ECM

• Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation **HEATED OXYGEN SENSOR 1**

use a new one.

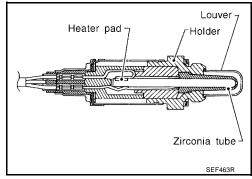
UBS002YN

Refer to EM-23, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

DTC P1144 HO2S1

PFP:22690

Component Description


UBS002YO

EC

Е

Н

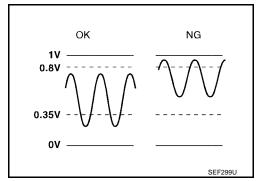
The heated oxygen sensor 1 is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

No position that the second of the second of

CONSULT-II Reference Value in Data Monitor Mode

UBS002YP

Specification data are reference values.


MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1)	• Engine: After warming up Maintaining engine speed at 2,000 rpm		0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times dur- ing 10 seconds.

On Board Diagnosis Logic

UBS002YQ

M

To judge the malfunction, the output from the heated oxygen sensor 1 is monitored to determine whether the "rich" output is sufficiently high. The "lean" output is sufficiently low. When both the outputs are shifting to the rich side, the malfunction will be detected.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1144 1144	Heated oxygen sensor 1 rich shift monitoring	The maximum and minimum voltages from the sensor are beyond the specified voltages.	 Heated oxygen sensor 1 Heated oxygen sensor 1 heater Fuel pressure Injectors

DTC Confirmation Procedure

UBS002YR

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

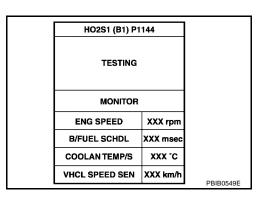
- Always perform at a temperature above –10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

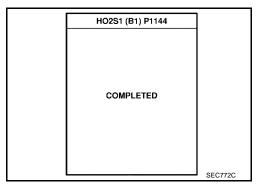
(WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine and wait at least 5 seconds.
- 3. Turn ignition switch "ON" and select "HO2S1 (B1) P1144" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4. Touch "START".
- 5. Start engine and let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 5.


HO2S1 (B1) P1		
OUT OF COND		
MONITOR		
ENG SPEED XXX rpm		
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S XXX °C		
VHCL SPEED SEN XXX km/h		
	-	PBIB0548E


When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)

ENG SPEED	1,200 - 3,200 rpm
Vehicle speed	Less than 100 km/h (62 MPH)
B/FUEL SCHDL	1.9 - 13.0 msec
Selector lever	Suitable position

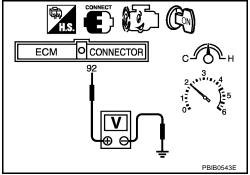
If "TESTING" is not displayed after 5 minutes, retry from step 2.

 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to <u>EC-423</u>, "<u>Diagnostic</u> Procedure".

Overall Function Check

UBS002YS

Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

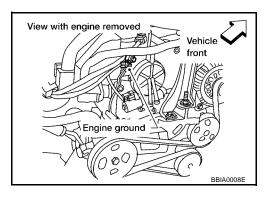

WITH GST

Start engine and warm it up to normal operating temperature.

DTC P1144 HO2S1

[QR]

- Set voltmeter probes between ECM terminal 92 [HO2S1(B1) signal] and engine ground.
- 3. Check one of the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is below 0.8V at least one time.
- The minimum voltage is below 0.35V at least one time.
- 4. If NG, go to EC-423, "Diagnostic Procedure".

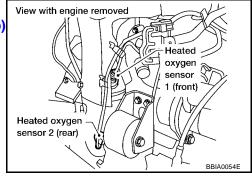

LIBS002YT

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch "OFF".
- Loosen and retighten engine ground screws.

>> GO TO 2.



2. RETIGHTEN HEATED OXYGEN SENSOR 1

Loosen and retighten heated oxygen sensor 1.

Tightening torque: 40 - 50 N·m (4.1 - 5.1 kg-m, 30 - 37 ft-lb)

>> GO TO 3.

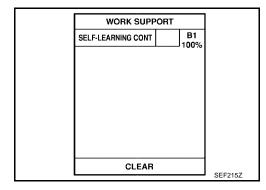
EC

D

Е

Н

J


r\

L

3. CLEAR THE SELF-LEARNING DATA

(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

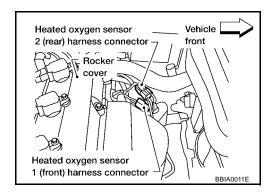
W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-67</u>, "<u>HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION</u>".
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

Yes >> Perform trouble diagnosis for DTC P0172. Refer to EC-225.

No >> GO TO 4.

4. CHECK HO2S1 CONNECTOR FOR WATER


- 1. Turn ignition switch "OFF".
- Disconnect heated oxygen sensor 1 harness connector.
- Check connectors for water.

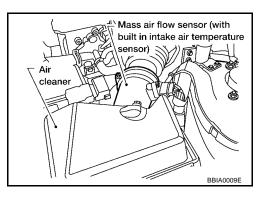
Water should not exist.

OK or NG

OK >> GO TO 5.

NG >> Repair or replace harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 1 HEATER


Refer to EC-147, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace heated oxygen sensor 1.

Revision: May 2004 EC-424 2002 Altima

EC

D

Е

Н

M

UBS002YU

6. CHECK HEATED OXYGEN SENSOR 1

Refer to EC-425, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace heated oxygen sensor 1.

7. CHECK INTERMITTENT INCIDENT

Refer to <u>EC-129</u>, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" . For circuit, refer to <u>EC-186</u>, "Wiring Diagram" .

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 1

(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

DATA MON	ITOR	
MONITOR	NO DTC]
ENG SPEED	XXX rpm	1
MAS A/F SE-B1	xxx v	
COOLAN TEMP/S	XXX °C	
HO2S1 (B1)	xxx v	
HO2S1 MNTR (B1)	LEAN	
		SEF646Y

- Check the following.
 - "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.
 5 times (cycles) are counted as shown at right.
 - "HO2S1 (B1)" voltage goes above 0.6V at least once.
 - "HO2S1 (B1)" voltage goes below 0.3V at least once.
 - "HO2S1 (B1)" voltage never exceeds 1.0V.

cycle 1 2 3 4 5 HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R
R means HO2S1 MNTR (B1) indicates RICH L means HO2S1 MNTR (B1) indicates LEAN
SEF217YA

Trigger	ENG SPEED	HO2S1 (B1)	128] ,	Maxii • ,	mum /^\	,		ſ	``			Maximum voltage should be over 0.6V
	rpm	V		/	j	- / - \	, i	,	- 1	,	i	,	at least one time.
XXX	XXX	XXX											
XXX	XXX	XXX	1	,		1		ı	1	1	•	•	
XXX	XXX	XXX	1										
XXX	XXX	XXX	26-	٠.	1				•	•	1	1	
XXX	XXX	XXX	1	l .				,					 Minimum voltage should be below 0.30V
XXX	XXX	XXX]	ji }	i	- 1	1 1	į	i	,	i	!	
XXX	XXX	XXX]	\mathbb{N} i	ļ	i	\ i	l l	i	1	i	1	at least one time.
XXX	XXX	XXX	1	l\ !	١.	!	i !	ì	!	i	!	i	
XXX	XXX	XXX	1	N /	į,	/	1 /	į	- /	Ţ	;	Ĭ.	
XXX	XXX	XXX	1	レジー	`_`_,	<i>i</i>	_/	'		\.	į	`_	
XXX	XXX	XXX	1						Mini	mum			
XXX	XXX	XXX]										
			- 0-		, in the second								SEF648Y

CAUTION:

Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m
 (19.7 in) onto a hard surface such as a concrete floor; use a new one.

• Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 92 [HO2S1 (B1) signal] and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least one time.
 - The minimum voltage is below 0.3V at least one time.
 - The voltage never exceeds 1.0V.

1 time: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

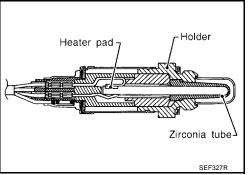
Removal and Installation HEATED OXYGEN SENSOR 1

UBS002YV

Refer to EM-23, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

UBS002YW

DTC P1146 HO2S2 PFP:226A0

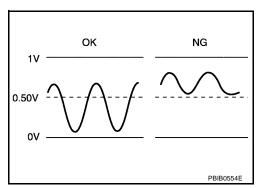

Component Description

The heated oxygen sensor 2, after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.


CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CON	NDITION	SPECIFICATION
HO2S2 (B1)	Engine: After warming up	Revving engine from idle to 3,000 rpm quickly.	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1)	Engine: After warming up	Revving engine from idle to 3,000 rpm quickly.	$LEAN \longleftrightarrow RICH$

On Board Diagnosis Logic

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the minimum voltage of sensor is sufficiently low during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1146 1146	Heated oxygen sensor 2 minimum voltage monitoring	The minimum voltage from the sensor is not reached to the specified voltage.	 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2 Fuel pressure Injectors

DTC Confirmation Procedure

UBS002YZ

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

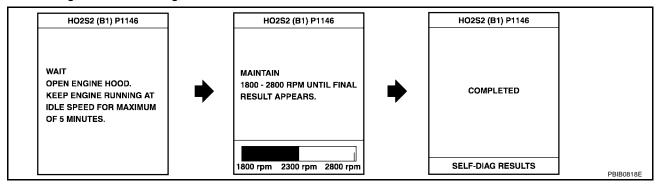
Open engine hood before conducting following procedure.

(II) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON". 3.
- Select "DATA MONITOR" mode with CONSULT-II. 4.
- Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).

EC-427 2002 Altima Revision: May 2004

EC


Е

LIBS002YX

UBS002YY

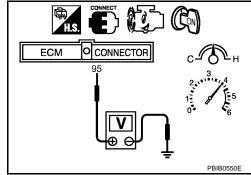
Н

- Select "HO2S2 (B1) P1146" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 7. Start engine and following the instruction of CONSULT-II.

- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If "NG" is displayed, go to EC-430, "Diagnostic Procedure".
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- a. Stop engine and cool down until "COOLAN TEMP/S" indicates less than 70°C (158°F).
- b. Turn ignition switch "ON".
- c. Select "DATA MONITOR" mode with CONSULT-II.
- d. Start engine.
- e. Return to step 6 again when the "COOLAN TEMP/S" reaches to 70°C (158°F).

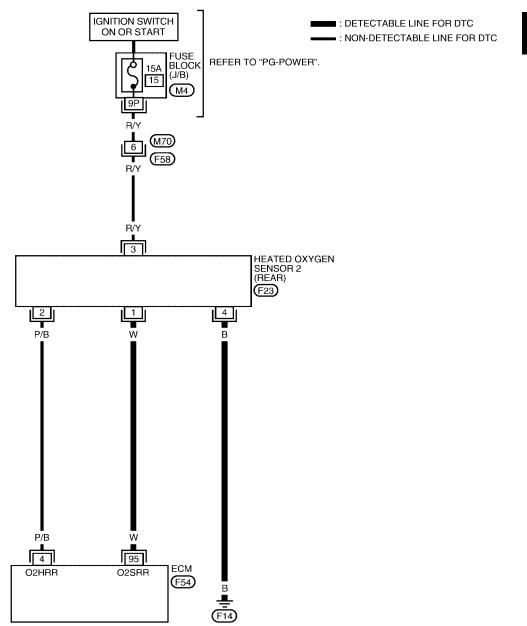
Overall Function Check

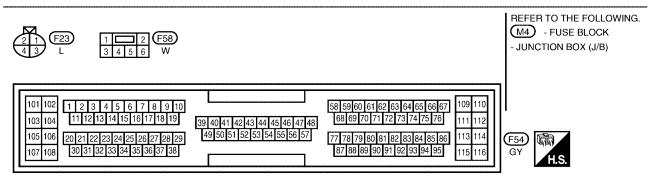
UBS002Z


Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

CAUTION:

Always drive vehicle at a safe speed.


WITH GST


- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 95 [HO2S2 (B1) signal] and engine ground.
- 4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be below 0.50V at least once during this procedure.
 - If the voltage can be confirmed in step 4, step 5 is not necessary.
- 5. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in "D" position with "OD" OFF (A/T), 3rd gear position (M/T).
 - The voltage should be below 0.50V at least once during this procedure.
- 6. If NG, go to EC-430, "Diagnostic Procedure".

Wiring Diagram

EC-HO2S2-01

BBWA0011E

EC

Α

C

D

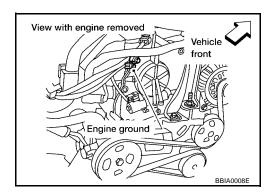
Е

Н

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
95	W	Heated oxygen sensor 2	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V


Diagnostic Procedure

UBS002Z2

1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

WORK SUPP	ORT	
SELF-LEARNING CONT	B1 100%	
CLEAR		
		SEF215Z

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to EC-67, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 detected?

Is it difficult to start engine?

Yes or No

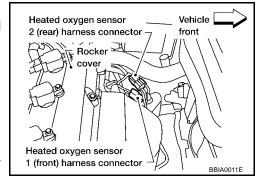
Yes >> Perform trouble diagnosis for DTC P0172. Refer to EC-225.

Nο >> GO TO 3.

$3.\,$ check ho2s2 ground circuit for open and short

- 1. Turn ignition switch "OFF".
- Disconnect heated oxygen sensor 2 harness connector.
- 3. Check harness continuity between HO2S2 terminal 4 and engine ground.

Refer to Wiring Diagram.


Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to power in harness or connetors.

Mass air flow sensor (with built in intake air temperature BBIA0009E

EC

D

Е

Н

K

4. CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 95 and HO2S2 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

Check harness continuity between ECM terminal 95 or HO2S2 terminal 1 and ground. Refer to Wiring Diagram.

Continuity should not exist.

4. Also check harness for short to ground or short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-432, "Component Inspection".

OK or NG

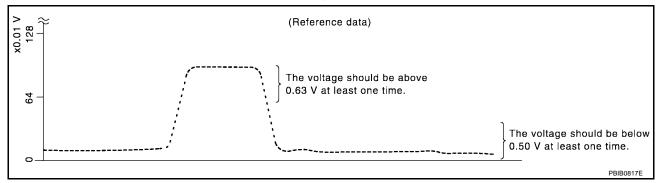
OK >> GO TO 6.

NG >> Replace heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection HEATED OXYGEN SENSOR 2

UBS002Z3

- (P) With CONSULT-II
- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.

ACTIVE TEST						
FUEL INJECTION	25 %					
MONITOR						
ENG SPEED	XXX rpm					
HO2S1 (B1)	xxx v					
HO2S2 (B1)	xxx v					
HO2S1 MNTR (B1)	RICH					
HO2S2 MNTR (B1)	RICH					

Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)" should be above 0.63V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)" should be below 0.50V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 95 [HO2S2 (B1) signal] and engine ground.
- 4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.

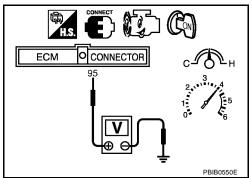
(Depress and release accelerator pedal as soon as possible.)

The voltage should be above 0.63V at least once during this procedure.

If the voltage is above 0.63V at step 4, step 5 is not necessary.

5. Keep vehicle idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in "D" position with "OD" OFF (A/T), 3rd gear position (M/T).

The voltage should be below 0.50V at least once during this procedure.


6. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation **HEATED OXYGEN SENSOR 2**

Refer to EX-3, "EXHAUST SYSTEM (QR25DE)".

EC

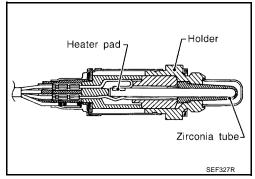
Α

Е

Н

DTC P1147 HO2S2 PFP:226A0

Component Description


UBS002Z5

The heated oxygen sensor 2, after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

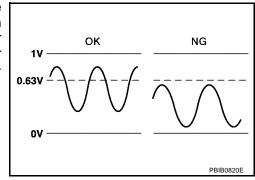
Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

UBS00276


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1)	Engine: After warming up	Revving engine from idle to 3,000 rpm quickly.	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1)	Engine: After warming up	Revving engine from idle to 3,000 rpm quickly.	$LEAN \longleftrightarrow RICH$

On Board Diagnosis Logic

UBS002Z7

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the maximum voltage of the sensor is sufficiently high during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1147 1147	Heated oxygen sensor 2 maximum voltage monitoring	The maximum voltage from the sensor is not reached to the specified voltage.	 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2 Fuel pressure Injectors Intake air leaks

DTC Confirmation Procedure

UBS002Z8

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Open engine hood before conducting following procedure.

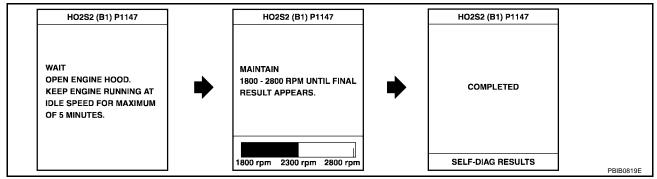
(II) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Turn ignition switch "ON".
- 4. Select "DATA MONITOR" mode with CONSULT-II.

[QR]

Α

EC


Е

Н

K

M

- 5. Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).
- 6. Select "HO2S2 (B1) P1147" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 7. Start engine and following the instruction of CONSULT-II.

- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If "NG" is displayed, go to EC-437, "Diagnostic Procedure".
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- a. Stop engine and cool down until "COOLAN TEMP/S" indicates less than 70°C (158°F).
- b. Turn ignition switch "ON".
- c. Select "DATA MONITOR" mode with CONSULT-II.
- d. Start engine.
- e. Return to step 6 again when the "COOLAN TEMP/S" reaches to 70°C (158°F).

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

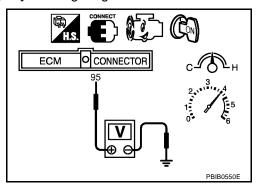
CAUTION:

Always drive vehicle at a safe speed.

S WITH GST

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 95 [HO2S2 (B1) signal] and engine ground.
- 4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.

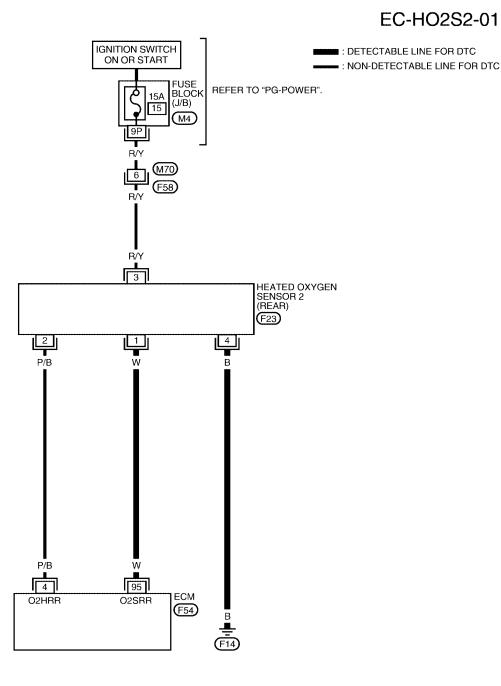
(Depress and release accelerator pedal as soon as possible.)

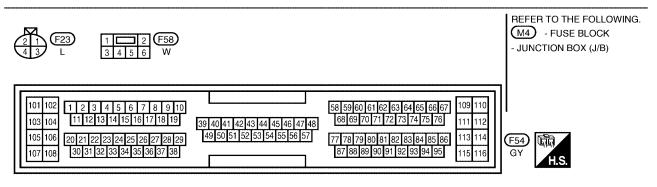

The voltage should be above 0.63V at least once during this procedure.

If the voltage can be confirmed in step 4, step 5 is not necessary.

 Keep vehicle idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in "D" position with "OD" OFF (A/T), 3rd gear position (M/T).

The voltage should be above 0.63V at least once during this procedure.


6. If NG, go to EC-437, "Diagnostic Procedure".



Revision: May 2004 EC-435 2002 Altima

Wiring Diagram

EC-HO2S2-01

BBWA0011E

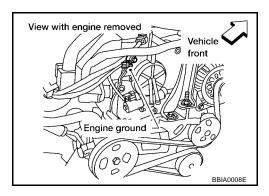
DTC P1147 HO2S2

[QR]

UBS002ZB

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
95	V	Heated oxygen sensor 2	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

EC

C

D

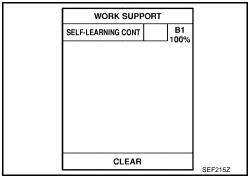
Е

F

G

Н

<


L

2. clear the self-learning data

(P) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- Clear the self-learning control coefficient by touching "CLEAR". 3.
- 4.

Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine?	

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to EC-67, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected?

Is it difficult to start engine?

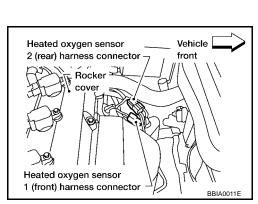
Yes or No

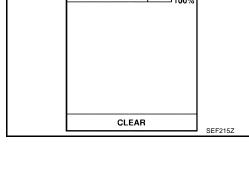
Yes >> Perform trouble diagnosis for DTC P0171. Refer to EC-219.

Nο >> GO TO 3.

$3.\,$ check ho2s2 ground circuit for open and short

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 2 harness connector.
- Check harness continuity between HO2S2 terminal 4 and engine ground. Refer to Wiring Diagram.


Continuity should exist.


4. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to power in harness or connectors.

Mass air flow sensor (with

built in intake air temperature

BBIA0009E

DTC P1147 HO2S2

[QR]

4. CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Disconnect ECM harness connector.

2. Check harness continuity between ECM terminal 95 and HO2S2 terminal 1. Refer to Wiring Diagram.

EC

Continuity should exist.

Check harness continuity between ECM terminal 95 or HO2S2 terminal 1 and ground. Refer to Wiring Diagram.

Continuity should not exist.

4. Also check harness for short to ground or short to power.

D

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

Е

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-439, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace heated oxygen sensor 2.

G

K

M

6. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

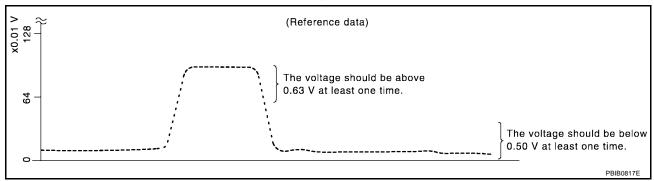
.

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2

UBS002ZC

(P) With CONSULT-II


- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.

3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.

ACTIVE TES	ACTIVE TEST	
FUEL INJECTION	25 %	
MONITOF	1	
ENG SPEED	XXX rpm	
HO2S1 (B1)	xxx v	
HO2S2 (B1)	xxx v	
HO2S1 MNTR (B1)	RICH	
HO2S2 MNTR (B1)	RICH	
		SEF662Y

UBS002ZD

Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)" should be above 0.63V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)" should be below 0.50V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeter probes between ECM terminal 95 [HO2S2 (B1) signal] and engine ground.
- 4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.

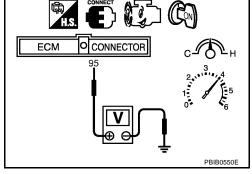
(Depress and release accelerator pedal as soon as possible.)

The voltage should be above 0.63V at least once during this procedure.

If the voltage is above 0.63V at step 4, step 5 is not necessary.

 Keep vehicle idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in "D" position with "OD" OFF (A/T), 3rd gear position (M/T).

The voltage should be below 0.50V at least once during this procedure.



CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

Refer to EX-3, "EXHAUST SYSTEM (QR25DE)".

DTC P1148 CLOSED LOOP CONTROL

[QR]

DTC P1148 CLOSED LOOP CONTROL

PFP:22690

On Board Diagnosis Logic

UBS002ZE

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1148 1148	Closed loop control function	The closed loop control function does not operate even when vehicle is driving in the specified condition.	 The heated oxygen sensor 1 circuit is open or shorted. Heated oxygen sensor 1 Heated oxygen sensor heater

C

Е

Н

Α

DTC Confirmation Procedure

UBS002ZE

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Never raise engine speed above 3,600 rpm during the "DTC Confirmation Procedure". If the engine speed limit is exceeded, retry the procedure from step 2.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Hold engine speed at 2,000 rpm and check one of the following.
 - "HO2S1 (B1)" voltage should go above 0.70V at least once.
 - "HO2S1 (B1)" voltage should go below 0.21V at least once. If the check result is NG, perform <u>EC-442</u>, "<u>Diagnostic Procedure</u>".

If the check result is OK, perform the following step.

- Let engine idle at least 5 minutes.
- Maintain the following condition at least 50 consecutive seconds.

2.8 msec or more

Suitable position

More than 1,600 rpm

DATA MON	IITOR	
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S	XXX °C	
HO2S1 (B1)	xxx v	
VHCL SPEED SE	XXX km/h	

021 0021	
	-
	1
	1//

During this test, P0134 may be displayed on CONSULT-II screen.

More than 70 km/h (43 MPH)

6. If DTC is detected, go to EC-442, "Diagnostic Procedure".

Overall Function Check

UBS002ZG

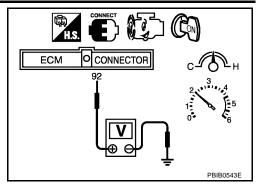
Use this procedure to check the overall function of the closed loop control. During this check, a DTC might not be confirmed.

WITH GST

B/FUEL SCHDL

ENG SPEED

Selector lever


VHCL SPEED SE

1. Start engine and warm it up to normal operating temperature.

DTC P1148 CLOSED LOOP CONTROL

[QR]

- 2. Set voltmeter probes between ECM terminal 92 [HO2S1 (B1) signal] and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no-load.
 - The voltage should go above 0.70V at least once.
 - The voltage should go below 0.21V at least once.
- 4. If NG, go to EC-442, "Diagnostic Procedure".

UBS002ZH

Diagnostic Procedure

Perform trouble diagnosis for "DTC P0133", EC-194.

[QR]

DTC P1217 ENGINE OVER TEMPERATURE

PFP:00000

System Description

UBS002ZI

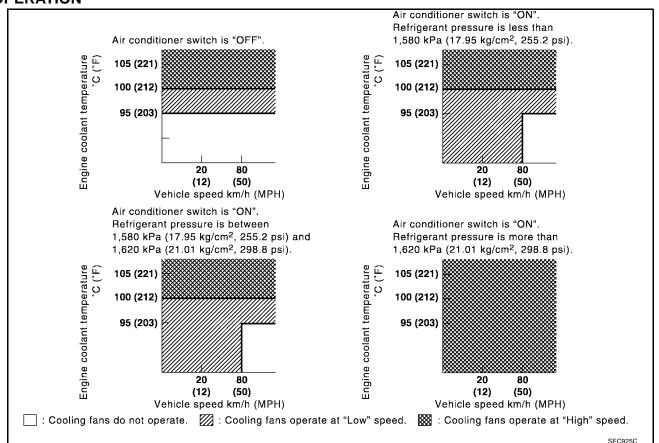
А

EC

Е

NOTE:

If DTC P1217 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-137, "DTC U1000, U1001 CAN COMMUNICATION LINE".


COOLING FAN CONTROL

Sensor	Input Signal to ECM	ECM function	Actuator
Vehicle speed sensor	Vehicle speed*		
Engine coolant temperature sensor	Engine coolant temperature		
Air conditioner switch	Air conditioner "ON" signal*	Cooling fan control	Cooling fan relay(s)
Ignition switch	Start signal		
Refrigerant pressure sensor	Refrigerant pressure		

^{*:} These signals are sent to ECM through CAN communication line.

The ECM controls the cooling fan corresponding to the vehicle speed, engine coolant temperature, refrigerant pressure, and air conditioner ON signal. The control system has 3-step control [HIGH/LOW/OFF]. The ECM controls cooling fan relays through CAN communication line.

OPERATION

CONSULT-II Reference Value in Data Monitor Mode

UBS002ZJ

M

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	 Engine: After warming up, idle 	Air conditioner switch: OFF	OFF
AIR COND SIG	the engine	Air conditioner switch: ON (Compressor operates.)	ON

MONITOR ITEM	CONDITION		SPECIFICATION
COOLING FAN		Engine coolant temperature is 94°C (201°F) or less	OFF
	 Engine: After warming up, idle the engine Air conditioner switch: OFF 	Engine coolant temperature is between 95°C (203°F) and 99°C (210°F)	LOW
		Engine coolant temperature is 100°C (212°F) or more	HIGH

On Board Diagnosis Logic

UBS002ZK

If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will rise. When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1217 1217	Engine over tempera- ture (Overheat)	 Cooling fan does not operate properly (Overheat). Cooling fan system does not operate properly (Overheat). Engine coolant was not added to the system using the proper filling method. 	 Harness or connectors (The cooling fan circuit is open or shorted.) Cooling fan Radiator hose Radiator Radiator cap Water pump Thermostat For more information, refer to EC-452.
			"Main 12 Causes of Overheating" .

CAUTION:

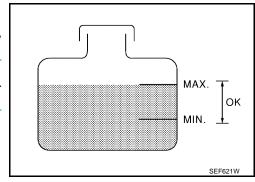
When a malfunction is indicated, be sure to replace the coolant. Refer to MA-14, "Changing Engine Coolant" . Also, replace the engine oil. Refer to LU-7, "Changing Engine Oil" .

- 1. Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Be sure to use coolant with the proper mixture ratio. Refer to MA-13, "ANTI-FREEZE COOLANT MIXTURE RATIO".
- 2. After refilling coolant, run engine to ensure that no water-flow noise is emitted.

Overall Function Check

UBS002ZL

Use this procedure to check the overall function of the cooling fan. During this check, a DTC might not be confirmed.


WARNING:

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator.

Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

(I) WITH CONSULT-II

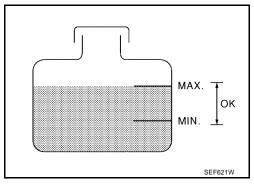
- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to <u>EC-447</u>, "<u>Diagnostic Procedure</u>".
- 2. Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to EC-447, <a href=""Diagnostic Procedure".
- 3. Turn ignition switch "ON".

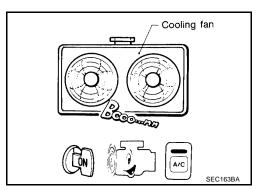
DTC P1217 ENGINE OVER TEMPERATURE

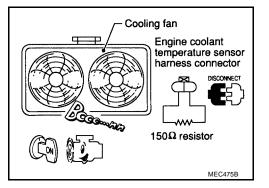
[QR]

Perform "COOLING FAN" in "ACTIVE TEST" mode with CON-SULT-II.

If the results are NG, go to EC-447, "Diagnostic Procedure".


ACTIVE T	EST		
COOLING FAN	OFF		
MONITO)R		
COOLAN TEMP/S	xxx c		
		SEF646	

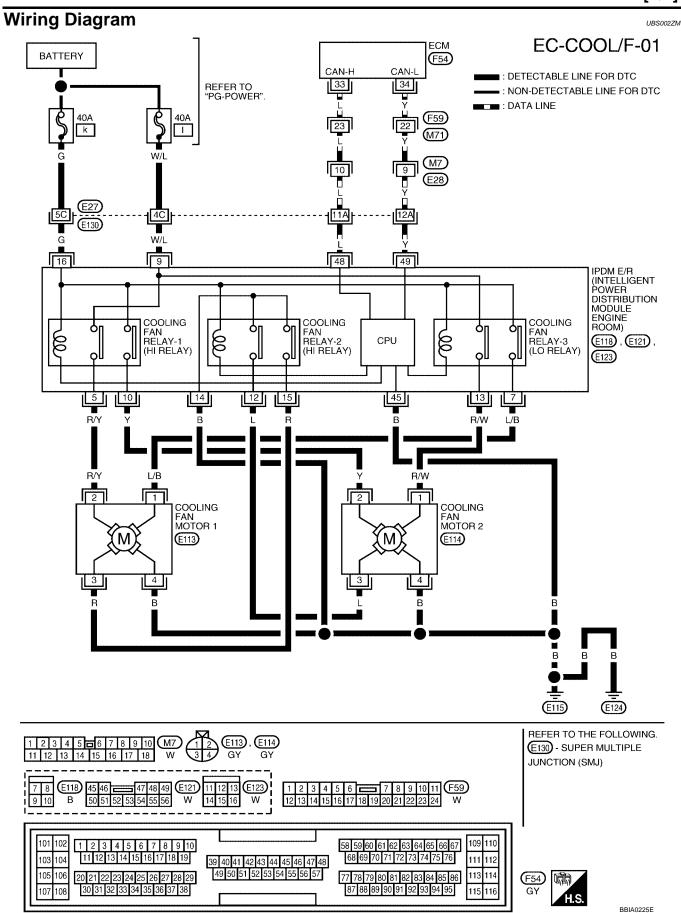

WITH GST


- Check the coolant level in the reservoir tank and radiator. Allow engine to cool before checking coolant level. If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to EC-447. "Diagnostic Procedure" .
- 2. Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to EC-447. "Diagnostic Procedure".
- 3. Start engine.

Be careful not to overheat engine.

- Turn air conditioner switch "ON".
- Turn blower fan switch "ON".
- Make sure that cooling fan operates at low speed. If NG, go to EC-447, "Diagnostic Procedure". If OK, go to the following step.
- 7. Turn ignition switch "OFF".
- Turn air conditioner switch and blower fan switch "OFF".
- Disconnect engine coolant temperature sensor harness connec-
- 10. Connect 150 Ω resistor to engine coolant temperature sensor harness connector.
- 11. Restart engine and make sure that cooling fan operates at higher speed than low speed.
 - Be careful not to overheat engine.
- 12. If NG, go to EC-447, "Diagnostic Procedure".

Α


EC

D

Е

Н

K

DTC P1217 ENGINE OVER TEMPERATURE

[QR]

UBS002ZN

Diagnostic Procedure

1. INSPECTION START

Do you have CONSULT-II?

Yes or No

Yes >> GO TO 2.

>> GO TO 4. No

2. CHECK COOLING FAN LOW SPEED OPERATION

With CONSULT-II

- 1. Start engine and let it idle.
- 2. Select "COOLING FAN" in "ACTIVE TEST" mode with CON-SULT-II and touch "LOW" on the CONSULT-II screen.
- 3. Make sure that cooling fans-1 and -2 operate at low speed.

OK or NG

OK >> GO TO 3.

NG

>> Check cooling fan low speed control circuit. (Go to EC-450, "PROCEDURE A".)

ACTIVE TES	ACTIVE TEST		
COOLING FAN	LOW		
MONITOR			
COOLAN TEMP/S	XXX °C		
		SEF784	

3. CHECK COOLING FAN HIGH SPEED OPERATION

(III) With CONSULT-II

- Touch "HIGH" on the CONSULT-II screen.
- 2. Make sure that cooling fans-1 and -2 operate at higher speed than low speed.

OK or NG

OK >> GO TO 6.

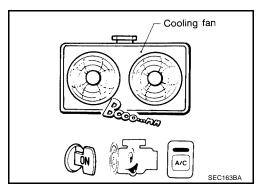
>> Check cooling fan high speed control circuit. (Go to EC-NG

452, "PROCEDURE B".)

ACTIVE TES		
COOLING FAN	HIGH	
MONITOR		
COOLAN TEMP/S	XXX °C	
		SEF7852

4. CHECK COOLING FAN LOW SPEED OPERATION

Without CONSULT-II


- 1. Start engine and let it idle.
- 2. Turn air conditioner switch "ON".
- 3. Turn blower fan switch "ON".
- 4. Make sure that cooling fans-1 and -2 operate at low speed.

OK or NG

OK >> GO TO 5.

>> Check cooling fan low speed control circuit. (Go to EC-NG

450, "PROCEDURE A".)

EC

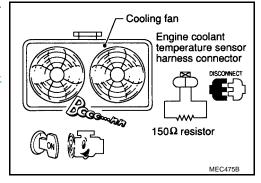
Α

D

Е

Н

5. CHECK COOLING FAN HIGH SPEED OPERATION


Without CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Turn air conditioner switch and blower fan switch "OFF".
- 3. Disconnect engine coolant temperature sensor harness connector.
- 4. Connect 150Ω resistor to engine coolant temperature sensor harness connector.
- 5. Restart engine and make sure that cooling fans-1 and -2 operate at higher speed than low speed.

OK or NG

OK >> GO TO 6.

NG >> Check cooling fan high speed control circuit. (Go to EC-452, "PROCEDURE B" .)

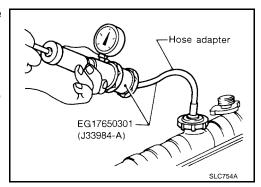
6. CHECK COOLING SYSTEM FOR LEAK

Apply pressure to the cooling system with a tester, and check if the pressure drops.

Testing pressure: 157 kPa (1.6 kg/cm², 23 psi)

CAUTION:

Higher than the specified pressure may cause radiator damage. Pressure should not drop.


OK or NG

NG

OK >> GO TO 7.

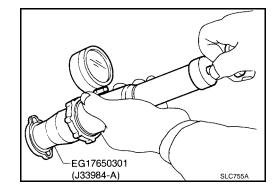
>> Check the following for leak

- Hose
- Radiator
- Water pump Refer to <u>CO-18, "WATER PUMP"</u>

7. CHECK RADIATOR CAP

Apply pressure to cap with a tester.

Radiator cap relief pressure: 59 - 98 kPa


(0.6 - 1.0 kg/cm², 9 - 14

psi)

OK or NG

OK >> GO TO 8.

NG >> Replace radiator cap.

DTC P1217 ENGINE OVER TEMPERATURE

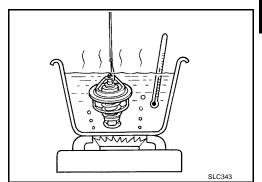
[QR]

8. CHECK THERMOSTAT

1. Check valve seating condition at normal room temperatures. **It should seat tightly.**

2. Check valve opening temperature and valve lift.

Valve opening temperature: 82°C (180°F) [standard]
Valve lift: More than 8 mm/95°C (0.31 in/203°F)


3. Check if valve is closed at 5°C (9°F) below valve opening temperature.

For details, refer to CO-20, "THERMOSTAT AND THERMOSTAT HOUSING".

OK or NG

OK >> GO TO 9.

NG >> Replace thermostat

9. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-175, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace engine coolant temperature sensor.

10. CHECK MAIN 12 CAUSES

If the cause cannot be isolated, go to EC-452, "Main 12 Causes of Overheating" .

>> INSPECTION END

EC

С

D

Е

F

G

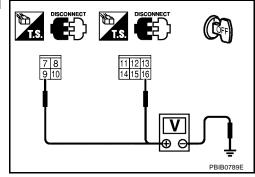
Н

J

K

L

PROCEDURE A


1. CHECK POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect IPDM E/R harness connectors E118 and E123.
- Check voltage between IPDM E/R terminals 9, 16 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- 40A fusible links
- Harness connectors E27, E130
- Harness for open or short between IPDM E/R and battery
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK COOLING FAN MOTORS CIRCUIT

- 1. Disconnect cooling fan motor-1 harness connector and cooling fan motor-2 harness connector.
- 2. Check harness continuity between cooling fan motor-1 terminal 1 and IPDM E/R terminal 7, cooling fan motor-1 terminal 4 and body ground.

Refer to wiring diagram.

Continuity should exist.

- 3. Also check harness for short to ground and short to power.
- 4. Check harness continuity between cooling fan motor-2 terminal 1 and IPDM E/R terminal 13, cooling fan motor-2 terminal 4 and body ground.

Refer to wiring diagram.

Vehicle front Cooling fan motor-1 harness connector Cooling fan motor-2 harness connector

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK COOLING FAN MOTORS

Refer to EC-453, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace cooling fan motors.

DTC P1217 ENGINE OVER TEMPERATURE

[QR]

5. CHECK INTERMITTENT INCIDENT

Perform EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> Replace IPDM E/R. Refer to PG-14, "IPDM E/R (INTELLIGENT POWER DISTRIBUTION MOD-ULE ENGINE ROOM)".

NG >> Repair or replace harness or connector.

EC

Α

D

С

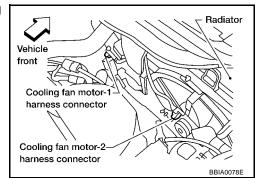
Е

F

G

Н

1


PROCEDURE B

1. CHECK COOLING FAN MOTORS CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect cooling fan motor-1 harness connector and cooling fan motor-2 harness connector.
- Check harness continuity between the following; cooling fan motor-1 terminal 2 and IPDM E/R terminal 5, cooling fan motor-1 terminal 3 and IPDM E/R terminal 15, IPDM E/R terminal 14 and body ground. Refer to wiring diagram.

Continuity should exist.

- 4. Also check harness for short to ground and short to power.
- Check harness continuity between the following; cooling fan motor-2 terminal 2 and IPDM E/R terminal 10, cooling fan motor-2 terminal 3 and IPDM E/R terminal 12, IPDM E/R terminal 14 and body ground. Refer to wiring diagram.

Continuity should exist.

6. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 2.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

2. CHECK COOLING FAN MOTORS

Refer to EC-453, "Component Inspection".

OK or NG

OK >> GO TO 3.

NG >> Replace cooling fan motors.

3. CHECK INTERMITTENT INCIDENT

 $\hbox{Perform $\underline{\tt EC-129}$, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT"} \ . \\$

OK or NG

OK

>> Replace IPDM E/R. Refer to PG-14, "IPDM E/R (INTELLIGENT POWER DISTRIBUTION MOD-ULE ENGINE ROOM)".

NG >> Repair or replace harness connectors.

Main 12 Causes of Overheating

UBS002Z0

Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	Blocked radiatorBlocked condenserBlocked radiator grilleBlocked bumper	Visual	No blocking	_
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See MA-13, "ANTI- FREEZE COOLANT MIX- TURE RATIO".
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See MA-14, "Changing Engine Coolant" .
	4	Radiator cap	Pressure tester	59 - 98 kPa (0.6 - 1.0 kg/cm ² , 9 - 14 psi) (Limit)	See <u>CO-11</u> , "CHECKING RADIATOR CAP" .

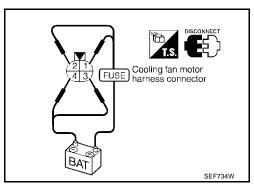
DTC P1217 ENGINE OVER TEMPERATURE

[QR]

Engine	Step	Inspection item	Equipment	Standard	Reference page
ON* ²	5	Coolant leaks	Visual	No leaks	See <u>CO-10</u> , "CHECKING <u>COOLING SYSTEM FOR</u> <u>LEAKS"</u> .
ON* ²	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	See <u>CO-20</u> , "THERMO- STAT AND THERMO- STAT HOUSING", and CO-12, "RADIATOR".
ON* ¹	7	Cooling fan	CONSULT-II	Operating	See trouble diagnosis for DTC P1217 (EC-443).
OFF	8	Combustion gas leak	Color checker chemical tester 4 Gas analyzer	Negative	_
ON* ³	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	See MA-14, "Changing Engine Coolant".
OFF* ⁴	10	Coolant return from reservoir tank to radia- tor	Visual	Should be initial level in reservoir tank	See <u>CO-10</u> , "CHECKING RESERVOIR LEVEL" .
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	See <u>EM-55</u> , "CYLINDER <u>HEAD"</u> .
	12	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	See <u>EM-55</u> , "CYLINDER <u>HEAD"</u> .

^{*1:} Turn the ignition switch ON.

For more information, refer to CO-7, "OVERHEATING CAUSE ANALYSIS" .


Component Inspection COOLING FAN MOTORS-1 AND -2

- 1. Disconnect cooling fan motor harness connectors.
- 2. Supply cooling fan motor terminals with battery voltage and check operation.

	Speed	Term	ninals
	Opeed	(+)	(–)
Cooling fan motor	Low	1	4
Cooling fair motor	High	1, 2	3, 4

Cooling fan motor should operate.

If NG, replace cooling fan motor.

Α

EC

D

Е

_

G

UBS002ZP

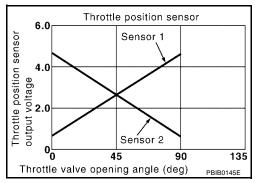
L

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

UBS002ZQ


DTC P1223, P1224 TP SENSOR

PFP:16119

Component Description

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

UBS002ZR

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	More than 0.36V
THRTL SEN2	Shift lever:D (A/T model)1st (M/T model)	Accelerator pedal: Fully depressed	Less than 4.75V

On Board Diagnosis Logic

UBS002ZS

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1223 1223	Throttle position sensor 2 circuit low input	An excessively low voltage from the TP sensor 2 is sent to ECM.	Harness or connectors (The TP sensor 2 circuit is open or
P1224 1224	Throttle position sensor 2 circuit high input	An excessively high voltage from the TP sensor 2 is sent to ECM.	shorted.) • Electric throttle control actuator (TP sensor 2)

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters in fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

DTC Confirmation Procedure

UBS002ZT

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

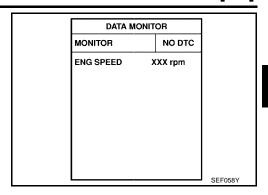
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(III) WITH CONSULT-II

1. Turn ignition switch "ON".

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.


The ECM regulates an opening speed of approx. 5 seconds to an opening of 10 degrees.

So, the acceleration will be poor.

DTC P1223, P1224 TP SENSOR

[QR]

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-457, "Diagnostic Procedure".

WITH GST

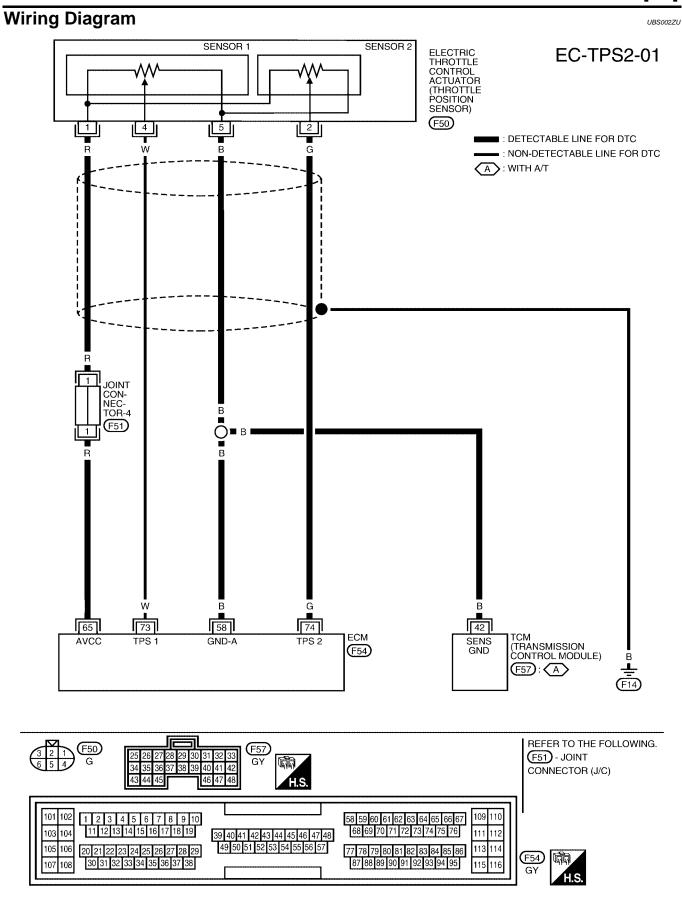
Follow the procedure "WITH CONSULT-II" above.

EC

С

Α

D


Е

G

Н

.

ı

WBWA0002E

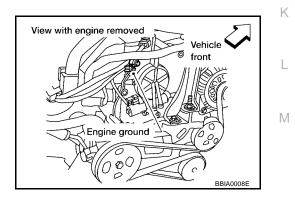
[QR]

UBS002ZV

CAUTION:

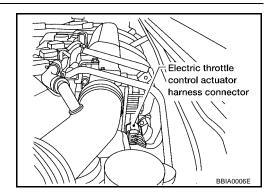
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
58	В	Sensors' ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	С
65	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V	
73	W	Throttle position agrees 4	 [Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal fully released 	More than 0.36V	D E
73	VV	Throttle position sensor 1	 [Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal fully depressed 	Less than 4.75V	F
74	6	Throttle position concer 2	 [Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal fully released 	Less than 4.75V	G
74	G	Throttle position sensor 2	 [Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal fully depressed 	More than 0.36V	ı


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

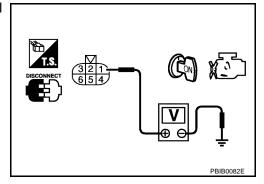
1. Turn ignition switch "OFF".


2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK THROTTLE POSITION SENSOR 2 POWER SUPPLY CIRCUIT

- Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch "ON".



 Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-4
- Harness for open or short between electric throttle control actuator and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK THROTTLE POSITION SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between electric throttle control actuator terminal 5 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between electric throttle control actuator and ECM
- Harness for open or short between electric throttle control actuator and TCM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

[QR]

$6.\,$ check throttle position sensor 2 input signal circuit for open and short

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 74 and electric throttle control actuator terminal 2. Refer to Wiring Diagram.

EC

Α

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

Е

/. CHECK THROTTLE POSITION SENSOR

Refer to EC-459, "Component Inspection".

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform <u>EC-49</u>, "Throttle Valve Closed Position Learning".
- Perform EC-49, "Idle Air Volume Learning".

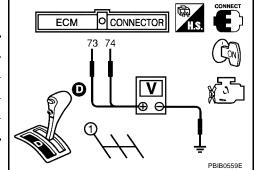
Н

>> INSPECTION END

9. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection THROTTLE POSITION SENSOR

LIBSONSZIA

M

- Reconnect all harness connectors disconnected.
- 2. Perform EC-49, "Throttle Valve Closed Position Learning".
- Turn ignition switch "ON".
- Set selector lever to "D" position (A/T models) or "1st" position (M/T models). 4.
- Check voltage between ECM terminals 73 (TP sensor 1), 74 (TP sensor 2) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
73	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
74	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- If NG, replace electric throttle control actuator and go to the next step.
- Perform EC-49, "Throttle Valve Closed Position Learning". 7.
- Perform EC-49, "Idle Air Volume Learning".

Remove and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

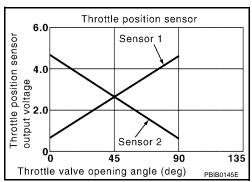
Refer to EM-18, "INTAKE MANIFOLD".

EC-459 Revision: May 2004 2002 Altima

UBS002ZX

UBS002ZY

DTC P1225 TP SENSOR


PFP:16119

Component Description

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to

the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition

On Board Diagnosis Logic

UBS002ZZ

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1225 1225	Closed throttle position learning performance problem	Closed throttle position learning value is excessively low.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure

UBS00300

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Turn ignition switch "OFF", wait at least 10 seconds.
- 4. Turn ignition switch "ON".
- 5. If 1st trip DTC is detected, go to EC-461, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

WITH GST

Follow the procedure "With CONSULT-II" above.

DTC P1225 TP SENSOR

[QR]

Diagnostic Procedure

1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY

UBS00301

Α

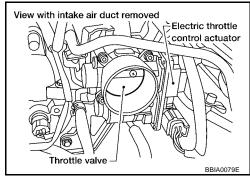
EC

D

Е

F

Н


- 1. Turn ignition switch "OFF".
- 2. Remove the intake air duct.
- 3. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG

>> Remove the foreign matter and clean the electric throttle control actuator inside.

$2. \ \mathsf{REPLACE} \ \mathsf{ELECTRIC} \ \mathsf{THROTTLE} \ \mathsf{CONTROL} \ \mathsf{ACTUATOR}$

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-49, "Throttle Valve Closed Position Learning".
- 3. Perform EC-49, "Idle Air Volume Learning".

>> INSPECTION END

Remove and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-18, "INTAKE MANIFOLD".

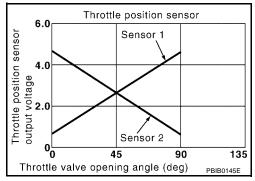
UBS00302

BS00302

K

L

DTC P1226 TP SENSOR


PFP:16119

Component Description

UBS00303

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition

On Board Diagnosis Logic

UBS00304

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1226 1226	Closed throttle position learning performance problem	Closed throttle position learning is not performed successfully, repeatedly.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure

UBS00305

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Turn ignition switch "OFF", wait at least 10 seconds.
- 4. Turn ignition switch "ON".
- 5. Repeat steps 3 and 4, 32 times.
- If 1st trip DTC is detected, go to <u>EC-463</u>, "<u>Diagnostic Procedure</u>"

DATA MONITOR

MONITOR

NO DTC

ENG SPEED XXX rpm

SEF058Y

WITH GST

Follow the procedure "With CONSULT-II" above.

DTC P1226 TP SENSOR

[QR]

Diagnostic Procedure

UBS00306

Α

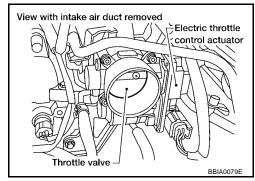
EC

D

Е

F

1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY


- 1. Turn ignition switch "OFF".
- 2. Remove the intake air duct.
- 3. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG >

>> Remove the foreign matter and clean the electric throttle control actuator inside.

$2. \ \mathsf{REPLACE} \ \mathsf{ELECTRIC} \ \mathsf{THROTTLE} \ \mathsf{CONTROL} \ \mathsf{ACTUATOR}$

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-49, "Throttle Valve Closed Position Learning".
- 3. Perform EC-49, "Idle Air Volume Learning".

>> INSPECTION END

Remove and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-18, "INTAKE MANIFOLD".

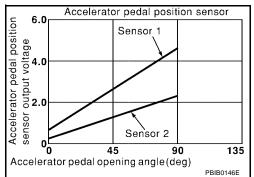
UBS00307

Н

K

L

DTC P1227, P1228 APP SENSOR


PFP:18002

Component Description

UBS00308

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

UBS00309

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN2	Ignition switch: ON	Accelerator pedal: Fully released	0.41 - 0.71V
ACCEL SENZ	(engine stopped)	Accelerator pedal: Fully depressed	More than 4.2V
CLSD THL POS	Ignition switch: ON	Accelerator pedal: Fully released	ON
		Accelerator pedal: Slightly depressed	OFF

On Board Diagnosis Logic

UBS0030A

These half-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1227 1227	Accelerator pedal position sensor 2 circuit low input	An excessively low voltage from the APP sensor 2 is sent to ECM.	Harness or connectors (The APP sensor 2 circuit is open or shorted.)
P1228 1228	Accelerator pedal position sensor 2 circuit high input	An excessively high voltage from the APP sensor 2 is sent to ECM.	,

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters in fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

So, the acceleration will be poor.

DTC Confirmation Procedure

UBS0030B

NOTE:

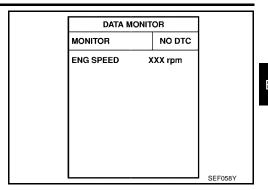
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

WITH CONSULT-II

1. Turn ignition switch "ON".


The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates an opening speed of approx. 5 seconds to an opening of 10 degrees.

DTC P1227, P1228 APP SENSOR

[QR]

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-467, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

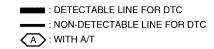
EC

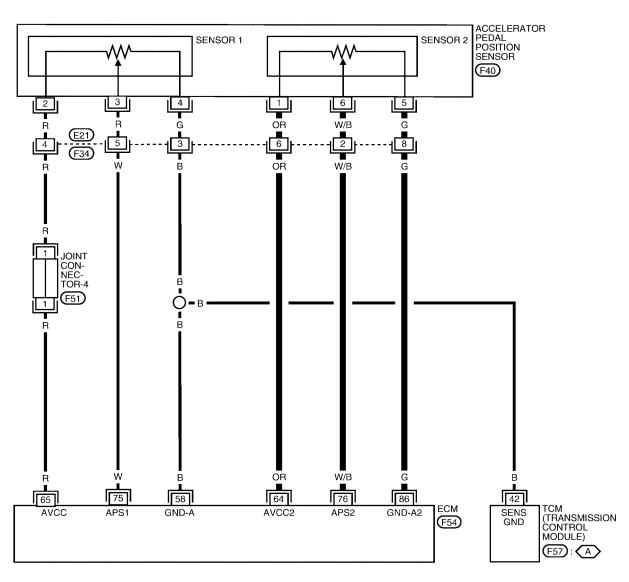
С

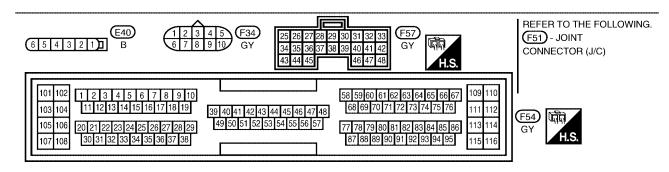
Α

D

Е


Н


_


Wiring Diagram

UBS0030C

EC-APPS2-01

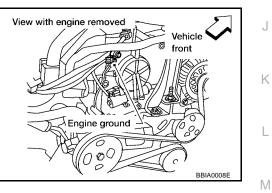
BBWA0192E

[QR]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

•		_		_	
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
58	В	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	
64	OR	Accelerator pedal position sensor 2 power supply	[Ignition switch "ON"]	Approximately 2.5V	
65	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V	_
75	75 \	Accelerator pedal position	[Ignition switch "ON"] • Accelerator pedal fully released	0.41 - 0.71V	
75 W	sensor 1	[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 4.2V	_	
76 W/B	Accelerator pedal position sensor 2	[Ignition switch "ON"] • Accelerator pedal fully released	0.21 - 0.36V		
		[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 2.1V	(
86	G	Accelerator pedal position sensor 2 ground	[Ignition switch "ON"]	Approximately 0V	[

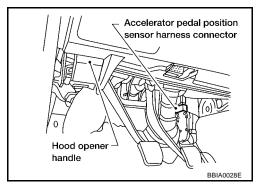

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

1. Turn ignition switch "OFF".

Loosen and retighten engine ground screws.

>> GO TO 2.

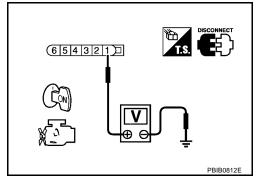

LIBS0030D

 D

Е

2. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT

- Disconnect accelerator pedal position (APP) sensor harness connector.
- 2. Turn ignition switch "ON".



Check voltage between APP sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 2.5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E21, F34
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK APP SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between APP sensor terminal 5 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E21, F34
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK APP SENSOR 2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 76 and APP sensor terminal 6. Refer to Wiring Diagram.

EC

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

D

Е

7. DETECT MALFUNCTIONING PART

Check the following.

Harness connectors E21, F34

Harness for open or short between ECM and accelerator pedal position sensor

F

>> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK APP SENSOR

Refer to EC-469, "Component Inspection".

OK or NG

OK >> GO TO 9.

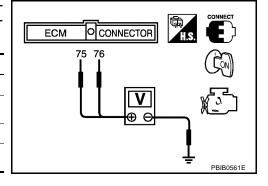
NG >> Replace accelerator pedal assembly.

Н

9. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

M


LIBS0030E

>> INSPECTION END

Component Inspection ACCELERATOR PEDAL POSITION SENSOR

- 1. Reconnect all harness connectors disconnected.
- 2. Turn ignition switch "ON".
- Check voltage between ECM terminals 75 (APP sensor 1 signal), 76 (APP sensor 2 signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
75	Fully released	0.41 - 0.71V
(Accelerator pedal position sensor 1)	Fully depressed	More than 4.2V
76	Fully released	0.21 - 0.36V
(Accelerator pedal position sensor 2)	Fully depressed	More than 2.1V

4. If NG, replace accelerator pedal assembly.

Remove and Installation ACCELERATOR PEDAL

Refer to ACC-2, "ACCELERATOR CONTROL SYSTEM".

UBS0030F

DTC P1229 SENSOR POWER SUPPLY

On Board Diagnosis Logic

PFP:16119

UBS0030G

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1229 1229	Sensor power supply circuit short	ECM detects a voltage of power source for sensor is excessively low or high.	 Harness or connectors (The TP sensor 1 and 2 circuit is shorted.) (APP sensor 1 circuit is shorted.) (MAF sensor circuit is shorted.) (EVAP control system pressure sensor circuit is shorted.) (Refrigerant pressure sensor circuit is shorted.) Electric throttle control actuator (TP sensor 1 and 2) Accelerator pedal position sensor (APP sensor 1) MAF sensor EVAP control system pressure sensor Refrigerant pressures sensor ECM pin terminal

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters in fail-safe mode and the MIL lights up.

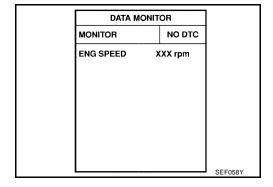
Engine operation condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

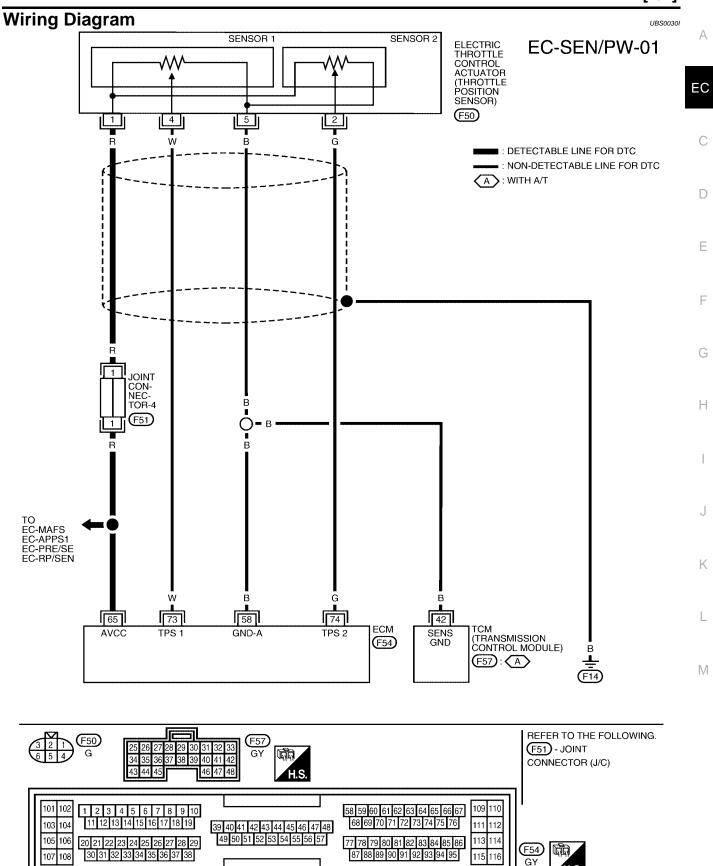
UBS0030H

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.


WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-472, "Diagnostic Procedure".

WITH GST

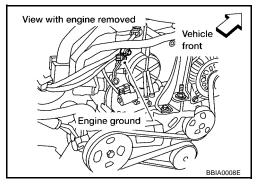
Follow the procedure "WITH CONSULT-II" above.

WBWA0003E

CAUTION:

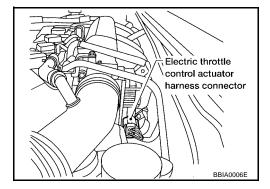
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
65	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V


Diagnostic Procedure

UBS0030J

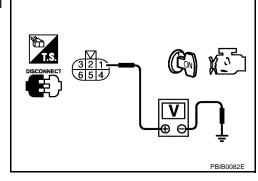
1. RETIGHTEN GROUND SCREWS


- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch "ON".



3. Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 3.

DTC P1229 SENSOR POWER SUPPLY

[QR]

EC

D

Е

Н

M

3. CHECK SENSOR POWER SUPPLY CIRCUITS FOR SHORT

Check the following.

Harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminals	Reference Wiring Diagram
	Electric throttle control actuator terminal 1	EC-251
	APP sensor terminal 2	EC-264
65	MAF sensor terminal 2	EC-156
	EVAP control system pressure sensor terminal 1	EC-329
	Refrigerant pressure sensor terminal 1	EC-596

- Joint connector-4
- ECM pin terminal.

OK or NG

OK >> GO TO 4.

NG >> Repair short to ground or short to power in harness or connectors.

4. CHECK COMPONENTS

Check the following.

- Accelerator pedal position sensor (Refer to <u>EC-267, "Component Inspection"</u>.)
- Mass air flow sensor (Refer to <u>EC-159</u>, "Component Inspection".)
- EVAP control system pressure sensor (Refer to <u>EC-332, "Component Inspection"</u>.)
- Refrigerant pressure sensor (Refer to EC-595, "REFRIGERANT PRESSURE SENSOR" .)

OK or NG

OK >> GO TO 7.

NG >> Replace malfunctioning component.

5. CHECK THROTTLE POSITION SENSOR

Refer to EC-254, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

6. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace electric throttle control actuator.
- 2. Perform EC-49, "Throttle Valve Closed Position Learning".
- 3. Perform EC-49, "Idle Air Volume Learning".

>> INSPECTION END

7. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

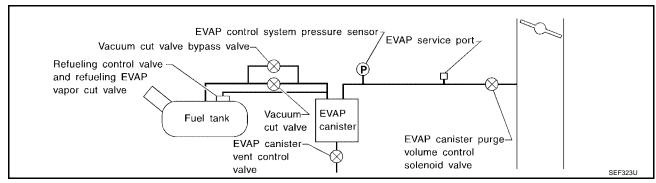
>> INSPECTION END

Revision: May 2004 EC-473 2002 Altima

UBS0030K

DTC P1442 EVAP CONTROL SYSTEM

On Board Diagnosis Logic


PFP:14950

NOTE:

If DTC P1442 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See $\underline{\text{EC-490}}$.)

This diagnosis detects leaks in the EVAP purge line using of vapor pressure in the fuel tank.

The EVAP canister vent control valve is closed to shut the EVAP purge line. The vacuum cut valve bypass valve will then be opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP control system pressure sensor can now monitor the pressure inside the fuel tank. If pressure increases, the ECM will check for leaks in the line between the vacuum cut valve and EVAP canister purge volume control solenoid valve.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1442 1442	EVAP control system small leak detected (positive pressure)	EVAP control system has a leak, EVAP control system does not operate properly.	Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube to EVAP control system pressure sensor Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged Water separator EVAP canister is saturated with water EVAP control system pressure sensor Fuel level sensor and the circuit Refueling control valve ORVR system leaks Foreign matter caught in EVAP canister purge volume control valve

DTC P1442 EVAP CONTROL SYSTEM

[QR]

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

Refer to "DTC P0442 EVAP CONTROL SYSTEM", EC-307.

Diagnostic Procedure

Refer to "DTC P0442 EVAP CONTROL SYSTEM", EC-308.

EC

UBS0030L

UBS0030M

Е

D

F

G

Н

K

L

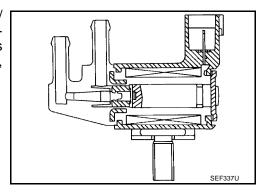
M

DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE [QR]

DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

PFP:14920

Description SYSTEM DESCRIPTION


UBS0030N

Sensor	Input Signal to ECM	ECM function	Actuator	
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Ignition switch	Start signal			
Throttle position sensor	Throttle position	EVAP canister	EVAP canister purge vol-	
Accelerator pedal position switch	Accelerator pedal position	purge flow control	ume control solenoid valve	
Heated oxygen sensors 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)			
Fuel tank temperature sensor	Fuel temperature in fuel tank			
Vehicle speed sensor (CAN communication line)	Vehicle speed			

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/ OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

CONSULT-II Reference Value in Data Monitor Mode

UBS00300

Specification data are reference values.

MONITOR ITEM	CON	SPECIFICATION	
	Engine: After warming up	Idle	0%
PURG VOL C/V	Shift lever: NAir conditioner switch: OFF		
FORG VOL C/V		2,000 rpm	20 - 30%
	No-load		

DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE [QR]

On Board Diagnosis Logic

UBS0030P

DTC	No. Trouble diagnosis name	DTC detecting condition	Possible cause	
P1444 1444	EVAP canister purge volume control solenoid valve	The canister purge flow is detected during the specified driving conditions, even when EVAP canister purge volume control solenoid valve is completely closed.	 EVAP control system pressure sensor EVAP canister purge volume control solenoid valve (The valve is stuck open.) EVAP canister vent control valve EVAP canister Hoses (Hoses are connected incorrectly or clogged.) 	E

DTC Confirmation Procedure

UBS0030Q

D

Е

F

M

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

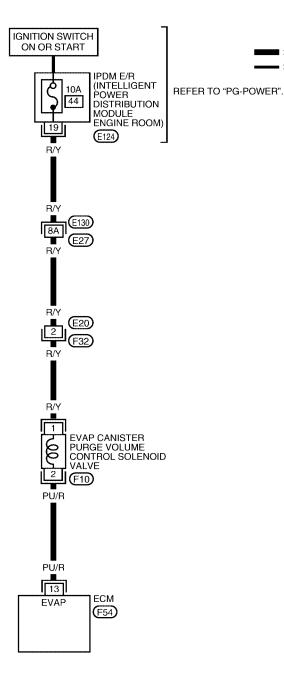
WITH CONSULT-II

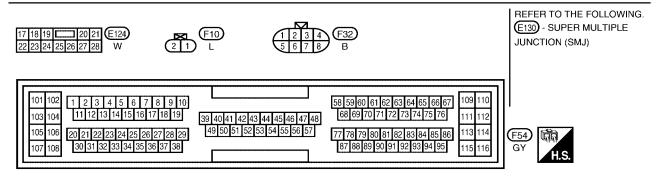
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Turn ignition switch "ON".
- Select "PURG VOL CN/V P1444" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 5. Touch "START".
- 6. Start engine and let it idle until "TESTING" on CONSULT-II changes to "COMPLETED". (It will take approximately 10 seconds.)

If "TESTING" is not displayed after 5 minutes, retry from step 2.

PURG VOL CN/V	P1444		PURG VOL CN/V	P1444		PURG VOL CN/V P1444	
OUT OF COND	TION		TESTING				
MONITOR			MONITOR		•	COMPLETED	
ENG SPEED	XXX rpm	•	ENG SPEED	XXX rpm	,		
B/FUEL SCHDL	XXX msec		B/FUEL SCHDL	XXX msec			
COOLAN TEMP/S	xxx .c		COOLAN TEMP/S	xxx °c			
VHCL SPEED SE	XXX km/h		VHCL SPEED SE	XXX km/h			PBIB0839E

7. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-479, "Diagnostic Procedure".


WITH GST


- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Start engine and let it idle for at least 20 seconds.
- 4. Select "MODE 7" with GST.
- If 1st trip DTC is detected, go to <u>EC-479</u>, "<u>Diagnostic Procedure</u>".

Wiring Diagram UBS0030R

: NON-DETECTABLE LINE FOR DTC

BBIA0226E

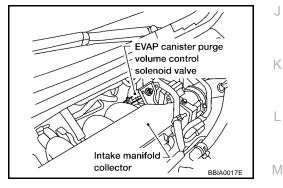
DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
		EVAP canister purge	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)★ → 10.0V/Div 50 ms/Div	C
13	PU/R	volume control sole- noid valve	[Engine is running] ● Engine speed is about 2,000 rpm (More than 100 seconds after starting engine)	Approximately 10V★	E F

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

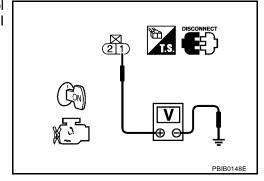

Diagnostic Procedure

UBS0030S

Н

1. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIR-CUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect EVAP canister purge volume control solenoid valve harness connector.
- 3. Turn ignition switch "ON".



 Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and engine ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- IPDM E/R harness connector E124
- Harness for open or short between EVAP canister purge volume control solenoid valve and IPDM E/R
 - >> Repair harness or connectors.

3. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIR-CUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 13 and EVAP canister purge volume control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

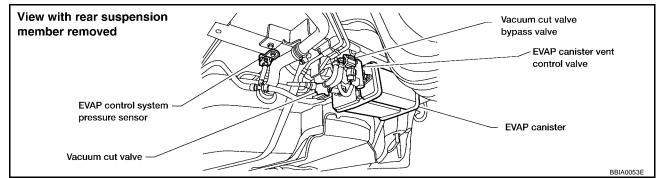
4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE


Check disconnection or improper connection of hose connected to EVAP control system pressure sensor. OK or NG

OK >> GO TO 5.

NG >> Repair it.

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

Disconnect EVAP control system pressure sensor harness connector.

Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 6.

NG >> Replace EVAP control system pressure sensor.

DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

6. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-332, "Component Inspection".

OK or NG

OK (With CONSULT-II)>>GO TO 7.

OK (Without CONSULT-II)>>GO TO 8.

NG >> Replace EVAP control system pressure sensor.

7. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Reconnect harness connectors disconnected.
- 3. Start engine.
- 4. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 9.

NG >> GO TO 8.

ACTIVE TE	ST
PURG VOL CONT/V	XXX %
MONITO	1
ENG SPEED	XXX rpm
A/F ALPHA-B1	XX %
HO2S1 MNTR (B1)	LEAN

EC

D

Е

K

M

8. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-319, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace EVAP canister purge volume control solenoid valve.

9. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 10.

NG >> Clean the rubber tube using an air blower.

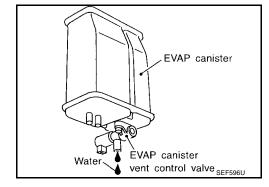
10. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-325, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> Replace EVAP canister vent control valve.


DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

11. CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

Yes or No

Yes >> GO TO 12. No >> GO TO 15.

12. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK >> GO TO 14. NG >> GO TO 13.

13. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection

>> Repair hose or replace EVAP canister.

14. CHECK WATER SEPARATOR

Refer to EC-313, "Component Inspection".

OK or NG

OK >> GO TO 15.

NG >> Clean or replace water separator.

15. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE [QR]

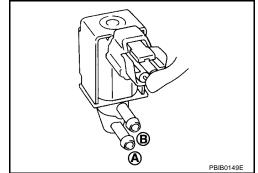
Component Inspection EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

UBS0030T

Α

EC

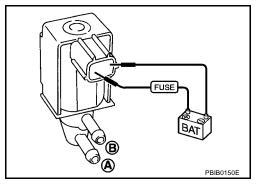
C


D

Е

(II) With CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.


Condition (PURG VOL CONT/V value)	Air passage continuity between A and B
100.0%	Yes
0.0%	No

⊗ Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Removal and Installation EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EM-18, "INTAKE MANIFOLD".

UBS0030U

v

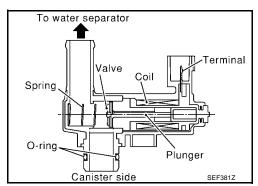
Н

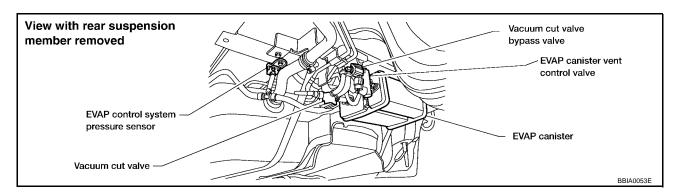
M

UBS0030V

DTC P1446 EVAP CANISTER VENT CONTROL VALVE

Component Description


PFP:14935


The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

UBS0030W

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	• Ignition switch: ON	OFF

On Board Diagnosis Logic

UBS0030X

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
		n- EVAP canister vent control valve remains closed under specified driving conditions.	EVAP canister vent control valve
P1446 1446	EVAP canister vent control valve close		 EVAP control system pressure sensor and the circuit Blocked rubber tube to EVAP canister vent control valve
			Water separatorEVAP canister is saturated with water

DTC Confirmation Procedure

UBS0030Y

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(III) WITH CONSULT-II

1. Turn ignition switch "ON".

DTC P1446 EVAP CANISTER VENT CONTROL VALVE

[QR]

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine.
- 4. Drive vehicle at a speed of approximately 80 km/h (50 MPH) for a maximum of 15 minutes.

NOTE:

If a malfunction exists, NG result may be displayed quicker.

5. If 1st trip DTC is detected, go to EC-487, "Diagnostic Procedure"

DATA MO	ONITOR
MONITOR	NO DTC
ENG SPEED COOLAN TEMP/S VHCL SPEED SE B/FUEL SCHDL	XXX km/h

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

D

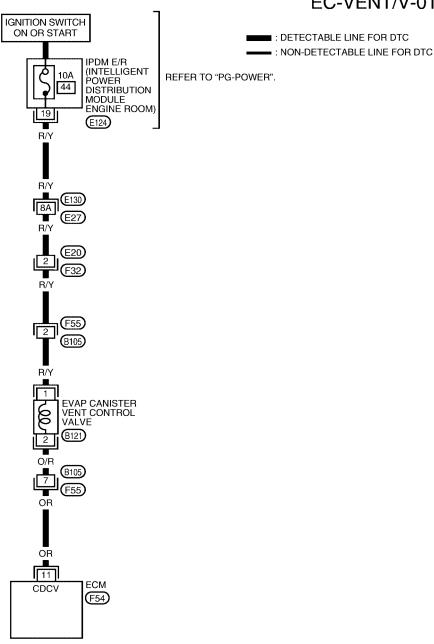
C

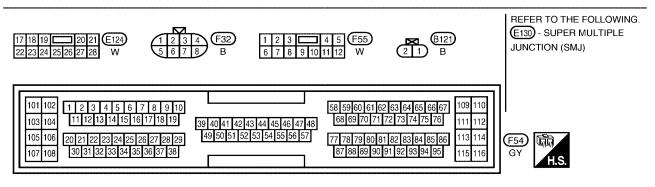
Е

F

Н

Κ


L


M

UBS0030Z

Wiring Diagram

EC-VENT/V-01

BBWA0020E

DTC P1446 EVAP CANISTER VENT CONTROL VALVE

[QR]

CAUTION:

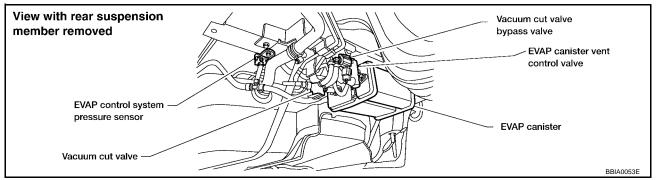
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
11	OR	EVAP canister vent control valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS00310

EC


Е

Н

M

1. CHECK RUBBER TUBE

- 1. Turn ignition switch "OFF".
- 2. Disconnect rubber tube connected to EVAP canister vent control valve.

3. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 2.

NG >> Clean rubber tube using an air blower.

2. CHECK WATER SEPARATOR

Refer to EC-313, "Component Inspection".

OK or NG

OK >> GO TO 3.

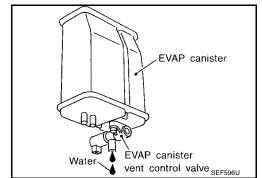
NG >> Clean or replace water separator.

3. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-489, "Component Inspection".

OK or NG

OK >> GO TO 4.


NG >> Replace EVAP canister vent control valve.

4. CHECK IF EVAP CANISTER SATURATED WITH WATER

- Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

Yes or No

Yes >> GO TO 5. No >> GO TO 7.

5. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

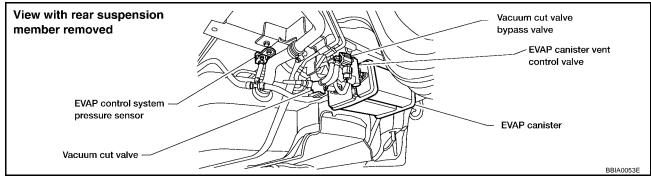
OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection
 - >> Repair hose or replace EVAP canister.


7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE

Check disconnection or improper connection of hose connected to EVAP control system pressure sensor. OK or NG

OK >> GO TO 8. NG >> Repair it.

8. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

Disconnect EVAP control system pressure sensor harness connector.

2. Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 9.

NG >> Replace EVAP control system pressure sensor.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-332, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace EVAP control system pressure sensor.

10. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

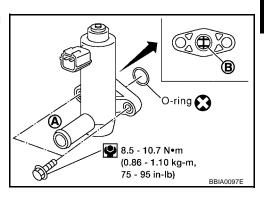
Component Inspection EVAP CANISTER VENT CONTROL VALVE

UBS00311

Α

EC

D


Е

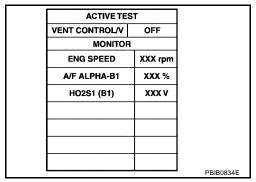
Н

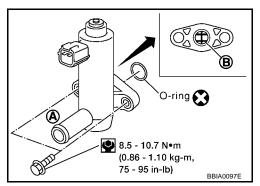
M

(II) With CONSULT-II

- 1. Remove EVAP canister vent control valve from EVAP canister.
- Check portion **B** of EVAP canister vent control valve for being rusted.
- 3. Reconnect harness connectors disconnected.
- 4. Turn ignition switch "ON".

- 5. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 6. Check air passage continuity and operation delay time.


Condition Air passage continuity between A and	
ON	No
OFF	Yes


Operation takes less than 1 second. Make sure new O-ring is installed properly. If NG, go to next step.

- 7. Clean the air passage (Portion **A** to **B**) of EVAP canister vent control valve using an air blower.
- 8. Perform inspection again.

⋈ Without CONSULT-II

- 1. Remove EVAP canister vent control valve from EVAP canister.
- Check portion B of EVAP canister vent control valve for being rusted.

3. Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

Operation takes less than 1 second. Make sure new O-ring is installed properly. If NG, go to next step.

- 4. Clean the air passage (Portion **A** to **B**) of EVAP canister vent control valve using an air blower.
- 5. Perform inspection again.

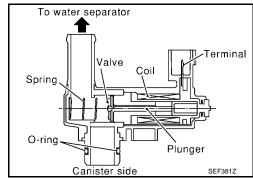
UBS00312

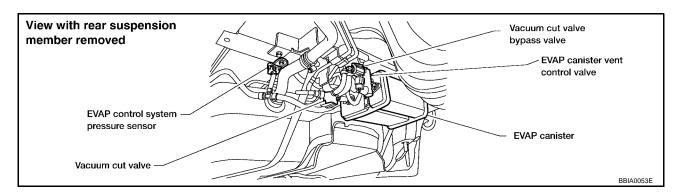
DTC P1448 EVAP CANISTER VENT CONTROL VALVE

Component Description

PFP:14935

NOTE:


If DTC P1448 is displayed with P0442, perform trouble diagnosis for DTC P1448 first.


The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

UBS00313

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	• Ignition switch: ON	OFF

On Board Diagnosis Logic

UBS00314

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
			EVAP canister vent control valve
			EVAP control system pressure sensor and the circuit
P1448 1448	EVAP canister vent control valve open	EVAP canister vent control valve remains opened under specified driving conditions.	Blocked rubber tube to EVAP canister vent control valve
			Water separator
			EVAP canister is saturated with water
			Vacuum cut valve

DTC Confirmation Procedure

UBS00315

NOTF:

- If DTC P1448 is displayed with P0442, perform trouble diagnosis for DTC P1448 first.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

TESTING CONDITION:

 Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.

DTC P1448 EVAP CANISTER VENT CONTROL VALVE

[QR]

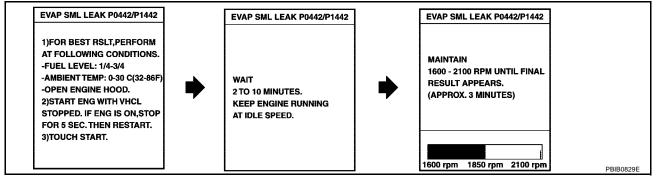
Α

EC

D

Е

Н

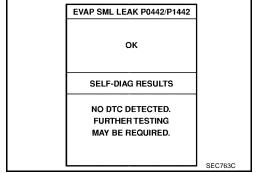

M

- Always perform test at a temperature of 0 to 30°C (32 to 86°F).
- 1. Turn ignition switch "ON".
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 4. Make sure that the following conditions are met.

COOLAN TEMP/S	0 - 70°C (32 - 158°F)
INT/A TEMP SE	0 - 30°C (32 - 86°F)

Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.


If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to EC-84, "Basic Inspection".

Make sure that "OK" is displayed.If "NG" is displayed, go to the following step.

NOTF:

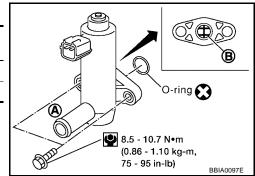
Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

- 7. Stop engine and wait at least 10 seconds, then turn "ON".
- 8. Disconnect hose from water separator.

- Select "VENT CONTROL/V" of "ACTIVE TEST" mode with CONSULT-II.
- 10. Touch "ON" and "OFF" alternately.

ACTIVE TEST		
VENT CONTROL/V	OFF	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
HO2S1 (B1)	xxx v	
	J	PBIB0834E

Revision: May 2004 EC-491 2002 Altima


DTC P1448 EVAP CANISTER VENT CONTROL VALVE

[QR]

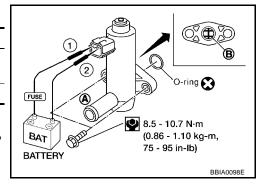
11. Make sure the following.

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

If the result is NG, go to $\underline{\text{EC-494}}$, "Diagnostic Procedure" . If the result is OK, go to "Diagnostic Procedure" for DTC P0442, $\underline{\text{EC-308}}$.

Overall Function Check

UBS00316


Use this procedure to check the overall function of the EVAP canister vent control valve circuit. During this check, a DTC might not be confirmed.


WITH GST

- 1. Disconnect hose from water separator.
- 2. Disconnect EVAP canister vent control valve harness connector.
- 3. Verify the following.

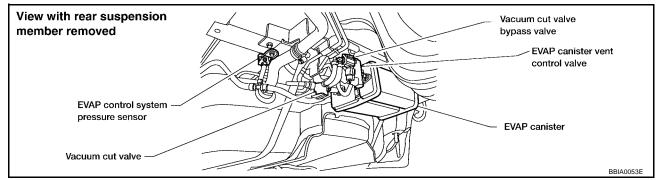
Condition	Air passage continuity
12V direct current supply between terminals 1 and 2	No
No supply	Yes

If the result is NG, go to $\underline{\text{EC-494}}$, "Diagnostic Procedure" . If the result is OK, go to "Diagnostic Procedure" for DTC P0442, $\underline{\text{EC-308}}$.

BBWA0020E

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
11	OR	EVAP canister vent control valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS00318

1. CHECK RUBBER TUBE

- 1. Turn ignition switch "OFF".
- 2. Disconnect rubber tube connected to EVAP canister vent control valve.

3. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 2.

NG >> Clean rubber tube using an air blower.

2. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-496, "Component Inspection".

OK or NG

OK >> GO TO 3.

NG >> Replace EVAP canister vent control valve.

3. CHECK VACUUM CUT VALVE

Refer to EC-523, "Component Inspection".

OK or NG

OK >> GO TO 4.

NG >> Replace vacuum cut valve.

4. CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

Yes or No

Yes >> GO TO 5. No >> GO TO 7.

DTC P1448 EVAP CANISTER VENT CONTROL VALVE

[QR]

5. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK >> GO TO 7.

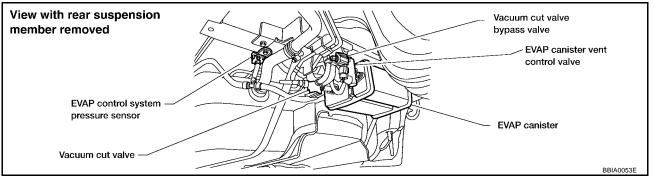
NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

/. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE


Check disconnection or improper connection of hose connected to EVAP control system pressure sensor. OK or NG

OK >> GO TO 8.

NG >> Repair it.

8. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

Disconnect EVAP control system pressure sensor harness connector.

2. Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 9.

NG >> Replace EVAP control system pressure sensor.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-332, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace EVAP control system pressure sensor.

10. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

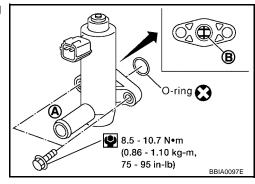
>> INSPECTION END

EC

D

Е

Н


M

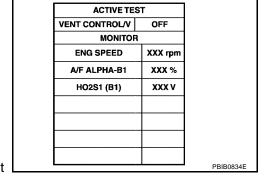
Component Inspection EVAP CANISTER VENT CONTROL VALVE

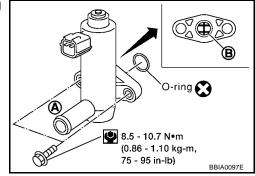
UBS00319

(P) With CONSULT-II

- Remove EVAP canister vent control valve from EVAP canister.
- Check portion **B** of EVAP canister vent control valve for being rusted.
- 3. Reconnect harness connectors disconnected.
- 4. Turn ignition switch "ON".

- Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 6. Check air passage continuity and operation delay time.

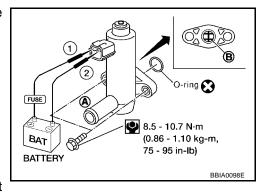

Condition Air passage continuity between A and	
ON	No
OFF	Yes


Operation takes less than 1 second. Make sure new O-ring is installed properly. If NG, go to next step.

- 7. Clean the air passage (Portion **A** to **B**) of EVAP canister vent control valve using an air blower.
- 8. Perform inspection again.

⋈ Without CONSULT-II

- 1. Remove EVAP canister vent control valve from EVAP canister.
- 2. Check portion **B** of EVAP canister vent control valve for being rusted.



3. Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

Operation takes less than 1 second. Make sure new O-ring is installed properly. If NG, go to next step.

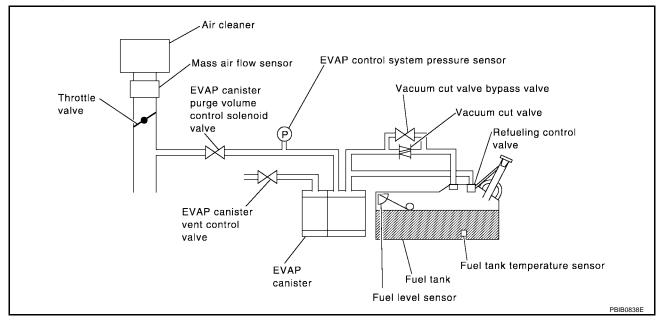
- 4. Clean the air passage (Portion **A** to **B**) of EVAP canister vent control valve using an air blower.
- 5. Perform inspection again.

DTC P1456 EVAP CONTROL SYSTEM

PFP:14710

On Board Diagnosis Logic

UBS0031A


This diagnosis detects very small leaks in the EVAP line between fuel tank and EVAP canister purge volume control solenoid valve, using of vapor pressure in the fuel tank.

The EVAP canister vent control valve is closed to shut the EVAP purge line. The vacuum cut valve bypass valve will then be opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP control system pressure sensor can now monitor the pressure inside the fuel tank. If pressure increases, the ECM will check for leaks in the line between the vacuum cut valve and EVAP canister purge volume control solenoid valve.

If ECM judges a leak which corresponds to a very small leak, the very small leak P1456 will be detected.

If ECM judges a leak equivalent to a small leak, EVAP small leak P1442 will be detected.

If ECM judges there are no leaks, the diagnosis will be OK.

EC

<u>-</u>C

D

Е

F

G

Н

1

M

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
			Incorrect fuel tank vacuum relief valve
			Incorrect fuel filler cap used
			Fuel filler cap remains open or fails to close.
			Foreign matter caught in fuel filler cap.
	Evaporative emission		Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.
			Foreign matter caught in EVAP canister vent control valve.
			EVAP canister or fuel tank leaks
			EVAP purge line (pipe and rubber tube) leaks
			EVAP purge line rubber tube bent
		 EVAP system has a very small leak. EVAP system does not operate properly. 	Blocked or bent rubber tube to EVAP control sys- tem pressure sensor
P1456	control system very		Loose or disconnected rubber tube
1456	small leak (positive pressure check)		EVAP canister vent control valve and the circuit
			EVAP canister purge volume control solenoid valve and the circuit
			Fuel tank temperature sensor
			O-ring of EVAP canister vent control valve is missing or damaged
			Water separator
			EVAP canister is saturated with water
			EVAP control system pressure sensor
			Refueling control valve
			ORVR system leaks
			Fuel level sensor and the circuit
			Foreign matter caught in EVAP canister purge vol- ume control solenoid valve

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

UBS0031B

NOTE:

- If DTC P1456 is displayed with P1442, perform TROUBLE DIAGNOSIS FOR DTC P1456 first.
- After repair, make sure that the hoses and clips are installed properly.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- If any of following conditions are met just before the DTC confirmation procedure, leave the vehicle for more than 1 hour.
- Fuel filler cap is removed.
- Refilled or drained the fuel.
- EVAP component parts is/are removed.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) WITH CONSULT-II

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2. Make sure the following conditions are met.

Α

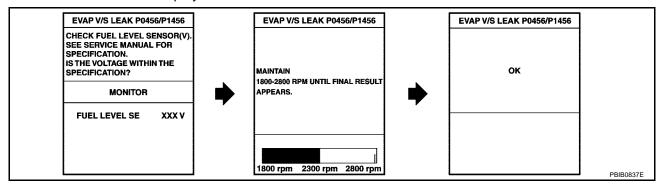
EC

D

Н

M

UBS0031C


FUEL LEVEL SE: 0.25 - 1.15V

COOLAN TEMP/S: 0 - 32°C (32 - 90°F) FUEL T/TMP SE: 0 - 35°C (32 - 95°F) INT A/TEMP SE: More than 0°C (32°F)

If NG, turn ignition switch "OFF" and leave the vehicle in a cool place (soak the vehicle) or refilling/draining fuel until the output voltage condition of the "FUEL LEVEL SE" meets within the range above and leave the vehicle for more than 1 hour. Then start from step 1).

- 3. Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON".
- Select "EVAP V/S LEAK P0456/P1456" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

6. Make sure that "OK" is displayed.

If "NG" is displayed, refer to EC-500, "Diagnostic Procedure".

NOTE:

- If the engine speed cannot be maintained within the range displayed on CONSULT-II screen, go to <u>EC-84, "Basic Inspection"</u>.
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

Overall Function Check

WITH GST

Use this procedure to check the overall function of the EVAP very small leak function. During this check, a 1st trip DTC might not be confirmed.

CAUTION:

- Never use compressed air, doing so may damage the EVAP system.
- Do not start engine.
- Do not exceeded 4.12 kPa (0.042 kg/cm², 0.6 psi).
- Attach the EVAP service port adapter securely to the EVAP service port.
- 2. Set the pressure pump and a hose.
- 3. Also set a vacuum gauge via 3-way connector and a hose.
- 4. Turn ignition switch "ON".
- Connect GST and select MODE 8.
- Using MODE 8 control the EVAP canister vent control valve (close) and vacuum cut valve bypass valve (open).
- Apply pressure and make sure the following conditions are satisfied.

Pressure to be applied: 2.7 kPa (20 mmHg, 0.79 inHg)

Time to be waited after the pressure drawn in to the EVAP system and the pressure to be dropped: 60 seconds and the pressure should not be dropped more than 0.4 kPa (3 mmHg, 0.12 inHg). If NG, go to EC-500, "Diagnostic Procedure".

If OK, go to next step.

- 8. Disconnect GST.
- 9. Start engine and warm it up to normal operating temperature.

EVAP service port adapter

EVAP service port

Pressure pump

SEF916U

Revision: May 2004 EC-499 2002 Altima

UBS0031D

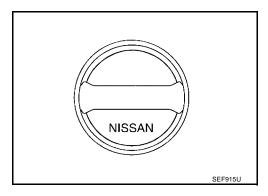
- 10. Turn ignition switch "OFF" and wait at least 10 seconds.
- 11. Restart engine and let it idle for 90 seconds.
- 12. Keep engine speed at 2,000 rpm for 30 seconds.
- 13. Turn ignition switch "OFF".

NOTE:

For more information, refer to GST instruction manual.

Diagnostic Procedure

1. CHECK FUEL FILLER CAP DESIGN


1. Turn ignition switch "OFF".

2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

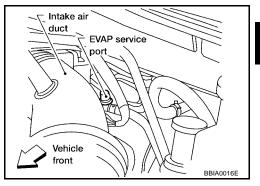
NG >> GO TO 4.

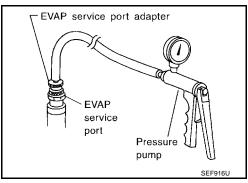
4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-616, "FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FULLER CAP)".

OK or NG

OK >> GO TO 5.


NG >> Replace fuel filler cap with a genuine one.

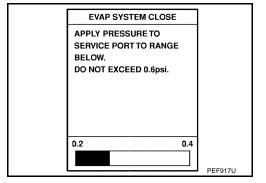

5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely.

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

Models with CONSULT-II>>GO TO 6. Models without CONSULT-II>>GO TO 7.

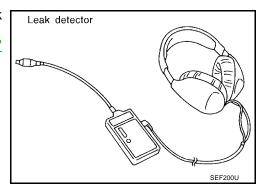

6. CHECK FOR EVAP LEAK

(II) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.



 Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to <u>EC-614</u>, "<u>EVAPORATIVE EMISSION LINE DRAWING</u>"

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

Revision: May 2004 EC-501 2002 Altima

EC

Α

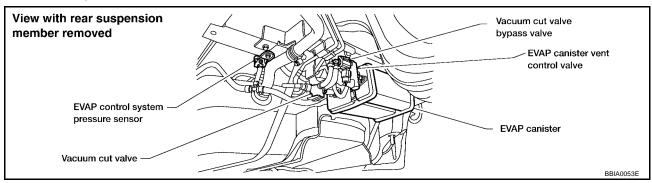
D

Е

G

Н

K


L

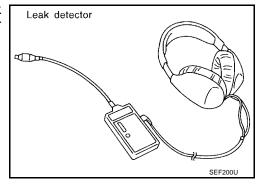
M

7. CHECK FOR EVAP LEAK

⋈ Without CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-614, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

8. CHECK WATER SEPARATOR

Refer to EC-505, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace water separator.

9. CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT

Refer to "DTC Confirmation Procedure", EC-490.

OK or NG

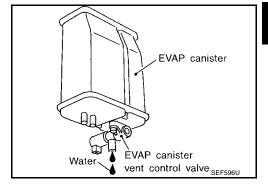
OK >> GO TO 10.

NG >> Repair or replace EVAP canister vent control valve and O-ring or harness/connector.

DTC P1456 EVAP CONTROL SYSTEM

[QR]

10. CHECK IF EVAP CANISTER SATURATED WITH WATER


- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- Does water drain from the EVAP canister?

Yes or No

>> GO TO 11. Yes

No (With CONSULT-II)>>GO TO 13.

No (Without CONSULT-II)>>GO TO 14.

11. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK (With CONSULT-II)>>GO TO 13.

OK (Without CONSULT-II)>>GO TO 14.

>> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection

>> Repair hose or replace EVAP canister.

13. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

			_
$\cap K$	\circ r	N	\mathbf{G}

OK >> GO TO 16. NG >> GO TO 15.

Revision: May 2004

ACTIVETES	ı	
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XX %	
HO2S1 MNTR (B1)	LEAN	
		PBIB0828E

EC

D

Е

Н

K

M

14. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 17. NG >> GO TO 15.

15. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-29, "Vacuum Hose Drawing" .

OK or NG

OK >> GO TO 16.

NG >> Repair or reconnect the hose.

16. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-319, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace EVAP canister purge volume control solenoid valve.

17. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-232, "Component Inspection".

OK or NG

OK >> GO TO 18.

NG >> Replace fuel level sensor unit.

18. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-332, "Component Inspection".

OK or NG

OK >> GO TO 19.

NG >> Replace EVAP control system pressure sensor.

19. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to EC-614, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 20.

NG >> Repair or reconnect the hose.

20. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 21.

DTC P1456 EVAP CONTROL SYSTEM

[QR]

21. CHECK REFUELING EVAP VAPOR LINE

Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to EC-619, "ON BOARD REFUELING VAPOR RECOVERY (ORVR)"

EC

OK or NG

OK >> GO TO 22.

NG >> Repair or replace hoses and tubes.

Е

Н

22. Check signal line and recirculation line

Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 23.

NG >> Repair or replace hoses, tubes or filler neck tube.

23. CHECK REFUELING CONTROL VALVE

Refer to EC-622, "Component Inspection".

OK or NG

OK >> GO TO 24.

NG >> Replace refueling control valve with fuel tank.

24. CHECK FUEL LEVEL SENSOR

Refer to DI-21, "FUEL LEVEL SENSOR UNIT CHECK" .

OK or NG

OK >> GO TO 25.

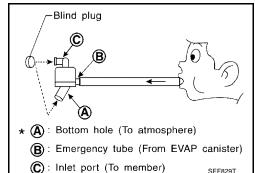
NG >> Replace fuel level sensor unit.

25. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

UB\$0031F

M


>> INSPECTION END

Component Inspection WATER SEPARATOR

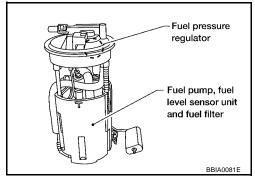
- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that **A** and **C** are not clogged by blowing air into **B** with **A**, and then **C** plugged.
- 5. In case of NG in items 2 4, replace the parts.

NOTE:

Do not disassemble water separator.

Revision: May 2004 EC-505 2002 Altima

DTC P1464 FUEL LEVEL SENSOR


Component Description

PFP:25060

UBS0031F

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnosis Logic

UBS0031G

ECM receives two signals from the fuel level sensor.

One is fuel level sensor power supply circuit, and the other is fuel level sensor ground circuit.

This diagnosis indicates the latter to detect open circuit malfunction.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1464 1464	Fuel level sensor circuit ground signal	A high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted)

DTC Confirmation Procedure

UBS0031H

NOTE:

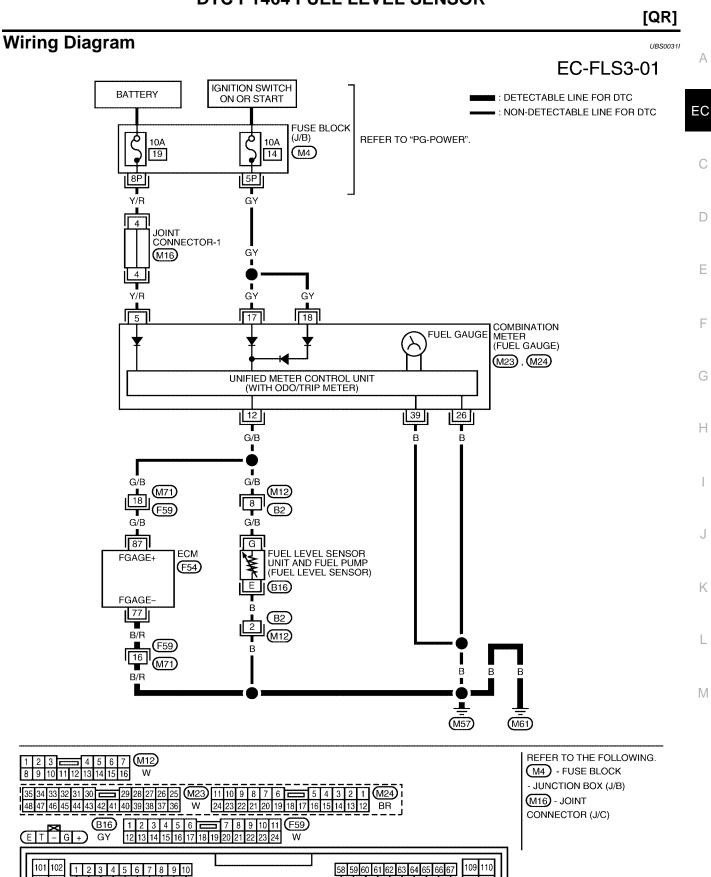
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- If 1st trip DTC is detected, go to <u>EC-508, "Diagnostic Procedure"</u>

DATA MONITOR

MONITOR


NO DTC

FUEL T/TMP SE XXX 'C

FUEL LEVEL SE XXX V

WITH GST

Follow the procedure "WITH CONSULT-II" above.

39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57

103 104

105

107 108

106

11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

68 69 70 71 72 73 74 75 76

87 88 89 90 91 92 93 94 95

78 79 80 81 82 83 84 85 86

111 112

113 114

(F54)

BBWA0031E

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
77	B/R	Fuel level sensor ground	[Engine is running] ● Idle speed	Approximately 0V
87	G/B	Fuel level sensor	[Ignition switch "ON"]	Approximately 0 - 4.8V Output voltage varies with fuel level.

Diagnostic Procedure

UBS0031J

1. CHECK FUEL LEVEL SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 77 and body ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F59, M71
- Harness for open and short between ECM and body ground
 - >> Replace open circuit or short to power in harness or connectors.

3. CHECK FUEL LEVEL SENSOR

Refer to DI-21, "FUEL LEVEL SENSOR UNIT CHECK".

OK or NG

OK >> GO TO 4.

NG >> Replace fuel level sensor unit.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Removal and Installation FUEL LEVEL SENSOR

UBS0031K

Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY" .

DTC P1490 VACUUM CUT VALVE BYPASS VALVE

[QR]

DTC P1490 VACUUM CUT VALVE BYPASS VALVE

PFP:17372

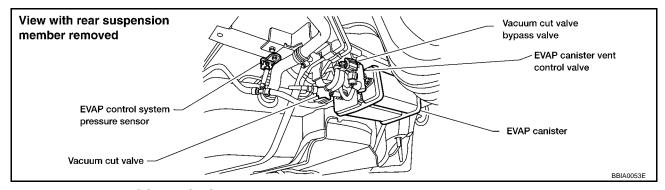
Description COMPONENT DESCRIPTION

UBS0031L

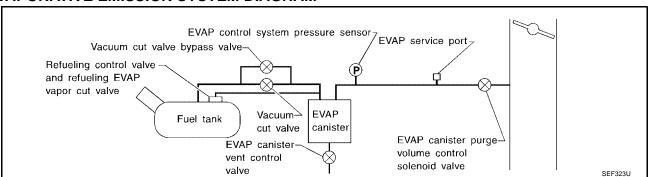
Α

EC

D


Е

The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.


The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

EVAPORATIVE EMISSION SYSTEM DIAGRAM

CONSULT-II Reference Value in Data Monitor Mode

UBS0031M

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPAS S/V	Ignition switch: ON	OFF

On Board Diagnosis Logic

UBS0031N

M

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1490 1490	Vacuum cut valve bypass valve circuit	An improper voltage signal is sent to ECM through vacuum cut valve bypass valve.	 Harness or connectors (The vacuum cut valve bypass valve circuit is open or shorted) Vacuum cut valve bypass valve

DTC Confirmation Procedure

UBS00310

NOTF:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle speed.

DTC P1490 VACUUM CUT VALVE BYPASS VALVE

[QR]

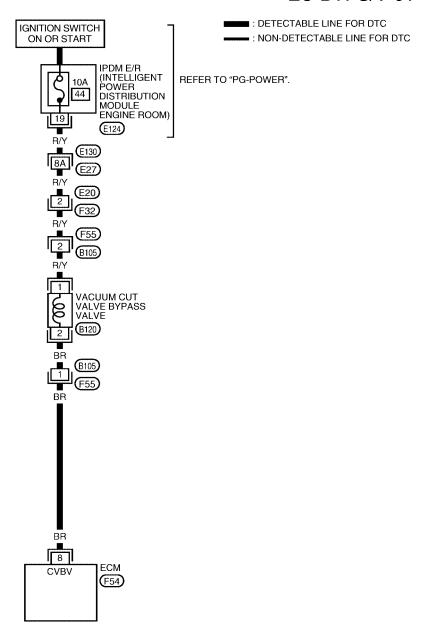
® WITH CONSULT-II

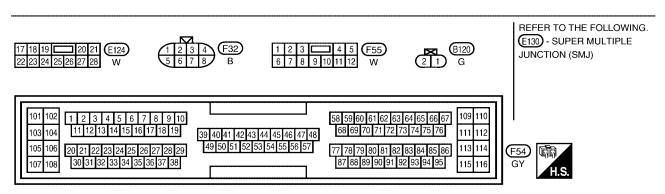
- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait at least 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-512, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm


WITH GST


Follow the procedure "WITH CONSULT-II" above.

UBS0031P

Wiring Diagram

EC-BYPS/V-01

BBWA0032E

EC

Α

C

D

Е

Н

DTC P1490 VACUUM CUT VALVE BYPASS VALVE

[QR]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	I WIR⊢	ITEM	CONDITION	DATA (DC Voltage)
8	BR	Vacuum cut valve bypass valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS0031Q

1. INSPECTION START

Do you have CONSULT-II?

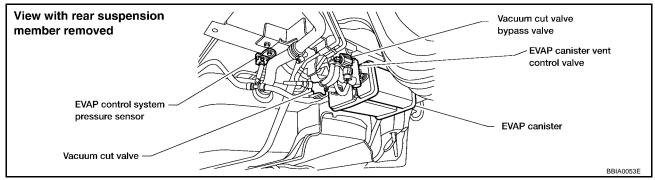
Yes or No

Yes >> GO TO 2. No >> GO TO 3.

2. CHECK VACUUM CUT VALVE BYPASS VALVE CIRCUIT

(II) With CONSULT-II

- 1. Turn ignition switch "OFF" and then "ON".
- 2. Select "VC/V BYPASS/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Touch "ON/OFF" on CONSULT-II screen.
- 4. Make sure that clicking sound is heard from the vacuum cut valve bypass valve.

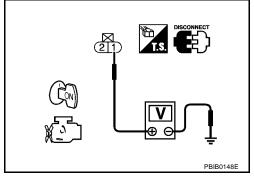

OK or NG

OK >> GO TO 7. NG >> GO TO 3.

ACTIVE TE	ST	
VC/V BYPASS/V	OFF	
MONITOR	}	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
HO2S1 MNTR (B1)	LEAN	
		PBIB0840E
 •		

3. CHECK VACUUM CUT VALVE BYPASS VALUE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect vacuum cut valve bypass valve harness connector.



- 3. Turn ignition switch "ON".
- 4. Check voltage between vacuum cut valve bypass valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- Harness connectors F55, B105
- IPDM E/R connector E124
- 10A fuse
- Harness for open or short between vacuum cut valve bypass valve and fuse
 - >> Repair harness or connectors.

5. CHECK VACUUM CUT VALVE BYPASS VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 8 and vacuum cut valve bypass valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

EC

Е

F

G

Н

ı

Κ

ı

M

2002 Altima

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B105, F55
- Harness for open or short between vacuum cut valve bypass valve and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK VACUUM CUT VALVE BYPASS VALVE

Refer to EC-514, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace vacuum cut valve bypass valve.

8. CHECK INTERMITTENT INCIDENT

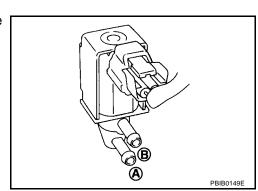
Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection VACUUM CUT VALVE BYPASS VALVE

UBS0031R

- (II) With CONSULT-II
- 1. Reconnect harness disconnected connectors.
- 2. Turn ignition switch ON.
- 3. Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.


[ACTIVE TEST		
	VC/V BYPASS/V	OFF	
[MONITOR		
	ENG SPEED	XXX rpm	
	A/F ALPHA-B1	XXX %	
	HO2S1 MNTR (B1)	LEAN	
l			
l.			PBIB0840

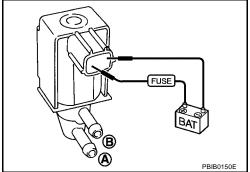
4. Check air passage continuity and operation delay time under the following conditions.

Condition VC/V BYPASS/V	Air passage continuity between A and B
ON	Yes
OFF	No

Operation takes less than 1 second.

If NG, replace vacuum cut valve bypass valve.

DTC P1490 VACUUM CUT VALVE BYPASS VALVE


[QR]

⊗ Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Operation takes less than 1 second.

If NG, replace vacuum cut valve bypass valve.

EC

Α

С

D

Е

Н

J

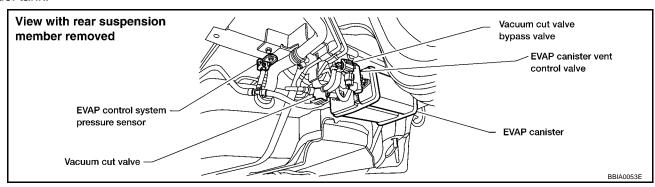
K

L

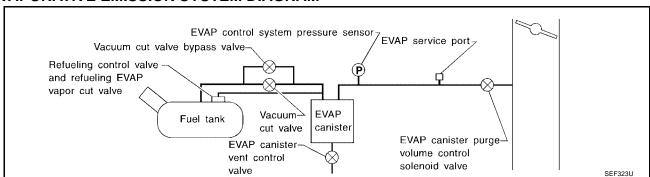
DTC P1491 VACUUM CUT VALVE BYPASS VALVE

PFP:17372

Description COMPONENT DESCRIPTION


UBS0031S

The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.


The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

EVAPORATIVE EMISSION SYSTEM DIAGRAM

CONSULT-II Reference Value in Data Monitor Mode

UBS0031T

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPAS S/V	Ignition switch: ON	OFF

On Board Diagnosis Logic

UBS0031U

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1491 1491	Vacuum cut valve bypass valve	Vacuum cut valve bypass valve does not operate properly.	 Vacuum cut valve Vacuum cut valve Bypass hoses for clogging EVAP control system pressure sensor and circuit EVAP canister vent control valve Hose between fuel tank and vacuum cut valve clogged Hose between vacuum cut valve and EVAP canister clogged EVAP canister EVAP purge port of fuel tank for clogging

DTC P1491 VACUUM CUT VALVE BYPASS VALVE

[QR]

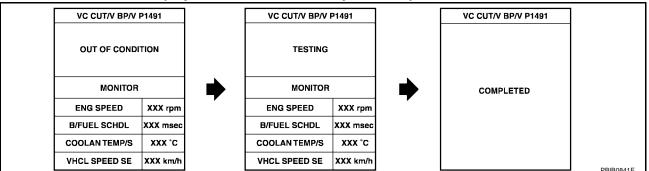
DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:


Always perform test at a temperature of 5 to 30°C (41 to 86°F).

(P) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch "OFF" and wait at least 10 seconds.
- Start engine and let it idle for at least 70 seconds.
- Select "VC CUT/V BP/V P1491" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 6. Touch "START".
- 7. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 30 seconds.)

ENG SPEED	1,000 - 3,800 rpm
Selector lever	Suitable position
Vehicle speed	36 - 120 km/h (22 - 75 MPH)
B/FUEL SCHDL	1.0 - 7.2 msec

If "TESTING" is not displayed after 5 minutes, retry from step 3.

Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-520. "Diagnostic Procedure"

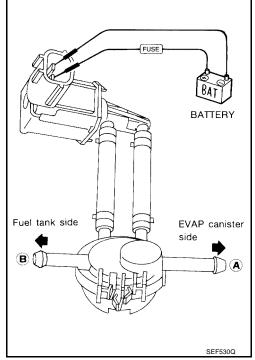
Overall Function Check

Use this procedure to check the overall function of vacuum cut valve bypass valve. During this check, the 1st trip DTC might not be confirmed.

WITH GST

Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.

UBS0031V Α


EC

D

Е

Н

- 2. Apply vacuum to port ${\bf A}$ and check that there is no suction from port ${\bf B}$.
- 3. Apply vacuum to port ${\bf B}$ and check that there is suction from port ${\bf A}$.
- 4. Blow air in port **B** and check that there is a resistance to flow out of port **A**.
- 5. Supply battery voltage to the terminal.
- 6. Blow air in port A and check that air flows freely out of port B.
- 7. Blow air in port B and check that air flows freely out of port A.
- 8. If NG, go to EC-520, "Diagnostic Procedure".

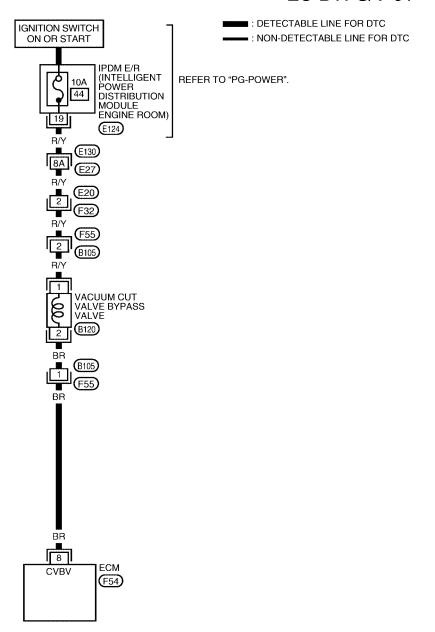
UBS0031X

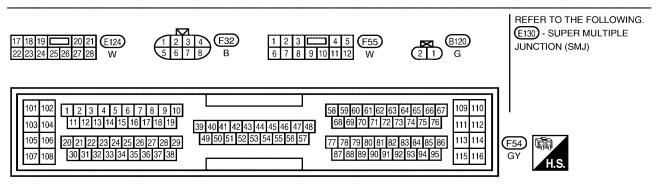
Α

EC

C

D


Е


Н

M

Wiring Diagram

EC-BYPS/V-01

BBWA0032E

DTC P1491 VACUUM CUT VALVE BYPASS VALVE

[QR]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

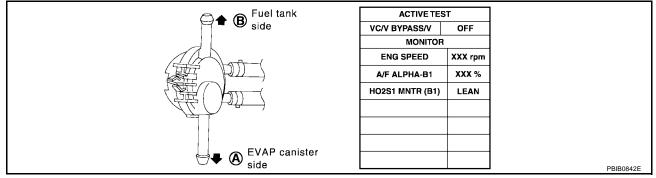
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
8	BR	Vacuum cut valve bypass valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS0031Y

1. INSPECTION START

Do you have CONSULT-II?


Yes or No

Yes >> GO TO 2. No >> GO TO 3.

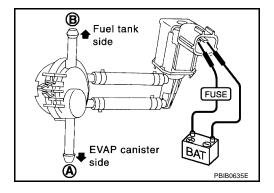
2. CHECK VACUUM CUT VALVE BYPASS VALVE OPERATION

(II) With CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- 3. Apply vacuum to port ${\bf A}$ and check that there is no suction from port ${\bf B}$.
- 4. Apply vacuum to port **B** and check that there is suction from port **A**.
- 5. Blow air in port **B** and check that there is a resistance to flow out of port **A**.
- 6. Turn ignition switch "ON".
- 7. Select "VC/V BYPASS/V" in "ACTIVE TEST" mode with CONSULT-II and touch "ON".
- 8. Blow air in port A and check that air flows freely out of port B.
- 9. Blow air in port **B** and check that air flows freely out of port **A**.

OK or NG

OK >> GO TO 4. NG >> GO TO 5.


3. CHECK VACUUM CUT VALVE BYPASS VALVE OPERATION

⋈ Without CONSULT-II

- Turn ignition switch "OFF".
- 2. Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- 3. Apply vacuum to port A and check that there is no suction from port B.
- 4. Apply vacuum to port **B** and check that there is suction from port **A**.
- 5. Blow air in port **B** and check that there is a resistance to flow out of port **A**.
- 6. Disconnect vacuum cut valve bypass valve harness connector.
- Supply battery voltage to the terminal.
- 8. Blow air in port A and check that air flows freely out of port B.
- 9. Blow air in port **B** and check that air flows freely out of port **A**.

OK or NG

OK >> GO TO 4. NG >> GO TO 7.

4. CHECK EVAP PURGE LINE

Check EVAP purge line between EVAP canister and fuel tank for clogging or disconnection.

OK or NG

OK >> GO TO 5. NG >> Repair it.

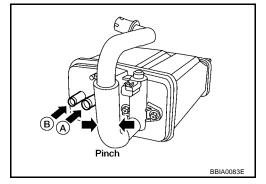
5. CHECK EVAP PURGE PORT

Check EVAP purge port of fuel tank for clogging.

OK or NG

OK >> GO TO 6.

NG >> Clean EVAP purge port.


6. CHECK EVAP CANISTER

- Pinch the fresh air hose.
- 2. Blow air into port A and check that it flows freely out of port B.

OK or NG

OK >> GO TO 12.

NG >> Replace EVAP canister.

7. CHECK BYPASS HOSE

Check bypass hoses for clogging.

OK or NG

OK >> GO TO 8.

NG >> Repair or replace hoses.

EC-521 2002 Altima Revision: May 2004

EC

Е

8. CHECK VACUUM CUT VALVE BYPASS VALVE

Refer to EC-523, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace vacuum cut valve bypass valve.

9. CHECK VACUUM CUT VALVE

Refer to EC-523, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace vacuum cut valve.

10. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE

- 1. Turn ignition switch "OFF".
- 2. Check disconnection or improper connection of hose connected to EVAP control system pressure sensor.

OK or NG

OK >> GO TO 11.

NG >> Repair or replace.

11. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- 1. Disconnect EVAP control system pressure sensor harness connector.
- 2. Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 12.

NG >> Replace EVAP control system pressure sensor.

12. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-332, "Component Inspection".

OK or NG

OK >> GO TO 13.

NG >> Replace EVAP control system pressure sensor.

13. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 14.

NG >> Clean the rubber tube using an air blower.

14. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-325, "Component Inspection".

OK or NG

OK >> GO TO 15.

NG >> Replace EVAP canister vent control valve.

DTC P1491 VACUUM CUT VALVE BYPASS VALVE

[QR]

UBS0031Z

15. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

Component Inspection VACUUM CUT VALVE BYPASS VALVE

(P) With CONSULT-II

- 1. Reconnect harness disconnected connectors.
- 2. Turn ignition switch ON.
- 3. Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.

ACTIVE TE	ACTIVE TEST	
VC/V BYPASS/V	OFF	
MONITOR	ł	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
HO2S1 MNTR (B1)	LEAN	

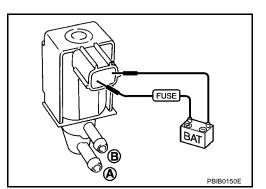
Check air passage continuity and operation delay time under the following conditions.

Condition VC/V BYPASS/V	Air passage continuity between A and B
ON	Yes
OFF	No

Operation takes less than 1 second.

If NG, replace vacuum cut valve bypass valve.

PBIB0149E


⋈ Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

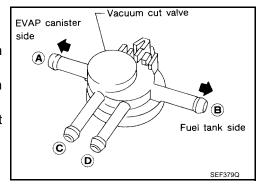
Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Operation takes less than 1 second.

If NG, replace vacuum cut valve bypass valve.

EC

D


Е

Н

VACUUM CUT VALVE

Check vacuum cut valve as follows:

- 1. Plug port C and D with fingers.
- 2. Apply vacuum to port ${\bf A}$ and check that there is no suction from port ${\bf B}$.
- 3. Apply vacuum to port ${\bf B}$ and check that there is suction from port ${\bf A}$.
- 4. Blow air in port **B** and check that there is a resistance to flow out of port **A**.
- 5. Open port C and D.
- 6. Blow air in port A check that air flows freely out of port C.
- 7. Blow air in port **B** check that air flows freely out of port **D**.
- 8. If NG, replace vacuum cut valve.

DTC P1564 ASCD STEERING SWITCH

[QR]

DTC P1564 ASCD STEERING SWITCH

PFP:25551

Component Description

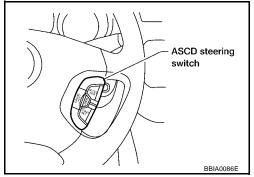
UBS00320

Α

EC

D

Е


Н

K

M

ASCD steering switch has variant values of electrical resistance for each button. ECM reads voltage variation of switch, and determines which button is operated.

Refer to <u>EC-627</u>, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for the ASCD function.

CONSULT-II Reference Value in Data Monitor Mode

UBS00321

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
MAIN SW		CRUISE switch pressed	ON
IVIAIN SVV	Ignition switch: ON	CRUISE switch released	OFF
CANCEL	Ignition switch: ON	CANCEL switch pressed	ON
CANCEL		CANCEL switch released	OFF
RESUME/ACC SW	Ignition switch: ON	ACCEL RES switch pressed	ON
RESUME/ACC SW		ACCEL RES switch released	OFF
SET SW	• Ignition quitable ON	COAST/SET switch pressed	ON
SELOW	Ignition switch: ON	COAST/SET switch released	OFF

On Board Diagnosis Logic

UBS00322

NOTE:

If DTC P1564 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to $\overline{\text{EC-375}}$.

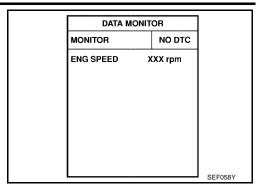
DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P1564 1564	ASCD steering switch	 An excessively high voltage signal from the ASCD steering switch is sent to ECM. ECM detects that input signal from the ASCD steering switch is out of the specified range. ECM detects that the ASCD steering switch is stuck ON. 	 Harness or connectors (The switch circuit is open or shorted.) ASCD steering switch ECM

DTC Confirmation Procedure

UBS00323

NOTF:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.


(P) WITH CONSULT-II

1. Turn ignition switch "ON".

DTC P1564 ASCD STEERING SWITCH

[QR]

- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 10 seconds.
- 4. Press "CRUISE" switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 5. Press "ACCEL/RES" switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 6. Press "COAST/SET" switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 7. Press "CANCEL" switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 8. If 1st trip DTC is detected, go to EC-529, "Diagnostic Procedure"

WITH GST

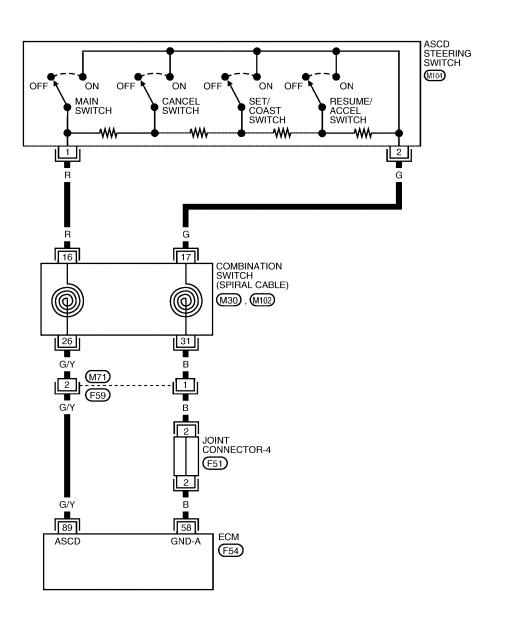
Follow the procedure "WITH CONSULT-II" above.

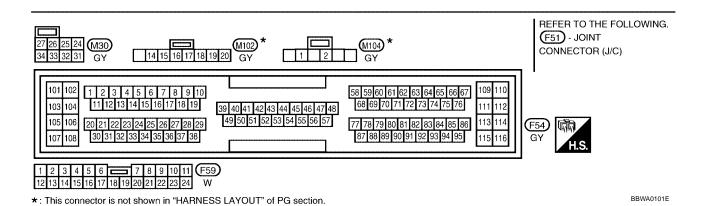
Wiring Diagram

Α

EC

C


D


Е

Н

M

EC-ASC/SW-01

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
58	В	Sensors' ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	
	G/Y ASCD steering swi		[Ignition switch "ON"] • ASCD steering switch is "OFF".	Approximately 4V	
			[Ignition switch "ON"] • CRUISE switch is "ON".	Approximately 0V	
89		89 G/Y	ASCD steering switch	[Ignition switch "ON"] • CANCEL switch is "ON".	Approximately 1V
			[Ignition switch "ON"] • SET/COAST switch is "ON".	Approximately 2V	
			[Ignition switch "ON"] • RESUME/ACCEL switch is "ON".	Approximately 3V	

DTC P1564 ASCD STEERING SWITCH

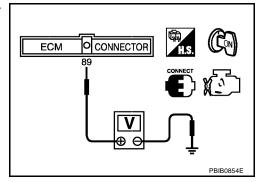
[QR]

Diagnostic Procedure

1. CHECK ASCD STEERING SWITCH CIRCUIT

(II) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "MAIN SW", "RESUME/ACC SW", "SET SW" and "CAN-CEL SW" in "DATA MONITOR" mode with CONSULT-II.
- 3. Check each item indication under the following conditions.


Switch	Monitor item	Condition	Indication
CUISE	MAIN SW	Pressed	ON
COIGL	IVIAIN SW	Released	OFF
COAST/SET	SET SW	Pressed	ON
COAST/SET	SETSW	Released	OFF
ACCEL/RES	RESUME/ACC SW	Pressed	ON
ACCEL/RES	RESOME/ACC SW	Released	OFF
CANCEL	CANCEL SW	Pressed	ON
CANGLE	CANOLL 3VV	Released	OFF

DATA MONI		
MONITOR	NO DTC	
MAIN SW	OFF	
CANCEL SW	OFF	
RESUME/ACC SW	OFF	
SET SW	OFF	
		SEC006

⋈ Without CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Check voltage between ECM terminal 89 and ground with pressing each button.

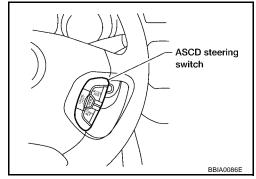
Switch	Condition	Voltage [V]
CRUISE	Pressed	Approx. 0.5
CRUISE	Released	Approx. 5.0
COAST/SET	Pressed	Approx. 2.0
COAST/SET	Released	Approx. 5.0
ACCEL RES	Pressed	Approx. 3.0
ACCEL RES	Released	Approx. 5.0
CANCEL	Pressed	Approx. 1.0
CANCLL	Released	Approx. 5.0

OK or NG

OK >> GO TO 7.

NG >> GO TO 2.

2. CHECK ASCD STEERING SWITCH GROUND CIRCUIT FOR OPEN AND SHORT


- 1. Turn ignition switch "OFF".
- 2. Disconnect ASCD steering switch harness connector and ECM harness connector.
- 3. Check harness continuity between ASCD steering switch terminal 2 and ECM terminal 58. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

UBS00325

EC

Е

D

Н

K

_

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M71, F59
- Joint connector-4
- Combination switch (spiral cable)
- Harness for open and short between ECM and ASCD steering switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK ASCD STEERING SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 89 and ASCD steering switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

```
OK >> GO TO 6.
NG >> GO TO 5.
```

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M71, F59
- Combination switch (spiral cable)
- Harness for open and short between ECM and ASCD steering switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK ASCD STEERING SWITCH

Refer to EC-530, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace ASCD steering switch.

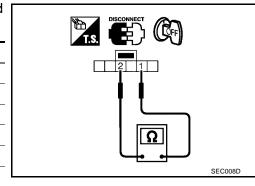
7. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection ASCD STEERING SWITCH

1. Disconnect ASCD steering switch.


UBS00326

DTC P1564 ASCD STEERING SWITCH

[QR]

2. Check continuity between ASCD steering switch terminals 1 and 2 with pushing each switch.

Switch	Condition	Resistance [Ω]
CRUISE SW	Pressed	Approx. 0
CRUISE SW	Released	Approx. 4,000
COAST/SET SW	Pressed	Approx. 660
COAST/SET SW	Released	Approx. 4,000
ACCEL RES SW	Pressed	Approx. 1,480
ACCEL RES SW	Released	Approx. 4,000
CANCEL SW	Pressed	Approx. 250
CANCEL 3W	Released	Approx. 4,000

If NG, replace ASCD steering switch.

Α

EC

С

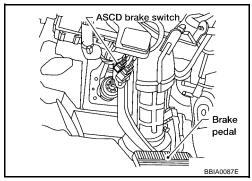
D

Е

F

Н

UBS00327


DTC P1572 ASCD BRAKE SWITCH

Component Description

PFP:25320

When the brake pedal is depressed, ASCD brake switch is turned OFF and stop lamp switch is turned ON. ECM detects the state of the brake pedal by this input of two kinds (ON/OFF signal).

Refer to <u>EC-627</u>, "<u>AUTOMATIC SPEED CONTROL DEVICE</u> (<u>ASCD</u>)" for the ASCD function.

CONSULT-II Reference Value in Data Monitor Mode

UBS00328

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW1	Ignition switch: ON	Brake pedal fully released	ON
(ASCD brake switch)	• Igrillori switch. ON	Brake pedal depressed	OFF
BRAKE SW2	Ignition switch: ON	Brake pedal fully released	OFF
(stop lamp switch)	• Ignition switch: ON	Brake pedal depressed	ON

On Board Diagnosis Logic

UBS00329

NOTE:

If DTC P1572 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to $\overline{\text{EC-375}}$.

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P1572 1572	ASCD brake switch	ON signals from the stop lamp switch and the ASCD brake switch are sent to ECM at the same time.	 Harness or connectors (The stop lamp switch circuit is open or shorted.) Harness or connectors (The ASCD brake switch circuit is open or shorted.) Harness or connectors (The ASCD clutch switch circuit is open or shorted.) Stop lamp switch ASCD brake switch ASCD clutch switch Incorrect stop lamp switch installation Incorrect ASCD clutch switch installation Incorrect ASCD clutch switch installation ECM

DTC Confirmation Procedure

UBS0032A

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Steps 3 and 4 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

DTC P1572 ASCD BRAKE SWITCH

[QR]

(II) WITH CONSULT-II

- 1. Start engine.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Drive the vehicle for at least 5 consecutive seconds under the following condition.

VHCL SPEED SE	More than 30 km/h (19 MPH)
Selector lever	Suitable position

If 1st trip DTC is detected, go to <u>EC-535, "Diagnostic Procedure"</u>. If 1st trip DTC is not detected, go to the following step.

4. Drive the vehicle for at least 5 consecutive seconds under the following condition.

VHCL SPEED SE	More than 30 km/h (19 MPH)
Selector lever	Suitable position
Driving location	Depress the brake pedal for more than five seconds so as not to come off from the above-mentioned condition.

5. If 1st trip DTC is detected, go to EC-535, "Diagnostic Procedure".

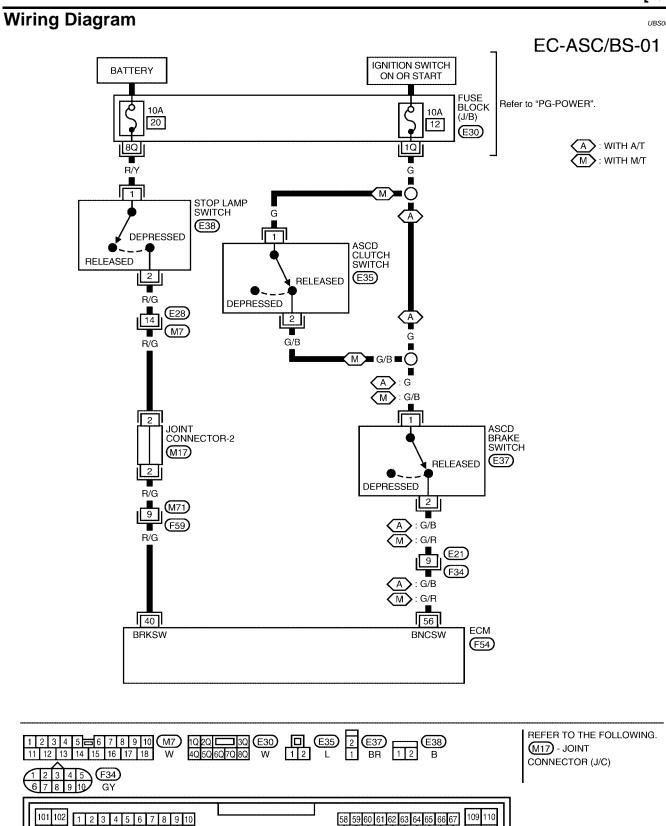
WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

 D


Е

F

Н

.

ī

Specification data are reference values and are measured between each terminal and ground.

39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57

103 104

105 106

11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

(F59)

111

77 78 79 80 81 82 83 84 85 86

(F54)

GY

BBWA0186E

EC

D

Е

M

UBS0032C

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
40 R/G		Stop lamp switch	[Engine is running] • Brake pedal fully released	Approximately 0V
40 R/G	[Engine is running] • Brake pedal depressed		BATTERY VOLTAGE (11 - 14V)	
G/B (A/T)			[Ignition switch "ON"]Brake pedal is depressedClutch pedal is depressed (M/T models)	Approximately 0V
56 G/R (M/T)	[Ignition switch "ON"] • Brake pedal is fully released • Clutch pedal is fully released (M/T models)		BATTERY VOLTAGE (11 - 14V)	

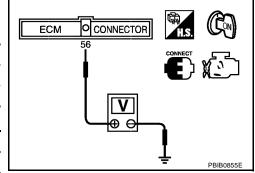
Diagnostic Procedure

1. CHECK OVERALL FUNCTION-I

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- Select "BRAKE SW1" in "DATA MONITOR" mode with CON-SULT-II.
- Check "BRAKE SW1" indication under the following conditions.
 M/T models

CONDITION	INDICATION
When clutch pedal or brake pedal is depressed	OFF
When clutch pedal and brake pedal are fully released	ON
A/T models	
CONDITION	INDICATION
When brake pedal is depress	OFF
When brake pedal is fully released	ON


DATA MONITOR MONITOR NO DTC BRAKE SW1 OFF

⋈ Without CONSULT-II

- Turn ignition switch "ON".
- Check voltage between ECM terminal 56 and ground under the following conditions.

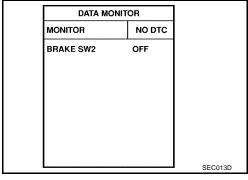
A/T models

CONDITION	VOLTAGE
When brake pedal is depress	Approximately 0V
When brake pedal is fully released	Battery voltage
M/T models	
CONDITION	VOLTAGE
When clutch pedal or brake pedal is depressed	Approximately 0V
When clutch pedal and brake pedal are fully released	Battery voltage

OK or NG

OK >> GO TO 2.

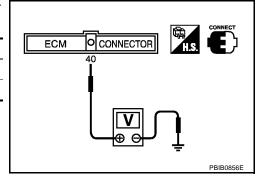
NG (M/T models) >>GO TO 3.


NG (A/T models) >>GO TO 8.

2. CHECK OVERALL FUNCTION-II

(P) With CONSULT-II

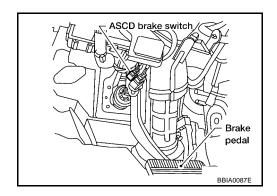
Check "BRAKE SW2" indication in "DATA MONITOR" mode.


CONDITION	INDICATION
When brake pedal is released	OFF
When brake pedal is depressed	ON

W Without CONSULT-II

Check voltage between ECM terminal 40 and ground under the following conditions.

CONDITION	VOLTAGE
When brake pedal is released	Approximately 0V
When brake pedal is depressed	Battery voltage

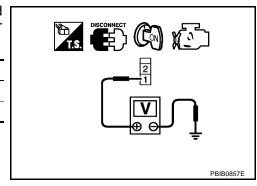


OK or NG

OK >> GO TO 18. NG >> GO TO 13.

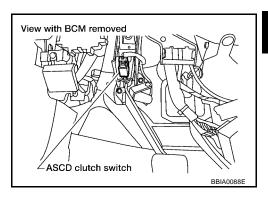
3. CHECK ASCD CLUTCH SWITCH CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ASCD brake switch harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between ASCD brake switch terminal 1 and ground under the following conditions with CONSULT-II or tester.

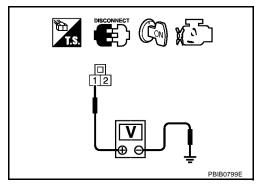
CONDITION	VOLTAGE
When clutch pedal is released	Battery voltage
When clutch pedal is depressed	Approx. 0V


OK or NG

OK >> GO TO 10. NG >> GO TO 4.

4. CHECK ASCD CLUTCH SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ASCD clutch switch harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between ASCD clutch switch terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E30
- 10A fuse
- Harness for open or short between ASCD clutch switch and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK ASCD CLUTCH SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- 2. Check harness continuity between ASCD clutch switch terminal 2 and ASCD brake switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK ASCD CLUTCH SWITCH

Refer to EC-540, "Component Inspection"

OK or NG

OK >> GO TO 18.

NG >> Replace ASCD clutch switch.

Revision: May 2004 EC-537 2002 Altima

EC

D

Е

F

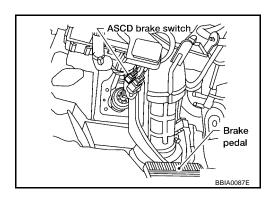
G

Н

J

K

ı

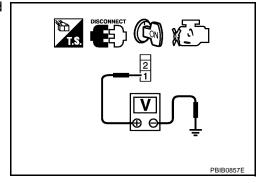

_

. /

IVI

8. CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ASCD brake switch harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10. NG >> GO TO 9.

9. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E30
- 10A fuse
- Harness for open or short between ASCD brake switch and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

10. CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 56 and ASCD brake switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground or short to power.

OK or NG

OK >> GO TO 12. NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

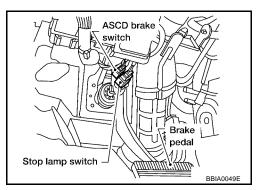
Check the following.

- Harness connectors E21, F34
- Harness for open or short between ECM and ASCD brake switch

>> Repair open circuit or short to ground or short to power in harness or connectors.

12. CHECK ASCD BRAKE SWITCH

Refer to EC-540, "Component Inspection"

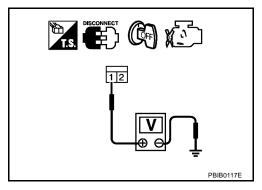

OK or NG

OK >> GO TO 18.

NG >> Replace ASCD brake switch.

13. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect stop lamp switch harness connector.



3. Check voltage between stop lamp switch terminal 1 and ground with CONSULT -II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 15. NG >> GO TO 14.

14. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E30
- 10A fuse
- Harness for open or short between stop lamp switch and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

15. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 40 and stop lamp switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 17. NG >> GO TO 16.

EC-539 2002 Altima Revision: May 2004

EC

Е

Н

K

16. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E28, M7
- Harness connectors M71, F59
- Joint connector-2
- Harness for open or short between ECM and stop lamp switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

17. CHECK STOP LAMP SWITCH

Refer to EC-540, "Component Inspection"

OK or NG

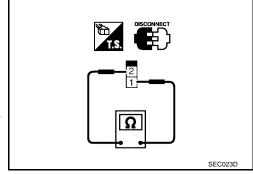
OK >> GO TO 18.

NG >> Replace stop lamp switch.

18. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

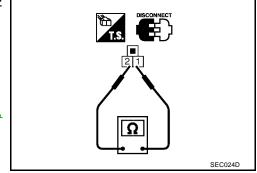

Component Inspection ASCD BRAKE SWITCH

UBS0032D

- 1. Turn ignition switch "OFF".
- 2. Disconnect ASCD brake switch harness connector.
- 3. Check continuity between ASCD brake switch terminals 1 and 2 under the following conditions.

Condition	Continuity
When brake pedal is fully released.	Should exist.
When brake pedal is depressed.	Should not exist.

If NG, adjust ASCD brake switch installation, refer to <u>BR-6</u>, <u>"BRAKE PEDAL"</u>, and perform step 3 again.



ASCD CLUTCH SWITCH (FOR M/T MODELS)

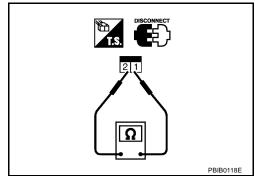
- Turn ignition switch "OFF".
- 2. Disconnect ASCD clutch switch harness connector.
- 3. Check continuity between ASCD clutch switch terminals 1 and 2 under the following conditions.

Condition	Continuity
When clutch pedal is fully released.	Should exist.
When clutch pedal is depressed.	Should not exist.

If NG, adjust ASCD clutch switch installation, refer to <u>CL-5</u>, <u>"CLUTCH PEDAL"</u>, and perform step 3 again.

STOP LAMP SWITCH

- Turn ignition switch "OFF".
- Disconnect stop lamp switch harness connector.


DTC P1572 ASCD BRAKE SWITCH

[QR]

3. Check continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Condition	Continuity
When brake pedal is fully released.	Should not exist.
When brake pedal is depressed.	Should exist.

If NG, adjust stop lamp switch installation, refer to <u>BR-6</u>, <u>"BRAKE PEDAL"</u>, and perform step 3 again.

Α

EC

С

D

Е

F

Н

_

K

L

[QR]

DTC P1574 ASCD VEHICLE SPEED SENSOR

PFP:31036

Component Description

LIBS0032F

The ECM receives two vehicle speed sensor signals via CAN communication line. One is sent from combination meter, and the other is from TCM (Transmission control module). The ECM uses these signals for ASCD control. Refer to EC-627, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for ASCD functions.

On Board Diagnosis Logic

UBS0032F

NOTE:

- If DTC P1574 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-137, "DTC U1000, U1001 CAN COMMUNICATION LINE".
- If DTC P1574 is displayed with DTC P0500, first perform the trouble diagnosis for DTC P0500.
 Refer to <u>EC-369</u>, "<u>DTC P0500 VSS</u>"

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
			Harness or connectors (The CAN communication line is open or shorted.)
P1574 ASCD vehicle sp 1574 sensor	ASCD vehicle speed sensor	ECM detects a difference between two vehicle speed signals is out of the specified range.	 Harness or connectors (The combination meter circuit is open or shorted.)
			• TCM
			Combination meter
			Vehicle speed sensor
			• ECM

DTC Confirmation Procedure

UBS0032G

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Step 3 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(II) WITH CONSULT-II

- Start engine.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Drive the vehicle at more than 40 km/h (25MPH).
- 4. If 1st trip DTC is detected, go to EC-543, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P1574 ASCD VEHICLE SPEED SENSOR

[QR] **Diagnostic Procedure** UBS0032H Α 1. CHECK DTC WITH TCM Check DTC with TCM. Refer to AT-36, "ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION". EC OK or NG OK >> GO TO 2. NG >> Perform trouble shooting relevant to DTC indicated. C 2. CHECK VEHICLE SPEED SENSOR CIRCUIT Refer to DI-19, "Vehicle Speed System". D OK or NG OK >> GO TO 3. NG >> Repair or replace. Е 3. CHECK COMBINATION METER Check combination meter function. F Refer to DI-4, "COMBINATION METERS". >> INSPECTION END Н

PFP:32006

DTC P1706 PNP SWITCH

Component Description

UBS00321

When the shift lever position is "P" (A/T models only) or "N", park/neutral position (PNP) switch is "ON". ECM detects the position because the continuity of the line (the "ON" signal) exists.

CONSULT-II Reference Value in Data Monitor Mode

UBS0032J

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
P/N POSI SW	Ignition switch: ON	Shift lever: P or N (A/T model) Neutral (M/T model)	ON
		Shift lever: Except above	OFF

On Board Diagnosis Logic

UBS0032K

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1706 1706	Park/neutral position switch	The signal of the park/neutral position (PNP) switch is not changed in the process of engine starting and driving.	 Harness or connectors [The park/neutral position (PNP) switch circuit is open or shorted.] Park/neutral position (PNP) switch

DTC Confirmation Procedure

LIBS00321

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(III) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- Select "P/N POSI SW" in "DATA MONITOR" mode with CON-SULT-II. Then check the "P/N POSI SW" signal under the following conditions.

Position (Selector lever)	Known-good signal
"N" and "P" position	ON
Except the above position	OFF

If NG, go to EC-547, "Diagnostic Procedure".

If OK, go to following step.

- Select "DATA MONITOR" mode with CONSULT-II.
- 4. Start engine and warm it up to normal operating temperature.
- Maintain the following conditions for at least 60 consecutive seconds.

ENG SPEED	1,500 - 3,000 rpm
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	3.0 - 31.8 msec
VHCL SPEED SE	More than 64 km/h (40 MPH)
Selector lever	Suitable position

If 1st trip DTC is detected, go to <u>EC-547</u>, "<u>Diagnostic Procedure</u>"

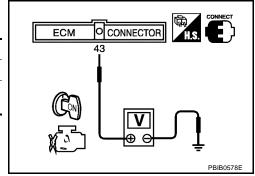
DATA MOI	NITOR
MONITOR	NO DTC
P/N POSI SW	ON

DATA MC	NITOR	
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
COOLAN TEMP/S	S XXX °C	
VHCL SPEED SE	XXX km/h	
P/N POSI SW	OFF	
B/FUEL SCHDL	XXX msec	

DTC P1706 PNP SWITCH

[QR]

Overall Function Check


Use this procedure to check the overall function of the park/neutral position (PNP) switch circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- Turn ignition switch "ON". 1.
- Check voltage between ECM terminal 43 (PNP switch signal) and body ground under the following conditions.

Condition (Gear position)	Voltage V (Known good data)
"P" (A/T models only) and "N" position	Approx. 0
Except the above position	A/T models: Battery voltage M/T: Approximately 5V

If NG, go to EC-547, "Diagnostic Procedure".

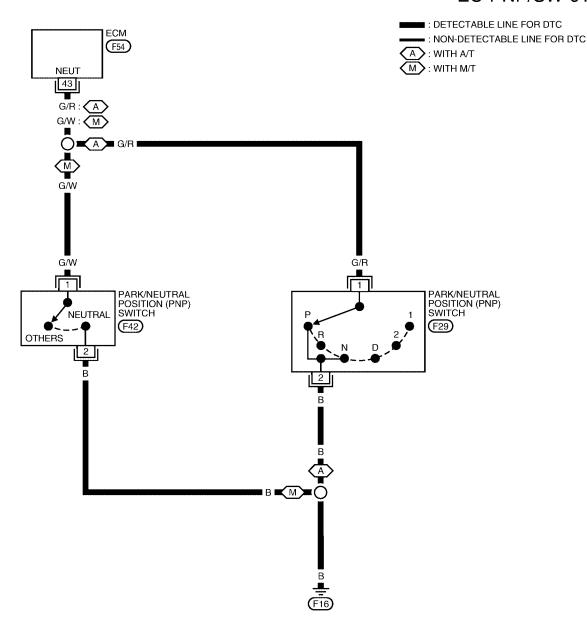
EC

Α

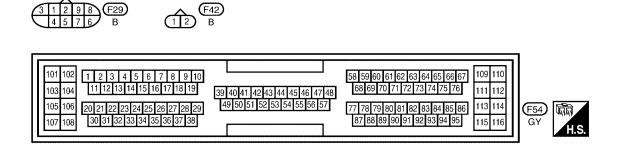
C

D

Е


F

Н


Wiring Diagram

LIBSONSSNI

EC-PNP/SW-01

BBWA0033E

DTC P1706 PNP SWITCH

[QR]

ΞC

D

Е

Н

M

UBS00320

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
			[Ignition switch "ON"] ■ Shift lever position is "P" or "N" (A/T models), "Neutral" (M/T models).	Approximately 0V	_
43	G/R (A/T) G/W (M/T)	PNP switch	[Ignition switch "ON"] • Except the above gear position	A/T models BATTERY VOLTAGE (11 - 14V) M/T models Approximately 5V	_

Diagnostic Procedure

1. CHECK GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect PNP switch harness connector.
- Check harness continuity between PNP switch terminal 2 and body ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 2.

NG >> Repair open circuit or short to power in harness or connectors.

2. CHECK INPUT SIGNAL CIRCUIT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 43 and PNP switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to power in harness or connectors.

3. CHECK PNP SWITCH

Refer to <u>AT-103, "DTC P0705 PARK/NEUTRAL POSITION SWITCH"</u> (A/T models) or <u>MT-12, "POSITION SWITCH"</u> (M/T models).

OK or NG

OK >> GO TO 4.

NG >> Replace PNP switch.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P1805 BRAKE SWITCH

[QR]

DTC P1805 BRAKE SWITCH

PFP:25320

Description

UBS0032P

Brake switch signal is applied to the ECM through the stop lamp switch when the brake pedal is depressed. This signal is used mainly to decrease the engine speed when the vehicle is driving.

CONSULT-II Reference Value in Data Monitor Mode

UBS0032Q

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW	Ignition switch: ON	Brake pedal: Fully released	OFF
DIVARLE OW		Brake pedal: Slightly depressed	ON

On Board Diagnosis Logic

LIBS0032E

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1805 1805	Brake switch	A brake switch signal is not sent to ECM for an extremely long time while the vehicle is driving.	 Harness or connectors (Stop lamp switch circuit is open or shorted.) Stop lamp switch

DTC Confirmation Procedure

UBS0032S

- (P) WITH CONSULT-II
- 1. Turn ignition switch "ON".
- 2. Fully depress the brake pedal for at least 5 seconds.
- 3. Erase the DTC with CONSULT-II.
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- 5. If 1st trip DTC is detected, go to EC-550, "Diagnostic Procedure"

DATA M	ONITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm

® WITH GST

Follow the procedure "WITH CONSULT-II" above.

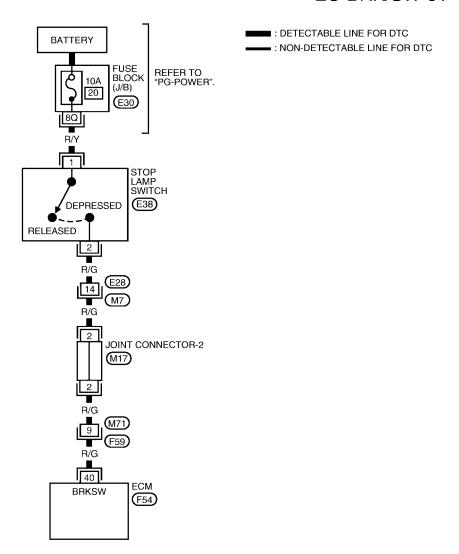
[QR]

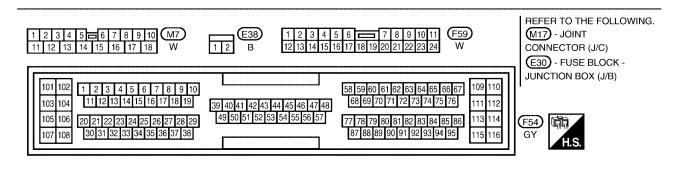
Wiring Diagram

Α

EC

C


D


Е

Н

M

EC-BRK/SW-01

BBWA0207E

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

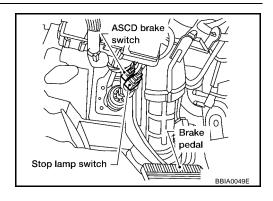
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
40	R/G	Stop lamp switch	[Engine is running] ● Brake pedal fully released	Approximately 0V
40	100	Stop lamp switch	[Engine is running]Brake pedal depressed	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS0032U

1. CHECK STOP LAMP SWITCH CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Check the stop lamp when depressing and releasing the brake pedal.

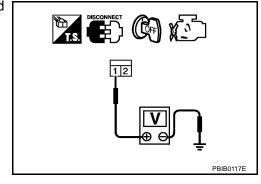

Brake pedal	Stop lamp
Fully released	Not illuminated
Depressed	Illuminated

OK or NG

OK >> GO TO 4. NG >> GO TO 2.

$2. \ \mathsf{CHECK} \ \mathsf{STOP} \ \mathsf{LAMP} \ \mathsf{SWITCH} \ \mathsf{POWER} \ \mathsf{SUPPLY} \ \mathsf{CIRCUIT}$

1. Disconnect stop lamp switch harness connector.



2. Check voltage between stop lamp switch terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

DTC P1805 BRAKE SWITCH

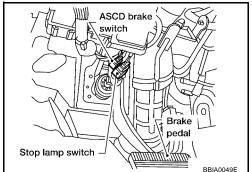
[QR]

3. detect malfunctioning part

Check the following.

- 10A fuse
- Fuse block (J/B) connector E30
- Harness for open and short between stop lamp switch and battery
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

$4.\,$ CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT


- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Disconnect stop lamp switch harness connector.
- Check harness continuity between ECM terminal 40 and stop lamp switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E28, M7
- Harness connectors M71, F59
- Joint connector-2
- Harness for open or short between ECM and stop lamp switch

>> Repair open circuit or short to ground or short to power in harness or connectors.

O. CHECK STOP LAMP SWITCH

Refer to EC-552, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace stop lamp switch.

7. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

G

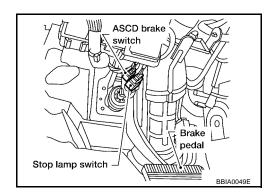
Е

EC

Н

K

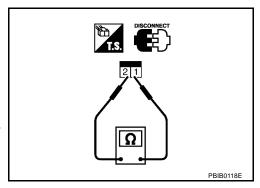
L


M

2002 Altima

Component Inspection STOP LAMP SWITCH

UBS0032V

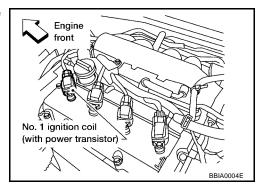

1. Disconnect stop lamp switch harness connector.

2. Check continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Conditions	Continuity
Brake pedal fully released	Should not exist.
Brake pedal depressed	Should exist.

If NG, adjust brake pedal installation, refer to <u>BR-6, "BRAKE PEDAL"</u>, and perform step 2 again.

IGNITION SIGNAL


[QR]

IGNITION SIGNAL

PFP:22448 UBS0032W

Component Description IGNITION COIL & POWER TRANSISTOR

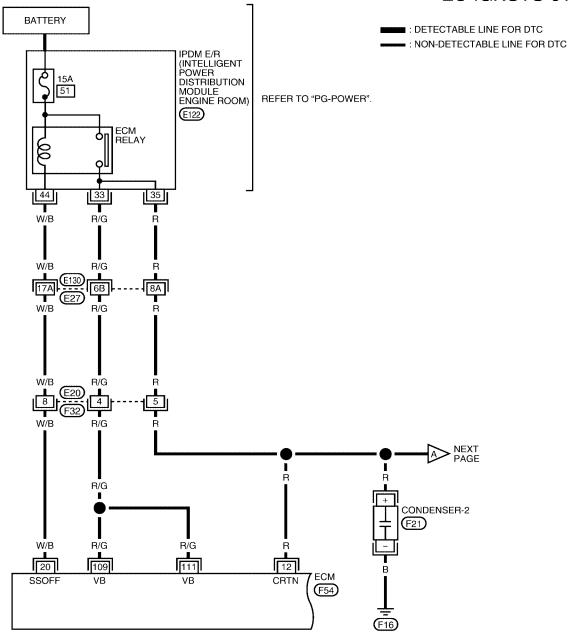
The ignition signal from the ECM is sent to and amplified by the power transistor. The power transistor turns on and off the ignition coil primary circuit. This on-off operation induces the proper high voltage in the coil secondary circuit.

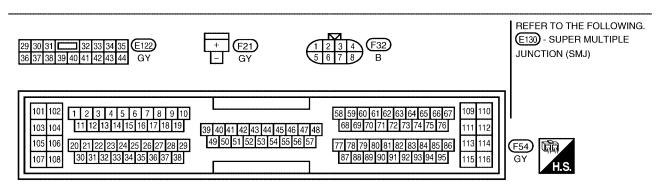
EC

Α

C

D


Е


F

Н

Wiring Diagram UBS

EC-IGNSYS-01

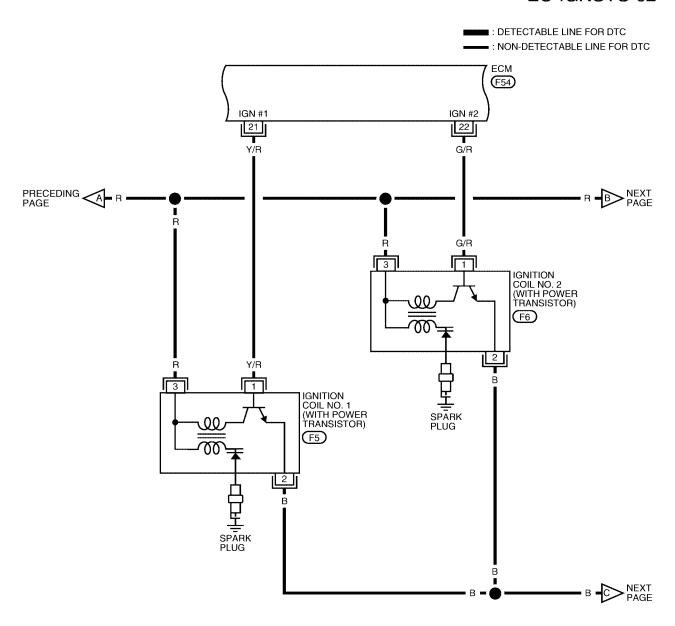
BBWA0028E

IGNITION SIGNAL

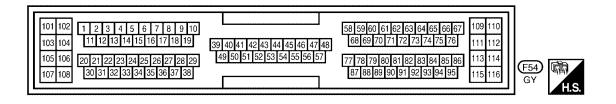
[QR]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


_		-		=	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
12	R	Counter current return	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)	С
	20 W/B ECM relay (Salf chut off)		[Engine is running] [Ignition switch "OFF"]	0 - 1.0V	
20		ECM relay (Self shut-off)	 For 3 seconds after turning ignition switch "OFF" 		D
		(Con shat on)	[Ignition switch "OFF"]	BATTERY VOLTAGE	
			 3 seconds passed after turning ignition switch "OFF" 	(11 - 14V)	Е
109	R/G	Power supply for ECM	[Ignition switch "ON"]	BATTERY VOLTAGE	-
111	R/G	· · · · · · · · · · · · · · · · · · ·	1.9	(11 - 14V)	

F


Н

L

EC-IGNSYS-02

BBWA0029E

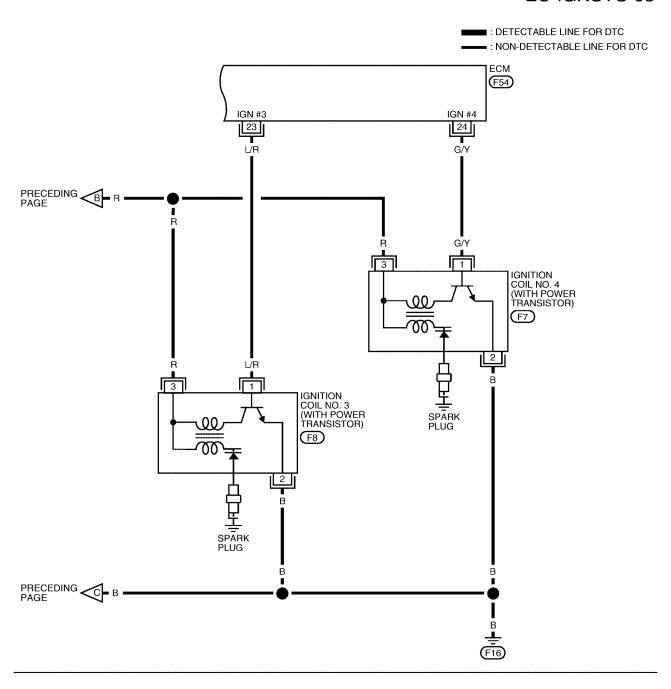
IGNITION SIGNAL

[QR]

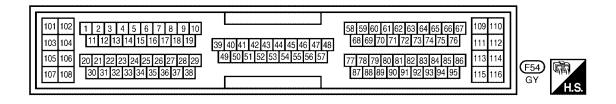
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC					
21	Y/R	Ignition signal No. 1	[Engine is running] • Warm-up condition • Idle speed	0 - 0.1V★	C					
22		G/R	G/R	G/R	G/R	G/R	Ignition signal No. 2		0 - 0.2∨★	Е
			[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	>> 2.0 V/Div 50 ms/Div	F					
				PBIB0522E	G					


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Revision: May 2004 EC-557 2002 Altima


Н

<

EC-IGNSYS-03

BBWA0030E

IGNITION SIGNAL

[QR]

UB\$0032.Y

K

M

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

				<u>~</u>	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
23	L/R	Ignition signal No. 3	[Engine is running]Warm-up conditionIdle speed	0 - 0.1V★	C
24	G/Y	Ignition signal No. 4	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - 0.2V★	E F G
				PBIB0522E	O

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. CHECK ENGINE START

Turn ignition switch "OFF", and restart engine.

Is engine running?

Yes or No

Yes (With CONSULT-II)>>GO TO 2. Yes (Without CONSULT-II)>>GO TO 3. No >> GO TO 4.

2. CHECK OVERALL FUNCTION

(P) With CONSULT-II

- 1. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 2. Make sure that all circuits do not produce a momentary engine speed drop.

OK or NG

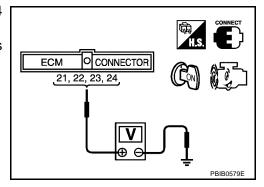
OK >> INSPECTION END

NG >> GO TO 8.

	ACTIVE TES	ST .	
POWE	R BALANCE		
	MONITOR		
EN	IG SPEED	XXX rpm	
MAS	S A/F SE-B1	xxx v	

			PBIB0133E

Revision: May 2004 EC-559 2002 Altima


3. CHECK OVERALL FUNCTION

⋈ Without CONSULT-II

- 1. Let engine idle.
- 2. Read the voltage signal between ECM terminals 21, 22, 23, 24 and ground with an oscilloscope.
- 3. Verify that the oscilloscope screen shows the signal wave as shown below.

PBIB0521E

OK or NG

OK >> INSPECTION END

NG >> GO TO 8.

4. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminals 109, 111 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5.

NG >> Go to EC-130, "POWER SUPPLY CIRCUIT FOR ECM"

ECM O CONNECTOR

109, 111

PBIB0580E

5. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-II

Check voltage between ECM terminal 12 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6.

NG >> Go to EC-130, "POWER SUPPLY CIRCUIT FOR ECM"

ECM O CONNECTOR

12

V PBIB0136E

6. CHECK CONDENSER CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect condenser harness connector.
- Check harness continuity between ECM terminal 12 and condenser terminal + , condenser terminal and engine ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

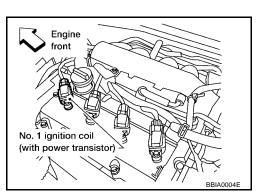
OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK CONDENSER

Refer to EC-562, "Component Inspection".

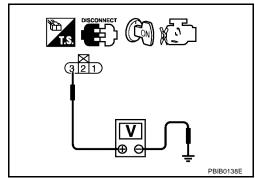

OK or NG

OK >> GO TO 8.

NG >> Replace condenser.

8. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-V

- 1. Turn ignition switch OFF.
- 2. Reconnect all harness connectors disconnected.
- 3. Disconnect ignition coil harness connector.
- 4. Turn ignition switch ON.



Check voltage between ignition coil terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10. NG >> GO TO 9.

9. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between ignition coil and IPDM E/R
- Harness for open or short between ignition coil and ECM
 - >> Repair or replace harness or connectors.

EC

Е

D

Н

1 \

10. CHECK IGNITION COIL GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Check harness continuity between ignition coil terminal 2 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 11.

NG >> Repair open circuit or short to power in harness or connectors.

11. CHECK IGNITION COIL OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminals 21, 22, 23, 24 and ignition coil terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 12.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

12. CHECK IGNITION COIL WITH POWER TRANSISTOR

Refer to EC-562, "Component Inspection".

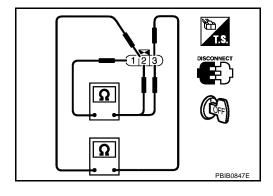
OK or NG

OK >> GO TO 13.

NG >> Replace ignition coil with power transistor.

13. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .


>> INSPECTION END

Component Inspection IGNITION COIL WITH POWER TRANSISTOR

Turn ignition switch "OFF".

- 2. Disconnect ignition coil harness connector.
- Check resistance between ignition coil terminals as follows.

Terminal No.	Resistance Ω [at 25°C (77°F)]	
1 and 2	Except 0 or ∞	
1 and 3	Except 0	
2 and 3	Εχθερί σ	

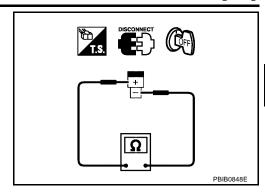
CONDENSER

- Turn ignition switch "OFF".
- Disconnect condenser harness connector.

IGNITION SIGNAL

[QR]

Α


EC

С

D

3. Check resistance between condenser terminals as + and -.

Resistance: Above 1 M Ω at 25°C (77°F)

Removal and Installation IGNITION COIL WITH POWER TRANSISTOR

Refer to EM-28, "IGNITION COIL".

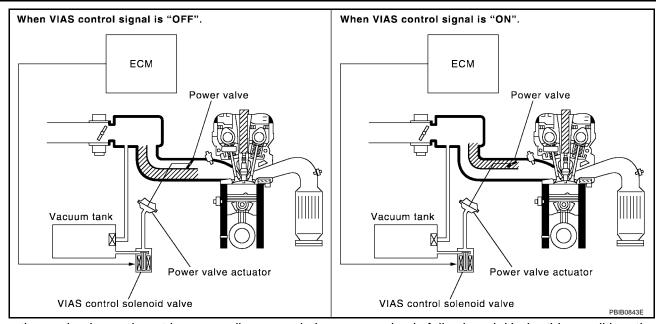
UBS00330

F

Е

Н

J


K

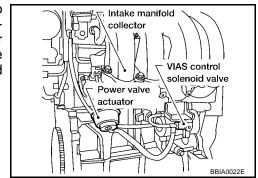
VIAS PFP:14956

Description SYSTEM DESCRIPTION

UBS00331

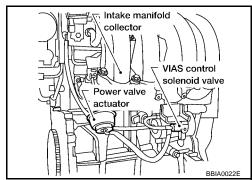
Sensor	Input Signal to ECM	ECM function	Actuator
Mass air flow sensor	Amount of intake air		
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Closed throttle position		
Ignition switch	Start signal	control	VIAS control solenoid valve
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed		
Engine coolant temperature sensor	Engine coolant temperature		

When the engine is running at low or medium speed, the power valve is fully closed. Under this condition, the effective suction port length is equivalent to the total length of the intake manifold collector's suction port including the intake valve. This long suction port provides increased air intake which results in improved suction efficiency and higher torque generation.


The surge tank and one-way valve are provided. When engine is running at high speed, the ECM sends the signal to the VIAS control solenoid valve. This signal introduces the intake manifold vacuum into the power valve actuator and therefore opens the power valve to two suction passages together in the collector.

Under this condition, the effective port length is equivalent to the length of the suction port provided independently for each cylinder. This shortened port length results in enhanced engine output with reduced suction resistance under high speeds.

COMPONENT DESCRIPTION


Power Valve

The power valve is installed in intake manifold collector and used to control the suction passage of the variable induction air control system. It is set in the fully closed or fully opened position by the power valve actuator operated by the vacuum stored in the surge tank. The vacuum in the surge tank is controlled by the VIAS control solenoid valve.

VIAS Control Solenoid Valve

The VIAS control solenoid valve cuts the intake manifold vacuum signal for power valve control. It responds to ON/OFF signals from the ECM. When the solenoid is off, the vacuum signal from the intake manifold is cut. When the ECM sends an ON signal the coil pulls the plunger downward and feeds the vacuum signal to the power valve actuator.

CONSULT-II Reference Value in Data Monitor Mode

UBS00332

MONITOR ITEM	CONDITION		SPECIFICATION
VIAS S/V	Engine: After warming up	Idle	OFF
VIAO O/V		More than 5,000 rpm	ON

EC

Α

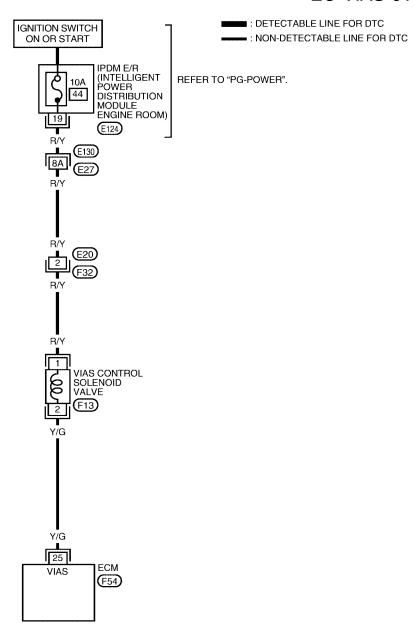
С

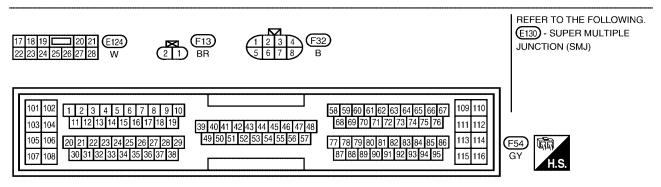
D

Е

3

Н


J


<

Wiring Diagram

UBS00333

EC-VIAS-01

BBWA0191E

VIAS

[QR]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
25	Y/G	VIAS control solenoid	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)
	1/G	valve	[Engine is running] ● Engine speed is above 5,000 rpm	0 - 1.0V

EC C D E

Н

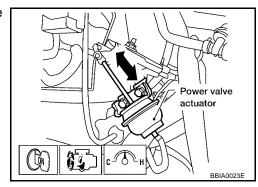
1

Κ

L

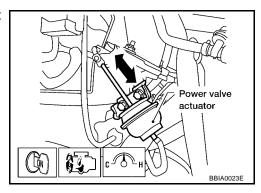
Diagnostic Procedure

1. CHECK OVERALL FUNCTION


UBS00334

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode with CON-SULT-II.


ACTIVE TEST	
VIAS SOL VALVE	OFF
MONITOR	ł
ENG SPEED	XXX rpm

3. Turn VIAS control solenoid valve "ON" and "OFF", and make sure that power valve actuator rod moves.

W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Rev engine quickly up to above 5,000 rpm and make sure that power valve actuator rod moves.

OK or NG

OK >> INSPECTION END

NG (With CONSULT-II) >>GO TO 2.

NG (Without CONSULT-II) >>GO TO 3.

2. CHECK VACUUM EXISTENCE

(II) With CONSULT-II

- Stop engine and disconnect vacuum hose connected to power valve actuator.
- 2. Start engine and let it idle.
- Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode with CON-SULT-II.
- Turn VIAS control solenoid valve "ON" and "OFF", and check vacuum existence under the following conditions.

VIAS SOL VALVE	Vacuum
ON	Should exist.
OFF	Should not exist.

ACTIVE TE	ACTIVE TEST	
VIAS SOL VALVE	OFF	
MONITO	R	
ENG SPEED	XXX rpm	
		PBIB0844E

OK or NG

OK >> Repair or replace power valve actuator.

NG >> GO TO 4.

3. CHECK VACUUM EXISTENCE

W Without CONSULT-II

- 1. Stop engine and disconnect vacuum hose connected to power valve actuator.
- 2. Disconnect VIAS control solenoid valve harness connector.
- 3. Start engine and let it idle.
- 4. Apply 12V of direct current between VIAS control solenoid valve terminals 1 and 2.
- 5. Check vacuum existence under the following conditions.

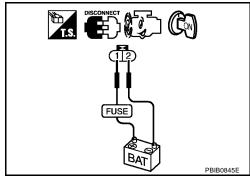
Condition	Vacuum
12V direct current supply	Should exist.
No supply	Should not exist.

OK or NG

OK >> Repair or replace power valve actuator.

NG >> GO TO 4.

4. CHECK VACUUM HOSE


- 1. Stop engine.
- 2. Check hoses and tubes between intake manifold and power valve actuator for crack, clogging, improper connection or disconnection. Refer to EC-29, "Vacuum Hose Drawing".

OK or NG

OK >> GO TO 5.

NG >> Repair hoses or tubes.

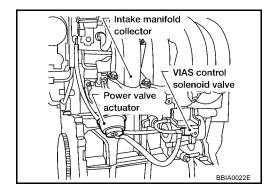
D

EC

Н

5. CHECK VACUUM TANK

Refer to EC-571, "Component Inspection".

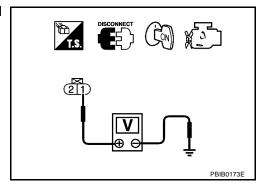

OK or NG

OK >> GO TO 6.

NG >> Replace vacuum tank.

6. CHECK VIAS CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "ON".
- 2. Disconnect VIAS control solenoid valve harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- IPDM E/R connector E124
- 10A fuse
- Harness continuity between fuse and VIAS control solenoid valve
 - >> Repair harness or connectors.

8. CHECK VIAS CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 25 and terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK VIAS CONTROL SOLENOID VALVE

Refer to EC-571, "Component Inspection".

OK or NG

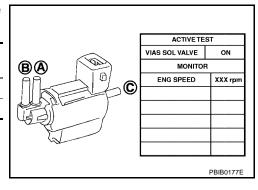
OK >> GO TO 10.

NG >> Replace VIAS control solenoid valve.

10. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection VIAS CONTROL SOLENOID VALVE

(P) With CONSULT-II

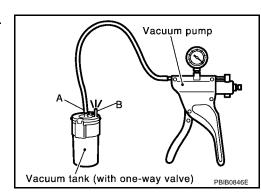
- 1. Reconnect harness connectors disconnected.
- 2. Turn ignition switch ON.
- 3. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time under the following conditions.

Condition VIAS SOL VALVE	Air passage continuity between A and B	Air passage continuity between A and C
ON	Yes	No
OFF	No	Yes

Operation takes less than 1 second.

With GST

Check air passage continuity and operation delay time under the following conditions.


Condition	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes

Operation takes less than 1 second.

B A BATTERY MEC488B

VACUUM TANK

- 1. Disconnect vacuum hose connected to vacuum tank.
- 2. Connect a vacuum pump to the port **A** of vacuum pump.
- 3. Apply vacuum and make sure that vacuum exists at the port ${\bf B}$.

Revision: May 2004 EC-571 2002 Altima

EC

D

Е

UBS00335

G

Н

K

L

M

IVI

Removal and Installation VIAS CONTROL SOLENOID VALVE

Refer to EM-18, "INTAKE MANIFOLD".

UBS00336

INJECTOR CIRCUIT

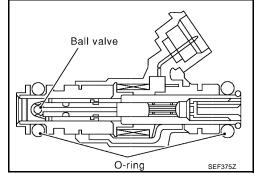
[QR]

INJECTOR CIRCUIT

PFP:16600

Component Description

UBS00337


EC

C

D

Е

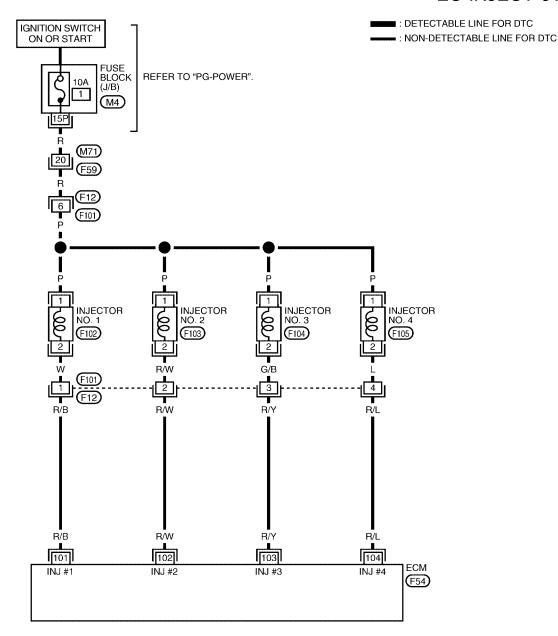
The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the injector circuit, the coil in the injector is energized. The energized coil pulls the needle valve back and allows fuel to flow through the injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.

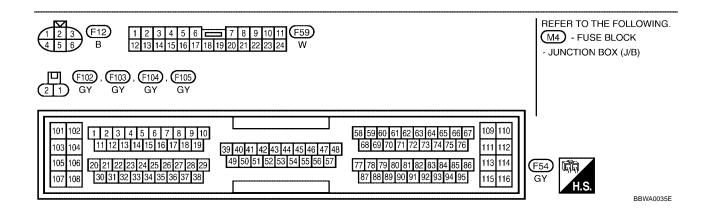
CONSULT-II Reference Value in Data Monitor Mode

UBS00338

Specification data are reference values.

MONITOR ITEM	Co	ONDITION	SPECIFICATION	
	Engine: After warming up	Idle	2.5 - 3.5 msec	<u> </u>
B/FUEL SCHDL	Shift lever: NAir conditioner switch: OFFNo-load	2,000 rpm	2.5 - 3.5 msec	(
	Engine: After warming up	Idle	2.0 - 3.0 msec	
INJ PULSE-B1	Shift lever: NAir conditioner switch: OFFNo-load	2,000 rpm	1.9 - 2.9 msec	


. I


Н

K

Wiring Diagram

EC-INJECT-01

INJECTOR CIRCUIT

[QR]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
				BATTERY VOLTAGE	С
			[Engine is running]Warm-up conditionIdle speed	(11 - 14V)★	D
101 102	R/B R/W	Injector No. 1 Injector No. 2		>>]10.0 V/Div 50 ms/Div T	Е
103	R/Y	Injector No. 3		BATTERY VOLTAGE	
104	R/L	Injector No. 4		(11 - 14V)★	F
			[Engine is running]Warm-up conditionEngine speed is 2,000 rpm	>> 10.0 V/Div 50 ma/Div T	G
				PBIB0530E	Н

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. INSPECTION START

Turn ignition switch to "START".

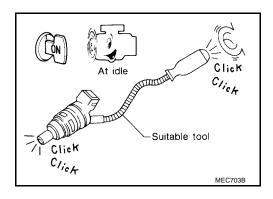
Is any cylinder ignited?

Yes or No

Yes >> GO TO 2. No >> GO TO 3.

UBS0033A

2. CHECK OVERALL FUNCTION


(II) With CONSULT-II

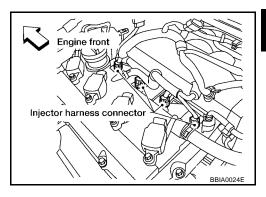
- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Make sure that each circuit produces a momentary engine speed drop.

		1
ACTIVE TES		
POWER BALANCE		
MONITOR	1	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		PBIB0133E

Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound. Clicking noise should be heard.

OK or NG

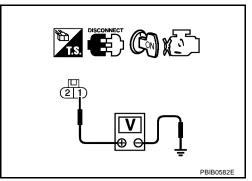

OK >> INSPECTION END

NG >> GO TO 3.

[QR]

3. CHECK INJECTOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect injector harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between injector terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M71, F59
- Harness connectors F12, F101
- Fuse block (J/B) connector M4
- 10A fuse
- Harness for open or short between injector and fuse

>> Repair harness or connectors.

5. CHECK INJECTOR OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between injector terminal 2 and ECM terminals 101, 102, 103, 104. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

Revision: May 2004 EC-577 2002 Altima

EC

С

D

Е

F

G

Н

K

ī

IV.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F12, F101
- Harness for open or short between injector and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK INJECTOR

Refer to EC-578, "Component Inspection".

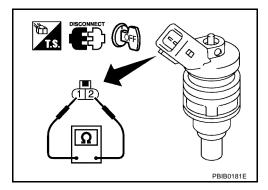
OK or NG

OK >> GO TO 8.

NG >> Replace injector.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection INJECTOR

UBS0033B

- 1. Disconnect injector harness connector.
- 2. Check resistance between terminals as shown in the figure.

Resistance: 12.1 - 12.9 Ω [at 20°C (68°F)]

Removal and Installation INJECTOR

Refer to EM-31, "FUEL INJECTOR AND FUEL TUBE" .

UBS0033C

START SIGNAL

[QR]

START SIGNAL

PFP:48750

CONSULT-II Reference Value in Data Monitor Mode

UBS0033D

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
START SIGNAL	• Ignition switch: $ON \rightarrow START \rightarrow ON$	$OFF \to ON \to OFF$

EC

С

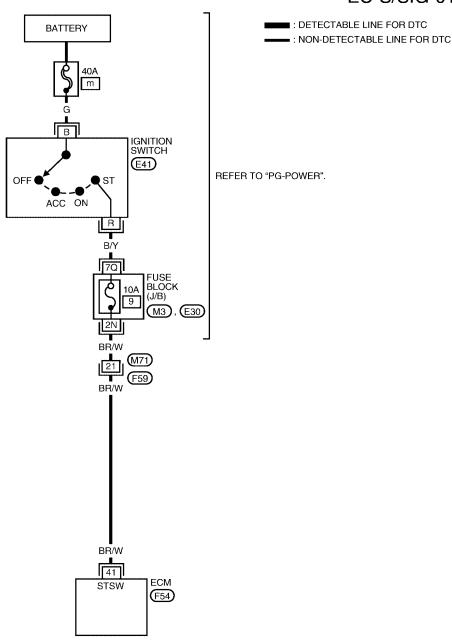
D

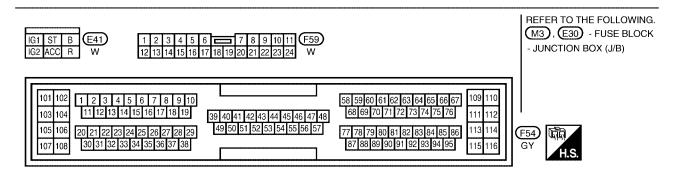
Е

F

G

Н


ı


Κ

L

Wiring Diagram

EC-S/SIG-01

BBWA0036E

LIBS0033E

EC

Е

Н

M

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
41	BR/W	Start signal	[Ignition switch "ON"]	Approximately 0V
	DIV/W	Start signal	[Ignition switch "START"]	9 - 14V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. INSPECTION START

Do you have CONSULT-II?

Yes or No

Yes >> GO TO 2. No >> GO TO 3.

2. CHECK OVERALL FUNCTION

(II) With CONSULT-II

- 1. Turn ignition switch "ON".
- Check "START SIGNAL" in "DATA MONITOR" mode with CON-SULT-II under the following conditions.

Condition	START SIGNAL
Ignition switch "ON"	OFF
Ignition switch "START"	ON

OK or NG

OK >> INSPECTION END

NG >> GO TO 4.

DATA MONITOR		
MONITOR	NO DTC	
START SIGNAL	OFF	
CLSD THL POS	ON	
AIR COND SIG	OFF	
P/N POSI SW	ON	
		PBIB0182

3. CHECK OVERALL FUNCTION

⋈ Without CONSULT-II

Check voltage between ECM terminal 41 and ground under the following conditions.

Condition	Voltage
Ignition switch "START"	Battery voltage
Other positions	Approximately 0V

OK or NG

OK >> INSPECTION END

NG >> GO TO 4.

ECM O CONNECTOR 41 V PBIB0583E

4. CHECK STARTING SYSTEM

Turn ignition switch "OFF", then turn it to "START".

Does starter motor operate?

Yes or No

Yes >> GO TO 5.

No >> Refer to <u>SC-9</u>, "STARTING SYSTEM".

5. CHECK FUSE

- 1. Turn ignition switch "OFF".
- 2. Disconnect 10A fuse.
- Check if 10A fuse is OK.

OK or NG

OK >> GO TO 6.

NG >> Replace 10A fuse.

6. CHECK START SIGNAL INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Disconnect ignition switch harness connector.
- 3. Check harness continuity between ECM terminal 41 and fuse block (J/B), ignition switch and fuse block (J/B). Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors
- Fuse block (J/B) connectors M3, E30
- Harness for open or short between ignition switch and fuse block (J/B)
- Harness for open or short between ECM and fuse block (J/B)
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

FUEL PUMP CIRCUIT

[QR]

FUEL PUMP CIRCUIT

PFP:17042

Description SYSTEM DESCRIPTION

UBS0033G

Sensor	Input Signal to ECM	ECM Function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed	Fuel pump	Fuel pump relay
Ignition switch	Start signal	Control	

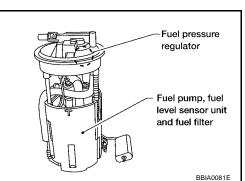
С

D

EC

The ECM activates the fuel pump for several seconds after the ignition switch is turned on to improve engine startability. If the ECM receives a engine speed signal from the crankshaft position sensor (POS) and camshaft position sensor (PHASE), it knows that the engine is rotating, and causes the pump to operate. If the engine speed signal is not received when the ignition switch is ON, the engine stalls. The ECM stops pump operation and prevents battery discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

Е


Condition	Fuel pump operation	
Ignition switch is turned to ON.	Operates for 1 second.	
Engine running and cranking	Operates.	
When engine is stopped	Stops in 1.5 seconds.	
Except as shown above	Stops.	

F

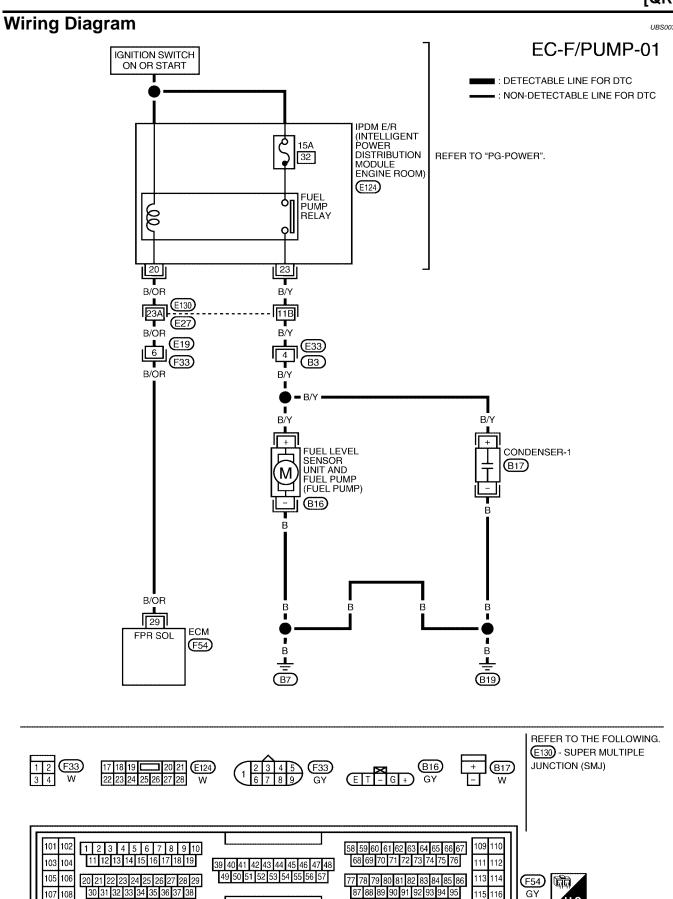
Н

COMPONENT DESCRIPTION

A turbine type design fuel pump is used in the fuel tank.

Į.

M


CONSULT-II Reference Value in Data Monitor Mode

UBS0033H

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
FUEL PUMP RLY	For 1 seconds after turning ignition switch ONEngine running or cranking	ON
	Except above conditions	OFF

BBWA0037E

Specification data are reference values and are measured between each terminal and ground.

D

Е

Н

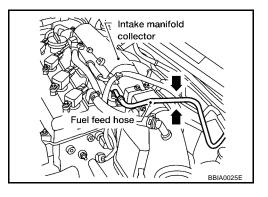
UBS0033J

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

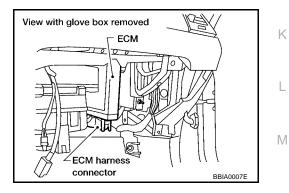
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	E
29	B/OR	Fuel pump relay	[Ignition switch "ON"] ● For 1 seconds after turning ignition switch "ON" [Engine is running]	0 - 1.0V	(
29	В/ОК	Tuer pump relay	[Ignition switch "ON"] • More than 1 seconds after turning ignition switch "ON".	BATTERY VOLTAGE (11 - 14V)	[

Diagnostic Procedure


1. CHECK OVERALL FUNCTION

- 1. Turn ignition switch "ON".
- Pinch fuel feed hose with two fingers.
 Fuel pressure pulsation should be felt on the fuel hose for 1 second after ignition switch is turned "ON".

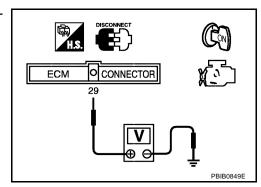
OK or NG


OK >> INSPECTION END

NG >> GO TO 2.

2. CHECK FUEL PUMP POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Turn ignition switch "ON".

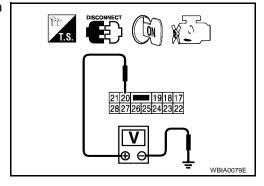


Check voltage between ECM terminal 29 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 3.

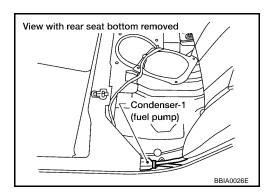

3. CHECK FUEL PUMP POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch "OFF".
- 2. Disconnect IPDM E/R harness connector E124.
- 3. Turn ignition switch "ON".
- 4. Check voltage between IPDM E/R terminal 20 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 13.

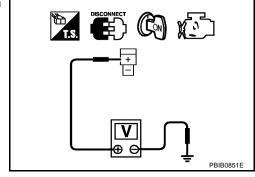

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness or connectors E19, F33
- Harness for open or short between IPDM E/R and ECM
 - >> Repair harness or connectors.

5. CHECK CONDENSER POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch "OFF".
- 2. Reconnect all harness connectors disconnected.
- 3. Disconnect condenser harness connector.
- 4. Turn ignition switch "ON".



5. Check voltage between condenser terminal + and ground with CONSULT-II or tester.

Voltage: Battery voltage should exist for 1 second after ignition switch is turned "ON".

OK or NG

OK >> GO TO 9. NG >> GO TO 6.

FUEL PUMP CIRCUIT

[QR]

6. CHECK 15A FUSE	
 Turn ignition switch "OFF". Disconnect 15A fuse. Check 15A fuse. 	EC
OK or NG OK >> GO TO 7. NG >> Replace fuse.	С
7. CHECK CONDENSER POWER SUPPLY CIRCUIT-II	
 Disconnect IPDM E/R harness connector E124. Check harness continuity between IPDM E/R terminal 23 and condenser terminal + . Refer to Wiring Diagram. 	— D Е
Continuity should exist.	
 Also check harness for short to ground and short to power. OK or NG OK >> GO TO 13. 	F
NG >> GO TO 8.	G
8. DETECT MALFUNCTIONING PART	
Check the following. Harness connectors E130, E27	Н
 Harness or connectors E33, B3 Harness for open or short between IPDM E/R and condenser 	I
>> Repair harness or connectors.	J
9. CHECK CONDENSER GROUND CIRCUIT	
 Check harness continuity between condenser terminal - and body ground. Refer to Wiring Diagram. 	К
Continuity should exist.	ı
 Also check harness for short to power. OK or NG OK >> GO TO 10. 	_
NG >> Repair or replace harness or connectors.	M
10. CHECK CONDENSER	
Refer to EC-588, "Component Inspection". OK or NG OK >> GO TO 11.	

Revision: May 2004 EC-587 2002 Altima

>> Replace condenser.

NG

Rear seat access

BBIA0012E

UBS0033K

Fuel level sensor unit and fuel pump harness connector

11. CHECK FUEL PUMP POWER SUPPLY AND GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- 2. Disconnect fuel level sensor unit and fuel pump harness connector.
- Check harness continuity between fuel pump terminal + and harness connector B3 terminal 4, fuel pump terminal - and body ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 12.

NG >> Repair or replace harness or connectors.

12. CHECK FUEL PUMP

Refer to EC-588, "Component Inspection".

OK or NG

OK >> GO TO 13.

NG >> Replace fuel pump.

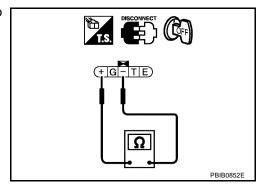
13. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> Replace IPDM E/R.

>> Repair or replace harness or connectors. NG


Component Inspection FUEL PUMP

Disconnect fuel level sensor unit and fuel pump harness connector.

Rear seat access Fuel level sensor unit and fuel pump harness connector BBIA0012E

Check resistance between fuel level sensor unit and fuel pump terminals + and - .

Resistance: Approximately 1.0 Ω [at 25°C (77°F)]

CONDENSER

Turn ignition switch "OFF".

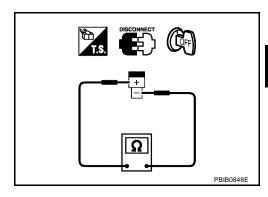
FUEL PUMP CIRCUIT

[QR]

Α

EC

С


D

Е

F

- 2. Disconnect condenser harness connector.
- 3. Check resistance between condenser terminals + and -.

Resistance: Above 1M Ω [at 25°C (77°F)]

Removal and Installation FUEL PUMP

UBS0033L

Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY" .

Н

K

L

POWER STEERING OIL PRESSURE SWITCH

[QR]

POWER STEERING OIL PRESSURE SWITCH

PFP:49761

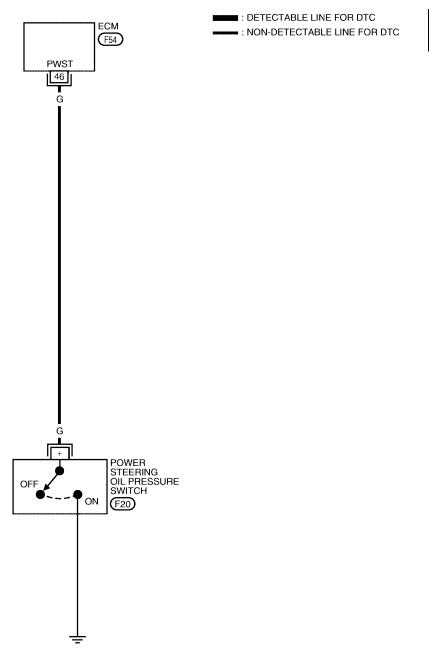
Component Description

UBS0033M

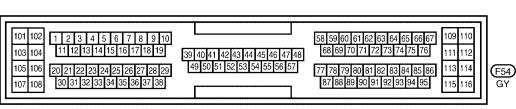
The power steering oil pressure switch is attached to the power steering high-pressure tube and detects a power steering load. When a power steering load is detected, it signals the ECM. The ECM controls the electric throttle control actuator and adjusts the throttle valve opening angle to increase the engine speed and adjusts the idle speed for the increased load.

CONSULT-II Reference Value in Data Monitor Mode

UBS0033N


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
PW/ST SIGNAL	Engine: After warming up, idle the	Steering wheel in neutral position (forward direction)	OFF
	engine	The steering wheel is fully turned	ON


[QR]

Wiring Diagram

EC-PST/SW-01

EC

Α

C

D

Е

Н

POWER STEERING OIL PRESSURE SWITCH

[QR]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
46 G	Power steering oil	[Engine is running]Steering wheel is being turned	Approximately 0V	
40	9	pressure switch	[Engine is running]Steering wheel is not being turned	BATTERY VOLTAGE (11 - 14V)

POWER STEERING OIL PRESSURE SWITCH

[QR]

UBS0033P

Α

EC

D

Е

Н

Diagnostic Procedure

1. INSPECTION START

Do you have CONSULT-II?

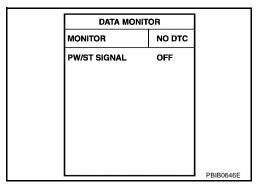
Yes or No

Yes >> GO TO 2.

No >> GO TO 3.

2. CHECK OVERALL FUNCTION

(III) With CONSULT-II


- 1. Start engine.
- 2. Check "PW/ST SIGNAL" in "DATA MONITOR" mode with CON-SULT-II under the following conditions.

Steering in neutral position	OFF
Steering is turned	ON

OK or NG

OK >> INSPECTION END

NG >> GO TO 4.

3. CHECK OVERALL FUNCTION

Without CONSULT-II

- 1. Start engine.
- 2. Check voltage between ECM terminal 46 and ground under the following conditions.

Condition	Voltage
When steering wheel is turned quickly	Approximately 0V
Except above	Approximately 5V

OK or NG

OK >> INSPECTION END

NG >> GO TO 4.

4. CHECK INPUT SIGNAL CIRCUIT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 46 and power steering oil pressure switch terminal + .
 Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the harness for open or short between ECM and power steering oil pressure switch.

>> Repair open circuit or short to ground or short to power in harness or connectors.

ECM OCONNECTOR HS

46

V

SEF148X

[QR]

UBS0033Q

6. CHECK POWER STEERING OIL PRESSURE SWITCH

Refer to EC-594, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace power steering oil pressure switch.

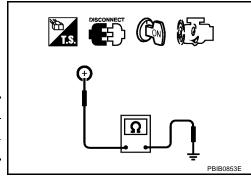
7. CHECK INTERMITTENT INCIDENT

Perform EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

Component Inspection POWER STEERING OIL PRESSURE SWITCH

1. Turn ignition switch "OFF".


- 2. Disconnect power steering oil pressure switch harness connector.
- 3. Start engine.
- 4. Check continuity between power steering oil pressure switch terminal + and body ground.

Conditions	Continuity
Steering wheel is being turned	Yes
Steering wheel is not being turned	No

If NG, replace power steering oil pressure switch.

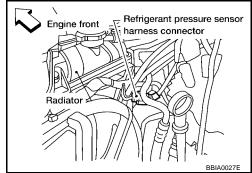
Removal and Installation POWER STEERING OIL PRESSURE SWITCH

Refer to PS-20, "POWER STEERING OIL PUMP".

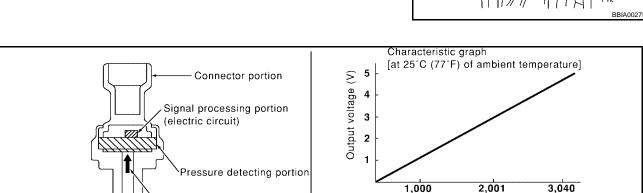
UBS0033R

[QR]

REFRIGERANT PRESSURE SENSOR


PFP:92136

Component Description


UBS0033S

The refrigerant pressure sensor is installed at the liquid tank of the air conditioner system. The sensor uses an electrostatic volume pressure transducer to convert refrigerant pressure to voltage. The voltage signal is sent to ECM, and ECM controls cooling fan system.

Pressure

(10.00, 10.2, 145) (20.01, 20.4, 290) (30.40, 31.0, 441)
Refrigerant pressure kPa (bar, kg/cm², psi) sefoss

С

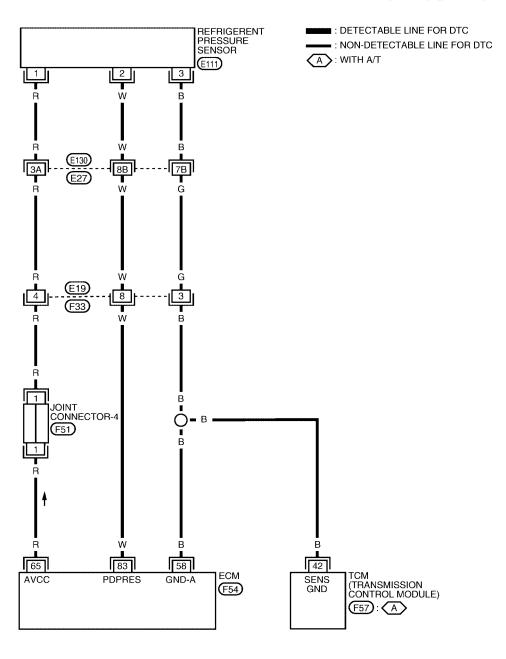
EC

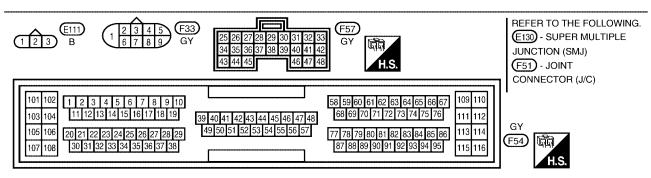
Α

D

Е

G


Н


L

Wiring Diagram

JBS0033T

EC-RP/SEN-01

BBWA0039E

REFRIGERANT PRESSURE SENSOR

[QR]

UBS0033U

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

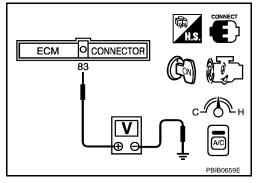
•		_	•	_	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
58	В	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	C
65	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V	_
83	w	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower switch are "ON". (Compressor operates.) 	1.0 - 4.0V	D E

Diagnostic Procedure

1. CHECK REFRIGERANT PRESSURE SENSOR OVERALL FUNCTION

1. Start engine and warm it up to normal operating temperature.

2. Turn A/C switch and blower switch "ON".

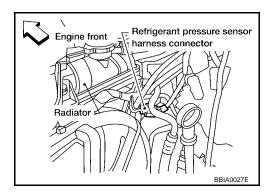

3. Check voltage between ECM terminal 83 and ground with CON-SULT-II or tester.

Voltage: 1.0 - 4.0V

OK or NG

OK >> INSPECTION END

NG >> GO TO 2.

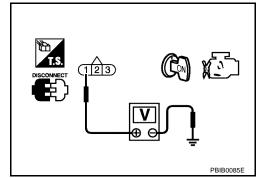

K

Н

L

2. CHECK REFRIGERANT PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn A/C switch and blower switch "OFF".
- 2. Stop engine.
- 3. Disconnect refrigerant pressure sensor harness connector.
- 4. Turn ignition switch "ON".



5. Check voltage between refrigerant pressure sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E19, F33
- Harness connectors E130, E27
- Joint connector-4
- Harness for open or short between ECM and refrigerant pressure sensor
 - >> Repair harness or connectors.

4. CHECK REFRIGERANT PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Check harness continuity between refrigerant pressure sensor terminal 3 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

REFRIGERANT PRESSURE SENSOR

[QR]

5. DETECT MALFUNCTIONING PART	Δ
Check the following.	
 Harness connectors E19, F33 	
Harness connectors E130, E27	EC
Harness for open or short between ECM and refrigerant pressure sensor	
Harness for open or short between TCM and refrigerant pressure sensor	C
>> Repair open circuit or short to ground or short to power in harness or connectors.	
6. CHECK REFRIGERANT PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	
Disconnect ECM harness connector.	
Check harness continuity between ECM terminal 83 and refrigerant pressure sensor terminal 2. Refer to Wiring Diagram.	Е
Continuity should exist.	F
3. Also check harness for short to ground and short to power.	
OK or NG	
OK >> GO TO 8. NG >> GO TO 7.	(
NG >> GO 10 /.	
7. DETECT MALFUNCTIONING PART	F
Check the following.	
Harness connectors E19, F33	
Harness connectors E130, E27	I
Harness for open or short between ECM and refrigerant pressure sensor	
>> Repair open circuit or short to ground or short to power in harness or connectors.	
8. CHECK INTERMITTENT INCIDENT	k
Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	
OK or NG	
OK >> Replace refrigerant pressure sensor. NG >> Repair or replace.	L
Removal and Installation REFRIGERANT PRESSURE SENSOR	[\

Refer to $\underline{\text{MTC-88, "Removal and Installation for Refrigerant Pressure Sensor"}}$.

[QR]

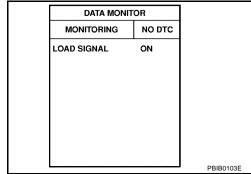
ELECTRICAL LOAD SIGNAL

PFP:25350

Description

UBS0033W

The electrical load signal (Headlamp switch signal, rear window defogger switch signal, etc.) is transferred through the CAN communication line from BCM to ECM via IPDM E/R.

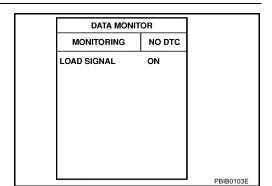

Diagnostic Procedure

UBS0033X

1. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-I

- 1. Turn ignition switch "ON".
- 2. Connect CONSULT-II or GST and select "DATA MONITOR" mode.
- Select "LOAD SIGNAL" and check indication under the following conditions.

Condition	Indication
Rear window defogger switch "ON"	ON
Rear window defogger switch "OFF"	OFF


OK or NG

OK >> GO TO 2. NG >> GO TO 3.

2. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-II

Check "LOAD SIGNAL" indication under the following conditions.

Condition	Indication
Lighting switch "ON" at 2nd position	ON
Lighting switch "OFF"	OFF

OK or NG

OK >> INSPECTION END

NG >> GO TO 4.

3. CHECK REAR WINDOW DEFOGGER SYSTEM

Refer to GW-41, "REAR WINDOW DEFOGGER".

>> INSPECTION END

4. CHECK HEADLAMP SYSTEM

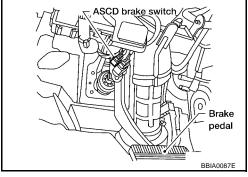
Refer to LT-5, "HEADLAMP (FOR USA)" or LT-28, "HEADLAMP (FOR CANADA) - DAYTIME LIGHT SYSTEM -" .

>> INSPECTION END

ASCD BRAKE SWITCH

[QR]

ASCD BRAKE SWITCH


PFP:25320

Component Description

UBS0033Y

When depress on the brake pedal, ASCD brake switch is turned OFF and stop lamp switch is turned ON. ECM detects the state of the brake pedal by this input of two kinds (ON/OFF signal)

Refer to EC-627, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for the ASCD function.

CONSULT-II Reference Value in Data Monitor Mode

UBS0033Z

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW1	Ignition switch: ON	Brake pedal fully released	ON
(ASCD brake switch)		Brake pedal depressed	OFF
BRAKE SW2 • Ignition switch: ON	Brake pedal fully released	OFF	
(stop lamp switch)	• Igrition switch. On	Brake pedal depressed	ON

EC

Α

С

D

Е

-

Н

J

^

Wiring Diagram EC-ASCBOF-01 IGNITION SWITCH BATTERY ON OR START FUSE BLOCK (J/B) Refer to "PG-POWER". 12 20 (E30) 1Q A : WITH A/T M>: WITH M/T \overline{M} STOP LAMP SWITCH G (E38) DEPRESSED ASCD CLUTCH SWITCH RELEASED **E35** RELEASED R/G DEPRESSED 2 R/G G/B M - G/B -M : G/B JOINT CONNECTOR-2 ASCD BRAKE **SWITCH** M17**E37** RELEASED DEPRESSED (A): G/B R/G : G/B M>: G/R 56 40 **ECM** BRKSW BNCSW (F54) REFER TO THE FOLLOWING. 1 2 3 4 5 6 7 8 9 10 M7 11 12 13 14 15 16 17 18 W M17 - JOINT CONNECTOR (J/C) 101 102 58 59 60 61 62 63 64 65 66 67 1 2 3 4 5 6 7 8 9 10

Α

EC

D

Е

Н

M

UBS00341

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
40	R/G	Stop lamp switch	[Engine is running] • Brake pedal fully released	Approximately 0V
40	40 N/G Stop lamp switch	[Engine is running] • Brake pedal depressed	BATTERY VOLTAGE (11 - 14V)	
56	G/B (A/T)	ASCD brake switch	[Ignition switch "ON"] Brake pedal is depressed Clutch pedal is depressed (M/T models)	Approximately 0V
G/R (M/T)	[Ignition switch "ON"] • Brake pedal is fully released • Clutch pedal is fully released (M/T models)	BATTERY VOLTAGE (11 - 14V)		

INDICATION

ON

Diagnostic Procedure

1. CHECK OVERALL FUNCTION-I

CONDITION

(II) With CONSULT-II

- 1. Turn ignition switch "ON".
- Select "BRAKE SW1" in "DATA MONITOR" mode with CON-SULT-II.
- Check "BRAKE SW1" indication under the following conditions. M/T models

When clutch pedal or brake pedal is depressed	OFF
When clutch pedal and brake pedal are fully released	ON
A/T models	
CONDITION	INDICATION
When brake pedal is depress	OFF

DATA MO	DATA MONITOR	
MONITOR	NO DTC	
BRAKE SW1	OFF	
		SEC011D

⋈ Without CONSULT-II

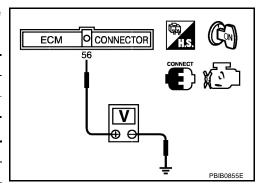
1. Turn ignition switch "ON".

When brake pedal is fully released

2. Check voltage between ECM terminal 56 and ground under the following conditions.

A/T models

CONDITION	VOLIAGE
When brake pedal is depress	Approximately 0V
When brake pedal is fully released	Battery voltage
M/T models	
CONDITION	VOLTAGE

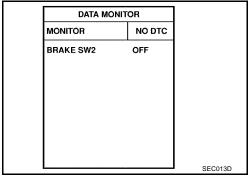

CONDITION	VOLTAGE
When clutch pedal or brake pedal is depressed	Approximately 0V
When clutch pedal and brake pedal are fully released	Battery voltage

OK or NG

OK >> GO TO 2.

NG (M/T models) >>GO TO 3.

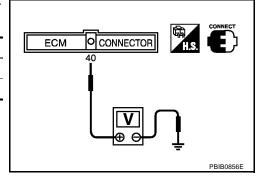
NG (A/T models) >>GO TO 8.



2. CHECK OVERALL FUNCTION-II

(P) With CONSULT-II

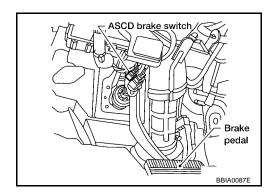
Check "BRAKE SW2" indication in "DATA MONITOR" mode.


CONDITION	INDICATION
When brake pedal is released	OFF
When brake pedal is depressed	ON

W Without CONSULT-II

Check voltage between ECM terminal 40 and ground under the following conditions.

CONDITION	VOLTAGE
When brake pedal is released	Approximately 0V
When brake pedal is depressed	Battery voltage

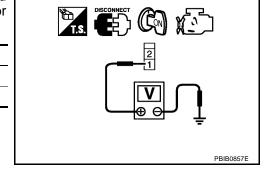

OK or NG

OK >> INSPECTION END

NG >> GO TO 13.

3. CHECK ASCD CLUTCH SWITCH CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ASCD brake switch harness connector.
- 3. Turn ignition switch "ON".



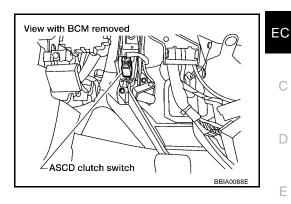
4. Check voltage between ASCD brake switch terminal 1 and ground under the following conditions with CONSULT-II or tester.

CONDITION	VOLTAGE
When clutch pedal is released	Battery voltage
When clutch pedal is depressed	Approx. 0V

OK or NG

OK >> GO TO 10. NG >> GO TO 4.

[QR]

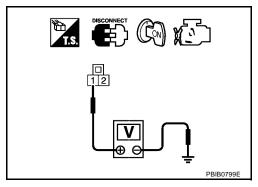

D

Е

Н

4. CHECK ASCD CLUTCH SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ASCD clutch switch harness connector.
- Turn ignition switch "ON".



4. Check voltage between ASCD clutch switch terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E30
- 10A fuse
- Harness for open or short between ASCD clutch switch and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK ASCD CLUTCH SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- 2. Check harness continuity between ASCD clutch switch terminal 2 and ASCD brake switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

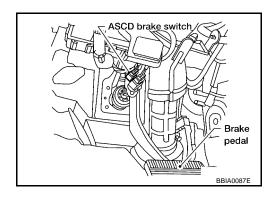
OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK ASCD CLUTCH SWITCH

Refer to EC-540, "Component Inspection"

OK or NG

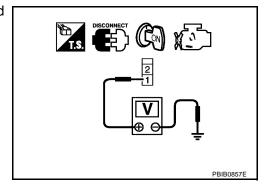

OK >> GO TO 18.

NG >> Replace ASCD clutch switch.

EC-605 2002 Altima Revision: May 2004

8. CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ASCD brake switch harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10. NG >> GO TO 9.

9. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E30
- 10A fuse
- Harness for open or short between ASCD brake switch and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

10. CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 56 and ASCD brake switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground or short to power.

OK or NG

OK >> GO TO 12. NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

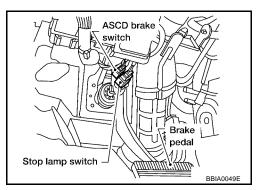
- Harness connectors E21, F34
- Harness for open or short between ECM and ASCD brake switch

>> Repair open circuit or short to ground or short to power in harness or connectors.

[QR]

12. CHECK ASCD BRAKE SWITCH

Refer to EC-540, "Component Inspection"

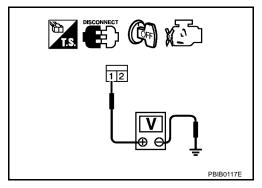

OK or NG

OK >> GO TO 18.

NG >> Replace ASCD brake switch.

13. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect stop lamp switch harness connector.



3. Check voltage between stop lamp switch terminal 1 and ground with CONSULT -II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 15. NG >> GO TO 14.

14. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E30
- 10A fuse
- Harness for open or short between stop lamp switch and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

15. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 40 and stop lamp switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 17. NG >> GO TO 16.

EC-607 2002 Altima Revision: May 2004

EC

Е

Н

K

16. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E28, M7
- Harness connectors M71, F59
- Joint connector-2
- Harness for open or short between ECM and stop lamp switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

17. CHECK STOP LAMP SWITCH

Refer to EC-540, "Component Inspection"

OK or NG

OK >> GO TO 18.

NG >> Replace stop lamp switch.

18. CHECK INTERMITTENT INCIDENT

Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

ASCD INDICATOR

[QR]

ASCD INDICATOR

PFP:24814

Component Description

IBS00342

ASCD indicator lamp illuminates to indicate ASCD operation status. Lamp has two indicators, CRUISE and SET, and is integrated in combination meter.

CRUISE indicator illuminates when CRUISE switch on ASCD steering switch is turned ON to indicated that ASCD system is ready for operation.

SET indicator illuminates when following conditions are met.

- CRUISE indicator is illuminated.
- SET switch on ASCD steering switch is turned ON while vehicle speed is within the range of ASCD setting.

SET indicator remains lit during ASCD control.

Refer to EC-627, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for the ASCD function.

CONSULT-II Reference Value in Data Monitor Mode

UBS00343

Specification data are reference value.

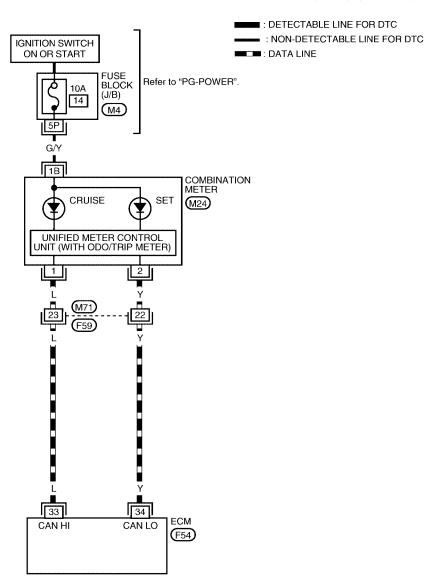
MONITOR ITEM	CONDITION		SPECIFICATION
CRUISE LAMP	Ignition switch: ON	CRUISE switch pressed	ON
		CRUISE switch released	OFF
	CRUISE switch: ON	SET switch pressed	ON
SET LAMP	When vehicle speed is between 40 km/h (25 MPH) and 144 km/h (89 MPH)	SET switch released	OFF

Е

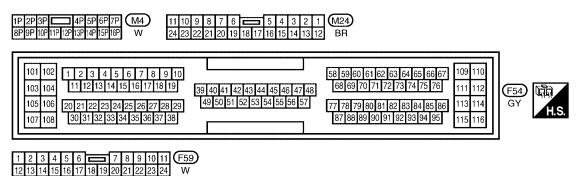
F

D

EC


C

Н


Wiring Diagram

UBS00344

EC-ASCIND-01

WBWA0004E

ASCD INDICATOR

[QR]

Diagnostic Procedure

1. CHECK OVERALL FUNCTION

UBS00345

Α

EC

Check ASCD indicator under the following conditions.

ASCD INDICATOR	CONDITION		SPECIFICATION
CRUISE LAMP • Ignition switch: ON	- Ignition quitable ON	CRUISE switch pressed	ON
	• Ignition switch. ON	CRUISE switch released	OFF
	CRUISE switch: ON	SET switch pressed	ON
SET LAMP	 When vehicle speed is between 40 km/h (25 MPH) and 144 km/h (89 MPH) 	SET switch released	OFF

D

Е

Н

OK or NG

OK >> INSPECTION END

NG >> GO TO 2.

2. CHECK DTC

Check that DTC U1000 or U1001is not displayed.

Yes or No

Yes >> Perform trouble diagnoses for DTC U1000, U1001, refer to EC-137, "DTC U1000, U1001 CAN

COMMUNICATION LINE".

No >> GO TO 3.

3. CHECK COMBINATION METER OPERATION

Does combination meter operate normally?

Yes or No

Yes >> GO TO 4.

No >> Check combination meter circuit. Refer to <u>DI-4, "COMBINATION METERS"</u>.

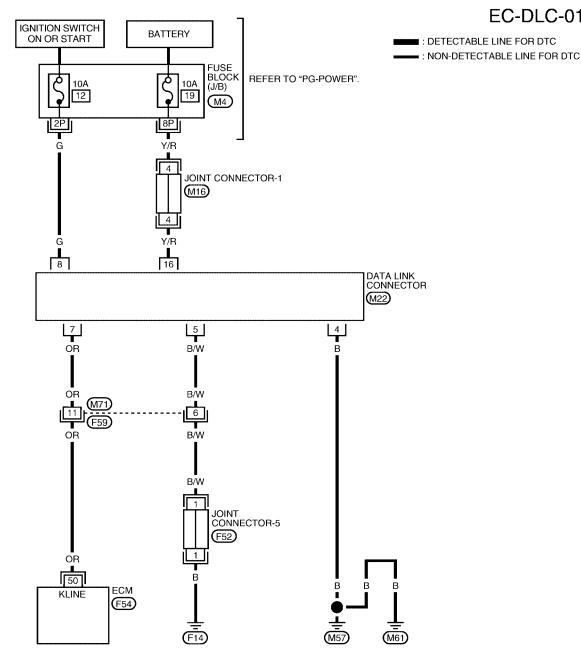
4. CHECK INTERMITTENT INCIDENT

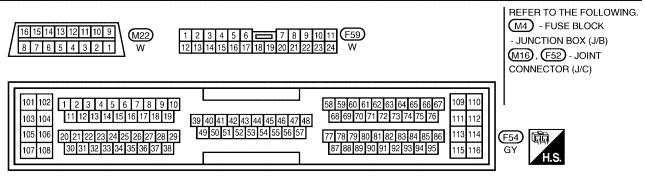
Refer to EC-129, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

M

Revision: May 2004 EC-611 2002 Altima


UBS00346


DATA LINK CONNECTOR

PFP:24814

Wiring Diagram

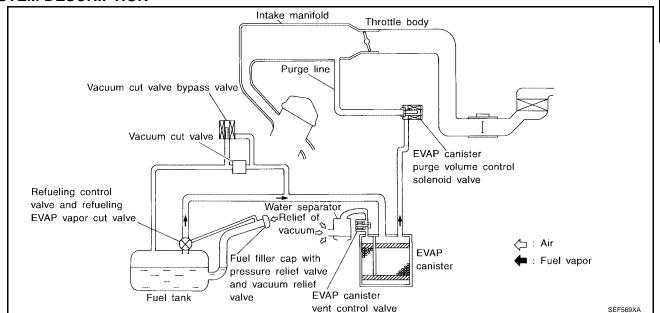
EC-DLC-01

EVAPORATIVE EMISSION SYSTEM

[QR]

EVAPORATIVE EMISSION SYSTEM

PFP:14950


Description SYSTEM DESCRIPTION

UBS00347

Α

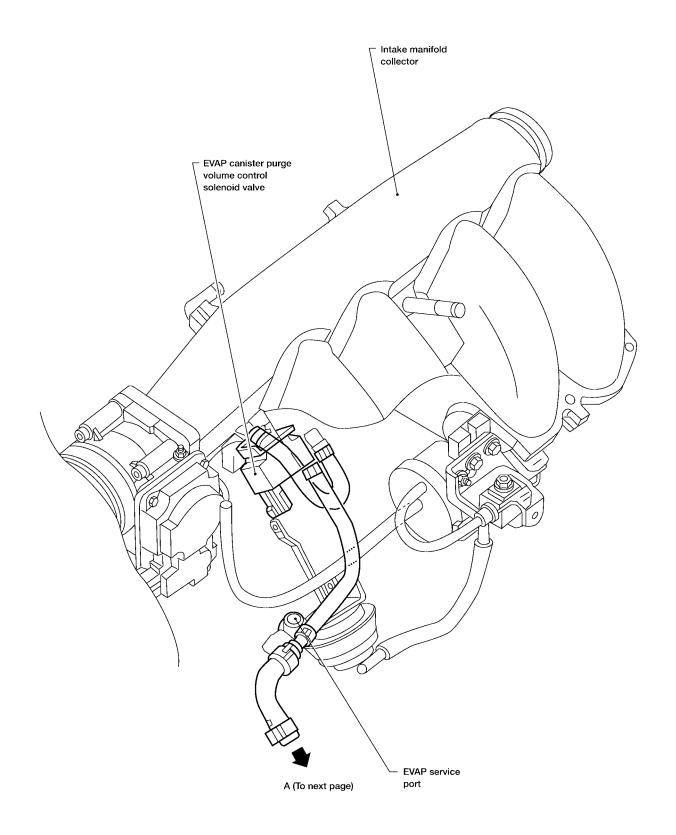
EC

Е

The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.

The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the vapor is stored there when the engine is not operating or when refueling to the fuel tank.

The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the engine is operating. EVAP canister purge volume control solenoid valve is controlled by ECM. When the engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is proportionally regulated as the air flow increases.


EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating and idling.

K

L

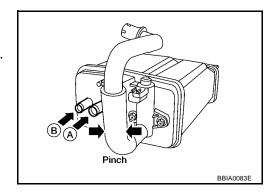
M

EVAPORATIVE EMISSION LINE DRAWING

BBIA0051E

BBIA0052E

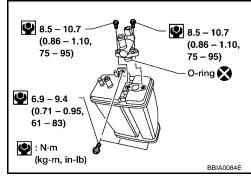
Α


Refer to previous page EC C D 0 Е Previous EVAP vapor Н purge line EVAP control system pressure sensor Vacuum cut valve bypass valve EVAP canister vent control valve M Vacuum cut valve EVAP canister

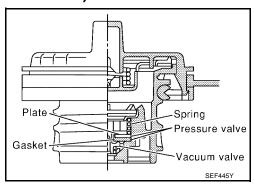
Component Inspection EVAP CANISTER

UBS00348

Check EVAP canister as follows:


- 1. Pinch the fresh air hose.
- 2. Blow air into port A and check that it flows freely out of port B.

Tightening Torque


Tighten EVAP canister as shown in the figure.

Make sure new O-ring is installed properly between EVAP canister and EVAP canister vent control valve.

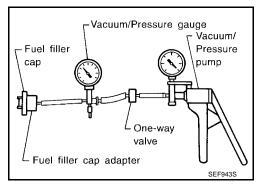
FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FULLER CAP)

1. Wipe clean valve housing.

2. Check valve opening pressure and vacuum.

Pressure: 15.3 - 20.0 kPa

(0.156 - 0.204 kg/cm², 2.22 - 2.90 psi)


Vacuum: −6.0 to −3.4 kPa

 $(-0.061 \text{ to } -0.035 \text{ kg/cm}^2, -0.87 \text{ to } -0.48 \text{ psi})$

3. If out of specification, replace fuel filler cap as an assembly.

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

VACUUM CUT VALVE AND VACUUM CUT VALVE BYPASS VALVE

Refer to EC-514.

EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-319.

FUEL TANK TEMPERATURE SENSOR

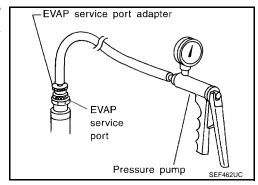
Refer to EC-232.

[QR]

Α

EC

D


Е

Н

M

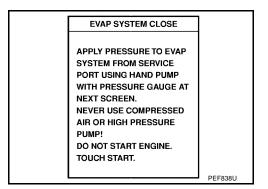
EVAP SERVICE PORT

Positive pressure is delivered to the EVAP system through the EVAP service port. If fuel vapor leakage in the EVAP system occurs, use a leak detector to locate the leak.

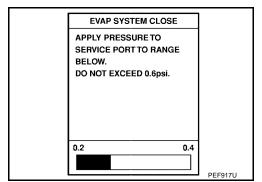
How to Detect Fuel Vapor Leakage

UBS00349

CAUTION:


- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in EVAP system.

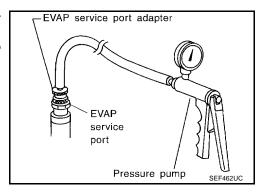
NOTE:


- Do not start engine.
- Improper installation of EVAP service port adapter to the EVAP service port may cause a leak.

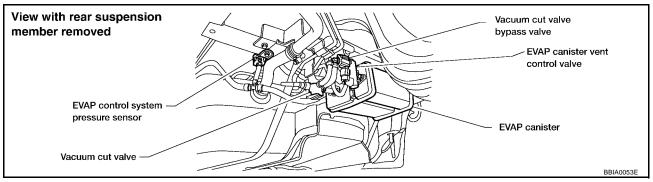
(P) WITH CONSULT-II

- 1. Attach the EVAP service port adapter securely to the EVAP service port.
- 2. Also attach the pressure pump and hose to the EVAP service port adapter.
- 3. Turn ignition switch "ON".
- 4. Select the "EVAP SYSTEM CLOSE" of "WORK SUPPORT MODE" with CONSULT-II.
- 5. Touch "START". A bar graph (Pressure indicating display) will appear on the screen.

- 6. Apply positive pressure to the EVAP system until the pressure indicator reaches the middle of the bar graph.
- 7. Remove EVAP service port adapter and hose with pressure pump.


Revision: May 2004 EC-617 2002 Altima

 Locate the leak using a leak detector. Refer to <u>EC-614</u>, "EVAP-ORATIVE EMISSION LINE DRAWING".

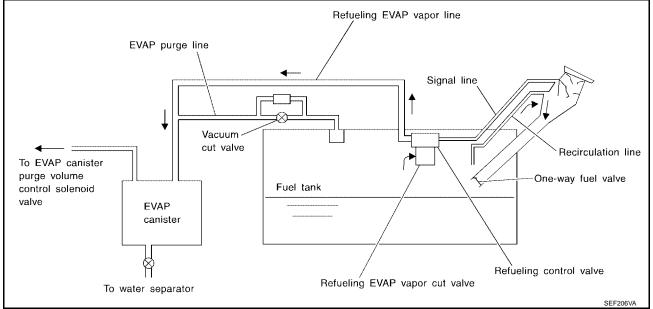


WITHOUT CONSULT-II

- Attach the EVAP service port adapter securely to the EVAP service port.
- 2. Also attach the pressure pump with pressure gauge to the EVAP service port adapter.

3. Apply battery voltage to between the terminals of both EVAP canister vent control valve and vacuum cut valve bypass valve to make a closed EVAP system.

- 4. To locate the leak, deliver positive pressure to the EVAP system until pressure gauge points reach 1.38 to 2.76 kPa (0.014 to 0.028 kg/cm², 0.2 to 0.4 psi).
- 5. Remove EVAP service port adapter and hose with pressure pump.
- 6. Locate the leak using a leak detector. Refer to EC-614, "EVAPORATIVE EMISSION LINE DRAWING" .


[QR]

ON BOARD REFUELING VAPOR RECOVERY (ORVR)

PFP:00032

System Description

LIBS0034A

From the beginning of refueling, the fuel tank pressure goes up. When the pressure reaches the setting value of the refueling control valve (RCV) opening pressure, the RCV is opened. After RCV opens, the air and vapor inside the fuel tank go through refueling EVAP vapor cut valve, RCV and refueling vapor line to the EVAP canister. The vapor is absorbed by the EVAP canister and the air is released to the atmosphere.

When the refueling has reached the full level of the fuel tank, the refueling EVAP vapor cut valve is closed and refueling is stopped because of auto shut-off. The vapor which was absorbed by the EVAP canister is purged during driving.

The RCV is always closed during driving and the evaporative emission control system is operated the same as conventional system.

WARNING:

When conducting inspections below, be sure to observe the following:

- Put a "CAUTION: INFLAMMABLE" sign in workshop.
- Do not smoke while servicing fuel system. Keep open flames and sparks away from work area.
- Be sure to furnish the workshop with a CO₂ fire extinguisher.

CAUTION:

- Before removing fuel line parts, carry out the following procedures:
- Put drained fuel in an explosion-proof container and put lid on securely.
- Release fuel pressure from fuel line. Refer to EC-51, "FUEL PRESSURE RELEASE" .
- Disconnect battery ground cable.
- Always replace O-ring when the fuel gauge retainer is removed.
- Do not kink or twist hose and tube when they are installed.
- Do not tighten hose and clamps excessively to avoid damaging hoses.
- After installation, run engine and check for fuel leaks at connection.
- Do not attempt to top off the fuel tank after the fuel pump nozzle shuts off automatically. Continued refueling may cause fuel overflow, resulting in fuel spray and possibly a fire.

EC

Α

Е

M

[QR]

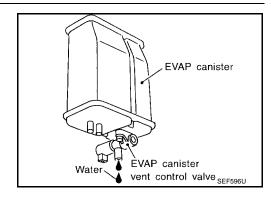
Diagnostic Procedure SYMPTOM: FUEL ODOR FROM EVAP CANISTER IS STRONG.

LIBSONSAE

1. CHECK EVAP CANISTER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- Weigh the EVAP canister with EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).

OK or NG


OK >> GO TO 2. NG >> GO TO 3.

2. CHECK IF EVAP CANISTER SATURATED WITH WATER

Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 3. No >> GO TO 6.

3. REPLACE EVAP CANISTER

Replace EVAP canister with a new one.

>> GO TO 4.

4. CHECK WATER SEPARATOR

Refer to EC-622, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace water separator.

5. DETECT MALFUNCTIONING PART

Check the EVAP hose between EVAP canister and water separator for clogging or poor connection.

>> Repair or replace EVAP hose.

6. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-622, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

7. CHECK REFUELING CONTROL VALVE

Refer to EC-622, "Component Inspection".

OK or NG

OK >> INSPECTION END

NG >> Replace refueling control valve with fuel tank.

Revision: May 2004 EC-620 2002 Altima

ON BOARD REFUELING VAPOR RECOVERY (ORVR)

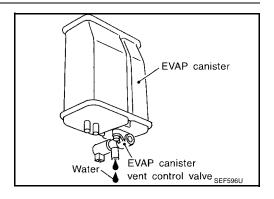
[QR]

SYMPTOM: CANNOT REFUEL/FUEL ODOR FROM THE FUEL FILLER OPENING IS STRONG WHILE REFUELING.

1. CHECK EVAP CANISTER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Weigh the EVAP canister with EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).

OK or NG


OK >> GO TO 2. NG >> GO TO 3.

2. CHECK IF EVAP CANISTER SATURATED WITH WATER

Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 3. No >> GO TO 6.

3. REPLACE EVAP CANISTER

Replace EVAP canister with a new one.

>> GO TO 4.

4. CHECK WATER SEPARATOR

Refer to EC-622, "Component Inspection" .

OK or NG

OK >> GO TO 5.

NG >> Replace water separator.

5. DETECT MALFUNCTIONING PART

Check the EVAP hose between EVAP canister and water separator for clogging or poor connection.

>> Repair or replace EVAP hose.

6. CHECK VENT HOSES AND VENT TUBES

Check hoses and tubes between EVAP canister and refueling control valve for clogging, kink, looseness and improper connection.

OK or NG

OK >> GO TO 7.

NG >> Repair or replace hoses and tubes.

7. CHECK FILLER NECK TUBE

Check signal line and recirculation line for clogging, dents and cracks.

OK or NG

OK >> GO TO 8.

NG >> Replace filler neck tube.

Revision: May 2004 EC-621 2002 Altima

EC

Α

Е

F

G

Н

J

K

IV.

[\

[QR]

8. CHECK REFUELING CONTROL VALVE

Refer to EC-622, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace refueling control valve with fuel tank.

9. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-622, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

10. CHECK FUEL FILLER TUBE

Check filler neck tube and hose connected to the fuel tank for clogging, dents and cracks.

OK or NG

OK >> GO TO 11.

NG >> Replace fuel filler tube.

11. CHECK ONE-WAY FUEL VALVE-I

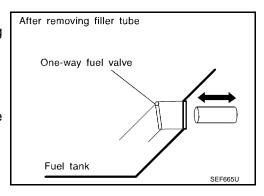
Check one-way valve for clogging.

OK or NG

OK >> GO TO 12.

NG >> Repair or replace one-way fuel valve with fuel tank.

12. CHECK ONE-WAY FUEL VALVE-II


- 1. Make sure that fuel is drained from the tank.
- 2. Remove fuel filler tube and hose.
- Check one-way fuel valve for operation as follows.
 When a stick is inserted, the valve should open, when removing stick it should close.

Do not drop any material into the tank.

OK or NG

OK >> INSPECTION END

NG >> Replace fuel filler tube or replace one-way fuel valve with fuel tank.

UBS0034C

Component Inspection WATER SEPARATOR

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.

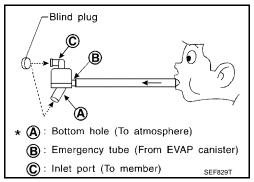
ON BOARD REFUELING VAPOR RECOVERY (ORVR)

[QR]

Α

EC

Е

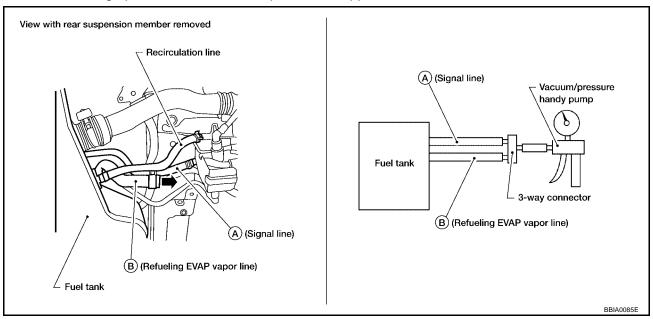

Н

M

- 4. Check that **A** and **C** are not clogged by blowing air into **B** with **A**, and then **C** plugged.
- 5. In case of NG in items 2 4, replace the parts.

NOTE:

Do not disassemble water separator.


REFUELING EVAP VAPOR CUT VALVE

(P) With CONSULT-II

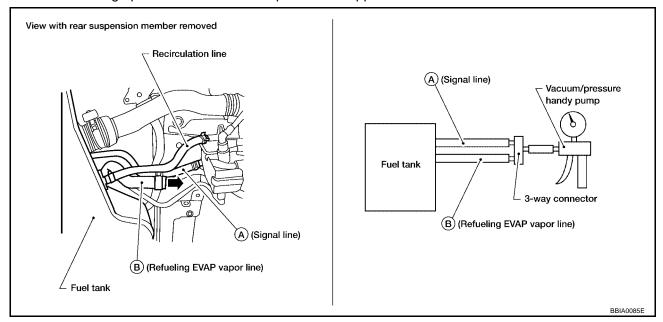
- Remove fuel tank. Refer to <u>FL-8, "FUEL TANK"</u>.
- 2. Drain fuel from the tank as follows:
- a. Remove fuel feed hose located on the fuel gauge retainer.
- Connect a spare fuel hose, one side to fuel gauge retainer where the hose was removed and the other side to a fuel container.
- c. Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-II.
- Check refueling EVAP vapor cut valve for being stuck to close as follows.
 Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [–13.3 kPa (–100 mmHg, –3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

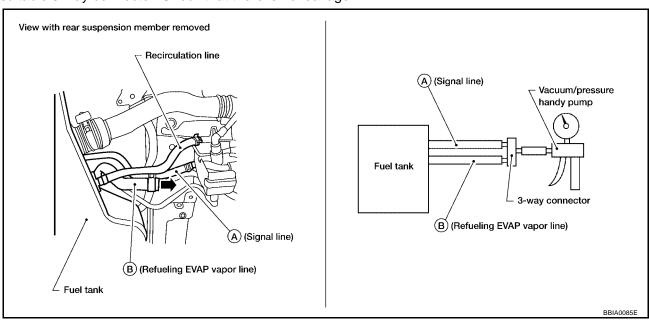
With GST

- 1. Remove fuel tank. Refer to FL-8, "FUEL TANK".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel gauge retainer.
- b. Drain fuel from the tank using a hand pump into a fuel container.
- Check refueling EVAP vapor cut valve for being stuck to close as follows.


Revision: May 2004 EC-623 2002 Altima

Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.

- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- o. Remove fuel gauge retainer with fuel gauge unit.


Always replace O-ring with new one.

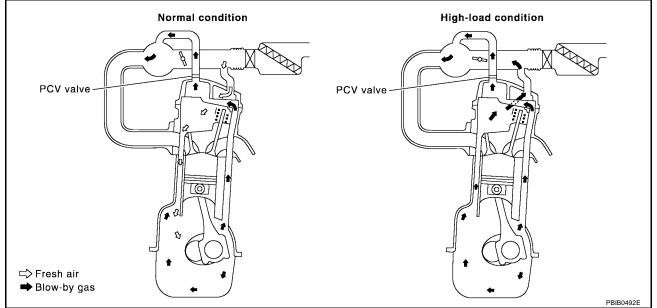
- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [–13.3 kPa (–100 mmHg, –3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

REFUELING CONTROL VALVE

- Remove fuel filler cap.
- Check air continuity between hose ends A and B. Blow air into the hose end B. Air should flow freely into the fuel tank.
- 3. Blow air into hose end A and check there is no leakage.
- Apply pressure to both hose ends A and B [20 kPa (150 mmHg, 5.91 inHg)] using a pressure pump and a suitable 3-way connector. Check that there is no leakage.

[QR]

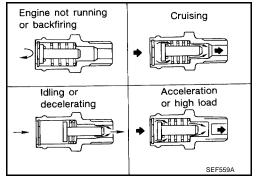
POSITIVE CRANKCASE VENTILATION


PFP:11810

Description SYSTEM DESCRIPTION

UBS0034D

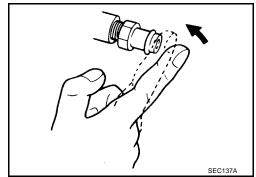
EC


Е

This system returns blow-by gas to the intake manifold.

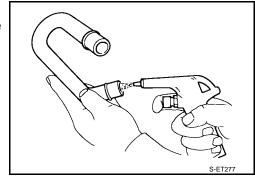
The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake manifold. During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve. Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air. The ventilating air is then drawn from the air inlet tubes into the crankcase. In this process the air passes through the hose connecting air inlet tubes to rocker cover. Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve. The flow goes through the hose connection in the reverse direction.

On vehicles with an excessively high blow-by, the valve does not meet the requirement. This is because some of the flow will go through the hose connection to the air inlet tubes under all conditions.



UBS0034E

M


Component Inspection PCV (POSITIVE CRANKCASE VENTILATION) VALVE

With engine running at idle, remove PCV valve from rocker cover. A properly working valve makes a hissing noise as air passes through it. A strong vacuum should be felt immediately when a finger is placed over valve inlet.

PCV VALVE VENTILATION HOSE

- 1. Check hoses and hose connections for leaks.
- 2. Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

[QR]

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

PFP:18930

System Description INPUT/OUTPUT SIGNAL CHART

UBS0034F

ΞC

Е

Sensor	Input signal to ECM	ECM function	Actuator	
ASCD brake switch	Brake pedal operation			
Stop lamp switch	Brake pedal operation			
ASCD clutch switch (M/T models)	Clutch pedal operation	ASCD vehicle speed control		
ASCD steering switch	ASCD steering switch operation		Electric throttle control	
Park/Neutral position (PNP) switch (A/T models)	Gear position		actuator	
Combination meter	Vehicle speed			
TCM	Powertrain revolution			

BASIC ASCD SYSTEM

Refer to Owner's Manual for ASCD operating instructions.

Automatic Speed Control Device (ASCD) allows a driver to keep vehicle at predetermined constant speed without depressing accelerator pedal. Driver can set vehicle speed in advance between approximately 40 km/h (25 MPH) and 144 km/h (89 MPH).

ECM controls throttle angle of electric throttle control actuator to regulate engine speed.

Operation status of ASCD is indicated by CRUISE indicator and SET indicator in combination meter. If any malfunction occurs in ASCD system, it automatically deactivates control.

SET OPERATION H

Press ASCD CRUISE switch (Main switch). (The CRUISE indicator in combination meter illuminates.) When vehicle speed reaches a desired speed between approximately 40 km/h (25 MPH) and 144 km/h (89 MPH), press SET switch. (Then SET indicator in combination meter illuminates.)

ACCEL OPERATION

If the RESUME/ACCEL switch is depressed during cruise control driving, increase the vehicle speed until the switch is released or vehicle speed reaches maximum speed controlled by the system. And then ASCD will keep the new set speed.

CANCEL OPERATION

When any of following conditions exist, cruise operation will be canceled.

- CANCEL switch is depressed
- Brake pedal is depressed
- Clutch pedal is depressed (M/T models)
- A/T selector lever is shifted to P or N position (A/T models)

If MAIN switch is turned to OFF during ASCD is activated, all of ASCD operations will be canceled and vehicle speed memory will be erased.

COAST OPERATION

When the SET/COAST switch is depressed during cruise control driving, decrease vehicle set speed until the switch is released. And then ASCD will keep the new set speed.

RESUME OPERATION

When the RESUME/ACCEL switch is depressed after cancel operation other than depressing MAIN switch is performed, vehicle speed will return to last set speed. To resume vehicle set speed, vehicle condition must meet following conditions.

- Brake pedal is released.
- Clutch pedal is released (M/T models)
- A/T selector lever is in other than P and N position (A/T models)
- Vehicle speed is greater than 40 km/h (25 MPH) and less than 144 km/h (89 MPH)

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

[QR]

UBS0034G

Component Description ASCD STEERING SWITCH

Refer to EC-525.

ASCD BRAKE SWITCH

Refer to EC-532.

ASCD CLUTCH SWITCH

Refer to EC-532.

STOP LAMP SWITCH

Refer to EC-532.

ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EC-396.

ASCD INDICATOR

Refer to EC-609.

SERVICE DATA AND SPECIFICATIONS (SDS)

[QR]

SERVICE DATA AND SPECIFICATIONS (SDS)

PFP:00030

Fuel Pressure		UBS0034H	
Fuel pressu	re at idle	Approximately 350 kPa (3.7kg/cm ² , 51psi)	
Idle Speed and Ignition	on Timing		UBS0034I
Target idle speed	No-load*1 (in "P" or N" positio	n) 700±50 rpm	
Air conditioner: ON	In "P" or N" position	800 rpm or more	
Ignition timing	In "P" or N" position	15°±5° BTDC	
*1: Under the following conditions:Air conditioner switch: OFFElectric load: OFF (Lights, heate	r fan & rear window defogger)		
 Steering wheel: Kept in straight-a 			
Calculated Load Valu	ıe		UBS0034J
	(Calculated load value % (Using CONSULT-II or G	ST)
At idle		10 - 35	
At 2,500 rpm		10 - 35	
Mass Air Flow Senso	r		UBS0034K
Supply voltage		Battery voltage (11 - 14V)	
Output voltage at idle		1.0 - 1.5*V	
Mass air flow (Using CONSULT-II	or GST)	1.4 - 4.0 g·m/sec at idle* 4.0 - 10.0 g·m/sec at 2,500 rpm*	
*: Engine is warmed up to normal o	perating temperature and running under	no-load.	
Intake Air Temperatu	re Sensor		UBS0034L
Temperature °C (°F)		Resistance k Ω	
25 (77)		1.9 - 2.1	
80 (176)		0.31 - 0.37	
Engine Coolant Temp	perature Sensor		UBS0034M
Temperatur	e °C (°F)	Resistance kΩ	
20 (6	(8)	2.1 - 2.9	
50 (12	22)	0.68 - 1.00	
90 (19	94)	0.236 - 0.260	
Heated Oxygen Sens	or 1 Heater		UBS0034N
Resistance [at 25°C (77°F)]		2.3 - 4.3Ω	
Heated Oxygen sense	or 2 Heater		UBS00340
Resistance [at 25°C (77°F)]		2.3 - 4.3Ω	
Crankshaft Position S	Sensor (POS)		UBS0034P
Refer to EC-288, "Componer	nt Inspection".		
Camshaft Position Sensor (PHASE)			UBS0034Q
Refer to EC-294, "Componer	nt Inspection".		
Throttle Control Moto	or		UBS0034R
Resistance [at 25°C (77°F)]		Approximately 1 - 15Ω	
- \ /*		•	

SERVICE DATA AND SPECIFICATIONS (SDS)

	[QR]
Injector	UBS0034S
Resistance [at 20°C (68°F)]	12.1 - 12.9Ω
Fuel Pump	UBS00347
Resistance [at 25°C (77°F)]	Approximately 1.0Ω

INDEX FOR DTC

[VQ]

INDEX FOR DTC

PFP:00024

Alphabetical Index

UBS0034U

Α

EC

NOTE:

If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <a href="https://example.com/ec/alpha.com/e

	DT	C* ¹		_
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	Reference page	C
Unable to access ECM	_	_	EC-702	_
A/T 1ST GR FNCTN	P0731	0731	<u>AT-124</u>	– D
A/T 2ND GR FNCTN	P0732	0732	<u>AT-129</u>	
A/T 3RD GR FNCTN	P0733	0733	<u>AT-134</u>	Е
A/T 4TH GR FNCTN	P0734	0734	<u>AT-139</u>	_
A/T TCC S/V FNCTN	P0744	0744	<u>AT-151</u>	_
ABSL PRES SEN/CIRC	P0107	0107	EC-802	- F
ABSL PRES SEN/CIRC	P0108	0108	EC-802	_
APP SEN 1/CIRC* ⁵	P0227	0227	EC-920	(-
APP SEN 1/CIRC* ⁵	P0228	0228	EC-932	_
APP SEN 2/CIRC* ⁵	P1227	1227	EC-1131	_ -
APP SEN 2/CIRC* ⁵	P1228	1228	EC-1131	
APP SENSOR* ⁵	P0226	0226	EC-913	_
ASCD BRAKE SW	P1572	1572	EC-1195	_
ASCD SW	P1564	1564	EC-1188	
ASCD VHL SPD SEN	P1574	1574	EC-1206	J
ATF TEMP SEN/CIRC	P0710	0710	<u>AT-109</u>	
BRAKE SW/CIRCUIT	P1805	1805	EC-1219	_
CAN COMM CIRCUIT	U1000	1000* ⁶	EC-761	_ K
CAN COMM CIRCUIT	U1001	1001* ⁶	EC-761	
CKP SEN/CIRCUIT	P0335	0335	EC-936	L
CLOSED LOOP-B1	P1148	1148	EC-1105	
CLOSED LOOP-B2	P1168	1168	EC-1105	
CMP SEN/CIRC-B1	P0340	0340	EC-943	- IV
CMP SEN/CIRC-B2	P0345	0345	EC-943	
CTP LEARNING	P1225	1225	EC-1127	
CTP LEARNING	P1226	1226	EC-1129	
CYL 1 MISFIRE	P0301	0301	EC-926	_
CYL 2 MISFIRE	P0302	0302	EC-926	
CYL 3 MISFIRE	P0303	0303	EC-926	_
CYL 4 MISFIRE	P0304	0304	EC-926	
CYL 5 MISFIRE	P0305	0305	EC-926	_
CYL 6 MISFIRE	P0306	0306	EC-926	•
ECM	P0605	0605	EC-1036	_
ECM BACK UP/CIRC	P1065	1065	EC-1043	_
ECT SEN/CIRCUIT*5	P0117	0117	EC-809	•

	DTC*1		
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	Reference page
ECT SEN/CIRCUIT*5	P0118	0118	EC-809
ECT SENSOR	P0125	0125	EC-814
ENG OVER TEMP	P1217	1217	EC-1109
ENGINE SPEED SIG	P0725	0725	<u>AT-120</u>
ETC ACTR* ⁵	P1121	1121	EC-1053
ETC FUNCTION/CIRC*5	P1122	1122	EC-1055
ETC MOT* ⁵	P1128	1128	EC-1067
ETC MOT PWR	P1124	1124	EC-1062
ETC MOT PWR* ⁵	P1126	1126	EC-1062
EVAP GROSS LEAK	P0455	0455	EC-996
EVAP PURG FLOW/MON	P0441	0441	EC-955
EVAP SMALL LEAK	P0442	0442	EC-961
EVAP SYS PRES SEN	P0452	0452	EC-983
EVAP SYS PRES SEN	P0453	0453	EC-989
EVAP VERY SML LEAK	P0456	0456	EC-1004
EVAP VERY SML LEAK	P1456	1456	EC-1163
FTT SEN/CIRCUIT	P0182	0182	EC-895
FTT SEN/CIRCUIT	P0183	0183	EC-895
FTT SENSOR	P0181	0181	EC-890
FUEL LEV SEN SLOSH	P0460	0460	EC-1013
FUEL LEVEL SEN/CIRC	P1464	1464	EC-1171
FUEL LEVEL SENSOR	P0461	0461	EC-1018
FUEL LEVL SEN/CIRC	P0462	0462	EC-1020
FUEL LEVL SEN/CIRC	P0463	0463	EC-1020
FUEL SYS-LEAN-B1	P0171	0171	EC-875
FUEL SYS-LEAN-B2	P0174	0174	EC-875
FUEL SYS-RICH-B1	P0172	0172	EC-883
FUEL SYS-RICH-B2	P0175	0175	EC-883
HO2S1 (B1)	P0132	0132	EC-825
HO2S1 (B1)	P0133	0133	EC-834
HO2S1 (B1)	P0134	0134	EC-845
HO2S1 (B1)	P1143	1143	EC-1072
HO2S1 (B1)	P1144	1144	EC-1078
HO2S1 (B2) HO2S1 (B2)	P0152 P0153	0152 0153	EC-825
HO2S1 (B2)	P0153	0153	<u>EC-834</u> <u>EC-845</u>
HO2S1 (B2)	P1163	1163	EC-1072
HO2S1 (B2)	P1164	1164	EC-1078
HO2S1 HTR (B1)	P0031	0031	EC-772
HO2S1 HTR (B1)	P0032	0032	EC-772
HO2S1 HTR (B2)	P0051	0051	EC-772
HO2S1 HTR (B2)	P0052	0052	EC-772

	DTO	C*1		
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM*3	Reference page	Α
HO2S2 HTR (B2)	P0057	0057	<u>EC-780</u>	EC
HO2S2 HTR (B2)	P0058	0058	EC-780	
HO2S2 (B1)	P0138	0138	<u>EC-855</u>	
HO2S2 (B1)	P0139	0139	EC-865	С
HO2S2 (B1)	P1146	1146	EC-1085	
HO2S2 (B1)	P1147	1147	EC-1095	_ D
HO2S2 (B2)	P0158	0158	<u>EC-855</u>	
HO2S2 (B2)	P0159	0159	EC-865	
HO2S2 (B2)	P1166	1166	EC-1085	Е
HO2S2 (B2)	P1167	1167	EC-1095	_
HO2S2 HTR (B1)	P0037	0037	<u>EC-780</u>	_
HO2S2 HTR (B1)	P0038	0038	EC-780	– F
IAT SEN/CIRCUIT	P0112	0112	<u>EC-804</u>	_
IAT SEN/CIRCUIT	P0113	0113	<u>EC-804</u>	G
IAT SENSOR	P0127	0127	<u>EC-818</u>	_
INT/V TIM CONT-B1	P0011	0011	<u>EC-764</u>	_
INT/V TIM CONT-B2	P0021	0021	<u>EC-764</u>	– H
ISC SYSTEM	P0506	0506	EC-1027	
ISC SYSTEM	P0507	0507	EC-1029	
KNOCK SEN/CIRC-B1	P0327	0327	EC-932	_ '
KNOCK SEN/CIRC-B1	P0328	0328	EC-932	_
L/PRESS SOL/CIRC	P0745	0745	<u>AT-159</u>	J
MAF SEN/CIRCUIT	P0101	0101	<u>EC-788</u>	_
MAF SEN/CIRCUIT*5	P0102	0102	<u>EC-796</u>	_ K
MAF SEN/CIRCUIT*5	P0103	0103	EC-796	
MAF SENSOR*5	P1102	1102	EC-1047	_
MIL/CIRC	P0650	0650	EC-1039	
MULTI CYL MISFIRE	P0300	0300	EC-926	
NATS MALFUNCTION	P1610 - P1615	1610 - 1615	EC-688	
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	No DTC	Flashing* ⁴	EC-689	_
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	0000	_	_
O/R CLTCH SOL/CIRC	P1760	1760	<u>AT-180</u>	
P-N POS SW/CIRCUIT	P1706	1706	EC-1208	
PNP SW/CIRC	P0705	0705	<u>AT-103</u>	
PURG VOLUME CONT/V	P0444	0444	EC-970	_
PURG VOLUME CONT/V	P0445	0445	EC-970	_
PURG VOLUME CONT/V	P1444	1444	EC-1141	
PW ST P SEN/CIRC	P0550	0550	EC-1031	_
SENSOR POWER/CIRC*5	P1229	1229	EC-1137	_

	DT	C* ¹	
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	Reference page
SFT SOL A/CIRC	P0750	0750	<u>AT-165</u>
SFT SOL B/CIRC	P0755	0755	<u>AT-170</u>
TCC SOLENOID/CIRC	P0740	0740	<u>AT-146</u>
TCS C/U FUNCTN	P1211	1211	EC-1107
TCS/CIRC	P1212	1212	EC-1108
THERMSTAT FNCTN	P0128	0128	EC-823
TP SEN 1/CIRC*5	P0222	0222	EC-906
TP SEN 1/CIRC*5	P0223	0223	EC-906
TP SEN 2/CIRC* ⁵	P1223	1223	EC-1120
TP SEN 2/CIRC*5	P1224	1224	EC-1120
TP SENSOR* ⁵	P0221	0221	EC-899
TPV SEN/CIRC A/T	P1705	1705	<u>AT-175</u>
TW CATALYST SYS-B1	P0420	0420	EC-951
TW CATALYST SYS-B2	P0430	0430	EC-951
VC CUT/V BYPASS/V	P1491	1491	EC-1180
VC/V BYPASS/V	P1490	1490	EC-1174
VEH SPD SEN/CIR AT* ⁷	P0720	0720	<u>AT-115</u>
VEH SPEED SEN/CIRC*7	P0500	0500	EC-1025
VENT CONTROL VALVE	P0447	0447	EC-976
VENT CONTROL VALVE	P1446	1446	EC-1149
VENT CONTROL VALVE	P1448	1448	EC-1155
VIAS S/V CIRC	P1800	1800	EC-1213

^{*1: 1}st trip DTC No. is the same as DTC No.

NOTE

Regarding L31 models, "B1" indicates bank 1, "B2" indicates bank 2.

DTC No. Index

NOTE:

If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-761, "DTC U1000, U1001 CAN COMMUNICATION LINE".

DT	'C* ¹	Itomo	
CONSULT-II GST* ²	ECM* ³	ltems (CONSULT-II screen terms)	Reference page
_	_	Unable to access ECM	EC-702
No DTC	Flashing* ⁴	NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	EC-689
U1000	1000* ⁶	CAN COMM CIRCUIT	EC-761
U1001	1001* ⁶	CAN COMM CIRCUIT	EC-761

^{*2:} These numbers are prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), these numbers are controlled by NISSAN.

^{*4:} When engine is running.

^{*5:} When the fail-safe operation occurs, the MIL illuminates.

^{*6:} The troubleshooting for this DTC needs CONSULT-II.

^{*7:} When the fail-safe operations for both self-diagnoses occur, the MIL illuminates.

DTC	·*1	Itama		Δ
CONSULT-II GST* ²	ECM*3	Items (CONSULT-II screen terms)	Reference page	F
P0000	0000	NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	_	E
P0011	0011	INT/V TIM CONT-B1	<u>EC-764</u>	
P0021	0021	INT/V TIM CONT-B2	EC-764	
P0031	0031	HO2S1 HTR (B1)	EC-772	
P0032	0032	HO2S1 HTR (B1)	EC-772	
P0037	0037	HO2S2 HTR (B1)	EC-780	
P0038	0038	HO2S2 HTR (B1)	EC-780	
P0051	0051	HO2S1 HTR (B2)	EC-772	Е
P0052	0052	HO2S1 HTR (B2)	EC-772	
P0057	0057	HO2S2 HTR (B2)	EC-780	F
P0058	0058	HO2S2 HTR (B2)	EC-780	
P0101	0101	MAF SEN/CIRCUIT	EC-788	
P0102	0102	MAF SEN/CIRCUIT*5	EC-796	(
P0103	0103	MAF SEN/CIRCUIT*5	<u>EC-796</u>	
P0107	0107	ABSL PRES SEN/CIRC	EC-802	ŀ
P0108	0108	ABSL PRES SEN/CIRC	EC-802	
P0112	0112	IAT SEN/CIRCUIT	EC-804	
P0113	0113	IAT SEN/CIRCUIT	EC-804	
P0117	0117	ECT SEN/CIRCUIT*5	EC-809	
P0118	0118	ECT SEN/CIRCUIT*5	EC-809	,
P0125	0125	ECT SENSOR	EC-814	
P0127	0127	IAT SENSOR	EC-818	ŀ
P0128	0128	THERMSTAT FNCTN	EC-823	ı
P0132	0132	HO2S1 (B1)	EC-825	
P0133	0133	HO2S1 (B1)	EC-834	Į.
P0134	0134	HO2S1 (B1)	EC-845	
P0138	0138	HO2S2 (B1)	EC-855	IV.
P0139	0139	HO2S2 (B1)	EC-865	Ν
P0152	0152	HO2S1 (B2)	EC-825	
P0153	0153	HO2S1 (B2)	EC-834	
P0154	0154	HO2S1 (B2)	EC-845	
P0158	0158	HO2S2 (B2)	<u>EC-855</u>	
P0159	0159	HO2S2 (B2)	<u>EC-865</u>	
P0171	0171	FUEL SYS-LEAN-B1	EC-875	
P0172	0172	FUEL SYS-RICH-B1	EC-883	
P0174	0174	FUEL SYS-LEAN-B2	EC-875	
P0175	0175	FUEL SYS-RICH-B2	EC-883	
P0181	0181	FTT SENSOR	EC-890	
P0182	0182	FTT SEN/CIRCUIT	EC-895	
P0183	0183	FTT SEN/CIRCUIT	EC-895	

DTC	*1		
CONSULT-II GST* ²	ECM*3	Items (CONSULT-II screen terms)	Reference page
P0221	0221	TP SENSOR* ⁵	EC-899
P0222	0222	TP SEN 1/CIRC*5	EC-906
P0223	0223	TP SEN 1/CIRC*5	EC-906
P0226	0226	APP SENSOR*5	EC-913
P0227	0227	APP SEN 1/CIRC* ⁵	<u>EC-920</u>
P0228	0228	APP SEN 1/CIRC* ⁵	EC-920
P0300	0300	MULTI CYL MISFIRE	EC-926
P0301	0301	CYL 1 MISFIRE	<u>EC-926</u>
P0302	0302	CYL 2 MISFIRE	EC-926
P0303	0303	CYL 3 MISFIRE	EC-926
P0304	0304	CYL 4 MISFIRE	EC-926
P0305	0305	CYL 5 MISFIRE	EC-926
P0306	0306	CYL 6 MISFIRE	EC-926
P0327	0327	KNOCK SEN/CIRC-B1	EC-932
P0328	0328	KNOCK SEN/CIRC-B1	EC-932
P0335	0335	CKP SEN/CIRCUIT	EC-936
P0340	0340	CMP SEN/CIRC-B1	<u>EC-943</u>
P0345	0345	CMP SEN/CIRC-B2	<u>EC-943</u>
P0420	0420	TW CATALYST SYS-B1	EC-951
P0430	0430	TW CATALYST SYS-B2	EC-951
P0441	0441	EVAP PURG FLOW/MON	EC-955
P0442	0442	EVAP SMALL LEAK	EC-961
P0444	0444	PURG VOLUME CONT/V	EC-970
P0445	0445	PURG VOLUME CONT/V	EC-970
P0447	0447	VENT CONTROL VALVE	EC-976
P0452	0452	EVAP SYS PRES SEN	EC-983
P0453	0453	EVAP SYS PRES SEN	EC-989
P0455	0455	EVAP GROSS LEAK	EC-996
P0456	0456	EVAP VERY SML LEAK	EC-1004
P0460	0460	FUEL LEV SEN SLOSH	EC-1013
P0461	0461	FUEL LEVEL SENSOR	EC-1018
P0462	0462	FUEL LEVL SEN/CIRC	EC-1020
P0463	0463	FUEL LEVL SEN/CIRC	EC-1020
P0500	0500	VEH SPEED SEN/CIRC* ⁷	EC-1025
P0506	0506	ISC SYSTEM	EC-1027
P0507	0507	ISC SYSTEM	EC-1029
P0550	0550	PW ST P SEN/CIRC	EC-1031
P0605	0605	ECM	EC-1036
P0650	0650	MIL/CIRC	EC-1039
P0705	0705	PNP SW/CIRC	AT-103
P0710	0710	ATF TEMP SEN/CIRC	AT-109

INDEX FOR DTC

[VQ]

DTC*	1	Items	
CONSULT-II GST* ²	ECM*3	(CONSULT-II screen terms)	Reference page
P0720	0720	VEH SPD SEN/CIR AT* ⁷	<u>AT-115</u>
P0725	0725	ENGINE SPEED SIG	<u>AT-120</u>
P0731	0731	A/T 1ST GR FNCTN	<u>AT-124</u>
P0732	0732	A/T 2ND GR FNCTN	<u>AT-129</u>
P0733	0733	A/T 3RD GR FNCTN	<u>AT-134</u>
P0734	0734	A/T 4TH GR FNCTN	<u>AT-139</u>
P0740	0740	TCC SOLENOID/CIRC	<u>AT-146</u>
P0744	0744	A/T TCC S/V FNCTN	<u>AT-151</u>
P0745	0745	L/PRESS SOL/CIRC	<u>AT-159</u>
P0750	0750	SFT SOL A/CIRC	<u>AT-165</u>
P0755	0755	SFT SOL B/CIRC	<u>AT-170</u>
P1065	1065	ECM BACK UP/CIRC	EC-1043
P1102	1102	MAF SENSOR*5	EC-1047
P1121	1121	ETC ACTR* ⁵	EC-1053
P1122	1122	ETC FUNCTION/CIRC*5	EC-1055
P1124	1124	ETC MOT PWR	EC-1062
P1126	1126	ETC MOT PWR*5	EC-1062
P1128	1128	ETC MOT*5	EC-1067
P1143	1143	HO2S1 (B1)	EC-1072
P1144	1144	HO2S1 (B1)	EC-1078
P1146	1146	HO2S2 (B1)	EC-1085
P1147	1147	HO2S2 (B1)	EC-1095
P1148	1148	CLOSED LOOP-B1	EC-1105
P1163	1163	HO2S1 (B2)	EC-1072
P1164	1164	HO2S1 (B2)	EC-1078
P1166	1166	HO2S2 (B2)	EC-1085
P1167	1167	HO2S2 (B2)	EC-1095
P1168	1168	CLOSED LOOP-B2	<u>EC-1105</u>
P1211	1211	TCS C/U FUNCTN	EC-1107
P1212	1212	TCS/CIRC	EC-1108
P1217	1217	ENG OVER TEMP	EC-1109
P1223	1223	TP SEN 2/CIRC*5	EC-1120
P1224	1224	TP SEN 2/CIRC* ⁵	EC-1120
P1225	1225	CTP LEARNING	EC-1127
P1226	1226	CTP LEARNING	EC-1129
P1227	1227	APP SEN 2/CIRC* ⁵	EC-1131
P1228	1228	APP SEN 2/CIRC*5	EC-1131
P1229	1229	SENSOR POWER/CIRC*5	EC-1137
P1444	1444	PURG VOLUME CONT/V	EC-1141
P1448	1448	VENT CONTROL VALVE	EC-1155
P1446	1446	VENT CONTROL VALVE	EC-1149

DT	C*1	ltems		
CONSULT-II GST* ²	ECM*3	(CONSULT-II screen terms)	Reference page	
P1456	1456	EVAP VERY SML LEAK	EC-1163	
P1464	1464	FUEL LEVEL SEN/CIRC	EC-1171	
P1490	1490	VC/V BYPASS/V	EC-1174	
P1491	1491	VC CUT/V BYPASS/V	EC-1180	
P1564	1564	ASCD SW	EC-1188	
P1572	1572	ASCD BRAKE SW	EC-1195	
P1574	1574	ASCD VHL SPD SEN	EC-1206	
P1610 - P1615	1610 - 1615	NATS MALFUNCTION	EC-688	
P1705	1705	TPV SEN/CIRC A/T	<u>AT-175</u>	
P1706	1706	P-N POS SW/CIRCUIT	EC-1208	
P1760	1760	O/R CLTCH SOL/CIRC	<u>AT-180</u>	
P1800	1800	VIAS S/V CIRC	EC-1213	
P1805	1805	BRAKE SW/CIRCUIT	EC-1219	

^{*1: 1}st trip DTC No. is the same as DTC No.

NOTE:

Regarding L31 models, "B1" indicates bank 1, "B2" indicates bank 2.

^{*2:} These numbers are prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), these numbers are controlled by NISSAN.

^{*4:} When engine is running.

^{*5:} When the fail-safe operation occurs, the MIL illuminates.

^{*6:} The troubleshooting for this DTC needs CONSULT-II.

^{*7:} When the fail-safe operations for both self-diagnoses occur, the MIL illuminates.

[VQ]

PRECAUTIONS PFP:00001

Precautions for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT **BELT PRE-TENSIONER"**

The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. Information necessary to service the system safely is included in the SRS and SB section of this Service Manual.

EC

WARNING:

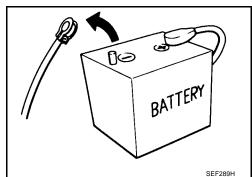
To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN/INFINITI dealer.

Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the SRS section.

Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or

harness connectors.

On Board Diagnostic (OBD) System of Engine and A/T

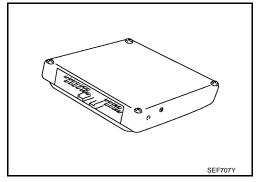

The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the driver of a malfunction causing emission deterioration.

CAUTION:

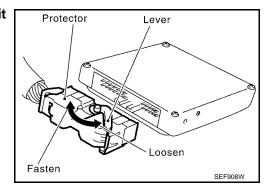
- Be sure to turn the ignition switch OFF and disconnect the negative battery terminal before any repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves, etc. will cause the MIL to light up.
- Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease, dirt, bent terminals, etc.)
- Certain systems and components, especially those related to OBD, may use a new style slidelocking type harness connector. For description and how to disconnect, refer to PG-64, "HAR-**NESS CONNECTOR".**
- Be sure to route and secure the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MIL to light up due to the short circuit.
- Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube may cause the MIL to light up due to the malfunction of the EVAP system or fuel injection system, etc.
- Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and TCM (Transmission control module) before returning the vehicle to the customer.

Precaution UBS0034Y

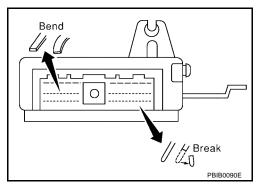
- Always use a 12 volt battery as power source.
- Do not attempt to disconnect battery cables while engine is runnina.
- Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect negative battery terminal. Failure to do so may damage the ECM because battery voltage is applied to ECM even if ignition switch is turned off.
- Before removing parts, turn ignition switch OFF and then disconnect battery ground cable.

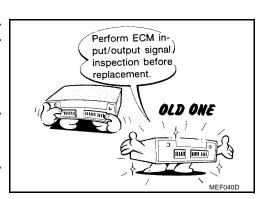

EC-639 Revision: May 2004 2002 Altima

D

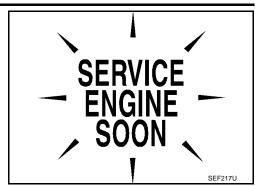

M

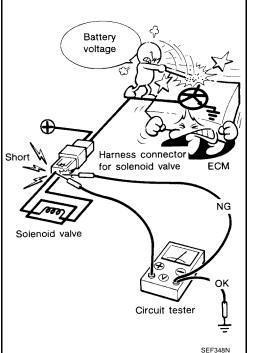
- Do not disassemble ECM.
- If a battery terminal is disconnected, the memory will return to the ECM value.


The ECM will now start to self-control at its initial value. Engine operation can vary slightly when the terminal is disconnected. However, this is not an indication of a problem. Do not replace parts because of a slight variation.

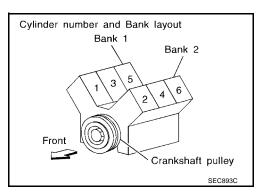


 When connecting ECM harness connector, fasten it securely with a lever as far as it will go as shown at right.


- When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).
 - Make sure that there are not any bends or breaks on ECM pin terminal, when connecting pin connectors.
- Securely connect ECM harness connectors.
 A poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs.
- Keep engine control system harness at least 10 cm (4 in) away from adjacent harness, to prevent engine control system malfunctions due to receiving external noise, degraded operation of ICs, etc.
- Keep engine control system parts and harness dry.
- Before replacing ECM, perform "ECM Terminals and Reference Value" inspection and make sure ECM functions properly. Refer to <u>EC-721</u>.
- Handle mass air flow sensor carefully to avoid damage.
- Do not disassemble mass air flow sensor.
- Do not clean mass air flow sensor with any type of detergent.
- Do not disassemble electric throttle control actuator.
- Even a slight leak in the air intake system can cause serious problems.
- Do not shock or jar the camshaft position sensor (PHASE), crankshaft position sensor (POS).



 After performing each TROUBLE DIAGNOSIS, perform "DTC Confirmation Procedure" or "Overall Function Check".


The DTC should not be displayed in the "DTC Confirmation Procedure" if the repair is completed. The "Overall Function Check" should be a good result if the repair is completed.

- When measuring ECM signals with a circuit tester, never allow the two tester probes to contact.
 Accidental contact of probes will cause a short circuit and damage the ECM power transistor.
- Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

Regarding model L31, "B1" indicates the bank 1, "B2" indicates the bank 2 as shown in the figure.

Revision: May 2004 EC-641 2002 Altima

EC

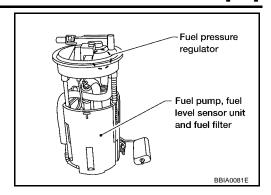
Α

D

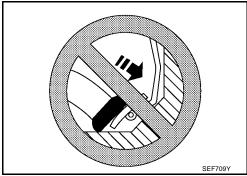
Е

0

Н


I

K

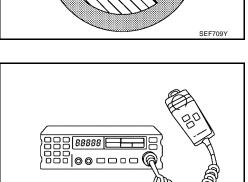

L

M

- Do not operate fuel pump when there is no fuel in lines.
- Tighten fuel hose clamps to the specified torque.

- Do not depress accelerator pedal when starting.
- Immediately after starting, do not rev up engine unnecessarily.
- Do not rev up engine just prior to shutdown.

- When installing C.B. ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on installation location.
- Keep the antenna as far as possible from the electronic control units.
- Keep the antenna feeder line more than 20 cm (8 in) away from the harness of electronic controls.
 Do not let them run parallel for a long distance.
- Adjust the antenna and feeder line so that the standingwave radio can be kept smaller.
- Be sure to ground the radio to vehicle body.


Wiring Diagrams and Trouble Diagnosis

When you read wiring diagrams, refer to the following:

- GI-12, "How to Read Wiring Diagrams"
- PG-3, "POWER SUPPLY ROUTING CIRCUIT" for power distribution circuit

When you perform trouble diagnosis, refer to the following:

- GI-10, "HOW TO FOLLOW TEST GROUPS IN TROUBLE DIAGNOSES"
- GI-25, "How to Perform Efficient Diagnosis for an Electrical Incident"

UBS0034Z

SEF708Y

PREPARATION

[VQ]

PREPARATION PFP:00002

Special Service Tools

UBS00350

The actual shapes of Kent-Moore tools may differ from those of special service tools illustrated here.

Tool number Tool name	Description	
KV10117100 Heated oxygen sensor wrench	S-NT379	Loosening or tightening heated oxygen sensors with 22 mm (0.87 in) hexagon nut
KV10114400 Heated oxygen sensor wrench	a a	Loosening or tightening heated oxygen sensors a: 22 mm (0.87 in)
	S-NT636	
Fuel pressure gauge kit (J44321)	LEC642	Checking fuel pressure
Fuel filler cap adapter (J45356)		Checking fuel tank vacuum relief valve opening pressure
	S-NT815	

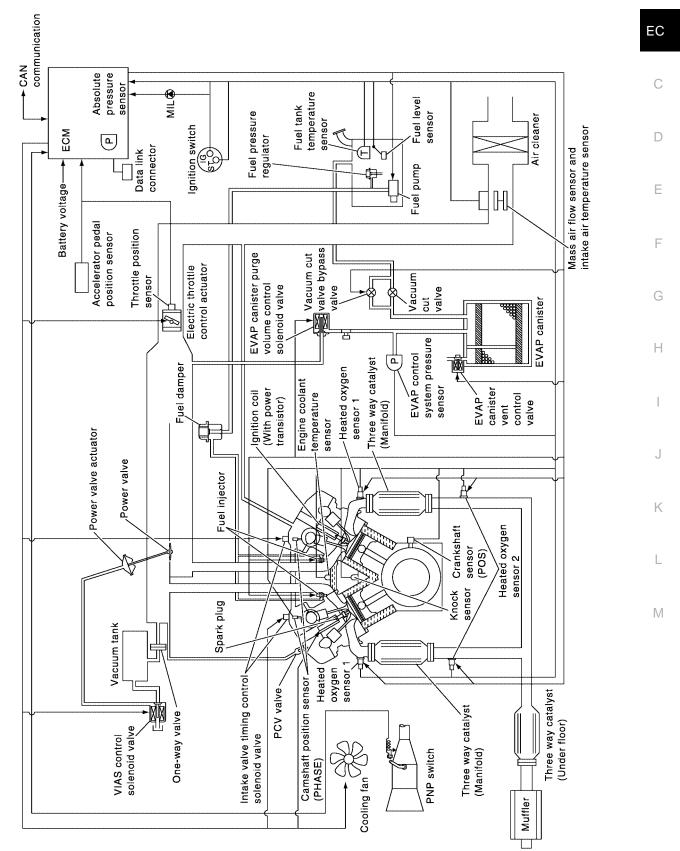
Commercial Service Tools

UBS00351

M

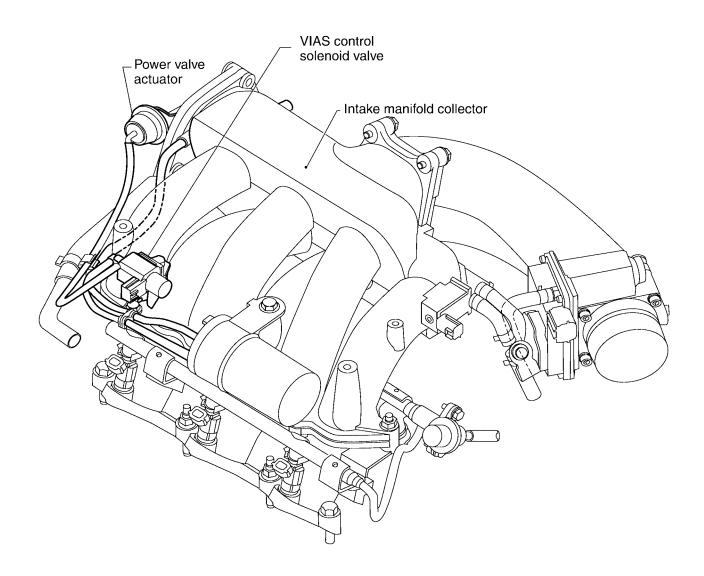
Tool name (Kent-Moore No.)	Description	
Quick connector re- lease		Removing fuel tube quick connectors in engine room (Available in SEC. 164 of PARTS CATALOG: Part No. 16441 6N210)
Leak detector i.e.: (J41416)	PBIC0198E	Locating the EVAP leak
	S-NT703	

		[۷۷]
Tool name (Kent-Moore No.)	Description	
EVAP service port adapter i.e.: (J41413-OBD)	S-NT704	Applying positive pressure through EVAP service port
Socket wrench	19 mm (0.75 in) More than 32 mm (1.26 in)	Removing and installing engine coolant temperature sensor
Oxygen sensor thread cleaner	a Mating surface shave cylinder	Reconditioning the exhaust system threads before installing a new oxygen sensor. Use with antiseize lubricant shown below. a: 18 mm diameter with pitch 1.5 mm for Zirconia Oxygen Sensor b: 12 mm diameter with pitch 1.25 mm for Titania Oxygen Sensor
Anti-seize lubricant i.e.: (Permatex TM 133AR or equivalent meeting MIL specification MIL-A-907)	S-NT779	Lubricating oxygen sensor thread cleaning tool when reconditioning exhaust system threads.


ENGINE CONTROL SYSTEM

System Diagram

PFP:23710


UBS00352

Α

Vacuum Hose Drawing

UBS00353

BBIA0055E

ENGINE CONTROL SYSTEM

[VQ]

System Chart Input (Sensor) **ECM Function** Output (Actuator) Camshaft position sensor (PHASE) Fuel injection & mixture ratio control Fuel injectors Crankshaft position sensor (POS) Power transistor Electronic ignition system Mass air flow sensor Fuel pump control Fuel pump relay*4 • Engine coolant temperature sensor ASCD vehicle speed control Electric throttle control actuator Heated oxygen sensor 1 On board diagnostic system MIL (On the instrument panel) • Throttle position sensor Power valve control VIAS control solenoid valve Accelerator pedal position sensor • Park/neutral position (PNP) switch Heated oxygen sensor 1 heater control Heated oxygen sensor 1 heater Intake air temperature sensor Heated oxygen sensor 2 heater control Heated oxygen sensor 2 heater • Absolute pressure sensor EVAP canister purge volume control EVAP canister purge flow control • Power steering pressure sensor solenoid valve · Ignition switch Air conditioning cut control Air conditioner relay*4 Battery voltage Cooling fan control Cooling fan relays*4 Knock sensor • Refrigerant pressure sensor Stop lamp switch · ASCD steering switch ASCD brake switch ASCD clutch switch Fuel level sensor*1 EVAP control system pressure sensor*1 • EVAP canister vent control valve ON BOARD DIAGNOSIS for EVAP system Vacuum cut valve bypass valve Fuel tank temperature sensor*1 Heated oxygen sensor 2 *2 • TCM (Transmission control module) *3 ABS actuator and electric unit (control unit) *3 • Air conditioner switch*3 Vehicle speed sensor*3 Electrical load signal*3

M

Revision: May 2004 EC-647 2002 Altima

EC

Е

G

П

^{*1:} These sensors are not used to control the engine system. They are used only for the on board diagnosis.

^{*2:} This sensor is not used to control the engine system under normal conditions.

^{*3:} The signals are sent to the ECM through CAN communication line.

^{*4:} These relays are built into IPDM E/R.

Multiport Fuel Injection (MFI) System INPUT/OUTPUT SIGNAL CHART

UBS00355

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS)	Engine speed	Fuel injection & mixture ratio Fuel injector	
Camshaft position sensor (PHASE)	Piston position		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Heated oxygen sensor 1	Density of oxygen in exhaust gas		
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Accelerator pedal position		
Park/neutral position (PNP) switch	Gear position		Fuel inicators
Ignition switch	Start signal		Fuel injectors
Knock sensor	Engine knocking condition		
Battery	Battery voltage		
Power steering pressure sensor	Power steering operation		
Heated oxygen sensor 2 *1	Density of oxygen in exhaust gas		
ABS actuator and electric unit (control unit) *2	ABS/TCS operation command		
Air conditioner switch*2	Air conditioner operation		
Vehicle speed sensor*2	Vehicle speed		

^{*1:} Under normal conditions, this sensor is not for engine control operation.

SYSTEM DESCRIPTION

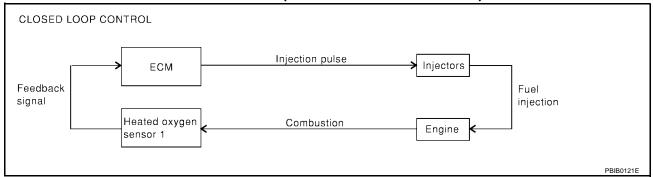
The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from both the crankshaft position sensor and the mass air flow sensor.

VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION

In addition, the amount of fuel injected is compensated to improve engine performance under various operating conditions as listed below.

<Fuel increase>

- During warm-up
- When starting the engine
- During acceleration
- Hot-engine operation
- When selector lever is changed from "N" to "D"
- High-load, high-speed operation


<Fuel decrease>

- During deceleration
- During high engine speed operation

^{*2:} Signals are sent to the ECM through CAN communication line.

[VQ]

MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The three way catalyst (manifold) can then better reduce CO, HC and NOx emissions. This system uses heated oxygen sensor 1 in the exhaust manifold to monitor if the engine operation is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about heated oxygen sensor 1, refer to EC-825. This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition.

Heated oxygen sensor 2 is located downstream of the three way catalyst (manifold). Even if the switching characteristics of heated oxygen sensor 1 shift, the air-fuel ratio is controlled to stoichiometric by the signal from heated oxygen sensor 2.

Open Loop Control

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

- Deceleration and acceleration
- High-load, high-speed operation
- Malfunction of heated oxygen sensor 1 or its circuit
- Insufficient activation of heated oxygen sensor 1 at low engine coolant temperature
- High engine coolant temperature
- During warm-up
- After shifting from "N" to "D"
- When starting the engine

MIXTURE RATIO SELF-LEARNING CONTROL

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from heated oxygen sensor 1. This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both manufacturing differences (i.e., mass air flow sensor hot film) and characteristic changes during operation (i.e., injector clogging) directly affect mixture ratio.

Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.

"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short term fuel trim and long term fuel trim.

"Short term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from heated oxygen sensor 1 indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean.

"Long term fuel trim" is overall fuel compensation carried out long-term to compensate for continual deviation of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences, wear over time and changes in the usage environment.

Revision: May 2004 EC-649 2002 Altima

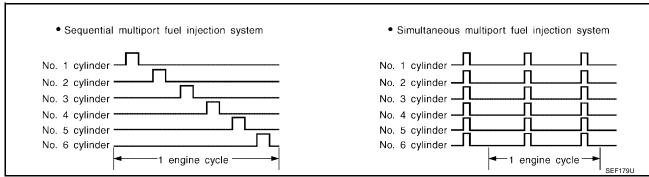
EC

Α

D

F

G


Н

.

Κ

M

FUEL INJECTION TIMING

Two types of systems are used.

Sequential Multiport Fuel Injection System

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

Simultaneous Multiport Fuel Injection System

Fuel is injected simultaneously into all six cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.

The six injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

FUEL SHUT-OFF

Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.

Electronic Ignition (EI) System INPUT/OUTPUT SIGNAL CHART

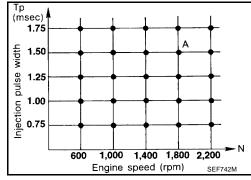
UBS00356

Sensor	Input Signal to ECM	ECM function	Actuator	
Crankshaft position sensor (POS)	Engine speed			
Camshaft position sensor (PHASE)	Piston position			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Throttle position sensor	Throttle position			
Accelerator pedal position sensor	Accelerator pedal position	Ignition timing control	Power transistor	
Ignition switch	Start signal			
Knock sensor	Engine knocking			
Park/neutral position (PNP) switch	Gear position			
Battery	Battery voltage			
Vehicle speed sensor*1	Vehicle speed			

^{*1:} Signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

The ignition timing is controlled by the ECM to maintain the best airfuel ratio for every running condition of the engine. The ignition timing data is stored in the ECM. This data forms the map shown.


The ECM receives information such as the injection pulse width and camshaft position sensor signal. Computing this information, ignition signals are transmitted to the power transistor.

e.g., N: 1,800 rpm, Tp: 1.50 msec

A BTDC

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.

- At starting
- During warm-up

ENGINE CONTROL SYSTEM

[VQ]

- At idle
- At low battery voltage
- During acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

EC

D

Е

Α

Air Conditioning Cut Control INPUT/OUTPUT SIGNAL CHART

JB	S0	0.3	
טט	OU	00	

Sensor	Sensor Input Signal to ECM		Actuator
Air conditioner switch*1	Air conditioner "ON" signal		
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Accelerator pedal position		
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed	Air conditioner	
Engine coolant temperature sensor	Engine coolant temperature	cut control	Air conditioner relay
Ignition switch	Start signal		
Refrigerant pressure sensor	Refrigerant pressure		
Power steering pressure sensor	Power steering operation		
Vehicle speed sensor*1	Vehicle speed		

^{*1:} Signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

This system improves engine operation when the air conditioner is used. Under the following conditions, the air conditioner is turned off.

- When the accelerator pedal is fully depressed.
- When cranking the engine.
- At high engine speeds.
- When the engine coolant temperature becomes excessively high.
- When operating power steering during low engine speed or low vehicle speed.
- When engine speed is excessively low.
- When refrigerant pressure is excessively low or high.

Fuel Cut Control (at No Load and High Engine Speed) INPUT/OUTPUT SIGNAL CHART

UBS00358

M

Sensor	Input Signal to ECM	ECM function	Actuator
Park/neutral position (PNP) switch	Neutral position		
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Accelerator pedal position	Fuel cut con-	
Engine coolant temperature sensor	Engine coolant temperature	trol	Fuel injectors
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed		
Vehicle speed sensor*1	Vehicle speed		

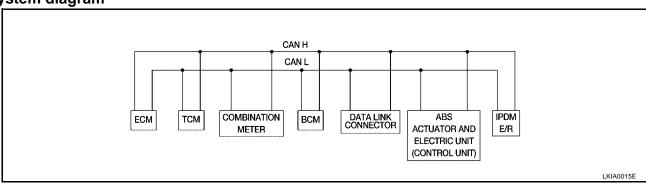
^{*1:} Signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

If the engine speed is above 1,800 rpm with no load (for example, in neutral and engine speed over 1,800 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed. Fuel cut will operate until the engine speed reaches 1,500 rpm, then fuel cut is cancelled.

NOTE:

This function is different from deceleration control listed under "Multiport Fuel Injection (MFI) System", <u>EC-648</u>


CAN communication SYSTEM DESCRIPTION

UBS00359

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

FOR MODELS WITH TCS

System diagram

Input/output signal chart

T: Transmit R: Receive

Signals	ECM	ТСМ	COMBINA- TION METER	ВСМ	ABS/TCS control unit	IPDM E/R
Engine speed signal	T	R	R			R
Engine coolant temperature signal	Т	R	R			
Accelerator pedal position signal	Т	R				
Fuel consumption monitor signal	Т		R			
A/T warning lamp signal		Т	R			
A/T position indicator signal	R	Т	R	R ^(R range only)	R	
ABS operation signal	R				Ţ	
TCS operation signal	R				Т	
Air conditioner switch signal	R			Т		
Air conditioner compressor signal	R					Т
A/C compressor request signal	Т					R
Cooling fan motor operation signal	R					Т
Cooling Fan Speed Request signal	Т					R
Position Lights Request			R	Т		R
Position Lights Status				R		Т
Low Beam Request				Т		R
Low Beam Status	R			R		Т
High Beam Request			R	Т		R
High Beam Status	R			R		Т
Front Fog Lights Request				Т		R
Front Fog Light Status				R		Т
OD cancel switch signal		R	Т			R

[VQ]

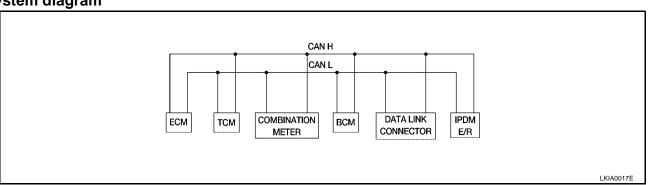
Α

EC

С

D

Е


Н

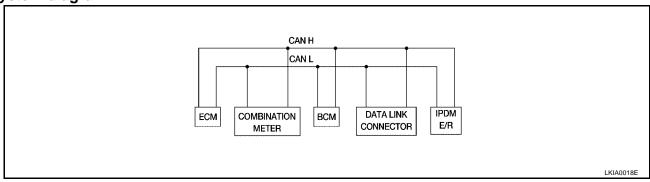
M

						[. 4
Signals	ECM	ТСМ	COMBINA- TION METER	всм	ABS/TCS control unit	IPDM E/R
Brake switch signal		R	Т			
	R		Т			
Vehicle speed signal	R		Т	R		
Oil Pressure Switch			R			Т
Sleep Request1			R	T		
Sleep Request2				T		R
N range switch signal		R	Т			
P range switch signal		R	Т			
Seat belt buckle switch signal			Т	R		
Door switch signal			R	Т		R
Tail lamp request			R	Т		R
Turn indicator signal			R	Т		
Buzzer output signal			R	Т		
Trunk switch signal			R	Т		
ASCD main switch signal	Т		R			
ASCD cruise signal	Т		R			
Wiper operation				R		Т
Wiper stop position signal				R		Т
Rear window defogger switch signal				T		R
Rear window defogger control signal	R					Т

FOR A/T MODELS WITHOUT TCS

System diagram

Input/output signal chart


T: Transmit R: Receive

Signals	ECM	TCM	COMBINATION METER	ВСМ	IPDM E/R
Engine speed signal	Т	R	R		R
Engine coolant temperature signal	Т	R	R		
Accelerator pedal position signal	Т	R			R
Fuel consumption monitor signal	Т		R		
A/T warning lamp signal		Т	R		
A/T position indicator signal	R	Т	R	R ^(R range only)	
Air conditioner switch signal	R			Т	
Air conditioner compressor signal	R				Т

Signals	ECM	ТСМ	COMBINATION METER	ВСМ	IPDM E/R
A/C compressor request signal	Т				R
Blower fan switch signal	R ^(QR25DE)			Т	
Cooling fan motor operation signal	R			Т	
Cooling Fan Speed Request signal	Т				R
Position Lights Request			R	Т	R
Position Lights Status				R	Т
Low Beam Request				Т	R
Low Beam Status	R			R	Т
High Beam Request			R	Т	R
High Beam Status	R			R	Т
Front Fog Lights Request				Т	R
Front Fog Light Status				R	Т
OD cancel switch signal		R	Т		R
Brake switch signal		R	Т		
	R		Т		
Vehicle speed signal	R		Т	R	
Oil Pressure Switch			R		Т
Sleep Request1			R	Т	
Sleep Request2				Т	R
N range switch signal		R	Т		
P range switch signal		R	Т		
Seat belt buckle switch signal			Т	R	
Door switch signal			R	Т	R
Tail lamp request			R	Т	R
Turn indicator signal			R	Т	
Buzzer output signal			R	Т	
Trunk switch signal			R	T	
ASCD main switch signal	Т		R		
ASCD cruise signal	Т		R		
Wiper operation				R	Т
Wiper stop position signal				R	Т
Rear window defogger switch signal				Т	R
Rear window defogger control signal	R				Т

FOR M/T MODELS WITHOUT TCS

System diagram

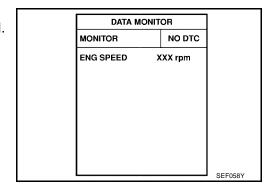
ENGINE CONTROL SYSTEM

[VQ]

T: Transmit R: Receive

Input/output signal chart

Signals	ECM	COMBINATION METER	BCM	IPDM E/R	
Engine speed signal	Т	R		R	E
Engine coolant temperature signal	Т	R			_
Fuel consumption monitor signal	Т	R			_
Air conditioner switch signal	R		Т		_ (
Air conditioner compressor signal	R			Т	_
A/C compressor request signal	Т			R	_ [
Blower fan switch signal	R ^(QR25DE)		Т		
Cooling fan motor operation signal	R			Т	_
Cooling Fan Speed Request signal	Т			R	- E
Position Lights Request		R	Т	R	_
Position Lights Status			R	Т	F
Low Beam Request			Т	R	_
Low Beam Status	R		R	Т	_
High Beam Request		R	Т	R	_ (
High Beam Status	R		R	Т	_
Front Fog Lights Request			Т	R	_ -
Front Fog Light Status			R	Т	
Vehicle speed signal	R	Т			_
Oil Pressure Switch		R		Т	_
Sleep Request1		R	Т		_
Sleep Request2			Т	R	_
Seat belt buckle switch signal		Т	R		_ `
Door switch signal		R	Т	R	_
Tail lamp request		R	T	R	ŀ
Turn indicator signal		R	Т		_
Buzzer output signal		R	T		_
Trunk switch signal		R	Т		_
ASCD main switch signal	Т	R			_
ASCD cruise signal	Т	R			
Wiper operation			R	Т	_
Wiper stop position signal			R	Т	_
Rear window defogger switch signal			Т	R	-
Rear window defogger control signal	R			Т	_

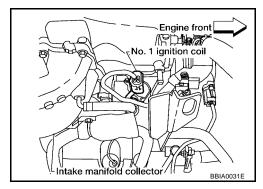

BASIC SERVICE PROCEDURE

PFP:00018

Idle Speed and Ignition Timing Check IDLE SPEED

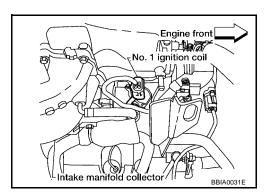
UBS0035A

Using CONSULT-II
 Check idle speed in "DATA MONITOR" mode with CONSULT-II.

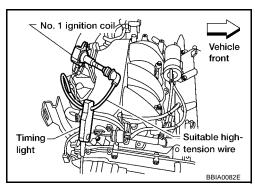


IGNITION TIMING

Any of following two methods may be used.


Method A

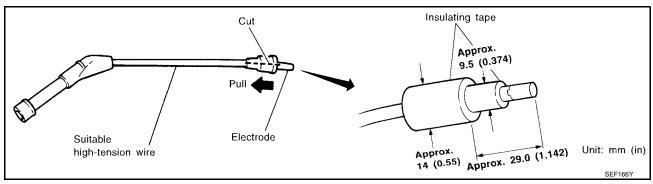
- 1. Remove the engine cover (if equipped)
- 2. Slide the harness protector of ignition coil No. 1 to access the wires.
- 3. Attach timing light to the wires.
- 4. Check ignition timing.



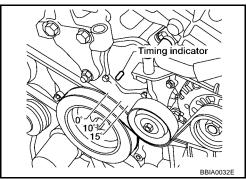
Method B

Remove No. 1 ignition coil.

2. Connect No. 1 ignition coil and No. 1 spark plug with suitable high-tension wire as shown, and attach timing light clamp to this wire.


Α

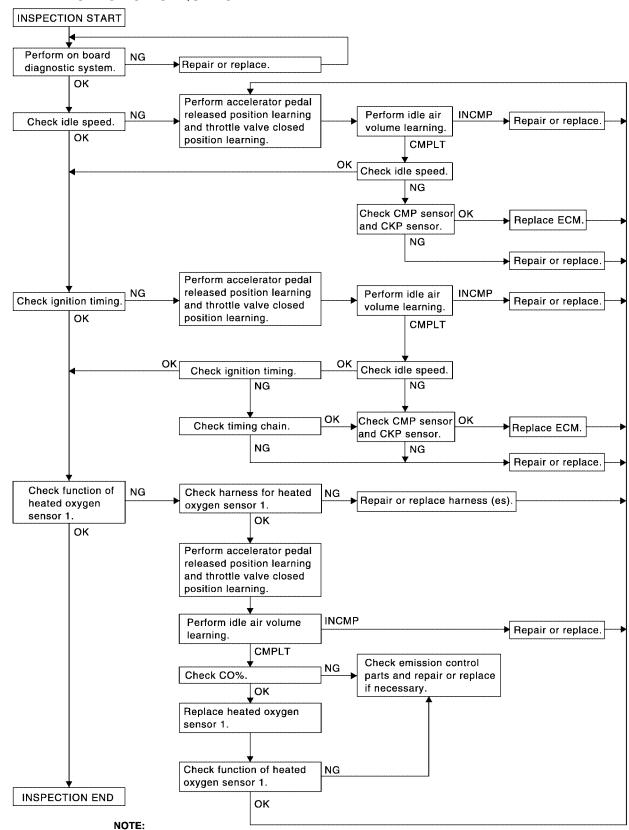
EC


D

Е

Н

3. Check ignition timing.



Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment PREPARATION

UBS0035B

- 1. Make sure that the following parts are in good order.
- Battery
- Ignition system
- Engine oil and coolant levels
- Fuses
- ECM harness connector
- Vacuum hoses
- Air intake system
 (Oil filler cap, oil level gauge, etc.)
- Fuel pressure
- Engine compression
- Throttle valve
- Evaporative emission system
- 2. On air conditioner equipped models, checks should be carried out while the air conditioner is "OFF".
- 3. On automatic transmission equipped models, when checking idle rpm, ignition timing and mixture ratio, checks should be carried out while shift lever is in "N" position.
- 4. When measuring "CO" percentage, insert probe more than 40 cm (15.7 in) into tail pipe.
- 5. Turn off headlamp, heater blower, rear window defogger.
- 6. Keep front wheels pointed straight ahead.

OVERALL INSPECTION SEQUENCE

If a vehicle contains a part which is operating outside of design specifications with no MIL illumination, the part shall not be replaced prior to emission testing unless it is determined that the part has been tampered with or abused in such a way that the diagnostic system cannot reasonably be expected to detect the resulting malfunction.

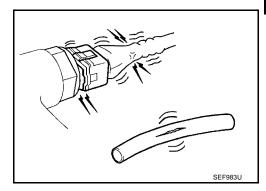
Α

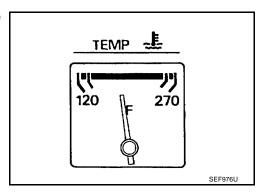
EC

D

Е

F

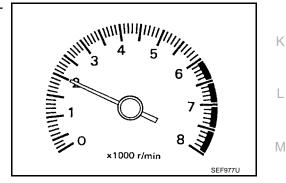

Н


INSPECTION PROCEDURE

1. INSPECTION START

1. Check service records for any recent repairs that may indicate a related problem, or a current need for scheduled maintenance.

- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Wiring harness for improper connections, pinches and cut
- Vacuum hoses for splits, kinks and improper connections
- Hoses and ducts for leaks
- Air cleaner clogging
- Gasket
- 3. Confirm that electrical or mechanical loads are not applied.
- Headlamp switch is OFF.
- Air conditioner switch is OFF.
- Rear window defogger switch is OFF.
- Steering wheel is in the straight-ahead position, etc.
- Start engine and warm it up until engine coolant temperature indicator points the middle of gauge.
 Ensure engine stays below 1,000 rpm.

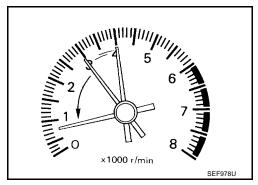


- 5. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 6. Make sure that no DTC is displayed with CONSULT-II or GST.

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

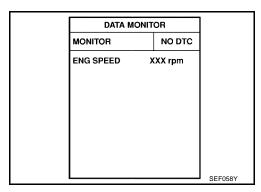
2. REPAIR OR REPLACE


Repair or replace components as necessary according to corresponding "Diagnostic Procedure".

>> GO TO 3

3. CHECK TARGET IDLE SPEED

(P) With CONSULT-II


- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.

3. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

M/T: 700 \pm 50 rpm

A/T: 700 \pm 50 rpm (in "P" or "N" position)

Without CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.
- 3. Check idle speed.

M/T: 700 \pm 50 rpm

A/T: 700 \pm 50 rpm (in "P" or "N" position)

OK or NG

OK >> GO TO 10. NG >> GO TO 4.

4. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-667, "Accelerator Pedal Released Position Learning".

>> GO TO 5.

5. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-668, "Throttle Valve Closed Position Learning" .

>> GO TO 6.

BASIC SERVICE PROCEDURE

[VQ]

EC

D

Е

Н

6. PERFORM IDLE AIR VOLUME LEARNING

Perform EC-668, "Idle Air Volume Learning".

Which is the result CMPLT or INCMP?

CMPLT or INCMP

CMPLT>> GO TO 7.

INCMP >> 1. Follow the construction of "Idle Air Volume Learning".

2. GO TO 4.

7. CHECK TARGET IDLE SPEED AGAIN

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

M/T: 700 \pm 50 rpm

A/T: 700 \pm 50 rpm (in "P" or "N" position)

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed.

M/T: 700 \pm 50 rpm

A/T: 700 \pm 50 rpm (in "P" or "N" position)

OK or NG

OK >> GO TO 10. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the Following.

- Check camshaft position sensor (PHASE) and circuit. Refer to EC-943.
- Check crankshaft position sensor (POS) and circuit. Refer to <u>EC-936</u>.

OK or NG

OK >> GO TO 9.

NG >> 1. Repair or replace.

2. GO TO 4.

9. CHECK ECM FUNCTION

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of a problem, but this is the rarely the case.)
- Perform initialization of NVIS (NATS) system and registration of NVIS (NATS) ignition key IDs. Refer to <u>EC-688, "NVIS (Nissan Vehicle Immobilizer System — NATS)"</u>

>> GO TO 4.

10. CHECK IGNITION TIMING

- 1. Run engine at idle.
- 2. Check ignition timing with a timing light.

M/T: $15 \pm 5^{\circ}$ BTDC

A/T: $15 \pm 5^{\circ}$ BTDC (in "P" or "N" position)

OK or NG

OK (With CONSULT-II)>>GO TO 19. OK (Without CONSULT-II)>>GO TO 20. NG >> GO TO 11.

11. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-667, "Accelerator Pedal Released Position Learning".

>> GO TO 12.

12. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-668, "Throttle Valve Closed Position Learning".

>> GO TO 13.

13. PERFORM IDLE AIR VOLUME LEARNING

Perform EC-668, "Idle Air Volume Learning".

Which is the result CMPLT or INCMP?

CMPLT or INCMP

CMPLT>> GO TO 14.

INCMP >> 1. Follow the construction of "Idle Air Volume Learning".

2. GO TO 4.

14. CHECK TARGET IDLE SPEED AGAIN

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

M/T: 700 \pm 50 rpm

A/T: 700 \pm 50 rpm (in "P" or "N" position)

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed.

M/T: 700 \pm 50 rpm

A/T: 700 \pm 50 rpm (in "P" or "N" position)

OK or NG

OK >> GO TO 15. NG >> GO TO 17.

[VQ]

EC

D

Н

M

15. CHECK IGNITION TIMING AGAIN

1. Run engine at idle.

2. Check ignition timing with a timing light.

M/T: 15 \pm 5° BTDC

A/T: $15 \pm 5^{\circ}$ BTDC (in "P" or "N" position)

OK or NG

OK (With CONSULT-II)>>GO TO 19.

OK (Without CONSULT-II)>>GO TO 20.

NG >> GO TO 16.

16. CHECK TIMING CHAIN INSTALLATION

Check timing chain installation. Refer to EM-148, "TIMING CHAIN" .

OK or NG

OK >> GO TO 17.

NG >> 1. Repair the timing chain installation.

2. GO TO 4.

17. DETECT MALFUNCTIONING PART

Check the following.

- Check camshaft position sensor (PHASE) and circuit. Refer to <u>EC-943</u>.
- Check crankshaft position sensor (POS) and circuit. Refer to EC-936.

OK or NG

OK >> GO TO 18.

NG >> 1. Repair or replace.

2. GO TO 4.

18. CHECK ECM FUNCTION

- Substitute another known-good ECM to check ECM function. (ECM may be the cause of a problem, but this is the rarely the case.)
- Perform initialization of NVIS (NATS) system and registration of NVIS (NATS) ignition key IDs. Refer to <u>EC-688</u>, "NVIS (Nissan Vehicle Immobilizer System — NATS)"

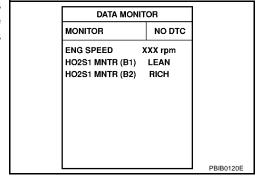
>> GO TO 4.

19. CHECK HEATED OXYGEN SENSOR 1 (BANK 1) SIGNAL

(P) With CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. See "HO2S1 MNTR (B1)" in "DATA MONITOR" mode.
- Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the monitor fluctuates between LEAN and RICH more than 5 times during 10 seconds.

1 time: $RICH \rightarrow LEAN \rightarrow RICH$


2 times: $RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH$

OK or NG

OK >> GO TO 21.

NG (Monitor does not fluctuate.)>>GO TO 23.

NG (Monitor fluctuates less than 5 times.)>>GO TO 31.

$20.\,$ check heated oxygen sensor 1 (bank 1) signal

⋈ Without CONSULT-II

- 1. Stop engine and set ECM to Self-diagnostic mode II (Heated oxygen sensor 1 monitor). Refer to EC-689, "HOW TO SWITCH DIAGNOSTIC TEST MODE".
- 2. Start engine and run it at about 2,000 rpm for about 2 minutes under no-load.
- 3. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the MIL comes on more than 5 times during 10 seconds.

OK or NG

OK >> GO TO 22.

NG (MIL does not come on)>>GO TO 23.

NG (MIL comes on less than 5 times)>>GO TO 31.

21. CHECK HEATED OXYGEN SENSOR 1 (BANK 2) SIGNAL

(P) With CONSULT-II

See "HO2S1 MNTR (B2)" in "DATA MONITOR" mode.

 Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the monitor fluctuates between LEAN and RICH more than 5 times during 10 seconds.

1 time: $RICH \rightarrow LEAN \rightarrow RICH$

2 times: $RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH$

OK or NG

OK >> INSPECTION END

NG (Monitor does not fluctuate.)>>GO TO 24.

NG (Monitor fluctuates less than 5 times.)>>GO TO 31.

22. CHECK HEATED OXYGEN SENSOR 1 (BANK 2) SIGNAL

⋈ Without CONSULT-II

- 1. Switch the monitored sensor from bank 1 to bank 2. Refer to EC-690, "How to Switch Monitored Sensor From Bank 1 to Bank 2 or Vice Versa".
- 2. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the MIL comes on more than 5 times during 10 seconds.

OK or NG

OK >> INSPECTION END

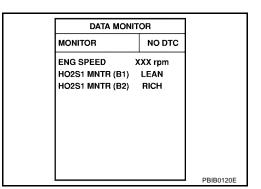
NG (MIL does not come on)>>GO TO 24.

NG (MIL comes on less than 5 times)>>GO TO 31.

23. CHECK HEATED OXYGEN SENSOR 1 (BANK 1) HARNESS

- 1. Turn ignition switch "OFF" and disconnect battery ground cable.
- 2. Disconnect ECM harness connector.
- Disconnect heated oxygen sensor 1 (bank 1) harness connector.
- 4. Check harness continuity between ECM terminal 91 and heated oxygen sensor 1 (bank 1) terminal 2. Refer to Wiring Diagram, <u>EC-827</u>, "BANK 1".

Continuity should exist.


5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 25.

NG >> 1. Repair or replace harness between ECM and heated oxygen sensor 1 (bank 1).

2. GO TO 4.

[VQ]

24. Check heated oxygen sensor 1 (bank 2) harness

- 1. Turn ignition switch "OFF" and disconnect battery ground cable.
- 2. Disconnect ECM harness connector.
- Disconnect heated oxygen sensor 1 (bank 2) harness connector.
- Check harness continuity between ECM terminal 92 and heated oxygen sensor 1 (bank 2) terminal 2. Refer to Wiring Diagram, <u>EC-829</u>, "BANK 2"

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 25.

NG >> 1. Repair or replace harness between ECM and heated oxygen sensor 1 (bank 2). 2. GO TO 4.

25. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Reconnect ECM harness connector.
- 2. Perform <u>EC-667</u>, "Accelerator Pedal Released Position Learning".

>> GO TO 26.

26. perform throttle valve closed position learning

Perform EC-668, "Throttle Valve Closed Position Learning".

>> GO TO 27.

27. PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-668, "Idle Air Volume Learning".

Which is the result CMPLT or INCMP?

CMPLT or INCMP

CMPLT (With CONSULT-II)>>GO TO 28.

CMPLT (Without CONSULT-II)>>GO TO 29.

INCMP >> 1. Follow the construction of "Idle Air Volume Learning".

2. GO TO 4.

28. снеск "со" %

(II) With CONSULT-II

- 1. Start engine and warm it up until engine coolant temperature indicator points the middle of gauge.
- 2. Turn ignition switch "OFF", wait at least 10 seconds and then turn "ON".
- Select "ENG COOLANT TEMP" in "ACTIVE TEST" mode.
- 4. Set "ENG COOLANT TEMP" to 5°C (41°F) by touching "DWN" and "Qd".
- 5. Start engine and rev it (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed.
- 6. Check "CO"%.

Idle CO: 0.7 – 9.9 % and engine runs smoothly.

OK or NG

OK >> GO TO 31. NG >> GO TO 30.

ACTIV	VE TEST		
ENG COOLANT T	EMP XX	(X °C	
МО	NITOR		
ENG SPE	ED XX	(X rpm	
INJ PULSE	-B1 XX	X msec	
IGN TIMIN	ig xx	K BTDC	

L			SEF172Y

С

EC

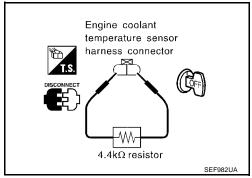
Е

G

K

L

M


29. снеск "со" %

W Without CONSULT-II

- 1. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge.
- 2. Turn ignition switch "OFF".
- 3. Disconnect engine coolant temperature sensor harness connector.
- 4. Connect a resistor (4.4 $k\Omega$) between terminals of engine coolant temperature sensor harness connector.
- 5. Start engine and rev it (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed.
- 6. Check "CO" %.

Idle CO: 0.7 – 9.9 % and engine runs smoothly.

7. After checking "CO" %, turn ignition switch "OFF", disconnect the resistor from the terminals of engine coolant temperature sensor harness connector, and then connect engine coolant temperature sensor harness connector to engine coolant temperature sensor.

OK or NG

OK >> GO TO 31. NG >> GO TO 30.

30. RECONNECT HEATED OXYGEN SENSOR 1 HARNESS CONNECTOR

- Turn ignition switch "OFF".
- 2. Reconnect heated oxygen sensor 1 harness connector.

>> GO TO 34.

31. REPLACE HEATED OXYGEN SENSOR 1

- 1. Stop engine.
- 2. Replace heated oxygen sensor 1 on the malfunctioning bank.

With CONSULT-II>>GO TO 32. Without CONSULT-II>>GO TO 33.

32. CHECK HEATED OXYGEN SENSOR 1 (BANK 1)/(BANK 2) SIGNAL

(P) With CONSULT-II

- Start engine and warm it up until engine coolant temperature indicator points the middle of gauge.
- 2. See "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode.
- 3. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the monitor fluctuates between LEAN and RICH more than 5 times during 10 seconds.

1 time: RICH \rightarrow LEAN \rightarrow RICH 2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

OK or NG

OK >> GO TO 4. NG >> GO TO 34.

BASIC SERVICE PROCEDURE

[VQ]

33. CHECK HEATED OXYGEN SENSOR 1 (BANK 1)/(BANK 2) SIGNAL

⋈ Without CONSULT-II

 Set ECM to Self-diagnostic mode II (Heated oxygen sensor 1 monitor). Refer to <u>EC-689</u>, "HOW TO <u>SWITCH DIAGNOSTIC TEST MODE"</u>.

Switch the monitored sensor to the malfunctioning bank. Refer to <u>EC-690, "How to Switch Monitored Sensor From Bank 1 to Bank 2 or Vice Versa"</u>.

3. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the MIL comes on more than 5 times during 10 seconds.

OK or NG

OK >> GO TO 4. NG >> GO TO 34.

34. DETECT MALFUNCTIONING PART

Check the following.

Check fuel pressure regulator and repair or replace if necessary. Refer to <u>EC-670</u>, "Fuel Pressure Check"

Check mass air flow sensor and its circuit, and repair or replace if necessary. Refer to <u>EC-788</u>, <u>EC-796</u> and <u>EC-1047</u>.

Check injector and its circuit, and repair or replace if necessary. Refer to <u>EC-1244</u>.

Check engine coolant temperature sensor and its circuit, and repair or replace if necessary. Refer to <u>EC-809</u> and <u>EC-814</u>.

OK or NG

OK >> GO TO 36.

NG >> 1. Repair or replace.

2. GO TO 35.

35. ERASE UNNECESSARY DTC

After this inspection, unnecessary DTC might be displayed.

Erase the stored memory in ECM and TCM. Refer to <u>EC-686</u>, "HOW TO <u>ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u> and <u>AT-38</u>, "HOW TO <u>ERASE DTC"</u>.

>> GO TO 4.

36. CHECK ECM FUNCTION

1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of a problem, but this is the rarely the case.)

 Perform initialization of NVIS (NATS) system and registration of NVIS (NATS) ignition key IDs. Refer to <u>EC-688, "NVIS (Nissan Vehicle Immobilizer System — NATS)"</u>

>> GO TO 4.

Accelerator Pedal Released Position Learning DESCRIPTION

harness connector of accelerator pedal position sensor or ECM is disconnected.

"Accelerator Pedal Released Position Learning" is an operation to learn the fully released position of the accelerator pedal by monitoring the accelerator pedal position sensor output signal. It must be performed each time

OPERATION PROCEDURE

- 1. Make sure that accelerator pedal is fully released.
- 2. Turn ignition switch "ON" and wait at least 2 seconds.
- 3. Turn ignition switch "OFF" wait at least 10 seconds.
- 4. Turn ignition switch "ON" and wait at least 2 seconds.

EC

D

Е

G

Н

ı

^

VI

UBS0035C

5. Turn ignition switch "OFF" wait at least 10 seconds.

Throttle Valve Closed Position Learning DESCRIPTION

UBS0035D

"Throttle Valve Closed Position Learning" is an operation to learn the fully closed position of the throttle valve by monitoring the throttle position sensor output signal. It must be performed each time harness connector of electric throttle control actuator or ECM is disconnected.

OPERATION PROCEDURE

- Make sure that accelerator pedal is fully released.
- 2. Turn ignition switch "ON".
- 3. Turn ignition switch "OFF" wait at least 10 seconds.

 Make sure that throttle valve moves during above 10 seconds by confirming the operating sound.

Idle Air Volume Learning DESCRIPTION

UBS0035

"Idle Air Volume Learning" is an operation to learn the idle air volume that keeps each engine within the specific range. It must be performed under any of the following conditions:

- Each time electric throttle control actuator or ECM is replaced.
- Idle speed or ignition timing is out of specification.

PREPARATION

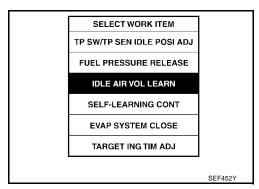
Before performing "Idle Air Volume Learning", make sure that all of the following conditions are satisfied. Learning will be cancelled if any of the following conditions are missed for even a moment.

- Battery voltage: More than 12.9V (At idle)
- Engine coolant temperature: 70 100°C (158 212°F)
- PNP switch: ON
- Electric load switch: OFF

(Air conditioner, headlamp, rear window defogger)

On vehicles equipped with daytime light systems, set lighting switch to the 1st position to light only small lamps.

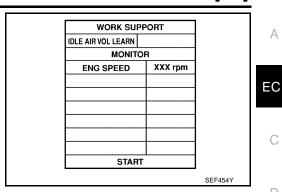
- Steering wheel: Neutral (Straight-ahead position)
- Vehicle speed: Stopped
- Transmission: Warmed-up


For A/T models with CONSULT-II, drive vehicle until "FLUID TEMP SE" in "DATA MONITOR" mode of "A/T" system indicates less than 0.9V.

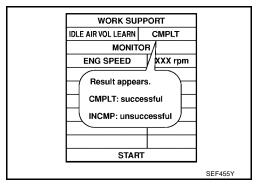
For A/T models without CONSULT-II and M/T models, drive vehicle for 10 minutes.

OPERATION PROCEDURE

(P) With CONSULT-II


- 1. Perform EC-667, "Accelerator Pedal Released Position Learning".
- 2. Perform EC-668, "Throttle Valve Closed Position Learning".
- 3. Start engine and warm it up to normal operating temperature.
- Check that all items listed under the topic "PRE-CONDITIONING" (previously mentioned) are in good order.
- Select "IDLE AIR VOL LEARN" in "WORK SUPPORT" mode.

BASIC SERVICE PROCEDURE


[VQ]

Touch "START" and wait 20 seconds.

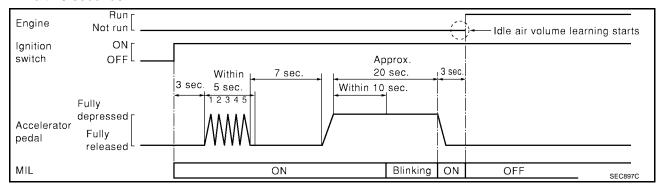
- Make sure that "CMPLT" is displayed on CONSULT-II screen. If "INCMP" is displayed, "Idle Air Volume Learning" will not be carried out successfully. In this case, find the cause of the problem by referring to the "Diagnostic Procedure" below.
- Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.

ITEM	SPECIFICATION
Idle speed	M/T: 700±50 rpm A/T: 700±50 rpm (in "P" or "N" position)
Ignition timing	M/T: 15±5° BTDC A/T: 15±5° BTDC (in "P" or "N" position)

Without CONSULT-II

- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.
- Perform EC-667, "Accelerator Pedal Released Position Learning". 1.
- Perform EC-668, "Throttle Valve Closed Position Learning". 2.
- Start engine and warm it up to normal operating temperature.
- Check that all items listed under the topic "PRE-CONDITIONING" (previously mentioned) are in good order.
- 5. Turn ignition switch "OFF" and wait at least 10 seconds.
- Confirm that accelerator pedal is fully released, turn ignition switch "ON" and wait 3 seconds.
- 7. Repeat the following procedure quickly five times within 5 seconds.
- Fully depress the accelerator pedal.
- b. Fully release the accelerator pedal.
- Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 20 seconds until the MIL stops blinking and turned ON.
- Fully release the accelerator pedal within 3 seconds after the MIL goes off.
- 10. Start engine and let it idle.

EC-669 Revision: May 2004 2002 Altima


Α

Е

Н

M

11. Wait 20 seconds.

12. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.

ITEM	SPECIFICATION
Idle speed	M/T: 700±50 rpm A/T: 700±50 rpm (in "P" or "N" position)
Ignition timing	M/T: 15±5° BTDC A/T: 15±5° BTDC (in "P" or "N" position)

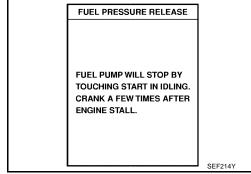
13. If idle speed and ignition timing are not within the specification, the result will be incomplete. In this case, find the cause of the problem by referring to the "DIAGNOSTIC PROCEDURE" below.

DIAGNOSTIC PROCEDURE

If idle air volume learning cannot be performed successfully, proceed as follows:

- Check that throttle valve is fully closed.
- 2. Check PCV valve operation.
- 3. Check that downstream of throttle valve is free from air leakage.
- 4. When the above three items check out OK, engine component parts and their installation condition are questionable. Check and eliminate the cause of the problem.

 It is useful to perform EC-750, "TROUBLE DIAGNOSIS SPECIFICATION VALUE".
- 5. If any of the following conditions occur after the engine has started, eliminate the cause of the problem and perform "Idle air volume learning" all over again:
- Engine stalls.
- Erroneous idle.

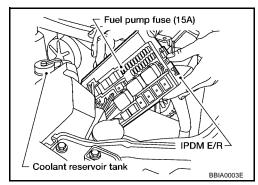

Fuel Pressure Check FUEL PRESSURE RELEASE

UBS0035F

Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger.

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- Perform "FUEL PRESSURE RELEASE" in "WORK SUPPORT" mode with CONSULT-II.
- Start engine.
- 4. After engine stalls, crank it two or three times to release all fuel pressure.
- 5. Turn ignition switch "OFF".



BASIC SERVICE PROCEDURE

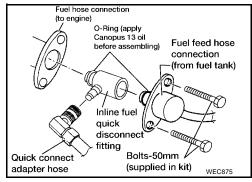
[VQ]

⋈ Without CONSULT-II

- Remove fuel pump fuse located in fuse box.
- 2. Start engine.
- 3. After engine stalls, crank it two or three times to release all fuel pressure.
- 4. Turn ignition switch "OFF".
- 5. Reinstall fuel pump fuse after servicing fuel system.

FUEL PRESSURE CHECK

NOTE:


- Use Fuel Pressure Gauge Kit (J-44321) to check fuel pressure.
- Do not perform fuel pressure check with electrical system operating (i.e. lights, rear defogger, A/C, etc.). Fuel pressure gauge may indicate false readings due to varying engine loads and changes in manifold vacuum.
- Release fuel pressure to zero. Refer to <u>EC-670, "FUEL PRESSURE RELEASE"</u>.
- Install the inline fuel quick disconnect fitting between the connection of the fuel feed hose (from tank) and the fuel hose (to engine).
- 3. Connect the fuel pressure test gauge (quick connect adapter hose) to the quick disconnect fitting.
- 4. Turn ignition switch ON and check for fuel leakage.
- Start engine and check for fuel leakage.
- 6. Read the indication of fuel pressure gauge.

At idling: Approximately 350 kPa (3.7 kg/cm², 51 psi)

- 7. If result is unsatisfactory, go to next step.
- 8. Check the following.
 - Fuel hoses and fuel tubes for clogging
 - Fuel filter for clogging
 - Fuel pump
 - Fuel pressure regulator for clogging

If OK, replace fuel pressure regulator.

If NG, repair or replace.

EC

Α

С

Е

G

Н

M

UBS0035G

ON BOARD DIAGNOSTIC (OBD) SYSTEM

PFP:00028

Introduction

The ECM has an on board diagnostic system, which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

Emission-related diagnostic information	SAE Mode				
Diagnostic Trouble Code (DTC)	Mode 3 of SAE J1979				
Freeze Frame data	Mode 2 of SAE J1979				
System Readiness Test (SRT) code	Mode 1 of SAE J1979				
1st Trip Diagnostic Trouble Code (1st Trip DTC)	Mode 7 of SAE J1979				
1st Trip Freeze Frame data					
Test values and Test limits	Mode 6 of SAE J1979				
Calibration ID	Mode 9 of SAE J1979				

The above information can be checked using procedures listed in the table below.

×: Applicable —: Not applicable

	DTC	1st trip DTC	Freeze Frame data	1st trip Freeze Frame data	SRT code	Test value
CONSULT-II	×	×	×	×	×	_
GST	×	×*1	×	_	×	×
ECM	×	×*2	_	_	_	_

^{*1: 1}st trip DTCs for self-diagnoses concerning SRT items cannot be shown on the GST display.

The malfunction indicator lamp (MIL) on the instrument panel lights up when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode. (Refer to EC-702.)

Two Trip Detection Logic

UBS0035H

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the ECM memory. The MIL will not light up at this stage. <1st trip>

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in the ECM memory, and the MIL lights up. The MIL lights up at the same time when the DTC is stored. <2nd trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to light up or blink the MIL, and store DTC and Freeze Frame data, even in the 1st trip, as shown below.

×: Applicable —: Not applicable

		М	IL		D.	TC	1st trip DTC	
Items	1st trip		2nd trip		1st trip	2nd trip	1st trip	2nd trip
	Blinking	Lighting up	Blinking	Blinking Lighting up		displaying	displaying	display- ing
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0306 is being detected	×	_	_	_	_	_	×	_
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0306 is being detected	_	_	×	_	_	×	_	_
Throttle control motor — DTC P1128	_	×	_	_	×	_	_	_
Closed loop control — DTC: P1148, P1168	_	×	_	_	×	_	_	_
Fail-safe items (Refer to EC-702 .)		×			×*1		×*1	
Except above	_			×	_	×	×	_

^{*1:} Except "ECM"

^{*2:} When DTC and 1st trip DTC simultaneously appear on the display, they cannot be clearly distinguished from each other.

[VQ]

Emission-related Diagnostic Information EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS

UBS0035I

Α

С

D

Е

G

Н

M

Items (CONSULT-II screen terms)	DTC	*1 *2		Test value/		Reference
	CONSULT-II GST	ECM	SRT code	Test limit (GST only)	1st trip DTC	page
CAN COMM CIRCUIT	U1000	1000*6	_	_	×	EC-761
CAN COMM CIRCUIT	U1001	1001* ⁶	_	_	×	EC-761
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	0000	_	_	_	_
INT/V TIM CONT-B1	P0011	0011	_	_	×	EC-764
INT/V TIM CONT-B2	P0021	0021	_	_	×	EC-764
HO2S1 HTR (B1)	P0031	0031	×	×	×* ⁵	EC-772
HO2S1 HTR (B1)	P0032	0032	×	×	×* ⁵	EC-772
HO2S2 HTR (B1)	P0037	0037	×	×	×* ⁵	EC-780
HO2S2 HTR (B1)	P0038	0038	×	×	×* ⁵	EC-780
HO2S1 HTR (B2)	P0051	0051	×	×	×* ⁵	EC-772
HO2S1 HTR (B2)	P0052	0052	×	×	×* ⁵	EC-772
HO2S2 HTR (B2)	P0057	0057	×	×	×* ⁵	EC-780
HO2S2 HTR (B2)	P0058	0058	×	×	×* ⁵	EC-780
MAF SEN/CIRCUIT	P0101	0101	_	_	×	EC-788
MAF SEN/CIRCUIT*3	P0102	0102	_	_	_	EC-796
MAF SEN/CIRCUIT*3	P0103	0103	_	_	_	EC-796
ABSL PRES SEN/CIRC	P0107	0107	_	_	×	EC-802
ABSL PRES SEN/CIRC	P0108	0108	_	_	×	EC-802
IAT SEN/CIRCUIT	P0112	0112	_	_	×	EC-804
IAT SEN/CIRCUIT	P0113	0113	_	_	×	EC-804
ECT SEN/CIRCUIT*3	P0117	0117	_	_	_	EC-809
ECT SEN/CIRCUIT*3	P0118	0118	_	_	_	EC-809
ECT SENSOR	P0125	0125	_	_	×	EC-814
IAT SENSOR	P0127	0127	_	_	×	EC-818
THERMSTAT FNCTN	P0128	0128	_	_	×	EC-823
HO2S1 (B1)	P0132	0132	×	×	×* ⁵	EC-825
HO2S1 (B1)	P0133	0133	×	×	×* ⁵	EC-834
HO2S1 (B1)	P0134	0134	×	×	×* ⁵	EC-845
HO2S2 (B1)	P0138	0138	×	×	×* ⁵	EC-855
HO2S2 (B1)	P0139	0139	×	×	×* ⁵	EC-865
HO2S1 (B2)	P0152	0152	×	×	×* ⁵	EC-825
HO2S1 (B2)	P0153	0153	×	×	×* ⁵	EC-834
HO2S1 (B2)	P0154	0154	×	×	×* ⁵	EC-845
HO2S2 (B2)	P0158	0158	×	×	×* ⁵	EC-855
HO2S2 (B2)	P0159	0159	×	×	×* ⁵	EC-865
FUEL SYS-LEAN-B1	P0171	0171	_	_	×	EC-875

						[VQ]
-	DTC	*1 *2		Test value/		
Items (CONSULT-II screen terms)	CONSULT-II GST	ECM	SRT code	Test limit (GST only)	1st trip DTC	Reference page
FUEL SYS-RICH-B1	P0172	0172	_	_	×	EC-883
FUEL SYS-LEAN-B2	P0174	0174	_	_	×	EC-875
FUEL SYS-RICH-B2	P0175	0175	_	_	×	EC-883
FTT SENSOR	P0181	0181	_	_	×	EC-890
FTT SEN/CIRCUIT	P0182	0182	_	_	×	EC-895
FTT SEN/CIRCUIT	P0183	0183	_	_	×	EC-895
TP SENSOR*3	P0221	0221	_	_	_	EC-899
TP SEN 1/CIRC*3	P0222	0222	_	_	_	EC-906
TP SEN 1/CIRC*3	P0223	0223	_	_	_	EC-906
APP SENSOR*3	P0226	0226	_	_	_	EC-913
APP SEN 1/CIRC*3	P0227	0227	_	_	_	EC-920
APP SEN 1/CIRC*3	P0228	0228	_	_	_	EC-920
MULTI CYL MISFIRE	P0300	0300	_	_	×	EC-926
CYL 1 MISFIRE	P0301	0301	_	_	×	EC-926
CYL 2 MISFIRE	P0302	0302	_	_	×	EC-926
CYL 3 MISFIRE	P0303	0303	_	_	×	EC-926
CYL 4 MISFIRE	P0304	0304	_	_	×	EC-926
CYL 5 MISFIRE	P0305	0305	_	_	×	EC-926
CYL 6 MISFIRE	P0306	0306	_	_	×	EC-926
KNOCK SEN/CIRC-B1	P0327	0327	_	_	×	EC-932
KNOCK SEN/CIRC-B1	P0328	0328	_	_	×	EC-932
CKP SEN/CIRCUIT	P0335	0335	_	_	×	EC-936
CMP SEN/CIRC-B1	P0340	0340	_	_	×	EC-943
CMP SEN/CIRC-B2	P0345	0345	_	_	×	EC-943
TW CATALYST SYS-B1	P0420	0420	×	×	×* ⁵	EC-951
TW CATALYST SYS-B2	P0430	0430	×	×	×* ⁵	EC-951
EVAP PURG FLOW/MON	P0441	0441	×	×	×* ⁵	EC-955
EVAP SMALL LEAK	P0442	0442	×	×	×* ⁵	EC-961
PURG VOLUME CONT/V	P0444	0444	_	_	×	EC-970
PURG VOLUME CONT/V	P0445	0445	_	_	×	EC-970
VENT CONTROL VALVE	P0447	0447	_	_	×	EC-976
EVAP SYS PRES SEN	P0452	0452	_	_	×	EC-983
EVAP SYS PRES SEN	P0453	0453	_	_	×	EC-989
EVAP GROSS LEAK	P0455	0455	_	×	×* ⁴	EC-996
EVAP VERY SML LEAK	P0456	0456	×* ⁴	×	×* ⁵	EC-1004
FUEL LEV SEN SLOSH	P0460	0460	_	_	×	EC-1013
FUEL LEVEL SENSOR	P0461	0461	_	_	×	EC-1018
FUEL LEVL SEN/CIRC	P0462	0462	_	_	×	EC-1020
FUEL LEVL SEN/CIRC	P0463	0463	_	_	×	EC-1020
VEH SPEED SEN/CIRC*6	P0500	0500	_	_	×	EC-1025
ISC SYSTEM	P0506	0506	_	_	×	EC-1027

[VQ]

Itama	DTC,	×1 ×2		Test value/		Doforossa	Λ
Items (CONSULT-II screen terms)	CONSULT-II GST	ECM	SRT code	Test limit (GST only)	1st trip DTC	Reference page	Α
ISC SYSTEM	P0507	0507	_	_	×	EC-1029	EC
PW ST P SEN/CIRC	P0550	0550	_	_	×	EC-1031	
ECM	P0605	0605	_	_	×	EC-1036	•
MIL/CIRC	P0650	0650	_	_	×	EC-1039	С
PNP SW/CIRC	P0705	0705	_	_	×	<u>AT-103</u>	•
ATF TEMP SEN/CIRC	P0710	0710	_	_	×	<u>AT-109</u>	D
VEH SPD SEN/CIR AT*6	P0720	0720	_	_	×	<u>AT-115</u>	
ENGINE SPEED SIG	P0725	0725	_	_	×	<u>AT-120</u>	
A/T 1ST GR FNCTN	P0731	0731	_	_	×	<u>AT-124</u>	Е
A/T 2ND GR FNCTN	P0732	0732	_	_	×	<u>AT-129</u>	
A/T 3RD GR FNCTN	P0733	0733	_	_	×	<u>AT-134</u>	F
A/T 4TH GR FNCTN	P0734	0734	_	_	×	<u>AT-139</u>	1
TCC SOLENOID/CIRC	P0740	0740	_	_	×	<u>AT-146</u>	
A/T TCC S/V FNCTN	P0744	0744	_	_	×	<u>AT-151</u>	G
L/PRESS SOL/CIRC	P0745	0745	_	_	×	<u>AT-159</u>	
SFT SOL A/CIRC	P0750	0750	_	_	×	<u>AT-165</u>	Н
SFT SOL B/CIRC	P0755	0755	_	_	×	<u>AT-170</u>	11
ECM BACK UP/CIRC	P1065	1065	_	_	×	EC-1043	
MAF SENSOR	P1102	1102	_	_	×	EC-1047	
ETC ACTR*3	P1121	1121	_	_	_	EC-1053	
ETC FUNCTION/CIRC*3	P1122	1122	_	_	_	EC-1055	J
ETC MOT PWR	P1124	1124	_	_	×	EC-1062	J
ETC MOT PWR*3	P1126	1126	_	_	_	EC-1062	•
ETC MOT	P1128	1128	_	_	_	EC-1067	K
HO2S1 (B1)	P1143	1143	×	×	×* ⁵	EC-1072	•
HO2S1 (B1)	P1144	1144	×	×	×* ⁵	EC-1078	L
HO2S2 (B1)	P1146	1146	×	×	×* ⁵	EC-1085	:
HO2S2 (B1)	P1147	1147	×	×	×* ⁵	EC-1095	
CLOSED LOOP-B1	P1148	1148	_	_	_	EC-1105	M
HO2S1 (B2)	P1163	1163	×	×	×* ⁵	EC-1072	
HO2S1 (B2)	P1164	1164	×	×	×* ⁵	EC-1078	
HO2S2 (B2)	P1166	1166	×	×	×* ⁵	EC-1085	
HO2S2 (B2)	P1167	1167	×	×	×* ⁵	EC-1095	
CLOSED LOOP-B2	P1168	1168	_	_	_	EC-1105	
TCS C/U FUNCTN	P1211	1211	_	_	×	EC-1107	:
TCS/CIRC	P1212	1212	_	_	×	EC-1108	
ENG OVER TEMP	P1217	1217	_	_	×	EC-1109	
TP SEN 2/CIRC*3	P1223	1223	_	_	_	EC-1120	:
TP SEN 2/CIRC*3	P1224	1224	_	_	_	EC-1120	
CTP LEARNING	P1225	1225				EC-1127	:
OIF LEARINING	F1225	1225			×	<u> =U-1121</u>	

lteres	DTC	*1 *2		Test value/		Deference
Items (CONSULT-II screen terms)	CONSULT-II GST	ECM	SRT code	Test limit (GST only)	1st trip DTC	Reference page
CTP LEARNING	P1226	1226	_	_	×	EC-1129
APP SEN 2/CIRC*3	P1227	1227	_	_	_	EC-1131
APP SEN 2/CIRC+ ³	P1228	1228	_	_	_	EC-1131
SENSOR POWER/CIRC*3	P1229	1229	_	_	_	EC-1137
PURG VOLUME CONT/V	P1444	1444	_	_	×	EC-1141
VENT CONTROL VALVE	P1446	1446	_	_	×	EC-1149
VENT CONTROL VALVE	P1448	1448	_	_	×	EC-1155
EVAP VERY SML LEAK	P1456	1456	×* ³	×	×* ⁴	EC-1163
FUEL LEVEL SEN/CIRC	P1464	1464	_	_	×	EC-1171
VC/V BYPASS/V	P1490	1490	_	_	×	EC-1174
VC CUT/V BYPASS/V	P1491	1491	_	_	×	EC-1180
ASCD SW	P1564	1564	_	_	×	EC-1188
ASCD BRAKE SW	P1572	1572	_	_	×	EC-1195
ASCD VHL SPD SEN	P1574	1574	_	_	×	EC-1206
TPV SEN/CIRC A/T	P1705	1705	_	_	×	<u>AT-175</u>
P-N POS SW/CIRCUIT	P1706	1706	_	_	×	EC-1208
O/R CLTCH SOL/CIRC	P1760	1760	_	_	×	<u>AT-180</u>
VIAS S/V CIRC	P1800	1800	_	_	×	EC-1213
BRAKE SW/CIRCUIT	P1805	1805	_	_	×	EC-1219

^{*1: 1}st trip DTC No. is the same as DTC No.

NOTE:

Regarding L31 models, "B1" indicates bank 1, "B2" indicates bank 2.

DTC AND 1ST TRIP DTC

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip DTC will not be displayed.

If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MIL will not light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory and the MIL lights up. In other words, the DTC is stored in the ECM memory and the MIL lights up when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MIL during the 1st trip, the DTC and 1st trip DTC are stored in the ECM memory.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in <u>EC-686</u>, "HOW <u>TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.

For malfunctions in which 1st trip DTCs are displayed, refer to <u>EC-673, "EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS"</u>. These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-II.

1st trip DTC is specified in Mode 7 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a problem. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in "Work Flow" procedure Step II, refer to EC-698, "WORK FLOW". Then perform "DTC

^{*2:} These numbers are prescribed by SAE J2012.

^{*3:} When the fail-safe operation occurs, the MIL illuminates.

^{*4:} SRT code will not be set if the self-diagnostic result is NG.

^{*5:} These are not displayed with GST.

^{*6:} When the fail-safe operations for both self-diagnoses occur at the same time, the MIL illuminates.

[VQ]

EC

Е

Н

Confirmation Procedure" or "Overall Function Check" to try to duplicate the problem. If the malfunction is duplicated, the item requires repair.

How to Read DTC and 1st Trip DTC

DTC and 1st trip DTC can be read by the following methods.

(II) With CONSULT-II

With GST

CONSULT-II or GST (Generic Scan Tool) Examples: P0340, P1148, P1706, etc.

These DTCs are prescribed by SAE J2012.

(CONSULT-II also displays the malfunctioning component or system.)

No Tools

The number of blinks of the MIL in the Diagnostic Test Mode II (Self-Diagnostic Results) indicates the DTC. Example: 0340, 1148, 1706, etc.

These DTCs are controlled by NISSAN.

- 1st trip DTC No. is the same as DTC No.
- Output of a DTC indicates a malfunction. However, GST or the Diagnostic Test Mode II do not indicate whether the malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT-II can identify malfunction status as shown below. Therefore, using CONSULT-II (if available) is recommended.

A sample of CONSULT-II display for DTC and 1st trip DTC is shown below. DTC or 1st trip DTC of a malfunction is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-II. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be "0".

If a 1st trip DTC is stored in the ECM, the time data will be "[1t]".

	SELF DIAG RESU	ILTS	SELF DIAG RES		LTS
	DTC RESULTS	TIME	DTC RESULTS		TIME
DTC	MAF SEN/CIRCUIT [P0101]	0	MAF SEN/CIRCUIT [P0101]	1st trip	1t
display			,	DTC display	

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed, base fuel schedule and intake air temperature at the moment a malfunction is detected.

Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data. The data, stored together with the DTC data, are called freeze frame data and displayed on CONSULT-II or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-II screen, not on the GST. For details, see <u>EC-733</u>, "Freeze Frame Data and 1st Trip Freeze Frame Data".

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the following priorities to update the data.

Priority	Items					
1	Freeze frame data	Freeze frame data Misfire — DTC: P0300 - P0306 Fuel Injection System Function — DTC: P0171, P0172, P0174, P0175				
2		Except the above items (Includes A/T related items)				
3	1st trip freeze frame d	lata				

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was stored in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different mal-

[VQ]

function is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is stored in the ECM memory, 1st trip freeze data is no longer stored (because only one freeze frame data or 1st trip freeze frame data can be stored in the ECM). If freeze frame data is stored in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in EC-673, "EMISSION-RELATED <a href="DIAGNOSTIC INFORMATION ITEMS".

SYSTEM READINESS TEST (SRT) CODE

System Readiness Test (SRT) code is specified in Mode 1 of SAE J1979.

As part of an enhanced emissions test for Inspection & Maintenance (I/M), certain states require the status of SRT be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "INCMP", use the information in this Service Manual to set the SRT to "CMPLT".

In most cases the ECM will automatically complete its self-diagnosis cycle during normal usage, and the SRT status will indicate "CMPLT" for each application system. Once set as "CMPLT", the SRT status remains "CMPLT" until the self-diagnosis memory is erased.

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern; the SRT will indicate "INCMP" for these items.

NOTE:

The SRT will also indicate "INCMP" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

If, during the state emissions inspection, the SRT indicates "CMPLT" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "INCMP" for one or more of the SRT items the vehicle is returned to the customer untested.

NOTE

If MIL is "ON" during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "CMPLT" for all test items. Therefore, it is important to check SRT ("CMPLT") and DTC (No DTCs) before the inspection.

[VQ]

Α

D

Е

Н

M

SRT Item

The table below shows required self-diagnostic items to set the SRT to "CMPLT".

SRT item (CONSULT-II indica- tion)	Perfor- mance Pri- ority*1	Required self-diagnostic items to set the SRT to "CMPLT"	Corresponding DTC No.
CATALYST	2	Three way catalyst function	P0420, P0430
EVAP SYSTEM	1	EVAP control system	P0442
	2	EVAP control system	P0456, P1456
	2	EVAP control system purge flow monitoring	P0441
HO2S	2	Heated oxygen sensor 1	P0132, P0152
		Heated oxygen sensor 1	P0133, P0153
		Heated oxygen sensor 1	P0134, P0154
		Heated oxygen sensor 1	P1143, P1163
		Heated oxygen sensor 1	P1144, P1164
		Heated oxygen sensor 2	P0138, P0158
		Heated oxygen sensor 2	P0139, P0159
		Heated oxygen sensor 2	P1146, P1166
		Heated oxygen sensor 2	P1147, P1167
HO2S HTR	2	Heated oxygen sensor 1 heater	P0031, P0032, P0051, P0052
		Heated oxygen sensor 2 heater	P0037, P0038, P0057, P0058

^{*1:} If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure), one by one based on the priority for models with CONSULT-II.

SRT Set Timing

SRT is set as "CMPLT" after self-diagnosis has been performed one or more times. Completion of SRT is done regardless of whether the result is OK or NG. The set timing is different between OK and NG results and is shown in the table below.

		Example							
Self-diagn	Self-diagnosis result		\leftarrow ON \rightarrow O		on cycle \rightarrow OFF \leftarrow ON \rightarrow C	PFF ← ON →			
All OK	Case 1	P0400	OK (1)	— (1)	OK (2)	— (2)			
		P0402	OK (1)	—(1)	—(1)	OK (2)			
		P1402	OK (1)	OK (2)	— (2)	— (2)			
		SRT of EGR	"CMPLT"	"CMPLT"	"CMPLT"	"CMPLT"			
	Case 2	P0400	OK (1)	— (1)	— (1)	— (1)			
		P0402	— (0)	— (0)	OK (1)	— (1)			
		P1402	OK (1)	OK (2)	— (2)	— (2)			
		SRT of EGR	"INCMP"	"INCMP"	"CMPLT"	"CMPLT"			
NG exists	Case 3	P0400	OK	ОК	_	_			
		P0402	_	_	_	_			
		P1402	NG	_	NG	NG (Consecutive NG)			
		(1st trip) DTC	1st trip DTC	_	1st trip DTC	DTC (= MIL "ON")			
		SRT of EGR	"INCMP"	"INCMP"	"INCMP"	"CMPLT"			

OK: Self-diagnosis is carried out and the result is OK. NG: Self-diagnosis is carried out and the result is NG.

[VQ]

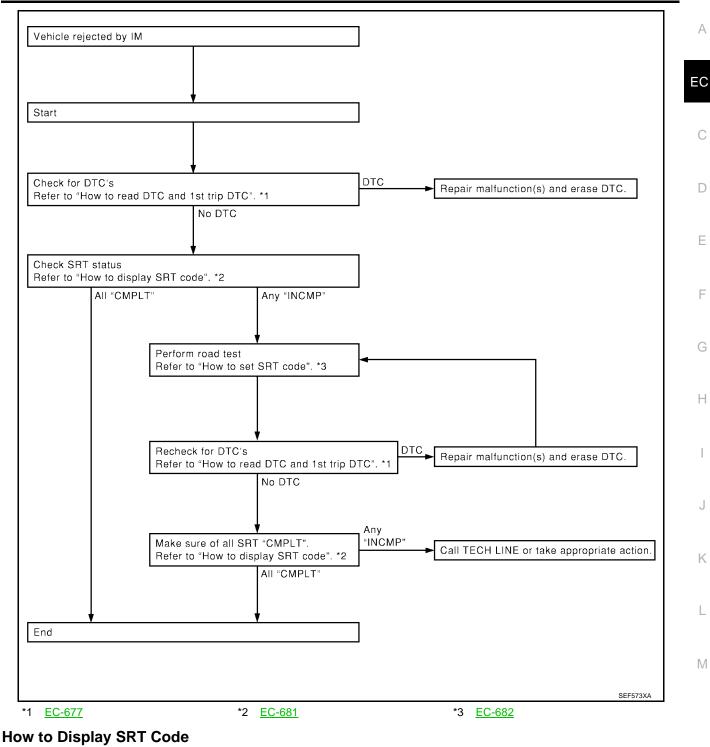
-: Self-diagnosis is not carried out.

When all SRT related self-diagnoses showed OK results in a single cycle (Ignition OFF-ON-OFF), the SRT will indicate "CMPLT". \rightarrow Case 1 above

When all SRT related self-diagnoses showed OK results through several different cycles, the SRT will indicate "CMPLT" at the time the respective self-diagnoses have at least one OK result. → Case 2 above

If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indicate "CMPLT". \rightarrow Case 3 above

The table above shows that the minimum number of cycles for setting SRT as "INCMP" is one (1) for each self-diagnosis (Case 1 & 2) or two (2) for one of self-diagnoses (Case 3). However, in preparation for the state emissions inspection, it is unnecessary for each self-diagnosis to be executed twice (Case 3) for the following reasons:


- The SRT will indicate "CMPLT" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "CMPLT" of the SRT only with OK self-diagnosis results.
- When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to "CMPLT" of SRT, the self-diagnosis memory must be erased from ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "INCMP".

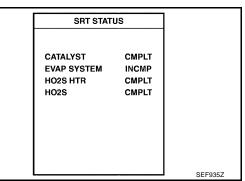
NOTE:

SRT can be set as "CMPLT" together with the DTC(s). Therefore, DTC check must always be carried out prior to the state emission inspection even though the SRT indicates "CMPLT".

SRT Service Procedure

If a vehicle has failed the state emissions inspection due to one or more SRT items indicating "INCMP", review the flowchart diagnostic sequence on the next page.

(P) WITH CONSULT-II


Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-II.

For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-II screen; for items whose SRT codes are not set, "INCMP" is displayed.

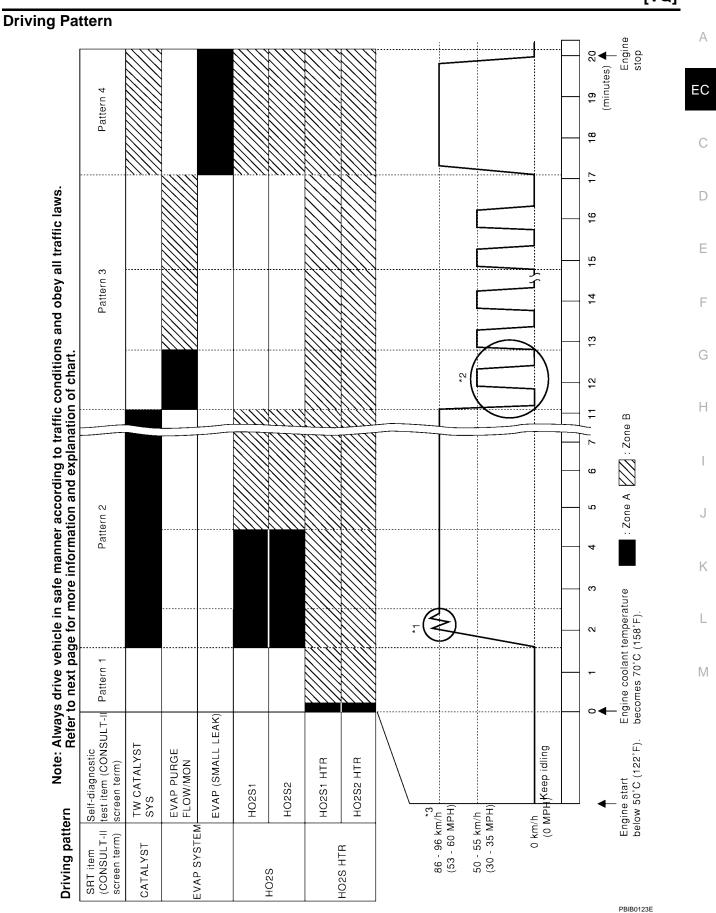
A sample of CONSULT-II display for SRT code is shown at right. "INCMP" means the self-diagnosis is incomplete and SRT is not set. "CMPLT" means the self-diagnosis is complete and SRT is set.

WITH GST

Selecting Mode 1 with GST (Generic Scan Tool)

[VQ]

How to Set SRT Code


To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

(II) WITH CONSULT-II

Perform corresponding DTC Confirmation Procedure one by one based on "Performance Priority" in the table on EC-679, "SRT Item".

WITHOUT CONSULT-II

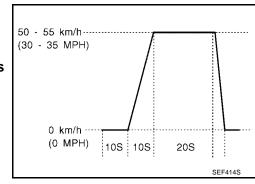
The most efficient driving pattern in which SRT codes can be properly set is explained on the next page. The driving pattern should be performed one or more times to set all SRT codes.

- The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.
 - Zone A refers to the range where the time, required for the diagnosis under normal conditions*, is the shortest
 - Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.
- *: Normal conditions refer to the following:
- Sea level
- Flat road
- Ambient air temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions.
 Under different conditions [For example: ambient air temperature other than 20 30°C (68 86°F)], diagnosis may also be performed.

Pattern 1:

- The engine is started at the engine coolant temperature of −10 to 35°C (14 to 95°F) (where the voltage between the ECM terminal 93 and ground is 3.0 - 4.3V).
- The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminal 93 and ground is lower than 1.4V).
- The engine is started at the fuel tank temperature of warmer than 0°C (32°F) (where the voltage between the ECM terminal 75 and ground is less than 4.1V).

Pattern 2:


When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted. In this case, the time required for diagnosis may be extended.

Pattern 3:

The driving pattern outlined in *2 must be repeated at least 3 times.

Pattern 4:

- Tests are performed after the engine has been operated for at least 17 minutes.
- The accelerator pedal must be held very steady during steady-state driving.
- If the accelerator pedal is moved, the test must be conducted all over again.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Operate the vehicle in the following driving pattern.
- 1. Decelerate vehicle to 0 km/h (0 MPH) and let engine idle.
- 2. Repeat driving pattern shown at right at least 10 times.
- During acceleration, hold the accelerator pedal as steady as possible.
- *3: Checking the vehicle speed with GST is advised.

Suggested Transmission Gear Position for A/T Models

Set the selector lever in the "D" position with the overdrive switch turned ON.

Suggested Upshift Speeds for M/T Models

Shown below are suggested vehicle speeds for shifting into a higher gear. These suggestions relate to fuel economy and vehicle performance. Actual upshift speeds will vary according to road conditions, the weather and individual driving habits.

ON BOARD DIAGNOSTIC (OBD) SYSTEM

[VQ]

	For normal acceleration [less than 1,2*	For quick acceleration in low altitude areas and high altitude areas [over 1,219 m (4,000 ft)]:	
Gear change	ACCEL shift point km/h (MPH)	CRUISE shift point km/h (MPH)	km/h (MPH)
1st to 2nd	21 (13)	21 (13)	24 (15)
2nd to 3rd	37 (23)	26 (16)	40 (25)
3rd to 4th	53 (33)	44 (27)	64 (40)
4th to 5th	63 (39)	58 (36)	72 (45)

Suggested Maximum Speed in Each Gear

Downshift to a lower gear if the engine is not running smoothly, or if you need to accelerate.

Do not exceed the maximum suggested speed (shown below) in any gear. For level road driving, use the highest gear suggested for that speed. Always observe posted sped limits and drive according to the road conditions to ensure sage operation. Do not over-rev the engine when shifting to a lower gear as it may cause engine damage or los of vehicle control.

Gear	km/h (MPH)
1st	65 (40)
2nd	105 (65)
3rd	_
4th	_
5th	_

TEST VALUE AND TEST LIMIT (GST ONLY — NOT APPLICABLE TO CONSULT-II)

The following is the information specified in Mode 6 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is "OK" or "NG" while being monitored by the ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored.

Items for which these data (test value and test limit) are displayed are the same as SRT code items (30 test items).

These data (test value and test limit) are specified by Test ID (TID) and Component ID (CID) and can be displayed on the GST screen.

×: Applicable —: Not applicable

SRT item	Self-diagnostic test item	Test value (GST display)		Test limit	Application
SKT Item	Sen-diagnostic test item	TID	CID	rest illillit	Application
	There was not but for the (Deal 4)	01H	01H	Max.	×
CATALYST	Three way catalyst function (Bank1)	02H	81H	Min.	×
CATALTST	There was not hot for the (Double)	03H	02H	Max.	×
	Three way catalyst function (Bank2)	04H	82H	Min.	×
	EVAP control system (Small leak)	05H	03H	Max.	×
EVAP SYSTEM	EVAP control system purge flow monitoring	06H	83H	Min.	×
	EVAP control system (Very small leak)	07H	03H	Max.	×

Revision: May 2004 EC-685 2002 Altima

EC

Α

0

D

Е

F

G

. .

K

L

M

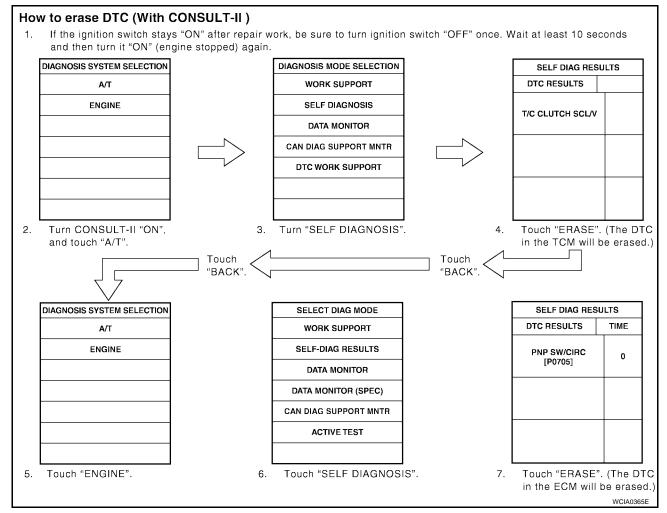
SRT item	Self-diagnostic test item	Test value (GST display)		Test limit	Application
SKT Item	Sen-diagnostic test item	TID	CID	rest iii iii	Арріісаціон
		09H	04H	Max.	×
		0AH	84H	Min.	×
	Heated oxygen sensor 1 (Bank 1)	0BH	04H	Max.	×
		0CH	04H	Max.	×
		0DH	04H	Max.	×
		11H	05H	Max.	×
		12H	85H	Min.	×
	Heated oxygen sensor 1 (Bank 2)	13H	05H	Max.	×
HO2S		14H	05H	Max.	×
HU25		15H	05H	Max.	×
	Heated oxygen sensor 2 (Bank 1)	19H	86H	Min.	×
		1AH	86H	Min.	×
		1BH	06H	Max.	×
		1CH	06H	Max.	×
		21H	87H	Min.	×
	Heated average concert? (Bonk 2)	22H	87H	Min.	×
	Heated oxygen sensor 2 (Bank 2)	23H	07H	Max.	×
		24H	07H	Max.	×
	Handada a a a a a a a a a a a a a a a a a	29H	08H	Max.	×
	Heated oxygen sensor 1 heater (Bank 1)	2AH	88H	Min.	×
	Heated angree concert beater (D1: 2)	2BH	09H	Max.	×
HOSELITE	Heated oxygen sensor 1 heater (Bank 2)	2CH	89H	Min.	×
HO2S HTR	Hooted owigen cores; 2 hootes (Parily 4)	2DH	0AH	Max.	×
	Heated oxygen sensor 2 heater (Bank 1)	2EH	8AH	Min.	×
	Heated aware concer 2 heater (Parily 2)	2FH	0BH	Max.	×
	Heated oxygen sensor 2 heater (Bank 2)	30H	8BH	Min.	×

HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION

How to Erase DTC (With CONSULT-II)

The emission related diagnostic information in the ECM can be erased by selecting "ERASE" in the "SELF-DIAG RESULTS" mode with CONSULT-II.

If DTCs are displayed for both ECM and TCM (Transmission control module), they need to be erased individually from the ECM and TCM (Transmission control module).


NOTE:

If the DTC is not for A/T related items (see EC-631), skip steps 2 through 4.

- 1. If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 10 seconds and then turn it "ON" (engine stopped) again.
- 2. Turn CONSULT-II "ON" and touch "A/T".
- 3. Touch "SELF-DIAG RESULTS".
- 4. Touch "ERASE". [The DTC in the TCM (Transmission control module) will be erased.] Then touch "BACK" twice.
- 5. Touch "ENGINE".
- Touch "SELF-DIAG RESULTS".

[VQ]

Touch "ERASE". (The DTC in the ECM will be erased.)

⊞How to Erase DTC (With GST)

The emission related diagnostic information in the ECM can be erased by selecting Mode 4 with GST.

NOTE:

If the DTC is not for A/T related items (see EC-631), skip step 2.

- If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 10 seconds and then turn it "ON" (engine stopped) again.
- Perform "SELF-DIAGNOSTIC PROCEDURE (Without CONSULT-II)" in AT section titled "TROUBLE DIAGNOSIS", "Self-diagnosis". (The engine warm-up step can be skipped when performing the diagnosis only to erase the DTC.)
- 3. Select Mode 4 with GST (Generic Scan Tool).

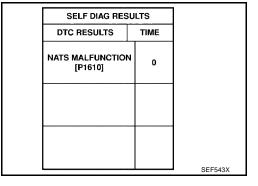
How to Erase DTC (No Tools)

- 1. If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once.
- Wait at least 10 seconds and then turn it "ON" (engine stopped) again.
- 3. Change the diagnostic test mode from Mode II to Mode I by depressing the accelerator pedal. Refer to EC-689, "HOW TO SWITCH DIAGNOSTIC TEST MODE".
- If the battery is disconnected, the emission-related diagnostic information will be lost after approx. 24 hours.
- The following data are cleared when the ECM memory is erased.
- Diagnostic trouble codes 1.
- 2. 1st trip diagnostic trouble codes
- 3. Freeze frame data
- 1st trip freeze frame data

EC-687 2002 Altima Revision: May 2004

EC

Α

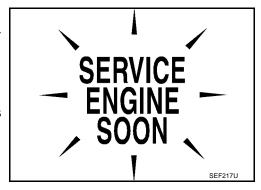

- 5. System readiness test (SRT) codes
- 6. Test values
- 7. Others

Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

NVIS (Nissan Vehicle Immobilizer System — NATS)

UBS0035J

- If the security indicator lights up with the ignition switch in the "ON" position or "NATS MALFUNCTION" is displayed on "SELF-DIAG RESULTS" screen, perform self-diagnostic results mode with CONSULT-II using NATS program card. Refer to <u>BL-116, "NVIS(NISSAN Vehicle Immobilizer System-NATS)"</u>.
- Confirm no self-diagnostic results of NVIS (NATS) is displayed before touching "ERASE" in "SELF-DIAG RESULTS" mode with CONSULT-II.
- When replacing ECM, initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs must be carried out with CONSULT-II using NATS program card.


Therefore, be sure to receive all keys from vehicle owner. Regarding the procedures of NVIS (NATS) initialization and NVIS (NATS) ignition key ID registration, refer to CONSULT-II operation manual, IVIS/NVIS.

Malfunction Indicator Lamp (MIL) DESCRIPTION

UBS0035K

The MIL is located on the instrument panel.

- The MIL will light up when the ignition switch is turned ON without the engine running. This is a bulb check. If the MIL does not light up, refer to <u>DI-22, "WARNING LAMPS"</u>, or see EC-1039.
- 2. When the engine is started, the MIL should go off. If the MIL remains on, the on board diagnostic system has detected an engine system malfunction.

ON BOARD DIAGNOSTIC SYSTEM FUNCTION

The on board diagnostic system has the following four functions.

ON BOARD DIAGNOSTIC (OBD) SYSTEM

[VQ]

Diagnostic Test Mode	KEY and ENG. Status	Function	Explanation of Function	Α
Mode I	Ignition switch in "ON" position Engine stopped	BULB CHECK	This function checks the MIL bulb for damage (blown, open circuit, etc.). If the MIL does not come on, check MIL circuit.	E
	Engine running	MALFUNCTION WARNING	This is a usual driving condition. When a malfunction is detected twice in two consecutive driving cycles (two trip detection logic), the MIL will light up to inform the driver that a malfunction has been detected.	- C
			The following malfunctions will light up or blink the MIL in the 1st trip. • "Misfire (Possible three way catalyst damage)" • "Throttle control motor" • "Closed loop control" • Fail-safe mode	F
Mode II	Ignition switch in "ON" position Engine stopped	SELF-DIAGNOSTIC RESULTS	This function allows DTCs and 1st trip DTCs to be read.	- () -
	Engine running	HEATED OXYGEN SENSOR 1 MONITOR	This function allows the fuel mixture condition (lean or rich), monitored by heated oxygen sensor 1, to be read.	

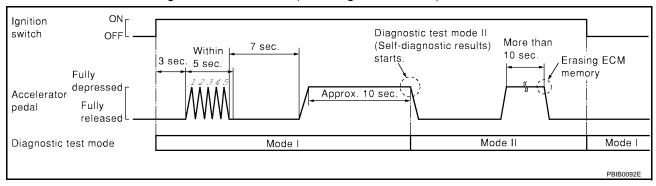
MIL Flashing Without DTC

If the ECM is in Diagnostic Test Mode II, MIL may flash when engine is running. In this case, check ECM diagnostic test mode. <u>EC-689</u>, "HOW TO SWITCH DIAGNOSTIC TEST MODE".

How to switch the diagnostic test (function) modes, and details of the above functions are described later. <u>EC-689</u>, "HOW TO SWITCH DIAGNOSTIC TEST MODE" .

The following emission-related diagnostic information is cleared when the ECM memory is erased.

- Diagnostic trouble codes
- 2. 1st trip diagnostic trouble codes
- 3. Freeze frame data
- 4. 1st trip freeze frame data
- 5. System readiness test (SRT) codes
- Test values
- 7. Others


HOW TO SWITCH DIAGNOSTIC TEST MODE

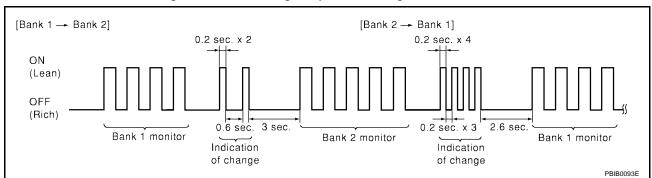
NOTE:

- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.
- Always ECM returns to Diagnostic Test Mode I after ignition switch is turned "OFF".

How to Set Diagnostic Test Mode II (Self-diagnostic Results)

- 1. Confirm that accelerator pedal is fully released, turn ignition switch "ON" and wait 3 seconds.
- 2. Repeat the following procedure quickly five times within 5 seconds.
- a. Fully depress the accelerator pedal.
- b. Fully release the accelerator pedal.
- 3. Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 10 seconds until the MIL starts blinking.
- Fully release the accelerator pedal.
 ECM has entered to Diagnostic Test Mode II (Self-diagnostic results).

How to Set Diagnostic Test Mode II (Heated Oxygen Sensor 1 Monitor)


- 1. Set the ECM in Diagnostic Test Mode II (Self-diagnostic results). Refer to EC-690, "How to Set Diagnostic Test Mode II (Self-diagnostic Results)".
- 2. Start Engine.

ECM has entered to Diagnostic Test Mode II (Heated oxygen sensor 1 monitor).

ECM will start heated oxygen sensor 1 monitoring from the bank 1 sensor.

How to Switch Monitored Sensor From Bank 1 to Bank 2 or Vice Versa

- 1. Fully depress the accelerator pedal quickly and then release it immediately.
- 2. Make sure that monitoring sensor has changed by MIL blinking as follows.

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

- 1. Set ECM in Diagnostic Test Mode II (Self-diagnostic results). Refer to <u>EC-690, "How to Set Diagnostic Test Mode II (Self-diagnostic Results)"</u>.
- Fully depress the accelerator pedal and keep it for more than 10 seconds.The emission-related diagnostic information has been erased from the backup memory in the ECM.
- 3. Fully release the accelerator pedal, and confirm the DTC 0000 is displayed.

DIAGNOSTIC TEST MODE I — BULB CHECK

In this mode, the MIL on the instrument panel should stay ON. If it remains OFF, check the bulb. Refer to $\underline{\text{DI-}}$ 22, "WARNING LAMPS" or see $\underline{\text{EC-}1039}$.

DIAGNOSTIC TEST MODE I — MALFUNCTION WARNING

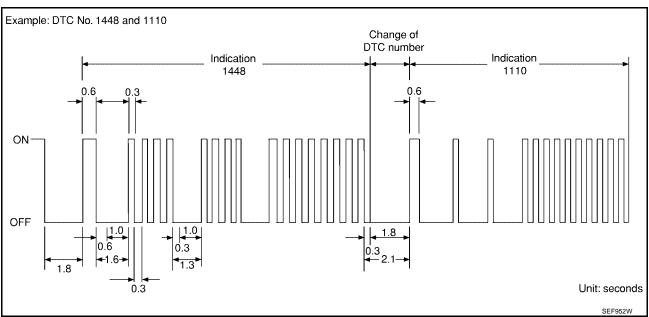
MIL	Condition
ON	When the malfunction is detected or the ECM's CPU is malfunctioning.
OFF	No malfunction.

[VQ]

Α

EC

Е


Н

M

These DTC numbers are clarified in Diagnostic Test Mode II (SELF-DIAGNOSTIC RESULTS)

DIAGNOSTIC TEST MODE II — SELF-DIAGNOSTIC RESULTS

In this mode, the DTC and 1st trip DTC are indicated by the number of blinks of the MIL as shown below. The DTC and 1st trip DTC are displayed at the same time. If the MIL does not illuminate in diagnostic test mode I (Malfunction warning), all displayed items are 1st trip DTCs. If only one code is displayed when the MIL illuminates in diagnostic test mode II (SELF-DIAGNOSTIC RESULTS), it is a DTC; if two or more codes are displayed, they may be either DTCs or 1st trip DTCs. DTC No. is same as that of 1st trip DTC. These unidentified codes can be identified by using the CONSULT-II or GST. A DTC will be used as an example for how to read a code.

A particular trouble code can be identified by the number of four-digit numeral flashes. The "zero" is indicated by the number of ten flashes. The length of time the 1,000th-digit numeral flashes on and off is 1.2 seconds consisting of an ON (0.6-second) - OFF (0.6-second) cycle.

The 100th-digit numeral and lower digit numerals consist of a 0.3-second ON and 0.3-second OFF cycle. A change from one digit numeral to another occurs at an interval of 1.0-second OFF. In other words, the later numeral appears on the display 1.3 seconds after the former numeral has disappeared.

A change from one trouble code to another occurs at an interval of 1.8-second OFF.

In this way, all the detected malfunctions are classified by their DTC numbers. The DTC "0000" refers to no malfunction. (See <u>EC-631, "INDEX FOR DTC"</u>)

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

The DTC can be erased from the back up memory in the ECM by depressing accelerator pedal. Refer to EC-690, "How to Erase Diagnostic Test Mode II (Self-diagnostic Results)".

- If the battery is disconnected, the DTC will be lost from the backup memory after approx 24 hours.
- Be careful not to erase the stored memory before starting trouble diagnoses.

DIAGNOSTIC TEST MODE II — HEATED OXYGEN SENSOR 1 MONITOR

In this mode, the MIL displays the condition of the fuel mixture (lean or rich) which is monitored by the heated oxygen sensor 1.

MIL	Fuel mixture condition in the exhaust gas	Air fuel ratio feedback control condition	
ON	Lean	Closed loop system	
OFF	Rich		
*Remains ON or OFF	Any condition	Open loop system	

^{*:} Maintains conditions just before switching to open loop.

To check the heated oxygen sensor 1 function, start engine in the Diagnostic Test Mode II and warm it up until engine coolant temperature indicator points to the middle of the gauge.

Next run engine at about 2,000 rpm for about 2 minutes under no-load conditions. Then make sure that the MIL comes ON more than 5 times within 10 seconds with engine running at 2,000 rpm under no-load.

ON BOARD DIAGNOSTIC (OBD) SYSTEM

[VQ]

OBD System Operation Chart RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS

UBS0035I

- When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MIL will come on. For details, refer to EC-672, "Two Trip Detection Logic".
- The MIL will go off after the vehicle is driven 3 times with no malfunction. The drive is counted only when
 the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting,
 the counter will reset.
- The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern C) without the same malfunction recurring. The "TIME" in "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-II will count the number of times the vehicle is driven.
- The 1st trip DTC is not displayed when the self-diagnosis results in "OK" for the 2nd trip.

SUMMARY CHART

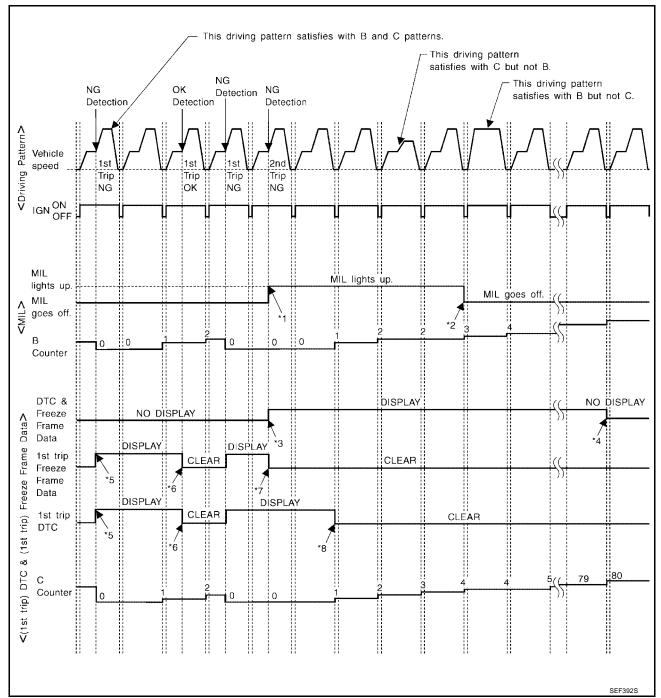
Items	Fuel Injection System	Misfire	Other
MIL (goes off)	3 (pattern B)	3 (pattern B)	3 (pattern B)
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)

For details about patterns "B" and "C" under "Fuel Injection System" and "Misfire", see $\underline{\mathsf{EC-694}}$.

For details about patterns "A" and "B" under "Other", see EC-696.

^{*1:} Clear timing is at the moment OK is detected.

^{*2:} Clear timing is when the same malfunction is detected in the 2nd trip.


EC

Е

Н

M

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR "MISFIRE " <EXHAUST QUALITY DETERIORATION>, "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction. (The DTC and the freeze frame data still remain in ECM.)
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *8: 1st trip DTC will be cleared when vehicle is driven once (pattern C) without the same malfunction after DTC is stored in ECM.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *6: The 1st trip DTC and the 1st trip freeze frame data will be cleared at the moment OK is detected.

ON BOARD DIAGNOSTIC (OBD) SYSTEM

[VQ]

EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern B>

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunction.
- The MIL will go off when the B counter reaches 3. (*2 in "OBD SYSTEM OPERATION CHART")

<Driving Pattern C>

Driving pattern C means the vehicle operation as follows:

The following conditions should be satisfied at the same time:

Engine speed: (Engine speed in the freeze frame data) ±375 rpm

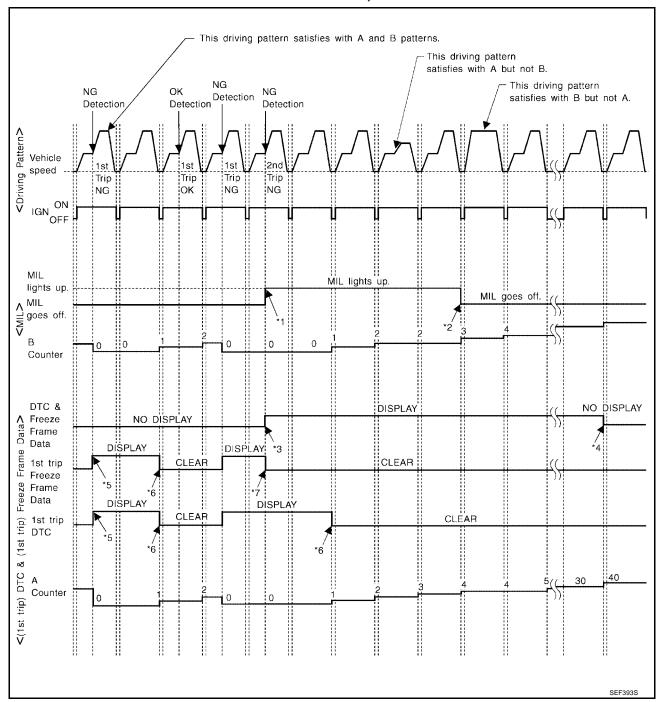
Calculated load value: (Calculated load value in the freeze frame data) x (1±0.1) [%]

Engine coolant temperature (T) condition:

- When the freeze frame data shows lower than 70°C (158°F), "T" should be lower than 70°C (158°F).
- When the freeze frame data shows higher than or equal to 70°C (158°F), "T" should be higher than or equal to 70°C (158°F).

Example:

If the stored freeze frame data is as follows:


Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F)

To be satisfied with driving pattern C, the vehicle should run under the following conditions:

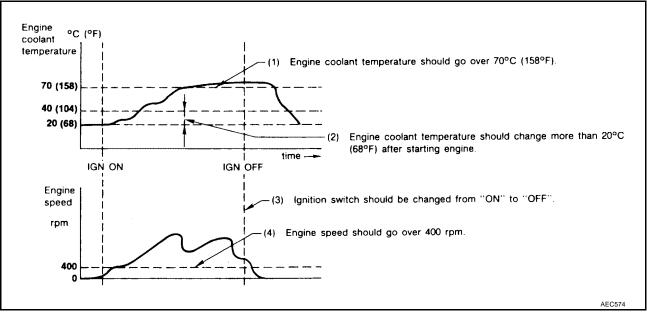
Engine speed: 475 - 1,225 rpm, Calculated load value: 27 - 33%, Engine coolant temperature: more than 70°C (158°F)

- The C counter will be cleared when the malfunction is detected regardless of (1).
- The C counter will be counted up when (1) is satisfied without the same malfunction.
- The DTC will not be displayed after C counter reaches 80.
- The 1st trip DTC will be cleared when C counter is counted once without the same malfunction after DTC is stored in ECM.

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS EXCEPT FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction. (The DTC and the freeze frame data still remain in ECM.)
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- vehicle is driven once (pattern B) without the same malfunction.


Е

Н

M

EXPLANATION FOR DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE < EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern A>

- The A counter will be cleared when the malfunction is detected regardless of (1) (4).
- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

<Driving Pattern B>

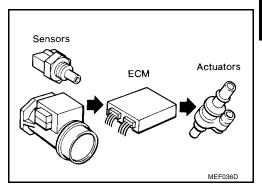
Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

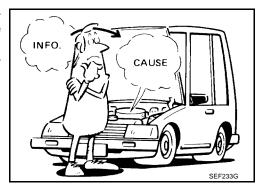
- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MIL will go off when the B counter reaches 3 (*2 in "OBD SYSTEM OPERATION CHART").

PFP:00004

UBS0035M

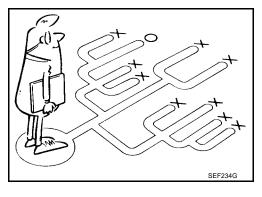

EC

Е


Н

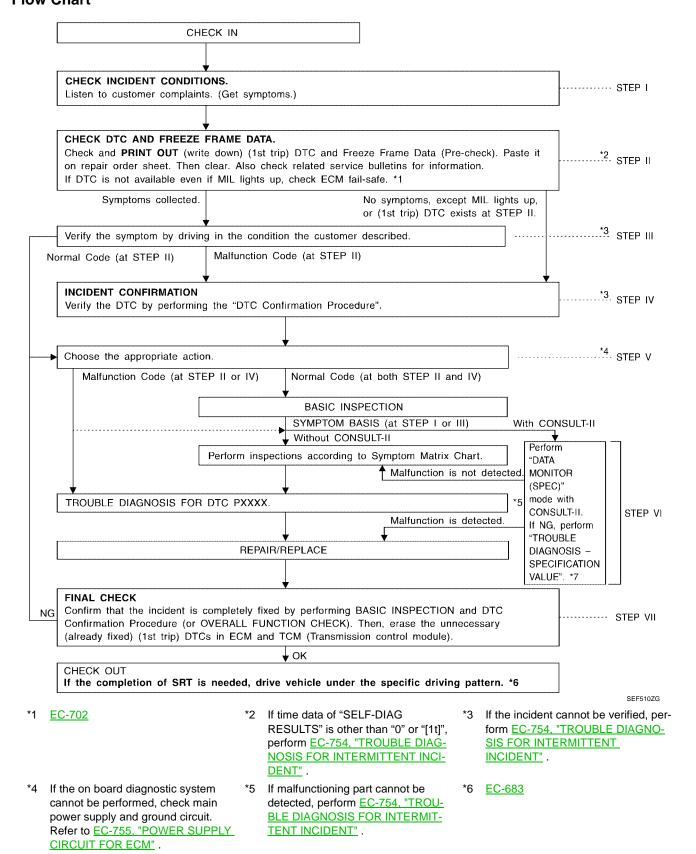
Trouble Diagnosis Introduction INTRODUCTION

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no problems such as vacuum leaks, fouled spark plugs, or other problems with the engine.


It is much more difficult to diagnose a problem that occurs intermittently rather than continuously. Most intermittent problems are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.

A visual check only may not find the cause of the problems. A road test with CONSULT-II (or GST) or a circuit tester connected should be performed. Follow the "Work Flow" on $\underline{\mathsf{EC-698}}$.

Before undertaking actual checks, take a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such problems, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A "Diagnostic Worksheet" like the example on $\underline{\text{EC-700}}$ should be used.


Start your diagnosis by looking for "conventional" problems first. This will help troubleshoot driveability problems on an electronically controlled engine vehicle.

M

WORK FLOW Flow Chart

*7 <u>EC-750</u>

[VQ]

STEP	DESCRIPTION
STEPI	Get detailed information about the conditions and the environment when the incident/symptom occurred using the "DIAGNOSTIC WORK SHEET", <u>EC-699</u> .
STEPII	Before confirming the concern, check and write down (print out using CONSULT-II or GST) the (1st trip) DTC and the (1st trip) freeze frame data, then erase the DTC and the data. (Refer to EC-686 .) The (1st trip) DTC and the (1st trip) freeze frame data can be used when duplicating the incident at STEP III & IV. If the incident cannot be verified, perform EC-754 , "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" . Study the relationship between the cause, specified by (1st trip) DTC, and the symptom described by the customer. (The "Symptom Matrix Chart" will be useful. See EC-709 .) Also check related service bulletins for information.
STEP III	Try to confirm the symptom and under what conditions the incident occurs. The "DIAGNOSTIC WORK SHEET" and the freeze frame data are useful to verify the incident. Connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform EC-754 , "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". If the malfunction code is detected, skip STEP IV and perform STEP V.
STEP IV	Try to detect the (1st trip) DTC by driving in (or performing) the "DTC Confirmation Procedure". Check and read the (1st trip) DTC and (1st trip) freeze frame data by using CONSULT-II or GST. During the (1st trip) DTC verification, be sure to connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform EC-754 , "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". In case the "DTC Confirmation Procedure" is not available, perform the "Overall Function Check" instead. The (1st
STEP V	trip) DTC cannot be displayed by this check, however, this simplified "check" is an effective alternative. The "NG" result of the "Overall Function Check" is the same as the (1st trip) DTC detection. Take the appropriate action based on the results of STEP I through IV. If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC PXXXX. If the normal code is indicated, proceed to the BASIC INSPECTION. (Refer to EC-704.) Then perform inspections according to the Symptom Matrix Chart. (Refer to EC-709.)
	Identify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the system for mechanical binding, loose connectors or wiring damage using (tracing) "Harness Layouts". Gently shake the related connectors, components or wiring harness with CONSULT-II set in "DATA MONITOR
STEP VI	(AUTO TRIG)" mode. Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CONSULT-II. Refer to EC-721, EC-745. The "Diagnostic Procedure" in EC section contains a description based on open circuit inspection. A short circuit inspection is also required for the circuit check in the Diagnostic Procedure. For details, refer to "Circuit Inspection" in
	GI-25. "How to Perform Efficient Diagnosis for an Electrical Incident". Repair or replace the malfunction parts. If malfunctioning part cannot be detected, perform EC-754. "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".
STEP VII	Once you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and circumstances which resulted in the customer's initial complaint. Perform the "DTC Confirmation Procedure" and confirm the normal code [DTC No. P0000] is detected. If the incident is still detected in the final check, perform STEP VI by using a method different from the previous one. Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) (1st trip) DTC in ECM and TCM (Transmission control module). (Refer to EC-686 , "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION" and AT-38, "HOW TO ERASE DTC".)

DIAGNOSTIC WORKSHEET Description

There are many operating conditions that lead to the malfunction of engine components. A good grasp of such conditions can make troubleshooting faster and more accurate.

In general, each customer feels differently about a problem. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one on the next page in order to organize all the information for troubleshooting.

Some conditions may cause the MIL to come on steady or blink and DTC to be detected. Examples:

Vehicle ran out of fuel, which caused the engine to misfire.

KEY POINTS

WHAT Vehicle & engine model
WHEN Date, Frequencies
WHERE..... Road conditions
HOW Operating conditions,
Weather conditions,

Symptoms

SEF907L

Fuel filler cap was left off or incorrectly screwed on, allowing fuel to evaporate into the atmosphere.

Worksheet Sample

Customer name MR/MS		Model & Year	VIN
Engine #		Trans.	Mileage
Incident Date		Manuf. Date	In Service Date
Fuel and fuel filler cap		☐ Vehicle ran out of fuel causing misfire☐ Fuel filler cap was left off or incorrectly screwed on.	
☐ Startability ☐ Impossible to start ☐ No combustion ☐ Partial combustion affected by throttle positi ☐ Partial combustion NOT affected by throttle ☐ Possible but hard to start ☐ Others [nrottle position d by throttle position	
Symptoms	□ Idling	☐ No fast idle ☐ Unstable ☐ H☐ Others [High idle ☐ Low idle]
	☐ Driveability	☐ Stumble ☐ Surge ☐ Knock☐ Intake backfire ☐ Exhaust backfi☐ Others [
☐ Engine stall ☐ While accelerating		☐ At the time of start ☐ While idling ☐ While accelerating ☐ While dece ☐ Just after stopping ☐ While loadi	elerating
Incident occu	ırrence	☐ Just after delivery ☐ Recently ☐ In the morning ☐ At night ☐	☐ In the daytime
Frequency		☐ All the time ☐ Under certain cond	ditions
Weather con-	ditions	☐ Not affected	
	Weather	☐ Fine ☐ Raining ☐ Snowing	Others [
	Temperature	☐ Hot ☐ Warm ☐ Cool ☐	Cold Humid °F
		☐ Cold ☐ During warm-up ☐ .	After warm-up
Engine conditions		Engine speed	4,000 6,000 8,000 rpm
Road conditions		☐ In town ☐ In suburbs ☐ Hig	nhway 🔲 Off road (up/down)
Driving conditions		 Not affected At starting While idling While accelerating While decelerating While turning Vehicle speed	· ·
		0 10 20	30 40 50 60 MPH
Malfunction indicator lamp		☐ Turned on ☐ Not turned on	

MTBL0017

DTC Inspection Priority Chart

UBS0035I

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

NOTE:

If DTC U1000 and/or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000 and U1001. Refer to $\frac{\text{EC-761}}{\text{CC-761}}$.

[VQ]

Priority	Detected items (DTC)	
1	U1000 U1001 CAN communication line	
'	P0101 P0102 P0103 P1102 Mass air flow sensor	
	P0112 P0113 P0127 Intake air temperature sensor	
	P0117 P0118 P0125 Engine coolant temperature sensor	E
	P0128 Thermoatat function	
	 P0221 P0222 P0223 P1223 P1224 P1225 P1226 P1229 Throttle position sensor 	
	 P0226 P0227 P0228 P1227 P1228 Accelerator pedal position sensor 	(
	P0181 P0182 P0183 Fuel tank temperature sensor	
	• P0327 P0328 Knock sensor	
	P0335 Crankshaft position sensor (POS)	
	P0340 P0345 Camshaft position sensor (PHASE)	
	• P0460 P0461 P0462 P0463 P1464 Fuel level sensor	
	P0500 Vehicle speed sensor	
	● P0605 ECM	
	P0705 Park/Neutral position (PNP) switch	r
	P1706 Park/Neutral position (PNP) switch	F
2		
2	• P0031P0032 P0051 P0052 Heated oxygen sensor 1 heater	(
	P0037 P0038 P0057 P0058 Heated oxygen sensor 2 heater P0407 P0408 Abackuta procesure consor.	
	P0107 P0108 Absolute pressure sensor P0403 P0404 P0453 P0454 P4444 P4463 P4464 Heated swiften account.	
	• P0132-P0134, P0152-P0154 P1143 P1144 P1163 P1164 Heated oxygen sensor 1	ŀ
	P0138 P0139 P0158 P0159 P1146 P1147 P1166 P1167 Heated oxygen sensor 2 P0444 FVAR control system pures flow manifesting.	1
	P0441 EVAP control system purge flow monitoring P0444 P0445 P1444 FVAP conictor purge yellows control colonsid valve.	
	P0444 P0445 P1444 EVAP canister purge volume control solenoid valve P0447 P1446 P1446 FVAP canister vant control valve	
	P0447 P1446 P1448 EVAP canister vent control valve P0453 P0453 FVAP control system processing control.	
	P0452 P0453 EVAP control system pressure sensor P0550 Power steering pressure sensor	
	P0550 Power steering pressure sensor P0550 Null	
	• P0650 MIL	
	 P0710-0725 P0740 P0745-P0755 P1705 P1760 A/T related sensors, solenoid valves and switches 	
	 P1065 ECM power supply P1122 Electric throttle control function 	ŀ
	P1217 Engine over temperature (OVERHEAT) P1400 P1404 Vacuum out valva hypera valva	
	P1490 P1491 Vacuum cut valve bypass valve P1800 VIAS control colonsid valve	I
	P1800 VIAS control solenoid valve P1805 Preks switch	
	P1805 Brake switch	
3	P0011 P0021 Intake valve timing control	N
	P0171 P0172 P0174 P0175 Fuel injection system function	
	• P0300 - P0306 Misfire	
	P0420 P0430 Three way catalyst function	
	• P0442 P0456 P1456 EVAP control system	
	P0455 EVAP control system (GROSS LEAK)	
	P0506 P0507 Idle speed control system	
	• P0731-P0734 P0744 A/T function	
	P1121 Electric throttle control actuator	
	P1124 P1126 P1128 Electric throttle control actuator	
	P1148 P1168 Closed loop control	
	P1211 ABS/TCS control unit	
	P1212 ABS/TCS communication line	
	P1564 ASCD steering switch	
	P1572 ASCD brake switch	
	P1574 ASCD vehicle speed sensor	

[VQ]

Fail-safe Chart

The ECM enters fail-safe mode, if any of the following malfunctions is detected. When the ECM enters the fail-safe mode, the MIL illuminates.

DTC No.	Detected items	Engine operating condition in fail-safe mode		
P0102 P0103 P1102	Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.		
P0117 P0118	Engine coolant temperature sensor circuit	Engine coolant temperature will be determined by ECM based on the time after turn ignition switch "ON" or "START". CONSULT-II displays the engine coolant temperature decided by ECM.		
		Condition	Engine coolant temperature decided (CONSULT-II display)	
		Just as ignition switch is turned ON or Start	40°C (104°F)	
		More than approx. 4 minutes after ignition ON or Start	80°C (176°F)	
		Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)	
		When the fail-safe system for engine coolant temperature sensor is activated, the cooling fan operates while engine is running.		
P0221 P0222 P0223 P1223 P1224	Throttle position sensor	The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees. The ECM regulates an opening speed of approx. 5 seconds to an opening of 10 degrees. So, the acceleration will be poor.		
P0226 P0227 P0228 P1227 P1228	Accelerator pedal position sensor	The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees. The ECM regulates an opening speed of approx. 5 seconds to an opening of 10 degrees. So, the acceleration will be poor.		
P1121	Electric throttle control actuator (ECM detect the throttle valve is stuck open.)	While the vehicle is driving, it slows down gradually by fuel cut. After the vehicle stops, the engine stalls. The engine can restart in "N" or "P" position, and engine speed will not exceed 1,000 rpm or more.		
P1122	Electric throttle control function	ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.		
P1126	Throttle control relay	ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.		
P1229	Sensor power supply	ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.		

[VQ]

DTC No.	Detected items	Engine oper	ating condition in fail-safe mode									
Unable to access ECM	ECM	the CPU of ECM), the MIL on the in However it is not possible to acces Engine control with fail-safe	M was judged to be malfunctioning. s (i.e., if the ECM detects a malfunction condition in instrument panel lights to warn the driver. s ECM and DTC cannot be confirmed. uel injection, ignition timing, fuel pump operation and									
			ECM fail-safe operation									
		Engine speed	Engine speed will not rise more than 3,000 rpm									
		Fuel injection	Simultaneous multiport fuel injection system									
		Ignition timing	Ignition timing is fixed at the preset valve									
		Fuel pump	Fuel pump relay is "ON" when engine is running and "OFF" when engine stalls									
		Cooling fan	Cooling fan relays are "ON" (High speed condition) when engine is running and "OFF" when engine stalls									
		Replace ECM, if ECM fail-safe con	Replace ECM, if ECM fail-safe condition is confirmed.									

EC

Α

С

D

Е

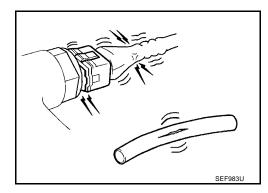
F

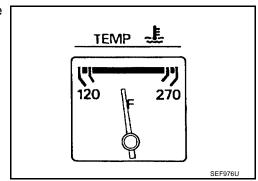
G

Н

Κ

 $oxedsymbol{\mathbb{L}}$

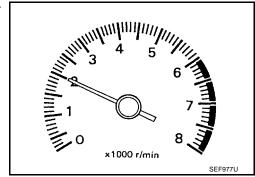

M


Basic Inspection

1. INSPECTION START

JBS0035P

- 1. Check service records for any recent repairs that may indicate a related problem, or a current need for scheduled maintenance.
- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Wiring harness for improper connections, pinches and cut
- Vacuum hoses for splits, kinks and improper connections
- Hoses and ducts for leaks
- Air cleaner clogging
- Gasket
- 3. Confirm that electrical or mechanical loads are not applied.
- Headlamp switch is OFF.
- Air conditioner switch is OFF.
- Rear window defogger switch is OFF.
- Steering wheel is in the straight-ahead position, etc.
- Start engine and warm it up until engine coolant temperature indicator points the middle of gauge. Ensure engine stays below 1,000 rpm.



- 5. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 6. Make sure that no DTC is displayed with CONSULT-II or GST.

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. REPAIR OR REPLACE

Repair or replace components as necessary according to corresponding "Diagnostic Procedure".

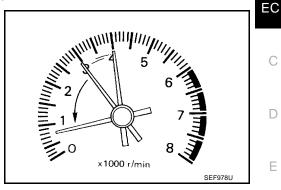
>> GO TO 3.

[VQ]

D

Е

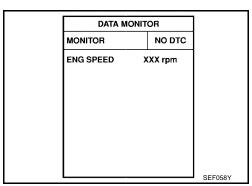
Н


K

M

3. CHECK TARGET IDLE SPEED

(P) With CONSULT-II


- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under noload, then run engine at idle speed for about 1 minute.

3. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

M/T: $700 \pm 50 \text{ rpm}$

A/T: 700 ± 50 rpm (in "P" or "N" position)

⋈ Without CONSULT-II

- Run engine at about 2,000 rpm for about 2 minutes under no-load.
- Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.
- 3. Check idle speed.

M/T: 700 \pm 50 rpm

A/T: 700 ± 50 rpm (in "P" or "N" position)

OK or NG

OK >> GO TO 9.

NG >> GO TO 4.

4. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- Stop engine. 1.
- Perform EC-667, "Accelerator Pedal Released Position Learning".

>> GO TO 5.

5. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-668, "Throttle Valve Closed Position Learning".

>> GO TO 6.

6. PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-668, "Idle Air Volume Learning".

Which is the result CMPLT or INCMP

CMPLT or INCMP

CMPLT>> GO TO 7.

INCMP >> 1. Follow the construction of "Idle Air Volume Learning".

2. GO TO 4.

7. CHECK TARGET IDLE SPEED AGAIN

(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

M/T: 700 \pm 50 rpm A/T: 700 \pm 50 rpm (in "P" or "N" position)

W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed.

OK >> GO TO 10.

NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the Following.

- Check camshaft position sensor (PHASE) and circuit. Refer to EC-943.
- Check crankshaft position sensor (POS) and circuit. Refer to <u>EC-936</u>.

OK or NG

OK >> GO TO 9. NG >> 1. Repair or replace. 2. GO TO 4.

9. CHECK ECM FUNCTION

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of a problem, but this is the rarely the case.)
- 2. Perform initialization of NVIS (NATS) system and registration of NVIS (NATS) ignition key IDs. Refer to EC-688, "NVIS (Nissan Vehicle Immobilizer System NATS)".

>> GO TO 4.

[VQ]

10. CHECK IGNITION TIMING 1. Run engine at idle. 2. Check ignition timing with a timing light. EC M/T: $15 \pm 5^{\circ}$ BTDC A/T: $15 \pm 5^{\circ}$ BTDC (in "P" or "N" position) OK or NG OK >> INSPECTION END NG >> GO TO 11. D 11. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING 1. Stop engine. Е 2. Perform EC-667, "Accelerator Pedal Released Position Learning". >> GO TO 12. 12. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING Perform EC-668, "Throttle Valve Closed Position Learning". >> GO TO 13. Н 13. PERFORM IDLE AIR VOLUME LEARNING Refer to EC-668, "Idle Air Volume Learning". Which is the result CMPLT or **INCMP** CMPLT or INCMP CMPLT>> GO TO 14. INCMP >> 1. Follow the construction of "Idle Air Volume Learning". 2. GO TO 4. 14. CHECK TARGET IDLE SPEED AGAIN (P) With CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II. M M/T: $700 \pm 50 \text{ rpm}$ A/T: 700 \pm 50 rpm (in "P" or "N" position) **⋈** Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Check idle speed. M/T: 700 \pm 50 rpm A/T: 700 \pm 50 rpm (in "P" or "N" position) OK or NG OK >> GO TO 15.

NG

>> GO TO 17.

15. CHECK IGNITION TIMING AGAIN

- 1. Run engine at idle.
- 2. Check ignition timing with a timing light.

```
M/T: 15 \pm 5^{\circ} BTDC
```

```
A/T: 15 \pm 5^{\circ} BTDC (in "P" or "N" position)
```

OK or NG

```
OK >> INSPECTION END
```

NG >> GO TO 16.

16. CHECK TIMING CHAIN INSTALLATION

Check timing chain installation. Refer to EM-148, "TIMING CHAIN" .

OK or NG

```
OK >> GO TO 17.
```

NG >> 1. Repair the timing chain installation.

2. GO TO 4.

17. DETECT MALFUNCTIONING PART

Check the following.

- Check camshaft position sensor (PHASE) and circuit. Refer to <u>EC-943</u>.
- Check crankshaft position sensor (POS) and circuit. Refer to <u>EC-936</u>.

OK or NG

```
OK >> GO TO 18.
```

NG >> 1. Repair or replace.

2. GO TO 4.

18. CHECK ECM FUNCTION

- Substitute another known-good ECM to check ECM function. (ECM may be the cause of a problem, but this is the rarely the case.)
- 2. Perform initialization of NVIS (NATS) system and registration of NVIS (NATS) ignition key IDs. Refer to EC-688, "NVIS (Nissan Vehicle Immobilizer System NATS)".

>> GO TO 4.

[VQ]

Symptom Matrix Chart SYSTEM — BASIC ENGINE CONTROL SYSTEM

UBS0035Q

							S'	YMPT	OM						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
	y symptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА	50.4054
Fuel	Fuel pump circuit	1	1	2	3	2		2	2			3		2	EC-1254
	Fuel pressure regulator system	3	3	2	3	4	4	2	2	4		2			EC-670 EC-1244
	Injector circuit Evaporative emission system	3	3	4	4	2	4	4	4	4		4			EC-1244 EC-1286
Air	Positive crankcase ventilation system	3	3	4	4	4	4	4	4	4		4	1		EC-1298
	Incorrect idle speed adjustment	-					1	1	1	1		1			EC-657
	Electric throttle control actuator	1	1	2	3	3	2	2	2	2		2		2	EC-1053, EC-1055
Ignition	Incorrect ignition timing adjustment	3	3	1	1	1		1	1			1			EC-657
	Ignition circuit	1	1	2	2	2		2	2			2			EC-1224
Main po	wer supply and ground circuit	2	2	3	3	3		3	3		2	3			EC-755
	r flow sensor circuit	1			2	-		_				-			EC-796, EC-1047
Engine	coolant temperature sensor circuit						3			3					EC-809
	oxygen sensor 1 circuit		1	2	3	2		2	2			2			EC-825, EC-834, EC-845, EC-1072, EC-1078
	position sensor circuit						2			2					EC-899
	ator pedal position sensor circuit			3	2	1									EC-913
	ensor circuit	0	0	2								3			EC-932
	naft position sensor (POS) circuit	3	2												EC-936 EC-943
Camshaft position sensor (PHASE) circuit		3	2	3		3						3			EC-1025
Vehicle speed signal circuit Power steering pressure sensor circuit			2	3		3		3	3			3			EC-1025 EC-1031
ECM	processing control official	2	2	3	3	3	3	3	3	3	3	3			EC-1036, EC-1043
Intake v	alve timing control solenoid valve cir-		3	2		1	3	2	2	3		3			EC-764
PNP sw	itch circuit			3		3		3	3			3			EC-1208
Start sig	ınal circuit	2													EC-1250

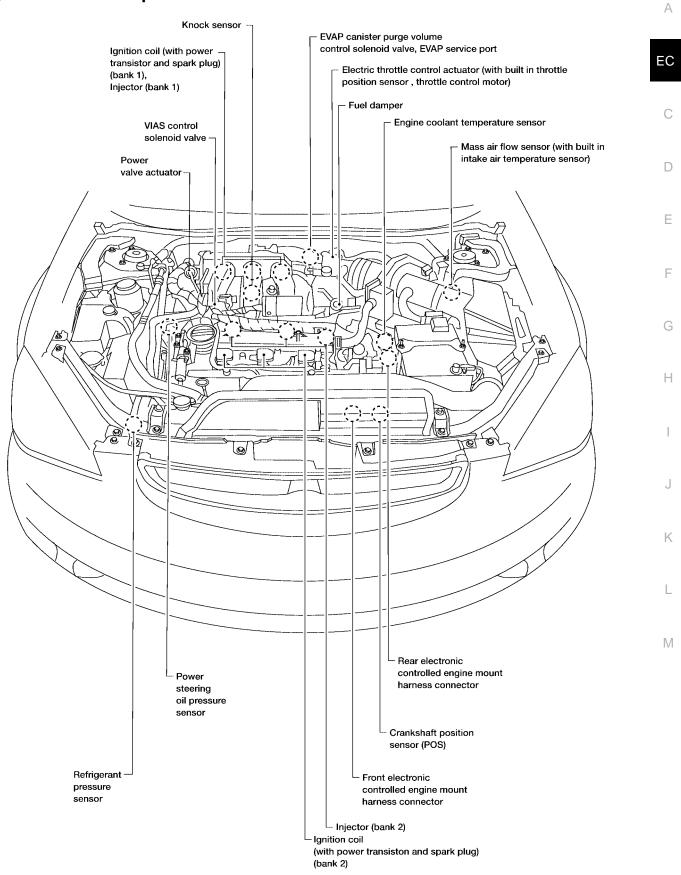
	SYMPTOM													
	HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Refrigerant pressure sensor circuit		2				3			3		4			EC-1266
Electrical load signal circuit							3							EC-1271
Air conditioner circuit	2	2	3	3	3	3	3	3	3		3		2	MTC-28 (with man- ual A/C) or ATC-31 (with auto A/C)
ABS actuator and electric unit (control unit)			4											

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

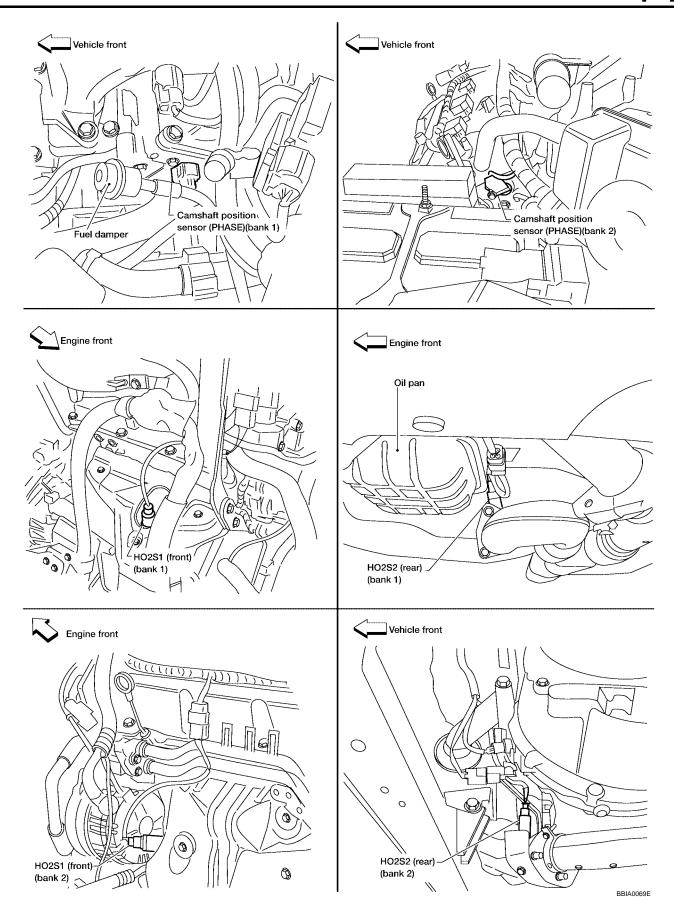
SYSTEM — ENGINE MECHANICAL & OTHER

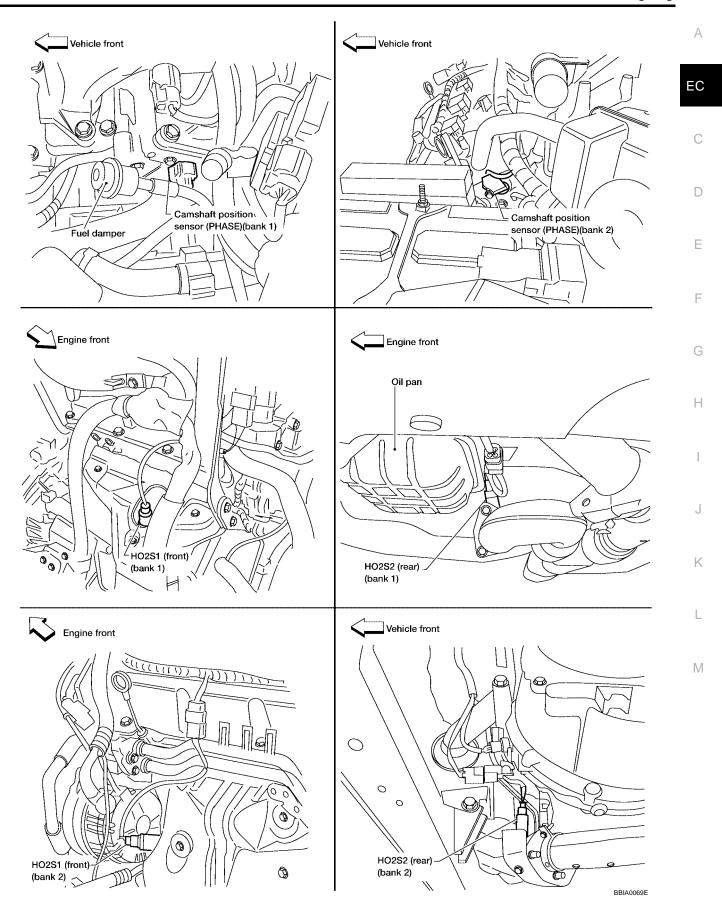
			SYMPTOM												
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty	y symptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА	
Fuel	Fuel tank	- 5													FL-8
	Fuel piping	5		5	5	5	•	5	5			5			EC-1122
	Vapor lock		5												_
	Valve deposit														_
	Poor fuel (Heavy weight gasoline, Low octane)	5		5	5	5		5	5			5			_

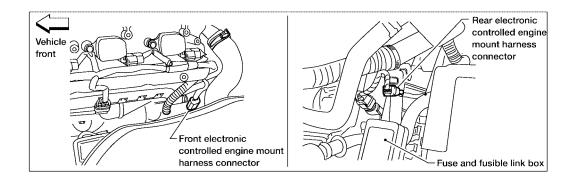
[VQ]

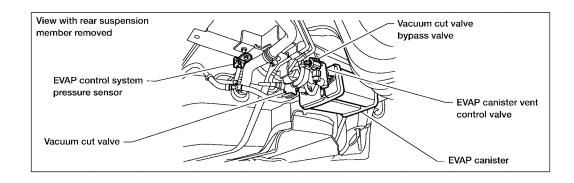

															[VQ]	
					ı		S	/MPT	OM				ı			А
		EXCP. HA)		SPOT	7	ACCELERATION					RATURE HIGH	NOIL	NOI	ARGE)		EC
		RESTART (SING/FLAT	TONATION)LE	DNIL	7	RETURN TO IDLE	ER TEMPE	FUEL CONSUMPTION	CONSUMPTION	JNDER CH	Reference page	С
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT	SPARK KNOCK/DETONATION	OF POWER/POOR	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	DLING VIBRATION	NO RETUR	OVERHEATS/WATER TEMPERATURE	SIVE FUEL	EXCESSIVE OIL C	BATTERY DEAD (UNDER CHARGE)		D
						LACK				SLOW/NO		EXCESSIVE				Е
	ymptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА		F
Air	Air duct Air cleaner														EM-112	
	Air leakage from air duct (Mass air flow sensor — electric throttle control actuator)		5	5		5		5	5	_		5			<u>EM-112</u>	G
	Electric throttle control actuator	5			5		5			5					EM-114	Н
	Air leakage from intake manifold/ Collector/Gasket														EM-114	- 11
Cranking	Battery	1	1	1		1		1	1					1	<u>SC-4</u>	
	Generator circuit					-									<u>SC-25</u>	
	Starter circuit	3										1			<u>SC-9</u>	
	Signal plate	6										•			EM-188	J
	PNP switch	4													MT-12 (M/ T) or AT- 103 (A/T)	K
Engine	Cylinder head	5	5	5	5	5		5	5			5			EM-166	
	Cylinder head gasket)	3	3	3	3		3	3		4	3	3		LIVI-100	
	Cylinder block															L
	Piston												4			
	Piston ring	6	6	6	6	6		6	6			6			EM-188	M
	Connecting rod															
	Bearing															
	Crankshaft														FM 440	
Valve mecha-	Timing chain														EM-148	
nism	Camshaft C-VTC	E	5	5	5	5		5	5			5			EM-136	
	Intake valve	5	3	J	3	3		J	J			J				
	Exhaust valve												3		EM-166	
Exhaust	Exhaust manifold/Tube/Muffler/ Gasket	5	5	5	5	5		5	5			5			<u>EX-6</u>	
	Three way catalyst			5												

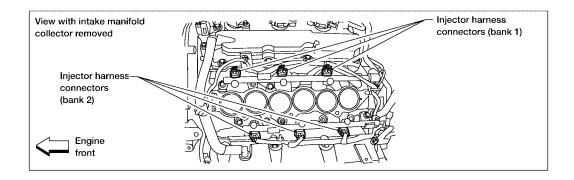
														[[
							S١	/MPT	ОМ						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty	symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Lubrica- tion	Oil pan/Oil strainer/Oil pump/Oil filter/Oil gallery/Oil cooler	5	5	5	5	5		5	5			5			EM-122, LU-19, LU- 20, LU-23, LU-23
	Oil level (Low)/Filthy oil														LU-17
Cooling	Radiator/Hose/Radiator filler cap														<u>CO-34</u>
	Thermostat									5					<u>CO-45</u>
	Water pump														<u>CO-41</u>
	Water gallery	5	5	5	5	5		5	5		4	5			<u>CO-31</u>
	Coolant level (Low)/Contami- nated coolant									5					<u>CO-34</u>
	Coolant level (low)/Contaminated coolant														<u>CO-32</u>
NVIS (NIS NATS)	SAN Vehicle Immobilizer System —	1	1												EC-688 or BL-116

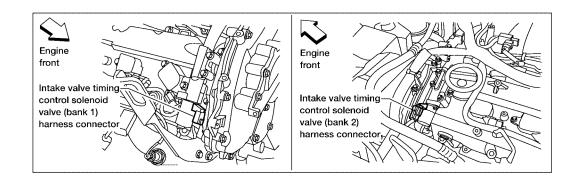

^{1 - 6:} The numbers refer to the order of inspection.

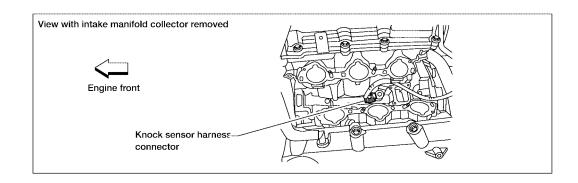

Engine Control Component Parts Location


200025




BBIA0029E



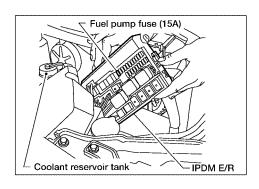


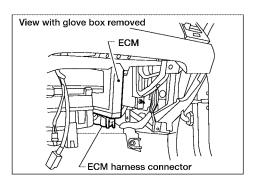
BBIA0094E

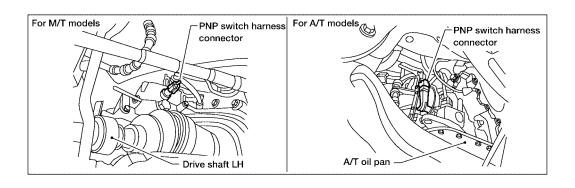
EC

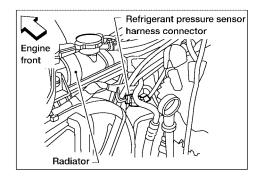
Α

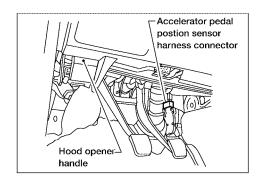
С

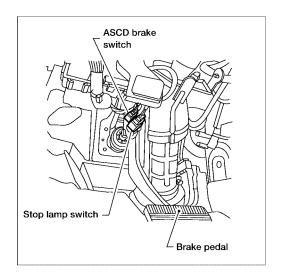

D

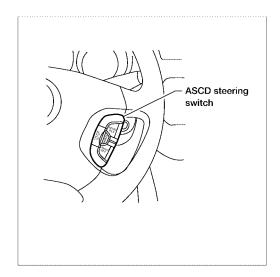

Е

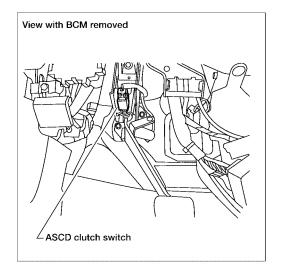

Н


L

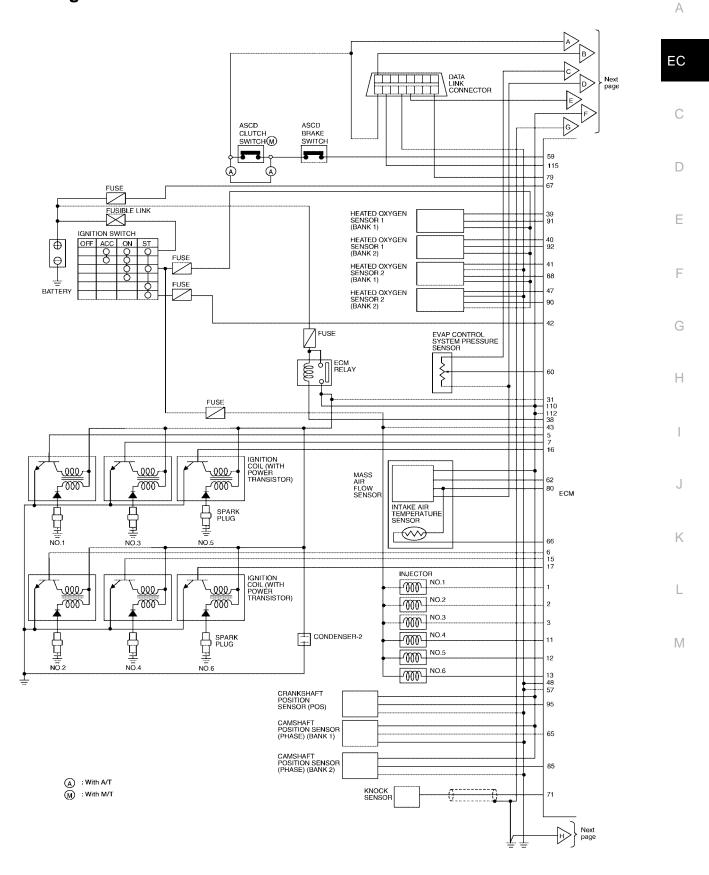

M

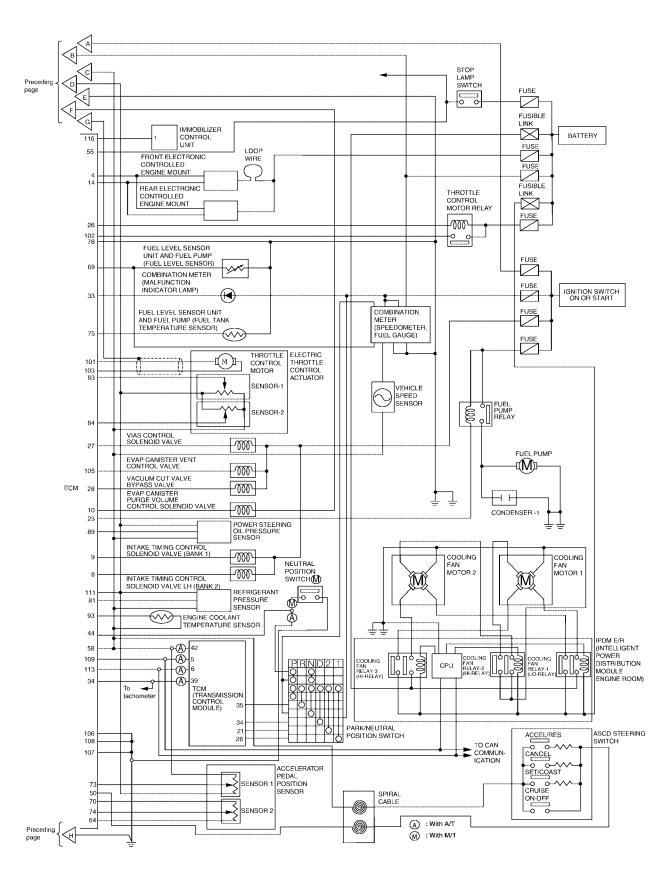






BBIA0095E

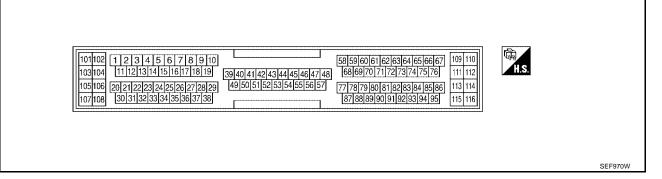




BBIA0096E

Circuit Diagram

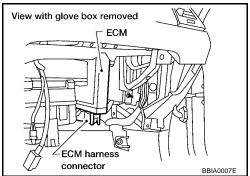
BBWA0354E

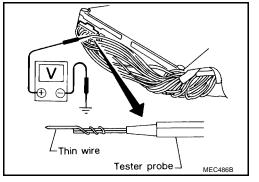


BBWA0048E

[VQ]

ECM Harness Connector Terminal Layout


UBS0035T


ECM Terminals and Reference Value PREPARATION

UBS0035U

- ECM is located behind the glove box. For this inspection, remove glove box.
- Remove ECM harness protector.

- 3. Perform all voltage measurements with the connector connected. Extend tester probe as shown to perform tests easily.
 - Open harness securing clip to make testing easier.
 - Use extreme care not to touch 2 pins at one time.
 - Data is for comparison and may not be exact.

ECM INSPECTION TABLE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECMs transistor. Use a ground other than ECM terminals, such as the ground.

EC-721 2002 Altima Revision: May 2004

EC

Α

Е

Н

M

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
1 2 3	R/B R/W R/Y	Injector No. 1 Injector No. 2	[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)★ INDICATE: SEC984C
11 12 13	R/Y Injector No. 3 R/L Injector No. 4 L/W Injector No. 5 PU/R Injector No. 6	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm	BATTERY VOLTAGE (11 - 14V) ★	
4	w	Electronic controlled engine mount-1	 [Engine is running] Idle speed [Engine is running] Except the above condition 	0 - 1.0V BATTERY VOLTAGE (11 - 14V)
5 6 7	6 G/R Ignition signal No. 2		[Engine is running] Warm-up condition Idle speed	0 - 0.2V★
7 15 16 17	L/R GY PU/W GY/R	GY Ignition signal No. 4 PU/W Ignition signal No. 5	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm.	0.1 - 0.3V★

				[νω]	
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	А
8	Intake valve timing control		[Engine is running] ● Warm-up condition ● Idle speed	BATTERY VOLTAGE (11 - 14V)★ 10.0 V/Div 2 ms/Div 7 SEC988C	EC C
		solenoid valve (bank 2)	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm	7 - 12V★ 10.0 V/Div 2 ms/Div 1 SEC989C	E
9	9 R/L Intake valve timing control solenoid valve (bank 1)	[Engine is running] ● Warm-up condition ● Idle speed	BATTERY VOLTAGE (11 - 14V)★ Indicate the second of the	G H	
ŭ		solenoid valve (bank 1)	[Engine is running] ● Warm-up condition ● Engine speed is 2,500 rpm	7 - 12V★ 110.0 V/Div 2 ms/Div r SEC989C	J
40	PU/R	EVAP canister purge volume control solenoid valve	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)★ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	M
10			 [Engine is running] Engine speed is about 2,000 rpm (More than 100 seconds after starting engine). 	BATTERY VOLTAGE (11 - 14V)★ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	

				[να]
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
14	14 W/R Electronic controlled engine		[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)
	VV/IX	mount-2	[Engine is running] ■ Except the above condition	0 - 1.0V
			[Ignition switch "ON"]● For 1 second after turning ignition switch "ON"	0 - 1.5V
23	B/OR	Fuel pump relay	[Engine is running]	
20	B/OIX	r dei pump reidy	[Ignition switch "ON"]	
			More than 1 second after turning ignition switch "ON".	BATTERY VOLTAGE (11 - 14V)
26	OR	Throttle control motor relay	[Ignition switch "OFF"]	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch "ON"]	0 - 1.0V
27	Y/G	VIAS control solenoid valve	[Engine is running]● Engine speed is 1,800 - 3,600 rpm	0 - 1.0V
	1,0	The control colonial valve	[Engine is running] ● Except the above condition	BATTERY VOLTAGE (11 - 14V)
28	BR	Vacuum cut valve bypass valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
31	R	Counter current return	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch "ON"]	0 - 1.0V
33	LG/B	MIL	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)
			[Engine is running] [Ignition switch "OFF"]	0 - 1.5V
38	W/B	ECM relay (Self shut-off)	 For a few seconds after turning ignition switch "OFF" 	0 - 1.50
		(con onat on)	[Ignition switch "OFF"]A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
		Heated oxygen sensor 1	[Engine is running] • Engine speed is below 3,600 rpm.	0 - 1.0V
39	OR	heater (bank 1)	[Engine is running]	BATTERY VOLTAGE
			• Engine speed is above 3,600 rpm.	(11 - 14V)
40	R/L	Heated oxygen sensor 1	[Engine is running]Engine speed is below 3,600 rpm.	0 - 1.0V
40	N/L	heater (bank 2)	[Engine is running] • Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)
,,	D.(D.	Heated oxygen sensor 2	 [Engine is running] Engine speed is below 3,600 rpm. After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more. 	0 - 1.0V
41	P/B	heated oxygen sensor 2 heater (bank 1)	 [Ignition switch "ON"] Engine stopped [Engine is running] Engine speed is above 3,600 rpm. 	BATTERY VOLTAGE (11 - 14V)

TER-	\ - -			[VQ]	Ī
MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	Α
42	BR/W	Start signal	[Ignition switch "ON"]	Approximately 0V	
42	DR/VV	Start Signal	[Ignition switch "START"]	9 - 12V	EC
43	R	Ignition awitch	[Ignition switch "OFF"]	0V	
43	K	Ignition switch	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)	С
44	G/R (A/T)	PNP switch	[Ignition switch "ON"] • Gear position is "P" or "N".	Approximately 0V	D
• •	G/W (M/T)	Tru emien	[Ignition switch "ON"] • Except the above gear position	BATTERY VOLTAGE (11 - 14V)	
			[Engine is running]		Е
	5.4	Heated oxygen sensor 2	 Engine speed is below 3,600 rpm. After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more. 	0 - 1.0V	F
47	R/L	heater (bank 2)	[Ignition switch "ON"]		
			Engine stopped	BATTERY VOLTAGE	
			[Engine is running]	(11 - 14V)	G
			Engine speed is above 3,600 rpm.		
48 57	ВВ	ECM ground	[Engine is running] • Idle speed	Engine ground	Н
			[Ignition switch "ON"] • ASCD steering switch is "OFF".	Approximately 4.0V	
			[Ignition switch "ON"] • CRUISE switch is "ON".	Approximately 0V	
50	G/Y	ASCD steering switch	[Ignition switch "ON"] • CANCEL switch is "ON".	Approximately 1V	J
			[Ignition switch "ON"] • COAST/SET switch is "ON".	Approximately 2V	K
			[Ignition switch "ON"] • ACCEL/RESUME switch is "ON".	Approximately 3V	
			[Ignition switch "ON"] • Brake pedal is fully released	Approximately 0V	L
55	R/G	Stop lamp switch	[Ignition switch "ON"] • Brake pedal is depressed	BATTERY VOLTAGE (11 - 14V)	M
58	В	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	
59	G/B (A/T)	ASCD broke quitab	[Ignition switch "ON"] Brake pedal is depressed Clutch pedal is depressed (M/T models)	Approximately 0V	
บช	G/R (M/T)	ASCD brake switch	[Ignition switch "ON"] Brake pedal is fully released Clutch pedal is fully released (M/T models)	BATTERY VOLTAGE (11 - 14V)	
60	W	EVAP control system pressure sensor	[Ignition switch "ON"]	Approximately 1.8 - 4.8V	

		•	ROUBLE DIAGNOSIS	[VO
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
62	W	Mass air flow sensor	[Engine is running]Warm-up conditionIdle speed	1.1 - 1.5V
02	VV	IVIASS AII HOW SETISOI	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm.	1.7 - 2.4V
64	OR	Accelerator pedal position sensor 2 power supply	[Ignition switch "ON"]	Approximately 2.5V
0.5	V	Camshaft position sensor	[Engine is running]Warm-up conditionIdle speed	1.0 - 4.0 V★ 1.0
65	Y	(PHASE) (bank 1)	[Engine is running] ● Engine speed is 2,000 rpm.	1.0 - 4.0V★ 1.0
66	Y/G	Intake air temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with intak air temperature.
67	W/L	Power supply for ECM (Buck-up)	[Ignition switch "OFF"]	BATTERY VOLTAGE (11 - 14V)
69	G/B	Fuel level sensor	[Ignition switch "ON"]	Approximately 0 - 4.8V Output voltage varies with fuel level.
70	G	Accelerator pedal position sensor 2 ground	[Ignition switch "ON"]	Approximately 0V
71	W	Knock sensor	[Engine is running] • Idle speed	Approximately 2.5V
73	W	Accelerator pedal position	[Ignition switch "ON"] • Accelerator pedal fully released	0.41 - 0.71V
. •	••	sensor 1	[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 4.2V
74	W/B	Accelerator pedal position	[Ignition switch "ON"] • Accelerator pedal fully released	0.21 - 0.36V
, ¬	VV/U	sensor 2	[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 2.1V
75	P/L	Fuel tank temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with fuel tank temperature.
78	B/R	Fuel level sensor ground	[Engine is running] • Idle speed	Approximately 0V

				[VQ]	
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	Α
80	В	Mass air flow sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	EC
81	w	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower switch are "ON". (Compressor operates.) 	1.0 - 4.0V	С
83	w	Throttle position sensor 1	 [Ignition switch "ON"] Gear position: "D" (A/T models) Gear position: "1st" (M/T models) Accelerator pedal fully released 	More than 0.36V	D E
		Throws position contact.	 [Ignition switch "ON"] Gear position: "D" (A/T models) Gear position: "1st" (M/T models) Accelerator pedal fully depressed 	Less than 4.75V	F
84		Throttle position concer 2	 [Ignition switch "ON"] Gear position: "D" (A/T models) Gear position: "1st" (M/T models) Accelerator pedal fully released 	Less than 4.75V	G H
04	84 L Throttle position sensor 2		 [Ignition switch "ON"] Gear position: "D" (A/T models) Gear position: "1st" (M/T models) Accelerator pedal fully depressed 	More than 0.36V	I
0.5		Camshaft position sensor	[Engine is running]Warm-up conditionIdle speed	1.0 - 4.0V★ 1.0	J K
85	G	(PHASE) (bank 2)	[Engine is running] ● Engine speed is 2,000 rpm.	1.0 - 4.0V★ 1.0	М
88	W	Heated oxygen sensor 2 (bank 1)	[Engine is running] • Warm-up condition • Engine speed is 2,000 rpm.	0 - Approximately 1.0V	
89	W	Power steering pressure sensor	[Engine is running]● Steering wheel is being turned.[Engine is running]	0.5 - 4.0V	
90	W	Heated oxygen sensor 2 (bank 2)	 Steering wheel is not being turned. [Engine is running] Warm-up condition Engine speed is 2,000 rpm. 	0.4 - 0.8V 0 - Approximately 1.0V	

				[VQ]
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
91	W	Heated oxygen sensor 1 (bank 1)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)
92	W	Heated oxygen sensor 1 (bank 2)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)
93	Y	Engine coolant temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with engine coolant temperature.
		Crankshaft position sensor	[Engine is running]Warm-up conditionIdle speed	Approximately 2.4V★ SEC035D
		(POS)	[Engine is running] ● Engine speed is 2,000 rpm.	Approximately 2.3V★ SEC036D
101	Υ	Throttle control motor (Open)	[Ignition switch "ON"] Shift lever: "D" (A/T models) Shift lever: "1st" (M/T models) Accelerator pedal is depressing	0 - 14V★
102	R	Throttle control motor relay power supply	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
103	BR	Throttle control motor (Close)	[Ignition switch "ON"] Shift lever: "D" (A/T models) Shift lever: "1st" (M/T models) Accelerator pedal is releasing	0 - 14V★
105	OR	EVAP canister vent control valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
106 108	B B	ECM ground	[Engine is running] ● Idle speed	Engine ground
107	В	Throttle control motor ground	[Ignition switch "ON"]	Approximately 0V
109	L	CAN communication line	[Ignition switch "ON"]	Approximately 2.6 - 3.2V Output voltage varies with the communication status.

[VQ]

Α

EC

C

D

Е

Н

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
110 112	R/G R/G	Power supply for ECM	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
111	R	Sensors' power supply	[Ignition switch "ON"]	Approximately 5V
113	Y	CAN communication line	[Ignition switch "ON"]	Approximately 1.7 - 2.3V Output voltage varies with the communication status.
115	OR	Data link connector	[Ignition switch "ON"] • CONSULT-II or GST is disconnected.	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

CONSULT-II Function FUNCTION

UBS0035V

Diagnostic test mode	Function
Work support	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-II unit.
Self-diagnostic results	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly.*1
Data monitor	Input/Output data in the ECM can be read.
Data monitor (SPEC)	Input/Output of the specification for Basic fuel schedule, AFM, A/F feedback control value and the other data monitor items can be read.
CAN diagnostic support monitor	The results of transmit/receive dianosis of CAN communication can be read.
Active test	Diagnostic Test Mode in which CONSULT-II drives some actuators apart from the ECMs and also shifts some parameters in a specified range.
DTC & SRT confirmation	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.
Function test	This mode is used to inform customers when their vehicle condition requires periodic maintenance.
ECM part number	ECM part number can be read.

^{*1} The following emission-related diagnostic information is cleared when the ECM memory is erased.

- 1. Diagnostic trouble codes
- 2. 1st trip diagnostic trouble codes
- 3. Freeze frame data
- 4. 1st trip freeze frame data
- 5. System readiness test (SRT) codes
- 6. Test values

7. Others

M

ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION

			DIAGNOSTIC TEST MODE							
	Item		WORK		AGNOSTIC BULTS	DATA	DATA	ACTIVE TEST	DTC & SRT CONFIRMATION	
			WORK SUP- PORT	DTC*1	FREEZE FRAME DATA*2	DATA MONI- TOR	MONI- TOR (SPEC)		SRT STATUS	DTC WORK SUP- PORT
		Crankshaft position sensor (POS)		×	×	×	×			
		Camshaft position sensor (PHASE)		×		×	×			
		Mass air flow sensor		×		×	×			
		Engine coolant temperature sensor		×	×	×	×	×		
		Heated oxygen sensor 1		×		×	×		×	×
		Heated oxygen sensor 2		×		×	×		×	×
		Vehicle speed sensor		×	×	×	×			
		Accelerator pedal position sensor		×		×	×			
S		Throttle position sensor		×		×	×			
\RT		Fuel tank temperature sensor		×		×	×	×		
ENT P/		EVAP control system pressure sensor		×		×	×			
NO		Absolute pressure sensor		×		×	×			
Ā	=	Intake air temperature sensor		×		×	×			
ŭ	INPUT	Knock sensor		×						
8	_	Refrigerant pressure sensor				×	×			
S		Ignition switch (start signal)				×	×			
ENGINE CONTROL COMPONENT PARTS		Closed throttle position switch (accelerator pedal position sensor signal)				×	×			
ш		Air conditioner switch				×	×			
		Park/neutral position (PNP) switch		×		×	×			
		Stop lamp switch		×		×	×			
		Power steering pressure sensor		×		×	×			
		Battery voltage				×	×			
		Load signal				×	×			
		Fuel level sensor		×		×	×			
		ASCD steering switch		×		×	×			
		ASCD brake switch		×		×	×			

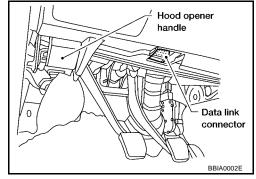
Α

 D

Е

Н

K

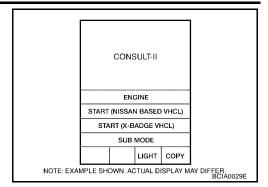

M

					DIAC	SNOSTIC	TEST MO	DE			
	Item		WORK	SELF-DIAGNOSTIC RESULTS		DATA	DATA		DTC & SRT CONFIRMATION		
			SUP- PORT	DTC*1	FREEZE FRAME DATA*2	MONI- TOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT	
		Injectors				×	×	×			
		Power transistor (Ignition timing)				×	×	×			
		Throttle control motor relay		×		×	×				
S		Throttle control motor		×							
ENGINE CONTROL COMPONENT PARTS		EVAP canister purge volume control solenoid valve		×		×	×	×		×	
Ä		Air conditioner relay				×	×				
PO		Fuel pump relay	×			×	×	×			
Ö	OUTPUT	Cooling fan relay		×		×	×	×			
7.0	ЭČТ	Heated oxygen sensor 1 heater		×		×	×		×		
ITR		Heated oxygen sensor 2 heater		×		×	×		×		
S		EVAP canister vent control valve		×		×	×	×			
Ä		Vacuum cut valve bypass valve		×		×	×	×		×	
ENG		Intake valve timing control solenoid valve		×		×	×	×			
		VIAS control solenoid valve		×		×	×	×			
		Electronic controlled engine mount				×	×	×			
		Calculated load value			×	×	×				

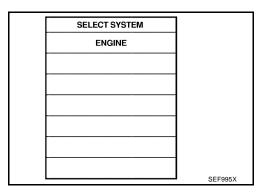
X: Applicable

CONSULT-II INSPECTION PROCEDURE

- 1. Turn ignition switch OFF.
- 2. Connect "CONSULT-II" to data link connector, which is located under LH dash panel near the fuse box cover.
- 3. Turn ignition switch ON.

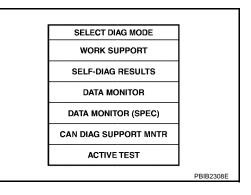


Revision: May 2004 EC-731 2002 Altima


^{*1:} This item includes 1st trip DTCs.

^{*2:} This mode includes 1st trip freeze frame data or freeze frame data. The items appear on CONSULT-II screen in freeze frame data mode only if a 1st trip DTC or DTC is detected. For details, refer to <u>EC-677</u>.

4. Touch "START".



5. Touch "ENGINE".

6. Perform each diagnostic test mode according to each service procedure.

For further information, see the CONSULT-II Operation Manual.

WORK SUPPORT MODE Work Item

WORK ITEM	CONDITION	USAGE
FUEL PRESSURE RELEASE	FUEL PUMP WILL STOP BY TOUCHING "START" DUR- ING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.	When releasing fuel pressure from fuel line
IDLE AIR VOL LEARN	THE IDLE AIR VOLUME THAT KEEPS THE ENGINE WITHIN THE SPECIFIED RANGE IS MEMORIZED IN ECM.	When learning the idle air volume
SELF-LEARNING CONT	THE COEFFICIENT OF SELF-LEARNING CONTROL MIXTURE RATIO RETURNS TO THE ORIGINAL COEF- FICIENT.	When releasing fuel pressure from fuel line

Α

D

Е

G

Н

M

WORK ITEM	CONDITION	USAGE
EVAP SYSTEM CLOSE	OPEN THE VACUUM CUT VALVE BYPASS VALVE AND CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN ORDER TO MAKE EVAP SYSTEM CLOSE UNDER THE FOLLOWING CONDITIONS.	When detecting EVAP vapor leak point of EVAP system
	• IGN SW "ON"	
	ENGINE NOT RUNNING	
	• AMBIENT TEMPERATURE IS ABOVE 0°C (32°F).	
	NO VACUUM AND NO HIGH PRESSURE IN EVAP SYSTEM	
	• FUEL TANK TEMP. IS MORE THAN 0°C (32°F).	
	WITHIN 10 MINUTES AFTER STARTING "EVAP SYSTEM CLOSE"	
	 WHEN TRYING TO EXECUTE "EVAP SYSTEM CLOSE" UNDER THE CONDITION EXCEPT ABOVE, CONSULT- II WILL DISCONTINUE IT AND DISPLAY APPROPRI- ATE INSTRUCTION. 	
	NOTE: WHEN STARTING ENGINE, CONSULT-II MAY DISPLAY "BATTERY VOLTAGE IS LOW. CHARGE BATTERY", EVEN IN USING CHARGED BATTERY.	
TARGET IDLE RPM ADJ*	IDLE CONDITION	When setting target idle speed
TARGET IGN TIM ADJ*	IDLE CONDITION	When adjusting target ignition timing After adjustment, confirm target ignition timing with a timing light.

^{*:} This function is not necessary in the usual service procedure.

SELF-DIAG RESULTS MODE

Self Diagnostic Item

Regarding items of "DTC and 1st trip DTC", refer to EC-631, "INDEX FOR DTC" .)

Freeze Frame Data and 1st Trip Freeze Frame Data

Freeze frame data item*1	Description
DIAG TROUBLE CODE [PXXXX]	The engine control component part/control system has a trouble code, it is displayed as "PXXXX". (Refer to EC-631, "INDEX FOR DTC" .)
FUEL SYS-B1*2	"Fuel injection system status" at the moment a malfunction is detected is displayed.
FUEL SYS-B2*2	One mode in the following is displayed. "MODE 2": Open loop due to detected system malfunction "MODE 3": Open loop due to driving conditions (power enrichment, deceleration enrichment) "MODE 4": Closed loop - using oxygen sensor(s) as feedback for fuel control "MODE 5": Open loop - has not yet satisfied condition to go to closed loop
CAL/LD VALUE [%]	The calculated load value at the moment a malfunction is detected is displayed.
COOLANT TEMP [°C] or [°F]	The engine coolant temperature at the moment a malfunction is detected is displayed.
S-FUEL TRIM-B1 [%]	"Short-term fuel trim" at the moment a malfunction is detected is displayed.
S-FUEL TRIM-B2 [%]	The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel schedule.
L-FUEL TRIM-B1 [%]	"Long-term fuel trim" at the moment a malfunction is detected is displayed.
L-FUEL TRIM-B2 [%]	The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule than short-term fuel trim.
ENGINE SPEED [rpm]	The engine speed at the moment a malfunction is detected is displayed.
VHCL SPEED [km/h] or [mph]	The vehicle speed at the moment a malfunction is detected is displayed.

Freeze frame data item*1	Description			
B/FUEL SCHDL [msec]	The base fuel schedule at the moment a malfunction is detected is displayed.			
INT/A TEMP SE [°C] or [°F]	The intake air temperature at the moment a malfunction is detected is displayed.			

^{*1:} The items are the same as those of 1st trip freeze frame data.

DATA MONITOR MODE

Monitored Item

×: Applicable

				×: Applical
Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
ENG SPEED [rpm]	×	×	Indicates the engine speed computed from the signal of the crankshaft position sensor (POS) and CMPS (PHASE).	 Accuracy becomes poor if engine speed drops below the idle rpm. If the signal is interrupted while the engine is running, an abnormal value may be indicated.
MAS A/F SE-B1 [V]	×	×	The signal voltage of the mass air flow sensor is displayed.	When the engine is stopped, a certain value is indicated.
COOLAN TEMP/S [°C] or [°F]	×	×	The engine coolant temperature (determined by the signal voltage of the engine coolant temperature sensor) is displayed.	When the engine coolant temperature sensor is open or short-circuited, ECM enters fail-safe mode. The engine coolant temperature determined by the ECM is displayed.
HO2S1 (B1) [V]	×	×	The signal voltage of the heated oxygen	
HO2S1 (B2) [V]	×		sensor 1 is displayed.	
HO2S2 (B1) [V]	×		The signal voltage of the heated oxygen	
HO2S2 (B2) [V]	×		sensor 2 is displayed.	
HO2S1 MNTR (B1) [RICH/LEAN]	×	×	Display of heated oxygen sensor 1 sig- nal during air-fuel ratio feedback control: RICH means the mixture became	After turning ON the ignition switch, "RICH" is displayed until air-fuel mixture ratio feedback
HO2S1 MNTR (B2) [RICH/LEAN]	×		"rich", and control is being affected toward a leaner mixture. LEAN means the mixture became "lean", and control is being affected toward a rich mixture.	control begins. • When the air-fuel ratio feedback is clamped, the value just before the clamping is displayed continuously.
HO2S2 MNTR (B1) [RICH/LEAN]	×		Display of heated oxygen sensor 2 signal:	
HO2S2 MNTR (B2) [RICH/LEAN]	×		RICH means the amount of oxygen after three way catalyst is relatively small. LEAN means the amount of oxygen after three way catalyst is relatively large.	When the engine is stopped, a certain value is indicated.
VHCL SPEED SE [km/h] or [mph]	×	×	The vehicle speed computed from the vehicle speed signal sent from combina- tion meter is displayed.	
BATTERY VOLT [V]	×	×	The power supply voltage of ECM is displayed.	
ACCEL SEN 1 [V]	×	×	The accelerator pedal position sensor	
ACCEL SEN 2 [V]	×		signal voltage is displayed.	

^{*2:} Regarding L31 model, "B1" indicates bank 1 and "B2" indicates bank 2.

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
THRTL SEN 1 [V] THRTL SEN 2 [V]	×	×	The throttle position sensor signal voltage is displayed.	
FUEL T/TEMP SE [°C] or [°F]	×		The fuel temperature (determined by the signal voltage of the fuel tank temperature sensor) is displayed.	
NT/A TEMP SE [°C] or [°F]	×	×	The intake air temperature (determined by the signal voltage of the intake air temperature sensor) is indicated.	
EVAP SYS PRES [V]	×		The signal voltage of EVAP control system pressure sensor is displayed.	
ABSOL PRES/SE	×		The signal of the absolute pressure sensor is displayed.	
FUEL LEVEL SE	×		The signal voltage of the fuel level sensor is displayed.	
START SIGNAL ON/OFF]	×	×	Indicates [ON/OFF] condition from the starter signal.	 After starting the engine, [OFF] is displayed regardless of the starter signal.
CLSD THL POS ON/OFF]	×	×	 Indicates idle position [ON/OFF] computed by ECM according to the accelerator pedal position sensor signal. 	
AIR COND SIG ON/OFF]	×	×	 Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioner signal. 	
P/N POSI SW [ON/OFF]	×	×	 Indicates [ON/OFF] condition from the park/neutral position (PNP) switch sig- nal. 	
PW/ST SIGNAL ON/OFF]	×	×	 [ON/OFF] condition of the power steer- ing system (determined by the signal voltage of the power steering pressure sensor signal) is indicated. 	
LOAD SIGNAL ON/OFF]	×	×	 Indicates [ON/OFF] condition from the electrical load signal. ON Rear window defogger switch is ON and/or lighting switch is in 2nd posi- tion. OFF Both rear window defogger switch and lighting switch are OFF. 	
GNITION SW ON/OFF]	×	×	 Indicates [ON/OFF] condition from ignition switch signal. 	
BRAKE SW ON/OFF]			 Indicates [ON/OFF] condition from the stop lamp switch signal. 	
NJ PULSE-B1 [msec]		×	Indicates the actual fuel injection pulse width componented by ECM according.	When the engine is stopped, a contain computed value is indi-
NJ PULSE-B2 [msec]			width compensated by ECM according to the input signals.	certain computed value is indi- cated.
B/FUEL SCHDL [msec]		×	"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	
GN TIMING BTDC]		×	 Indicates the ignition timing computed by ECM according to the input signals. 	When the engine is stopped, a certain value is indicated.

	ECM	MAIN		L
Monitored item [Unit]	INPUT SIG- NALS	SIG- NALS	Description	Remarks
A/F ALPHA-B1 [%]		×		When the engine is stopped, a
A/F ALPHA-B2 [%]		×	 The mean value of the air-fuel ratio feedback correction factor per cycle is indicated. 	 certain value is indicated. This data also includes the data for the air-fuel ratio learning control.
CAL/LD VALUE [%]			"Calculated load value" indicates the value of the current airflow divided by peak airflow.	
MASS AIRFLOW [g·m/s]			 Indicates the mass airflow computed by ECM according to the signal voltage of the mass air flow sensor. 	
PURG VOL C/V [%]			 Indicates the EVAP canister purge vol- ume control solenoid valve control value computed by the ECM according to the input signals. 	
			The opening becomes larger as the value increases.	
INT/V TIM (B1) [°CA]			Indicates [°CA] of intake camshaft	
INT/V TIM (B2) [°CA]			advanced angle.	
INT/V SOL (B1) [%]			The control condition of the intake valve	
INT/V SOL (B2) [%]			timing control solenoid valve (determined by ECM according to the input signals) is indicated. ON intake valve timing control is operating. OFF Intake valve timing control is not operating.	
VIAS S/V [ON/OFF]			The control condition of the VIAS control solenoid valve (determined by ECM according to the input signals) is indicated. ON VIAS control solenoid valve is operating. OFF VIAS control solenoid valve is not operating.	
AIR COND RLY [ON/OFF]			The air conditioner relay control condition (determined by ECM according to the input signals) is indicated.	
ENGINE MOUNT [IDLE/TRVL]			The control condition of the electronic controlled engine mount (determined by ECM according to the input signals) is indicated. IDLE Idle condition ON Driving condition	
FUEL PUMP RLY [ON/OFF]			Indicates the fuel pump relay control condition determined by ECM according to the input signals.	
VC/V BYPASS/V [ON/OFF]			The control condition of the vacuum cut valve bypass valve (determined by ECM according to the input signals) is indi- cated. ON Open OFF Closed	

	ECM	MAIN			<u>~,</u>
Monitored item [Unit]	INPUT SIG- NALS	SIG- NALS	Description	Remarks	
VENT CONT/V [ON/OFF]			The control condition of the EVAP canister vent control valve (determined by ECM according to the input signals) is indicated. ON Closed OFF Open		E
THRTL RELAY [ON/OFF]			Indicates the throttle control motor relay control condition determined by the ECM according to the input signals.		
COOLING FAN [HI/LOW/OFF]			The control condition of the cooling fan (determined by ECM according to the input signals) is indicated. HI High speed operation LOW Low speed operation OFF Stop		
HO2S1 HTR (B1) [ON/OFF] HO2S1 HTR (B2) [ON/OFF]			Indicates [ON/OFF] condition of heated oxygen sensor 1 heater determined by ECM according to the input signals.		
HO2S2 HTR (B1) [ON/OFF] HO2S2 HTR (B2) [ON/OFF]			Indicates [ON/OFF] condition of heated oxygen sensor 2 heater determined by ECM according to the input signals.		
IDL A/V LEARN [YET/CMPLT/ INCMP]			Display the condition of idle air volume learning YET Idle air volume learning has not been performed yet. CMPLT Idle air volume learning has already been performed successfully. INCMP Idle air volume learning has not been performed successfully.		
TRVL AFTER MIL [km] or [mile]			Distance traveled while MIL is activated.		
AC PRESS SEN [V]			The signal voltage from the refrigerant pressure sensor is displayed.		
VHCL SPEED SE [km/h] or [mph]			 The vehicle speed computed from the vehicle speed signal sent from TCM is displayed. 		
SET VHCL SPD [km/h] or [mph]			The preset vehicle speed is displayed.		
MAIN SW [ON/OFF]			Indicates [ON/OFF] condition from CRUISE switch signal.		
CANCEL SW [ON/OFF]			Indicates [ON/OFF] condition from CAN- CEL switch signal.		
RESUME/ACC SW [ON/OFF]			Indicates [ON/OFF] condition from ACCEL/RES switch signal.		
SET SW [ON/OFF]			Indicates [ON/OFF] condition from COAST/SET switch signal.		
BRAKE SW1 SW [ON/OFF]			Indicates [ON/OFF] condition from ASCD brake switch signal, and ASCD clutch switch signal (M/T models).		
BRAKE SW2 SW [ON/OFF]			Indicates [ON/OFF] condition of stop lamp switch signal.		

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
VHCL SPD CUT [NON/CUT]			Indicates the vehicle cruise condition. NON Vehicle speed is maintained at the ASCD set speed. CUT Vehicle speed increased to excessively high compared with the ASCD set speed, and ASCD operation is cut off.	
LO SPEED CUT [NON/CUT]			 Indicates the vehicle cruise condition. NON Vehicle speed is maintained at the ASCD set speed. CUT Vehicle speed decreased to excessively low compared with the ASCD set speed, and ASCD operation is cut off. 	
AT OD MONITOR [ON/OFF]			 Indicates [ON/OFF] condition of A/T O/D according to the input signal from the TCM. 	
AT OD CANCEL [ON/OFF]			Indicates [ON/OFF] condition of A/T O/D cancel signal sent from the TCM.	
CRUISE LAMP [ON/OFF]			Indicates [ON/OFF] condition of CRUISE lamp determined by the ECM according to the input signals.	
SET LAMP [ON/OFF]			 Indicates [ON/OFF] condition of SET lamp determined by the ECM according to the input signals. 	
Voltage [V]				
Frequency [msec], [Hz] or [%]				 Only "#" is displayed if item is unable to be measured.
DUTY-HI			 Voltage, frequency, duty cycle or pulse width measured by the probe. 	• Figures with "#"s are temporary
DUTY-LOW			widin measured by the probe.	ones. They are the same figures as an actual piece of data which
PLS WIDTH-HI				was just previously measured.
PLS WIDTH-LOW				

NOTE:

- Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.
- Regarding L31 model, "B1" indicates bank 1 and "B2" indicates bank 2.

DATA MONITOR (SPEC) MODE

Monitored Item

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
ENG SPEED [rpm]	×		 Indicates the engine speed computed from the signal of the crankshaft position sensor (POS). 	
MAS A/F SE-B1 [V]	×	×	The signal voltage of the mass air flow sensor specification is displayed.	When engine is running specification range is indicated.

[VQ]

С

D

Е

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
B/FUEL SCHDL [msec]			"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	When engine is running specification range is indicated.
A/F ALPHA-B1 [%] A/F ALPHA-B2 [%]		×	The mean value of the air-fuel ratio feed- back correction factor per cycle is indi- cated.	 When engine is running specification range is indicated. This data also includes the data for the air-fuel ratio learning control.

NOTE:

Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

ACTIVE TEST MODE

Test Item

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
FUEL INJEC- TION	 Engine: Return to the original trouble condition Change the amount of fuel injection using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connectorsFuel injectorsHeated oxygen sensor 1
IGNITION TIM- ING	 Engine: Return to the original trouble condition Timing light: Set Retard the ignition timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Perform "Idle Air Volume Learning".
POWER BAL- ANCE	 Engine: After warming up, idle the engine. A/C switch "OFF" Shift lever "N" Cut off each injector signal one at a time using CONSULT-II. 	Engine runs rough or dies.	 Harness and connectors Compression Fuel injectors Power transistor Spark plugs Ignition coils
COOLING FAN	 Ignition switch: ON Turn the cooling fan "HI", "LOW" and "OFF" using CONSULT-II. 	Cooling fan moves and stops.	Harness and connectorsCooling fan motorCooling fan relay
ENG COOLANT TEMP	 Engine: Return to the original trouble condition Change the engine coolant temperature using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connectorsEngine coolant temperature sensorFuel injectors
FUEL PUMP RELAY	 Ignition switch: ON (Engine stopped) Turn the fuel pump relay "ON" and "OFF" using CONSULT-II and listen to operating sound. 	Fuel pump relay makes the operating sound.	Harness and connectors Fuel pump relay
VIAS SOL VALVE	 Ignition switch: ON Turn solenoid valve "ON" and "OFF" with CONSULT-II and listen for operating sound. 	Solenoid valve makes an operating sound.	Harness and connectors Solenoid valve
ENGINE MOUNTING	 Engine: After warming up, run engine at idle speed. Gear position: "D" range (Vehicle stopped) Turn electronic controlled engine mount "IDLE" and "TRVL" with the CONSULT-II. 	Body vibration changes according to the electronic controlled engine mount condition.	Harness and connectors Electronic controlled engine mount

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)	
PURG VOL CONT/V	 Engine: After warming up, run engine at 1,500 rpm. Change the EVAP canister purge volume control solenoid valve opening percent using CONSULT-II. 	Engine at 1,500 rpm. Change the EVAP canister purge volume control solenoid valve opening percent using CON- Engine speed changes according to the opening percent.		
FUEL/T TEMP SEN	Change the fuel tank temperature	using CONSULT-II.		
VENT CON- TROL/V	 Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" with the CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connectors Solenoid valve	
VC/V BYPASS/V	 Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" with the CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connectors Solenoid valve	
V/T ASSIGN ANGLE	 Engine: Return to the original trouble condition Change intake valve timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connectors Intake valve timing control solenoid valve	

DTC & SRT CONFIRMATION MODE SRT STATUS Mode

For details, refer to EC-678, "SYSTEM READINESS TEST (SRT) CODE".

SRT Work Support Mode

This mode enables a technician to drive a vehicle to set the SRT while monitoring the SRT status.

DTC Work Support Mode

Test mode	Test item	Condition	Reference page
EVAP SYSTEM	PURGE FLOW P0441		EC-955
	EVAP SML LEAK P0442/P1442		EC-961
	EVAP V/S SML LEAK P0456/P1456		EC-1004
	PURG VOL CN/V P1444		EC-1141
	VC CUT/V BP/V P1491		EC-1180
	HO2S1 (B1) P0133		EC-834
	HO2S1 (B1) P0134		EC-845
	HO2S1 (B1) P1143		EC-1072
HO2S1	HO2S1 (B1) P1144		EC-1078
HU251	HO2S1 (B2) P0153	Refer to corresponding trouble diagnosis for	EC-834
	HO2S1 (B2) P0154	DTC.	EC-845
	HO2S1 (B2) P1163		EC-1072
	HO2S1 (B2) P1164		EC-1078
	HO2S2 (B1) P0139		EC-865
	HO2S2 (B1) P1146		EC-1085
H02S2	HO2S2 (B1) P1147		EC-1095
70232	HO2S2 (B2) P0159		EC-865
	HO2S2 (B2) P1166		EC-1085
	HO2S2 (B2) P1167		EC-1095

[VQ]

Α

EC

Е

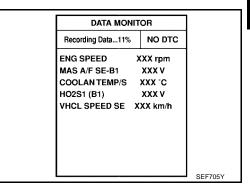
Н

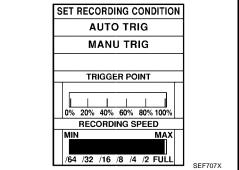
K

REAL TIME DIAGNOSIS IN DATA MONITOR MODE (RECORDING VEHICLE DATA) **Description**

CONSULT-II has two kinds of triggers and they can be selected by touching "SETTING" in "DATA MONITOR" mode.

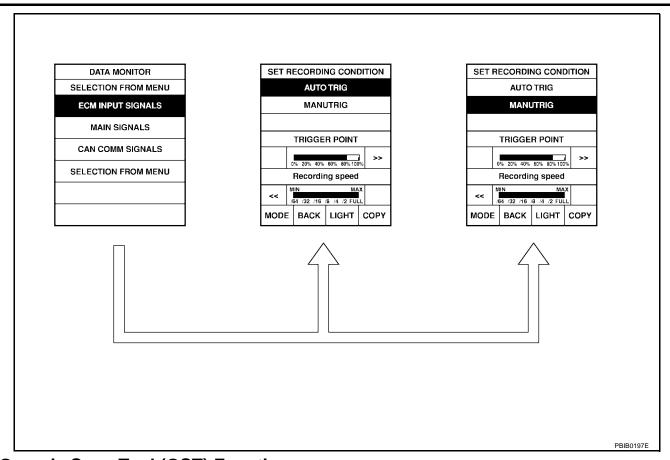
- "AUTO TRIG" (Automatic trigger):
- The malfunction will be identified on the CONSULT-II screen in real time.


In other words, DTC/1st trip DTC and malfunction item will be displayed if the malfunction is detected by ECM.


At the moment a malfunction is detected by ECM, "MONITOR" in "DATA MONITOR" screen is changed to "Recording Data ... xx%" as shown at right, and the data after the malfunction detection is recorded. Then when the percentage reached 100%, "REAL-TIME DIAG" screen is displayed. If "STOP" is touched on the screen during "Recording Data ... xx%", "REAL-TIME DIAG" screen is also displayed.

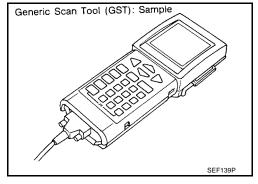
The recording time after the malfunction detection and the recording speed can be changed by "TRIGGER POINT" and "Recording Speed". Refer to CONSULT-II OPERATION MAN-UAL.

- "MANU TRIG" (Manual trigger):
- DTC/1st trip DTC and malfunction item will not be displayed automatically on CONSULT-II screen even though a malfunction is detected by ECM.


DATA MONITOR can be performed continuously even though a malfunction is detected.

Operation

- "AUTO TRIG"
- While trying to detect the DTC/1st trip DTC by performing the "DTC Confirmation Procedure", be sure to select to "DATA MONITOR (AUTO TRIG)" mode. You can confirm the malfunction at the moment it is detected.
- While narrowing down the possible causes, CONSULT-II should be set in "DATA MONITOR (AUTO TRIG)" mode, especially in case the incident is intermittent.
 - When you are inspecting the circuit by gently shaking (or twisting) the suspicious connectors, components and harness in the "DTC Confirmation Procedure", the moment a malfunction is found the DTC/1st trip DTC will be displayed. (Refer to "Incident Simulation Tests" in GI-25, "How to Perform Efficient Diagnosis for an Electrical Incident".)
- "MANU TRIG"
- If the malfunction is displayed as soon as "DATA MONITOR" is selected, reset CONSULT-II to "MANU TRIG". By selecting "MANU TRIG" you can monitor and store the data. The data can be utilized for further diagnosis, such as a comparison with the value for the normal operating condition.


Generic Scan Tool (GST) Function DESCRIPTION

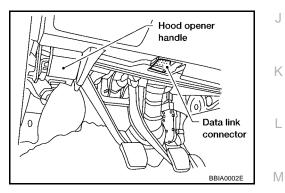
UBS0035W

Generic Scan Tool (OBDII scan tool) complying with SAE J1978 has 8 different functions explained below.

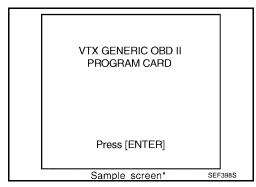
ISO9141 is used as the protocol.

The name "GST" or "Generic Scan Tool" is used in this service manual.

FUNCTION


Diagnostic test mode		Function	
MODE 1	READINESS TESTS	This mode gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, and system status information.	
MODE 2	(FREEZE DATA)	This mode gains access to emission-related data value which were stored by ECM during the freeze frame. For details, refer to EC-677 , "FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA".	
MODE 3	DTCs	This mode gains access to emission-related power train trouble codes which were stored by ECM.	

[VQ]


Diagnostic test mode		Diagnostic test mode Function	
		This mode can clear all emission-related diagnostic information. This includes:	
		Clear number of diagnostic trouble codes (MODE 1)	
		Clear diagnostic trouble codes (MODE 3)	
MODE 4	CLEAR DIAG INFO	Clear trouble code for freeze frame data (MODE 1)	
		Clear freeze frame data (MODE 2)	
		 Reset status of system monitoring test (MODE 1) 	
		 Clear on board monitoring test results (MODE 6 and 7) 	
MODE 6	(ON BOARD TESTS)	This mode accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.	
MODE 7	(ON BOARD TESTS)	This mode enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.	
		This mode can close EVAP system in ignition switch "ON" position (Engine stopped). When this mode is performed, the following parts can be opened or closed.	
		EVAP canister vent control valve open	
		Vacuum cut valve bypass valve closed	
		In the following conditions, this mode cannot function.	
MODE 8	_	Low ambient temperature	
		Low battery voltage	
		Engine running	
		Ignition switch "OFF"	
		Low fuel temperature	
		Too much pressure is applied to EVAP system	
MODE 9	(CALIBRATION ID)	This mode enables the off-board test device to request specific vehicle information such as Vehicle Identification Number (VIN) and Calibration IDs.	

GST INSPECTION PROCEDURE

- 1. Turn ignition switch OFF.
- 2. Connect "GST" to data link connector, which is located under LH dash panel near the fuse box cover.

- 3. Turn ignition switch ON.
- 4. Enter the program according to instruction on the screen or in the operation manual.
 - (*: Regarding GST screens in this section, sample screens are shown.)

5. Perform each diagnostic mode according to each service procedure

For further information, see the GST Operation Manual of the tool maker.

OBD II FUNCTIONS

F0: DATA LIST

F1: FREEZE DATA

F2: DTCs

F3: SNAPSHOT

F4: CLEAR DIAG INFO

F5: O2 TEST RESULTS

F6: READINESS TESTS

F7: ON BOARD TESTS

F8: EXPAND DIAG PROT

F9: UNIT CONVERSION

Sample screen*

SEF416S

[VQ]

CONSULT-II Reference Value in Data Monitor

Α

EC

Е

Specification data are reference values.

Specification data are output/input values which are detected or supplied by the ECM at the connector.

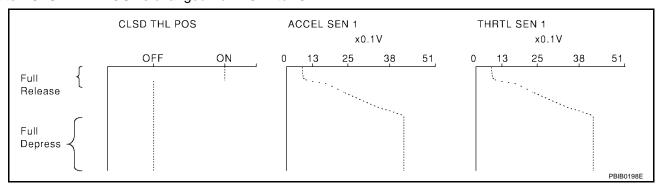
* Specification data may not be directly related to their components signals/values/operations.
i.e. Adjust ignition timing with a timing light before monitoring IGN TIMING, because the monitor may show the specification data in spite of the ignition timing not being adjusted to the specification data. This IGN TIMING monitors the data calculated by the ECM according to the signals input from the camshaft position sensor and other ignition timing related sensors.

MONITOR ITEM **SPECIFICATION** CONDITION • Tachometer: Connect Almost the same speed as the **ENG SPEED** Run engine and compare tachometer indication with the CONSULT-II CONSULT-II value. Idle Engine: After warming up Approx. 1.1 - 1.5V • Air conditioner switch: OFF MAS A/F SE-B1 Shift lever: N 2.500 rpm Approx. 1.7 - 2.4V No-load COOLAN TEMP/S Engine: After warming up More than 70°C (158°F) HO2S1 (B1) $0 - 0.3V \longleftrightarrow Approx. 0.6 -$ Maintaining engine speed at 2,000 Engine: After warming up HO2S1 (B2) 1.0V HO2S2 (B1) Revving engine from idle to 3,000 rpm $0 - 0.3V \longleftrightarrow Approx. 0.6 -$ Engine: After warming up 1.0V HO2S2 (B2) quickly. $\mathsf{LEAN} \longleftrightarrow \mathsf{RICH}$ HO2S1 MNTR (B1) Maintaining engine speed at 2,000 Changes more than 5 times • Engine: After warming up HO2S1 MNTR (B2) rpm during 10 seconds. HO2S2 MNTR (B1) Revving engine from idle to 3.000 rpm • Engine: After warming up $\mathsf{LEAN} \longleftrightarrow \mathsf{RICH}$ HO2S2 MNTR (B2) quickly. • Turn drive wheels and compare speedometer indication with the CON-Almost the same speed as the VEH SPEED SE SULT-II value. CONSULT-II value **BATTERY VOLT** 11 - 14V Ignition switch: ON (Engine stopped) 0.41 - 0.71V Accelerator pedal: Fully released ACCEL SEN1 • Ignition switch: ON ACCEL SEN2 (engine stopped) Accelerator pedal: Fully depressed More than 4.2V • Ignition switch: ON Accelerator pedal: Fully released More than 0.36V (Engine stopped) THRTL SEN1 Shift lever: THRTL SEN2 Accelerator pedal: Fully depressed Less than 4.75V D (A/T model) 1st (M/T model) **EVAP SYS PRES** • Ignition switch: ON Approx. 1.8 - 4.8V ABSOL PRES/SE Ignition switch: ON Approx. 4.4V Ignition switch: ON → START → ON $\mathsf{OFF} \to \mathsf{ON} \to \mathsf{OFF}$ START SIGNAL Accelerator pedal: Fully released ON CLSD THL POS • Ignition switch: ON Accelerator pedal: Slightly depressed OFF OFF Air conditioner switch: OFF • Engine: After warming up, idle AIR COND SIG Air conditioner switch: ON the engine ON (Compressor operates.) Shift lever: P or N ON P/N POSI SW • Ignition switch: ON Shift lever: Except above OFF Steering wheel is in neutral position. OFF • Engine: After warming up, idle (Forward direction) PW/ST SIGNAL the engine Steering wheel is turned. ON Rear window defogger switch is ON ON and/or lighting switch is in 2nd. LOAD SIGNAL Ignition switch: ON Rear window defogger switch is OFF OFF and lighting switch is OFF. **IGNITION SW** Ignition switch: ON → OFF → ON $ON \rightarrow OFF \rightarrow ON$

MONITOR ITEM	CONDITION		SPECIFICATION	
	Engine: After warming up, idle Heater fan is operating.		ON	
HEATER FAN SW	the engine	Heater fan is not operating	OFF	
BRAKE SW	• Ignition switch: ON	Brake pedal: Fully released	OFF	
		Brake pedal: Slightly depressed	ON	
	Engine: After warming up	Idle	2.0 - 3.0 msec	
INJ PULSE-B1	Shift lever: N			
INJ PULSE-B2	Air conditioner switch: OFF	2,000 rpm	1.9 - 2.9 msec	
	No-load			
	Engine: After warming up	Idle	2.3 - 2.9 msec	
B/FUEL SCHDL	Shift lever: N			
D/FUEL SCHUL	Air conditioner switch: OFF	2,000 rpm	2.3 - 2.9 msec	
	No-load			
	Engine: After warming up	Idle	13° - 18° BTDC	
IGN TIMING	Shift lever: N			
IOIV TIIVIIIVO	Air conditioner switch: OFF	2,000 rpm	25° - 45° BTDC	
	No-load			
A/F ALPHA-B1	Engine: After warming up	Maintaining engine speed at 2,000	54% - 155%	
A/F ALPHA-B2	J .	rpm		
	Engine: After warming up	Idle	10% - 35%	
CAL/LD VALUE	Shift lever: N	0.500	400/ 050/	
	 Air conditioner switch: OFF No-load 	2,500 rpm	10% - 35%	
		Idla	20.00.00.00.00	
	Engine: After warming upShift lever: N	Idle	2.0 - 6.0 g·m/s	
MASS AIRFLOW	Air conditioner switch: OFF	2,500 rpm	7.0 20.0 a m/o	
	No-load	2,500 lpm	7.0 - 20.0 g·m/s	
	Engine: After warming up	Idle	0%	
	Shift lever: N	TOIC	070	
PURG VOL C/V	Air conditioner switch: OFF	2,000 rpm	_	
	No-load	2,000 ipiii		
	Engine: After warming up	Idle	-5° - 5°CA	
INT/V TIM (B1)	Shift lever: N			
INT/V TIM (B2)	Air conditioner switch: OFF	2,000 rpm	Approx. 0° - 30°CA	
	No-load			
	Engine: After warming up	Idle	0% - 2%	
INT/V SOL (B1)	Shift lever: N			
INT/V SOL (B2)	Air conditioner switch: OFF	2,000 rpm	Approx. 25% - 50%	
	No-load			
VIAS S/V	Engine: After warming up	1,800 - 3,600 rpm	ON	
V 1/1/2 3/ V		Except above conditions	OFF	
	Facing Affan 1	Air conditioner switch: OFF	OFF	
AIR COND RLY	 Engine: After warming up, idle the engine 	Air conditioner switch: ON (Compressor operates)	ON	
ENOINE MO:	F . F .	Idle	IDLE	
ENGINE MOUNT	Engine: Running	2,000 rpm	TRVL	
	For 1 second after turning ignition			
FUEL PUMP RLY	Engine running or cranking		ON	
. JEE! OWN INC.	Except above conditions		OFF	

MONITOR ITEM	CONDITION		SPECIFICATION
VC/V BYPAS S/V	Ignition switch: ON		OFF
VENT CONT/V	Ignition switch: ON		OFF
THRTL RELAY	Ignition switch: ON		ON
COOLING FAN	 Engine: After warming up, idle the engine Air conditioner switch: OFF 	Engine coolant temperature is 94°C (201°F) or less	OFF
		Engine coolant temperature is between 95°C (203°F) and 99°C (210°F)	LOW
		Engine coolant temperature is 100°C (212°F) or more	HIGH
HO2S1 HTR (B1)	• Engine speed: Below 3,600 rpm		ON
HO2S1 HTR (B2)	• Engine speed: Above 3,600 rpm		OFF
HO2S2 HTR (B1)	• Engine speed: Below 3,600 rpm [. 70 km/h (43 MPH) or more]	After driving for 2 minutes at a speed of	ON
HO2S2 HTR (B2)	• Engine speed: Above 3,600 rpm		OFF
TRVL AFTER MIL	Ignition switch: ON	Vehicle has traveled after MIL has turned ON.	0 - 65,535 km (0 - 40,723 mile)
	Ignition switch: ON (Engine stopped)		Approx. 0V
AC PRESS SEN	Engine: Idle Air conditioner switch: OFF		1.0 - 4.0V
VEH SPEED SE	Turn drive wheels and compare speedometer indication with the CON- SULT-II value.		Almost the same speed as the CONSULT-II value
SET VHCL SPD	Engine: Running ASCD: Operating.		The preset vehicle speed is displayed.
MAIN SW	Ignition switch: ON	CRUISE switch: Depressed	ON
IVIAIN SVV		CRUISE switch: Released	OFF
CANCEL CW	Ignition switch: ON	CANCEL switch: Depressed	ON
CANCEL SW		CANCEL switch: Released	OFF
RESUME/ACC SW	• Ignition switch: ON	ACCEL/RES switch: Depressed	ON
KESUWE/ACC SW	Ignition switch: ON	ACCEL/RES switch: Released	OFF
SET SW	■ Ignition switch: ON	COAST/SET switch: Depressed	ON
JLI JVV	Ignition switch: ON	COAST/SET switch: Released	OFF
BRAKE SW1	Ignition switch: ON	Brake pedal: Fully released	OFF
DIVAVE OAA I		Brake pedal: Slightly depressed	ON
DDAKE OM	Ignition switch: ON	Brake pedal: Fully released	OFF
BRAKE SW2		Brake pedal: Slightly depressed	ON
CDITICE LAMP	Ignition switch: ON	CRUISE lamp: Illuminated	ON
CRUISE LAMP		CRUISE lamp: Not illuminated	OFF
SET LAMP	a Ignition quitable ON	SET lamp: Illuminated	ON
	Ignition switch: ON	SET lamp: Not illuminated	OFF

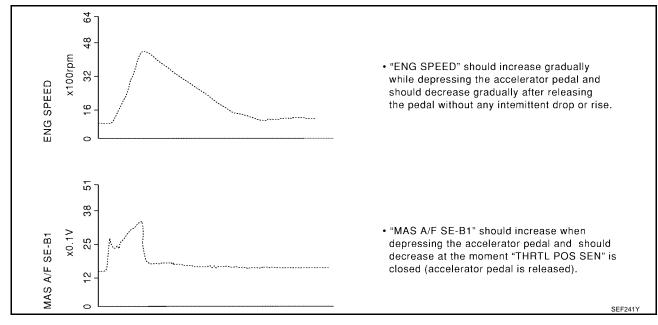
Major Sensor Reference Graph in Data Monitor Mode

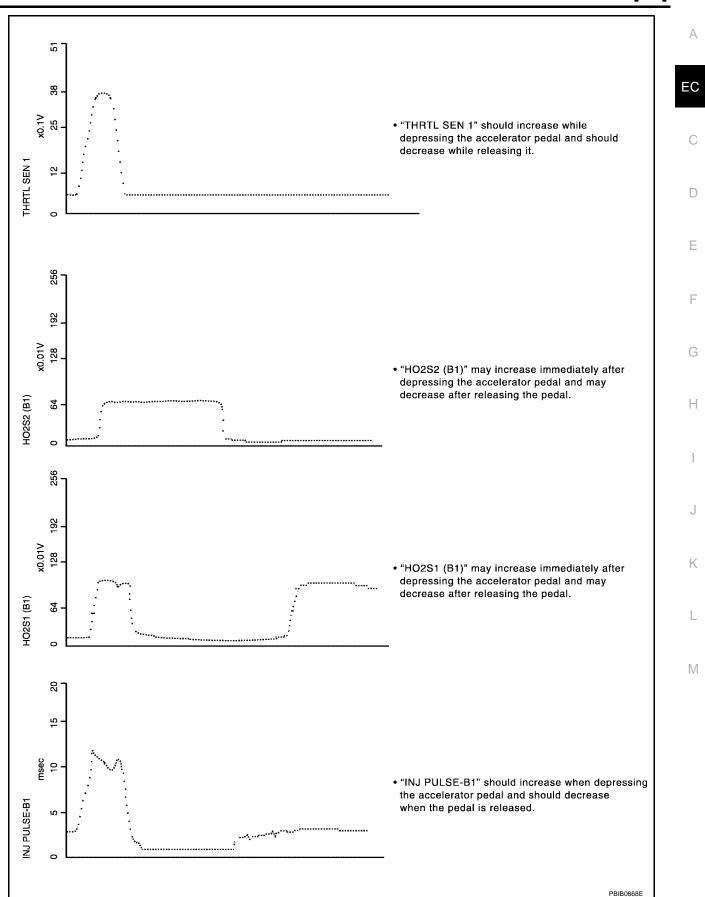

UBS0035Y

The following are the major sensor reference graphs in "DATA MONITOR" mode.

CLSD THL POS, ACCEL SEN 1, THRTL SEN 1

Below is the data for "CLSD THL POS", "ACCEL SEN 1" and "THRTL SEN 1" when depressing the accelerator pedal with the ignition switch "ON" and with selector lever in "D" position (A/T models) or with shift lever in "1st" position (M/T models).


The signal of "ACCEL SEN 1" and "THRTL SEN 1" should rise gradually without any intermittent drop or rise after "CLSD THL POS" is changed from "ON" to "OFF".



ENG SPEED, MAS A/F SE-B1, THRTL SEN 1, HO2S2 (B1), HO2S1 (B1), INJ PULSE-B1

Below is the data for "ENG SPEED", "MAS A/F SE-B1", "THRTL SEN 1", "HO2S2 (B1)", "HO2S1 (B1)" and "INJ PULSE-B1" when revving engine quickly up to 4,800 rpm under no load after warming up engine sufficiently.

Each value is for reference, the exact value may vary.

TROUBLE DIAGNOSIS - SPECIFICATION VALUE

[VQ]

TROUBLE DIAGNOSIS - SPECIFICATION VALUE

PFP:00031

Description

.....

The specification (SP) value indicates the tolerance of the value that is displayed in "DATA MONITOR (SPEC)" mode of CONSULT-II during normal operation of the Engine Control System. When the value in "DATA MONITOR (SPEC)" mode is within the SP value, the Engine Control System is confirmed OK. When the value in "DATA MONITOR (SPEC)" mode is NOT within the SP value, the Engine Control System may have one or more malfunctions.

The SP value is used to detect malfunctions that may affect the Engine Control System, but will not light the MIL.

The SP value will be displayed for the following three items:

- B/FUEL SCHDL (The fuel injection pulse width programmed into ECM prior to any learned on board correction)
- A/F ALPHA-B1/B2 (The mean value of air-fuel ratio feedback correction factor per cycle)
- MAS A/F SE-B1 (The signal voltage of the mass air flow sensor)

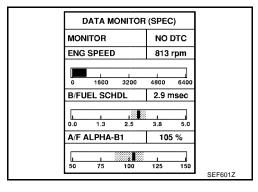
Testing Condition

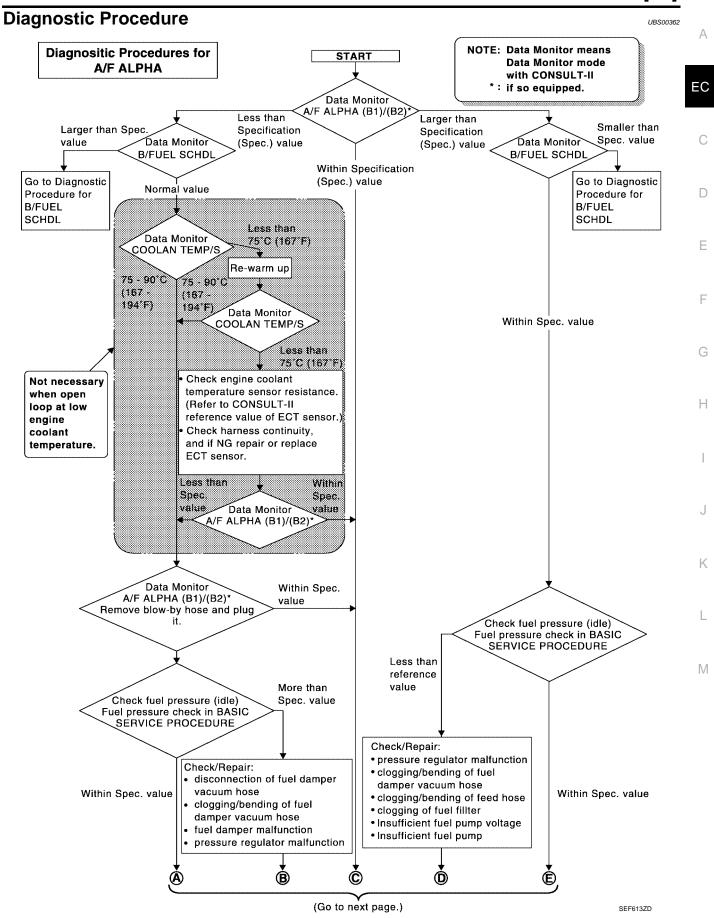
UB\$00360

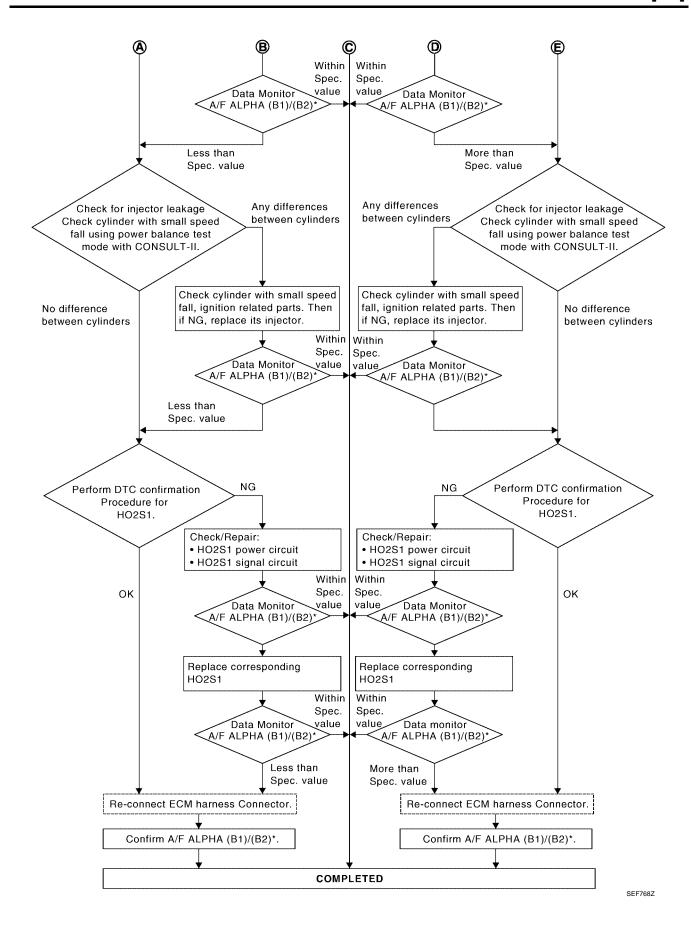
- Vehicle driven distance: More than 5,000 km (3,017 miles)
- Barometric pressure: 98.3 104.3 kPa (1.003 1.064 kg/cm², 14.25 15.12 psi)
- Atmospheric temperature: 20 30°C (68 86°F)
- Engine coolant temperature: 75 95°C (167 203°F)
- Transmission: Warmed-up*1Electrical load: Not applied*2
- Engine speed: Idle

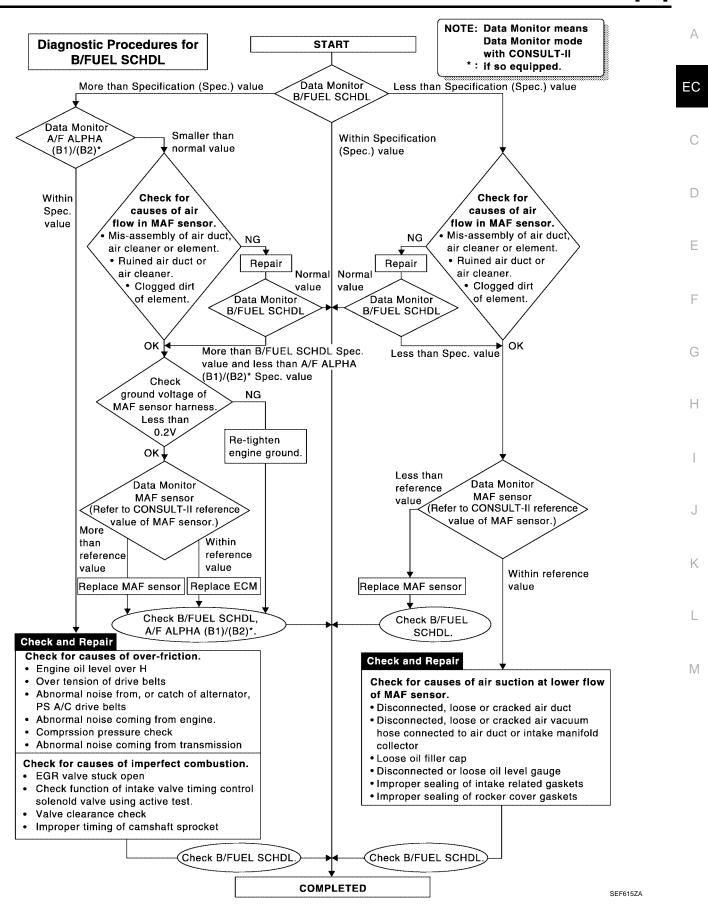
*1: For A/T models with CONSULT-II, after the engine is warmed up to normal operating temperature, drive vehicle until "FLUID TEMP SE" (A/T fluid temperature sensor signal) indicates more than 60°C (140°F). For A/T models without CONSUT-II and M/T models, after the engine is warmed up to normal operating temperature, drive vehicle for 5 minutes.

*2: Rear window defogger switch, air conditioner switch, lighting switch are "OFF". Steering wheel is straight ahead.


Inspection Procedure


UBS00361


NOTE:


Perform "DATA MONITOR (SPEC)" mode in maximum scale display.

- Perform<u>EC-704, "Basic Inspection"</u>.
- 2. Confirm that the testing conditions indicated above are met.
- Select "B/FUEL SCHDL", "A/F ALPHA-B1", "A/F ALPHA-B2" and "MAS A/F SE-B1" in "DATA MONITOR (SPEC)" mode with CONSULT-II.
- Make sure that monitor items are within the SP value.
- 5. If NG, go to EC-751, "Diagnostic Procedure".

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT

[VQ]

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT

PFP:00006

Description

LIDCOOOC

Intermittent incidents (I/I) may occur. In many cases, the problem resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on (1st trip) DTC visits. Realize also that the most frequent cause of I/I occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific problem area.

Common I/I Report Situations

STEP in Work Flow	Situation	
II	The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other than "0" or "[1t]".	
III	The symptom described by the customer does not recur.	
IV	(1st trip) DTC does not appear during the DTC Confirmation Procedure.	
VI	The Diagnostic Procedure for PXXXX does not indicate the problem area.	

Diagnostic Procedure

11000000

1. INSPECTION START

Erase (1st trip) DTCs. Refer to $\underline{\sf EC-686}$, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION" .

>> GO TO 2.

2. CHECK GROUND TERMINALS

Check ground terminals for corroding or loose connection.

Refer to GI-25, "How to Perform Efficient Diagnosis for an Electrical Incident", "CIRCUIT INSPECTION", "Ground Inspection".

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. SEARCH FOR ELECTRICAL INCIDENT

Perform GI-25, "How to Perform Efficient Diagnosis for an Electrical Incident", "INCIDENT SIMULATION TESTS".

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

4. CHECK CONNECTOR TERMINALS

Refer to <u>GI-22, "How to Check Terminal"</u>, "HOW TO PROBE CONNECTORS", "How to Check Enlarged Contact Spring of Terminal".

OK or NG

OK >> INSPECTION END

NG >> Repair or replace connector.

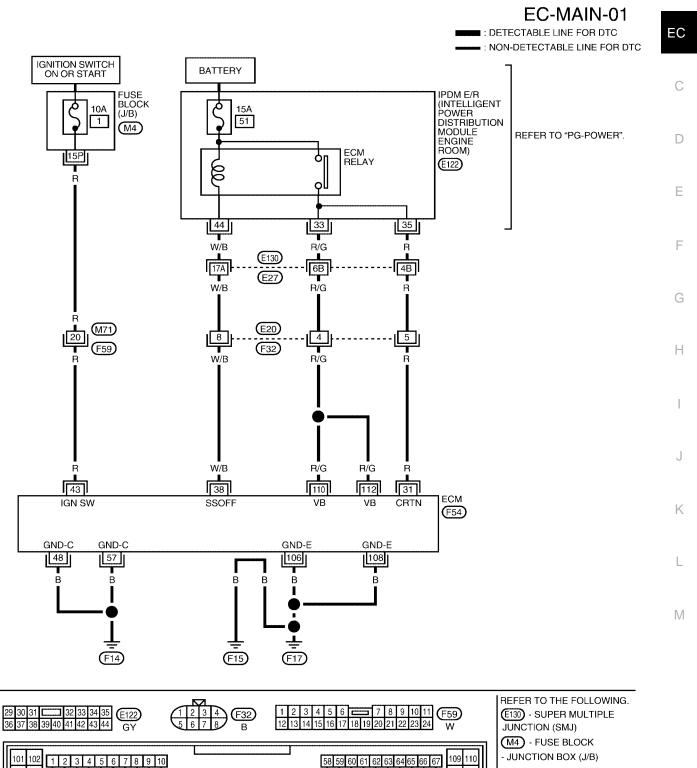
[VQ]

POWER SUPPLY CIRCUIT FOR ECM

PFP:24110

UBS00365

Α


103

104

105 106

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38

BBWA0049E

111 112

113 114

115 116

77 78 79 80 81 82 83 84 85 86

87 88 89 90 91 92 93 94 95

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
31	R	Counter current return	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
38 W/B	ECM relay	[Engine is running] [Ignition switch "OFF"] • For a few seconds after turning ignition switch "OFF"	0 - 1.5V	
		(Self shut-off)	[Ignition switch "OFF"] • A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch "OFF"]	OV
43 R	Ignition switch	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)	
48 57 106 108	B B B	ECM ground	[Engine is running] • Idle speed	Engine ground
110 112	R/G R/G	Power supply for ECM	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS00366

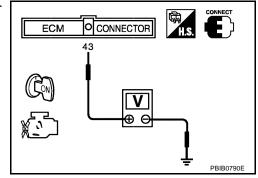
1. INSPECTION START

Start engine.

Is engine running?

Yes or No

Yes >> GO TO 6. No >> GO TO 2.


2. CHECK ECM POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch "OFF" and then "ON".
- Check voltage between ECM terminal 43 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M71, F59
- Fuse block (J/B) connector M4
- 10A fuse
- Harness for open or short between ECM and fuse
 - >> Repair harness or connectors.

4. CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT-I

- 1. Turn ignition switch "OFF".
- Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminals 48, 57, 106, 108 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

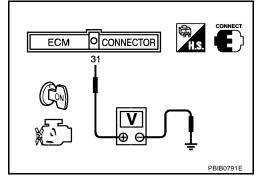
4. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to power in harness or connectors.

5. CHECK ECM POWER SUPPLY CIRCUIT-II


- 1. Reconnect ECM harness connector.
- 2. Turn ignition switch "ON".
- Check voltage between ECM terminal 31 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

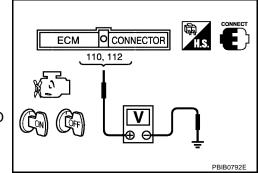
OK >> Go to EC-1224, "IGNITION SIGNAL".

NG >> GO TO 6.

6. CHECK ECM POWER SUPPLY CIRCUIT-III

- 1. Turn ignition switch "ON" and then "OFF".
- 2. Check voltage between ECM terminals 110, 112 and ground with CONSULT-II or tester.

EC-757


Voltage: After turning ignition switch "OFF", battery voltage will exist for a few seconds, then drop approximately 0V.

OK or NG

OK >> GO TO 7.

NG (Battery voltage does not exist.)>>GO TO 9.

NG (Battery voltage exists for more than a few seconds.)>>GO TO 16.

EC

D

Е

Н

.

7. CHECK ECM POWER SUPPLY CIRCUIT-IV

- 1. Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector.
- 3. Check harness continuity between ECM terminal 31 and IPDM E/R terminal 35. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

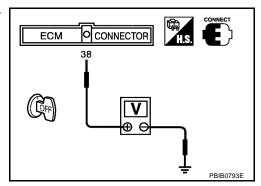
OK >> GO TO 16. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness or connectors E130, E27
- Harness or connectors E20, F32
- Harness for open or short between ECM and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.


9. CHECK ECM POWER SUPPLY CIRCUIT-V

- 1. Turn ignition switch "OFF".
- 2. Check voltage between ECM terminal 38 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10. NG >> GO TO 12.

10. CHECK ECM POWER SUPPLY CIRCUIT-VI

- Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector.
- Check harness continuity between ECM terminals 110, 112 and IPDM E/R terminal 33. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 15. NG >> GO TO 11.

POWER SUPPLY CIRCUIT FOR ECM

[VQ]

11. DETECT MALFUNCTIONING PART

Check the following.

- Harness or connectors E130, E27
- Harness or connectors E20, F32
- Harness for open or short between ECM and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

12. CHECK ECM POWER SUPPLY CIRCUIT-VII

- Disconnect ECM harness connector.
- Disconnect IPDM E/R harness connector.
- 3. Check harness continuity between ECM terminal 38 and IPDM E/R terminal 44. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 14. NG >> GO TO 13.

13. DETECT MALFUNCTIONING PART

Check the following.

- Harness or connectors E130, E27
- Harness or connectors E20, F32
- Harness for open or short between ECM and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

14. CHECK 15A FUSE

- 1. Disconnect 15A fuse from IPDM E/R.
- 2. Check 15A fuse.

OK or NG

OK >> GO TO 16.

NG >> Replace 15A fuse.

15. CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT-II

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminals 59, 60, 106, 108 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 16.

NG >> Repair open circuit or short to power in harness or connectors.

EC-759 Revision: May 2004 2002 Altima

EC

Е

POWER SUPPLY CIRCUIT FOR ECM

[VQ]

16. CHECK INTERMITTENT INCIDENT

Refer to $\underline{\sf EC\text{-}754},\,"\mathsf{TROUBLE}$ DIAGNOSIS FOR INTERMITTENT INCIDENT" . OK or NG

OK >> Replace IPDM E/R.

NG >> Repair open circuit or short to power in harness or connectors.

DTC U1000, U1001 CAN COMMUNICATION LINE

[VQ]

DTC U1000, U1001 CAN COMMUNICATION LINE

PFP:23710

Description

UBS00367

EC

D

Е

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

On Board Diagnosis Logic

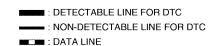
UBS00368

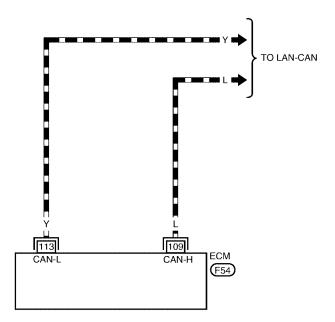
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
U1000 1000	CAN communication	ECM cannot communicate to other control unit.	Harness or connectors (CAN communication line is open or
U1001 1001	line	 ECM cannot communicate for more than the specified time. 	shorted)

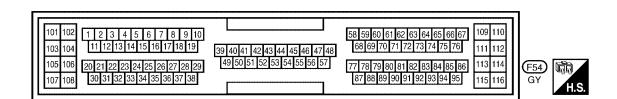
DTC Confirmation Procedure

UBS00369

- 1. Turn ignition switch "ON" and wait at least 3 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. If 1st trip DTC is detected, go to EC-763, "Diagnostic Procedure".


J


Н


Wiring Diagram

UBS0036A

EC-CAN-01

BBWA0200E

DTC U1000, U1001 CAN COMMUNICATION LINE

[VQ]

Diagnostic Procedure

UBS0036B

Go to LAN-7, "CAN SYSTEM (FOR TCS MODELS)" , LAN-28, "CAN SYSTEM (FOR A/T MODELS)" or LAN-45, "CAN SYSTEM (FOR M/T MODELS)" .

EC

С

D

Е

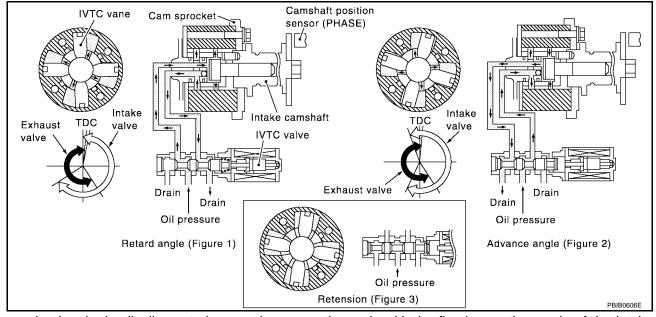
F

G

Н

1

0


K

DTC P0011, P0021 IVT CONTROL

Description SYSTEM DESCRIPTION

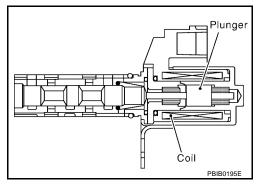
PFP:23796

Sensor	Input signal to ECM	ECM function	Actuator	
Crankshaft position sensor (POS)	Engine speed			
Camshaft position sensor (PHASE)	Engine speed and piston position	Intake valve	Intake valve timing control	
Engine coolant temperature sensor	Engine coolant temperature	timing control	solenoid valve	
Vehicle speed sensor	Vehicle speed			

This mechanism hydraulically controls cam phases continuously with the fixed operating angle of the intake valve.

The ECM receives signals such as crankshaft position, camshaft position, engine speed, and engine coolant temperature. Then, the ECM sends ON/OFF pulse duty signals to the intake valve timing control solenoid valve depending on driving status. This makes it possible to control the shut/open timing of the intake valve to increase engine torque in low/mid speed range and output in high-speed range.

COMPONENT DESCRIPTION


Intake valve timing control solenoid valve is activated by ON/OFF pulse duty (ratio) signals from the ECM.

The intake valve timing control solenoid valve changes the oil amount and direction of flow through intake valve timing control unit or stops oil flow.

The longer pulse width advances valve angle.

The shorter pulse width retards valve angle.

When ON and OFF pulse widths become equal, the solenoid valve stops oil pressure flow to fix the intake valve angle at the control position.

CONSULT-II Reference Value in Data Monitor Mode

UBS0036D

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	−5° - 5°CA
INT/V TIM (B1) INT/V TIM (B2)	Shift lever: NAir conditioner switch: OFFNo-load	When revving engine up to 2,000 rpm quickly	Approx. 0° - 30°CA

DTC P0011, P0021 IVT CONTROL

[VQ]

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	0% - 2%
INT/V SOL (B1) INT/V SOL (B2)	Shift lever: NAir conditioner switch: OFFNo-load	When revving engine up to 2,000 rpm quickly	Approx. 25% - 50%

EC

D

Е

Α

On Board Diagnosis Logic

UBS0036F

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	Detecting condition	Possible cause
P0011 0011 (Bank 1)			Harness or connectors (Intake valve timing control solenoid valve circuit is open or shorted.)
P0021 0021 (Bank 2)	Intake valve timing control performance	There is a gap between angle of target and phase-control angle degree.	 Intake valve timing control solenoid valve Crankshaft position sensor (POS) Camshaft position sensor (PHASE) Accumulation of debris to the signal pick-up portion of the camshaft

FAIL-SAFE MODE

Н

M

When the malfunction is detected, the ECM enters fail-safe mode.

Detected items	Engine operating condition in fail-safe mode
Intake valve timing control	The signal is not energized to the solenoid valve and the valve control does not function

DTC Confirmation Procedure

UBS0036F

CAUTION:

Always drive at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10V and 16V at idle.

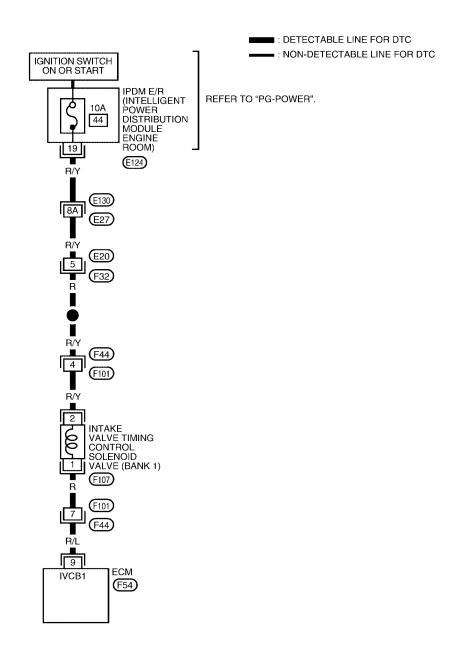
(P) WITH CONSULT-II

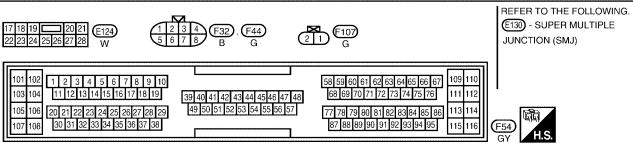
- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Maintain the following conditions for at least 20 consecutive seconds.

ENG SPEED	1,700 - 3,175 rpm (A constant rotation is maintained.)	
COOLANT TEMPS	70 - 105°C (176 - 194°F)	
Selector lever	1st or 2nd position	
Driving location uphill	Driving vehicle uphill (Increased engine load will help maintain the driving conditions required for this test.)	

DATA MON	VITO	OR
MONITOR		NO DTC
ENG SPEED		XX rpm
B/FUEL SCHDL		(X msec
COOLANTENP/S		XXX °C
VHCL SPEED SE INT/V TIM (B1)		KX km/h XX °CA
INT/V TIM (B1)		XX °CA
INT/V SOL (B1)	-	XXX %
INT/V SOL (B2)	,	XXX %

4. If the DTC is detected, go to EC-769, "Diagnostic Procedure"


WITH GST


Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram BANK 1

UBS0036G

EC-IVCB1-01

BBWA0077E

DTC P0011, P0021 IVT CONTROL

[VQ]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
9	R/L	Intake valve timing R/L control solenoid valve	[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)★ 10.0 V/Div 2 ms/Div I SEC988C
		(bank 1)	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm	7 - 12V★ 10.0 V/Dv 2 ms/Dv 1 SEC989C

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Α

EC

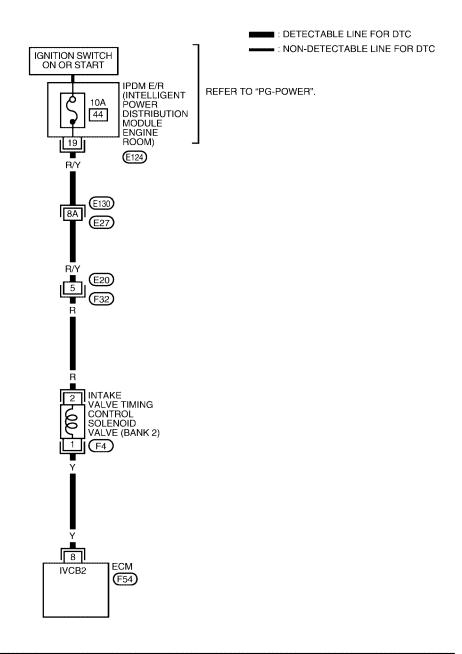
С

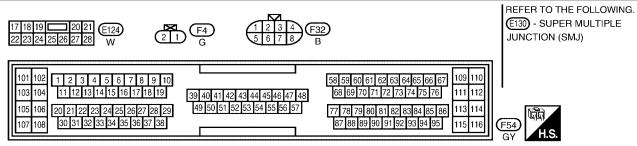
 D

Е

F

Н


J


<

L

BANK 2

EC-IVCB2-01

BBWA0078E

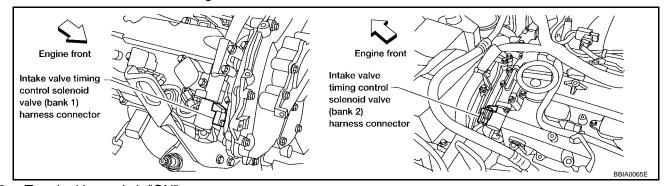
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

				<u>~</u> _	
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
		Intake valve timing	[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)★	C
8	Υ	control solenoid valve (bank 2)		SEC988C 7 - 12V★	Е
		[Engine is running] ■ Warm-up condition ■ Engine speed is 2,500 rpm		F	
				10.0 V/Div 2 ms/Div r SEC989C	

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

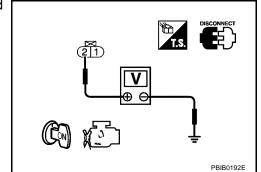

UBS0036H

Н

M

1. CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect intake valve timing control solenoid valve harness connector.



- 3. Turn ignition switch "ON".
- 4. Check voltage between intake valve timing control solenoid valve terminal 2 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- Harness connectors F44, F101
- IPDM E/R harness connector E124
- 10A fuse
- Harness for open or short between intake valve timing control solenoid valve and fuse
 - >> Repair harness or connectors.

3. CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 9 (bank 1) or 8 (bank 2) and intake valve timing control solenoid valve terminal 1. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F44, F101
- Harness for open and short between ECM and intake valve timing control solenoid valve and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Refer to EC-771, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace intake valve timing control solenoid valve.

6. CHECK CRANKSHAFT POSITION SENSOR (POS)

Refer to EC-941, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace crankshaft position sensor (POS).

7. CHECK CAMSHAFT POSITION SENSOR (PHASE)

Refer to EC-949, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace camshaft position sensor (PHASE).

DTC P0011, P0021 IVT CONTROL

[VQ]

EC

D

Е

Н

UBS0036I

8. CHECK CAMSHAFT

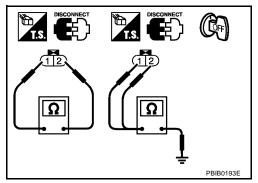
Check accumulation of debris to the signal pick-up portion of the camshaft. Refer to $\underline{\sf EM-136}$, "CAMSHAFT" . $\underline{\sf OK}$ or $\underline{\sf NG}$

OK >> GO TO 9.

NG >> Remove debris and clean the signal pick-up cutout of camshaft.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


For wiring diagram, refer to EC-938 for CKP sensor (POS), and EC-944 for CMP sensor (PHASE).

>> INSPECTION END

Component Inspection INTAKE VALVE TIMING CONTROL SOLENOID VALVE

- 1. Disconnect intake valve timing control solenoid valve harness connector.
- 2. Check resistance between intake valve timing control solenoid valve terminals as follows.

Terminals	Resistance	
1 and 2	7.0 - 7.5Ω at 20°C (68°F)	
1 or 2 and ground	${}^{\circ\Omega}$ (Continuity should not exist)	

UBS0036J

Removal and Installation INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Refer to EM-148, "TIMING CHAIN" .

BS0036J

K

L

DTC P0031, P0032, P0051, P0052 HO2S1 HEATER

[VQ]

DTC P0031, P0032, P0051, P0052 HO2S1 HEATER

PFP:22690

Description SYSTEM DESCRIPTION

UBS0036K

Sensor	Input Signal to ECM	ECM function	Actuator
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed	Heated oxygen sensor 1 heater control	Heated oxygen sensor 1 heater

The ECM performs ON/OFF control of the heated oxygen sensor 1 heater corresponding to the engine speed.

OPERATION

Engine speed rpm	Heated oxygen sensor 1 heater
Above 3,600	OFF
Below 3,600	ON

CONSULT-II Reference Value in Data Monitor Mode

UBS0036L

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S1 HTR (B1)	• Engine speed: Below 3,600 rpm	ON
HO2S1 HTR (B2)	• Engine speed: Above 3,600 rpm	OFF

On Board Diagnosis Logic

UBS0036M

DTC No.	Trouble diagnosis name	DIC detecting condition Possib		
P0031 0031 (Bank 1)	Heated oxygen	The current amperage in the heated oxygen sensor 1 heater circuit is out of the normal range.	Harness or connectors (The heated oxygen sensor 1 heater circuit is	
P0051 0051 (Bank 2)	control circuit low (An excessively low voltage signal is sent to ECM through the heated oxygen sensor 1 heater.)		open or shorted.) • Heater oxygen sensor 1 heater	
P0032 0032 (Bank 1)	Heated oxygen	The current amperage in the heated oxygen sensor 1 heater circuit is out of the normal range.	Harness or connectors (The heated oxygen sensor 1 heater circuit is)	
P0052 0052 (Bank 2)	control circuit high	(An excessively high voltage signal is sent to ECM through the heated oxygen sensor 1 heater.)	shorted.) • Heater oxygen sensor 1 heater	

DTC Confirmation Procedure

UBS0036N

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.

DTC P0031, P0032, P0051, P0052 HO2S1 HEATER

[VQ]

- 3. Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 4. Start engine and run it for at least 6 seconds at idle speed.
- f 1st trip DTC is detected, go to <u>EC-777, "Diagnostic Procedure"</u>

DATA MONITOR
MONITOR NO DTC
ENG SPEED XXXX rpm

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Start engine and run it for at least 6 seconds at idle speed.
- 4. Turn ignition switch "OFF" and wait at least 10 seconds.
- 5. Start engine and run it for at least 6 seconds at idle speed.
- 6. Select "MODE 3" with GST.
- 7. If DTC is detected, go to EC-777, "Diagnostic Procedure".
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

EC

Α

D

Е

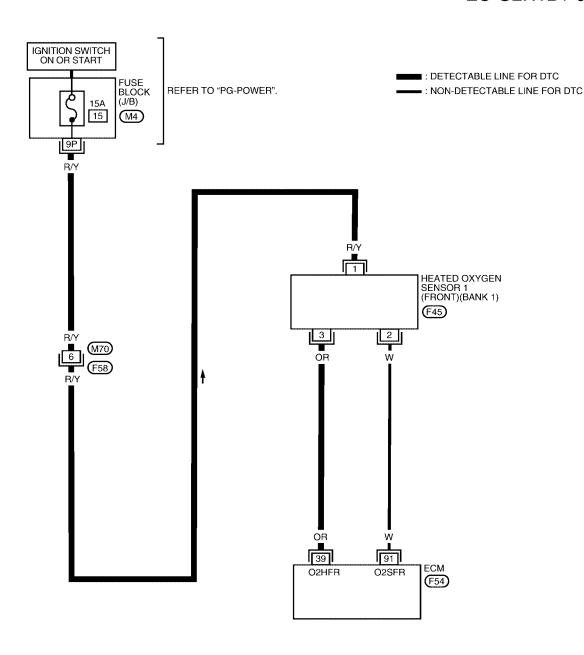
F

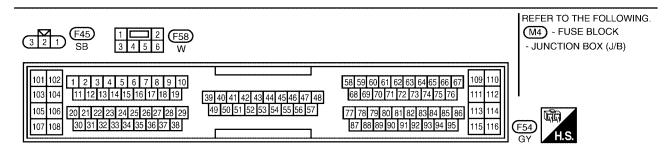
G

Н

1

J


<


L

Wiring Diagram BANK 1

UBS00360

EC-O2H1B1-01

BBWA0056E

DTC P0031, P0032, P0051, P0052 HO2S1 HEATER

[VQ]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
39	OR	Heated oxygen sensor 1	[Engine is running] ● Engine speed is below 3,600 rpm.	0 - 1.0V
		39 OK	heater (bank 1)	[Engine is running]Engine speed is above 3,600 rpm.

EC

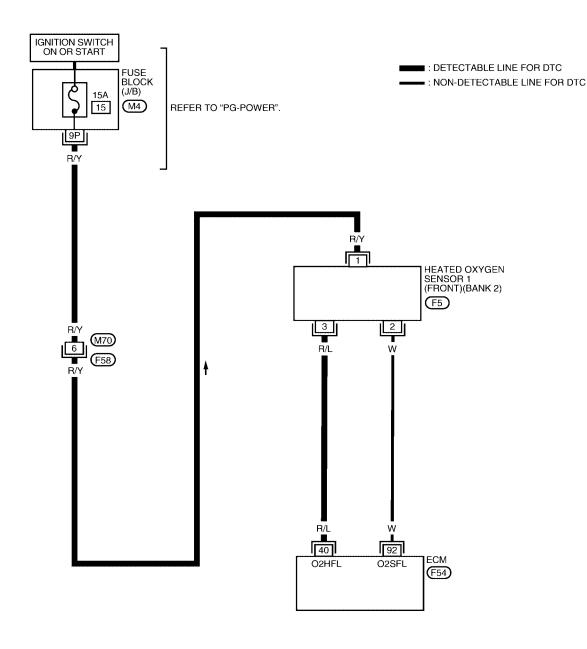
Α

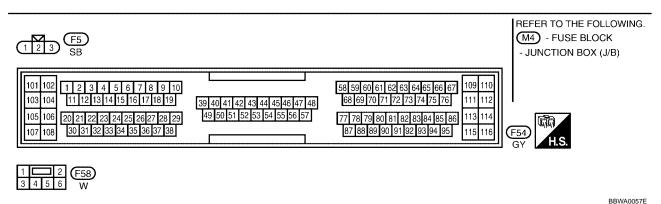
D

C

Е

Г


G


Н

L

BANK 2

EC-O2H1B2-01

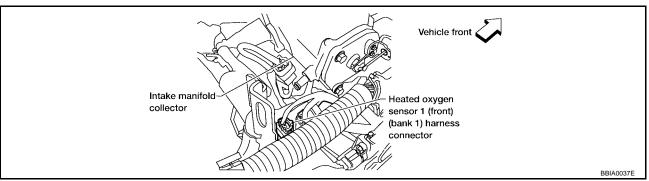
Specification data are reference values and are measured between each terminal and ground.

EC

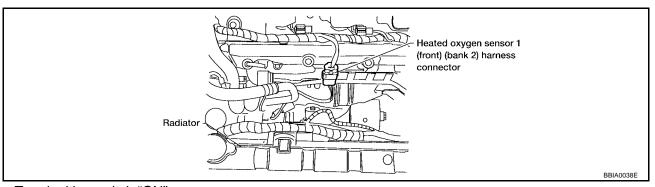
Е

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
40	R/L Heated oxygen senso heater (bank 2)	Heated oxygen sensor 1	[Engine is running]● Engine speed is below 3,600 rpm.	0 - 1.0V
		heater (bank 2)	[Engine is running]Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)

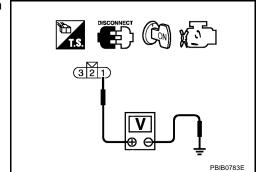
Diagnostic Procedure


1. CHECK HO2S1 POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 1 harness connector.

Bank 1

Bank 2



- 3. Turn ignition switch "ON".
- 4. Check voltage between HO2S1 terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M70, F58
- Fuse block (J/B) connector M4
- 15A fuse
- Harness for open or short between heated oxygen sensor 1 and fuse
 - >> Repair harness or connectors.

3. CHECK HO2S1 OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Bank		
ыс	ECM	Sensor	Dank	
P0031, P0032	39	3	1	
P0051, P0052	40	3	2	

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK HEATED OXYGEN SENSOR 1 HEATER

Refer to EC-778, "Component Inspection".

OK or NG

OK >> GO TO 5.

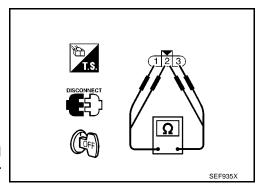
NG >> Replace malfunctioning heated oxygen sensor 1.

5. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 1 HEATER


1. Check resistance between HO2S1 terminals as follows.

Terminal No.	Resistance	
1 and 3	2.3 - 4.3 Ω at 25°C (77°F)	
2 and 1, 3	$\stackrel{\scriptstyle \infty}{}_{\scriptstyle \Omega}$ (Continuity should not exist)	

2. If NG, replace heated oxygen sensor 1.

CAUTION:

 Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

UB\$00360

DTC P0031, P0032, P0051, P0052 HO2S1 HEATER

[VQ]

• Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 1

UBS0036R

Refer to EM-118, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

EC

C

D

Е

F

G

Н

ı

0

K

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

[VQ]

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

PFP:226A0

Description SYSTEM DESCRIPTION

UBS0036S

Sensor	Input Signal to ECM	ECM function	Actuator	
Camshaft position sensor (PHASE)	Engine speed	Heated oxygen sensor 2	Heated oxygen sensor 2 heater	
Crankshaft position sensor (POS)	Lingine speed	heater control	Tieateu Oxygen Senson Z neatei	

The ECM performs ON/OFF control of the heated oxygen sensor 2 heater corresponding to the engine speed.

OPERATION

Engine speed rpm	Heated oxygen sensor 2 heater
Above 3,600	OFF
Below 3,600	ON

CONSULT-II Reference Value in Data Monitor Mode

UBS0036T

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S2 HTR (B1) HO2S2 HTR (B2)	 Engine speed: Below 3,800 rpm [After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more] 	ON
1102021111(102)	Engine speed: Above 3,600 rpm	OFF

On Board Diagnosis Logic

UBS0036U

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0037 0037 (Bank 1)	Heated oxygen	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range.	Harness or connectors (The heated oxygen sensor 1 heater circuit is	
P0057 0057 (Bank 2)	control circuit low	(An excessively low voltage signal is sent to ECM through the heated oxygen sensor 1 heater.)	open or shorted.) • Heater oxygen sensor 1 heater	
P0038 0038 (Bank 1)	Heated oxygen	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range.	Harness or connectors (The heated oxygen sensor 1 heater circuit is	
P0058 0058 (Bank 2)	control circuit high	(An excessively high voltage signal is sent to ECM through the heated oxygen sensor 1 heater.)	shorted.) • Heater oxygen sensor 1 heater	

DTC Confirmation Procedure

UBS0036V

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine.
- 3. Drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

[VQ]

4.	Stop vehicle	and let	engine	idle for	at least 6	seconds.

5. If 1st trip DTC is detected, go to EC-785, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

WITH GST

- 1. Start engine.
- 2. Drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 3. Stop vehicle and let engine idle for at least 6 seconds.
- 4. Turn ignition switch "OFF" and wait at least 10 seconds.
- 5. Start engine.
- 6. Drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 7. Stop vehicle and let engine idle for at least 6 seconds.
- 8. Select "MODE 3" with GST.
- If DTC is detected, go to <u>EC-785</u>, "<u>Diagnostic Procedure</u>".
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

EC

Α

D

Е

G

Н


/

L

Wiring Diagram BANK 1

UBS0036W

EC-O2H2B1-01

BBWA0060E

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

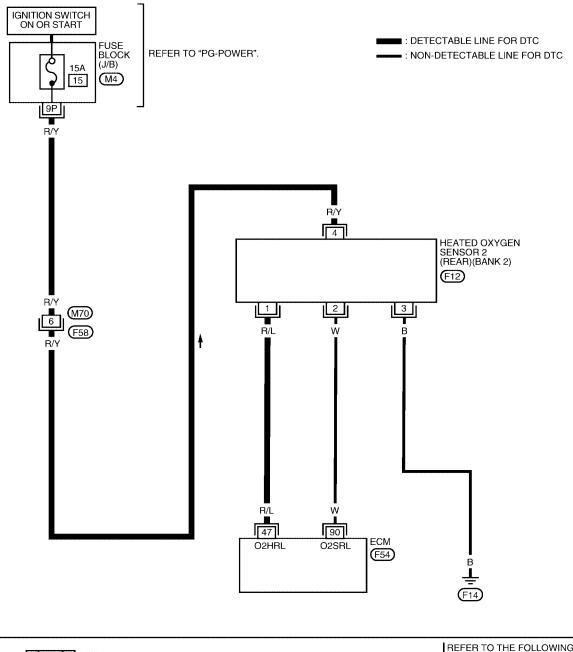
[VQ]

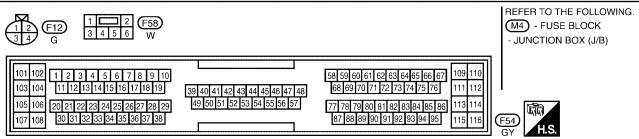
Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
41 P/B	D/D	Heated oxygen sensor 2 heater (bank 1)	 [Engine is running] Engine speed is below 3,600 rpm. After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more. 	0 - 1.0V
	Р/В		[Ignition switch "ON"] • Engine stopped [Engine is running] • Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)


C D E F G H


Α

J

BANK 2

EC-O2H2B2-01

BBWA0061E

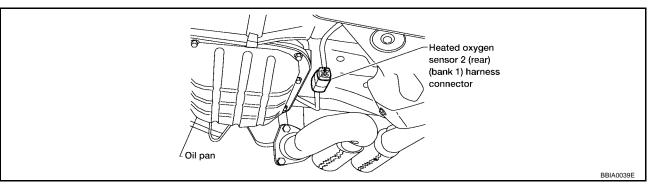
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

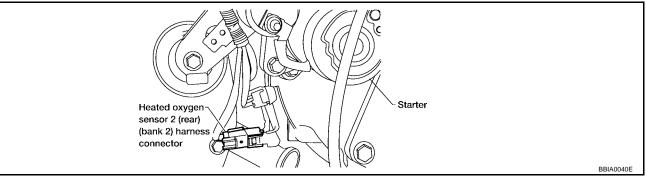
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
47 R/L	D./I	Heated oxygen sensor 2 heater (bank 2)	 [Engine is running] Engine speed is below 3,600 rpm. After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more. 	0 - 1.0V	С
	K/L		 [Ignition switch "ON"] Engine stopped [Engine is running] Engine speed is above 3,600 rpm. 	BATTERY VOLTAGE (11 - 14V)	D E

Diagnostic Procedure

UBS0036X


Н

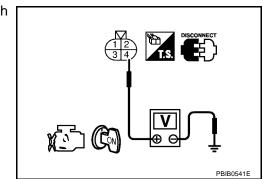
M


1. CHECK HO2S2 POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 2 harness connector.

Bank 1

Bank 2



- Turn ignition switch "ON".
- Check voltage between HO2S2 terminal 4 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M70, F58
- Fuse block (J/B) connector M4
- 15A fuse
- Harness for open or short between heated oxygen sensor 2 and fuse
 - >> Repair harness or connectors.

3. CHECK HO2S2 OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Donk		
DTC	ECM	Sensor	Bank	
P0037, P0038	41	1	1	
P0057, P0058	47	1	2	

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. Check heated oxygen sensor 2 heater

Refer to EC-787, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace malfunctioning heated oxygen sensor 2.

5. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

[VQ]

UBS0036Y

Α

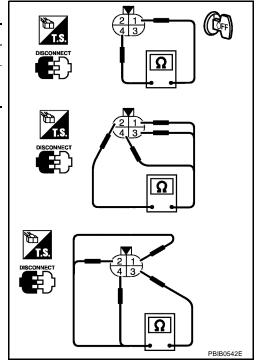
EC

C

D

Е

Component Inspection HEATED OXYGEN SENSOR 2 HEATER


1. Check resistance between HO2S2 terminals as follows.

Terminal No.	Resistance	
1 and 4	2.3 - 4.3 Ω at 25°C (77°F)	
2 and 1, 3, 4	∞ Ω	
3 and 1, 2, 4	(Continuity should not exist)	

2. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

Refer to EX-6, "EXHAUST SYSTEM (VQ35DE)".

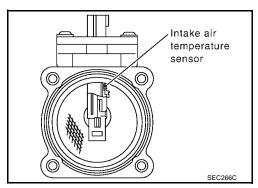
UBS0036Z

.

Н

K

L


DTC P0101 MAF SENSOR

Component Description

PFP:22680

UBS00370

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the greater the heat loss. Therefore, the ECM must supply more electric current to maintain the temperature of the hot film as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

UBS00371

Specification data are reference values.

MONITOR ITEM	CON	DITION	SPECIFICATION
	Engine: After warming up Air and distinguity and solutions of the Community of the Co	Idle	1.1 - 1.5V
MAS A/F SE-B1	Air conditioner switch: "OFF"Shift lever: "N"No-load	2,500 rpm	1.7 - 2.4V
0.41 // D. V/41 LIE	Pro	Idle	10.0 - 35.0%
CAL/LD VALUE	ditto	2,500 rpm	10.0 - 35.0%
MASS AIRFLOW	ditto	Idle	2.0 - 6.0 g·m/s
IVIASS AIRFLOW	ditto	2,500 rpm	7.0 - 20.0 g·m/s

On Board Diagnosis Logic

UBS00372

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
P0101 0101	Mass air flow sensor circuit range/performance problem	A)	A high voltage from the sensor is sent to ECM under light load driving condition.	 Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor
		B)	A low voltage from the sensor is sent to ECM under heavy load driving condition.	 Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor

DTC Confirmation Procedure

UBS00373

Perform "PROCEDURE FOR MALFUNCTION A" first.

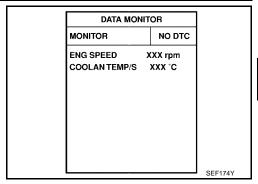
If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B".

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A

NOTE:


If engine will not start or stops soon, wait at least 10 seconds with engine stopped (Ignition switch "ON") instead of running engine at idle speed.

(With CONSULT-II

1. Turn ignition switch "ON".

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and warm it up to normal operating temperature.
- Run engine for at least 10 seconds at idle speed.
- 5. If 1st trip DTC is detected, go to EC-792, "Diagnostic Procedure"

.

With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION B


CAUTION:

Always drive vehicle at a safe speed.

(With CONSULT-II

- 1. Turn ignition switch "ON".
- Start engine and warm it up to normal operating temperature.
 If engine cannot be started, go to <u>EC-792</u>, "<u>Diagnostic Procedure</u>".
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- 4. Check the voltage of "MAS A/F SE-B1" with "DATA MONITOR".
- 5. Increases engine speed to about 4,000 rpm.
- Monitor the linear voltage rise in response to engine speed increases.

If NG, go to EC-792, "Diagnostic Procedure". If OK, go to following step.

7. Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	More than 2,000 rpm	
THRTL SEN 1	More than 3V	
THRTL SEN 2	More than 3V	
Selector lever	Suitable position	
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.	

8. If 1st trip DTC is detected, go to <u>EC-792, "Diagnostic Procedure"</u>

DATA MONITOR

MONITOR

NO DTC

ENG SPEED XXX rpm
VHCL SPEED SE XXX km/h
THRTL SEN 1 XXX V
THRTL SEN 2 XXX V

Revision: May 2004 EC-789 2002 Altima

EC

Α

Е

F

G

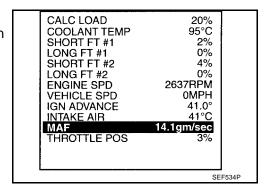
Н

I

L

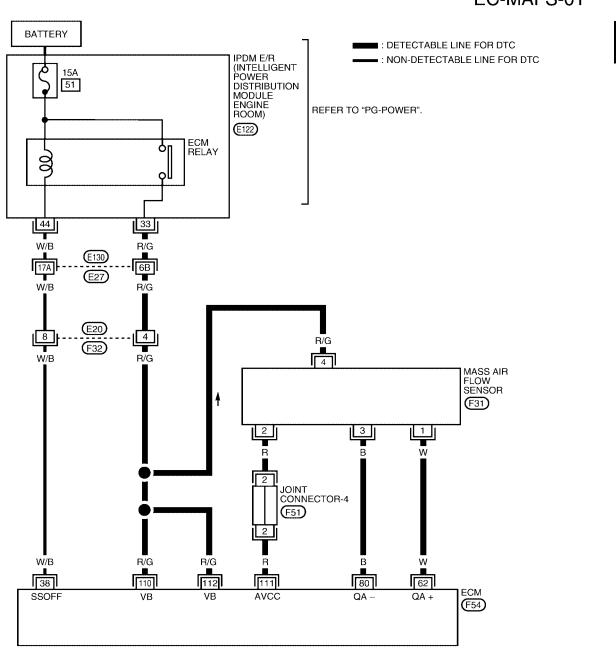
DTC P0101 MAF SENSOR

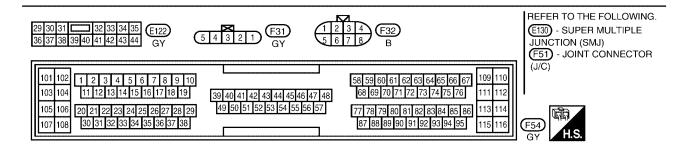
[VQ]


Overall Function Check PROCEDURE FOR MALFUNCTION B

UBS00374

Use this procedure to check the overall function of the mass air flow sensor circuit. During this check, a 1st trip DTC might not be confirmed.


With GST


- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MODE 1" with GST.
- 3. Check the mass air flow sensor signal with "MODE 1".
- 4. Check for linear mass air flow sensor signal value rise in response to increases to about 4,000 rpm in engine speed.
- 5. If NG, go to EC-792, "Diagnostic Procedure".

Wiring Diagram

EC-MAFS-01

BBWA0050E

Α

EC

C

D

Е

Н

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
38	W/B	ECM relay (Self shut-off)	[Engine is running] [Ignition switch "OFF"] ● For a few seconds after turning ignition switch "OFF"	0 - 1.5V
			[Ignition switch "OFF"] • A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
62 W	W	W Mass air flow sensor	[Engine is running]Warm-up conditionIdle speed	1.1 - 1.5V
			[Engine is running]Warm-up conditionEngine speed is 2,500 rpm.	1.7 - 2.4V
80	В	Mass air flow sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
111	R	Sensors' power supply	[Ignition switch "ON"]	Approximately 5V
110 112	R/G R/G	Power supply for ECM	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS00376

1. INSPECTION START

Which malfunction (A or B) is duplicated?

A or B

A >> GO TO 3. B >> GO TO 2.

2. CHECK INTAKE SYSTEM

Check the following for connection.

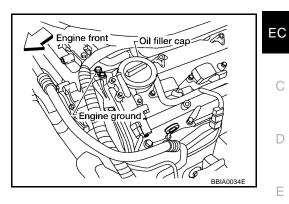
- Air duct
- Vacuum hoses
- Intake air passage between air duct to intake manifold

OK or NG

OK >> GO TO 3.

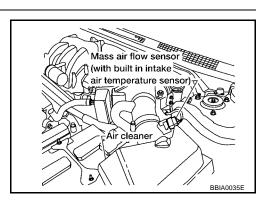
NG >> Reconnect the parts.

[VQ]


Н

M

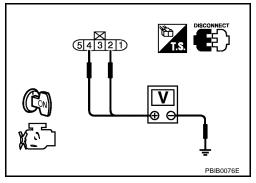
3. RETIGHTEN GROUND SCREWS


- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 4.

4. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect mass air flow (MAF) sensor harness connector.
- 2. Turn ignition switch "ON".



3. Check voltage between MAF sensor terminals 2, 4 and ground with CONSULT-II or tester.

Terminal	Voltage
2	Approximately 5V
4	Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connector E130, E27
- Harness connectors E20, F32
- Joint connector-4
- Harness for open or short between IPDM E/R and mass air flow sensor
- Harness for open or short between mass air flow sensor and ECM

>> Repair harness or connectors.

6. CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between MAF sensor terminal 3 and ECM terminal 80. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between MAF sensor terminal 1 and ECM terminal 62. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK MASS AIR FLOW SENSOR

Refer to EC-794, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace mass air flow sensor.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection MASS AIR FLOW SENSOR

UBS00377

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 62 (Mass air flow sensor signal) and ground.

Condition	Voltage V
Ignition switch "ON" (Engine stopped.)	Approx. 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.1 - 1.5
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.7 - 2.4
Idle to about 4,000 rpm*	1.1 - 1.5 to Approx. 4.0

- 4. If the voltage is out of specification, proceed the following.
 - Turn ignition switch "OFF".
 - Disconnect mass air flow sensor harness connector and reconnect it again.

ECM O CONNECTOR

62

V
SEF391R

^{*:} Check for linear voltage rise in response to engine being increased to about 4,000 rpm.

DTC P0101 MAF SENSOR

[VQ]

- Perform steps 2 and 3 again.
- 5. If NG, remove mass air flow sensor from air duct. Check hot film for damage or dust.
- 6. If NG, clean or replace mass air flow sensor.

Removal and Installation MASS AIR FLOW SENSOR

UBS00378

Refer to EM-112, "AIR CLEANER AND AIR DUCT" .

D

С

Α

EC

Е

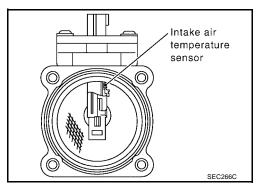
F

G

Н

n

ī


UBS00379

DTC P0102, P0103 MAF SENSOR

Component Description

PFP:22680

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the greater the heat loss. Therefore, the ECM must supply more electric current to maintain the temperature of the hot film as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

UBS0037A

Specification data are reference values.

MONITOR ITEM	CO	NDITION	SPECIFICATION
	Engine: After warming up	Idle	Approx. 1.1 - 1.5V
MAS A/F SE-B1	Air conditioner switch: OFF		
	Shift lever: "N"	2,500 rpm	Approx. 1.7 - 2.4V
	No-load		
CAL/LD VALUE	Engine: After warming up	Idle	10% - 35%
	Shift lever: "N"		
ONLIED WILDE	Air conditioner switch: OFF	2,500 rpm	10% - 35%
	No-load		
MASS AIRFLOW	Engine: After warming up	Idle	2.0 - 6.0 g·m/s
	Shift lever: "N"		
WIN CO THIN LOW	Air conditioner switch: OFF	2,500 rpm	7.0 - 20.0 g·m/s
	No-load		

On Board Diagnosis Logic

UBS0037B

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0102 0102	Mass air flow sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor
P0103 0103	Mass air flow sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)Mass air flow sensor

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters in fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.

DTC Confirmation Procedure

UBS0037C

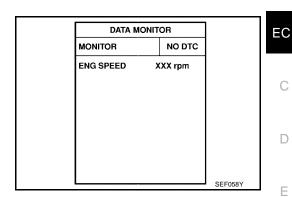
NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

DTC P0102, P0103 MAF SENSOR

[VQ]

Α

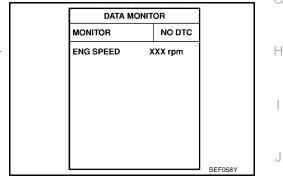

D

Е

PROCEDURE FOR DTC P0102

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait 5 seconds at most.
- 4. If DTC is detected, go to EC-799, "Diagnostic Procedure".

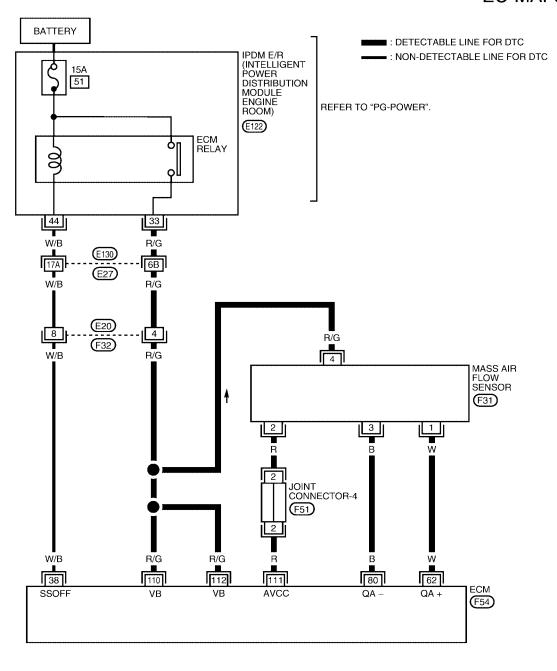

With GST

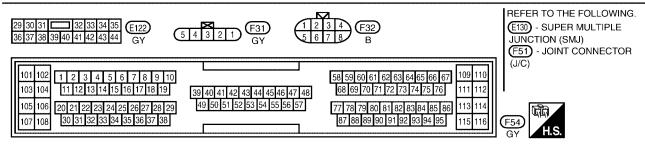
Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR DTC P0103

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-799, "Diagnostic Procedure" If 1st trip DTC is not detected, go to next step.
- 5. Start engine and wait at least 5 seconds.
- If DTC is detected, go to EC-799, "Diagnostic Procedure".


With GST


Follow the procedure "With CONSULT-II" above.

Wiring Diagram

UBS0037

EC-MAFS-01

BBWA0050E

DTC P0102, P0103 MAF SENSOR

[VQ]

D

Е

Н

UBS0037E

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	E
62	w	Mass air flow sensor	[Engine is running] • Warm-up condition • Idle speed [Engine is running]	1.1 - 1.5V	-
			 Warm-up condition Engine speed is 2,500 rpm. [Engine is running]	1.7 - 2.4V	-
80	В	Mass air flow sensor ground	Warm-up condition Idle speed	Approximately 0V	

Diagnostic Procedure

1. INSPECTION START

Which malfunction (P0102 or P0103) is duplicated?

P0102 or P0103

P0102 >> GO TO 2.

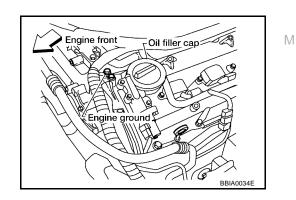
P0103 >> GO TO 3.

2. CHECK INTAKE SYSTEM

Check the following for connection.

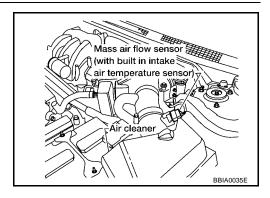
- Air duct
- Vacuum hoses
- Intake air passage between air duct to intake manifold

OK or NG


OK >> GO TO 3.

NG >> Reconnect the parts.

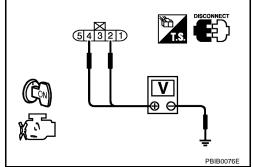
3. RETIGHTEN GROUND SCREWS


- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 4.

4. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- Disconnect MAF sensor harness connector.
- 2. Turn ignition switch "ON".



3. Check voltage between MAF sensor terminals 2, 4 and ground with CONSULT-II or tester.

Terminal	Voltage
2	Approximately 5V
4	Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- Joint connector-4
- Harness for open or short between IPDM E/R relay and mass air flow sensor
- Harness for open or short between mass air flow sensor and ECM
 - >> Repair harness or connectors.

6. CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Disconnect ECM harness connector.
- Check harness continuity between MAF sensor terminal 3 and ECM terminal 80. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0102, P0103 MAF SENSOR

[VQ]

7. CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between MAF sensor terminal 1 and ECM terminal 62. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

$8.\,$ CHECK MASS AIR FLOW SENSOR

Refer to EC-801, "Component Inspection".

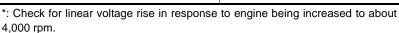
OK or NG

OK >> GO TO 9.

NG >> Replace mass air flow sensor.

9. CHECK INTERMITTENT INCIDENT

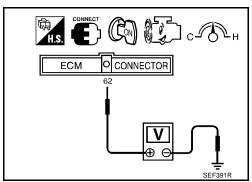
Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection MASS AIR FLOW SENSOR

Reconnect harness connectors disconnected.

- Start engine and warm it up to normal operating temperature.
- Check voltage between ECM terminal 62 (Mass air flow sensor signal) and ground.


Condition	Voltage V
Ignition switch "ON" (Engine stopped.)	Approx. 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.1 - 1.5
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.7 - 2.4
Idle to about 4,000 rpm*	1.1 - 1.5 to Approx. 4.0

- 4. If the voltage is out of specification, proceed the following.
 - Turn ignition switch "OFF".
 - Disconnect mass air flow sensor harness connector and reconnect it again.
 - Perform steps 2 and 3 again.
- 5. If NG, remove mass air flow sensor from air duct. Check hot film for damage or dust.
- If NG, clean or replace mass air flow sensor.

Removal and Installation MASS AIR FLOW SENSOR

Refer to EM-112, "AIR CLEANER AND AIR DUCT" .

EC

D

Е

UBS0037F

M

UBS0037G

DTC P0107, P0108 ABSOLUTE PRESSURE SENSOR

[VQ]

DTC P0107, P0108 ABSOLUTE PRESSURE SENSOR

PFP:22365

Component Description

UBS0037H

The absolute pressure sensor is built into ECM. The sensor detects ambient barometric pressure and sends the voltage signal to the microcomputer.

On Board Diagnosis Logic

UBS0037I

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P0107 0107	Absolute pressure sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0108 0108	Absolute pressure sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Engine coolant temperature sensor

DTC Confirmation Procedure

UBS0037.I

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 10 seconds.
- 4. If 1st trip DTC is detected, go to EC-803, "Diagnostic Procedure"

DATA MONITOR	
MONITOR	NO DTC
ENG SPEED	XXX rpm

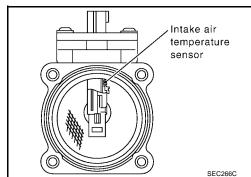
WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P0107, P0108 ABSOLUTE PRESSURE SENSOR

[VQ] **Diagnostic Procedure** UBS0037K Α 1. INSPECTION START (P) With CONSULT-II EC 1. Turn ignition switch "ON". 2. Select "SELF DIAG RESULTS" mode with CONSULT-II. Touch "ERASE". 4. Perform "DTC Confirmation Procedure". See EC-802. 5. Is the 1st trip DTC P0107 or P0108 displayed again? D With GST 1. Turn ignition switch "ON". 2. Select MODE 4 with GST. Е 3. Touch "ERASE". 4. Perform "DTC Confirmation Procedure". SeeEC-802. 5. Is the 1st trip DTC P0107 or P0108 displayed again? Yes or No Yes >> GO TO 2. No >> INSPECTION END 2. REPLACE ECM Н 1. Replace ECM. 2. Perform initialization of NATS system and registration of all NATS ignition key IDs. Refer to EC-688, "NVIS (Nissan Vehicle Immobilizer System — NATS)". 3. Perform EC-667, "Accelerator Pedal Released Position Learning". 4. Perform EC-668, "Throttle Valve Closed Position Learning". 5. Perform EC-668, "Idle Air Volume Learning". >> INSPECTION END

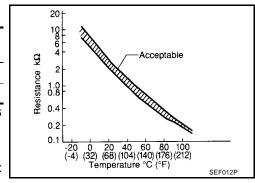
UBS0037L


DTC P0112, P0113 IAT SENSOR

Component Description

PFP:22630

The intake air temperature sensor is built-into mass air flow sensor. The sensor detects intake air temperature and transmits a signal to the ECM.


The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
25 (77)	3.32	1.9 - 2.1
80 (176)	1.23	0.31 - 0.37

^{*:} These data are reference values and are measured between ECM terminal 66 (Intake air temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

UBS0037M

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0112 0112	Intake air tempera- ture sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0113 0113	Intake air tempera- ture sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Intake air temperature sensor

DTC Confirmation Procedure

UBS0037N

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-807, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

DTC P0112, P0113 IAT SENSOR

[VQ]

	۱۸/	ITU	GS	_
GST	vv	ΙΙН	GO	

Follow the procedure "With CONSULT-II" above.

EC

Α

С

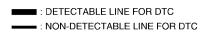
D

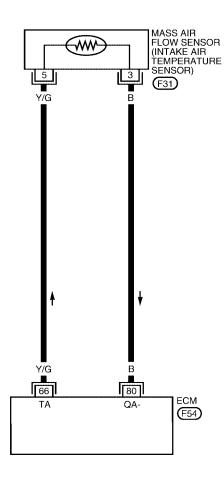
Е

F

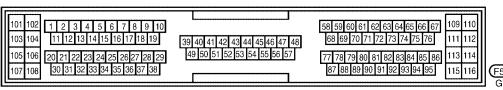
G

Н


1


K

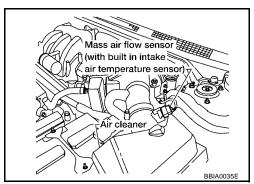
Wiring Diagram


UBS00370

EC-IATS-01

BBWA0051E

[VQ]

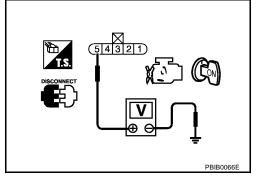

UBS0037P

Diagnostic Procedure

1. CHECK INTAKE AIR TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

Turn ignition switch "OFF".

- 2. Disconnect mass air flow sensor (intake air temperature sensor is built-into) harness connector.
- 3. Turn ignition switch "ON".


4. Check voltage between mass air flow sensor terminal 5 and ground.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 2.

NG >> Repair harness or connectors.

2. CHECK INTAKE AIR TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM.
- 3. Check harness continuity between mass air flow sensor terminal 3 and ECM 80. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK INTAKE AIR TEMPERATURE SENSOR

Refer to EC-808, "Component Inspection".

OK or NG

OK >> GO TO 4.

NG >> Replace mass air flow sensor (with intake air temperature sensor).

4. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

EC

Α

С

D

Е

F

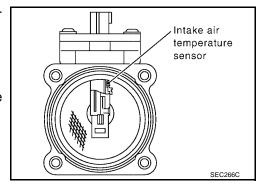
G

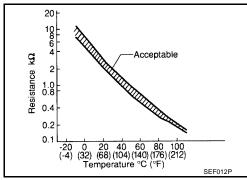
Н

U

K

L


Component Inspection INTAKE AIR TEMPERATURE SENSOR


UBS0037Q

1. Check resistance between intake air temperature sensor terminals 3 and 5 under the following conditions.

Intake air temperature °C (°F)	Resistance kΩ
25 (77)	1.9 - 2.1

2. If NG, replace mass air flow sensor (with intake air temperature sensor).

Removal and Installation MASS AIR FLOW SENSOR

UBS0037R

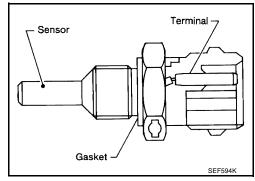
Refer to EM-112, "AIR CLEANER AND AIR DUCT" .

DTC P0117, P0118 ECT SENSOR

PFP:22630

Component Description

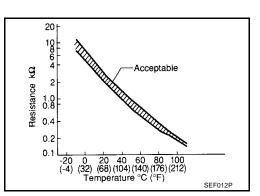
UBS0037S


EC

Е

Н

M


The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 93 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

UBS0037T

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P0117 0117	Engine coolant tem- perature sensor cir- cuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0118 0118	Engine coolant tem- perature sensor cir- cuit high input	An excessively high voltage from the sensor is sent to ECM.	Engine coolant temperature sensor

FAIL-SAFE MODE

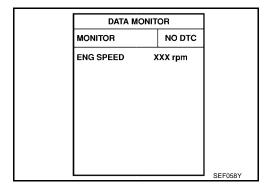
When the malfunction is detected, the ECM enters in fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode		
	Engine coolant temperature will be determined by ECM based on the time after turning ignition switch "ON" or "START". CONSULT-II displays the engine coolant temperature decided by ECM.		
	Condition	Engine coolant temperature decided (CONSULT-II display)	
Engine coolant temper-	Just as ignition switch is turned ON or Start	40°C (104°F)	
ature sensor circuit	More than approx. 4 minutes after ignition ON or Start	80°C (176°F)	
	Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)	
	When the fail-safe system for engine coolant temperature sensor is activated, the cooling fan operates while engine is running.		

DTC P0117, P0118 ECT SENSOR

[VQ]

DTC Confirmation Procedure


UBS0037U

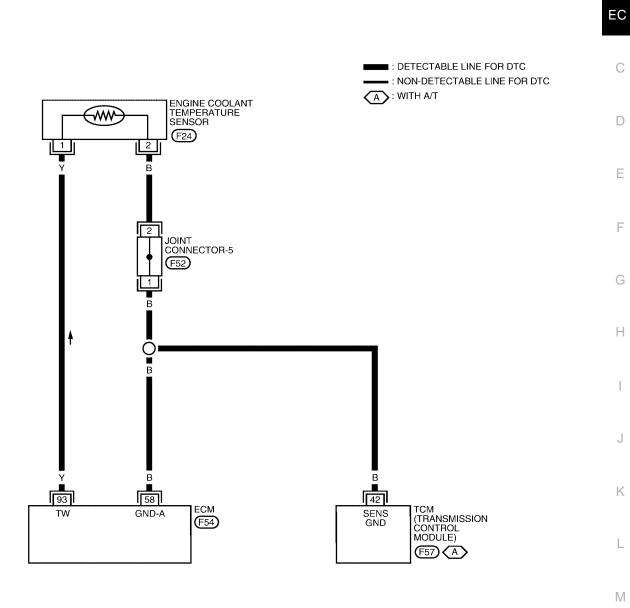
NOTE:

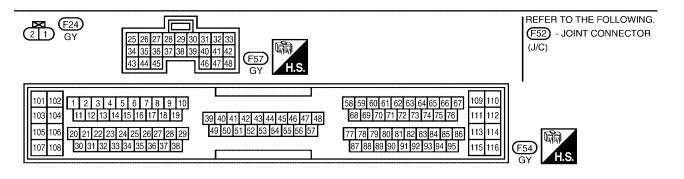
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- 4. If DTC is detected, go to EC-812, "Diagnostic Procedure".

WITH GST

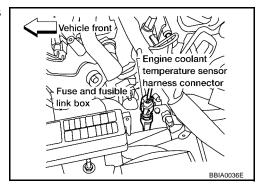

Follow the procedure "WITH CONSULT-II" above.


Α

Wiring Diagram

UBS0037V

EC-ECTS-01

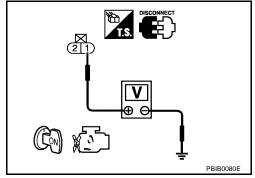


BBWA0052E

Diagnostic Procedure

1. CHECK ECT SENSOR POWER SUPPLY CIRCUIT

- Turn ignition switch "OFF".
- 2. Disconnect engine coolant temperature (ECT) sensor harness connector.
- 3. Turn ignition switch "ON".


Check voltage between ECT sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 2.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

2. CHECK ECT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Check harness continuity between ECT sensor terminal 2 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-5
- Harness for open and short between ECT sensor and ECM
- Harness for open and short between ECT sensor and TCM
 - >> Repair open circuit or short to power in harness or connectors.

4. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-813, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace engine coolant temperature sensor.

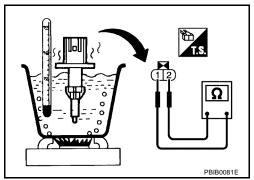
UBS0037X

EC

D

Е

Н


5. CHECK INTERMITTENT INCIDENT

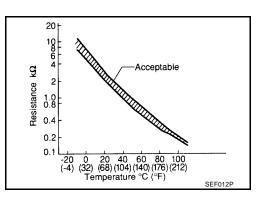
Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection ENGINE COOLANT TEMPERATURE SENSOR

1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

<Reference data>


Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 93 (Engine coolant temperature sensor) and ground.

2. If NG, replace engine coolant temperature sensor.

Removal and Installation ENGINE COOLANT TEMPERATURE SENSOR

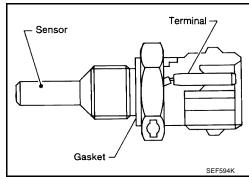
Refer to CO-45, "THERMOSTAT AND THERMOSTAT HOUSING".

UBS0037Y

M

Revision: May 2004 EC-813 2002 Altima

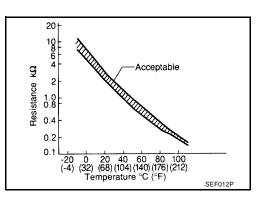
DTC P0125 ECT SENSOR


Component Description

PFP:22630

NOTE:

If DTC P0125 is displayed with P0117 or P0118, first perform the trouble diagnosis for DTC P0117 or P0118. Refer to <u>EC-809</u>.


The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance k Ω
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 93 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

UBS00380

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0125 0125	Insufficient engine cool- ant temperature for closed loop fuel control	 Voltage sent to ECM from the sensor is not practical, even when some time has passed after starting the engine. Engine coolant temperature is insufficient for closed loop fuel control. 	 Harness or connectors (High resistance in the circuit) Engine coolant temperature sensor Thermostat

DTC Confirmation Procedure

UBS00381

CAUTION:

Be careful not to overheat engine.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Check that "COOLAN TEMP/S" is above 10°C (50°F). If it is above 10°C (50°F), the test result will be OK. If it is below 10°C (50°F), go to following step.

DTC P0125 ECT SENSOR

[VQ]

4. Start engine and run it for 65 minutes at idle speed. If "COOLAN TEMP/S" increases to more than 10°C (50°F) within 65 minutes, stop engine because the test result will be OK.

5. If 1st trip DTC is detected, go to EC-817, "Diagnostic Procedure"

DATA MON	IITOR	
MONITOR	NO DT	c
ENG SPEED COOLAN TEMP/S	XXX rpm XXX °C	

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

С

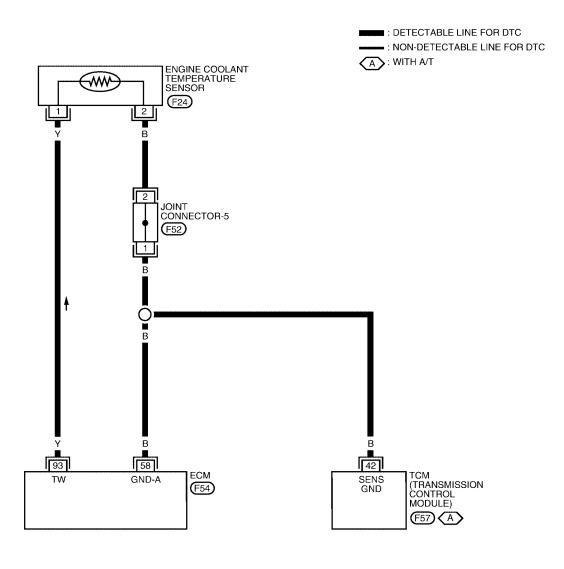
D

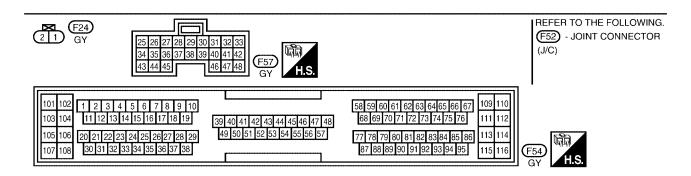
Е

F

G

Н


ı


L

Wiring Diagram

UBS00382

EC-ECTS-01

BBWA0052E

[VQ]

Diagnostic Procedure

1. CHECK ENGINE COOLANT TEMPERATURE SENSOR

UBS00383

Refer to EC-817, "Component Inspection".

OK or NG

OK >> GO TO 2.

NG >> Replace engine coolant temperature sensor.

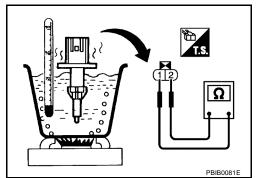
2. CHECK THERMOSTAT OPERATION

When the engine is cold [lower than 70°C (158°F)] condition, grasp lower radiator hose and confirm the engine coolant does not flow.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace thermostat. Refer to CO-45, "THERMOSTAT AND THERMOSTAT HOUSING".


3. CHECK INTERMITTENT INCIDENT

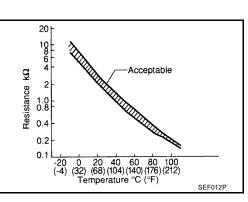
Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection **ENGINE COOLANT TEMPERATURE SENSOR**

1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

<Reference data>


Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 93 (Engine coolant temperature sensor) and ground.

2. If NG, replace engine coolant temperature sensor.

Removal and Installation ENGINE COOLANT TEMPERATURE SENSOR

Refer to EM-166, "CYLINDER HEAD".

UBS00385

EC-817 2002 Altima Revision: May 2004

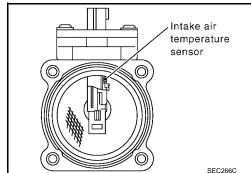
EC

Α

D

UBS00384

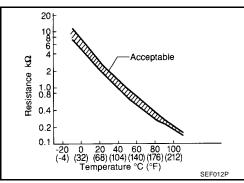
DTC P0127 IAT SENSOR


Component Description

PFP:22630

UBS00386

The intake air temperature sensor is built into mass air flow sensor. The sensor detects intake air temperature and transmits a signal to the ECM.


The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance k Ω
-10 (14)	4.43	7.9 - 9.3
25 (77)	3.32	1.9 - 2.1
80 (176)	1.23	0.31 - 0.37

^{*:} These data are reference values and are measured between ECM terminal 66 (Intake air temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

UBS00387

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0127 0127	Intake air temperature too high	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signal from engine coolant temperature sensor.	Harness or connectors (The sensor circuit is open or shorted)Intake air temperature sensor

DTC Confirmation Procedure

UBS00388

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

CAUTION:

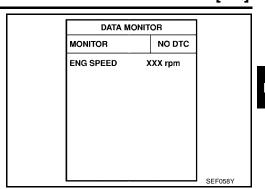
Always drive vehicle at a safe speed.

TESTING CONDITION:

This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(P) WITH CONSULT-II

- 1. Wait until engine coolant temperature is less than 90°C (194°F)
- a. Turn ignition switch "ON".


DTC P0127 IAT SENSOR

[VQ]

- b. Select "DATA MONITOR" mode with CONSULT-II.
- c. Check the engine coolant temperature.
- d. If the engine coolant temperature is not less than 90°C (194°F), turn ignition switch "OFF" and cool down engine.
 - Perform the following steps before engine coolant temperature is above 90°C (194°F).
- 2. Turn ignition switch "ON".
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- 4. Start engine.
- 5. Hold vehicle speed at more than 70 km/h (43 MPH) for 100 consecutive seconds.
- 6. If 1st trip DTC is detected, go to EC-821, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

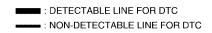
EC

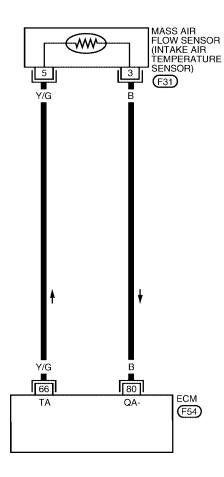
Α

D

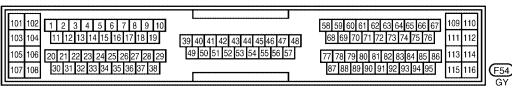
Е

Н


J


<

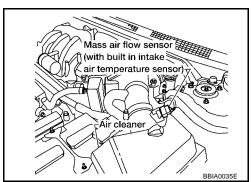
Wiring Diagram


UBS00389

EC-IATS-01

BBWA0051E

[VQ]

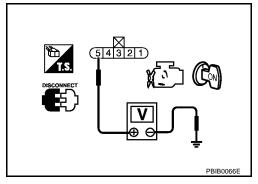

UBS0038A

Diagnostic Procedure

1. CHECK INTAKE AIR TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

Turn ignition switch "OFF".

- 2. Disconnect mass air flow sensor (intake air temperature sensor is built-into) harness connector.
- 3. Turn ignition switch "ON".


4. Check voltage between mass air flow sensor terminal 5 and ground.

Voltage: Approximately 5 V

OK or NG

OK >> GO TO 2.

NG >> Repair harness or connectors.

2. CHECK INTAKE AIR TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM.
- 3. Check harness continuity between mass air flow sensor terminal 3 and ECM 80. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK INTAKE AIR TEMPERATURE SENSOR

Refer to EC-822, "Component Inspection".

OK or NG

OK >> GO TO 4.

NG >> Replace mass air flow sensor (with intake air temperature sensor).

4. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

EC

Α

С

D

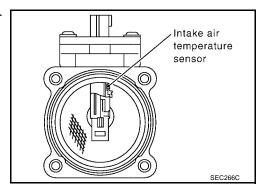
Е

F

G

Н

.


K

D.

Component Inspection INTAKE AIR TEMPERATURE SENSOR


UBS0038B

1. Check resistance between intake air temperature sensor terminals 3 and 5 under the following conditions.

Intake air temperature °C (°F)	Resistance kΩ	
25 (77)	1.9 - 2.1	

2. If NG, replace mass air flow sensor (with intake air temperature sensor).

Removal and Installation INTAKE AIR TEMPERATURE SENSOR

UBS0038C

Refer to EM-112, "AIR CLEANER AND AIR DUCT" .

DTC P0128 THERMOSTAT FUNCTION

[VQ]

DTC P0128 THERMOSTAT FUNCTION

PFP:21200

On Board Diagnosis Logic

JBS0038D

EC

Е

F

Н

Engine coolant temperature has not risen enough to open the thermostat even though the engine has run long enough.

This is due to a leak in the seal or the thermostat stuck open.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0128 0128	Thermostat function	The engine coolant temperature does not reach to specified temperature even though the engine has run long enough.	Thermostat function Leakage from sealing portion of thermostat Engine coolant temperature sensor

DTC Confirmation Procedure

UBS0038E

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- For best results, perform at ambient temperature of −10°C (14°F) or higher.
- For best results, perform at engine coolant temperature of −10°C (14°F) to 60°C (140°F).

WITH CONSULT-II

- 1. Replace thermostat with new one. Refer to <u>EC-1095, "Component Description"</u>. Use only a genuine NIS-SAN thermostat as a replacement. If an incorrect thermostat is used, the MIL may come on.
- 2. Turn ignition switch "ON".
- 3. Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- 4. Check that the "COOLAN TEMP/S" is above 60°C (140°F). If it is below 60°C (140°F), go to following step. If it is above 60°C (140°F), stop engine and cool down the engine to less than 60°C (140°F), then retry from step 1.
- 5. Drive vehicle for 10 consecutive minutes under the following conditions.

VHCL SPEED SE	80 - 120 km/h (50 - 75 MPH)

If 1st trip DTC is detected, go to EC-823, "Diagnostic Procedure".

WITH GST

1. Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

UBS0038F

M

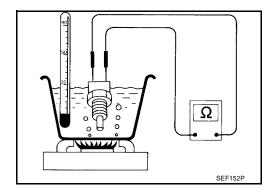
1. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-824, "Component Inspection".

OK or NG

OK >> INSPECTION END

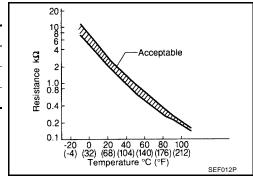
NG >> Replace engine coolant temperature sensor.


DTC P0128 THERMOSTAT FUNCTION

[VQ]

Component Inspection ENGINE COOLANT TEMPERATURE SENSOR

UBS0038G


Check resistance as shown in the figure.

<Reference data>

Temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.0
90 (194)	0.236 - 0.260

If NG, replace engine coolant temperature sensor.

UBS0038H

Removal and Installation ENGINE COOLANT TEMPERATURE SENSOR

Refer to CO-45, "THERMOSTAT AND THERMOSTAT HOUSING".

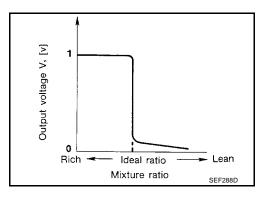
DTC P0132, P0152 HO2S1

PFP:22690

Component Description

UBS0038I

EC


D

Е

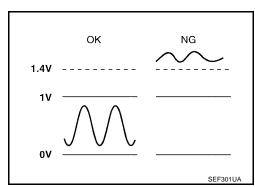
Н

The heated oxygen sensor 1 is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

UBS0038J

Specification data are reference values.


MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1) HO2S1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times dur- ing 10 seconds.

On Board Diagnosis Logic

UBS0038K

M

To judge the malfunction, the diagnosis checks that the heated oxygen sensor 1 output is not inordinately high.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0132 0132 (Bank 1) P0152 0152 (Bank 2)	Heated oxygen sensor 1 circuit high voltage	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 1

DTC Confirmation Procedure

JBS0038L

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Turn ignition switch "ON".
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- 5. Restart engine and let it idle for 2 minutes.
- 6. If 1st trip DTC is detected, go to EC-830, "Diagnostic Procedure"

DATA MONITOR

MONITOR

NO DTC

ENG SPEED XXX rpm

COOLAN TEMP/S XXX 'C

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- Restart engine and let it idle for 2 minutes.
- 4. Turn ignition switch "OFF" and wait at least 10 seconds.
- 5. Restart engine and let it idle for 2 minutes.
- 6. Select "MODE 3" with GST.
- 7. If DTC is detected, go to EC-830, "Diagnostic Procedure".
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

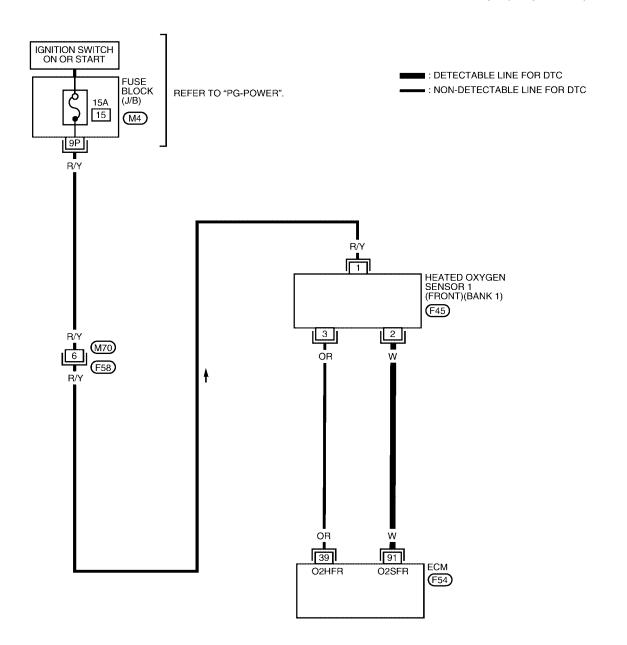
Wiring Diagram BANK 1

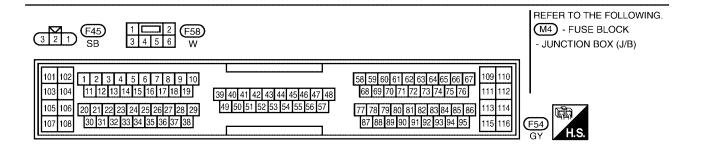
__...

Α

EC

C


D


Е

Н

M

EC-02S1B1-01

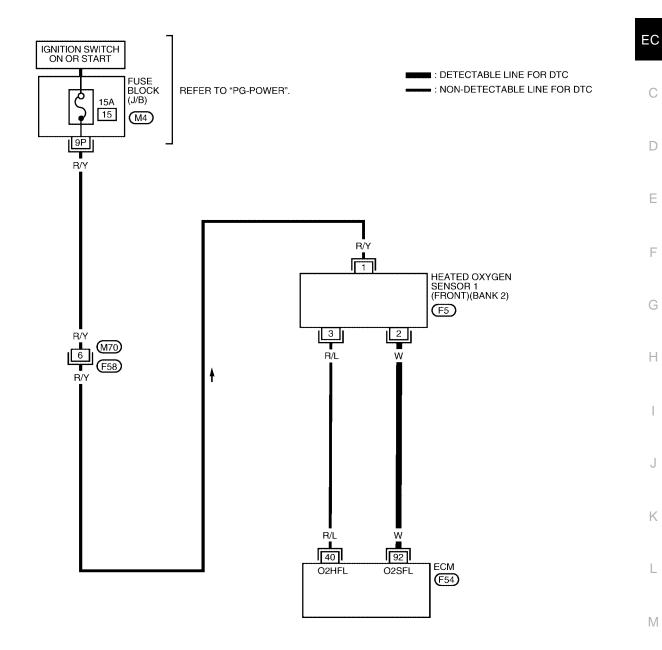
BBWA0054E

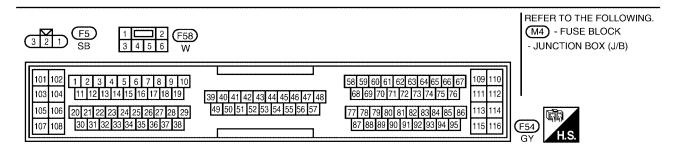
DTC P0132, P0152 HO2S1

[VQ]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
91	W	Heated oxygen sensor 1 (bank 1)	[Engine is running]Warm-up conditionEngine speed is below 3,600 rpm.	0 - Approximately 1.0V (Periodically change)

Α

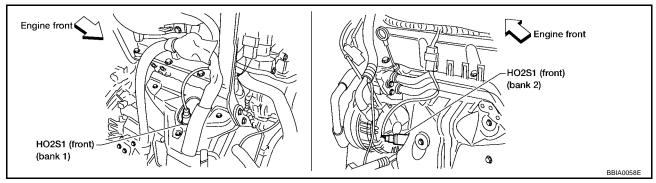
BANK 2

EC-02S1B2-01

BBWA0055E

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

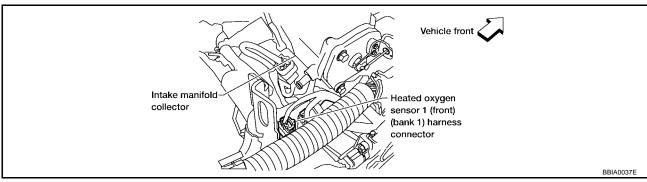

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
92	W	Heated oxygen sensor 1 (bank 2)	[Engine is running]Warm-up conditionEngine speed is below 3,600 rpm.	0 - Approximately 1.0V (Periodically change)

Diagnostic Procedure

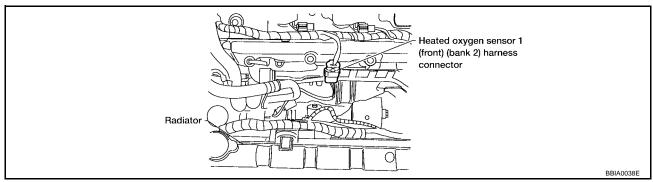
UBS0038N

1. RETIGHTEN HEATED OXYGEN SENSOR 1

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten corresponding heated oxygen sensor 1.


Tightening torque: 40 - 60 N·m (4.1 - 6.2 kg-m, 30 - 44 ft-lb)

>> GO TO 2.


$2.\,$ check ho2s1 input signal circuit for open and short

1. Disconnect heated oxygen sensor 1 harness connector.

Bank 1

Bank 2

- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
ыс	ECM	Sensor	Dalik
P0132	91	2	1
P0152	92	2	2

Continuity should exist.

4. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Term	Bank	
ыс	ECM	Sensor	Dalik
P0132	91	2	1
P0152	92	2	2

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

D

Е

F

G

Н

x

L

M

3. CHECK HO2S1 CONNECTOR FOR WATER

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 1 harness connector.
- 3. Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 4.

NG >> Repair or replace harness or connectors.

4. CHECK HEATED OXYGEN SENSOR 1

Refer to EC-832, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace malfunctioning heated oxygen sensor 1.

5. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 1

UBS00380

- (P) With CONSULT-II
- 1. Start engine and warm it up to normal operating temperature.
- Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

	DATA MON		
	MONITOR		
	ENG SPEED	XXX rpm	
	MAS A/F SE-B1	xxx v	
	COOLAN TEMP/S	XXX °C	
	HO2S1 (B1)	xxx v	
	HO2S1 MNTR (B1)	LEAN	
Į.			SEF646Y

- Check the following.
 - "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.
 - 5 times (cycles) are counted as shown at right.
 - "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
 - "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
 - "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Bank 1							
	cycle		1	2	3	4	5
HO2S1	MNTR	(B1)	R-L-	R-L-R	-L-R	L-R-	L-R
Bank 2							
	cycle		1	2	3	4	5
HO2S1	MNTR	(B2)	R-L	R-L-F	-L-R	-L-R-	-L-R
R means	HO2S1						
MNTR (B1)/(B2) i	ndica	tes I	RICH			
L means l	H02S1						
MNTR (B1)/(B2) i	ndica	tes I	_EAN		SEF64	7Y

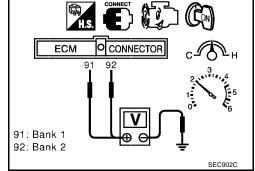
Trigger	ENG SPEED	HO2S1 (B1)		128		.	Maxir	mum -,			<i>(</i>).		,-	`.		△		 Maximum voltage should be over 0.6V
	rpm	V	1			/ \	Ĭ,	- /	1		$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		- /	1	1	' \		at least one time.
XXX	XXX	XXX]															31.33312110111101
XXX	XXX	XXX				•	•	1	ı	,		ι	r		•	•		
XXX	XXX	XXX]															
XXX	XXX	XXX	1	64			1	•	- 1				•	•	- 1			
XXX	XXX	XXX	1	_	l.													 Minimum voltage
XXX	XXX	XXX	1		h !		i	- !	i	- /		i	- !	ŀ	- !	ļ		should be below 0.30V
XXX	XXX	XXX	1		l i		1	i	1	i		1	i	- 1	i	1		at least one time.
XXX	XXX	XXX	1		$\Gamma_{i} = I$		1	1		- !		1	!	i	- !	į		
XXX	XXX	XXX	1		[i /		ì	!	į	- /		À.	1	١,	/		,	
XXX	XXX	XXX	1		\ ./-		\.	<i>;</i>	'	Ų.		` `	i	`,	j		`	
XXX	XXX	XXX	1		1							•	Mini	mum	l			
XXX	XXX	XXX	1		l													

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 91 [HO2S1 (B1) signal] or 92 [HO2S1 (B2) signal] and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least one time.
 - The minimum voltage is below 0.3V at least one time.
 - The voltage never exceeds 1.0V.


1 time: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$

2 times: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V$

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation **HEATED OXYGEN SENSOR 1**

Refer to EM-118, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

EC

Α

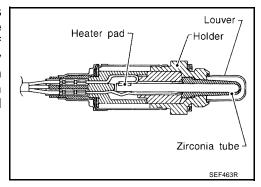
D

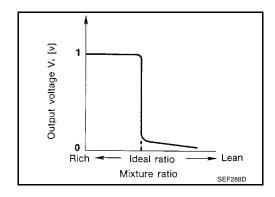
F

Н

M

UBS0038P


UBS0038Q


DTC P0133, P0153 HO2S1

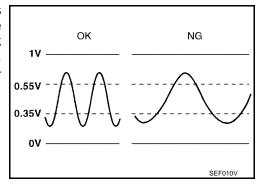
Component Description

PFP:22690

The heated oxygen sensor 1 is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

UBS0038R


Specification data are reference values.

MONITOR ITEM	CON	SPECIFICATION	
HO2S1 (B1) HO2S1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times dur- ing 10 seconds.

On Board Diagnosis Logic

UBS0038S

To judge the malfunction of heated oxygen sensor 1, this diagnosis measures response time of heated oxygen sensor 1 signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and heated oxygen sensor 1 temperature index. Judgment is based on whether the compensated time (heated oxygen sensor 1 cycling time index) is inordinately long or not.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0133 0133 (Bank 1)			 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 1 Heated oxygen sensor 1 heater 	
P0153 0153 (Bank 2)	Heated oxygen sensor 1 circuit slow response	The response of the voltage signal from the sensor takes more than the specified time.	 Fuel pressure Injectors Intake air leaks Exhaust gas leaks PCV valve Mass air flow sensor 	

DTC Confirmation Procedure

UBS0038T

D

Е

Н

M

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above –10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

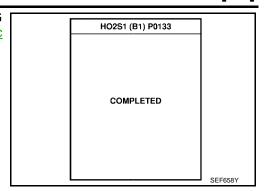
(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 10 seconds.
- 3. Turn ignition switch "ON" and select "HO2S1 (B1) P0133" or "HO2S1 (B2) P0153" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4. Touch "START".
- 5. Start engine and let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 5.

HO2S1 (B1) P0		
OUT OF CONDI		
MONITOR		
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S	xxx c	
VHCL SPEED SEN	XXX km/h	055007
		SEF338Z


6. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 20 to 50 seconds.)

ENG SPEED	1,200 - 3,100 rpm
Vehicle speed	More than 80 km/h (50 MPH)
B/FUEL SCHDL	2.5 - 12.0 msec
Selector lever	Suitable position

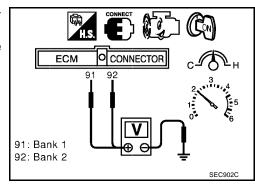
If "TESTING" is not displayed after 5 minutes, retry from step 2.

HO2S1 (B1) P0	133	
TESTING		
MONITOR		
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S	xxx c	
VHCL SPEED SEN	XXX km/h	
		SEF339Z

 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to <u>EC-840</u>, "<u>Diagnostic</u> <u>Procedure</u>".

Overall Function Check

UBS0038U


Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

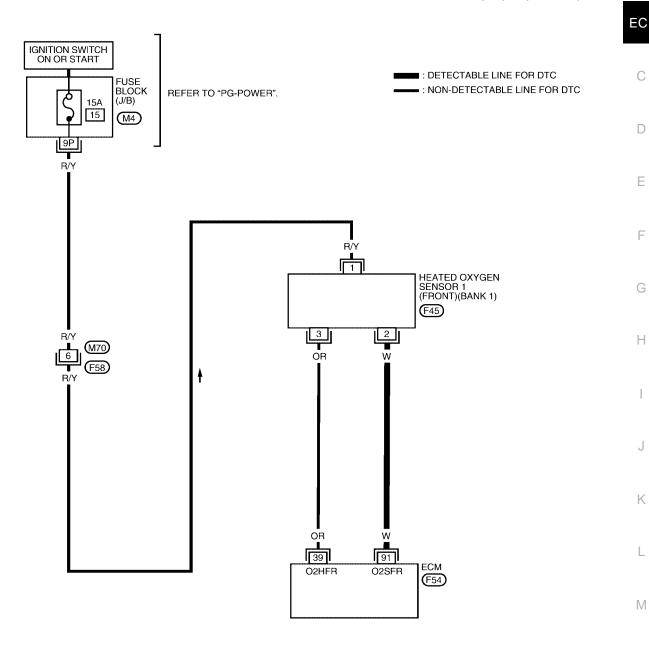
- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 91 [HO2S1(B1) signal] or 92 [HO2S1(B2) signal] and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.

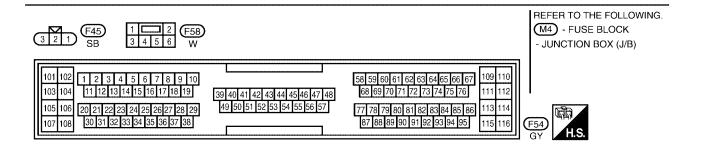
1 time:
$$\begin{array}{ll} \text{0 - 0.3V} \rightarrow \text{0.6 - 1.0V} \rightarrow \text{0 - 0.3V} \\ \text{2} & \text{0 - 0.3V} \rightarrow \text{0.6 - 1.0V} \rightarrow \text{0 - 0.3V} \rightarrow \text{0.6 - 1.0V} \\ \text{times:} & \rightarrow \text{0 - 0.3V} \end{array}$$

4. If NG, go to EC-840, "Diagnostic Procedure".

Wiring Diagram BANK 1

Α


C


D

Е

Н

EC-02S1B1-01

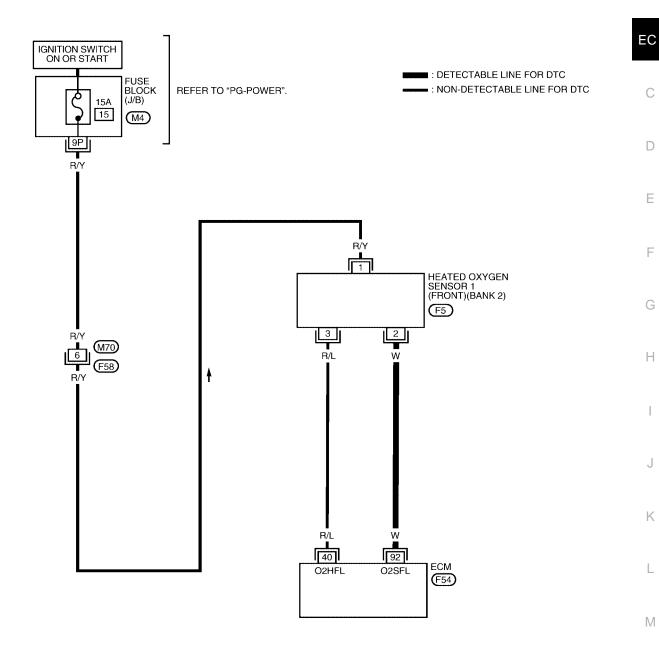
BBWA0054E

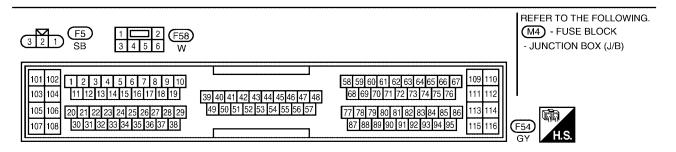
DTC P0133, P0153 HO2S1

[VQ]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
91	W	Heated oxygen sensor 1 (Bank 1)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)

Α

BANK 2

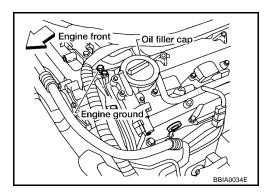
EC-02S1B2-01

BBWA0055E

CAUTION:

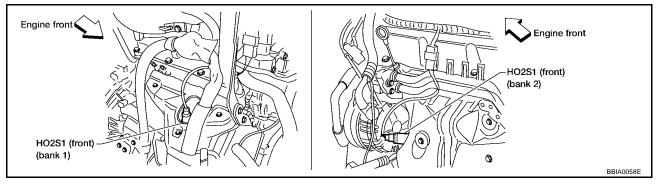
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
92	W	Heated oxygen sensor 1 (Bank 2)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)


Diagnostic Procedure

UBS0038W

1. RETIGHTEN GROUND SCREWS


- Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. RETIGHTEN HEATED OXYGEN SENSOR 1

Loosen and retighten heated oxygen sensor 1.

Tightening torque: 40 - 60 N·m (4.1 - 6.2 kg-m, 30 - 44 ft-lb)

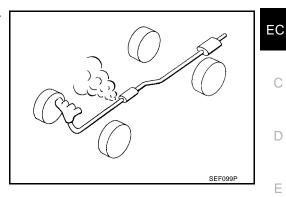
>> GO TO 3.

[VQ]

Е

Н

M


3. CHECK FOR EXHAUST AIR LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust air leak before three way catalyst (Mani-

OK or NG

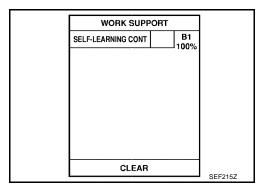
OK >> GO TO 4.

NG >> Repair or replace.

4. CHECK FOR INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.

OK or NG


OK >> GO TO 5.

NG >> Repair or replace.

5. CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

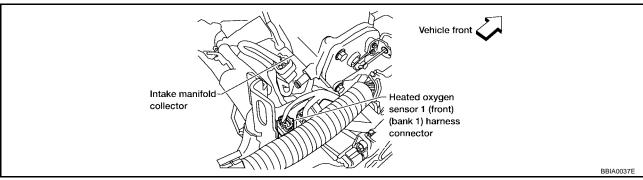
- 1. Start engine and warm it up to normal operating temperature.
- Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

⋈ Without CONSULT-II

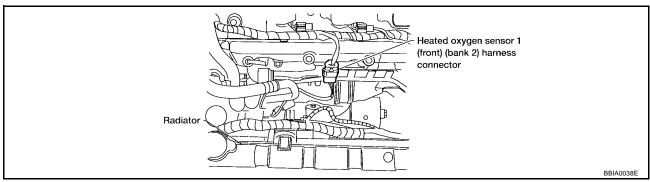
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to EC-686, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".
- 7. Make sure DTC P0000 is displayed.
- Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Yes or No

Yes >> Perform trouble diagnosis for DTC P0171 or DTC P0172 (Refer to EC-875 or EC-883).


No >> GO TO 6.

lass air flow sensor (with built in intake Áir cleaner


6. CHECK HO2S1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Disconnect heated oxygen sensor 1 harness connector.

Bank 1

Bank 2

- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Bank	
	ECM	Sensor	Dalik
P0133	91	2	1
P0153	92	2	2

Continuity should exist.

4. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Tern	Bank	
ыс	ECM	Sensor	Dalik
P0133	91	2	1
P0153	92	2	2

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

[VQ]

7. CHECK HEATED OXYGEN SENSOR 1 HEATER

Refer to EC-778, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace malfunctioning heated oxygen sensor 1.

8. CHECK MASS AIR FLOW SENSOR

Refer to EC-801, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace mass air flow sensor.

9. CHECK PCV VALVE

Refer to EC-1298, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace PCV valve.

10. CHECK HEATED OXYGEN SENSOR 1

Refer to EC-843, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> Replace malfunctioning heated oxygen sensor 1.

11. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 1

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

MONITOR NO DTC ENG SPEED XXX rpm MAS A/F SE-B1 XXX V COOLAN TEMP/S XXX °C HO2S1 (B1) XXX V HO2S1 MNTR (B1) LEAN	DATA MON	ITOR	
MAS A/F SE-B1 XXX V COOLAN TEMP/S XXX °C HO2S1 (B1) XXX V	MONITOR	NO DTC	
COOLAN TEMP/S XXX °C HO2S1 (B1) XXX V	ENG SPEED	XXX rpm	
HO2S1 (B1) XXX V	MAS A/F SE-B1	xxx v	
	COOLAN TEMP/S	XXX °C	
HO2S1 MNTR (B1) LEAN	HO2S1 (B1)	xxx v	
	HO2S1 MNTR (B1)	LEAN	
			SEF646

EC

D

Е

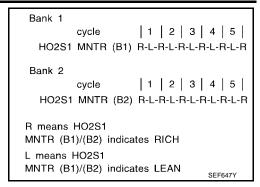
-

Г

0

Н

.


J

UBS0038X

038X

M

- Check the following.
 - "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.
 - 5 times (cycles) are counted as shown at right.
 - "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
 - "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
 - "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Trigger	ENG SPEED	HO2S1 (B1)		128		_Max	kimur								Maximum voltage
	rpm	V			[/	~\	/	γ	- /	1	- /	<i>\</i>	- /)	should be over 0.6V at least one time.
XXX	XXX	XXX	1		Ι ΄	•	•	•	•	•	•	•	•	•	at idasi one time.
XXX	XXX	XXX	1		,		1	ı	•	L	ı	1	•	1	
XXX	XXX	XXX	1												
XXX	XXX	XXX	1	64		1		1		1	•	•	- 1	•	
XXX	XXX	XXX	1	_											 Minimum voltage should be below 0.30V
XXX	XXX	XXX			i ;	i	- ;	į	- 1	į	- ;	١.	-	Ļ	
XXX	XXX	XXX			i		i	- 1	i	1	i	١,	i	1	at least one time.
XXX	XXX	XXX]		l\	,	!	,	!	ì	!	i	- !	i	
XXX	XXX	XXX]		\mathbb{N}/I	į	- /	, į	i	ì	i	1	i	,	
XXX	XXX	XXX]		\ ./	`	J.	'	_/	```	•	',	J.	`.	
XXX	XXX	XXX]								• Mini	mum	1		
XXX	XXX	XXX	1		l										SEF64

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 91 [HO2S1 (B1) signal] or 92 [HO2S1 (B2) signal] and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least one time.
 - The minimum voltage is below 0.3V at least one time.
 - The voltage never exceeds 1.0V.

1 time: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$

2 times: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V$

ECM OCONNECTOR C H 91 92 91: Bank 1 92: Bank 2 SEC902C

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 1

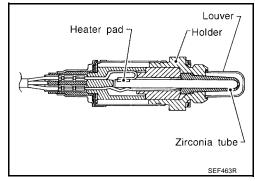
UBS0038Y

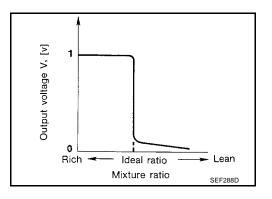
Refer to EM-118, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

DTC P0134, P0154 HO2S1

PFP:22690

Component Description


UBS0038Z


EC

Е

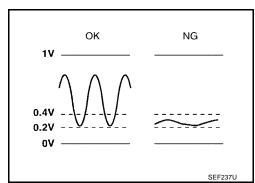
Н

The heated oxygen sensor 1 is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

UBS00390

Specification data are reference values.


MONITOR ITEM	CON	NDITION	SPECIFICATION
HO2S1 (B1) HO2S1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times dur- ing 10 seconds.

On Board Diagnosis Logic

UBS00391

M

Under the condition in which the heated oxygen sensor 1 signal is not input, the ECM circuits will read a continuous approximately 0.3V. Therefore, for this diagnosis, the time that output voltage is within 200 to 400 mV range is monitored, and the diagnosis checks that this time is not inordinately long.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0134 0134 (Bank 1)	Heated oxygen sensor 1 circuit no activity	The voltage from the sensor is constantly	Harness or connectors (The sensor circuit is open or shorted)
P0154 0154 (Bank 2)	detected	approx. 0.3V.	Heated oxygen sensor 1

DTC Confirmation Procedure

UBS00392

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

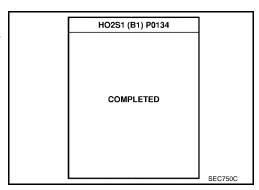
(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "HO2S1 (B1) P0134" or "HO2S1 (B2) P0154" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START".
- Let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 4.

HO2S1 (B1) PO	134	
OUT OF CONDI		
MONITOR		
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S	xxx °c	
VHCL SPEED SEN	XXX km/h	PBIB0544E
		FDIBU544E


When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 10 to 60 seconds.)

ENG SPEED	1,400 - 2,600 rpm
Vehicle speed	More than 64 km/h (40 MPH)
B/FUEL SCHDL	2.0 - 12.0 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

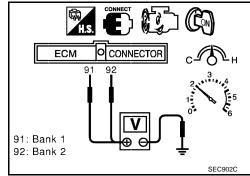
 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to <u>EC-851</u>, "<u>Diagnostic</u> Procedure".

HO2S1 (B1) P6		
TESTING		
MONITOR		
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S	xxx.c	
VHCL SPEED SEN	XXX km/h	PBIB0545E

Overall Function Check

UBS00393

Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.


WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 91 [HO2S1 (B1) signal] or 92 [HO2S1 (B2) signal] and engine ground.

DTC P0134, P0154 HO2S1

[VQ]

- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage does not remain in the range of 0.2 0.4V.
- 4. If NG, go to EC-851, "Diagnostic Procedure".

Α

EC

С

D

Е

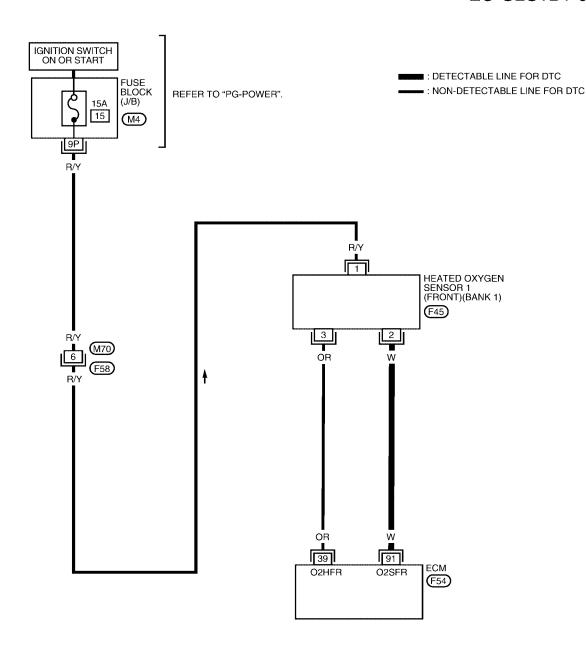
F

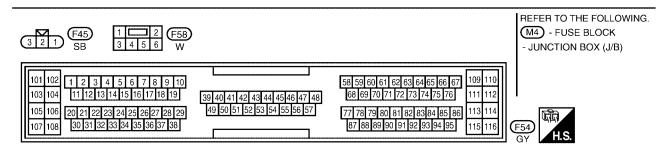
G

Н

.

K


L


M

Wiring Diagram BANK 1

UBS00394

EC-O2S1B1-01

BBWA0054E

DTC P0134, P0154 HO2S1

[VQ]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

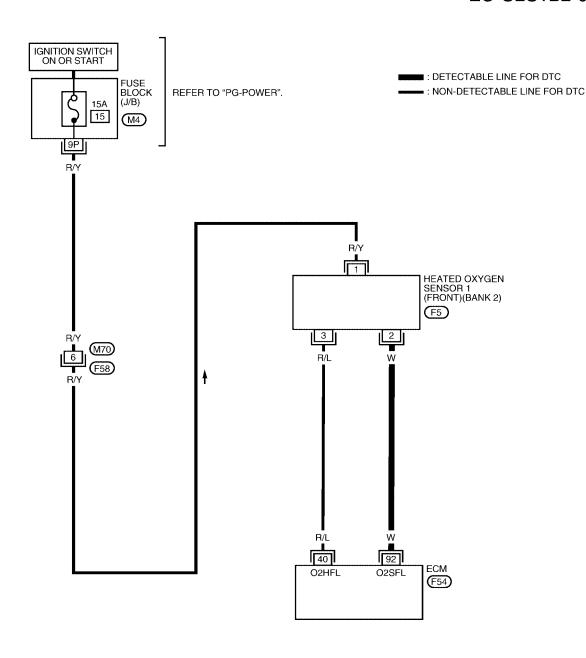
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
91	W	Heated oxygen sensor 1 (Bank 1)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)

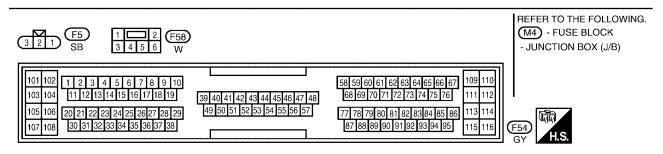
EC

Α

D

Е


Н


<

M

BANK 2

EC-02S1B2-01

BBWA0055E

DTC P0134, P0154 HO2S1

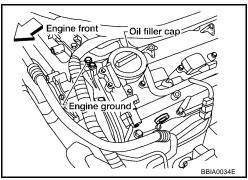
[VQ]

UBS00395

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
92	W	Heated oxygen sensor 1 (Bank 2)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)	С


Diagnostic Procedure

1. INSPECTION START

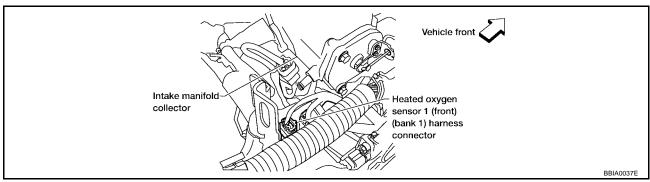
1. Turn ignition switch "OFF".

2. Loosen and retighten engine ground screws.

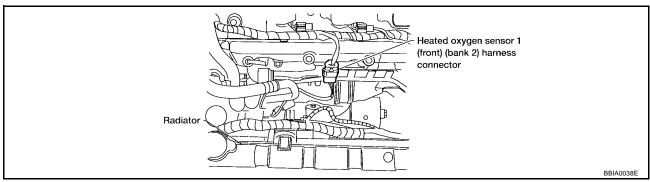
>> GO TO 2.

Е

Н


D

M


$2.\,$ check ho2s1 input signal circuit for open and short

Disconnect HO2S1 harness connector.

Bank 1

Bank 2

- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Bank		
ыс	ECM	Sensor	Dalik	
P0134	91	2	1	
P0154	92	2	2	

Continuity should exist.

4. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Term	Bank		
ы	ECM	Sensor	Dank	
P0134	91	2	1	
P0154	92	2	2	

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

[VQ]

EC

D

Е

Н

M

UBS00396

3. CHECK HEATED OXYGEN SENSOR 1

Refer to EC-853, "Component Inspection".

OK or NG

OK >> GO TO 4.

NG >> Replace malfunctioning heated oxygen sensor 1.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 1

(P) With CONSULT-II

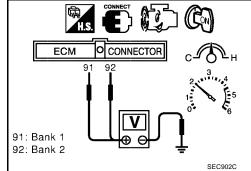
- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-
- 3. Select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

MONITOR NO DTC ENG SPEED XXX rpm MAS A/F SE-B1 XXX V COOLAN TEMP/S XXX °C HO2S1 (B1) XXX V HO2S1 MNTR (B1) LEAN	DATA MON	ITOR	
MAS A/F SE-B1 XXX V COOLAN TEMP/S XXX °C HO2S1 (B1) XXX V	MONITOR	NO DTC	
COOLANTEMP/S XXX °C HO2S1 (B1) XXX V	ENG SPEED	XXX rpm	
HO2S1 (B1) XXX V	MAS A/F SE-B1	xxx v	
1 ' '	COOLAN TEMP/S	XXX °C	
HO2S1 MNTR (B1) LEAN	HO2S1 (B1)	xxx v	
	HO2S1 MNTR (B1)	LEAN	
			SEF646Y

- 6. Check the following.
 - "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.
 - 5 times (cycles) are counted as shown at right.
 - "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
 - "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
 - "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Bank 1
cycle 1 2 3 4 5
HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R
Bank 2
cycle 1 2 3 4 5
HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R
(52)
R means HO2S1
MNTR (B1)/(B2) indicates RICH
L means HO2S1
MNTR (B1)/(B2) indicates LEAN SEF647Y

Trigger	ENG SPEED	HO2S1 (B1)	128		ø	Maximu		\sim	,	· ``	~		 Maximum voltage should be over 0.6V
	rpm	V			1	ļ	$i \in \mathbb{N}$	- /	- /	À	- / `	\	at least one time.
XXX	XXX	XXX											at loads one time.
XXX	XXX	XXX				. 1	ı	' '	r	1	•	•	
XXX	XXX	XXX											
XXX	XXX	XXX	70	5	•				•	•		1	N. 42 - 4
XXX	XXX	XXX	_										 Minimum voltage
XXX	XXX	XXX		į.	- 1	1 /	į	1		i.	i	!	should be below 0.30\
XXX	XXX	XXX		- 1	i	1 1	1	i	i i	1	i	1	at least one time.
XXX	XXX	XXX		- lì	. !	1 !	i	!	\	i	!	i	
XXX	XXX	XXX		- Į i) /	1 /	i	i	N /	\	<i>i</i>	į	
XXX	XXX	XXX			V	V	'	į	•	`\	į.	`_	
XXX	XXX	XXX							Min	imum			
XXX	XXX	XXX											


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 91 [HO2S1 (B1) signal] or 92 [HO2S1 (B2) signal] and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least one time.
 - The minimum voltage is below 0.3V at least one time.
 - The voltage never exceeds 1.0V.

1 time: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V 2 times: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V \to 0.6 - 1.0V

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 1

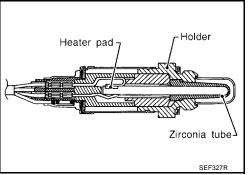
UBS00397

Refer to EM-118, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

UBS00398

PFP:226A0

DTC P0138, P0158 HO2S2

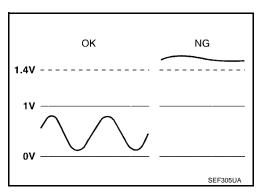

Component Description

The heated oxygen sensor 2, after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.


CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CON	SPECIFICATION	
HO2S2 (B1) HO2S2 (B2)	Engine: After warming up	Revving engine from idle to 3,000 rpm quickly.	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	Engine: After warming up	Revving engine from idle to 3,000 rpm quickly.	$LEAN \longleftrightarrow RICH$

On Board Diagnosis Logic

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the voltage is unusually high during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0138 0138 (Bank 1)	Heated oxygen sensor	An excessively high voltage from the sensor is	Harness or connectors (The sensor circuit is open or shorted)
P0158 0158 (Bank 2)	2 circuit high voltage	sent to ECM.	Heated oxygen sensor 2

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(III) WITH CONSULT-II

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 3. Stop vehicle with engine running.
- Let engine idle for 1 minute.

EC

Α

Е

UBS00399

UBS0039A

Н

M

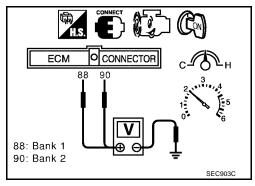
UBS0039B

Maintain the following conditions for at least 5 consecutive seconds.

ENG SPEED	1,000 - 3,000 rpm
VHCL SPEED SE	More than 32 km/h (20 MPH)
B/FUEL SCHDL	3.0 - 7.0 msec
COOLAN TEMP/S	70 - 100°C (158 - 212°F)
	,
Selector lever	Suitable position

If 1st trip DTC is detected, go to <u>EC-860, "Diagnostic Procedure"</u>

			1			
DATA MO	DATA MONITOR					
MONITOR		NO DTC				
ENG SPEED	Х	XX rpm				
COOLAN TEMP/S		XXX °C				
VHCL SPEED SE	X	XX km/h				
B/FUEL SCHDL	X	XX msec				
<u> </u>			SEF189Y			


Overall Function Check

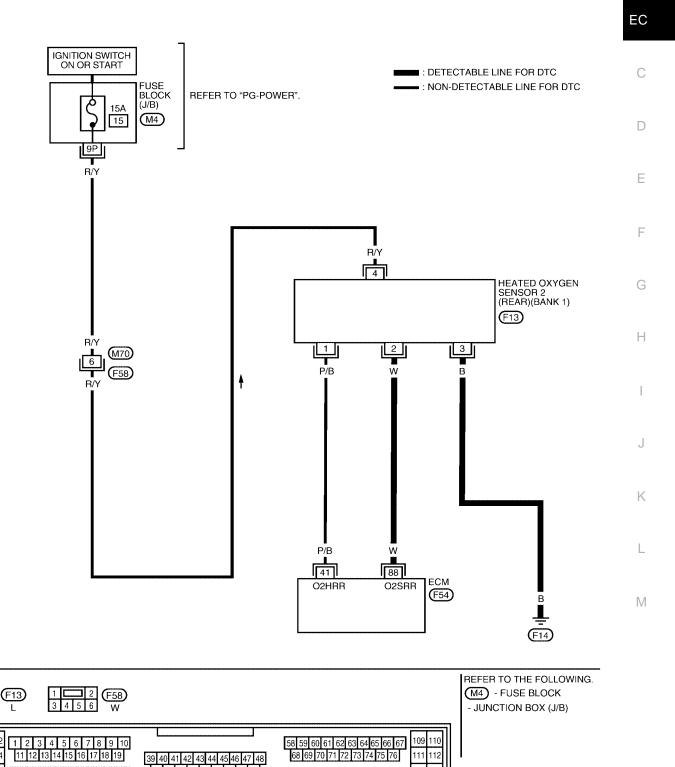
UBS0039C

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 88 [HO2S2 (B1) signal] or 90 [HO2S2 (B2) signal] and engine ground.
- 4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be below 1.4V during this procedure.
- 5. If NG, go to EC-860, "Diagnostic Procedure".

Wiring Diagram BANK 1


103 104

105 106

UBS0039D

Α

EC-02S2B1-01

BBWA0058E

DTC P0138, P0158 HO2S2

[VQ]

Specification data are reference values and are measured between each terminal and ground.

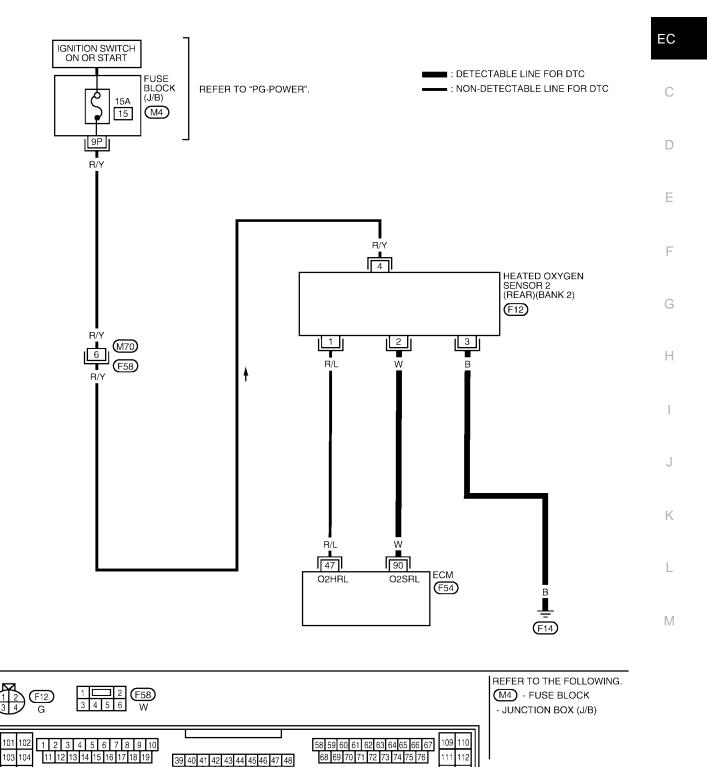
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
88	W	Heated oxygen sensor 2	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V

Α

BANK 2


105 106

107 108

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38

EC-O2S2B2-01

77 78 79 80 81 82 83 84 85 86

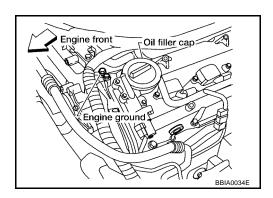
87 88 89 90 91 92 93 94 95

BBWA0059E

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
90	W	Heated oxygen sensor 2	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V

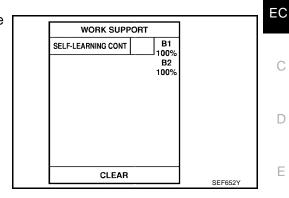

Diagnostic Procedure

UBS0039E

1. RETIGHTEN GROUND SCREWS

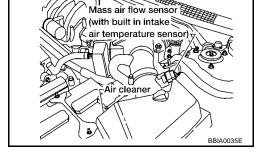
- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.



[VQ]

2. CLEAR THE SELF-LEARNING DATA


(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine?

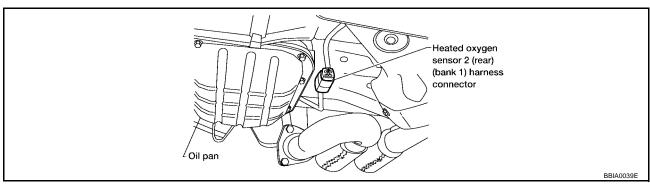
⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-686, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 o P0175 detected? Is it difficult to start engine?

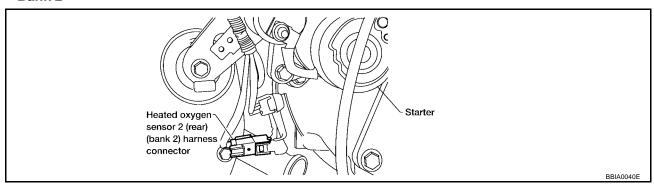
Yes or No

Yes >> Perform trouble diagnosis for DTC P0172 or P0175. Refer to EC-883.

No >> GO TO 3.


Н

M


3. Check Ho2S2 ground circuit for open and short

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 2 harness connector.

Bank 1

Bank 2

3. Check harness continuity between HO2S2 terminal 3 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to power in harness or connectors.

[VQ]

$4.\,$ CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Disconnect ECM harness connector.

2. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Terminals		Bank
ыс	ECM	Sensor	Dank
P0138	88	2	1
P0158	90	2	2

. •

Continuity should exist.

3. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Е

D

DTC	Terminals Bank		Terminals		Bank
DIC	ECM	Sensor	Dank		
P0138	88	2	1		
P0158	90	2	2		

G

Continuity should not exist.

4. Also check harness for short to ground or short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

. .

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-863, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 2.

IZ

6. CHECK INTERMITTENT INCIDENT

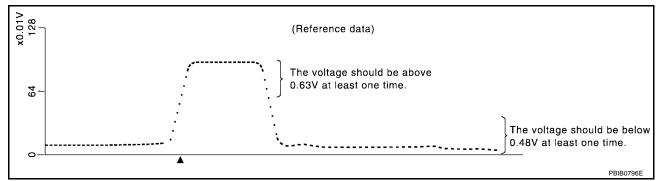
Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

M

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2

UBS0039F


(P) With CONSULT-II

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-II.

Γ	ACTIVE TES		
	FUEL INJECTION	25 %	
	MONITOR		
	ENG SPEED	XXX rpm	
	HO2S1 (B1)	xxx v	
	HO2S2 (B1)	xxx v	
	HO2S1 MNTR (B1)	RICH	
	HO2S2 MNTR (B1)	RICH	
L.		<u> </u>	SEF662Y

LIBS0039G

4. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)/(B2)" should be above 0.63V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)/(B2)" should be below 0.48V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II


- Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 88 [HO2S2 (B1) signal] or 90 [HO2S2 (B2) signal] and engine ground.
- 4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.63V at least once during this procedure.
 - If the voltage is above 0.63V at step 4, step 5 is not necessary.
- Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in "D" position with "OD" OFF (A/T), 3rd gear position (M/T).
 The voltage should be below 0.48V at least once during this procedure.
- 6. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

Refer to EX-6, "EXHAUST SYSTEM (VQ35DE)".

DTC P0139, P0159 HO2S2

PFP:226A0

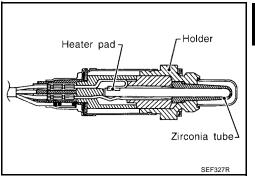
Component Description

UBS0039H

EC

Е

Н


M

The heated oxygen sensor 2, after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

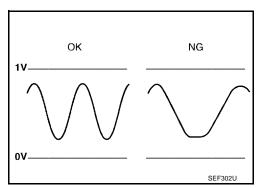
Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

UBS0039I


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1) HO2S2 (B2)	Engine: After warming up	Revving engine from idle to 3,000 rpm quickly.	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	Engine: After warming up	Revving engine from idle to 3,000 rpm quickly.	$LEAN \longleftrightarrow RICH$

On Board Diagnosis Logic

UBS0039J

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the switching response of the sensor's voltage is faster than specified during the various driving condition such as fuel-cut.

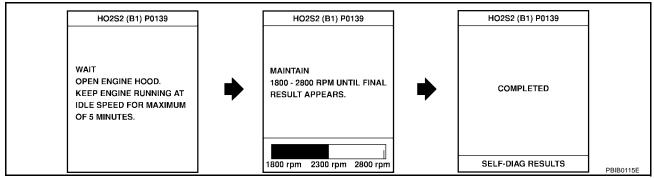
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0139 0139 (Bank 1)	Heated oxygen sensor	It takes more time for the sensor to respond	 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2
P0159 0159 (Bank 2)	2 circuit slow response	between rich and lean than the specified time.	Fuel pressureInjectorsIntake air leaks

DTC Confirmation Procedure

UBS0039K

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.


TESTING CONDITION:

Open engine hood before conducting following procedure.

(P) WITH CONSULT-II

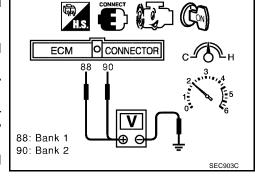
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Turn ignition switch "ON".
- 4. Select "DATA MONITOR" mode with CONSULT-II.

- Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).
- 6. Select "HO2S2 (B1) P0139" or "HO2S2 (B2) P0159" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 7. Start engine and following the instruction of CONSULT-II.

- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 If "NG" is displayed, refer to <u>EC-870, "Diagnostic Procedure"</u>.
 If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- a. Stop engine and cool down until "COOLAN TEMP/S" indicates less than 70°C (158°F).
- b. Turn ignition switch "ON".
- c. Select "DATA MONITOR" mode with CONSULT-II.
- d. Start engine.
- e. Return to step 6 again when the "COOLAN TEMP/S" reaches to 70°C (158°F).

Overall Function Check

UBS0039L


Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

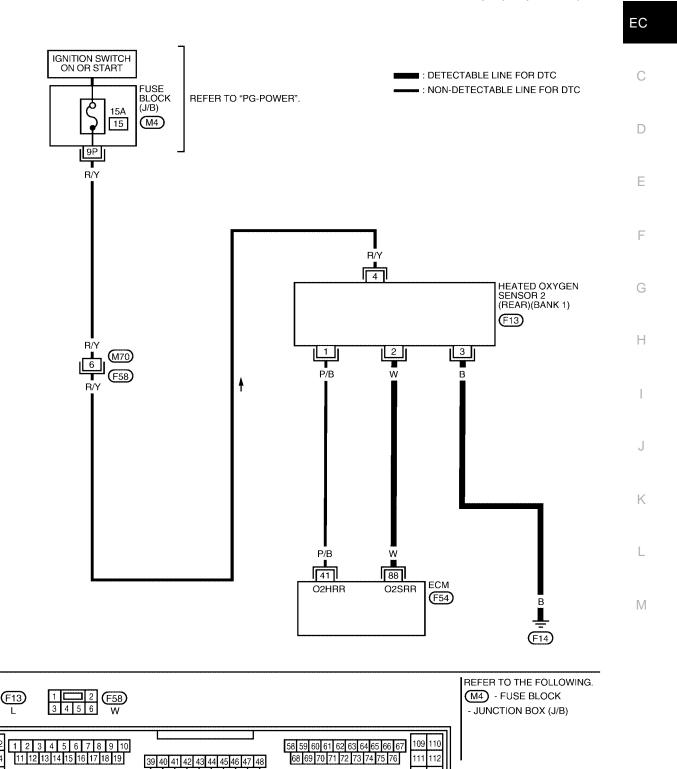
WITH GST

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 88 [HO2S2 (B1) signal] or 90 [HO2S2 (B2) signal] and engine ground.
- 4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.)

 The voltage should change at more than 0.06V for 1 second
 - during this procedure.

 If the voltage can be confirmed in step 4, step 5 is not nec-
 - If the voltage can be confirmed in step 4, step 5 is not necessary.
- 5. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in "D" position with "OD" OFF (A/T), 3rd gear position (M/T).
 - The voltage should change at more than 0.06V for 1 second during this procedure.
- 6. If NG, go to EC-870, "Diagnostic Procedure".

Wiring Diagram BANK 1


103 104

105 106

NOSONOSA

Α

EC-02S2B1-01

BBWA0058E

DTC P0139, P0159 HO2S2

[VQ]

Specification data are reference values and are measured between each terminal and ground.

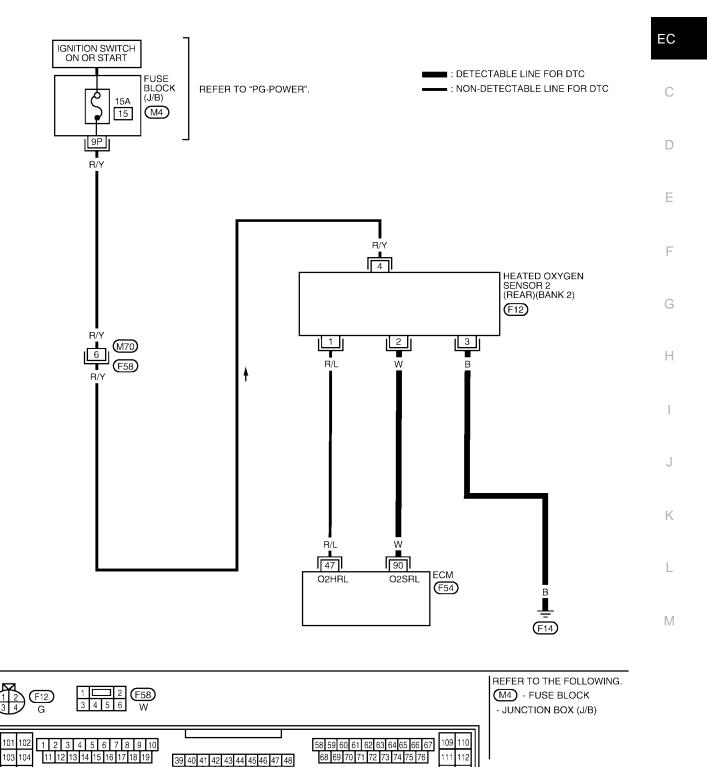
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
88	W	Heated oxygen sensor 2	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V

Α

BANK 2


105 106

107 108

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38

EC-O2S2B2-01

77 78 79 80 81 82 83 84 85 86

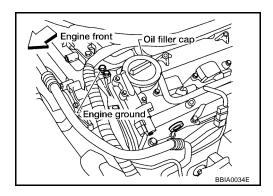
87 88 89 90 91 92 93 94 95

BBWA0059E

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

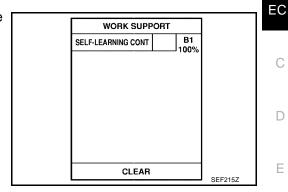
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
90	W	Heated oxygen sensor 2	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V


Diagnostic Procedure

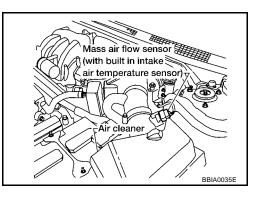
UBS0039N

1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.


>> GO TO 2.

2. CLEAR THE SELF-LEARNING DATA


(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

⋈ Without CONSULT-II

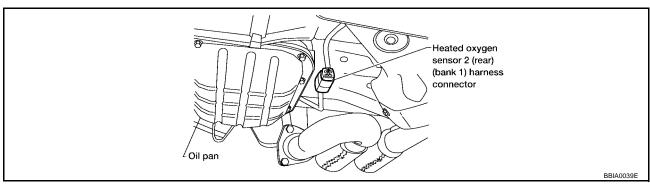
- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to EC-686, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

Yes or No

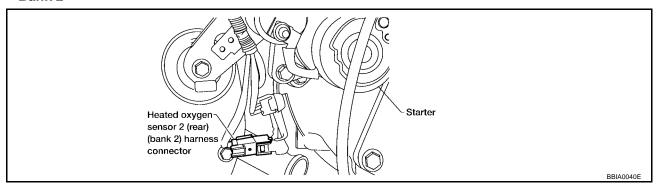
Yes >> Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to EC-875 or EC-883. Nο >> GO TO 3.

M

Е


Н

EC-871 Revision: May 2004 2002 Altima


3. Check Ho2S2 ground circuit for open and short

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 2 harness connector.

Bank 1

Bank 2

3. Check harness continuity between HO2S2 terminal 3 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to power in harness or connectors.

4. CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

F	C

DTC	Term	Bank	
ы	ECM	Sensor	Dank
P0138	88	2	1
P0158	90	2	2

Continuity should exist.

3. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Е

D

DTC	Term	Bank	
ыс	ECM	Sensor	Dank
P0138	88	2	1
P0158	90	2	2

Continuity should not exist.

4. Also check harness for short to ground or short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-873, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 2.

M

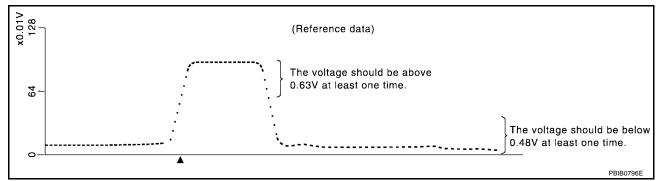
6. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

UBS00390

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2


(P) With CONSULT-II

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-II.

ACTIVE TES		
FUEL INJECTION	25 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S1 (B1)	xxx v	
HO2S2 (B1)	xxx v	
HO2S1 MNTR (B1)	RICH	
HO2S2 MNTR (B1)	RICH	
·		SEF662Y

LIBS0039P

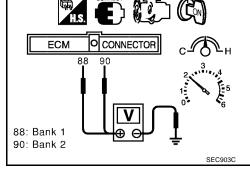
4. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)/(B2)" should be above 0.63V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)/(B2)" should be below 0.48V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II


- Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 88 [HO2S2 (B1) signal] or 90 [HO2S2 (B2) signal] and engine ground.
- Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.63V at least once during this procedure.
 - If the voltage is above 0.63V at step 4, step 5 is not necessary.
- Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in "D" position with "OD" OFF (A/T), 3rd gear position (M/T).
 The voltage should be below 0.48V at least once during this procedure.
- 6. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

Refer to EX-6, "EXHAUST SYSTEM (VQ35DE)".

DTC P0171, P0174 FUEL INJECTION SYSTEM FUNCTION

[VQ]

DTC P0171, P0174 FUEL INJECTION SYSTEM FUNCTION

PFP:16600

On Board Diagnosis Logic

UBS00390

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensors 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios.

EC

D

Е

M

Α

In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the ECM judges the condition as the fuel injection system malfunction and light up the MIL (2 trip detection logic).

Sensor	Input Signal to ECM	ECM function	Actuator
Heated oxygen sensors 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection control	Fuel injectors

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0171 0171 (Bank 1) P0174 0174 (Bank 2)	Fuel injection system too lean	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too lean.) 	 Intake air leaks Heated oxygen sensor 1 Injectors Exhaust gas leaks Incorrect fuel pressure Lack of fuel Mass air flow sensor Incorrect PCV hose connection

DTC Confirmation Procedure

LIBS0039R

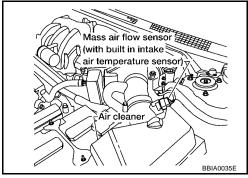
NOTE:

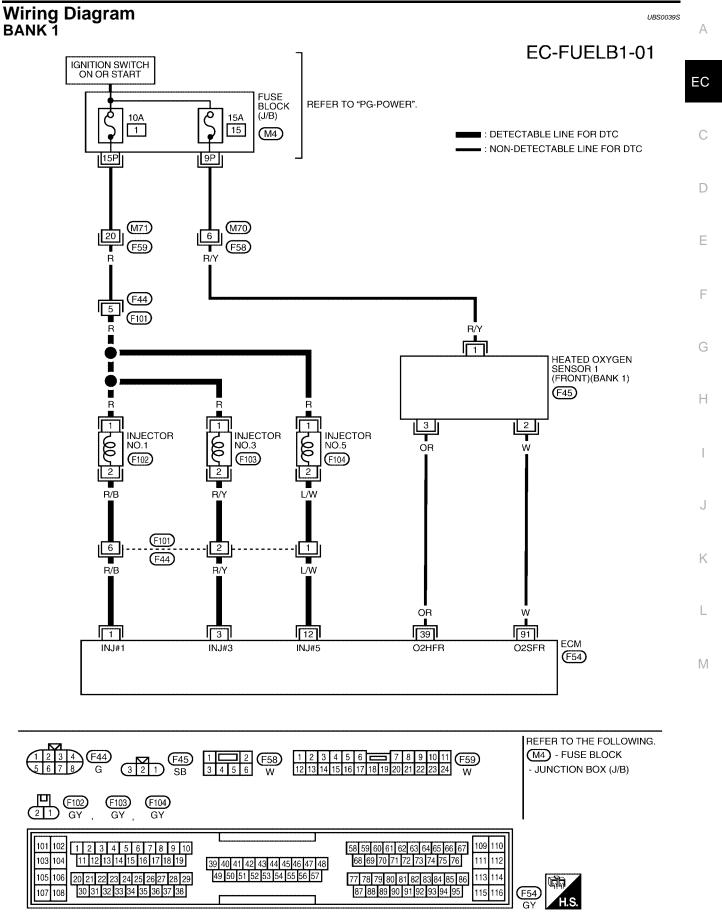
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON" and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-II.
- 4. Clear the self-learning control coefficient by touching "CLEAR".
- Select "DATA MONITOR" mode with CONSULT-II.
- 6. Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0171 or P0174 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-879.
- 7. If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
- 8. Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-879 . If engine does not start, check exhaust and intake air leak visually.

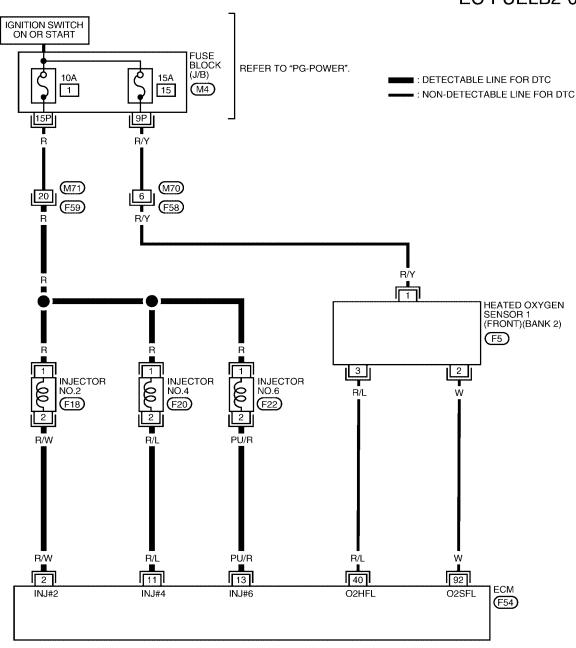
WORK SUPPORT SELF-LEARNING CONT B1 100% CLEAR

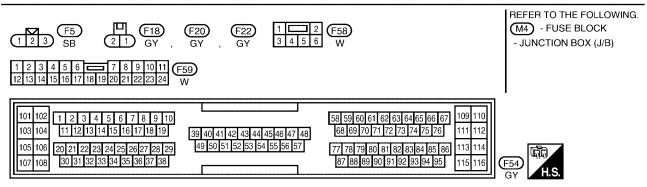

WITH GST


- Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 10 seconds.

DTC P0171, P0174 FUEL INJECTION SYSTEM FUNCTION

[VQ]


- 3. Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness con-
- 5. Select "MODE 3" with GST. Make sure DTC P0102 is detected.
- Select "MODE 4" with GST and erase the DTC P0102.
- 7. Start engine again and let it idle for at least 10 minutes.
- 8. Select "MODE 7" with GST. The 1st trip DTC P0171 or P0174 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-879.
- 9. If it is difficult to start engine at step 7, the fuel injection system has a malfunction. 10. Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-879. If engine does not start, check exhaust and intake air leak visually.



BANK 2

EC-FUELB2-01

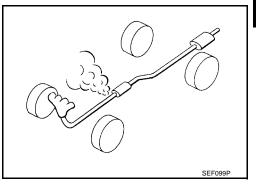
DTC P0171, P0174 FUEL INJECTION SYSTEM FUNCTION

[VQ]

UBS0039T

Diagnostic Procedure

1. CHECK EXHAUST AIR LEAK


1. Start engine and run it at idle.

2. Listen for an exhaust air leak before three way catalyst.

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK FOR INTAKE AIR LEAK

1. Listen for an intake air leak after the mass air flow sensor.

2. Check PCV hose connection.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK HEATED OXYGEN SENSOR 1 CIRCUIT FOR OPEN AND SHORT

1. Turn ignition switch "OFF".

2. Disconnect corresponding heated oxygen sensor 1 (HO2S1) harness connector.

3. Disconnect ECM harness connector.

4. Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Terminals		Bank
ыс	ECM	Sensor	Dank
P0171	91	1	1
P0174	92	1	2

Continuity should exist.

5. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Tern	Bank	
ы	ECM	Sensor	Dank
P0171	91	1	1
P0174	92	1	2

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

Α

С

D

Е

F

Н

- 1

J

K

L

M

4. CHECK FUEL PRESSURE

- 1. Release fuel pressure to zero. Refer to EC-670, "FUEL PRESSURE RELEASE".
- 2. Install fuel pressure gauge and check fuel pressure. Refer to EC-671, "FUEL PRESSURE CHECK".

At idling: 350 kPa (3.7 kg/cm², 51 psi)

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Fuel pump and circuit (Refer to EC-1254.)
- Fuel pressure regulator (Refer to EC-671 .)
- Fuel lines (Refer to EC-1122, "Wiring Diagram" .)
- Fuel filter for clogging

>> Repair or replace.

6. CHECK MASS AIR FLOW SENSOR

(P) With CONSULT-II

- 1. Install all removed parts.
- 2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

With GST

- 1. Install all removed parts.
- 2. Check mass air flow sensor signal in MODE 1 with GST.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

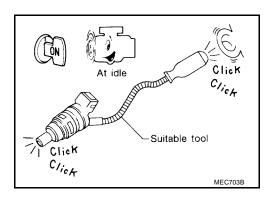
OK or NG

OK >> GO TO 7.

NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-788, "DTC P0101 MAF SENSOR".

/. CHECK FUNCTION OF INJECTORS

(P) With CONSULT-II


- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Make sure that each circuit produces a momentary engine speed drop.

ACT	IVE TEST	-	l	
POWER BALA	ANCE		ļ	
МС	NITOR		ļ	
ENG SPE	ED	XXX rpm		
MAS A/F S	E-B1	xxx v		
-				
			PBIB0133E	=

⋈ Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound.

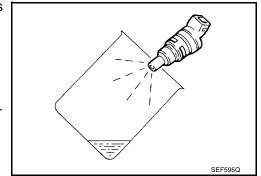
Clicking noise should be heard.

OK or NG

OK >> GO TO 8.

NG >> Perform trouble diagnosis for "INJECTORS", <u>EC-1244</u>.

8. CHECK INJECTOR


- 1. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 2. Turn ignition switch "OFF".
- 3. Disconnect injector harness connectors on bank 2 (for DTC P0171), bank 1 (for DTC P0174).
- 4. Remove injector gallery assembly. Refer to EM-131, "FUEL INJECTOR AND FUEL TUBE". Keep fuel hose and all injectors connected to injector gallery. The injector harness connectors on bank 1 (for DTC P0171), bank 2 (for DTC P0174) should remain connected.
- 5. Disconnect all ignition coil harness connectors.
- 6. Prepare pans or saucers under each injector.
- 7. Crank engine for about 3 seconds. Make sure that fuel sprays out from injectors.

Fuel should be sprayed evenly for each injector.

OK or NG

OK >> GO TO 9.

NG >> Replace injectors from which fuel does not spray out. Always replace O-ring with new ones.

EC

Е

D

Н

M

DTC P0171, P0174 FUEL INJECTION SYSTEM FUNCTION

[VQ]

9. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0172, P0175 FUEL INJECTION SYSTEM FUNCTION

[VQ]

DTC P0172, P0175 FUEL INJECTION SYSTEM FUNCTION

PFP:16600

On Board Diagnosis Logic

UBS0039L

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensors 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios.

EC

Α

In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the ECM judges the condition as the fuel injection system malfunction and light up the MIL (2 trip detection logic).

Sensor	Input Signal to ECM	ECM function	Actuator
Heated oxygen sensors 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection control	Fuel injectors

D

Е

M

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0172 0172 (Bank 1)	Fuel injection system	Fuel injection system does not operate properly. The system does not operate properly. The system does not operate properly.	Heated oxygen sensor 1InjectorsExhaust gas leaks
P0175 0175 (Bank 2)	too rich	The amount of mixture ratio compensation is too large. (The mixture ratio is too rich.)	Exhaust gas leaksIncorrect fuel pressureMass air flow sensor

DTC Confirmation Procedure

UBS0039V

NOTE:

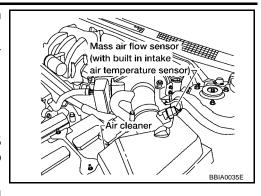
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Turn ignition switch "ON" and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-II.
- 4. Clear the self-learning control coefficient by touching "CLEAR".
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine again and let it idle for at least 10 minutes.
 The 1st trip DTC P0172, P0175 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-887.
- 7. If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
- 8. Crank engine while depressing accelerator pedal.

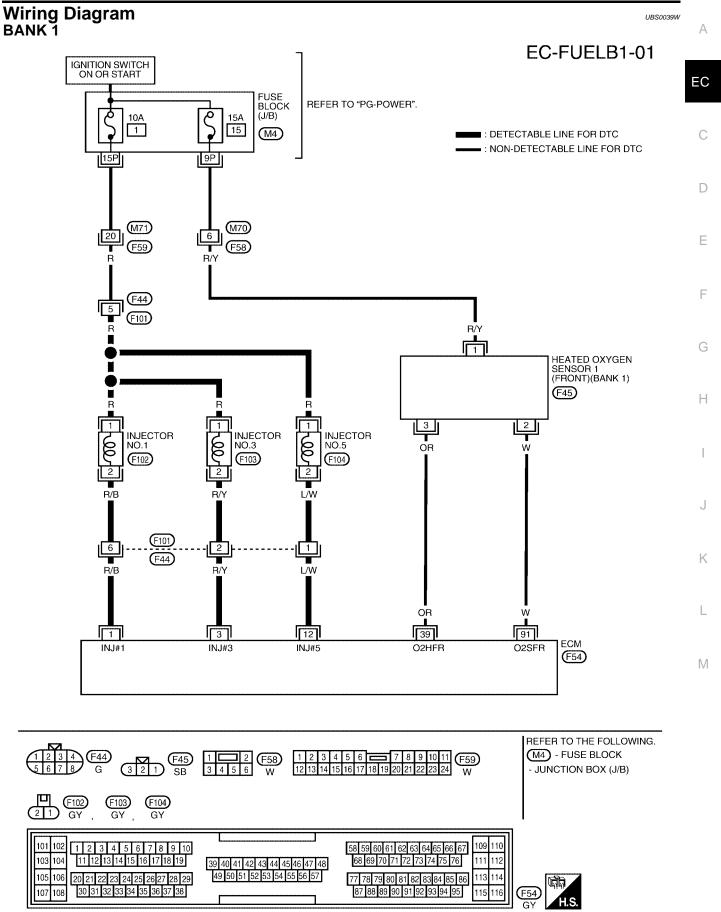
 If engine starts, go to "Diagnostic Procedure", <u>EC-887</u>. If engine does not start, remove ignition plugs and check for fouling, etc.

WORK SUPP	ORT
SELF-LEARNING CONT	B1 100%
CLEAR	

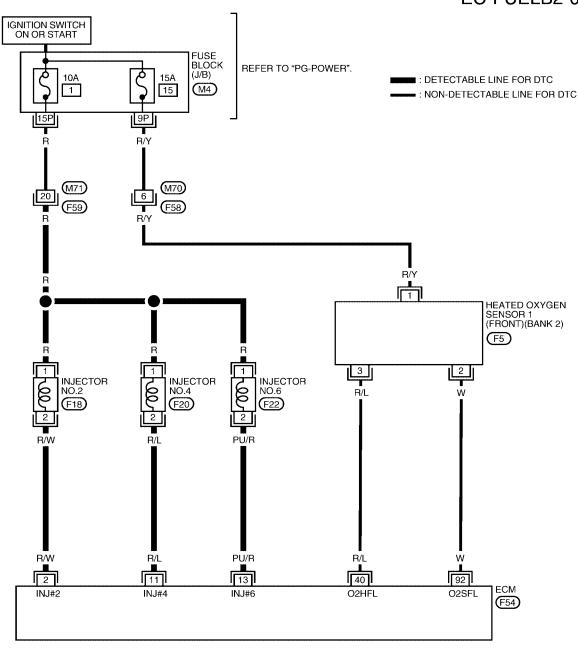

WITH GST

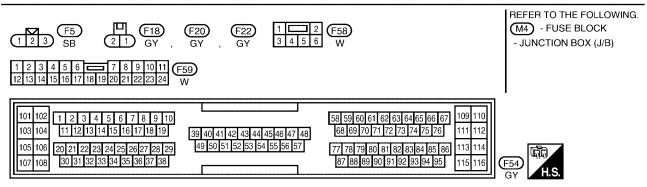
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.

DTC P0172, P0175 FUEL INJECTION SYSTEM FUNCTION


[VQ]

- 3. Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Select "MODE 3" with GST. Make sure DTC P0102 is detected.
- Select "MODE 4" with GST and erase the DTC P0102.
- 7. Start engine again and let it idle for at least 10 minutes.
- 8. Select "MODE 7" with GST. The 1st trip DTC P0172 or P0175 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", <u>EC-887</u>.
- 9. If it is difficult to start engine at step 7, the fuel injection system has a malfunction.


10. Crank engine while depressing accelerator pedal.


If engine starts, go to "Diagnostic Procedure", <u>EC-887</u>. If engine does not start, check exhaust and intake air leak visually.

BANK 2

EC-FUELB2-01

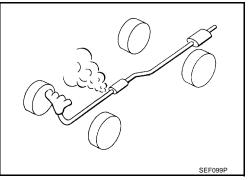
DTC P0172, P0175 FUEL INJECTION SYSTEM FUNCTION

[VQ]

UBS0039X

Diagnostic Procedure

1. CHECK EXHAUST AIR LEAK


1. Start engine and run it at idle.

2. Listen for an exhaust air leak before three way catalyst.

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK FOR INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK HEATED OXYGEN SENSOR 1 CIRCUIT FOR OPEN AND SHORT

Turn ignition switch "OFF".

2. Disconnect corresponding heated oxygen sensor 1 (HO2S1) harness connector.

3. Disconnect ECM harness connector.

4. Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
ыс	ECM	Sensor	Dalik
P0172	91	1	1
P0175	92	1	2

Continuity should exist.

5. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Term	Bank	
ыс	ECM	Sensor	Dalik
P0172	91	1	1
P0175	92	1	2

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

Revision: May 2004

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

Α

D

Е

Н

K

M

2002 Altima

EC-887

4. CHECK FUEL PRESSURE

- 1. Release fuel pressure to zero. Refer to EC-670, "FUEL PRESSURE RELEASE".
- 2. Install fuel pressure gauge and check fuel pressure. Refer to EC-671, "FUEL PRESSURE CHECK".

At idling: 350 kPa (3.7 kg/cm², 51 psi)

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Fuel pump and circuit (Refer to, <u>EC-1254</u>.)
- Fuel pressure regulator (Refer to EC-671 .)
 - >> Repair or replace.

6. CHECK MASS AIR FLOW SENSOR

(II) With CONSULT-II

- 1. Install all removed parts.
- 2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

With GST

- 1. Install all removed parts.
- 2. Check mass air flow sensor signal in MODE 1 with GST.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

OK or NG

OK >> GO TO 7.

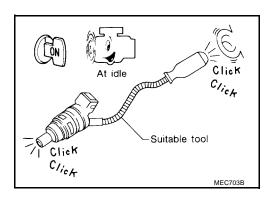
NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-788, "DTC P0101 MAF SENSOR".

DTC P0172, P0175 FUEL INJECTION SYSTEM FUNCTION

[VQ]

7. CHECK FUNCTION OF INJECTORS

(P) With CONSULT-II


- Start engine. 1.
- Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Make sure that each circuit produces a momentary engine speed drop.

ACTIVE TES	ST T	
POWER BALANCE		
MONITOR	1	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		PBIB0133E

⋈ Without CONSULT-II

- 1. Start engine.
- Listen to each injector operating sound.

Clicking noise should be heard.

OK or NG

OK >> GO TO 8.

NG >> Perform trouble diagnosis for "INJECTORS", EC-1244.

8. CHECK INJECTOR

- Remove injector assembly. Refer to EM-131, "FUEL INJECTOR AND FUEL TUBE" . 1. Keep fuel hose and all injectors connected to injector gallery.
- Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- Disconnect injector harness connectors bank 2 (for DTC P0172), bank 1 (for P0175). The injector harness connectors on bank 1 (for P0172), bank 2 (for P0175) should remain connected.
- 4. Disconnect all ignition coil harness connectors.
- Prepare pans or saucers under each injectors.
- 6. Crank engine for about 3 seconds. Make sure fuel does not drip from injector.

OK or NG

OK (Does not drip.)>>GO TO 9.

NG (Drips.)>>Replace the injectors from which fuel is dripping. Always replace O-ring with new one.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

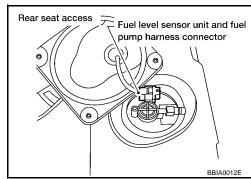
EC

D

Е

Н

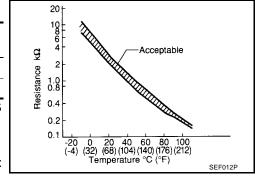
M


DTC P0181 FTT SENSOR

PFP:22630

Component Description

UBS0039Y


The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Fluid temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} These data are reference values and are measured between ECM terminal 75 (Fuel tank temperature sensor) and ground.

CAUTION:

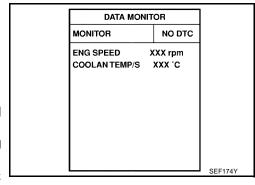
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

UBS0039Z

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0181 0181	Fuel tank temperature sensor circuit range/ performance	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signals from engine coolant temperature sensor and intake air temperature sensor.	 Harness or connectors (The sensor circuit is open or shorted) Fuel tank temperature sensor

DTC Confirmation Procedure


UBS003A0

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 10 seconds.
 If the result is NG, go to <u>EC-893, "Diagnostic Procedure"</u>.
 If the result is OK, go to following step.
- Check "COOLAN TEMP/S" value.
 If "COOLAN TEMP/S" is less than 60°C (140°F), the result will be OK.
 - If "COOLAN TEMP/S" is above 60°C (140°F), go to the following step.
- 5. Cool engine down until "COOLAN TEMP/S" is less than 60°C (140°F).
- Wait at least 10 seconds.
- 7. If 1st trip DTC is detected, go to <u>EC-893, "Diagnostic Procedure".</u>

DTC P0181 FTT SENSOR

[VQ]

GST	W	ITH	GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

С

D

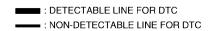
Е

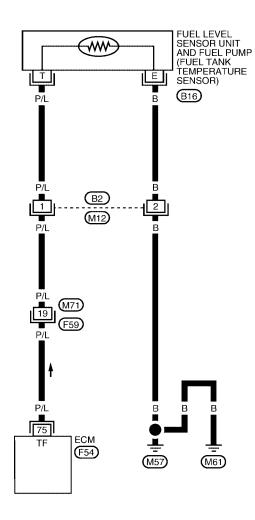
F

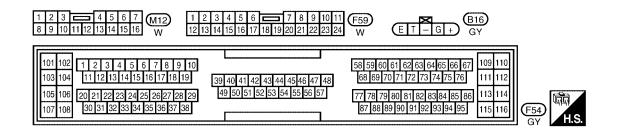
G

Н

1


Κ

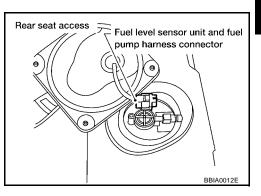

M


Wiring Diagram

UBS003A1

EC-FTTS-01

BBWA0064E

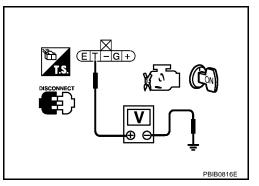

UBS003A2

Diagnostic Procedure

1. CHECK FUEL TANK TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

Turn ignition switch "OFF".

- 2. Disconnect fuel level sensor unit and fuel pump harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between fuel level sensor unit and fuel pump terminal T and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

>> GO TO 3. OK NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B2, M12
- Harness connectors M71, F59
- Harness for open or short between ECM and fuel level sensor unit and fuel pump

>> Repair harness or connector.

$3.\,$ check fuel tank temperature sensor ground circuit for open and short

- Turn ignition switch "OFF".
- 2. Check harness continuity between fuel level sensor unit and fuel pump terminal E and body ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B2, M12
- Harness for open or short between fuel level sensor unit and fuel pump and body ground

>> Repair open circuit or short to power in harness or connector.

EC

Α

Е

Н

5. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-894, "Component Inspection".

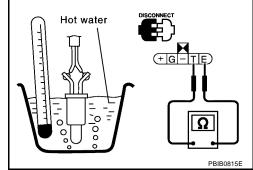
OK or NG

OK >> GO TO 6.

NG >> Replace fuel level sensor unit.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection FUEL TANK TEMPERATURE SENSOR

UBS003A3

- Remove fuel level sensor unit.
- 2. Check resistance between fuel level sensor unit and fuel pump terminals T and E by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

Removal and Installation FUEL TANK TEMPERATURE SENSOR

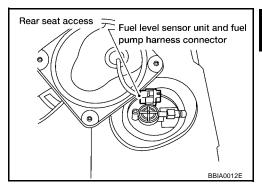
UBS003A4

Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY" .

DTC P0182, P0183 FTT SENSOR

PFP:22630

Component Description


UBS003A5

EC

Е

Н

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Fluid temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} These data are reference values and are measured between ECM terminal 75 (Fuel tank temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

UBS003A6

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0182 0182	Fuel tank temperature sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) Fuel tank temperature sensor	
P0183 0183	Fuel tank temperature sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.		

DTC Confirmation Procedure

UBS003A7

M

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- If 1st trip DTC is detected, go to <u>EC-897</u>, "<u>Diagnostic Procedure</u>"

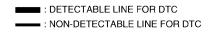
DATA MONITOR

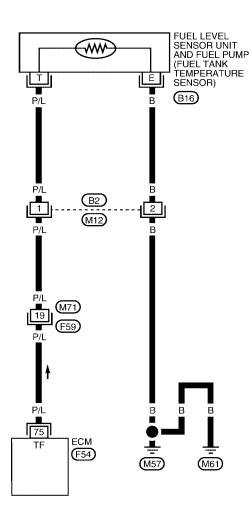
MONITOR

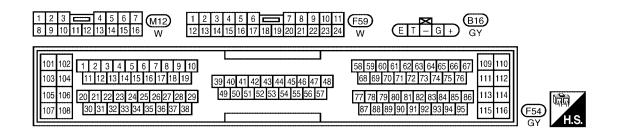
NO DTC

ENG SPEED XXX rpm

COOLAN TEMP/S XXX °C


WITH GST


Follow the procedure "With CONSULT-II" above.

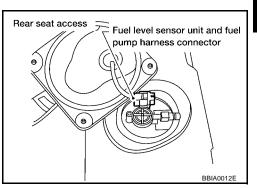

Wiring Diagram

UBS003A8

EC-FTTS-01

BBWA0064E

Diagnostic Procedure

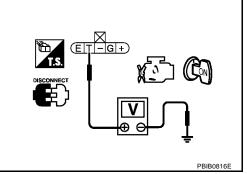

1. CHECK FUEL TANK TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

UBS003A9

Α

EC

- Turn ignition switch "OFF".
- 2. Disconnect fuel level sensor unit and fuel pump harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between fuel level sensor unit and fuel pump terminal T and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

>> GO TO 3. OK NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B2, M12
- Harness connectors M71, F59
- Harness for open or short between ECM and fuel level sensor unit and fuel pump

>> Repair harness or connector.

$3.\,$ check fuel tank temperature sensor ground circuit for open and short

- Turn ignition switch "OFF".
- 2. Check harness continuity between fuel level sensor unit and fuel pump terminal E and body ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

Revision: May 2004

- Harness connectors B2, M12
- Harness for open or short between fuel level sensor unit and fuel pump and body ground

>> Repair open circuit or short to power in harness or connector.

Е

5. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-898, "Component Inspection".

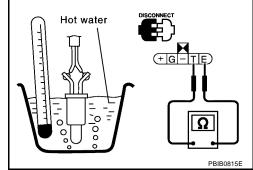
OK or NG

OK >> GO TO 6.

NG >> Replace fuel level sensor unit.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection FUEL TANK TEMPERATURE SENSOR

UBS003AA

- 1. Remove fuel level sensor unit.
- 2. Check resistance between fuel level sensor unit and fuel pump terminals T and E by heating with hot water or heat gun as shown in the figure.

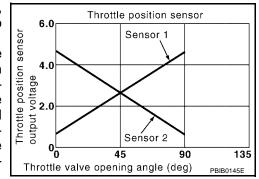
Temperature °C (°F)	Resistance kΩ	
20 (68)	2.3 - 2.7	
50 (122)	0.79 - 0.90	

Removal and Installation FUEL TANK TEMPERATURE SENSOR

UBS003AB

Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY" .

DTC P0221 TP SENSOR


PFP:16119

Component Description

UBS003AC

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

UBS003AD

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL SEN1	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	More than 0.36V
THRTL SENT	Shift lever:D (A/T model)1st (M/T model)	Accelerator pedal: Fully depressed	Less than 4.75V

On Board Diagnosis Logic

UBS003AF

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0221 0221	Throttle position sensor circuit range/performance problem	Rationally incorrect voltage is sent to ECM compared with the signals from TP sensor 1 and TP sensor 2.	 Harness or connector (The TP sensor 1 and 2 circuit is open or shorted.) Electric throttle control actuator (TP sensor 1 and 2)

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters in fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10

The ECM regulates an opening speed of approx. 5 seconds to an opening of 10 degrees.

So, the acceleration will be poor.

DTC Confirmation Procedure

UBS003AF

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

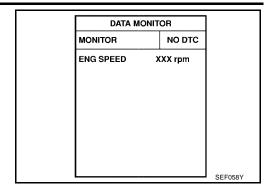
Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

WITH CONSULT-II

1. Turn ignition switch "ON".

Α

Е


EC

M

DTC P0221 TP SENSOR

[VQ]

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-902, "Diagnostic Procedure".

WITH GST

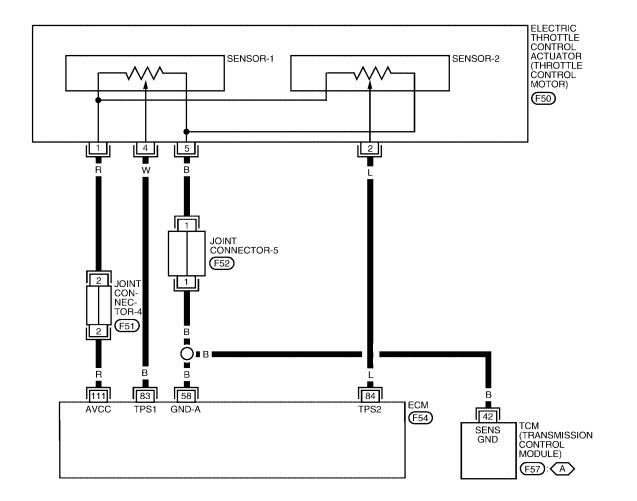
Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram

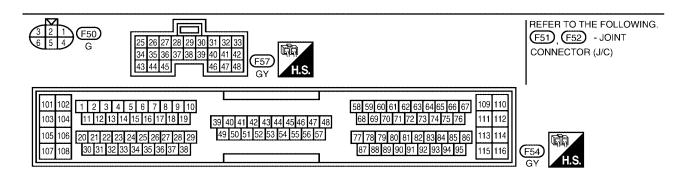
UBS003AG

EC-TPS3-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC


A : WITH A/T

EC


C

D

Α

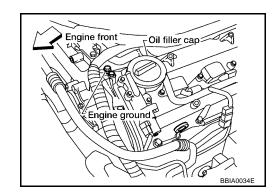
E F G H I J K L

BBWA0195E

CAUTION:

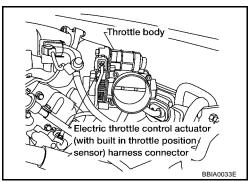
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
58	В	Sensors' ground	[Engine is running]• Warm-up condition• Idle speed	Approximately 0V
02	W		 [Ignition switch "ON"] Gear position: "D" (A/T models) Gear position: "1st" (M/T models) Accelerator pedal fully released 	More than 0.36V
83	VV	Throttle position sensor 1	 [Ignition switch "ON"] Gear position: "D" (A/T models) Gear position: "1st" (M/T models) Accelerator pedal fully depressed 	Less than 4.75V
84	ı	Throttle position sensor 2	 [Ignition switch "ON"] Gear position: "D" (A/T models) Gear position: "1st" (M/T models) Accelerator pedal fully released 	
	L	Timothe position sensur 2	 [Ignition switch "ON"] Gear position: "D" (A/T models) Gear position: "1st" (M/T models) Accelerator pedal fully depressed 	More than 0.36V
111	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V


Diagnostic Procedure

UBS003AH

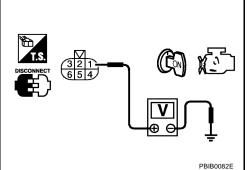
1. RETIGHTEN GROUND SCREWS


- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch "ON".



Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-4
- Harness for open or short between electric throttle control actuator and ground
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK THROTTLE POSITION SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- 2. Check harness continuity between electric throttle control actuator terminal 5 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-5
- Harness for open or short between electric throttle control actuator and ECM
- Harness for open or short between electric throttle control actuator and TCM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

D

Е

K

6. CHECK THROTTLE POSITION SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 83 and electric throttle control actuator terminal 4, ECM terminal 84 and electric throttle control actuator terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK THROTTLE POSITION SENSOR

Refer to EC-904, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> GO TO 8.

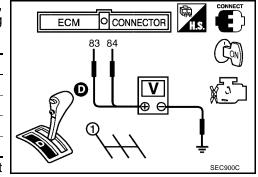
8. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-668, "Throttle Valve Closed Position Learning".
- 3. Perform EC-668, "Idle Air Volume Learning".

>> INSPECTION END

9. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection THROTTLE POSITION SENSOR

UBS003AI

- Reconnect all harness connectors disconnected.
- 2. Perform EC-668, "Throttle Valve Closed Position Learning".
- Turn ignition switch "ON".
- 4. Set selector lever to "D" position (A/T models) or "1st" position (M/T models).
- Check voltage between ECM terminals 83 (TP sensor 1signal), 84 (TP sensor 2signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
83	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
84	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- 6. If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform <u>EC-668</u>, "Throttle Valve Closed Position Learning".
- 8. Perform EC-668, "Idle Air Volume Learning".

DTC P0221 TP SENSOR

[VQ]

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-114, "INTAKE MANIFOLD".

UBS003AJ

EC

Α

 D

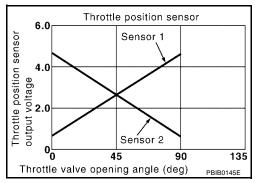
С

Е

G

Н

DTC P0222, P0223 TP SENSOR


Component Description

PFP:16119

UBS003AK

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

UBS003AL

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	More than 0.36V
THRTL SEN1	Shift lever:D (A/T model)1st (M/T model)	Accelerator pedal: Fully depressed	Less than 4.75V

On Board Diagnosis Logic

UBS003AM

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0222 0222	Throttle position sensor 1 circuit low input	An excessively low voltage from the TP sensor 1 is sent to ECM.	Harness or connectors (The TP sensor 1 circuit is open or
P0223 0223	Throttle position sensor 1 circuit high input	An excessively high voltage from the TP sensor 1 is sent to ECM.	shorted.) • Electric throttle control actuator (TP sensor 1)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters in fail-safe mode an the MIL lights up .

Engine operation condition in fail-safe mode

DTC Confirmation Procedure

UBS003AN

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

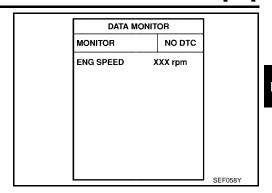
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

Turn ignition switch "ON".

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.


The ECM regulates an opening speed of approx. 5 seconds to an opening of 10 degrees.

So, the acceleration will be poor.

DTC P0222, P0223 TP SENSOR

[VQ]

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-909, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

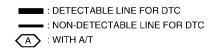
Α

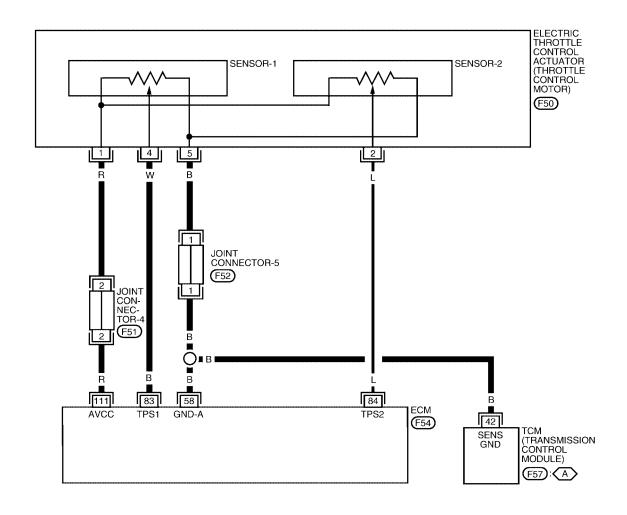
D

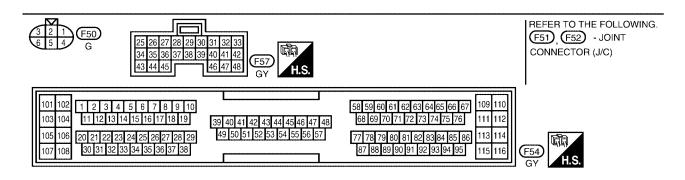
С

Е

0


Н


L


Wiring Diagram

UBS003AO

EC-TPS1-01

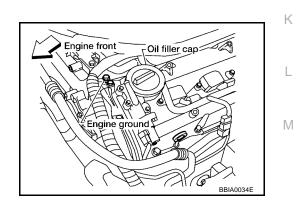
BBWA0053E

UBS003AP

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

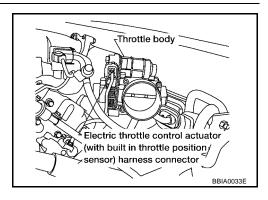
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
58	В	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	С
83 W	W	Thomas is a second	[Ignition switch "ON"] • Gear position: "D" (A/T models) • Gear position: "1st" (M/T models) • Accelerator pedal fully released		D
	VV	Throttle position sensor 1	[Ignition switch "ON"] Gear position: "D" (A/T models) Gear position: "1st" (M/T models) Accelerator pedal fully depressed	Less than 4.75V	E F
84 L		Throttle position sensor 2	[Ignition switch "ON"] Gear position: "D" (A/T models) Gear position: "1st" (M/T models) Accelerator pedal fully released	Less than 4.75V	G
	_	Tillottie position sensor 2	[Ignition switch "ON"] Gear position: "D" (A/T models) Gear position: "1st" (M/T models) Accelerator pedal fully depressed	More than 0.36V	H
111	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V	_


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

1. Turn ignition switch "OFF".

2. Loosen and retighten engine ground screws.


>> GO TO 2.

Revision: May 2004 EC-909 2002 Altima

2. CHECK THROTTLE POSITION SENSOR 1 POWER SUPPLY CIRCUIT

- Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch "ON".

 Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG

>> Repair open circuit or short to ground or short to power in harness or connectors.

3. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-4
- Harness for open or short between electric throttle control actuator and ground
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK THROTTLE POSITION SENSOR 1 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between electric throttle control actuator terminal 5 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-4
- Harness for open or short between electric throttle control actuator and ECM
- Harness for open or short between electric throttle control actuator and TCM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK THROTTLE POSITION SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 83 and electric throttle control actuator terminal 4. Refer to Wiring Diagram.

EC

Α

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

D

7. CHECK THROTTLE POSITION SENSOR

Refer to EC-911, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> GO TO 8.

F

Е

8. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-668, "Throttle Valve Closed Position Learning".
- Perform <u>EC-668</u>, "Idle Air Volume Learning".

Н

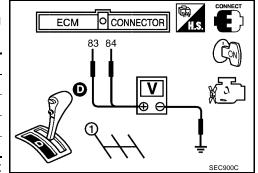
>> INSPECTION END

9. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

M

LIBS003AO


>> INSPECTION END

Component Inspection THROTTLE POSITION SENSOR

. Reconnect all harness connectors disconnected.

- 2. Perform EC-668, "Throttle Valve Closed Position Learning".
- 3. Turn ignition switch "ON".
- Set selector lever to "D" position (A/T models) or "1st" position (M/T models).
- Check voltage between ECM terminals 83 (TP sensor 1 signal), 84 (TP sensor 2 signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
83	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
84	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- 6. If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform EC-668, "Throttle Valve Closed Position Learning".
- 8. Perform <u>EC-668, "Idle Air Volume Learning"</u>.

DTC P0222, P0223 TP SENSOR

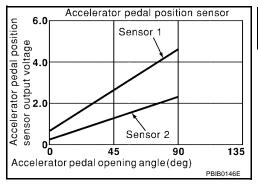
[VQ]

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

UBS003AR

Refer to EM-114, "INTAKE MANIFOLD".

DTC P0226 APP SENSOR


PFP:18002

Component Description

LIBS003AS

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM

receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN1	Ignition switch: ON	Accelerator pedal: Fully released	0.41 - 0.71V
ACCEL SEN2	(engine stopped)	Accelerator pedal: Fully depressed	More than 4.2V
CLSD THL POS	• Ignition quitable ON	Accelerator pedal: Fully released ON	ON
CLSD THE POS	Ignition switch: ON	Accelerator pedal: Slightly depressed	OFF

On Board Diagnosis Logic

UBS003AU

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0226 0226	Accelerator pedal position sensor circuit range/performance problem	Rationally incorrect voltage is sent to ECM compared with the signals from APP sensor 1 and APP sensor 2.	 Harness or connector (The APP sensor 1 and 2 circuit is open or shorted.) Accelerator pedal position sensor 1 and 2

FAIL-SAFE MODE

When the malfunction is detected, ECM enters in fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates an opening speed of approx. 5 seconds to an opening of 10 degrees.

So, the acceleration will be poor.

DTC Confirmation Procedure

LIBS003AV

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

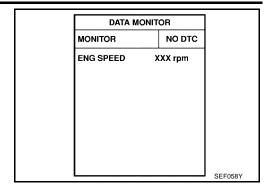
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

Turn ignition switch "ON".

EC-913 Revision: May 2004 2002 Altima


EC

А

DTC P0226 APP SENSOR

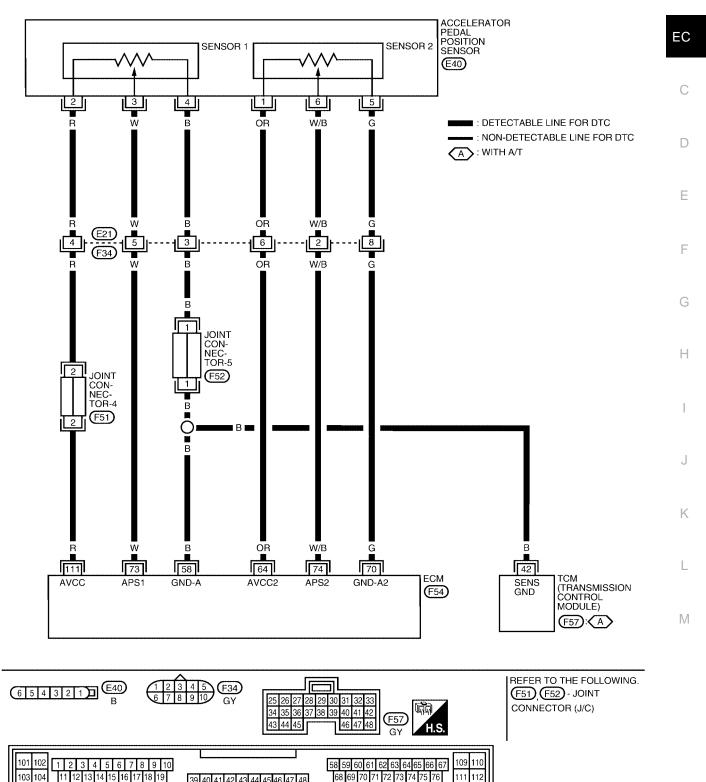
[VQ]

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-916, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram


105 106

108

30 31 32 33 34 35 36 37 38

Α

EC-APPS3-01

BBWA0199E

39 40 41 42 43 44 45 46 47 48

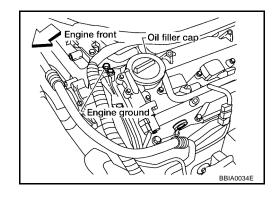
77 78 79 80 81 82 83 84 85 86

87 88 89 90 91 92 93 94 95

CAUTION:

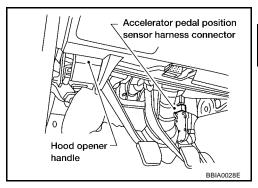
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
58	В	Sensors' ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
64	OR	Accelerator pedal position sensor 2 power supply	[Ignition switch "ON"]	Approximately 2.5V
70	G	Accelerator pedal position sensor 2 ground	[Ignition switch "ON"]	Approximately 0V
73	w	Accelerator pedal position	[Ignition switch "ON"] • Accelerator pedal fully released	0.41 - 0.71V
73	VV	sensor 1	[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 4.2V
74 W/B	Accelerator pedal position	[Ignition switch "ON"] • Accelerator pedal fully released	0.21 - 0.36V	
	VV/D	sensor 2	[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 2.1V
111	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

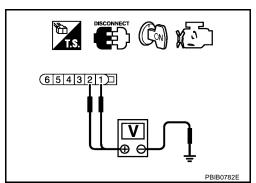
UBS003AX


- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK APP SENSOR POWER SUPPLY CIRCUIT

- Disconnect accelerator pedal position (APP) sensor harness connector.
- Turn ignition switch "ON".



Check voltage between APP sensor terminals 1, 2 and ground with CONSULT-II or tester.

APP sensor terminal	Voltage (V)
1	Approximately 2.5
2	Approximately 5

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E21, F34
- Joint connector-4
- Harness for open or short between ECM and accelerator pedal position sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK APP SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Check harness continuity between APP sensor terminals 4, 5 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E21, F34
- Joint connector-5

Revision: May 2004

- Harness for open or short between ECM and accelerator pedal position sensor
- Harness for open or short between TCM and accelerator pedal position sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

EC

Α

D

Е

6. CHECK APP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 73 and APP sensor terminal 3, ECM terminal 74 and APP sensor terminal 6. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E21, F34
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK APP SENSOR

Refer to EC-918, "Component Inspection".

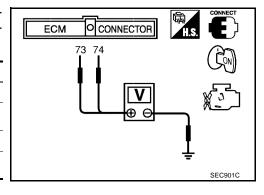
OK or NG

OK >> GO TO 9.

NG >> Replace accelerator pedal assembly.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection ACCELERATOR PEDAL POSITION SENSOR

UBS003AY

- Reconnect all harness connectors disconnected.
- 2. Turn ignition switch "ON".
- Check voltage between ECM terminals 73 (APP sensor 1 signal), 74 (APP sensor 2 signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
73	Fully released	0.41 - 0.71V
(Accelerator pedal position sensor 1)		More than 4.2V
74	Fully released	0.21 - 0.36V
(Accelerator pedal position sensor 2)	Fully depressed	More than 2.1V

- 4. If NG, replace accelerator pedal assembly and go to next step.
- 5. Perform EC-667, "Accelerator Pedal Released Position Learning".
- 6. Perform EC-668, "Throttle Valve Closed Position Learning".
- 7. Perform EC-668, "Idle Air Volume Learning".

DTC P0226 APP SENSOR

[VQ]

Removal and Installation ACCELERATOR PEDAL

UBS003AZ

Refer to ACC-2, "ACCELERATOR CONTROL SYSTEM" .

EC

Α

С

D

Е

F

G

Н

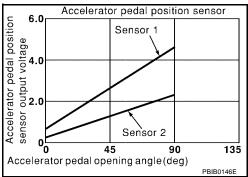
J

K

L

UBS003B0

DTC P0227, P0228 APP SENSOR


PFP:18002

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelera-

tor position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

UBS003B1

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN1	Ignition switch: ON (engine stopped)	Accelerator pedal: Fully released	0.41 - 0.71V
ACCEL SEN2		Accelerator pedal: Fully depressed	More than 4.2V
CLSD THL POS	• Ignition switch: ON	Accelerator pedal: Fully released	ON
CLOD THE POS		Accelerator pedal: Slightly depressed	OFF

On Board Diagnosis Logic

UBS003B2

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0227 0227	Accelerator pedal position sensor 1 circuit low input	An excessively low voltage from the APP sensor 1 is sent to ECM.	Harness or connectors (The APP sensor 1 circuit is open or shorted.)
P0228 0228	Accelerator pedal position sensor 1 circuit high input	An excessively high voltage from the APP sensor 1 is sent to ECM.	,

FAIL-SAFE MODE

When the malfunction is detected, ECM enters in fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

So, the acceleration will be poor.

DTC Confirmation Procedure

UBS003B3

NOTE:

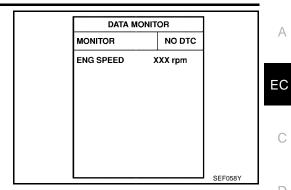
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

WITH CONSULT-II

1. Turn ignition switch "ON".


The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates an opening speed of approx. 5 seconds to an opening of 10 degrees.

DTC P0227, P0228 APP SENSOR

[VQ]

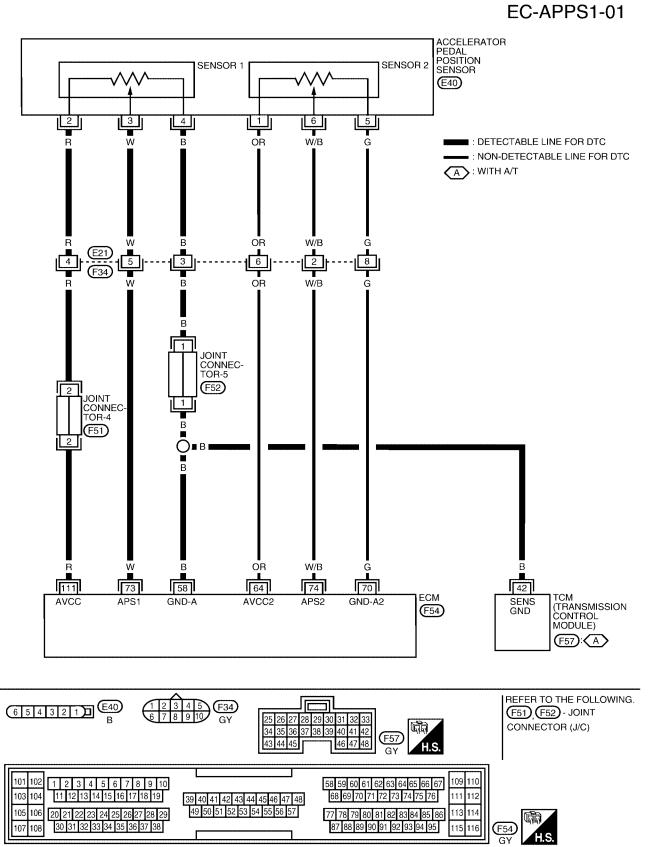
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-923, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

С

Α


Е

D

Н

Wiring Diagram

UB3003E

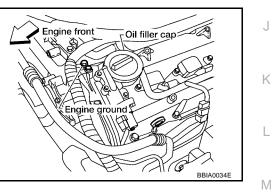
BBWA0099E

LIBS003B5

CAUTION:

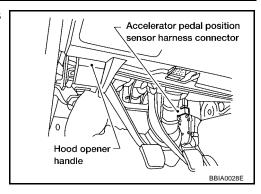
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
58	В	Sensors' ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	С
64	OR	Accelerator pedal position sensor 2 power supply	[Ignition switch "ON"]	Approximately 2.5V	D
70	G	Accelerator pedal position sensor 2 ground	[Ignition switch "ON"]	Approximately 0V	
73	W	Accelerator pedal position	[Ignition switch "ON"] • Accelerator pedal fully released	0.41 - 0.71V	E
73	VV	sensor 1	[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 4.2V	F
74	W/B	Accelerator pedal position	[Ignition switch "ON"] • Accelerator pedal fully released	0.21 - 0.36V	_
74	VV/D	sensor 2	[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 2.1V	— G
111	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V	— Н


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

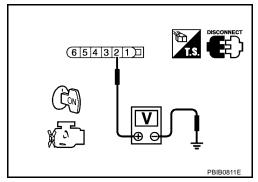
1. Turn ignition switch "OFF".


Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK APP SENSOR 1 POWER SUPPLY CIRCUIT

- Disconnect accelerator pedal position (APP) sensor harness connector.
- 2. Turn ignition switch "ON".



Check voltage between APP sensor terminal 2 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E21, F34
- Joint connector-4
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK APP SENSOR 1 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Check harness continuity between APP sensor terminal 4 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E21, F34
- Joint connector-5
- Harness for open or short between ECM and accelerator pedal position sensor
- Harness for open or short between TCM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK APP SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 73 and APP sensor terminal 3. Refer to Wiring Diagram.

EC

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

D

Е

Н

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E21, F34
- Harness for open or short between ECM and accelerator pedal position sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK APP SENSOR

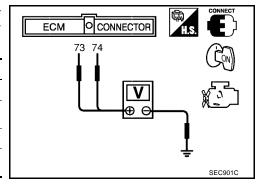
Refer to EC-925, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace accelerator pedal assembly.

9. CHECK INTERMITTENT INCIDENT


Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection ACCELERATOR PEDAL POSITION SENSOR

- Reconnect all harness connectors disconnected.
- 2. Turn ignition switch "ON".
- Check voltage between ECM terminals 73 (APP sensor 1 signal), 74 (APP sensor 2 signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
73	Fully released	0.41 - 0.71V
(Accelerator pedal position sensor 1)	Fully depressed	More than 3.9V
74	Fully released	0.09 - 0.48V
(Accelerator pedal position sensor 2)	Fully depressed	More than 1.9V

- 4. If NG, replace accelerator pedal assembly.
- 5. Perform EC-667, "Accelerator Pedal Released Position Learning".
- Perform <u>EC-668</u>, "<u>Throttle Valve Closed Position Learning</u>".
- Perform <u>EC-668</u>, "Idle Air Volume Learning".

Removal and Installation ACCELERATOR PEDAL

Refer to ACC-2, "ACCELERATOR CONTROL SYSTEM".

Revision: May 2004 EC-925 2002 Altima

UB\$003B7

L

LIBS003B6

DTC P0300 - P0306 MULTIPLE CYLINDER MISFIRE, NO. 1 - 6 CYLINDER MIS-

[VQ]

DTC P0300 - P0306 MULTIPLE CYLINDER MISFIRE, NO. 1 - 6 CYLINDER MIS-**FIRE** PFP:00000

On Board Diagnosis Logic

LIBS003B8

When a misfire occurs, engine speed will fluctuate. If the engine speed fluctuates enough to cause the crankshaft position (CKP) sensor (POS) signal to vary, ECM can determine that a misfire is occurring.

Sensor	Input Signal to ECM	ECM function	
Crankshaft position sensor (POS)	Engine speed	On board diagnosis of misfire	

The misfire detection logic consists of the following two conditions.

One Trip Detection Logic (Three Way Catalyst Damage)

On the first trip that a misfire condition occurs that can damage the three way catalyst (TWC) due to overheating, the MIL will blink.

When a misfire condition occurs, the ECM monitors the CKP sensor signal every 200 engine revolutions for a change.

When the misfire condition decreases to a level that will not damage the TWC, the MIL will turn off. If another misfire condition occurs that can damage the TWC on a second trip, the MIL will blink. When the misfire condition decreases to a level that will not damage the TWC, the MIL will remain on.

If another misfire condition occurs that can damage the TWC, the MIL will begin to blink again.

Two Trip Detection Logic (Exhaust quality deterioration)

For misfire conditions that will not damage the TWC (but will affect vehicle emissions), the MIL will only light when the misfire is detected on a second trip. During this condition, the ECM monitors the CKP sensor signal every 1,000 engine revolutions.

A misfire malfunction can be detected on any one cylinder or on multiple cylinders.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0300 0300	Multiple cylinder misfire detected	Multiple cylinder misfire.	Improper spark plug
P0301 0301	No.1 cylinder misfire detected	No. 1 cylinder misfires.	Insufficient compression Incorrect fuel pressure
P0302 0302	No. 2 cylinder misfire detected	No. 2 cylinder misfires.	The injector circuit is open or shorted
P0303 0303	No. 3 cylinder misfire detected	No. 3 cylinder misfires.	Fuel injectors Intake air leak
P0304 0304	No. 4 cylinder misfire detected	No. 4 cylinder misfires.	The ignition signal circuit is open or shorted Lack of fuel
P0305 0305	No. 5 cylinder misfire detected	No. 4 cylinder misfires.	Drive plate or flywheel
P0306 0306	No. 6 cylinder misfire detected	No. 4 cylinder misfires.	Heated oxygen sensor 1

DTC Confirmation Procedure

UBS003B9

CAUTION:

Always drive vehicle at a safe speed.

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- Turn ignition switch "ON", and select "DATA MONITOR" mode with CONSULT-II. 1.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch "OFF" and wait at least 10 seconds.

DTC P0300 - P0306 MULTIPLE CYLINDER MISFIRE, NO. 1 - 6 CYLINDER MIS-

[VQ]

Α

D

Е


UBS003BA

4.	Start engine again and drive at 1,500 to 3,000 rpm for at least 3
	minutes.

Hold the accelerator pedal as steady as possible.

Refer to the freeze frame data for the test driving conditions.

5. If 1st trip DTC is detected, go to EC-927, "Diagnostic Procedure"

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

1. CHECK FOR INTAKE AIR LEAK

- Start engine and run it at idle speed.
- 2. Listen for the sound of the intake air leak.

OK or NG

OK >> GO TO 2.

NG >> Discover air leak location and repair.

2. CHECK FOR EXHAUST SYSTEM CLOGGING

Stop engine and visually check exhaust tube, three way catalyst and muffler for dents.

OK or NG

OK >> GO TO 3.

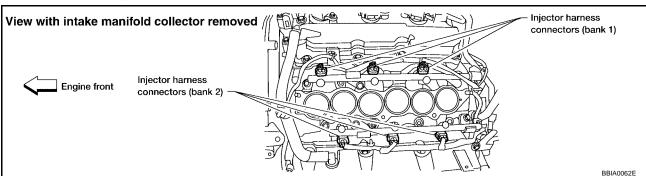
NG >> Repair or replace it.

Н

DTC P0300 - P0306 MULTIPLE CYLINDER MISFIRE, NO. 1 - 6 CYLINDER MISFIRE

[VQ]

3. perform power balance test


(P) With CONSULT-II

- Perform "POWER BALANCE" in "ACTIVE TEST" mode.
- 2. Is there any cylinder which does not produce a momentary engine speed drop?

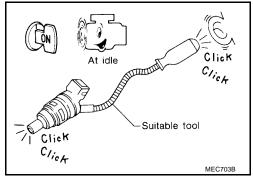
ACTIV	E TEST		
POWER BALAN	ICE		
MON	IITOR		
ENG SPEE	D XX	X rpm	
MAS A/F SE-	·B1 X	xx v	
L			PBIB0133E

Without CONSULT-II

When disconnecting each injector harness connector one at a time, is there any cylinder which does not produce a momentary engine speed drop?

Yes or No

Yes >> GO TO 4. No >> GO TO 7.


4. CHECK INJECTOR

Does each injector make an operating sound at idle? Yes or No

Yes >> GO TO 5.

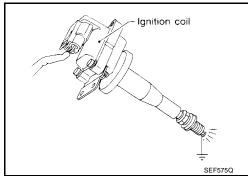
No >> Check injector(s) and circuit(s). Refer to <u>EC-1244,</u> <u>"INJECTOR CIRCUIT"</u>.

D EC-1244.

DTC P0300 - P0306 MULTIPLE CYLINDER MISFIRE, NO. 1 - 6 CYLINDER MIS-

[VQ]

5. CHECK IGNITION SPARK


- 1. Remove ignition coil assembly from rocker cover.
- 2. Remove spark plug from ignition coil assembly
- 3. Connect a known good spark plug to the ignition coil.
- 4. Place end of spark plug against a suitable ground and crank engine.
- 5. Check for spark.

OK or NG

OK >> GO TO 6.

NG

>> Check ignition coil, power transistor and their circuits. Refer to EC-1224, "IGNITION SIGNAL".

6. CHECK SPARK PLUGS


Remove the spark plugs and check for fouling, etc.

OK or NG

OK >> GO TO 7.

NG

>> Repair or replace spark plug(s) with standard type one(s). For spark plug type, refer to, MA-21, "ENGINE MAINTENANCE (VQ35DE ENGINE)".

7. CHECK COMPRESSION PRESSURE

Check compression pressure. Refer to EM-166, "CHECKING COMPRESSION PRESSURE".

Standard: 1,275 kPa (13.0 kg/cm², 185 psi)/300 rpm

Minimum: 981 kPa (10.0 kg/cm², 142 psi)/300 rpm

Difference between each 98 kPa (1.0 kg/cm², 14 psi)/300 rpm

cylinder:

OK or NG

OK >> GO TO 8.

NG >> Check pistons, piston rings, valves, valve seats and cylinder head gaskets.

8. CHECK FUEL PRESSURE

- 1. Install all removed parts.
- Release fuel pressure to zero. Refer to EC-670, "FUEL PRESSURE RELEASE".
- Install fuel pressure gauge and check fuel pressure. Refer to EC-671, "FUEL PRESSURE CHECK".

At idle: Approx. 350 kPa (3.7 kg/cm², 51 psi)

OK or NG

OK >> GO TO 10. >> GO TO 9. NG

EC-929 2002 Altima Revision: May 2004

EC

Е

Н

DTC P0300 - P0306 MULTIPLE CYLINDER MISFIRE, NO. 1 - 6 CYLINDER MISFIRE

[VQ]

9. DETECT MALFUNCTIONING PART

Check the following.

- Fuel pump and circuit (Refer to <u>EC-1254, "FUEL PUMP CIRCUIT"</u>.)
- Fuel pressure regulator (Refer to EC-671, "FUEL PRESSURE CHECK" .)
- Fuel lines (Refer to <u>EC-1122</u>, "Wiring <u>Diagram"</u>.)
- Fuel filter for clogging

>> Repair or replace.

10. CHECK IGNITION TIMING

Check the following items. Refer to EC-704, "Basic Inspection".

Items	Specifications	
Target idle speed	M/T: 700 ± 50 rpm	
rarget luie speed	A/T: 700 ± 50 rpm (in "P" or "N" position)	
Ignition timing	M/T: 15 ± 5° BTDC	
igilidori dirilitg	A/T: 15 ± 5° BTDC (in "P" or "N" position)	

OK or NG

OK >> GO TO 11.

NG >> Follow the EC-704, "Basic Inspection".

11. CHECK HEATED OXYGEN SENSOR 1 (BANK 1)/(BANK 2)

Refer to EC-832, "Component Inspection".

OK or NG

OK >> GO TO 13. NG >> GO TO 12.

12. CHECK MASS AIR FLOW SENSOR

(P) With CONSULT-II

Check mass air flow sensor signal in "DATA MONITOR" mode with CONSULT-II.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

With GST

Check mass air flow sensor signal in MODE 1 with GST.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

OK or NG

OK >> GO TO 13.

NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-788, "DTC P0101 MAF SENSOR".

13. CHECK SYMPTOM MATRIX CHART

Check items on the rough idle symptom in EC-709, "Symptom Matrix Chart".

OK or NG

OK >> GO TO 14.

NG >> Repair or replace.

DTC P0300 - P0306 MULTIPLE CYLINDER MISFIRE, NO. 1 - 6 CYLINDER MISFIRE

[VQ]

14. ERASE THE 1ST TRIP DTC

Some tests may cause a 1st trip DTC to be set.

Erase the 1st trip DTC from the ECM memory after performing the tests. Refer to <u>EC-686, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>

>> GO TO 15.

15. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

EC

С

D

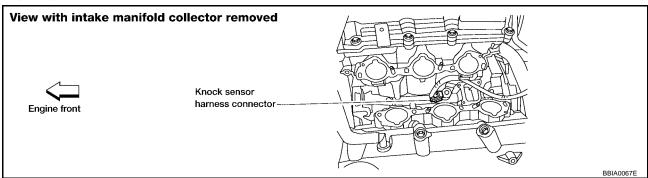
Е

F

Н

.

J


DTC P0327, P0328 KS

PFP:22060

Component Description

UBS003BB

The knock sensor is attached to the cylinder block. It senses engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM.

On Board Diagnosis Logic

UBS003BC

The MIL will not light for knock sensor malfunction.

DTC No.	Trouble Diagnosis Name	DTC Detected Condition	Possible Cause
P0327 0327	Knock sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0328 0328	Knock sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Knock sensor

DTC Confirmation Procedure

UBS003BD

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 5 seconds at idle speed.
- If 1st trip DTC is detected, go to <u>EC-934, "Diagnostic Procedure"</u>

DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED	XXX rpm	1
		SEF058Y

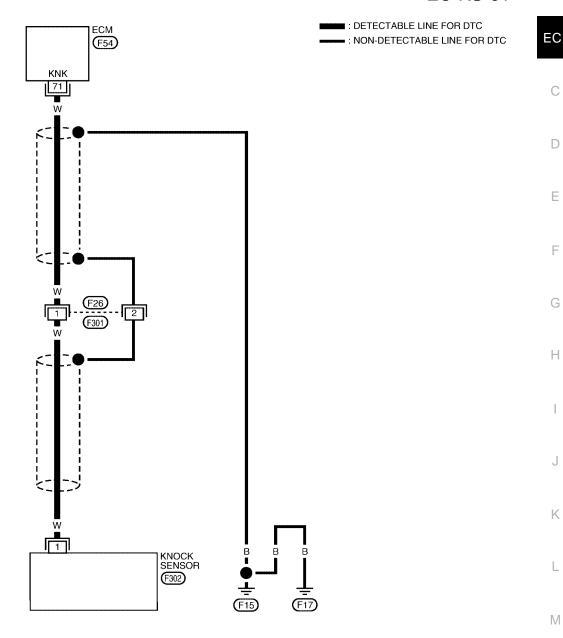
WITH GST

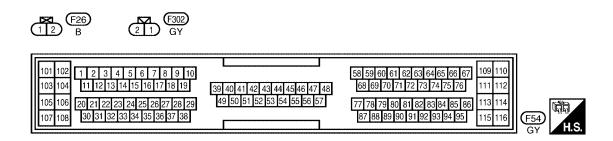
Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram

[VQ]

Α


C


D

Е

Н

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
71	W	Knock sensor	[Engine is running] • Idle speed	Approximately 2.5V

Diagnostic Procedure

UBS003BF

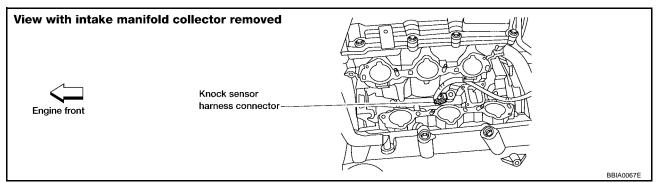
1. CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-I

- Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check resistance between ECM terminal 71 and engine ground. Refer to Wiring Diagram.

NOTE:

It is necessary to use an ohmmeter which can measure more than 10 M Ω .

Resistance: Approximately 530 - 590k Ω [at 20°C (68°F)]


4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 2.

2. CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-II

1. Disconnect knock sensor harness connector.

Check harness continuity between ECM terminal 71 and knock sensor terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

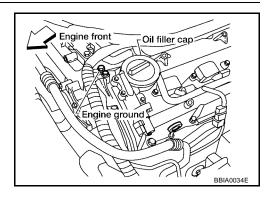
- Harness connectors F26, F301
- Harness for open or short between ECM and knock sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK KNOCK SENSOR

Refer to EC-935, "Component Inspection".

OK or NG


OK >> GO TO 5.

NG >> Replace knock sensor.

5. RETIGHTEN GROUND SCREWS

Loosen and retighten engine ground screws.

>> GO TO 6.

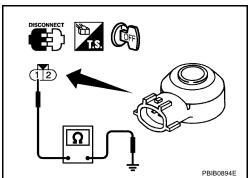
6. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection KNOCK SENSOR

Check resistance between knock sensor terminal 1 and ground.


NOTE:

It is necessary to use an ohmmeter which can measure more than 10 $\mbox{M}\Omega.$

Resistance: Approximately 530 - 590k Ω [at 20°C (68°F)]

CAUTION:

Do not use any knock sensors that have been dropped or physically damaged. Use only new ones.

UBS003BH

Removal and Installation KNOCK SENSOR

Refer to EM-188, "CYLINDER BLOCK".

EC

Е

D

Н

UBS003BG

K

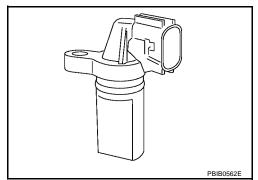
UBS003BI

DTC P0335 CKP SENSOR (POS)

Component Description

PFP:23731

The crankshaft position sensor (POS) is located on the cylinder block rear housing facing the gear teeth (cogs) of the signal plate at the end of the crankshaft. It detects the fluctuation of the engine revolution.


The sensor consists of a permanent magnet and hall IC.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

CONSULT-II Reference Value in Data Monitor Mode

UBS003BJ

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
ENG SPEED-	 Tachometer: Connect Run engine and compare tachometer indication with the CONSULT-II value. 	Almost the same speed as the CONSULT-II value.

On Board Diagnosis Logic

UBS003BK

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
		 The crankshaft position sensor (POS) signal is not detected by the ECM during the first few seconds of engine cranking. 	Harness or connectors
P0335 0335	Crankshaft position sensor (POS) circuit	 The proper pulse signal from the crankshaft position sensor (POS) is not sent to ECM while the engine is running. The crankshaft position sensor (POS) signal is not in the normal pattern during engine running. 	 (The sensor circuit is open or shorted) Crankshaft position sensor (POS) Signal plate

DTC Confirmation Procedure

UBS003BI

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch "ON".

WITH CONSULT-II

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.
- 3. If 1st trip DTC is detected, go to <u>EC-939, "Diagnostic Procedure"</u>

If 1st trip DTC is not detected, go to next step.

- 4. Maintaining engine speed at more than 800 rpm for at least 5 seconds.
- 5. If 1st trip DTC is detected, go to EC-939, "Diagnostic Procedure"

	DATA MONITOR		
	MONITOR	NO DTC	
	ENG SPEED X	XX rpm	
l			SEF058Y

DTC P0335 CKP SENSOR (POS)

[VQ]

GST	W	ITH	GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

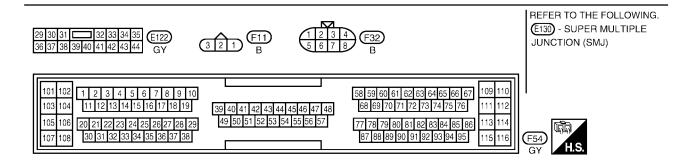
С

D

Е

F

G


Н

ı

J

K

Wiring Diagram EC-POS-01 BATTERY IPDM E/R (INTELLIGENT POWER DISTRIBUTION : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC 51 MODULE ENGINE ROOM) REFER TO "PG-POWER" (E122) ECM RELAY δп 44 W/B 33 R/G 6B R/G CRANKSHAFT POSITION SENSOR (POS) (F11) 3 2 4 R/G R/G W/B R/G R/G 38 112 95 110 ECM SSOFF POS (F54)

BBWA0067E

DTC P0335 CKP SENSOR (POS)

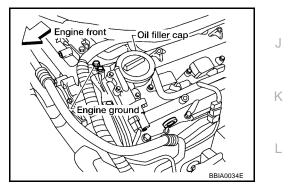
[VQ]

LIBS003BN

CAUTION:

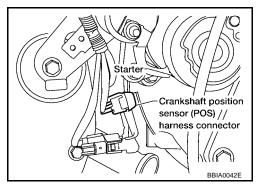
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
		Constant position	[Engine is running] ● Warm-up condition ● Idle speed	Approximately 2.4V★ Second Second	C
95	W	Crankshaft position sensor (POS)		Approximately 2.3V★	Е
			[Engine is running] ● Engine speed is 2,000 rpm	■S.O.V/Div 1 ms/Div 1	F
				SEC036D	G


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

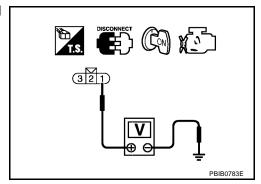
1. RETIGHTEN GROUND SCREWS


- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

$2.\,$ check crankshaft position (ckp) sensor (pos) power supply circuit

- 1. Disconnect crankshaft position (CKP) sensor (POS) harness connector.
- 2. Turn ignition switch "ON".


Check voltage between CKP sensor (POS) terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- Harness for open or short between crankshaft position sensor (POS) and ECM
- Harness for open or short between crankshaft position sensor (POS) and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK CKP SENSOR (POS) GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between CKP sensor (POS) terminal 3 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0335 CKP SENSOR (POS)

[VQ]

5. CHECK CKP SENSOR (POS) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Disconnect ECM harness connector.

Check harness continuity between ECM terminal 95 and CKP sensor (POS) terminal 2. Refer to Wiring Diagram.

EC

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or short to power in harness or connectors. D

O. CHECK CRANKSHAFT POSITION SENSOR (POS)

Refer to EC-941, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace crankshaft position sensor (POS).

7. CHECK GEAR TOOTH

Visually check for chipping signal plate gear tooth.

OK or NG

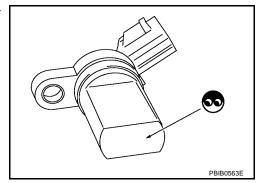
OK >> GO TO 8.

NG >> Replace the signal plate. Н

8. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection CRANKSHAFT POSITION SENSOR (POS)

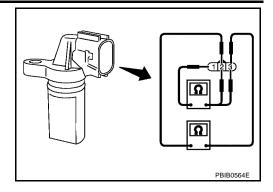
1. Loosen the fixing bolt of the sensor.

Disconnect crankshaft position sensor (POS) harness connec-

3. Remove the sensor.

Visually check the sensor for chipping.

Е


UBS003BO

DTC P0335 CKP SENSOR (POS)

[VQ]

5. Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
1 (+) - 2 (-)	
1 (+) - 3 (-)	Except 0 or ∞
2 (+) - 3 (-)	

UBS003BP

Removal and Installation CRANKSHAFT POSITION SENSOR (POS)

Refer to EM-188, "CYLINDER BLOCK".

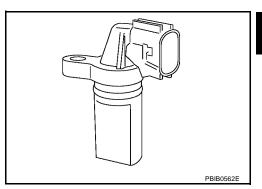
DTC P0340, P0345 CMP SENSOR (PHASE)

Component Description

PFP:23731

UBS003BQ

The camshaft position sensor (PHASE) senses the retraction with intake valve camshaft to identify a particular cylinder. The camshaft position sensor (PHASE) senses the piston position.


When the crankshaft position sensor (POS) system becomes inoperative, the camshaft position sensor (PHASE) provides various controls of engine parts instead, utilizing timing of cylinder identification signals.

The sensor consists of a permanent magnet and Hall IC.

When engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to

Due to the changing magnetic field, the voltage from the sensor changes.

LIBS003BR

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0340 0340	Camshaft position sensor (PHASE) circuit	 The cylinder No. signal is not sent to ECM for the first few seconds during engine cranking. The cylinder No. signal is not sent to ECM during engine running. The cylinder No. signal is not in the normal pattern during engine running. 	 Harness or connectors (The sensor circuit is open or shorted) Camshaft position sensor (PHASE) Camshaft (Intake) Starter motor (Refer to <u>SC-9</u>.) Starting system circuit (Refer to <u>SC-9</u>.) Dead (Weak) battery

DTC Confirmation Procedure

LIBS003BS

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch "ON".

(III) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.
- 4. If 1st trip DTC is detected, go to EC-947, "Diagnostic Procedure"

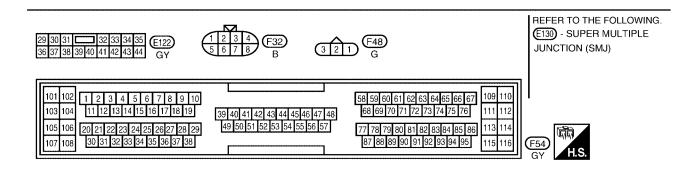
If 1st trip DTC is not detected, go to next step.

- 5. Maintaining engine speed at more than 800 rpm for at least 5
- 6. If 1st trip DTC is detected, go to EC-947, "Diagnostic Procedure"

	DATA MO	NITOR
мо	MONITOR NO DTC	
со	OLAN TEMP/S	XXX ,C

B WITH GST

Follow the procedure "WITH CONSULT-II" above.


EC-943 2002 Altima Revision: May 2004

EC

Α

Е

Wiring Diagram UBS003BT BANK 1 EC-PHSB1-01 BATTERY IPDM E/R (INTELLIGENT POWER DISTRIBUTION MODULE ENGINE ROOM) 51 : DETECTABLE LINE FOR DTC REFER TO "PG-POWER". : NON-DETECTABLE LINE FOR DTC (E122) ECM RELAY 33 44 W/B R/G (E130) 17A 6B **E**27 R/G W/B R/G 3 CAMSHAFT POSITION SENSOR (PHASE) (BANK 1) (F48) W/B W/B R/G R/G 38 112 110 65 ECM VB SSOFF PHASE RH (F54)

BBWA0079E

(F14)

DTC P0340, P0345 CMP SENSOR (PHASE)

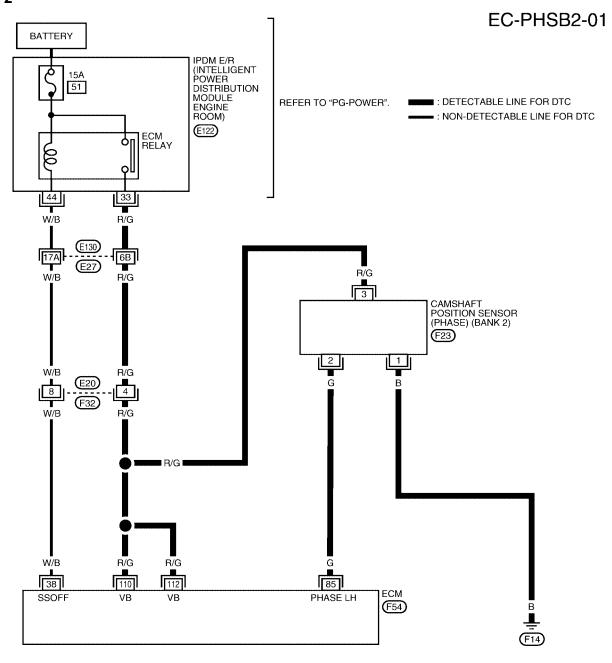
[VQ]

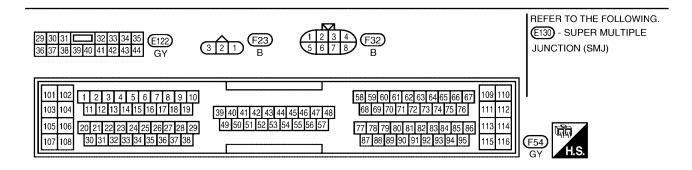
Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

_					
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
				1.0 - 4.0∨★	С
		Camshaft position	[Engine is running]Warm-up conditionIdle speed	▶ 5.0 V/D V 20 ms/Div r SEC033D	D
65	Y	sensor (PHASE) (bank 1)		1.0 - 4.0∨★	=
			[Engine is running] • Engine speed is 2,000 rpm.	LEAN EXPANSION	F
			C English space to E,000 tpm.	▶ 5.0 V/Div 20 ms/Div SEC034D	G


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)


EC-945 Revision: May 2004 2002 Altima

Α

Н

BANK 2

BBWA0080E

Specification data are reference values and are measured between each terminal and ground.

DTC P0340, P0345 CMP SENSOR (PHASE)

[VQ]

LIBS003BLI

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

			-	<u>~</u> _	
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
		Camshaft position	[Engine is running] • Warm-up condition • Idle speed	1.0 - 4.0V★	C
85	G	sensor (PHASE) (bank 2)	[Engine is running] ● Engine speed is 2,000 rpm.	1.0 - 4.0V★	E F G

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

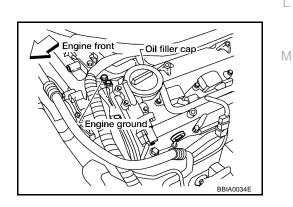
1. CHECK STARTING SYSTEM

Turn ignition switch to "START" position.

Does the engine turn over?

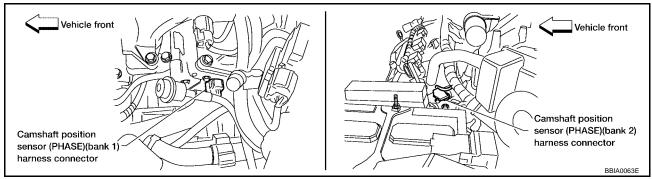
Does the starter motor operate?

Yes or No


Yes >> GO TO 2.

No >> Check starting system. (Refer to SC-9, "STARTING SYSTEM".)

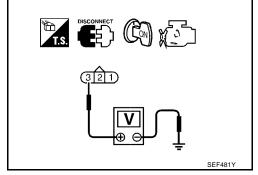
2. RETIGHTEN GROUND SCREWS


- Turn ignition switch "OFF".
- Loosen and retighten engine ground screws.

>> GO TO 3.

$3.\,$ check camshaft position (cmp) sensor (phase) power supply circuit

Disconnect camshaft position (CMP) sensor (PHASE) harness connector.


- 2. Turn ignition switch "ON".
- Check voltage between CMP sensor (PHASE) terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- Harness for open or short between camshaft position sensor (PHASE) and ECM
- Harness for open or short between camshaft position sensor (PHASE) and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK CMP SENSOR (PHASE) GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Check harness continuity between CMP sensor (PHASE) terminal 1 and engine ground.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to power in harness or connectors.

6. CHECK CMP SENSOR (PHASE) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 65 or 85 and CMP sensor (PHASE) terminal 2. Refer to Wiring Diagram.

EC

Continuity should exist.

3. Also check harness for short to ground or short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

D

7. CHECK CAMSHAFT POSITION SENSOR (PHASE)

Refer to EC-949, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace camshaft position sensor (PHASE).

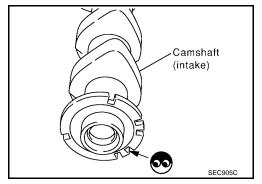
F

Н

K

8. CHECK CAMSHAFT (INTAKE)

Check the following.


- Accumulation of debris to the signal plate of camshaft rear end
- Chipping signal plate of camshaft rear end

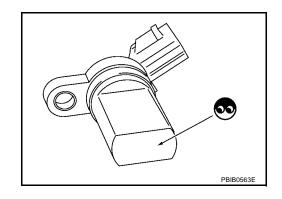
OK or NG

OK >> GO TO 9.

NG

>> Remove debris and clean the signal plate of camshaft rear end or replace camshaft.

9. CHECK INTERMITTENT INCIDENT

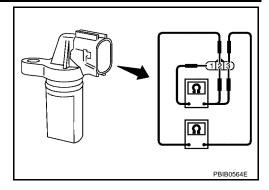

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

UBS003BV

>> INSPECTION END

Component Inspection CAMSHAFT POSITION SENSOR (PHASE)

- Loosen the fixing bolt of the sensor.
- 2. Disconnect camshaft position sensor (PHASE) harness connector.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.


Revision: May 2004 EC-949 2002 Altima

DTC P0340, P0345 CMP SENSOR (PHASE)

[VQ]

5. Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
1 (+) - 2 (-)	
1 (+) - 3 (-)	Except 0 or ∞
2 (+) - 3 (-)	-

UBS003BW

Removal and Installation CAMSHAFT POSITION SENSOR (PHASE)

Refer to EM-136, "CAMSHAFT".

DTC P0420, P0430 THREE WAY CATALYST FUNCTION

PFP:20905

On Board Diagnosis Logic

UBS003BX

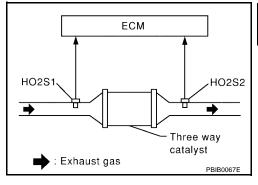
Α

EC

D

Е

F


Н

M

The ECM monitors the switching frequency ratio of heated oxygen sensors 1 and 2.

A three way catalyst (Manifold) with high oxygen storage capacity will indicate a low switching frequency of heated oxygen sensor 2. As oxygen storage capacity decreases, the heated oxygen sensor 2 switching frequency will increase.

When the frequency ratio of heated oxygen sensors 1 and 2 approaches a specified limit value, the three way catalyst (Manifold) malfunction is diagnosed.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause		
P0420 0420 (Bank 1)		Three way catalyst (Manifold) does not oper-	Three way catalyst (Manifold)Exhaust tubeIntake air leaks	id)	
P0430 0430 (Bank 2)	Catalyst system effi- ciency below threshold	 ate properly. Three way catalyst (Manifold) does not have enough oxygen storage capacity. 	Fuel injectorsFuel injector leaksSpark plugImproper ignition timing		

DTC Confirmation Procedure

UBS003BY

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II

TESTING CONDITION:

- Open engine hood before conducting the following procedure.
- Do not hold engine speed for more than the specified minutes below.
- 1. Turn ignition switch "ON".
- 2. Select "DTC & SRT CONFIRMATION" then "SRT WORK SUP-PORT" mode with CONSULT-II.
- 3. Start engine.
- 4. Rev engine up to 2,000 to 3,000 rpm and hold it for 3 consecutive minutes then release the accelerator pedal completely. If "INCMP" of "CATALYST" changed to "COMPLT", go to step 7
- 5. Wait 5 seconds at idle.

SRT WORK SL	JPPORT	1
CATALYST	INCMP	1
EVAP SYSTEM	INCMP	
HO2S HTR	CMPLT	
HO2S	INCMP	
MONITO	R	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
B/FUEL SCHDL	XXX msec	
A/F ALPHA-B1	XXX V	
COOLAN TEMP/S	XX °C	
HO2S1 (B1)	XXX V	
		SEF940Z

 Rev engine up to 2,000 to 3,000 rpm and maintain it until "INCMP" of "CATALYST" changes to "CMPLT" (It will take approximately 5 minutes).

If not "CMPLT", stop engine and cool it down to less than 70°C (158°F) and then retest from step 1.

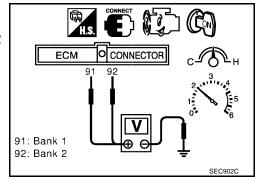
SRT WORK SU	IPPORT	
CATALYST	CMPLT	
EVAP SYSTEM	INCMP	
HO2S HTR	CMPLT	
HO2S	INCMP	
MONITO	R	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
B/FUEL SCHDL	XXX msec	
A/F ALPHA-B1	xxx v	
COOLANTEMP/S	xx °c	
HO2S1 (B1)	xxx v l	

- 7. Select "SELF-DIAG RESULTS" mode with CONSULT-II.
- Confirm that the 1st trip DTC is not detected.
 If the 1st trip DTC is detected, go to <u>EC-953</u>, "<u>Diagnostic Procedure</u>".

SELF DIAG RESU]	
DTC RESULTS	TIME	
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.		
		SEF535

Overall Function Check

UBS003BZ


Use this procedure to check the overall function of the three way catalyst (Manifold). During this check, a 1st trip DTC might not be confirmed.

CAUTION:

Always drive vehicle at a safe speed.

WITH GST

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeters probes between ECM terminals 91 [HO2S1 (bank 1) signal], 92 [HO2S1 (bank 2) signal] and engine ground, and ECM terminals 88 [HO2S2 (bank 1) signal], 90 [HO2S2 (bank 2) signal] and engine ground.
- 4. Keep engine speed at 2,000 rpm constant under no load.

 Make sure that the voltage switching frequency (high & low) between ECM terminals 88 and engine ground, or 90 and engine ground is very less than that of ECM terminals 91 and engine ground, or 92 and engine ground.

Switching frequency ratio = A/B

A: Heated oxygen sensor 2 voltage switching frequency B: Heated oxygen sensor 1 voltage switching frequency This ratio should be less than 0.75.

If the ratio is greater than above, it means three way catalyst does not operate properly. Go to $\underline{\text{EC-953}}$, "Diagnostic Procedure" .

ECM O CONNECTOR C H 88: Bank 1 90: Bank 2 SEC903C

NOTE:

If the voltage at terminal 91 or 92 does not switch periodically more than 5 times within 10 seconds at step 5, perform trouble diagnosis for "DTC P0133, P0153" first. (See EC-834.)

DTC P0420, P0430 THREE WAY CATALYST FUNCTION

[VQ]

UBS003C0

Diagnostic Procedure

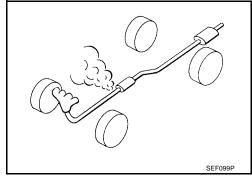
1. CHECK EXHAUST SYSTEM

Visually check exhaust tubes and muffler for dent.

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.


2. CHECK EXHAUST AIR LEAK

- Start engine and run it at idle.
- Listen for an exhaust air leak before the three way catalyst (Manifold).

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. Check intake air leak

Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

4. CHECK IGNITION TIMING

Check the following items. Refer to EC-704, "Basic Inspection".

Items	Specifications	
Ignition timing	M/T: 15° ± 5° BTDC	
ignition timing	A/T: 15° ± 5° BTDC (in "P" or "N" position)	
Target idle speed	M/T: 700 ± 50 rpm	
	A/T: 700 ± 50 rpm (in "P" or "N" position)	

OK or NG

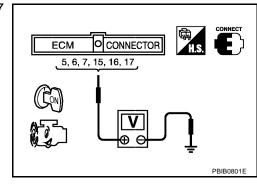
OK >> GO TO 5.

NG >> Follow the EC-704, "Basic Inspection".

5. CHECK INJECTORS

- Stop engine and then turn ignition switch "ON".
- Check voltage between ECM terminals 5, 6, 7, 13, 14, 15, 16, 17 and ground with CONSULT-II or tester.

Battery voltage should exist.


3. Refer to Wiring Diagram for Injectors, EC-1245.

OK or NG

OK >> GO TO 6.

Revision: May 2004

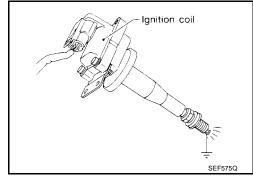
NG >> Perform EC-1246, "Diagnostic Procedure".

Α

EC

Е

6. CHECK IGNITION SPARK


- 1. Turn ignition switch "OFF".
- 2. Disconnect ignition coil assembly from rocker cover.
- 3. Connect a known good spark plug to the ignition coil assembly.
- 4. Place end of spark plug against a suitable ground and crank engine.
- 5. Check for spark.

OK or NG

OK >> GO TO 7.

NG

>> Check ignition coil with power transistor and their circuit. Refer to <u>EC-1224</u>, "IGNITION SIGNAL".

7. CHECK INJECTOR

- 1. Turn ignition switch "OFF".
- Remove injector assembly.

Refer to EM-131, "FUEL INJECTOR AND FUEL TUBE".

Keep fuel hose and all injectors connected to injector gallery.

- 3. Disconnect all ignition coil harness connectors.
- Turn ignition switch "ON".
 Make sure fuel does not drip from injector.

OK or NG

OK (Does not drip.)>>GO TO 8.

NG (Drips.)>>Replace the injector(s) from which fuel is dripping.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

Trouble is fixed.>>INSPECTION END

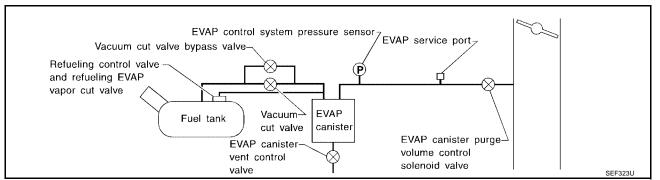
Trouble is not fixed.>>Replace three way catalyst (Manifold).

DTC P0441 EVAP CONTROL SYSTEM

PFP:14950

System Description

UBS003C1


Α

EC

Е

NOTE:

If DTC P0441 is displayed with other DTC such as P0226, P0227, P0228, P1227 or P1228, first perform trouble diagnosis for other DTC.

In this evaporative emission (EVAP) control system, purge flow occurs during non-closed throttle conditions. Purge volume is related to air intake volume. Under normal purge conditions (non-closed throttle), the EVAP canister purge volume control solenoid valve is open to admit purge flow. Purge flow exposes the EVAP control system pressure sensor to intake manifold vacuum.

On Board Diagnosis Logic

UBS003C2

Under normal conditions (non-closed throttle), sensor output voltage indicates if pressure drop and purge flow are adequate. If not, a malfunction is determined.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
		EVAP canister purge volume control solenoid valve stuck closed	
			 EVAP control system pressure sensor and the circuit
	EVAP control system incorrect purge flow	* * * * * * * * * * * * * * * * * * * *	 Loose, disconnected or improper con- nection of rubber tube
P0441			Blocked rubber tube
0441			Cracked EVAP canister
			 EVAP canister purge volume control solenoid valve circuit
			 Accelerator pedal position sensor
			Blocked purge port
			 EVAP canister vent control valve

DTC Confirmation Procedure

UBS003C3

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- Start engine and let it idle for at least 70 seconds.
- Select "PURG FLOW P0441" of "EVAPORATIVE SYSTEM" in "DTC CONFIRMATION" mode with CON-SULT-II.
- 5. Touch "START".

If "COMPLETED" is displayed, go to step 7.

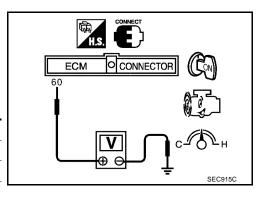
6. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 35 seconds.)

Selector lever	Suitable position
Vehicle speed	32 - 120 km/h (20 - 75 MPH)
ENG SPEED	500 - 3,000 rpm
B/FUEL SCHDL	1.3 - 9.0 msec
Engine coolant temperature	70 - 100°C (158 - 212°F)

If "TESTING" is not changed for a long time, retry from step 2.

7. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-957, "Diagnostic Procedure".

Overall Function Check


UBS003C4

Use this procedure to check the overall monitoring function of the EVAP control system purge flow monitoring. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- Lift up drive wheels.
- 2. Start engine (TCS switch "OFF") and warm it up to normal operating temperature.
- 3. Turn ignition switch "OFF", wait at least 10 seconds.
- 4. Start engine and wait at least 70 seconds.
- 5. Set voltmeter probes to ECM terminals 60 (EVAP control system pressure sensor signal) and ground.
- Check EVAP control system pressure sensor value at idle speed and note it.
- 7. Establish and maintain the following conditions for at least 1 minute.

Air conditioner switch	ON
Steering wheel	Fully turned
Headlamp switch	ON
Rear window defogger switch	ON
Engine speed	Approx. 3,000 rpm
Gear position	Any position other than "P", "N" or "R"

- 8. Verify that EVAP control system pressure sensor value stays 0.1V less than the value at idle speed (measured at step 6) for at least 1 second.
- 9. If NG, go to EC-957, "Diagnostic Procedure".

DTC P0441 EVAP CONTROL SYSTEM

[VQ]

UBS003C5

Diagnostic Procedure

1. CHECK EVAP CANISTER

Turn ignition switch "OFF".

2. Check EVAP canister for cracks.

OK or NG

OK (With CONSULT-II)>>GO TO 2. OK (Without CONSULT-II)>>GO TO 3.

NG >> Replace EVAP canister.

2. CHECK PURGE FLOW

(P) With CONSULT-II

- Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge. For the location of EVAP service port, refer to <u>EC-1287</u>, "EVAPORATIVE EMISSION LINE DRAWING".
- 2. Start engine and let it idle.
- 3. Select "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.
- 4. Rev engine up to 2,000 rpm.
- Touch "Qd" and "Qu" on CONSULT-II screen to adjust "PURG VOL CONT/V" opening and check vacuum existence.

PURG VOL CONT/V	Vacuum
100.0%	Should exist.
0.0%	Should not exist.

OK or NG

OK >> GO TO 7. NG >> GO TO 4.

ACTIVE TEST	
PURG VOL CONT/V	0 %
MONITOR	
ENG SPEED	XXX rpm
HO2S1 MNTR (B1)	LEAN
HO2S1 MNTR (B2)	LEAN
A/F ALPHA-B1	XXX %
A/F ALPHA-B2	XXX %

3. CHECK PURGE FLOW

(P) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge. For the location of EVAP service port, refer to EC-1287, "EVAPORATIVE EMISSION LINE DRAWING".
- 4. Start engine and let it idle for at least 80 seconds.
- Check vacuum gauge indication when revving engine up to 2,000 rpm.

Vacuum should exist.

Release the accelerator pedal fully and let idle.

Vacuum should not exist.

OK or NG

OK >> GO TO 7. NG >> GO TO 4. EC

Α

F

Н

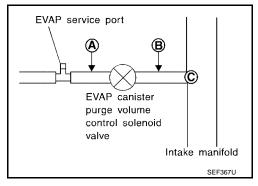
K

. .

4. CHECK EVAP PURGE LINE

- 1. Turn ignition switch "OFF".
- 2. Check EVAP purge line for improper connection or disconnection. Refer to EC-1287, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

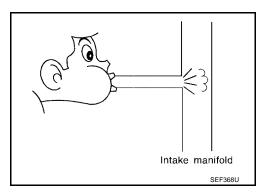

OK (With CONSULT-II)>>GO TO 5.

OK (Without CONSULT-II)>>GO TO 6.

NG >> Repair it.

5. CHECK EVAP PURGE HOSE AND PURGE PORT

- Disconnect purge hoses connected to EVAP service port A and EVAP canister purge volume control solenoid valve B.
- 2. Blow air into each hose and EVAP purge port C .



3. Check that air flows freely.

OK or NG

OK >> GO TO 6.

NG >> Repair or clean hoses and/or purge port.

6. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

ACTIVE TEST		
PURG VOL. CONT/V	0 %	
MONITOF	1	
ENG SPEED	XXX rpm	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
		PBIB0147E

7. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-975, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace EVAP canister purge volume control solenoid valve.

DTC P0441 EVAP CONTROL SYSTEM

[VQ]

8. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE 1. Turn ignition switch "OFF". 2. Check disconnection or improper connection of hose connected to EVAP control system pressure sensor. EC OK or NG OK >> GO TO 9. NG >> Repair it. 9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR Disconnect EVAP control system pressure sensor harness connector. D 2. Check connectors for water. Water should not exist. Е OK or NG >> GO TO 10. OK NG >> Replace EVAP control system pressure sensor. 10. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION Refer to "DTC Confirmation Procedure" for DTC P0452 EC-983, P0453 EC-989. OK or NG OK >> GO TO 11. NG >> Replace EVAP control system pressure sensor. 11. CHECK RUBBER TUBE FOR CLOGGING 1. Disconnect rubber tube connected to EVAP canister vent control valve. 2. Check the rubber tube for clogging. OK or NG OK >> GO TO 12. NG >> Clean the rubber tube using an air blower. 12. CHECK EVAP CANISTER VENT CONTROL VALVE Refer to EC-981, "Component Inspection". OK or NG OK >> GO TO 13. NG >> Replace EVAP canister vent control valve. M 13. CHECK EVAP PURGE LINE

Inspect EVAP purge line (pipe and rubber tube). Check for evidence of leaks.

OK or NG

OK >> GO TO 14. NG >> Replace it.

14. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

Refer to EC-1287, "EVAPORATIVE EMISSION LINE DRAWING".

>> GO TO 15.

DTC P0441 EVAP CONTROL SYSTEM

[VQ]

15. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0442 EVAP CONTROL SYSTEM

On Board Diagnosis Logic

PFP:14950

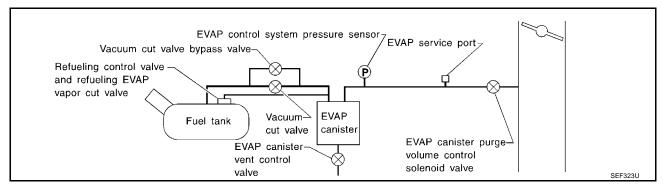
UBS003C6

Α

EC

D

Е


NOTE:

If DTC P0442 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See <u>EC-1155</u>.)

This diagnosis detects leaks in the EVAP purge line using engine intake manifold vacuum.

If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge volume control solenoid valve, under the following "Vacuum test" conditions.

The vacuum cut valve bypass valve is opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP canister vent control valve will then be closed to shut the EVAP purge line off. The EVAP canister purge volume control solenoid valve is opened to depressurize the EVAP purge line using intake manifold vacuum. After this occurs, the EVAP canister purge volume control solenoid valve will be closed.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
			Incorrect fuel tank vacuum relief valve
			Incorrect fuel filler cap used
			Fuel filler cap remains open or fails to close.
			 Foreign matter caught in fuel filler cap.
			Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.
			Foreign matter caught in EVAP canister vent control valve.
			EVAP canister or fuel tank leaks
			EVAP purge line (pipe and rubber tube) leaks
			EVAP purge line rubber tube bent
EVAP control system	EVAP control system has a leak, EVAP	Blocked or bent rubber tube to EVAP control sys- tem pressure sensor	
0442	small leak detected	control system does not operate properly.	Loose or disconnected rubber tube
	(negative pressure)		EVAP canister vent control valve and the circuit
			EVAP canister purge volume control solenoid valve and the circuit
			Absolute pressure sensor
			Fuel tank temperature sensor
			O-ring of EVAP canister vent control valve is missing or damaged
			Water separator
			EVAP canister is saturated with water
		EVAP control system pressure sensor	
		Fuel level sensor and the circuit	
			Refueling control valve
		ORVR system leaks	

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

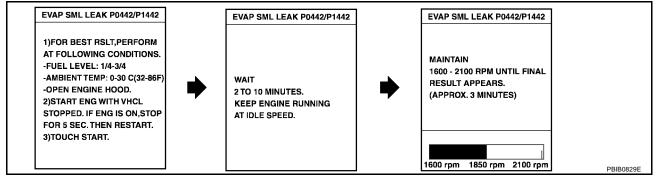
UBS003C7

NOTE:

- If DTC P0442 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See <u>EC-1155</u>.)
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).

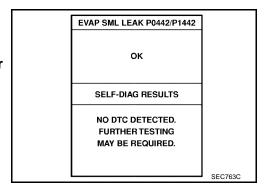

(P) WITH CONSULT-II

- Turn ignition switch "ON".
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 4. Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 30°C (32 - 86°F)

5. Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.


NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to <u>EC-704</u>, "Basic Inspection".

Make sure that "OK" is displayed.
 If "NG" is displayed, refer to <u>EC-963, "Diagnostic Procedure"</u>.

NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

WITH GST

NOTE:

Be sure to read the explanation of "Driving Pattern" on <u>EC-683</u> before driving vehicle.

DTC P0442 EVAP CONTROL SYSTEM

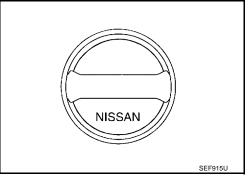
[VQ]

- 1. Start engine.
- 2. Drive vehicle according to "Driving Pattern", EC-683.
- 3. Stop vehicle.
- 4. Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- 5. Turn ignition switch "OFF" and wait at least 10 seconds.
- 6. Start engine.

It is not necessary to cool engine down before driving.

- 7. Drive vehicle again according to the "Driving Pattern", EC-683.
- 8. Stop vehicle.
- 9. Select "MODE 3" with GST.
- If P0442 is displayed on the screen, go to <u>EC-963, "Diagnostic Procedure"</u>.
- If P0441 is displayed on the screen, go to "Diagnostic Procedure" for DTC P0441, EC-957.
- If P0441 and P0442 are not displayed on the screen, go to the following step.
- 10. Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6.

Diagnostic Procedure


1. CHECK FUEL FILLER CAP DESIGN

- 1. Turn ignition switch "OFF".
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> • Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

• Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

Α

Е

D

(

UBS003C8

I

K

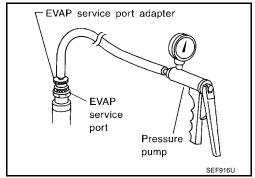
4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-1289, "FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FILLER CAP)".

OK or NG

OK >> GO TO 5.

NG >> Replace fuel filler cap with a genuine one.

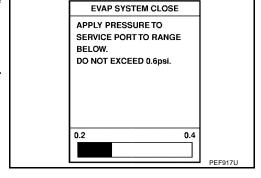

$5.\,$ install the pressure pump

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely. For the location of EVAP service port, refer to EC-1287, "EVAPORATIVE EMISSION LINE <a href="DRAWING".

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

Models with CONSULT-II>>GO TO 6.
Models without CONSULT-II>>GO TO 7.

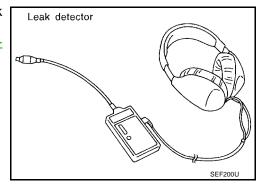

6. CHECK FOR EVAP LEAK

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

NOTE:

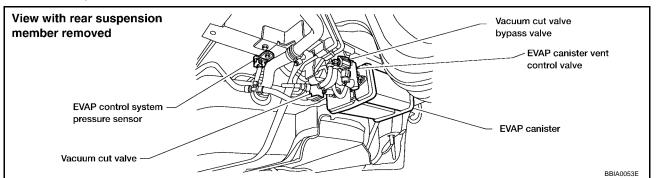
- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.



 Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to <u>EC-1287</u>, "EVAPORATIVE EMISSION LINE DRAW-ING".

OK or NG

OK >> GO TO 8.

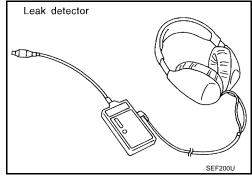

NG >> Repair or replace.

7. CHECK FOR EVAP LEAK

W Without CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-1287, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

8. CHECK WATER SEPARATOR

Refer to EC-968, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace water separator.

9. CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT

Refer to "DTC Confirmation Procedure", EC-1149.

OK or NG

OK >> GO TO 10.

NG >> Repair or replace EVAP canister vent control valve and O-ring or harness/connector.

EC

С

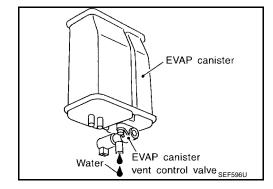
D

G

Н

I

J


K

10. CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 11. No (With CONSULT-II)>>GO TO 13. No (Without CONSULT-II)>>GO TO 14.

11. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK (With CONSULT-II)>>GO TO 13. OK (Without CONSULT-II)>>GO TO 14. NG >> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection

>> Repair hose or replace EVAP canister.

13. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

ACTIVE TES	Т	
PURG VOL. CONT/V	0 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
	I	PBIB0147I

Α

EC

C

D

Е

Н

M

14. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 17. NG >> GO TO 15.

15. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-646, "Vacuum Hose Drawing".

OK or NG

OK >> GO TO 16.

NG >> Repair or reconnect the hose.

16. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-975, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace EVAP canister purge volume control solenoid valve.

17. CHECK ABSOLUTE PRESSURE SENSOR

Refer to EC-802, "DTC Confirmation Procedure".

OK or NG

OK >> GO TO 18.

NG >> Replace absolute pressure sensor.

18. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-894, "Component Inspection".

OK or NG

OK >> GO TO 19.

NG >> Replace fuel level sensor unit.

19. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-988, "Component Inspection".

OK or NG

OK >> GO TO 20.

NG >> Replace EVAP control system pressure sensor.

20. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to EC-1287, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 21.

NG >> Repair or reconnect the hose.

Revision: May 2004 EC-967 2002 Altima

21. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 22.

22. CHECK REFUELING EVAP VAPOR LINE

Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to EC-1292, "ON BOARD REFUELING VAPOR RECOVERY (ORVR)".

OK or NG

OK >> GO TO 23.

NG >> Repair or replace hoses and tubes.

23. CHECK SIGNAL LINE AND RECIRCULATION LINE

Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 24.

NG >> Repair or replace hoses, tubes or filler neck tube.

24. CHECK REFUELING CONTROL VALVE

Refer to EC-1297, "REFUELING CONTROL VALVE".

OK or NG

OK >> GO TO 25.

NG >> Replace refueling control valve with fuel tank.

25. CHECK FUEL LEVEL SENSOR

Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

OK or NG

OK >> GO TO 26.

NG >> Replace fuel level sensor unit.

26. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

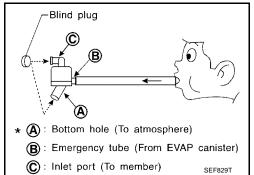
>> INSPECTION END

Component Inspection WATER SEPARATOR

UBS003C9

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.

DTC P0442 EVAP CONTROL SYSTEM


[VQ]

4. Check that **A** and **C** are not clogged by blowing air into **B** with **A**, and then **C** plugged.

5. In case of NG in items 2 - 4, replace the parts.

NOTF:

• Do not disassemble water separator.

EC

Α

С

D

Е

F

Н

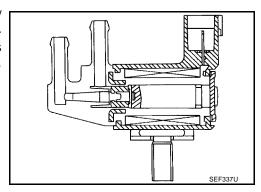
ï

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

[VQ]

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Description SYSTEM DESCRIPTION


UBS003CA

Sensor	Input Signal to ECM	ECM function	Actuator	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Ignition switch	Start signal	EVAP canister	EVAP canister purge volume control solenoid valve	
Throttle position sensor	Throttle position	purge flow control		
Accelerator pedal position sensor	Accelerator pedal position			
Heated oxygen sensors 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)			
Vehicle speed signal	Vehicle speed			

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/ OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

CONSULT-II Reference Value in Data Monitor Mode

UBS003CB

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	0%
PURG VOL C/V	Shift lever: N		
	Air conditioner switch: OFF	2,000 rpm	20 - 30%
	No-load		

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID **VALVE**

[VQ]

On Board Diagnosis Logic

UBS003CC

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0444 0444	EVAP canister purge volume control solenoid valve circuit open	An excessively low voltage signal is sent to ECM through the valve	Harness or connectors (The solenoid valve circuit is open or shorted.) EVAP canister purge volume control solenoid valve
P0445 0445	EVAP canister purge volume control solenoid valve circuit shorted	An excessively high voltage signal is sent to ECM through the valve	Harness or connectors (The solenoid valve circuit is shorted.) EVAP canister purge volume control solenoid valve

DTC Confirmation Procedure

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

(II) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 13 seconds.
- 4. If 1st trip DTC is detected, go to EC-973, "Diagnostic Procedure"

DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED	XXX rpm	1
		1

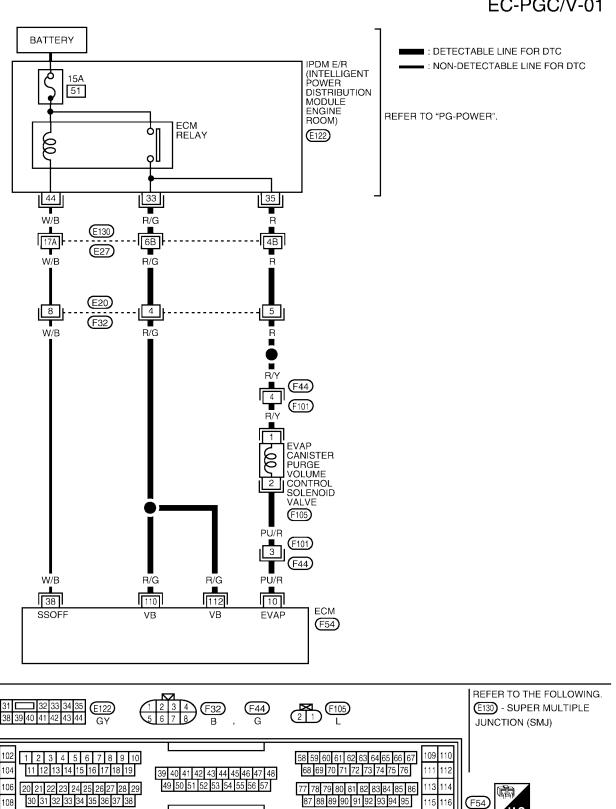
WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC-971 2002 Altima Revision: May 2004

EC

D


Е

Wiring Diagram

103

105

EC-PGC/V-01

BBWA0068E

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

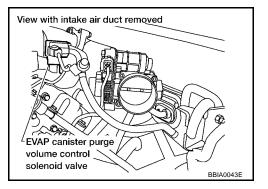
[VQ]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
40	DI VD	EVAP canister purge	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)★
10	PU/R	volume control sole- noid valve	[Engine is running] ● Engine speed is about 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ P10.0 V/Div 80 ms/Div SEC991C

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

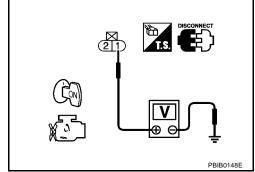

Diagnostic Procedure

UBS003CE

M

1. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIR-CUIT

- Turn ignition switch "OFF".
- Disconnect EVAP canister purge volume control solenoid valve harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

[VQ]

2. detect malfunctioning part

Check the following.

- Harness connectors F44, F101
- Harness connectors E20, F32
- Harness connectors E130, E27
- IPDM E/R harness connector E122
- Harness for open or short between EVAP canister purge volume control solenoid valve and IPDM E/R
- Harness for open or short between ECM and IPDM E/R
 - >> Repair harness or connectors.

3. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIR-CUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 10 and EVAP canister purge volume control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK (With CONSULT-II)>>GO TO 5. OK (Without CONSULT-II)>>GO TO 6. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F44, F101
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

ACTIVE TES	Т	
PURG VOL CONT/V	0 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
	I	PBIB0147E

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

[VQ]

6. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-975, "Component Inspection".

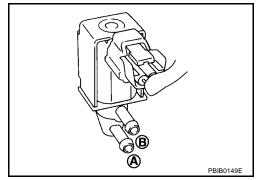
OK or NG

OK >> GO TO 7.

NG >> Replace EVAP canister purge volume control solenoid valve.

7. CHECK INTERMITTENT INCIDENT

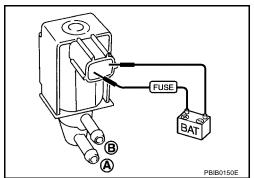
Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(With CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.


Condition (PURG VOL CONT/V value)	Air passage continuity between A and B	
100.0%	Yes	
0.0%	No	

⊗ Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Removal and Installation EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EM-114, "INTAKE MANIFOLD".

UBS003CH

EC

D

Е

UBS003CG

F

G

Н

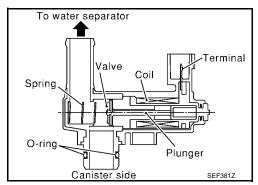
J

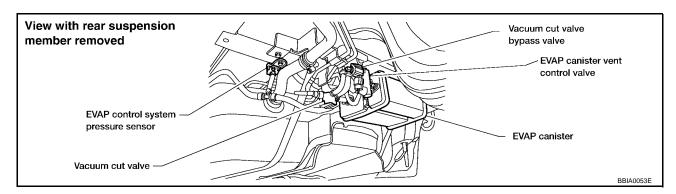
Κ

UBS003CI

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

Component Description


PFP:14935


The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

UBS003CJ

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

On Board Diagnosis Logic

UBS003CK

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0447 0447	EVAP canister vent control valve circuit open	An improper voltage signal is sent to ECM through EVAP canister vent control valve.	 Harness or connectors (The valve circuit is open or shorted.) EVAP canister vent control valve

DTC Confirmation Procedure

UBS003CL

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

(III) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

[VQ]

3.	Start engine	and wa	it at least 8	3 seconds.

4. If 1st trip DTC is detected, go to EC-979, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

SEE058Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

С

EC

Α

D

Е

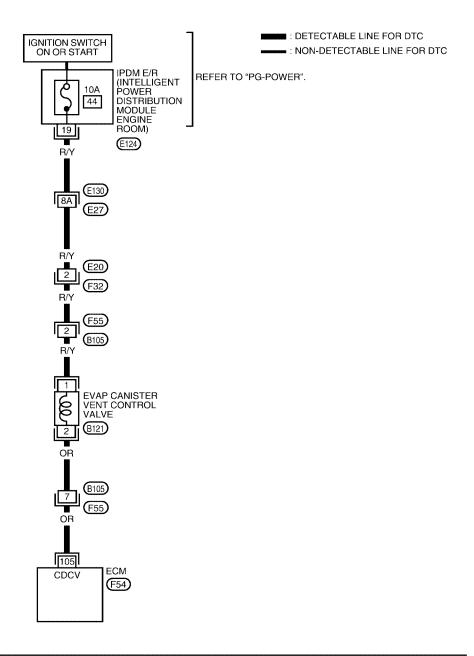
F

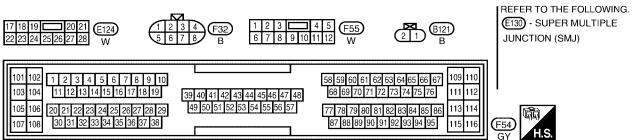
G

Н

1

<


L


[VQ]

UBS003CM

Wiring Diagram

EC-VENT/V-01

BBWA0069E

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

[VQ]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
105	OR	EVAP canister vent control valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS003CN

EC

D

Е

F

1. INSPECTION START

Do you have CONSULT-II?

Yes or No

Yes >> GO TO 2. No >> GO TO 3.

2. CHECK EVAP CANISTER VENT CONTROL VALVE CIRCUIT

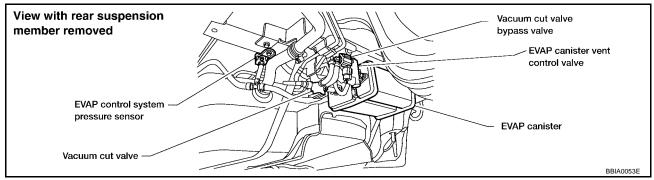
(I) With CONSULT-II

- 1. Turn ignition switch "OFF" and then turn "ON".
- 2. Select "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Touch "ON/OFF" on CONSULT-II screen.
- 4. Check for operating sound of the valve. Clicking noise should be heard.

OK or NG

OK >> GO TO 7. NG >> GO TO 3.

ACTIVE TE	ACTIVE TEST	
VENT CONTROL/V	OFF	
MONITO	₹	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 (B1)	xxx v	
HO2S1 (B2)	xxx v	
		PBIB0151E

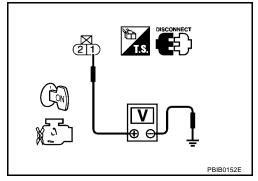

Н

ı

L

3. CHECK EVAP CANISTER VENT CONTROL VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect EVAP canister vent control valve harness connector.



- 3. Turn ignition switch "ON".
- 4. Check voltage between EVAP canister vent control valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B105, F55
- Harness connectors F32, E20
- Harness connectors E27, E130
- IPDM E/R harness connector E124
- 10A fuse
- Harness for open or short between EVAP canister vent control valve and IPDM E/R
 - >> Repair harness or connectors.

5. CHECK EVAP CANISTER VENT CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 105 and EVAP canister vent control valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

[VQ]

EC

D

Е

Н

M

UBS003CO

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B105, F55
- Harness for open or short between EVAP canister vent control valve and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 8.

NG >> Clean the rubber tube using an air blower.

8. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-981, "Component Inspection".

OK or NG

OK >> GO TO 9.

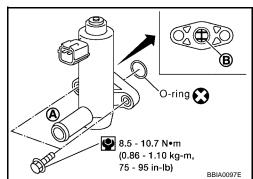
NG >> Replace EVAP canister vent control valve.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection EVAP CANISTER VENT CONTROL VALVE


(With CONSULT-II

- 1. Remove EVAP canister vent control valve from EVAP canister.
- 2. Check portion **B** of EVAP canister vent control valve for being rusted.

If NG, replace EVAP canister vent control valve.

If OK, go to next step.

- 3. Reconnect harness connectors disconnected.
- 4. Turn ignition switch "ON".
- Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.

6. Check air passage continuity and operation delay time.

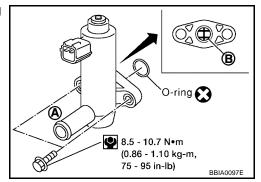
Condition VENT CONTROL/V	Air passage continuity between A and B	
ON	No	
OFF	Yes	

Operation takes less than 1 second.

If NG, replace EVAP canister vent control valve.

If OK, go to next step.

7. Clean the air passage (Portion **A** to **B**) of EVAP canister vent control valve using an air blower.

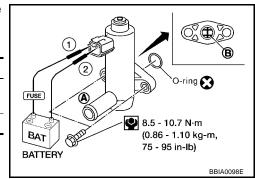

ACTIVE TES	ST	
VENT CONTROL/V	OFF	
MONITOR	1	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 (B1)	xxx v	
HO2S1 (B2)	xxx v	
		PBIB015

Revision: May 2004 EC-981 2002 Altima

8. Perform step 6 again.

⋈ Without CONSULT-II

- 1. Remove EVAP canister vent control valve from EVAP canister.
- 2. Check portion **B** of EVAP canister vent control valve for being rusted.


3. Check air passage continuity and operation delay time under the following conditions.

Make sure new O-ring is installed properly.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

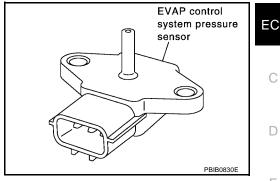
Operation takes less than 1 second.

If NG, replace EVAP canister vent control valve. If OK, go to next step.

- 4. Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower.
- 5. Perform step 3 again.

DTC P0452 EVAP CONTROL SYSTEM PRESSURE SENSOR

[VQ]


DTC P0452 EVAP CONTROL SYSTEM PRESSURE SENSOR

PFP:25085

Component Description

UBS003CP

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases. The EVAP control system pressure sensor is not used to control the engine system. It is used only for on board diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

LIBS003CO

D

Е

Н

M

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 1.8 - 4.8V

On Board Diagnosis Logic

UBS003CR

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0452 0452	EVAP control system pressure sensor low input	An excessively low voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor 	

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

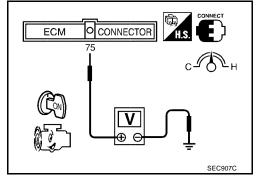
Always perform test at a temperature of 5°C (41°F) or more.

WITH CONSULT-II

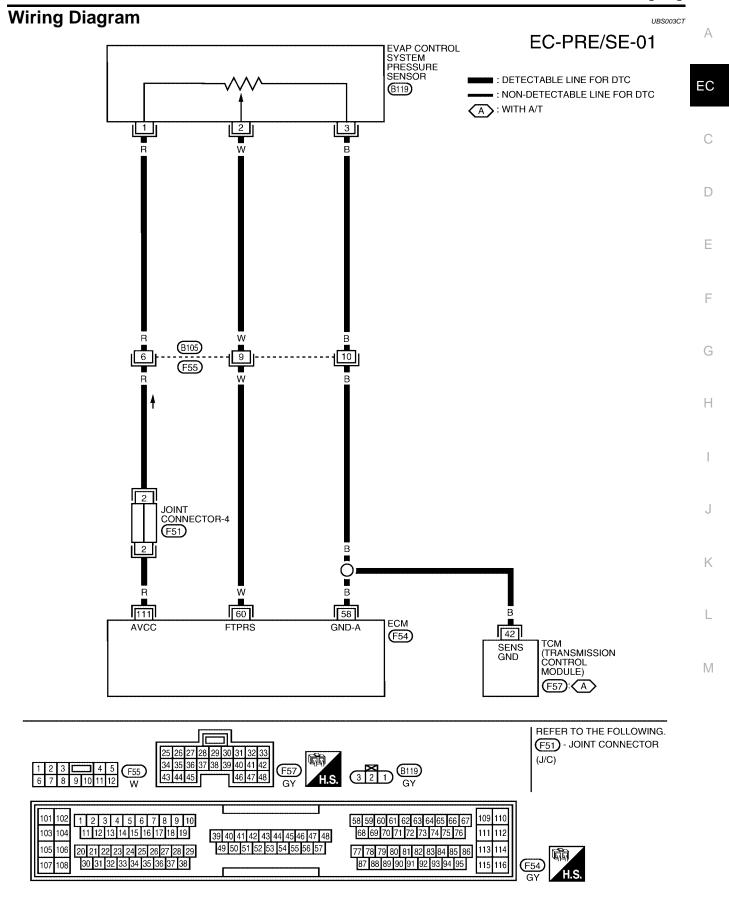
- Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- 5. Make sure that "FUEL T/TEMP SE" is more than 0°C (32°F).
- Start engine and wait at least 20 seconds. If 1st trip DTC is detected, go to EC-986, "Diagnostic Procedure"

DATA N	MONITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm
COOLANTEME	P/S XXX°C
FUEL T/TMP SE	≣ xxx °c
	SEF194Y

WITH GST


Start engine and warm it up to normal operating temperature.

EC-983 Revision: May 2004 2002 Altima


DTC P0452 EVAP CONTROL SYSTEM PRESSURE SENSOR

[VQ]

- 2. Check that voltage between ECM terminal 75 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3. Turn ignition switch "OFF" and wait at least 10 seconds.
- 4. Start engine and wait at least 20 seconds.
- Select "MODE 7" with GST.
 If 1st trip DTC is detected, go to <u>EC-986</u>, "<u>Diagnostic Procedure</u>"

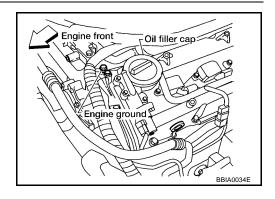
[VQ]

BBWA0070E

CAUTION:

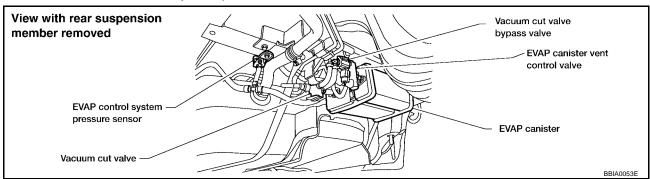
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
58	В	Sensors' ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
60	W	EVAP control system pressure sensor	[Ignition switch "ON"]	Approximately 1.8 - 4.8V
111	R	Sensor's power sup- ply	[Ignition switch "ON"]	Approximately 5V


Diagnostic Procedure

UBS003CU

1. RETIGHTEN GROUND SCREWS


Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK CONNECTOR

Disconnect EVAP control system pressure sensor harness connector.

2. Check sensor harness connector for water.

Water should not exist.

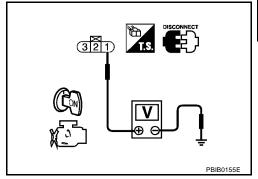
OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness connector.

DTC P0452 EVAP CONTROL SYSTEM PRESSURE SENSOR

[VQ]


3. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "ON".
- 2. Check voltage between EVAP control system pressure sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B105, F55
- Joint connector-4
- Harness for open or short between EVAP control system pressure sensor and ECM

>> Repair harness or connectors.

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- 2. Check harness continuity between EVAP control system pressure sensor terminal 3 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B105, F55
- Harness for open or short between EVAP control system pressure sensor and ECM
- Harness for open or short between EVAP control system pressure sensor and TCM

>> Repair open circuit or short to ground or short to power in harness or connectors.

EC

F

Е

Н

ı

7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 60 and EVAP control system pressure sensor terminal
 2.

Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B105, F55
- Harness for open or short between ECM and EVAP control system pressure sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-988, "Component Inspection".

OK or NG

OK >> GO TO 10.

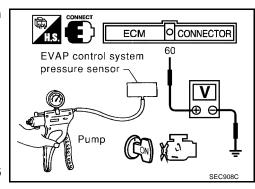
NG >> Replace EVAP control system pressure sensor.

10. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection EVAP CONTROL SYSTEM PRESSURE SENSOR


UBS003CV

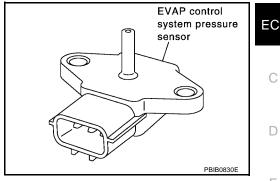
- 1. Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch "ON" and check output voltage between ECM terminal 60 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V	
Not applied	1.8 - 4.8	
-26.7 (-200, -7.87)	2.1 - 2.5V lower than above value	

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply vacuum below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- If NG, replace EVAP control system pressure sensor.

[VQ]


DTC P0453 EVAP CONTROL SYSTEM PRESSURE SENSOR

PFP:25085

Component Description

UBS003CW

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases. The EVAP control system pressure sensor is not used to control the engine system. It is used only for on board diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

UBS003CX

D

Е

Н

M

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 1.8 - 4.8V

On Board Diagnosis Logic

UBS003CY

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0453 0453	EVAP control system pressure sensor high input	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor EVAP canister vent control valve EVAP canister Water separator Rubber hose from EVAP canister vent control valve to water separator

DTC Confirmation Procedure

UBS003CZ

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

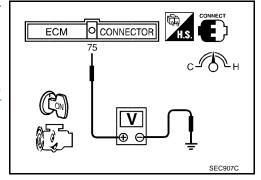
TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

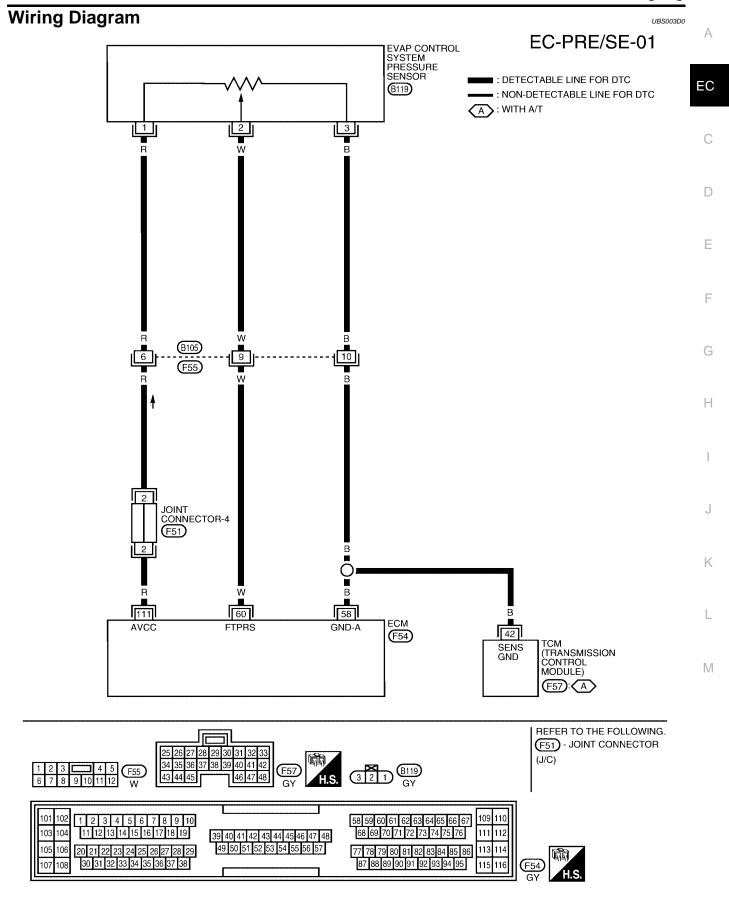
(III) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Turn ignition switch "ON".
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- 5. Make sure that "FUEL T/TEMP SE" is more than 0°C (32°F).
- 6. Start engine and wait at least 20 seconds.
- 7. If 1st trip DTC is detected, go to EC-992, "Diagnostic Procedure"

DATA MO	DATA MONITOR	
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
COOLAN TEMP/S	xxx °c	
FUEL T/TMP SE	xxx °c	
		SEF194Y


WITH GST

Start engine and warm it up to normal operating temperature.


DTC P0453 EVAP CONTROL SYSTEM PRESSURE SENSOR

[VQ]

- 2. Check that voltage between ECM terminal 75 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3. Turn ignition switch "OFF" and wait at least 10 seconds.
- 4. Start engine and wait at least 20 seconds.
- Select "MODE 7" with GST.
 If 1st trip DTC is detected, go to <u>EC-992</u>, "<u>Diagnostic Procedure</u>"

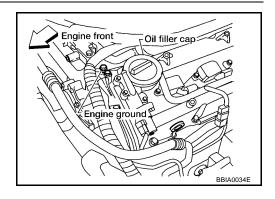
[VQ]

BBWA0070E

CAUTION:

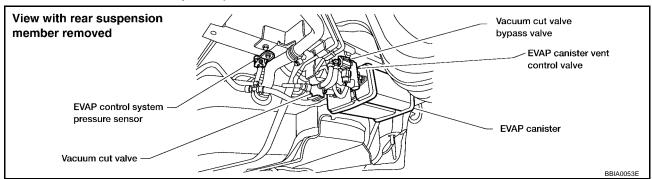
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
58	В	Sensors' ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
60	W	EVAP control system pressure sensor	[Ignition switch "ON"]	Approximately 1.8 - 4.8V
111	R	Sensor's power sup- ply	[Ignition switch "ON"]	Approximately 5V


Diagnostic Procedure

UBS003D1

1. RETIGHTEN GROUND SCREWS


Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK CONNECTOR

Disconnect EVAP control system pressure sensor harness connector.

2. Check sensor harness connector for water.

Water should not exist.

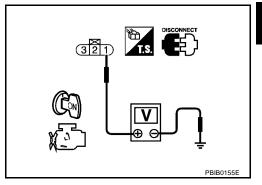
OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness connector.

DTC P0453 EVAP CONTROL SYSTEM PRESSURE SENSOR

[VQ]


3. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "ON".
- 2. Check voltage between EVAP control system pressure sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B105, F55
- Joint connector-4
- Harness for open or short between EVAP control system pressure sensor and ECM

>> Repair harness or connectors.

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- 2. Check harness continuity between EVAP control system pressure sensor terminal 3 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B105, F55
- Harness for open or short between EVAP control system pressure sensor and ECM
- Harness for open or short between EVAP control system pressure sensor and TCM

>> Repair open circuit or short to ground or short to power in harness or connectors.

EC

C

Е

F

Н

-

7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 60 and EVAP control system pressure sensor terminal 2.

Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

```
OK >> GO TO 9.
NG >> GO TO 8.
```

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B105, F55
- Harness for open or short between ECM and EVAP control system pressure sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

```
OK >> GO TO 10.
```

NG >> Clean the rubber tube using an air blower.

10. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-981, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> Replace EVAP canister vent control valve.

11. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-995, "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> Replace EVAP control system pressure sensor.

12. CHECK RUBBER TUBE

Check obstructed rubber tube connected to EVAP canister vent control valve.

OK or NG

OK >> GO TO 13.

NG >> Clean rubber tube using an air blower, repair or replace rubber tube.

13. check water separator

Refer to EC-968, "Component Inspection".

OK or NG

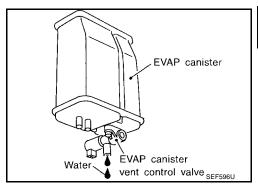
OK >> GO TO 14.

NG >> Replace water separator.

DTC P0453 EVAP CONTROL SYSTEM PRESSURE SENSOR

[VQ]

EC


Е

14. CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

Yes or No

Yes >> GO TO 15. No >> GO TO 17.

15. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK >> GO TO 17. NG >> GO TO 16.

16. DETECT MALFUNCTIONING PART

Check the following.

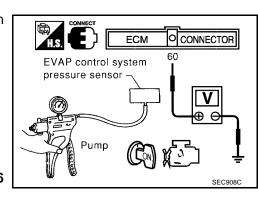
- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection

>> Repair hose or replace EVAP canister.

17. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection EVAP CONTROL PRESSURE SENSOR

- 1. Remove EVAP control system pressure sensor with its harness connector connected.
- Remove hose from EVAP control system pressure sensor.
- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch "ON" and check output voltage between ECM terminal 60 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V	
Not applied	1.8 - 4.8	
-26.7 (-200, -7.87)	2.1 - 2.5 lower than above value	

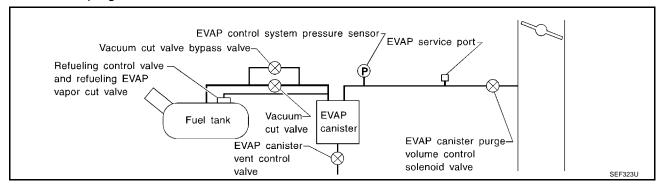
CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply vacuum below -93.3 kPa (-700 mmHg, -27.56 inHg) or over 101.3 kPa (760 mmHg, 29.92 inHg).
- 5. If NG, replace EVAP control system pressure sensor.

UBS003D2

EBS00KBX

DTC P0455 EVAP CONTROL SYSTEM


On Board Diagnosis Logic

PFP:14950

NOTE:

If DTC P0455 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (EC-1155.)

This diagnosis detects a very large leak (fuel filler cap fell off etc.) in EVAP system between the fuel tank and EVAP canister purge volume control solenoid valve.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0455 0455	EVAP control system gross leak detected	EVAP control system has a very large leak such as fuel filler cap fell off, EVAP control system does not operate properly.	 Fuel filler cap remains open or fails to close. Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube to EVAP control system pressure sensor Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged. EVAP control system pressure sensor Refueling control valve ORVR system leaks

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

EBS00KBY

CAUTION:

Never remove fuel filler cap during the DTC Confirmation Procedure.

DTC P0455 EVAP CONTROL SYSTEM

[VQ]

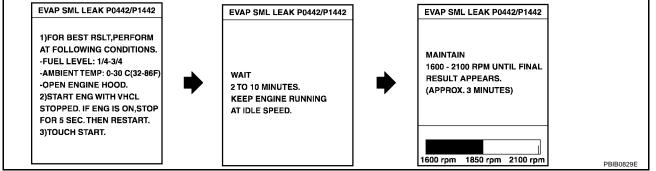
NOTE:

- If DTC P0455 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (EC-1155.)
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

EC

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Open engine hood before conducting the following procedures.

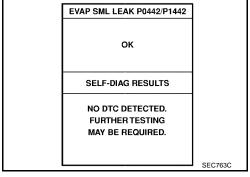

(III) WITH CONSULT-II

- 1. Tighten fuel filler cap securely until ratcheting sound is heard.
- 2. Turn ignition switch "ON".
- 3. Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 60°C (32 - 140°F)

Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.


NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to EC-704, "Basic Inspection".

7. Make sure that "OK" is displayed.

If "NG" is displayed, select "SELF-DIAG RESULTS" mode and make sure that "EVAP GROSS LEAK [P0455]" is displayed. If it is displayed, refer to EC-998, "Diagnostic Procedure".

If P0442 is displayed, perform "Diagnostic Procedure" for DTC P0442, EC-961.

WITH GST

NOTE:

Be sure to read the explanation of "Driving Pattern" on EC-683 before driving vehicle.

- Start engine.
- 2. Drive vehicle according to "Driving Pattern", <u>EC-683</u>.
- Stop vehicle. 3.
- Select "MODE 1" with GST.
 - If SRT of EVAP system is not set yet, go to the following step.

EC-997 2002 Altima Revision: May 2004

D

Е

Н

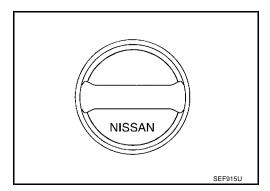
- If SRT of EVAP system is set, the result will be OK.
- 5. Turn ignition switch "OFF" and wait at least 10 seconds.
- 6. Start engine.

It is not necessary to cool engine down before driving.

- 7. Drive vehicle again according to the "Driving Pattern", EC-683.
- 8. Stop vehicle.
- 9. Select "MODE 3" with GST.
 - If P0455 is displayed on the screen, go to EC-998.
 - If P0442 or P1442 is displayed on the screen, go to "Diagnostic Procedure", for DTC P0442, EC-963.
 - If P0441 is displayed on the screen, go to "Diagnostic Procedure" for DTC P0441, .EC-957
 - If P0455, P0441, P0442 and P1442 are not displayed on the screen, go to the following step.
- 10. Select "MODE 1" with GST.
 - If SRT of EVAP system is set, the result will be OK.
 - If SRT of EVAP system is not set, go to step 6.

Diagnostic Procedure

EBS00KBZ


1. CHECK FUEL FILLER CAP DESIGN

- 1. Turn ignition switch "OFF".
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-1289, "FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FILLER CAP)".

OK or NG

OK >> GO TO 5.

NG >> Replace fuel filler cap with a genuine one.

DTC P0455 EVAP CONTROL SYSTEM

[VQ]

5. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks, improper connection or disconnection.

Refer to EC-1287, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 6.

NG >> Repair or reconnect the hose.

6. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 7.

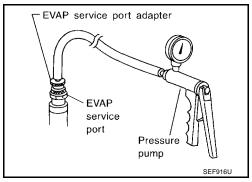
7. CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT

Refer to EC-1155, "DTC Confirmation Procedure".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace EVAP canister vent control valve and O-ring or harness/connector.


8. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely.

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

Models with CONSULT-II>>GO TO 9. Models without CONSULT-II>>GO TO 10.

EC

Е

F

D

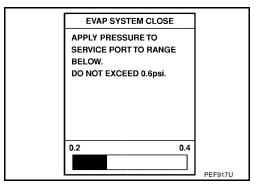
Н

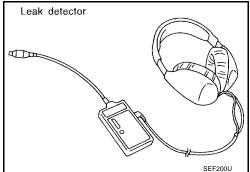
9. CHECK FOR EVAP LEAK

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

NOTF:

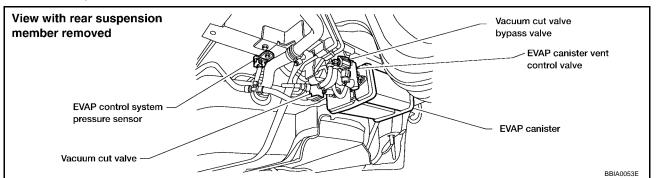

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.



OK or NG

OK >> GO TO 11.

NG >> Repair or replace.

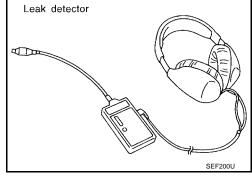


10. CHECK FOR EVAP LEAK

⋈ Without CONSULT-II

- Turn ignition switch "OFF".
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)

Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-1287, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 12.

NG >> Repair or replace.

11. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 14.

NG >> GO TO 13.

	ACTIVE TE		
	PURG VOL CONT/V	XXX %	
	MONITOR	₹	
	ENG SPEED	XXX rpm	
	A/F ALPHA-B1	XX %	
	HO2S1 MNTR (B1)	LEAN	
Į			PBIB0828E

EC

D

Е

Н

12. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 15. NG >> GO TO 13.

13. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-646, "Vacuum Hose Drawing".

OK or NG

OK (With CONSULT-II)>>GO TO 14.

OK (Without CONSULT-II)>>GO TO 15.

NG >> Repair or reconnect the hose.

14. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

	ACTIVE TE		
	PURG VOL CONT/V	XXX %	
	MONITOR		
	ENG SPEED	XXX rpm	
	A/F ALPHA-B1	XX %	
	HO2S1 MNTR (B1)	LEAN	
· ·			PBIB0828E

15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-975, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace EVAP canister purge volume control solenoid valve.

16. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-894, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace fuel level sensor unit.

DTC P0455 EVAP CONTROL SYSTEM

[VQ]

17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-988, "Component Inspection".

OK or NG

OK >> GO TO 18.

NG >> Replace EVAP control system pressure sensor.

18. CHECK REFUELING EVAP VAPOR LINE

Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to EC-1292, "ON BOARD REFUELING VAPOR RECOVERY (ORVR)".

OK or NG

OK >> GO TO 19.

>> Repair or replace hoses and tubes. NG

19. CHECK SIGNAL LINE AND RECIRCULATION LINE

Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 20.

NG >> Repair or replace hoses, tubes or filler neck tube.

20. CHECK REFUELING CONTROL VALVE

Refer to EC-1297, "REFUELING CONTROL VALVE".

OK or NG

OK >> GO TO 21.

NG >> Replace refueling control valve with fuel tank.

21. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

EC

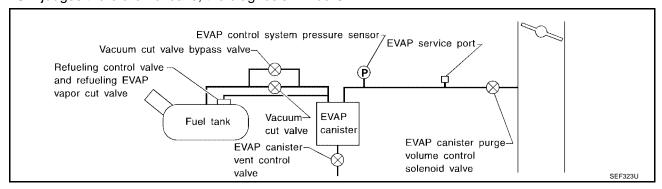
D

Е

Н

DTC P0456 EVAP CONTROL SYSTEM

On Board Diagnosis Logic


PFP:14950 UBS003D3

This diagnosis detects very small leaks in the EVAP line between fuel tank and EVAP canister purge volume control solenoid valve, using the intake manifold vacuum in the same way as conventional EVAP small leak diagnosis.

If ECM judges a leak which corresponds to a very small leak, the very small leak P0456 will be detected.

If ECM judges a leak equivalent to a small leak, EVAP small leak P0442 will be detected.

If ECM judges there are no leaks, the diagnosis will be OK.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0456 0456	Evaporative emission control system very small leak (negative pressure check)	 EVAP system has a very small leak. EVAP system does not operate properly. 	Incorrect fuel tank vacuum relief valve
			 Incorrect fuel filler cap used
			 Fuel filler cap remains open or fails to close.
			 Foreign matter caught in fuel filler cap.
			Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.
			Foreign matter caught in EVAP canister vent control valve.
			EVAP canister or fuel tank leaks
			EVAP purge line (pipe and rubber tube) leaks
			EVAP purge line rubber tube bent
			Blocked or bent rubber tube to EVAP control sys- tem pressure sensor
			Loose or disconnected rubber tube
			EVAP canister vent control valve and the circuit
			EVAP canister purge volume control solenoid valve and the circuit
			Absolute pressure sensor
			Fuel tank temperature sensor
			O-ring of EVAP canister vent control valve is missing or damaged
			Water separator
			EVAP canister is saturated with water
			EVAP control system pressure sensor
			Refueling control valve
			ORVR system leaks
			Fuel level sensor and the circuit
			Foreign matter caught in EVAP canister purge vol- ume control solenoid valve

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.

DTC P0456 EVAP CONTROL SYSTEM

[VQ]

Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

LIBS003D4

Α

EC

D

Е

Н

M

NOTE:

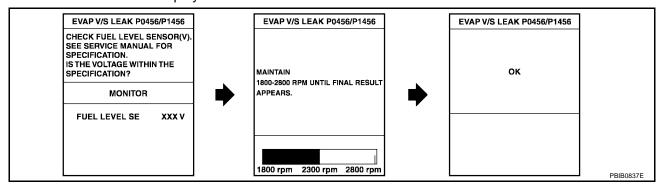
- If DTC P0456 is displayed with P0442, perform TROUBLE DIAGNOSIS FOR DTC P0456 first.
- After repair, make sure that the hoses and clips are installed properly.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- If any of following conditions are met just before the DTC confirmation procedure, leave the vehicle for more than 1 hour.
- Fuel filler cap is removed.
- Refilled or drained the fuel.
- EVAP component parts is/are removed.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- Make sure the following conditions are met.


FUEL LEVEL SE: 0.25 - 1.15V

COOLAN TEMP/S: 0 - 32°C (32 - 90°F) FUEL T/TMP SE: 0 - 35°C (32 - 95°F) INT A/TEMP SE: More than 0°C (32°F)

If NG, turn ignition switch "OFF" and leave the vehicle in a cool place (soak the vehicle) or refilling/draining fuel until the output voltage condition of the "FUEL LEVEL SE" meets within the range above and leave the vehicle for more than 1 hour. Then start from step 1).

- 3. Turn ignition switch "OFF" and wait at least 10 seconds.
- 4. Turn ignition switch "ON".
- 5. Select "EVAP V/S LEAK P0456/P1456" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

6. Make sure that "OK" is displayed.

If "NG" is displayed, refer to EC-1006, "Diagnostic Procedure".

NOTE:

- If the engine speed cannot be maintained within the range displayed on CONSULT-II screen, go to EC-704, "Basic Inspection".
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

Overall Function Check

UBS003D5

® WITH GST

Use this procedure to check the overall function of the EVAP very small leak function. During this check, a 1st trip DTC might not be confirmed.

UBS003D6

CAUTION:

- Never use compressed air, doing so may damage the EVAP system.
- Do not start engine.
- Do not exceeded 4.12 kPa (0.042 kg/cm², 0.6 psi).
- Attach the EVAP service port adapter securely to the EVAP service port.
- 2. Set the pressure pump and a hose.
- 3. Also set a vacuum gauge via 3-way connector and a hose.
- 4. Turn ignition switch "ON".
- 5. Connect GST and select mode 8.
- Using mode 8 control the EVAP canister vent control valve (close) and vacuum cut valve bypass valve (open).
- Apply pressure and make sure the following conditions are satisfied.

Pressure to be applied: 2.7 kPa (20 mmHg, 0.79 inHg)

Time to be waited after the pressure drawn in to the EVAP system and the pressure to be dropped: 60 seconds and the pressure should not be dropped more than 0.4 kPa (3 mmHg, 0.12 inHg).

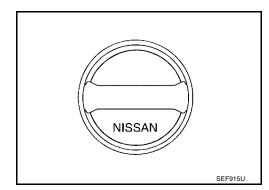
If NG, go to <u>EC-1006, "Diagnostic Procedure"</u>. If OK, go to next step.

- 8. Disconnect GST.
- 9. Start engine and warm it up to normal operating temperature.
- 10. Turn ignition switch "OFF" and wait at least 10 seconds.
- 11. Restart engine and let it idle for 90 seconds.
- 12. Keep engine speed at 2,000 rpm for 30 seconds.
- 13. Turn ignition switch "OFF".

NOTE:

For more information, refer to GST instruction manual.

Diagnostic Procedure


1. CHECK FUEL FILLER CAP DESIGN

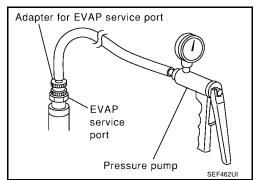
- Turn ignition switch "OFF".
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION


Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3. NG >> • Open for

>> • Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

• Retighten until ratcheting sound is heard.

[VQ]

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

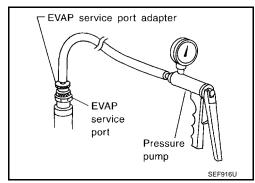
4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-1289. "FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FILLER CAP)".

OK or NG

OK >> GO TO 5.

NG >> Replace fuel filler cap with a genuine one.

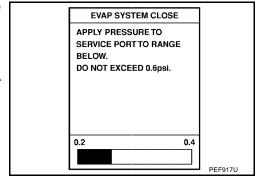

5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely. For the location of EVAP service port, refer to EC-1287, "EVAPORATIVE EMISSION LINE DRAWING".

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

Models with CONSULT-II>>GO TO 6. Models without CONSULT-II>>GO TO 7.

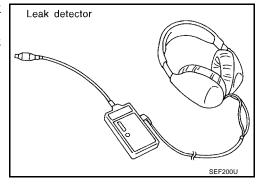

6. CHECK FOR EVAP LEAK

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.



4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-1287, "EVAPORATIVE EMISSION LINE DRAW-ING".

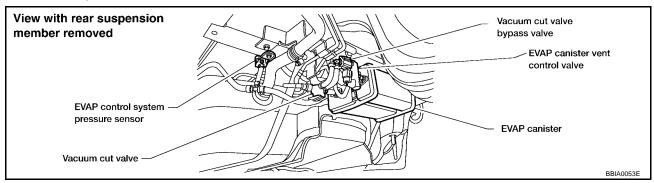
OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

EC

D


Е

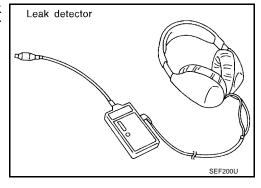
Н

7. CHECK FOR EVAP LEAK

⋈ Without CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-1287, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

8. CHECK WATER SEPARATOR

Refer to EC-1011, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace water separator.

9. CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT

Refer to "DTC Confirmation Procedure", EC-1149.

OK or NG

OK >> GO TO 10.

NG >> Repair or replace EVAP canister vent control valve and O-ring or harness/connector.

DTC P0456 EVAP CONTROL SYSTEM

[VQ]

10. CHECK IF EVAP CANISTER SATURATED WITH WATER


- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- Does water drain from the EVAP canister?

Yes or No

>> GO TO 11. Yes

No (With CONSULT-II)>>GO TO 13.

No (Without CONSULT-II)>>GO TO 14.

11. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK (With CONSULT-II)>>GO TO 13.

OK (Without CONSULT-II)>>GO TO 14.

>> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection

>> Repair hose or replace EVAP canister.

13. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

ACTIVE IES	l	
PURG VOL CONT/V	0 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
		PBIB0147E

EC

D

Е

Н

K

M

14. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 17. NG >> GO TO 15.

15. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-646, "Vacuum Hose Drawing" .

OK or NG

OK >> GO TO 16.

NG >> Repair or reconnect the hose.

16. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-975, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace EVAP canister purge volume control solenoid valve.

17. CHECK ABSOLUTE PRESSURE SENSOR

Refer to EC-802, "DTC Confirmation Procedure".

OK or NG

OK >> GO TO 18.

NG >> Replace absolute pressure sensor.

18. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-894, "Component Inspection".

OK or NG

OK >> GO TO 19.

NG >> Replace fuel level sensor unit.

19. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-988, "Component Inspection".

OK or NG

OK >> GO TO 20.

NG >> Replace EVAP control system pressure sensor.

20. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to EC-1287, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 21.

NG >> Repair or reconnect the hose.

DTC P0456 EVAP CONTROL SYSTEM

[VQ]

21. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 22.

EC

22. CHECK REFUELING EVAP VAPOR LINE

Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to <u>EC-1292, "ON BOARD REFUELING VAPOR RECOVERY (ORVR)"</u>.

OK or NG

OK >> GO TO 23.

NG >> Repair or replace hoses and tubes.

Е

D

23. Check signal line and recirculation line

Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 24.

NG >> Repair or replace hoses, tubes or filler neck tube.

G

24. CHECK REFUELING CONTROL VALVE

Refer to EC-1295, "Component Inspection".

OK or NG

OK >> GO TO 25.

NG >> Replace refueling control valve with fuel tank.

25. CHECK FUEL LEVEL SENSOR

Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

OK or NG

OK >> GO TO 26.

NG >> Replace fuel level sensor unit.

M

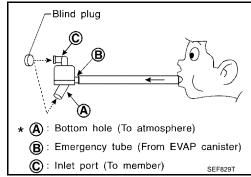
26. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection WATER SEPARATOR

UBS003D7


- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.

[VQ]

- 4. Check that **A** and **C** are not clogged by blowing air into **B** with **A**, and then **C** plugged.
- 5. In case of NG in items 2 4, replace the parts.

NOTE:

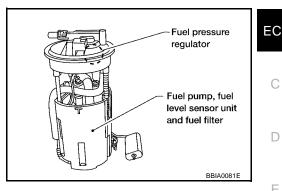
• Do not disassemble water separator.

DTC P0460 FUEL LEVEL SENSOR

[VQ]

DTC P0460 FUEL LEVEL SENSOR

PFP:25060


Component Description

UBS003D8

Α

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnosis Logic

UBS003D9

Е

Н

M

When the vehicle is parked, naturally the fuel level in the fuel tank is stable. It means that output signal of the fuel level sensor does not change. If ECM senses sloshing signal from the sensor, fuel level sensor malfunction is detected.

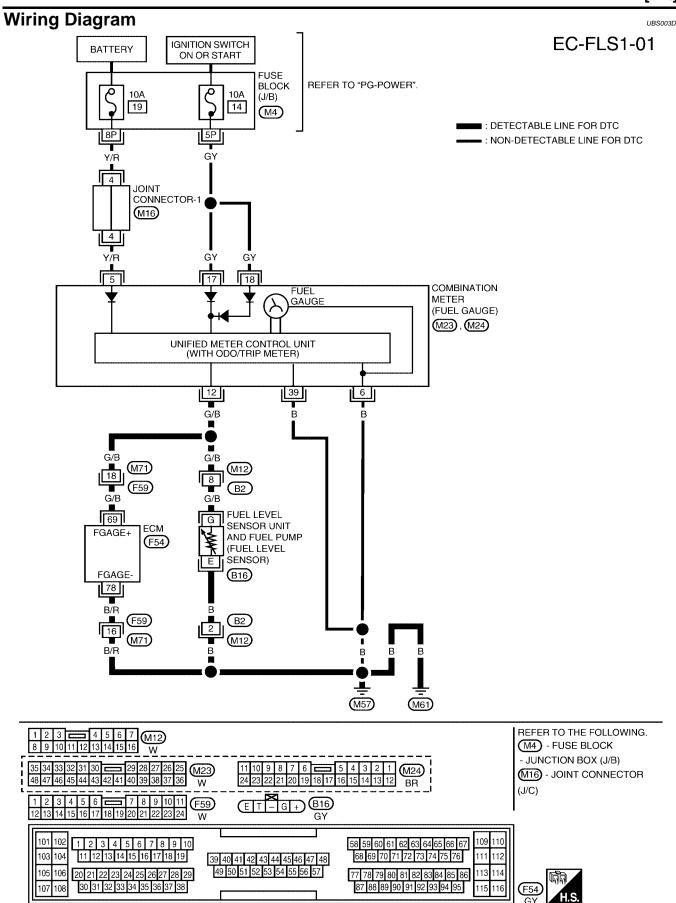
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0460 0460	Fuel level sensor circuit noise	Even though the vehicle is parked, a signal being varied is sent from the fuel level sensor to ECM.	Harness or connectors (The sensor circuit is open or shorted)Fuel level sensor

DTC Confirmation Procedure

UBS003DA

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II


- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait maximum of 2 consecutive minutes.
- 4. If 1st trip DTC is detected, go to EC-1015, "Diagnostic Procedure".

DATA MONITOR		
MONITOR	NO DTC	
FUEL T/TMP SE	XXX °C	
FUEL LEVEL SE	XXX V	
		SEF195\

WITH GST

Follow the procedure "WITH CONSULT-II" above.

BBWA0071E

Specification data are reference values and are measured between each terminal and ground.

DTC P0460 FUEL LEVEL SENSOR

[VQ]

EC

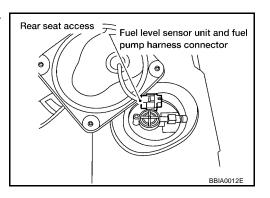
Е

Н

M

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

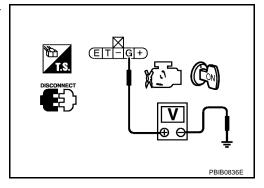

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
69	G/B	Fuel level sensor	[Ignition switch "ON"]	Approximately 0 - 4.8V Output voltage varies with fuel level.
78	B/R	Fuel level sensor ground	[Engine is running] • Idle speed	Approximately 0V

Diagnostic Procedure

UBS003DC

1. CHECK FUEL LEVEL SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect fuel level sensor unit and fuel pump harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between fuel level sensor unit and fuel pump terminal G and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M12, B2
- Harness for open or short between combination meter and fuel level sensor until and fuel pump
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK FUEL LEVEL SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Check harness continuity between fuel level sensor unit and fuel pump terminal E and body ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M12, B2
- Harness for open or short between ECM and fuel level sensor until and fuel pump
 - >> Repair open circuit or short to power in harness or connectors.

5. CHECK FUEL LEVEL SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 69 and fuel level sensor unit and fuel pump terminal G, ECM terminal 78 and fuel level sensor unit and fuel pump terminal E. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground or short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M12, B2
- Harness connectors M71, F59
- Harness for open or short between ECM and fuel level sensor until and fuel pump
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK FUEL LEVEL SENSOR

Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY" .

OK or NG

OK >> GO TO 8.

NG >> Replace fuel level sensor unit.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0460 FUEL LEVEL SENSOR

[VQ]

Removal and Installation FUEL LEVEL SENSOR

UBS003DD

Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

EC

Α

С

D

Е

F

G

Н

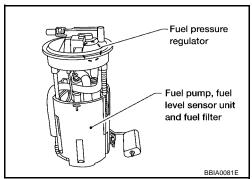
J

K

L

M

UBS003DE


DTC P0461 FUEL LEVEL SENSOR

Component Description

PFP:25060

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the FCM

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnosis Logic

UBS003DF

Driving long distances naturally affect fuel gauge level.

This diagnosis detects the fuel gauge malfunction of the gauge not moving even after a long distance has been driven.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0461 0461	Fuel level sensor circuit range/performance	The output signal of the fuel level sensor does not change within the specified range even though the vehicle has been driven a long distance.	Harness or connectors (The sensor circuit is open or shorted) Fuel level sensor

Overall Function Check

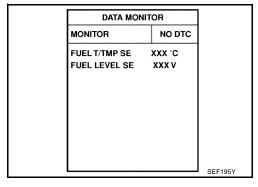
UBSOORDG

Use this procedure to check the overall function of the fuel level sensor function. During this check, a 1st trip DTC might not be confirmed.

WARNING:

When performing following procedure, be sure to observe the handling of the fuel. Refer to $\underline{\mathsf{FL-8}}$. "FUEL TANK".

TESTING CONDITION:


Before starting overall function check, preparation of draining fuel and refilling fuel is required.

(III) WITH CONSULT-II

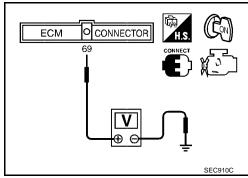
NOTE:

Start from step 11, if it is possible to confirm that the fuel cannot be drained by 30 $\,\ell$ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

- 1. Prepare a fuel container and a spare hose.
- Release fuel pressure from fuel line, refer to EC-670, "FUEL PRESSURE RELEASE".
- 3. Remove the fuel feed hose on the fuel level sensor unit.
- 4. Connect a spare fuel hose where the fuel feed hose was removed.
- 5. Turn ignition switch "OFF" and wait at least 10 seconds then turn "ON".
- 6. Select "FUEL LEVEL SE" in "DATA MONITOR" mode with CONSULT-II.
- Check "FUEL LEVEL SE" output voltage and note it.
- 8. Select "FUEL PUMP" in "ACTIVE TEST" mode with CONSULT-II.
- 9. Touch "ON" and drain fuel approximately 30 $\,\ell$ (7-7/8 US gal, 6-5/8 Imp gal) and stop it.
- 10. Fill fuel into the fuel tank for 30 $\,\ell\,$ (7-7/8 US gal, 6-5/8 lmp gal).
- 11. Check "FUEL LEVEL SE" output voltage and note it.
- 12. Check "FUEL LEVEL SE" output voltage and confirm whether the voltage changes more than 0.03V during step 7 to 11. If NG, check the fuel level sensor, refer to <u>FL-5</u>, "<u>FUEL LEVEL</u> SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

DTC P0461 FUEL LEVEL SENSOR

[VQ]


WITH GST

NOTE:

Start from step 8, if it is possible to confirm that the fuel cannot be drained by 30 $\,\ell$ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

- 1. Prepare a fuel container and a spare hose.
- 2. Release fuel pressure from fuel line, refer to EC-670, "FUEL PRESSURE RELEASE".
- Remove the fuel feed hose on the fuel level sensor unit.
- 4. Connect a spare fuel hose where the fuel feed hose was removed.
- 5. Turn ignition switch "OFF".
- 6. Set voltmeters probe between ECM terminal 69 (fuel level sensor signal) and ground.
- 7. Turn ignition switch "ON".
- 8. Check voltage between ECM terminal 69 and ground and note it.
- 9. Drain fuel by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) from the fuel tank using proper equipment.
- 10. Fill fuel into the fuel tank for 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- 11. Confirm that the voltage between ECM terminal 69 and ground changes more than 0.03V during step 8 10.

If NG, check component of fuel level sensor, refer to <u>FL-5.</u>
"FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

EC

Α

D

Е

F

G

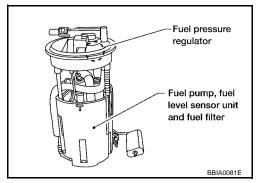
Н

,

L

M

UBS003DH


DTC P0462, P0463 FUEL LEVEL SENSOR

Component Description

PFP:25060

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the FCM

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnosis Logic

UBS003DI

ECM receives two signals from the fuel level sensor circuit.

One is fuel level sensor power supply circuit, and the other is fuel level sensor ground circuit.

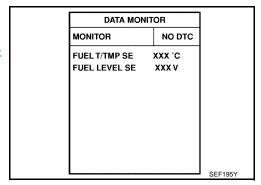
This diagnosis indicates the former, to detect open or short circuit malfunction.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0462 0462	Fuel level sensor circuit low input	An excessively low voltage is sent from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted)
P0463 0463	Fuel level sensor circuit high input	An excessively high voltage is sent from the sensor is sent to ECM.	Fuel level sensor

DTC Confirmation Procedure

UBS003DJ

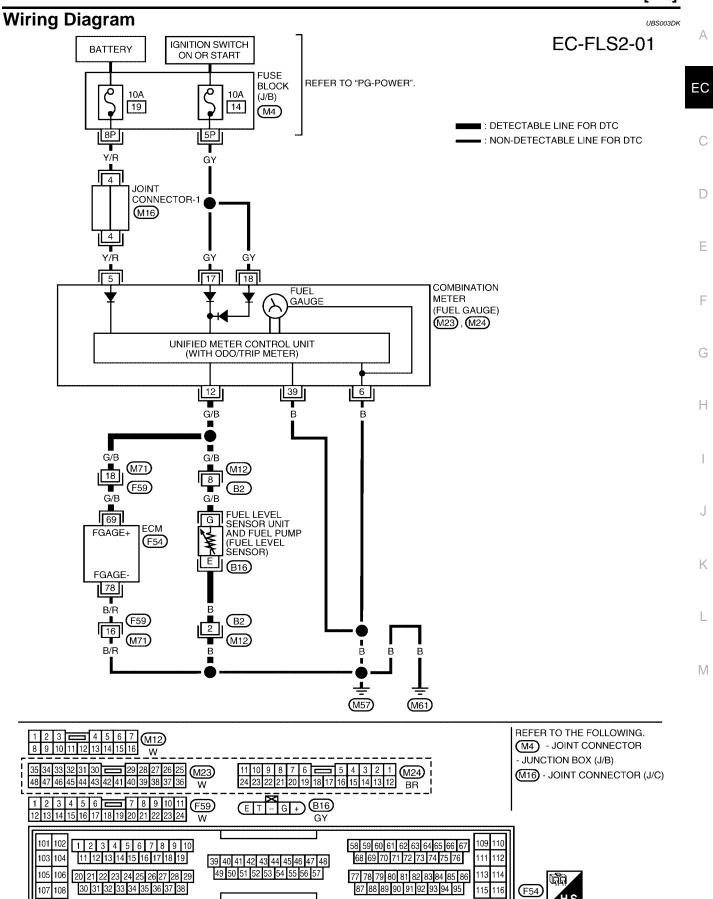
NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at ignition switch "ON".

(P) WITH CONSULT-II


- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-1022, "Diagnostic Procedure".

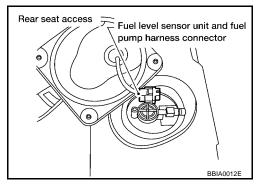
WITH GST

Follow the procedure "WITH CONSULT-II" above.

BBWA0072E

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

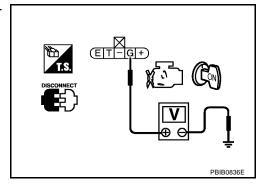

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
69	G/B	Fuel level sensor	[Ignition switch "ON"]	Approximately 0 - 4.8V Output voltage varies with fuel level.
78	B/R	Fuel level sensor ground	[Engine is running] • Idle speed	Approximately 0V

Diagnostic Procedure

UBS003DL

1. CHECK FUEL LEVEL SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- Disconnect fuel level sensor unit and fuel pump harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between fuel level sensor unit and fuel pump terminal G and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M12, B2
- Harness for open or short between combination meter and fuel level sensor until and fuel pump
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0462, P0463 FUEL LEVEL SENSOR

[VQ]

$3.\,$ check fuel level sensor ground circuit for open and short

1. Turn ignition switch "OFF".

2. Check harness continuity between fuel level sensor unit and fuel pump terminal E and body ground. Refer to Wiring Diagram.

EC

Continuity should exist.

3. Also check harness for short to power.

C

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

Harness connectors M12, B2

Е

- Harness for open or short between ECM and fuel level sensor until and fuel pump
 - >> Repair open circuit or short to power in harness or connectors.

G

$5.\,$ CHECK FUEL LEVEL SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 69 and fuel level sensor unit and fuel pump terminal G. Refer to Wiring Diagram.

.

Continuity should exist.

3. Also check harness for short to ground or short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

J

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M12, B2
- Harness connectors M71, F59
- Harness for open or short between ECM and fuel level sensor until and fuel pump

>> Repair open circuit or short to ground or short to power in harness or connectors.

M

7. CHECK FUEL LEVEL SENSOR

Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY" . OK or NG $\,$

OK >> GO TO 8.

NG >> Replace fuel level sensor unit.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0462, P0463 FUEL LEVEL SENSOR

[VQ]

Removal and Installation FUEL LEVEL SENSOR

UBS003DM

Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY" .

[VQ]

DTC P0500 VSSPFP:32702

Description

UBS003DN

NOTE:

If DTC P0500 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-761, "DTC U1000, U1001 CAN COMMUNICATION LINE".

The vehicle speed sensor is installed in the transaxle. It contains a pulse generator which provides a vehicle speed signal to the combination meter. The combination meter then sends a signal to the ECM through CAN communication line.

On Board Diagnosis Logic

UBS003DO

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
		The state of the company of the	Harness or connectors (The CAN communication line is open or shorted)
P0500 0500	Vehicle speed sensor	The almost 0 km/h (0 MPH) signal from vehicle speed sensor is sent to ECM even when vehicle is being driven.	 Harness or connectors (The vehicle speed sensor circuit is open or shorted)
			Vehicle speed sensor
			Combination meter

DTC Confirmation Procedure

UBS003DP

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Steps 1 and 2 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(P) WITH CONSULT-II

- 1. Start engine (TCS switch "OFF").
- Read "VHCL SPEED SE" in "DATA MONITOR" mode with CONSULT-II. The vehicle speed on CONSULT-II should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.

If NG, go to EC-1026, "Diagnostic Procedure".

- If OK, go to following step.
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- 4. Warm engine up to normal operating temperature.
- Maintain the following conditions for at least 60 consecutive seconds.

ENG SPEED	More than 1,700 rpm (A/T models) More than 1,800 rpm (M/T models)
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	More than 5.5 msec
Selector lever	Except "P" or "N" position
PW/ST SIGNAL	OFF

If 1st trip DTC is detected, go to <u>EC-1026</u>, "<u>Diagnostic Procedure</u>".

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm COOLAN TEMP/S XXX °C B/FUEL SCHDL XXX msec PW/ST SIGNAL OFF VHCL SPEED SE XXX km/h

Overall Function Check

UBS003DQ

Use this procedure to check the overall function of the vehicle speed sensor circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

Lift up drive wheels.

Revision: May 2004 **EC-1025** 2002 Altima

EC

Α

Е

.

Н

K

L

M

- 2. Start engine.
- Read vehicle speed sensor signal in "MODE 1" with GST.
 The vehicle speed sensor on GST should be able to exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.
- 4. If NG, go to EC-1026, "Diagnostic Procedure".

Diagnostic Procedure

UBS003DR

1. CHECK VEHICLE SPEED SENSOR CIRCUIT

Refer to DI-19, "Vehicle Speed System".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK COMBINATION METER

Check combination meter function.

Refer to DI-4, "COMBINATION METERS".

>> INSPECTION END

DTC P0506 ISC SYSTEM

[VQ]

DTC P0506 ISC SYSTEM

PFP:23781

Description

UBS003DS

EC

D

Е

M

NOTE:

If DTC P0506 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner, power steering and cooling fan operation, etc.).

On Board Diagnosis Logic

TUSUUS	

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0506 0506	Idle speed control system RPM lower than expected	The idle speed is less than the target idle speed by 100 rpm or more.	Electric throttle control actuator Intake air leak

DTC Confirmation Procedure

UBS003DU

NOTE

- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform "Idle Air Volume Learning", <u>EC-668</u>, before conducting "DTC Confirmation Procedure". For the target idle speed, refer to the "Service Data and Specifications (SDS)", <u>EC-1302</u>.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above −10°C (14°F).

(WITH CONSULT-II

- Open engine hood.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON" again and select "DATA MONITOR" | mode with CONSULT-II.
- Start engine and run it for at least 1 minute at idle speed.
- If 1st trip DTC is detected, go to <u>EC-1028, "Diagnostic Procedure"</u>.

DATA MONITOR		
MONITOR	NO DTC	
	XXX rpm XXX °C	
		SEF174Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P0506 ISC SYSTEM

[VQ]

UBS003DV

Diagnostic Procedure

1. CHECK INTAKE AIR LEAK

Start engine and let it idle.

2. Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 2.

NG >> Discover air leak location and repair.

2. REPLACE ECM

- 1. Stop engine.
- 2. Replace ECM.
- 3. Perform initialization of NATS system and registration of all NATS ignition key IDs. Refer to EC-<u>EC-688, "NVIS (Nissan Vehicle Immobilizer System NATS)"</u>
- 4. Perform EC-667, "Accelerator Pedal Released Position Learning".
- 5. Perform EC-668, "Throttle Valve Closed Position Learning".
- 6. Perform EC-668, "Idle Air Volume Learning".

>> INSPECTION END

DTC P0507 ISC SYSTEM

[VQ]

DTC P0507 ISC SYSTEM

PFP:23781

Description

UBS003DW

EC

D

F

K

M

NOTE:

If DTC P0507 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner, power steering and cooling fan operation, etc.).

On Board Diagnosis Logic

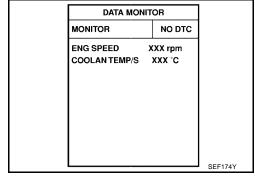
UBS003DX	(

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0507 0507	Idle speed control sys- tem RPM higher than expected	The idle speed is more than the target idle speed by 200 rpm or more.	Electric throttle control actuator Intake air leak PCV system

DTC Confirmation Procedure

UBS003DY

NOTE:


- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform "Idle Air Volume Learning", <u>EC-668</u>, before conducting "DTC Confirmation Procedure". For the target idle speed, refer to the "Service Data and Specifications (SDS)", <u>EC-1302</u>.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above –10°C (14°F).

(P) WITH CONSULT-II

- Open engine hood.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON" again and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 1 minute at idle speed.
- If 1st trip DTC is detected, go to <u>EC-1030, "Diagnostic Procedure"</u>.

WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P0507 ISC SYSTEM

[VQ]

Diagnostic Procedure

1. CHECK PCV HOSE CONNECTION

Confirm that PCV hose is connected correctly.

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK INTAKE AIR LEAK

- Start engine and let it idle.
- 2. Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 3.

NG >> Discover air leak location and repair.

3. REPLACE ECM

- 1. Stop engine.
- 2. Replace ECM.
- 3. Perform initialization of NATS system and registration of all NATS ignition key IDs. Refer to EC-<u>EC-688, "NVIS (Nissan Vehicle Immobilizer System NATS)"</u>
- 4. Perform EC-667, "Accelerator Pedal Released Position Learning".
- 5. Perform EC-668, "Throttle Valve Closed Position Learning".
- 6. Perform EC-668, "Idle Air Volume Learning".

>> INSPECTION END

DTC P0550 PSP SENSOR

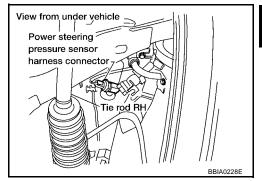
[VQ]

DTC P0550 PSP SENSOR

PFP:49763

Component Description

UBS003E0


EC

D

Е

Н

Power steering pressure (PSP) sensor is installed to the power steering high-pressure tube and detects a power steering load. This sensor is a potentiometer which transforms the power steering load into output voltage, and emits the voltage signal to the ECM. The ECM controls the electric throttle control actuator and adjusts the throttle valve opening angle to increase the engine speed and adjusts the idle speed for the increased load.

CONSULT-II Reference Value in Data Monitor Mode

UBS003F1

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
PW/ST SIGNAL		OFF	
	the engine	Steering wheel is turned.	ON

On Board Diagnosis Logic

UBS003E2

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0550 0550	Power steering pressure sensor circuit	An excessively low or high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted) Power steering pressure sensor

DTC Confirmation Procedure

UBS003E3

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

1. Turn ignition switch "ON".

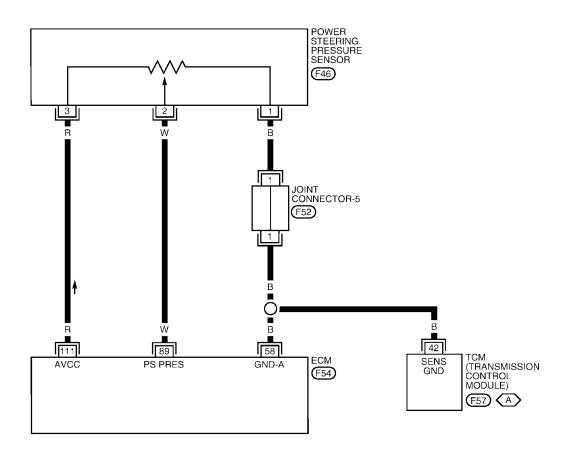
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 5 seconds.
- 4. If 1st trip DTC is detected, go to <u>EC-1033, "Diagnostic Procedure".</u>

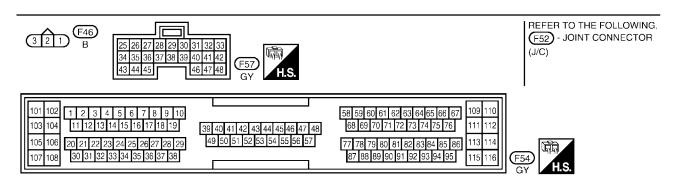
WITH GST

M

K

Follow the procedure "WITH CONSULT-II" above.


Wiring Diagram


UBS003F4

EC-PS/SEN-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

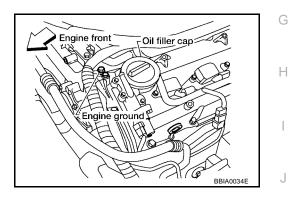
A: WITH A/T

BBWA0562E

[VQ]

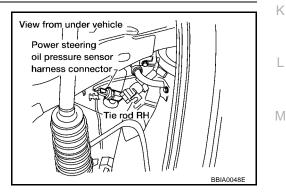
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


				· · · · · · · · · · · · · · · · · · ·	
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
58	В	Sensors' ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	С
89	W	Power steering pressure	[Engine is running]Steering wheel is being turned.	0.5 - 4.0V	D
09	VV	sensor	[Engine is running]Steering wheel is not being turned.	0.4 - 0.8V	_
111	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V	E

Diagnostic Procedure

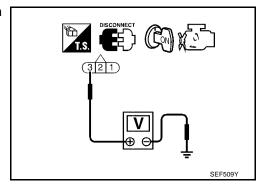
1. RETIGHTEN GROUND SCREWS


- Turn ignition switch "OFF".
- Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK PSP SENSOR POWER SUPPLY CIRCUIT

- Disconnect PSP sensor harness connector.
- 2. Turn ignition switch "ON".


3. Check voltage between PSP sensor terminal 3 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repair harness or connectors.

3. CHECK PSP SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between PSP sensor terminal 1 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-5
- Harness for open or short between power steering pressure sensor and ECM
- Harness for open or short between power steering pressure sensor and TCM
 - >> Repair open circuit or short to power in harness or connectors.

5. CHECK PSP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 89 and PSP sensor terminal 2.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK PSP SENSOR

Refer to EC-1034, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace PSP sensor.

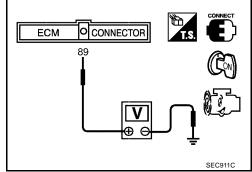
7. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection POWER STEERING PRESSURE SENSOR

UBS003E


- 1. Reconnect all harness connectors disconnected.
- 2. Start engine and let it idle.

DTC P0550 PSP SENSOR

[VQ]

3. Check voltage between ECM terminal 89 and ground under the following conditions.

Condition	Voltage
Steering wheel is being turned fully.	Approximately 3.6V
Steering wheel is not being turned.	Approximately 0.6V

Α

EC

С

D

Е

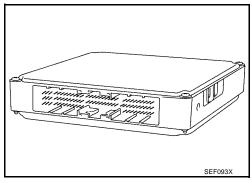
F

Η

Κ

i

 \mathbb{N}


[VQ]

DTC P0605 ECM PFP:23710

Component Description

UBS003E7

The ECM consists of a microcomputer and connectors for signal input and output and for power supply. The ECM controls the engine.

On Board Diagnosis Logic

UBS003E8

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
D000#		A)	ECM calculation function is malfunctioning.	
P0605 0605	Engine control module	B)	ECM EEP-ROM system is malfunctioning.	• ECM
		C)	ECM self shut-off function is malfunctioning.	

FAIL-SAFE MODE

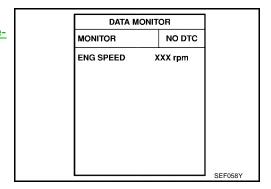
ECM enters in fail-safe mode when the malfunction A is detected.

Detected items	Engine operation condition in fail-safe mode
Malfunction A	 ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring. ECM deactivates ASCD operation.

DTC Confirmation Procedure

UBS003E9

Perform "PROCEDURE FOR MALFUNCTION A" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B". If there is no problem on "PROCEDURE FOR MALFUNCTION B", perform "PROCEDURE FOR MALFUNCTION C".


NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. If 1st trip DTC is detected, go to $\underline{\text{EC-1037}}$, "Diagnostic Procedure".

With GST

Follow the procedure "With CONSULT-II" above.

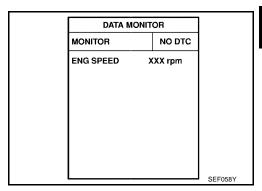
[VQ]

Α

EC

Е

K

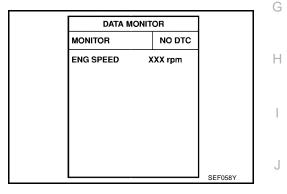

M

UBS003EA

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II

- 1. Turn ignition switch "ON" and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Turn ignition switch "OFF", wait at least 10 seconds, and then turn "ON".
- 4. If 1st trip DTC is detected, go to EC-1037, "Diagnostic Procedure".


With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION C

(III) With CONSULT-II

- 1. Turn ignition switch "ON" and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Turn ignition switch "OFF", wait at least 10 seconds, and then turn "ON".
- 4. Repeat step 3 procedure, 32 times.
- 5. If 1st trip DTC is detected, go to EC-1037, "Diagnostic Procedure".

₩ith GST

Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure

1. INSPECTION START

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "SELF DIAG RESULTS" mode with CONSULT-II.
- 3. Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure".

See EC-1036.

5. Is the 1st trip DTC P0605 displayed again?

With GST

- 1. Turn ignition switch "ON".
- 2. Select MODE 4 with GST.
- 3. Touch "ERASE".
- 4. **Perform "DTC Confirmation Procedure".** See <u>EC-1036</u>.
- 5. Is the 1st trip DTC P0605 displayed again?

Yes or No

Yes >> GO TO 2.

No >> INSPECTION END

Revision: May 2004 EC-1037 2002 Altima

$\overline{2}$. REPLACE ECM

- 1. Replace ECM.
- 2. Perform initialization of NATS system and registration of all NATS ignition key IDs. Refer to EC-<u>EC-688, "NVIS (Nissan Vehicle Immobilizer System NATS)"</u>.
- 3. Perform EC-667, "Accelerator Pedal Released Position Learning".
- 4. Perform EC-668, "Throttle Valve Closed Position Learning".
- 5. Perform EC-668, "Idle Air Volume Learning".

>> INSPECTION END

DTC P0650 MIL

[VQ]

DTC P0650 MIL

PFP:24810

Component Description

Malfunction Indicator Lamp (MIL) is located on the instrument panel. When the ignition switch is turned ON without engine running, MIL will light up. This is a bulb check. When the engine is started, MIL should go off. If MIL remains on, the on board diagnostic system has detected an engine system malfunction.

Е

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0650 0650	Malfunction indicator lamp (MIL) control circuit	 An excessively high voltage is sent to ECM through the MIL circuit under the condition that calls for MIL light up. An excessively low voltage is sent to ECM through the MIL circuit under the condition that calls for MIL not to light up. 	Harness or connectors (MIL circuit is open or shorted.) MIL

D

FAIL-SAFE MODE

ECM enters in fail-safe mode when both DTC P0650 and another DTC, which calls for MIL to light up, are detected at the same time.

Detected items	Engine operating condition in fail-safe mode
MIL circuit	Engine speed will not rise more than 2,500 rpm due to the fuel cut

DTC Confirmation Procedure

UBS003ED

NOTE:

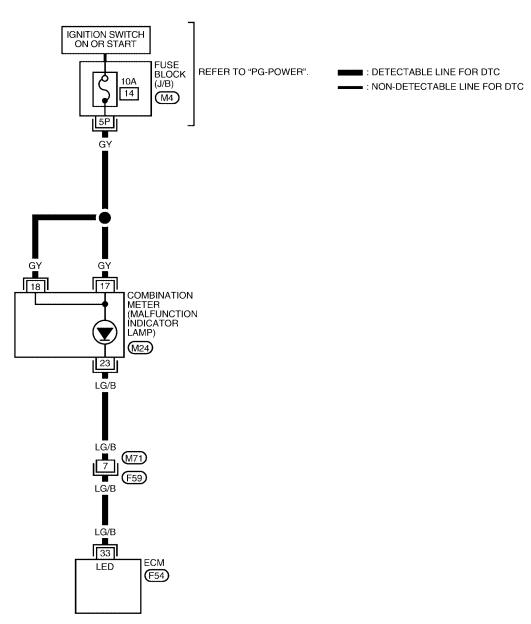
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

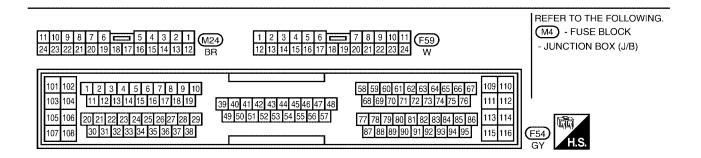
WITH CONSULT-II

- 1. Turn ignition switch "ON" and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and let it idle for 1 second.
- If 1st trip DTC is detected, go to EC-1041, "Diagnostic Procedure".

NO DTC	
NODIC	
XXX rpm	
	XXX rpm

M


WITH GST


Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram

UBS003FF

EC-MIL-01

BBWA0075E

[VQ]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
33	LG/B	MIL	[Ignition switch "ON"]	0 - 1.0V
			[Engine is running]	BATTERY VOLTAGE
			Idle speed	(11 - 14V)

UBS003EF

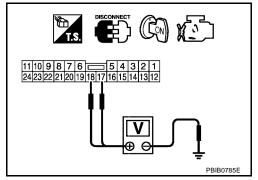
EC

Е

Н

M

Diagnostic Procedure


1. CHECK MIL POWER SUPPLY

- 1. Turn ignition switch "OFF".
- 2. Disconnect combination meter harness connector.
- 3. Turn ignition switch "ON".
- 4. Check voltage between combination meter terminals17, 18 and ground with CONSULT-II or tester

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector M4
- 10A fuse
- Harness for open or short between fuse block (J/B) and combination meter
 - >> Repair harness or connectors.

3. CHECK MIL OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 33 and combination meter terminal 23. Refer to Wiring Diagram.

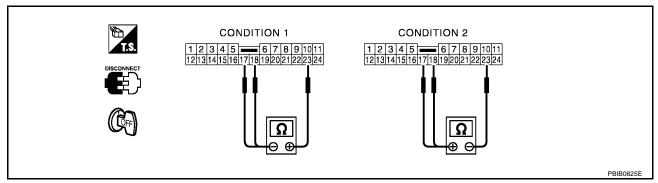
Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART


Check the following.

- Harness connectors F59, M71
- Harness for open or short between ECM and combination meter
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK COMBINATION METER

- 1. Turn ignition switch "OFF".
- 2. Disconnect combination meter harness connector.
- 3. Check continuity under the following conditions.

CONDITION	Combination meter terminal No. (Polarity)	Continuity	
1	23 (+) - 17 (-) Should exist.		
ı	23 (+) - 18 (–)	onould exist.	
2	17 (+) - 23 (–)	- Should not exist.	
2	18 (+) - 23 (–)		

OK or NG

OK >> GO TO 6.

NG >> Replace combination meter. Refer to <u>DI-21, "Removal and Installation"</u>.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P1065 ECM POWER SUPPLY

[VQ]

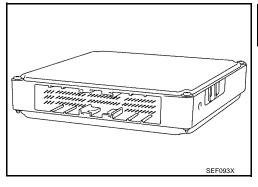
DTC P1065 ECM POWER SUPPLY

PFP:23710

Component Description

UBS003EG

Α


EC

Е

Н

M

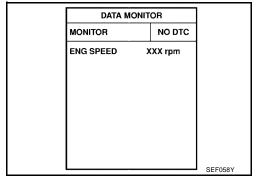
Battery voltage is supplied to the ECM even when the ignition switch is turned OFF for the ECM memory function of the DTC memory, the air fuel ratio feedback compensation value memory, the idle air volume learning value memory, etc.

On Board Diagnosis Logic

UBS003EH

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1065 1065	ECM power supply circuit	ECM back up RAM system does not function properly.	 Harness or connectors [ECM power supply (back-up) circuit is open or shorted.] ECM

DTC Confirmation Procedure


UBS003EI

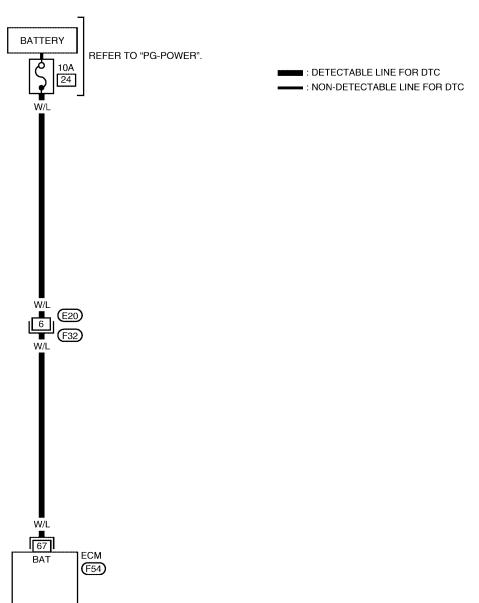
NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

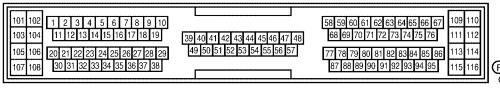
(P) WITH CONSULT-II

- 1. Turn ignition switch "ON" and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. Turn ignition switch "OFF", wait at least 10 seconds, and then turn "ON".
- 5. Repeat steps 3 and 4 four times.
- 6. If 1st trip DTC is detected, go to EC-1045, "Diagnostic Procedure".

WITH GST


Follow the procedure "WITH CONSULT-II" above.

2002 Altima


Wiring Diagram

JBS003EJ

EC-ECM/PW-01

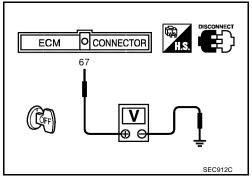
BBWA0076E

DTC P1065 ECM POWER SUPPLY

[VQ]

UBS003EK

Diagnostic Procedure


1. CHECK ECM POWER SUPPLY

- Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check voltage between ECM terminal 67 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E20, F32
- 10A fuse
- Harness for open or short between ECM and battery
 - >> Repair or replace harness or connectors.

3. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> GO TO 4.

NG >> Repair or replace harness or connectors.

4. PERFORM DTC CONFIRMATION PROCEDURE

(P) With CONSULT-II

- Turn ignition switch "ON".
- Select "SELF DIAG RESULTS" mode with CONSULT-II.
- 3. Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure".

See EC-1043.

5. Is the 1st trip DTC P1065 displayed again?

With GST

- 1. Turn ignition switch "ON".
- Select MODE 4 with GST.
- 3. Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure". See EC-1043.
- 5. Is the 1st trip DTC P1065 displayed again?

Yes or No

Yes >> GO TO 5.

Revision: May 2004

>> INSPECTION END No

EC

Α

D

Е

Н

K

DTC P1065 ECM POWER SUPPLY

[VQ]

5. REPLACE ECM

- 1. Replace ECM.
- 2. Perform initialization of NATS system and registration of all NATS ignition key IDs. Refer to EC- <u>EC-688</u>, "NVIS (Nissan Vehicle Immobilizer System NATS)".
- 3. Perform EC-667, "Accelerator Pedal Released Position Learning".
- 4. Perform EC-668, "Throttle Valve Closed Position Learning".
- 5. Perform EC-668, "Idle Air Volume Learning".

>> INSPECTION END

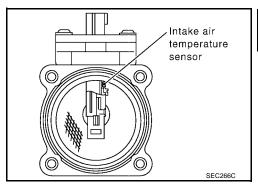
[VQ]

DTC P1102 MAF SENSOR

PFP:22680

Component Description

UBS003EL


EC

Е

Н

M

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the greater the heat loss. Therefore, the ECM must supply more electric current to maintain the temperature of the hot film as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

UBS003EM

Specification data are reference values.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

MONITOR ITEM	C	ONDITION	SPECIFICATION
	Engine: After warming up	Idle	Approx. 1.0 - 1.5V
MAS A/F SE-B1	Air conditioner switch: OFFShift lever: NNo-load	2,500 rpm	Approx. 1.7 - 2.4V
	Engine: After warming up	Idle	10% - 35%
CAL/LD VALUE	Shift lever: NAir conditioner switch: OFFNo-load	2,500 rpm	10% - 35%
	Engine: After warming up	Idle	2.0 - 6.0 g·m/s
MASS AIRFLOW	Shift lever: NAir conditioner switch: OFFNo-load	2,500 rpm	7.0 - 20.0 g⋅m/s

On Board Diagnosis Logic

UBS003EN

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1102 1102	Mass air flow sensor circuit range/performance problem	A voltage from the sensor is constantly approx.1.0V when engine is running.	 Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters in fail-safe mode and the MIL lights up.

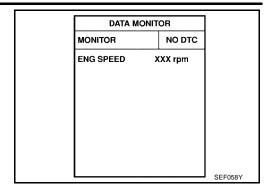
Detected items	Engine operating condition in fail-safe mode
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.

DTC Confirmation Procedure

UBS003EO

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

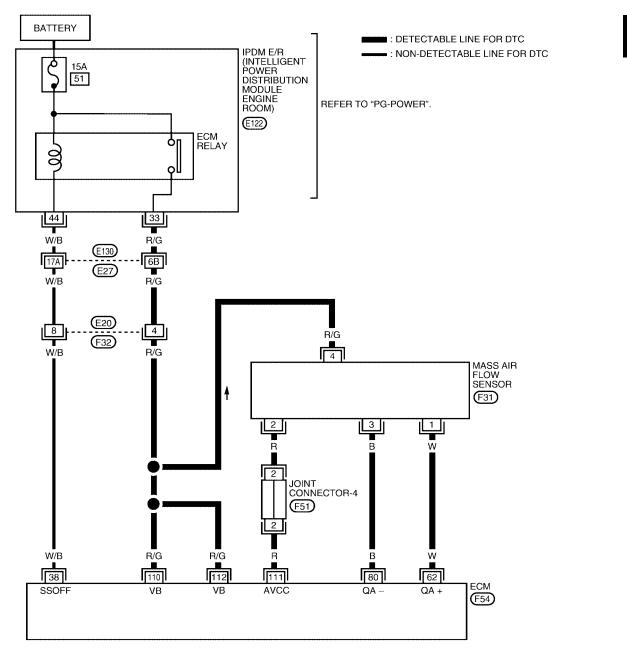

(P) WITH CONSULT-II

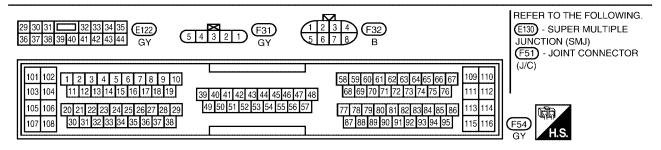
1. Turn ignition switch "ON".

DTC P1102 MAF SENSOR

[VQ]

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait 5 seconds at most.
- 4. If DTC is detected, go to EC-1050, "Diagnostic Procedure".




WITH GST

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram

EC-MAFS-01

BBWA0050E

Α

EC

С

D

Е

F

G

Н

K

L

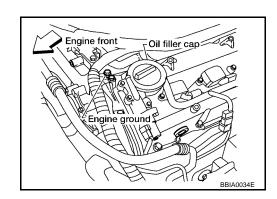
M

IV

CAUTION:

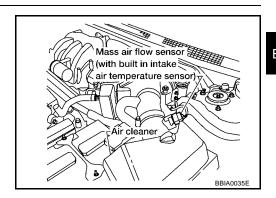
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
38	8 W/B ECM relay (Self shut-off)		[Engine is running] [Ignition switch "OFF"] ● For a few seconds after turning ignition switch "OFF"	0 - 1.5V
		(Sell Silut-Oil)	[Ignition switch "OFF"] • a few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
62	w	Mass air flow sensor	[Engine is running] • Warm-up condition • Idle speed [Engine is running] • Warm-up condition	1.1 - 1.5V 1.7 - 2.4V
80	В	Mass air flow sensor	Engine speed is 2,500 rpm. [Engine is running] Warm-up condition	Approximately 0V
111	R	ground Sensors' power supply	• Idle speed [Ignition switch "ON"]	Approximately 5V
110 112	R/G R/G	Power supply for ECM	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

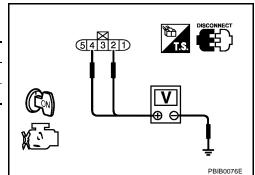

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

UBS003EQ


- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.


2. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect MAF sensor harness connector.
- 2. Turn ignition switch "ON".

Check voltage between MAF sensor terminals 2, 4 and ground with CONSULT-II or tester.

Terminal	Voltage
2	Approximately 5V
4	Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. detect malfunctioning part

Check the following.

- Harness connector E130, E27
- Harness connectors E20, F32
- Joint connector-4
- Harness for open or short between mass air flow sensor and IPDM E/R
- Harness for open or short between mass air flow sensor and ECM

>> Repair harness or connectors.

4. CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Disconnect ECM harness connector.
- Check harness continuity between MAF sensor terminal 3 and ECM terminal 80. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

Revision: May 2004 EC-1051 2002 Altima

EC

Α

D

Е

F

G

Н

K

5. CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between MAF sensor terminal 1 and ECM terminal 62. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK MASS AIR FLOW SENSOR

Refer to EC-1052, "Component Inspection".

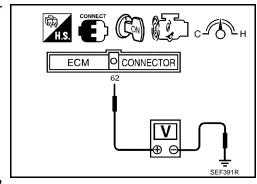
OK or NG

OK >> GO TO 7.

NG >> Replace mass air flow sensor.

7. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection MASS AIR FLOW SENSOR

UBS003ER

- 1. Reconnect harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- Check voltage between ECM terminal 62 (Mass air flow sensor signal) and ground.

Condition	Voltage V
Ignition switch "ON" (Engine stopped.)	Approx. 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.1 - 1.5
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.7 - 2.4
Idle to about 4,000 rpm*	1.1 - 1.5 to Approx. 4.0

- *: Check for liner voltage rise in response to engine being increased to about 4,000 rpm.
- 4. If the voltage is out of specification, proceed the following.
 - Turn ignition switch "OFF".
 - Disconnect mass air flow sensor harness connector and reconnect it again.
 - Perform steps 2 and 3 again.
- 5. If NG, remove mass air flow sensor from air duct. Check hot film for damage or dust.
- If NG, clean or replace mass air flow sensor.

Removal and Installation MASS AIR FLOW SENSOR

UBS003ES

Refer to EM-112, "AIR CLEANER AND AIR DUCT" .

DTC P1121 ELECTRIC THROTTLE CONTROL ACTUATOR

[VQ]

DTC P1121 ELECTRIC THROTTLE CONTROL ACTUATOR

PFP:16119

Component Description

UBS003ET

Α

EC

D

Е

Н

M

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The throttle position sensor detects the throttle valve position, and the opening and closing speed of the throttle valve and feeds the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

UBS003EU

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
		A)	Electric throttle control actuator does not function properly due to the return spring malfunction.	
P1121 1121	Electric throttle control actuator	B)	Throttle valve opening angle in fail-safe mode is not in specified range.	Electric throttle control actuator
		C)	ECM detect the throttle valve is stuck open. This self-diagnosis has the one trip detection logic.	

FAIL-SAFE MODE

When the malfunction A or B is detected, ECM enters in fail-safe mode. When the malfunction C is detected, ECM enters in fail-safe mode and the MIL lights up.

Detected items Engine operating condition in fail-safe mode The ECM controls the electric throttle actuator by regulating the throttle opening around the idle The engine speed will not rise more than 2,000 rpm.	
Malfunction C	While the vehicle is driving, it slows down gradually by fuel cut. After the vehicle stops, the engine stalls. The engine can restart in "N" or "P" position, and engine speed will not exceed 1,000 rpm or more.

DTC Confirmation Procedure

UBS003EV

NOTE:

- Perform "PROCEDURE FOR MALFUNCTION A AND B" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION C".
 If there is no problem on "PROCEDURE FOR MALFUNCTION A AND B", perform "PROCEDURE FOR MALFUNCTION C".
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

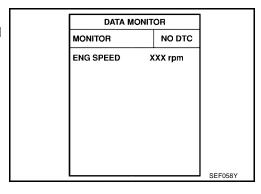
PROCEDURE FOR MALFUNCTION A AND B

(P) With CONSULT-II

- 1. Turn ignition witch "ON" and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- Shift selector lever to "D" position (A/T), "1st" position (M/T) and wait at least 2 seconds.
- Turn ignition switch "OFF", wait at least 10 seconds, and then turn "ON".
- If 1st trip DTC is detected, go to <u>EC-1054</u>, "<u>Diagnostic Procedure</u>".

	DATA M	ONITOR	
	MONITOR	NO DTC	
	ENG SPEED	XXX rpm	
			SEF058Y

[VQ]


With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION C

(With CONSULT-II

- 1. Turn ignition switch "ON" and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Shift selector lever to "D" position (A/T), "1st" position (M/T) and wait at least 2 seconds.
- 4. Shift selector lever to "N" or "P" position.
- 5. Start engine and let it idle for 3 seconds.
- 6. If DTC is detected, go to EC-1054, "Diagnostic Procedure".

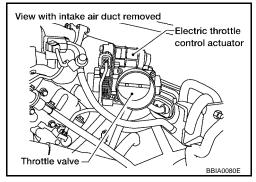
With GST

Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure

UBS003EW

1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY


- 1. Remove the intake air duct.
- 2. Check if a foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG

>> Remove the foreign matter and clean the electric throttle control actuator inside.

2. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-668, "Throttle Valve Closed Position Learning".
- 3. Perform EC-668, "Idle Air Volume Learning".

>> INSPECTION END

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

[VQ]

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

PFP:16119

Description

UBS003EX

EC

NOTE:

If DTC P1122 is displayed with DTC P1121 or 1126, first perform the trouble diagnosis for DTC P1121 or P1126. Refer to $\frac{EC-1053}{C}$ or $\frac{EC-1062}{C}$.

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feedback to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

UBS003EY

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1122 1122	Electric throttle control performance problem	Electric throttle control function does not operate properly.	 Harness or connectors (Throttle control motor circuit is open or shorted) Electric throttle control actuator

FAIL-SAFE MODE

G

M

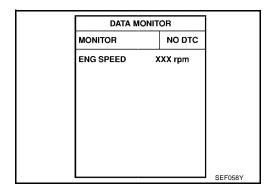
Е

When the malfunction is detected, ECM enters in fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

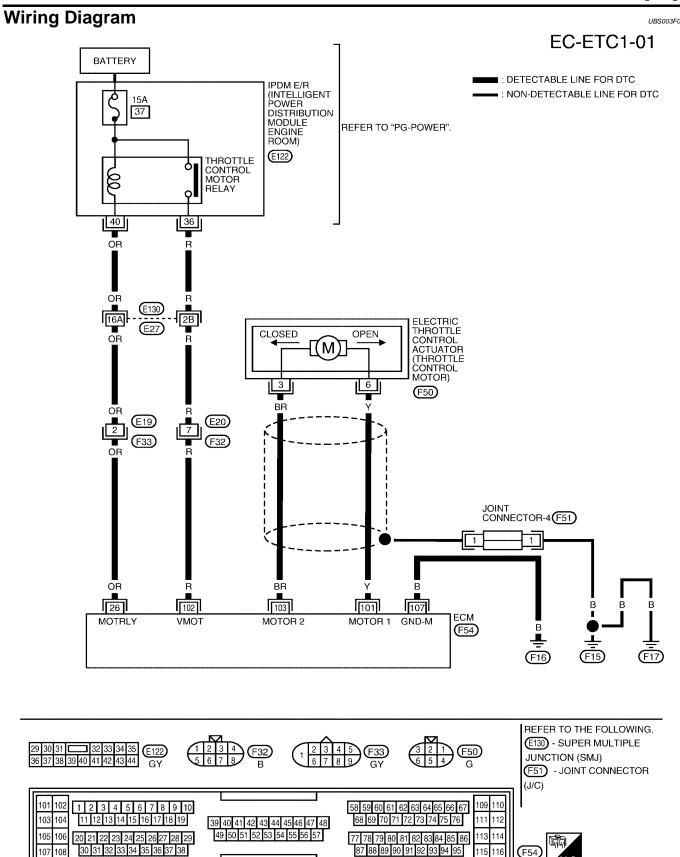
DTC Confirmation Procedure


JBS003EZ

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II


- 1. Turn ignition switch "ON" and wait at least 2 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and let it idle for 5 seconds.
- 4. If DTC is detected, go to EC-1057, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

[VQ]

BBWA0095E

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

[VQ]

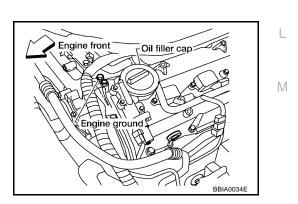
UBS003F1

K

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
26	OR	Throttle control motor relay	[Ignition switch "OFF"]	BATTERY VOLTAGE (11 - 14V)	С
		Tolay	[Ignition switch "ON"]	0 - 1.0V	
101	Y	Throttle control motor (Open)	[Ignition switch "ON"] • Shift lever position is "D" (A/T model) • Shift lever position is "1st" (M/T model) • Accelerator pedal is depressing	0 - 14V★	D E
102	R	Throttle control motor relay power supply	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)	F
103	BR	Throttle control motor (Close)	[Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal is releasing	0 - 14V★	G H
107	В	Throttle control motor ground	[Engine is running] • Idle speed	Approximately 0V	I


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

Revision: May 2004 **EC-1057** 2002 Altima

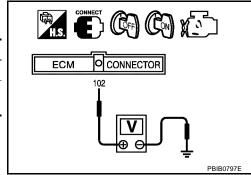
$2.\,$ check throttle control motor ground circuit for open and short

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 107 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG


OK >> GO TO 3.

NG >> Repair open circuit or short to power in harness or connectors.

3. CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-I

- 1. Reconnect harness connectors disconnected.
- Check voltage between ECM terminal 102 and ground under the following conditions with CONSULT-II or tester.

Ignition switch	Voltage
OFF	Approximately 0V
ON	Battery voltage (11 - 14V)

OK or NG

OK >> GO TO 11. NG >> GO TO 4.

4. CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-II

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Disconnect IPDM E/R harness connector E122.
- Check continuity between ECM terminal 102 and IPDM E/R terminal 36. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

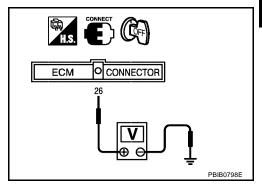
5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- Harness for open or short between ECM and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

[VQ]


6. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-I

- 1. Reconnect all harness connectors disconnected.
- 2. Turn ignition switch "OFF".
- Check voltage between ECM terminal 26 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10. NG >> GO TO 7.

7. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-II

- 1. Disconnect ECM harness connector.
- Disconnect IPDM E/R harness connector E122.
- 3. Check continuity between ECM terminal 26 and IPDM E/R terminal 40. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E19, F33
- Harness for open or short between ECM and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK FUSE

- Disconnect 15A fuse.
- 2. Check 15A fuse for blown.

OK or NG

>> GO TO 10. OK

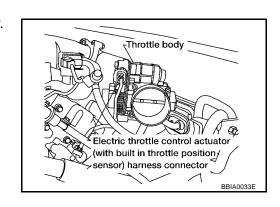
NG >> Replace 15A fuse.

10. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> Replace IPDM E/R. Refer to PG-14, "IPDM E/R (INTELLIGENT POWER DISTRIBUTION MOD-ULE ENGINE ROOM)".


NG >> Repair or replace harness or connectors. EC

Е

11. CHECK THROTTLE CONTROL MOTOR OUTPUT SIGNAL CIRCUIT FOR OPEN OR SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect electric throttle control actuator harness connector.
- Disconnect ECM harness connector.
- 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

Electric throttle control actuator terminal	ECM terminal	Continuity
3	101	Should not exist
3	103	Should exist
6	101	Should exist
б	103	Should not exist

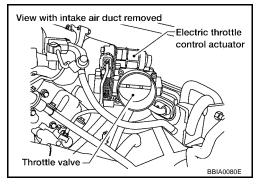
5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 12.

NG >> Repair or replace.

12. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY


- 1. Remove the intake air duct.
- 2. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 13.

NG

>> Remove the foreign matter and clean the electric throttle control actuator inside.

13. CHECK THROTTLE CONTROL MOTOR

Refer to EC-1061, "Component Inspection".

OK or NG

OK >> GO TO 14.

NG >> GO TO 15.

14. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> GO TO 15.

NG >> Repair or replace harness or connectors.

15. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-668, "Throttle Valve Closed Position Learning".
- 3. Perform EC-668, "Idle Air Volume Learning".

>> INSPECTION END

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

[VQ]

Component Inspection THROTTLE CONTROL MOTOR

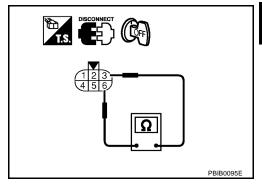
UBS003F2

Α

EC

C

D


Е

F

- Disconnect electric throttle control actuator harness connector.
- 2. Check resistance between terminals 3 and 6.

Resistance: Approximately 1 - 15 Ω [at 25 °C (77°F)]

- 3. If NG, replace electric throttle control actuator and go to next step.
- 4. Perform EC-668, "Throttle Valve Closed Position Learning".
- 5. Perform EC-668, "Idle Air Volume Learning".

UBS003F3

Remove and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-114, "INTAKE MANIFOLD".

G

Н

ì

[VQ]

DTC P1124, P1126 THROTTLE CONTROL MOTOR RELAY

PFP:16119

Component Description

UBS003F4

Power supply for the throttle control motor is provided to the ECM via throttle control motor relay. The throttle control motor relay is ON/OFF controlled by the ECM. When the ignition switch is turned ON, the ECM sends an ON signal to throttle control motor relay and battery voltage is provided to the ECM. When the ignition switch is turned OFF, the ECM sends an OFF signal to throttle control motor relay and battery voltage is not provided to the ECM.

CONSULT-II Reference Value in Data Monitor Mode

UBS003F5

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
THRTL RELAY	• Ignition switch: ON	ON

On Board Diagnosis Logic

UBS003F6

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1124 1124	Throttle control motor relay circuit short	ECM detect the throttle control motor relay is stuck ON.	 Harness or connectors (Throttle control motor relay circuit is shorted) Throttle control motor relay
P1126 1126	Throttle control motor relay circuit open	ECM detects a voltage of power source for throttle control motor is excessively low. This self-diagnosis has the one trip detection logic.	Harness or connectors (Throttle control motor relay circuit is open) Throttle control motor relay

FAIL-SAFE MODE

When the malfunction is detected, ECM enters in fail-safe mode (for DTC P1124). When the malfunction is detected, ECM enters in fail-safe mode and the MIL lights up (for DTC P1126).

Engine operating condition in fail-safe mode

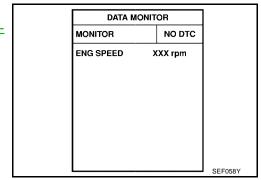
ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

UBS003F7

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.


PROCEDURE FOR DTC P1124

TESTING CONDITION:

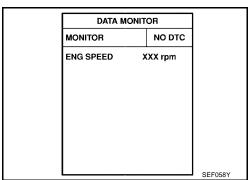
Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) With CONSULT-II

- 1. Turn ignition switch "ON" and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. If 1st trip DTC is detected, go to EC-1065, "Diagnostic Procedure".

DTC P1124, P1126 THROTTLE CONTROL MOTOR RELAY

[VQ]


With GST

Follow the procedure "With CONSULT-II" above.

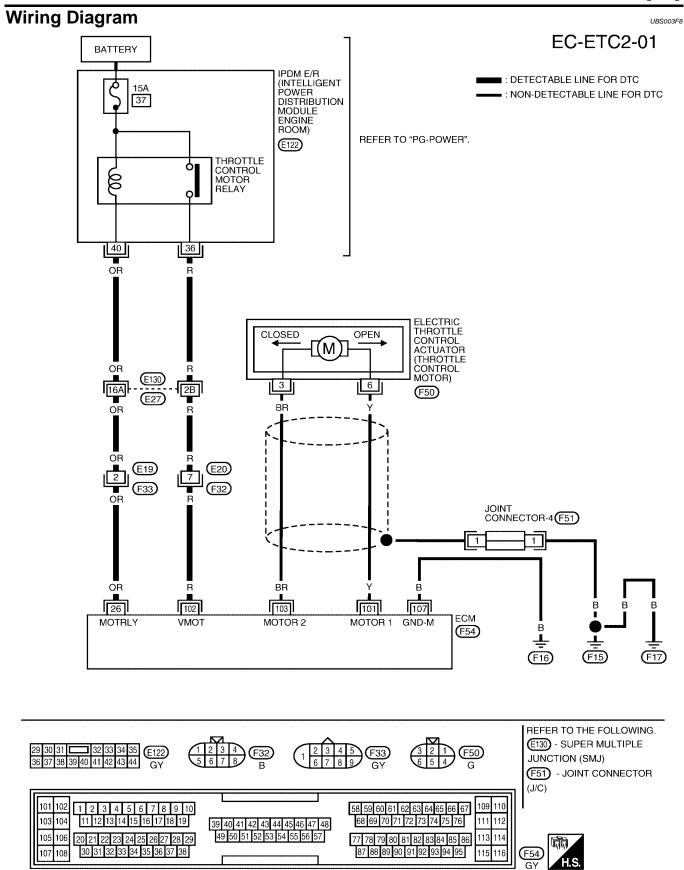
PROCEDURE FOR DTC P1126

(P) With CONSULT-II

- 1. Turn ignition switch "ON" and wait at least 2 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 5 seconds.
- 4. If DTC is detected, go to EC-1065, "Diagnostic Procedure".

With GST

Follow the procedure "With CONSULT-II" above.


EC

Α

D Е

F

Н

BBWA0096E

DTC P1124, P1126 THROTTLE CONTROL MOTOR RELAY

[VQ]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

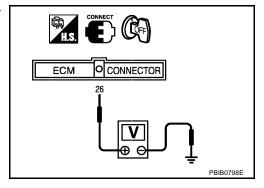
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
26	OR	Throttle control motor relay	[Ignition switch "OFF"]	BATTERY VOLTAGE (11 - 14V)	С
		Telay	[Ignition switch "ON"]	0 - 1.0V	
102	R	Throttle control motor relay power supply	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)	D

Diagnostic Procedure

UBS003F9

Е

Н


1. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch "OFF".
- 2. Check voltage between ECM terminal 26 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 2.

2. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-II

- 1. Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector E122.
- Check continuity between ECM terminal 26 and IPDM E/R terminal 40. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

M

3. DETECT MALFUNCTIONING PART

Check the following.

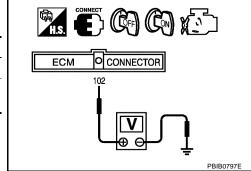
- Harness connectors E130, E27
- Harness connectors E19, F33
- Harness for open or short between ECM and IPDM E/R

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK FUSE

- 1. Disconnect 15A fuse.
- 2. Check 15A fuse for blown.

OK or NG


OK >> GO TO 8.

NG >> Replace 15A fuse.

5. CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-I

- Reconnect all harness connectors disconnected.
- Check voltage between ECM terminal 102 and ground under the following conditions with CONSULT-II or tester.

Ignition switch	Voltage
OFF	Approximately 0V
ON	Battery voltage (11 - 14V)

OK or NG

OK >> GO TO 8. NG >> GO TO 6.

6. CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-II

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Disconnect IPDM E/R harness connector E122.
- Check continuity between ECM terminal 102 and IPDM E/R terminal 36. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- Harness for open or short between ECM and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK INTERMITTENT INCIDENT

Refer to $\underline{\text{EC-754}}$, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> Replace IPDM E/R. Refer to PG-14, "IPDM E/R (INTELLIGENT POWER DISTRIBUTION MOD-ULE ENGINE ROOM)" .

NG >> Repair or replace harness or connectors.

DTC P1128 THROTTLE CONTROL MOTOR

[VQ]

DTC P1128 THROTTLE CONTROL MOTOR

PFP:16119

Component Description

UBS003FA

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feedback to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

EC

D

Е

Н

On Board Diagnosis Logic

UBS003FB

This self-diagnosis has the one trip detection logic.

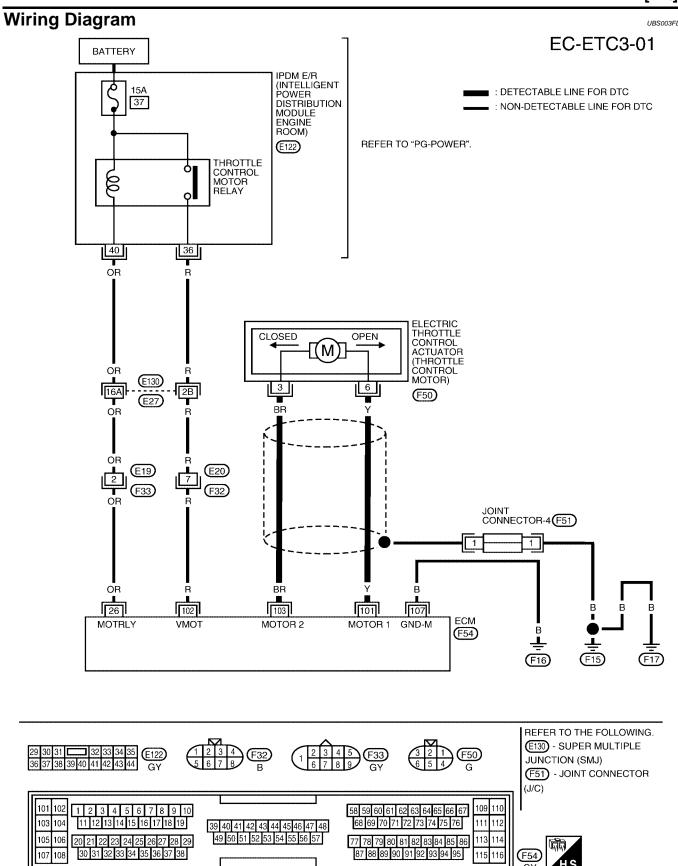
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1128 1128	Throttle control motor circuit short	ECM detects short both circuits between ECM and throttle control motor.	 Harness or connectors (Throttle control motor circuit is shorted.) Electric throttle control actuator (Throttle control motor)

DTC Confirmation Procedure

LIBS003EC

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.


(III) WITH CONSULT-II

- Turn ignition switch "ON" and wait at least 2 seconds.
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and let it idle for 5 seconds. 3.
- If DTC is detected, go to EC-1069, "Diagnostic Procedure".

DATA M	ONITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm

WITH GST

Follow the procedure "WITH CONSULT-II" above.

BBWA0097E

DTC P1128 THROTTLE CONTROL MOTOR

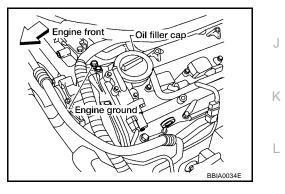
[VQ]

LIBS003EE

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

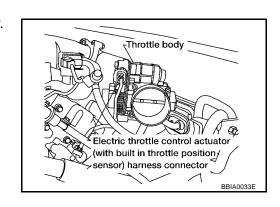
TER-MINAL COL	I II⊢M	[Ignition switch "ON"] Shift lever position is "D" (A/T model)	DATA (DC Voltage) 0 - 14V★	EC C
101 Y		• Shift lever position is "D" (A/T model)	0 - 14V★ ////////////////////////////////////	С
		 Shift lever position is "1st" (M/T model) Accelerator pedal is depressing 	■ 5.0 V/Div 200 us/Div r	D
			0 - 14V★	Е
103 BR	Throttle control motor (Close)	 [Ignition switch "ON"] Shift lever position is "D" (A/T model) Shift lever position is "1st" (M/T model) Accelerator pedal is releasing 	** 5.0 V/D _W 200 us/DW SEC038D	F


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.


>> GO TO 2.

2. CHECK THROTTLE CONTROL MOTOR OUTPUT SIGNAL CIRCUIT FOR OPEN OR SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect electric throttle control actuator harness connector.
- Disconnect ECM harness connector.
- 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

Electric throttle control actuator terminal	ECM terminal	Continuity
3	101	Should not exist
3	103	Should exist
6	101	Should exist
	103	Should not exist

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK THROTTLE CONTROL MOTOR

Refer to EC-1070, "Component Inspection".

OK or NG

OK >> GO TO 4. NG >> GO TO 5.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

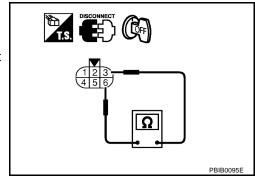
OK >> GO TO 5.

NG >> Repair or replace harness or connectors.

5. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-668, "Throttle Valve Closed Position Learning".
- 3. Perform EC-668, "Idle Air Volume Learning".

>> INSPECTION END


Component Inspection THROTTLE CONTROL MOTOR

UBS003FF

- 1. Disconnect electric throttle control actuator harness connector.
- Check resistance between terminals 3 and 6.

Resistance: Approximately 1 - 15 Ω [at 25 °C (77°F)]

- 3. If NG, replace electric throttle control actuator and go to next step.
- 4. Perform EC-668, "Throttle Valve Closed Position Learning".
- 5. Perform EC-668, "Idle Air Volume Learning".

DTC P1128 THROTTLE CONTROL MOTOR

[VQ]

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

UBS003FG

Refer to EM-114, "INTAKE MANIFOLD".

EC

Α

С

D

Е

F

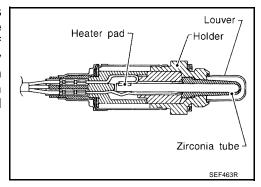
G

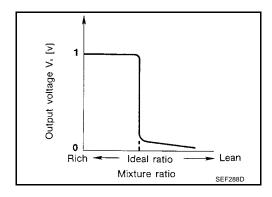
Н

1

K

L


UBS003FH


DTC P1143, P1163 HO2S1

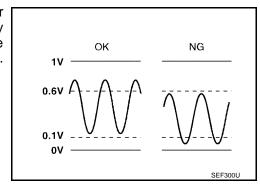
Component Description

PFP:22690

The heated oxygen sensor 1 is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

UBS003FI


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1) HO2S1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times dur- ing 10 seconds.

On Board Diagnosis Logic

UBS003FJ

To judge the malfunction, the output from the heated oxygen sensor 1 is monitored to determine whether the "rich" output is sufficiently high and whether the "lean" output is sufficiently low. When both the outputs are shifting to the lean side, the malfunction will be detected.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1143 1143 (Bank 1)	Heated oxygen sensor	The maximum and minimum voltage from the sensor are not reached to the specified volt-	Heated oxygen sensor 1Heated oxygen sensor 1 heaterFuel pressure
P1163 1163 (Bank 2)	1 lean shift monitoring	ages.	InjectorsIntake air leaks

[VQ]

UBS003FK

Α

EC

D

Е

Н

M

CAUTION:

Always drive vehicle at a safe speed.

DTC Confirmation Procedure

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above –10°C (14°F).
- Before performing following procedure, confirm that battery voltage is more than 11V at idle.

(II) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 10 seconds.
- 3. Turn ignition switch "ON" and select "HO2S1 (B1) P1143" of "HO2S1" or "HO2S1 (B2) P1163" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4. Touch "START".
- 5. Start engine and let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 5.

110004 (D4) D4	1440	
HO2S1 (B1) P1	143	
OUT OF CONDITION		
MONITOR		
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S XXX °C		
VHCL SPEED SEN	XXX km/h	DDIDOCACE
		PBIB0546E

6. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)

ENG SPEED	1,200 - 2,600 rpm
Vehicle speed	Less than 100 km/h (62 MPH)
B/FUEL SCHDL	2.5 - 12.0 msec
Selector lever	Suitable position

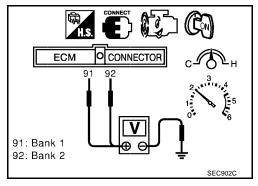
If "TESTING"	is	not	displayed	after	5	minutes,	retry	from
step 2.								

7. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-1074, "Diagnostic Procedure".

HO2S1 (B1) P1	143	
TESTING		
MONITOR		
ENG SPEED		
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S		
VHCL SPEED SEN	XXX km/h	DDIDOC 47E
		PBIB0547E

HO2S1 (B1) P1143	
COMPLETED	
	SEC769C

Overall Function Check

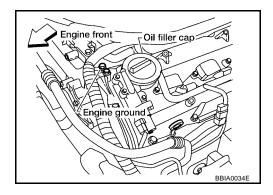

UBS003FL

Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

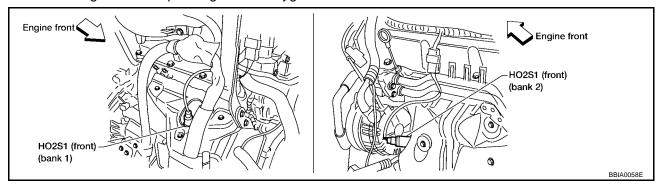
1. Start engine and warm it up to normal operating temperature.

- 2. Set voltmeter probes between ECM terminal 91 [HO2S1(B1) signal] or 92 [HO2S1(B2) signal] and engine ground.
- 3. Check one of the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is over 0.1V at least one time.
- 4. If NG, go to EC-1074, "Diagnostic Procedure".


UBS003FM

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

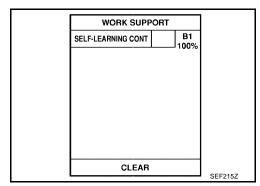

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. RETIGHTEN HEATED OXYGEN SENSOR 1

Loosen and retighten corresponding heated oxygen sensor 1.

Tightening torque: 40 - 60 N·m (4.1 - 6.2 kg-m, 30 - 44 ft-lb)


>> GO TO 3.

[VQ]

$3.\,$ clear the self-learning data

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to EC-686, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

Yes or No

Yes >> Perform trouble diagnosis for DTC P0171. Refer to EC-875.

>> GO TO 4. No

4. CHECK HEATED OXYGEN SENSOR 1 HEATER

Refer to EC-778, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace malfunctioning heated oxygen sensor 1.

5. CHECK HEATED OXYGEN SENSOR 1

Refer to EC-1076, "Component Inspection".

OK or NG

OK >> GO TO 6.

Revision: May 2004

NG >> Replace malfunctioning heated oxygen sensor 1.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". For circuit, refer to EC-827, "Wiring Diagram".

>> INSPECTION END

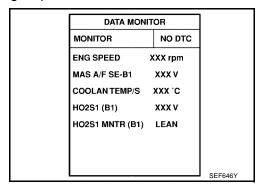
Mass air flow sensor (with built in intake ≥ air temperature senso Áir cleaner

EC

Е

Н

M


2002 Altima

Component Inspection HEATED OXYGEN SENSOR 1

UBS003FN

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

6. Check the following.

 "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.

5 times (cycles) are counted as shown at right.

- "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Bank 1	
cycle 1 2 3	4 5
HO2S1 MNTR (B1) R-L-R-L-R-L-	R-L-R-L-R
Bank 2	
cycle 1 2 3	4 5
HO2S1 MNTR (B2) R-L-R-L-R-L-	R-L-R-L-R
R means HO2S1	
MNTR (B1)/(B2) indicates RICH	
L means HO2S1	
MNTR (B1)/(B2) indicates LEAN	SEF647Y

			_ α	<u> </u>											
Trigger	ENG SPEED	HO2S1 (B1)	- ÷	-	A	Ma	ximur	n	,	, . .	,-	`.	<i>/</i> ~	`.	Maximum voltage should be over 0.6V
	rpm	V				1	ĺ	À	- /	-)	ĺ	.j	- /	j	at least one time.
XXX	XXX	XXX			•	•	•	•	•	•	•	•		•	at least one time.
XXX	XXX	XXX			1	•	1	ı	•	t	1	1	•	1	
XXX	XXX	XXX													
XXX	XXX	XXX] [5-1		,	:			1	•	•	- 1	•	F 42 - 2
XXX	XXX	XXX													 Minimum voltage
XXX	XXX	XXX		ji		i	- ;	į	i	į	- ;	1	i	ļ.	should be below 0.30V
XXX	XXX	XXX		- 13	i	- 1	i	1	i	1	i	١.	i	1	at least one time.
XXX	XXX	XXX		- [\ !	٠,	!	i	- !	ì	- !	i	- !	i	
XXX	XXX	XXX) /	ì	. /	,	i	,	i	,	i	,	
XXX	XXX	XXX			\ <i>, j</i>		∖ ∕	,	<u> </u>	١,	ď	`,	J.	`_	
XXX	XXX	XXX									• Mini	mum			
XXX	XXX	XXX] _												
			•	,—											SEF648Y

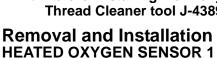
CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

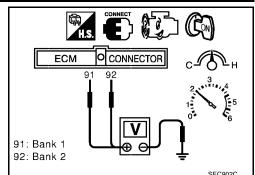
⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 91 [HO2S1 (B1) signal] or 92 [HO2S1 (B2) signal] and engine ground.

DTC P1143, P1163 HO2S1


[VQ]

- Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least one time.
 - The minimum voltage is below 0.3V at least one time.
 - The voltage never exceeds 1.0V.


1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V 2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Refer to EM-118, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

EC

Α

С

D

F

UBS003FO

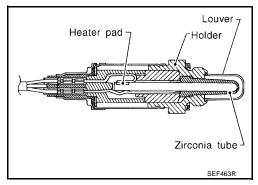
F

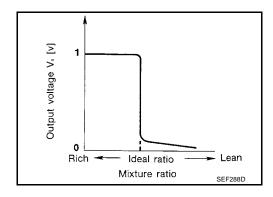
G

Н

J

K


DTC P1144, P1164 HO2S1


Component Description

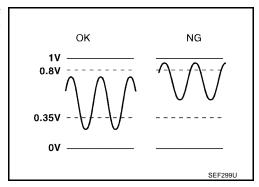
PFP:22690

UBS003FP

The heated oxygen sensor 1 is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

UBS003FQ


Specification data are reference values.

MONITOR ITEM	CON	SPECIFICATION		
HO2S1 (B1) HO2S1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ Approx. 0.6 - 1.0V	
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times dur- ing 10 seconds.	

On Board Diagnosis Logic

UBS003FR

To judge the malfunction, the output from the heated oxygen sensor 1 is monitored to determine whether the "rich" output is sufficiently high. The "lean" output is sufficiently low. When both the outputs are shifting to the rich side, the malfunction will be detected.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1144 1144 (Bank 1) P1164 1164 (Bank 2)	Heated oxygen sensor 1 rich shift monitoring	The maximum and minimum voltages from the sensor are beyond the specified voltages.	 Heated oxygen sensor 1 Heated oxygen sensor 1 heater Fuel pressure Injectors

DTC Confirmation Procedure

UBS003FS

Α

EC

D

Н

M

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above –10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(II) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 5 seconds.
- Turn ignition switch "ON" and select "HO2S1 (B1) P1144" or "HO2S1 (B2) P1164" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4. Touch "START".
- 5. Start engine and let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 5.

HO2S1 (B1) P1	1144	
OUT OF CONDI		
MONITOR		
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S		
VHCL SPEED SEN		
		PBIB0548E

6. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)

ENG SPEED	1,200 - 2,600 rpm
Vehicle speed	Less than 100 km/h (62 MPH)
B/FUEL SCHDL	2.5 - 12.0 msec
Selector lever	Suitable position

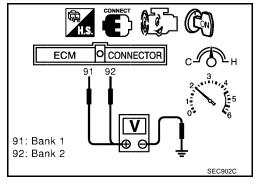
If "TESTING"	is	not	displayed	after	5	minutes,	retry	from
step 2.							-	

7. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-1080, "Diagnostic Procedure".

		1
HO2S1 (B1) P1		
TESTING		
MONITOR		
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S		
VHCL SPEED SEN	XXX km/h	PBIB0549E
		FBIB0349E

HO2S1 (B1) P1144	
COMPLETED	
	SEC772C

Overall Function Check

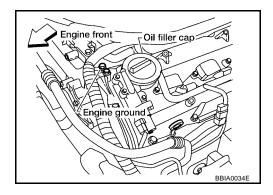

UBS003FT

Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

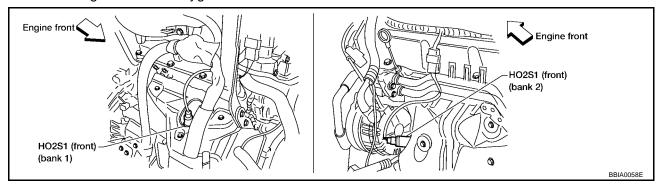
1. Start engine and warm it up to normal operating temperature.

- 2. Set voltmeter probes between ECM terminal 91 [HO2S1(B1) signal] 92 [HO2S1(B2) signal] and engine ground.
- 3. Check one of the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is below 0.8V at least one time.
- The minimum voltage is below 0.35V at least one time.
- 4. If NG, go to EC-1080, "Diagnostic Procedure".


UBS003FU

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

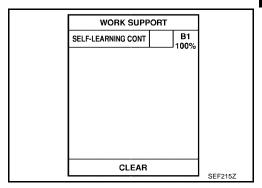

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. RETIGHTEN HEATED OXYGEN SENSOR 1

Loosen and retighten heated oxygen sensor 1.

Tightening torque: 40 - 60 N·m (4.1 - 6.2 kg-m, 30 - 44 ft-lb)

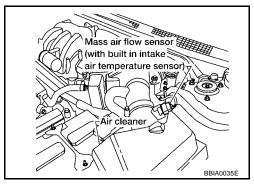

>> GO TO 3.

[VQ]

3. CLEAR THE SELF-LEARNING DATA

(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 detected? Is it difficult to start engine?


W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-686, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

Yes >> Perform trouble diagnosis for DTC P0172. Refer to EC-883.

No >> GO TO 4.

EC

Е

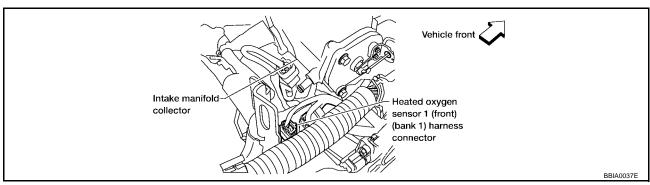
F

G

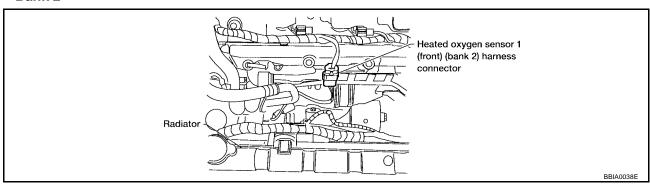
Н

1

<


L

M


4. CHECK HO2S1 CONNECTOR FOR WATER

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 1 harness connector.

Bank 1

Bank 2

Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 5.

NG >> Repair or replace harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 1 HEATER

Refer to EC-778, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 1.

6. CHECK HEATED OXYGEN SENSOR 1

Refer to EC-1083, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace malfunctioning heated oxygen sensor 1.

7. CHECK INTERMITTENT INCIDENT

Refer to <u>EC-754</u>, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" . For circuit, refer to <u>EC-827</u>, "Wiring Diagram" .

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 1

UBS003FV

Α

EC

D

Е

Н

M

(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

DATA MON	ITOR	
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
COOLAN TEMP/S	XXX °C	
HO2S1 (B1)	xxx v	
HO2S1 MNTR (B1)	LEAN	
		SEF646Y

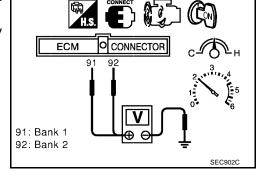
- 6. Check the following.
 - "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.
 - 5 times (cycles) are counted as shown at right.
 - "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
 - "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
 - "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Bank 1
cycle 1 2 3 4 5
HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R
Bank 2
cycle 1 2 3 4 5
HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R
R means HO2S1 MNTR (B1)/(B2) indicates RICH
L means HO2S1 MNTR (B1)/(B2) indicates LEAN

Trigger	ENG SPEED	HO2S1 (B1)		128		, e Ma	aximur /	n ~ \	,	``	ŗ	`\	,	`	Maximum voltage should be over 0.6V
	rpm	V	1		/	j	- /	Ì	- /	į	- /	1	- /	ļ	at least one time.
XXX	XXX	XXX	4												
XXX	XXX	XXX	1			•	,	ı	•	ı	,	,	•	•	
XXX	XXX	XXX	1												
XXX	XXX	XXX	l	64	٠.	,		'	•	'	•	•	'	•	N. 42 - 2
XXX	XXX	XXX	1		l .										 Minimum voltage
XXX	XXX	XXX	1		i !	i	- !	i	- 1	i	- !		- !	Ļ	should be below 0.30V
XXX	XXX	XXX	1		1. i	1	i	1	i	1	i	- 1	i	1	at least one time.
XXX	XXX	XXX	1		V = I	,	. !	,	!	1	!	ì	!	i	
XXX	XXX	XXX	1		li /	,	· /	i	- /	i	/	1	- /	i	
XXX	XXX	XXX	1		\ <i>J</i>		V	١,	<i>_i</i>	١,	m'	'	j	\	
XXX	XXX	XXX	1							•	Mini	mum			
XXX	XXX	XXX	1	0-											

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.


⋈ Without CONSULT-II

- Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 91 [HO2S1 (B1) signal] or 92 [HO2S1 (B2) signal] and engine ground.

- Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least one time.
 - The minimum voltage is below 0.3V at least one time.
 - The voltage never exceeds 1.0V.

1 time: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V **CAUTION:** • Discard any heated oxygen sensor which has been

- dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation **HEATED OXYGEN SENSOR 1**

UBS003FW

Refer to EM-118, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

DTC P1146, P1166 HO2S2

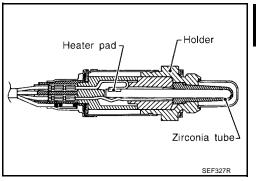
PFP:226A0

UBS003FX

EC

Е

Н


Component Description

The heated oxygen sensor 2, after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

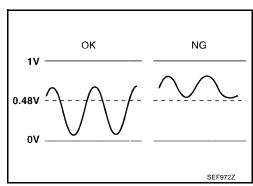
Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

UBS003FY


Specification data are reference values.

MONITOR ITEM	CON	SPECIFICATION	
HO2S2 (B1) HO2S2 (B2)	Engine: After warming up	Revving engine from idle to 3,000 rpm quickly.	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	Engine: After warming up	Revving engine from idle to 3,000 rpm quickly.	$LEAN \longleftrightarrow RICH$

On Board Diagnosis Logic

UBS003FZ

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the minimum voltage of sensor is sufficiently low during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	_
P1146 1146 (Bank 1) P1166 1166 (Bank 2)	Heated oxygen sensor 2 minimum voltage monitoring	The minimum voltage from the sensor is not reached to the specified voltage.	 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2 Fuel pressure Injectors 	M

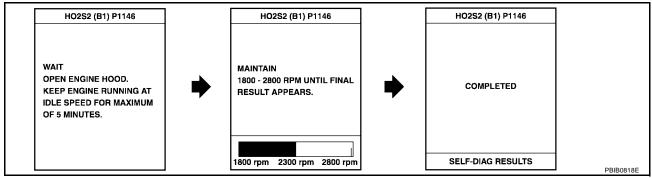
DTC Confirmation Procedure

UBS003G0

NOTE:

If "DTC confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:


Open engine hood before conducting following procedure.

(II) WITH CONSULT-II

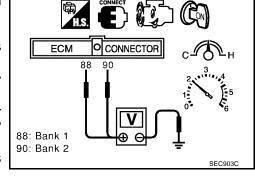
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Turn ignition switch "ON".
- 4. Select "DATA MONITOR" mode with CONSULT-II.

Revision: May 2004 **EC-1085** 2002 Altima

- Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).
- 6. Select "HO2S2 (B1) P1146" or "HO2S2 (B2) P1166" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 7. Start engine and following the instruction of CONSULT-II.

- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 If "NG" is displayed, refer to <u>EC-1090, "Diagnostic Procedure"</u>.
 If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- a. Stop engine and cool down until "COOLAN TEMP/S" indicates less than 70°C (158°F).
- b. Turn ignition switch "ON".
- c. Select "DATA MONITOR" mode with CONSULT-II.
- d. Start engine.
- e. Return to step 6 again when the "COOLAN TEMP/S" reaches to 70°C (158°F).

Overall Function Check

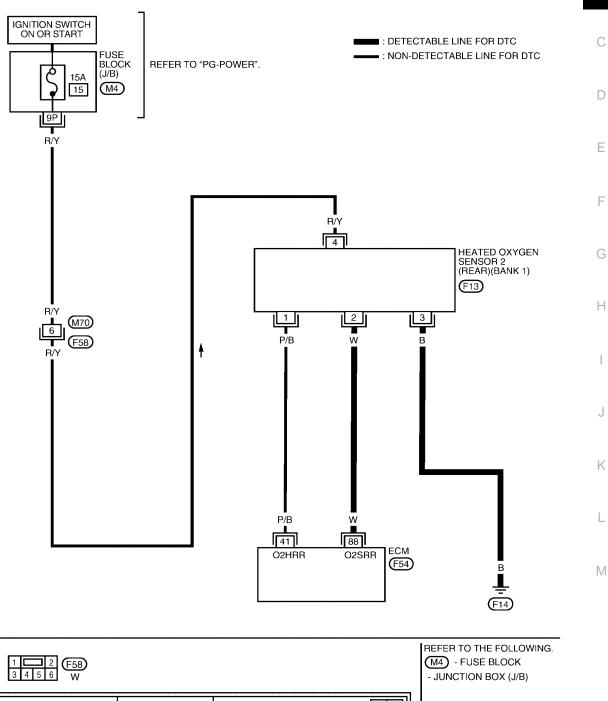

UBS003G1

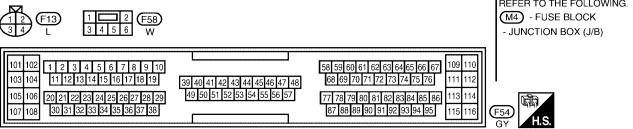
Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

procedure.

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 88 [HO2S2 (B1) signal] or 90 [HO2S2 (B2) signal] and engine ground.
- 4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be below 0.48V at least once during this procedure.
 - If the voltage can be confirmed in step 4, step 5 is not necessary.
- Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in "D" position with "OD" OFF (A/T), 3rd gear position (M/T).
 The voltage should be below 0.48V at least once during this
- If NG, go to EC-1090, "Diagnostic Procedure".


Wiring Diagram BANK 1


_ _ .

Α

EC

EC-02S2B1-01

BBWA0058E

DTC P1146, P1166 HO2S2

[VQ]

Specification data are reference values and are measured between each terminal and ground.

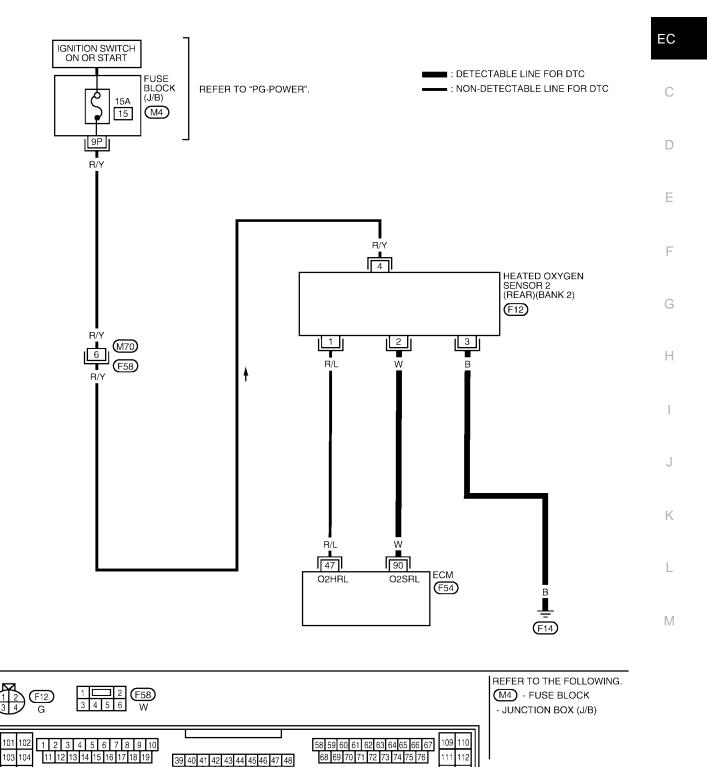
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
88	W	Heated oxygen sensor 2 (bank 1)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V

Α

BANK 2


105 106

107 108

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38

EC-O2S2B2-01

77 78 79 80 81 82 83 84 85 86

87 88 89 90 91 92 93 94 95

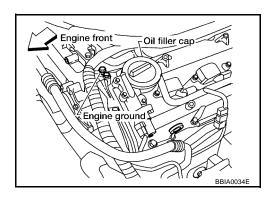
BBWA0059E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
90	W	Heated oxygen sensor 2 (bank 2)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V

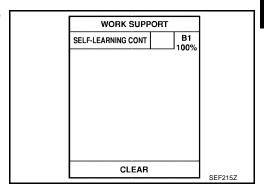

Diagnostic Procedure

UBS003G3

1. RETIGHTEN GROUND SCREWS

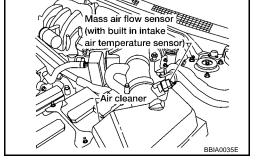
- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.



[VQ]

2. CLEAR THE SELF-LEARNING DATA


(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine?

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-686, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine?

Yes or No

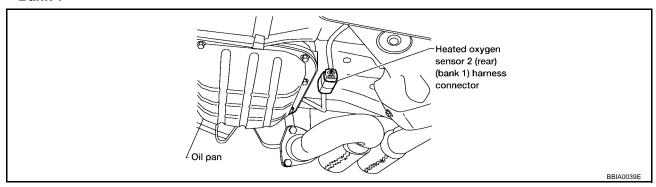
Yes >> Perform trouble diagnosis for DTC P0172, P0175. Refer to <u>EC-883</u>.

No >> GO TO 3.

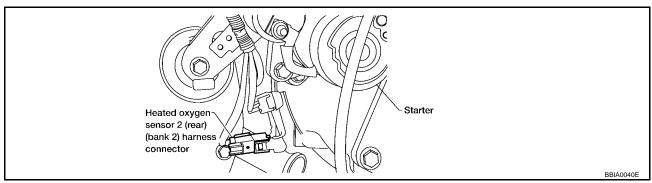
EC

Е

C


Н

M


3. Check Ho2S2 ground circuit for open and short

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 2 harness connector.

Bank 1

Bank 2

3. Check harness continuity between HO2S2 terminal 3 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to power in harness or connectors.

[VQ]

4. CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

П	\sim
	J

DTC	Term	Bank	
ы	ECM	Sensor	Dank
P1146	88	2	1
P1166	90	2	2

Continuity should exist.

3. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Е

D

DTC	Term	Bank	
ыс	ECM	Sensor	Dalik
P1146	88	2	1
P1166	90	2	2

G

Continuity should not exist.

4. Also check harness for short to short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-1093, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 2.

I/

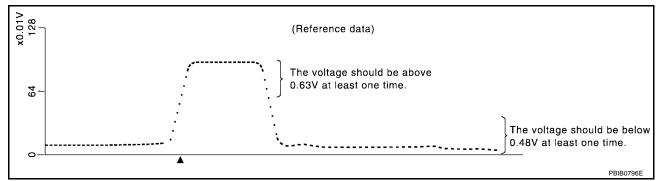
M

6. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2


UBS003G4

- (P) With CONSULT-II
- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-II.

	ACTIVE TEST				
FUEL IN	FUEL INJECTION 25 %				
	MONITOR				
ENG	SPEED	XXX rpm			
HO2	S1 (B1)	xxx v			
HO2	S2 (B1)	xxx v			
HO2S1	MNTR (B1)	RICH			
HO2S2	MNTR (B1)	RICH			
		I	SEF662Y		

UBS003G5

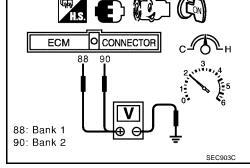
4. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)/(B2)" should be above 0.63V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)/(B2)" should be below 0.48V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II


- Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 88 [HO2S2 (B1) signal] or 90 [HO2S2 (B2) signal] and engine ground.
- 4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.63V at least once during this procedure.
 - If the voltage is above 0.63V at step 4, step 5 is not necessary.
- Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in "D" position with "OD" OFF (A/T), 3rd gear position (M/T).
 The voltage should be below 0.48V at least once during this procedure.
- 6. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

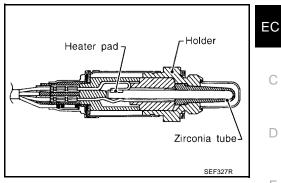
Removal and Installation HEATED OXYGEN SENSOR 2

Refer to EX-6, "EXHAUST SYSTEM (VQ35DE)".

DTC P1147, P1167 HO2S2

PFP:226A0

Component Description


UBS003G6

The heated oxygen sensor 2, after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

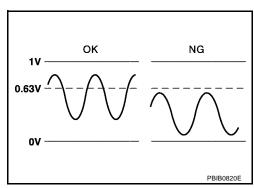
CONSULT-II Reference Value in Data Monitor Mode

UBS003G7

Е

Н

M


Specification data are reference values.

MONITOR ITEM	CON	SPECIFICATION	
HO2S2 (B1) HO2S2 (B2)	Engine: After warming up	Revving engine from idle to 3,000 rpm quickly.	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	Engine: After warming up	Revving engine from idle to 3,000 rpm quickly.	$LEAN \longleftrightarrow RICH$

On Board Diagnosis Logic

UBS003G8

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the maximum voltage of the sensor is sufficiently high during the various driving condition such as fuel-cut.

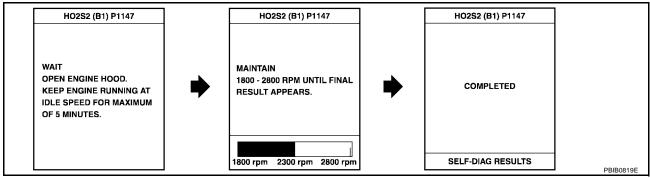
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1147 1147 (Bank 1)	Heated oxygen sensor	The maximum voltage from the sensor is not	 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2
P1167 1167 (Bank 2)	2 maximum voltage monitoring	reached to the specified voltage.	Fuel pressureInjectorsIntake air leaks

DTC Confirmation Procedure

UBS003G9

NOTE:

If "DTC confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.


TESTING CONDITION:

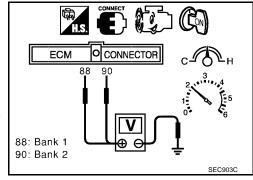
Open engine hood before conducting following procedure.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Turn ignition switch "ON".
- 4. Select "DATA MONITOR" mode with CONSULT-II.

- Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).
- 6. Select "HO2S2 (B1) P1147" or "HO2S2 (B2) P1167" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 7. Start engine and following the instruction of CONSULT-II.

- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 If "NG" is displayed, refer to <u>EC-1100, "Diagnostic Procedure"</u>.
 If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- a. Stop engine and cool down until "COOLAN TEMP/S" indicates less than 70°C (158°F).
- b. Turn ignition switch "ON".
- c. Select "DATA MONITOR" mode with CONSULT-II.
- d. Start engine.
- e. Return to step 6 again when the "COOLAN TEMP/S" reaches to 70°C (158°F).


Overall Function Check

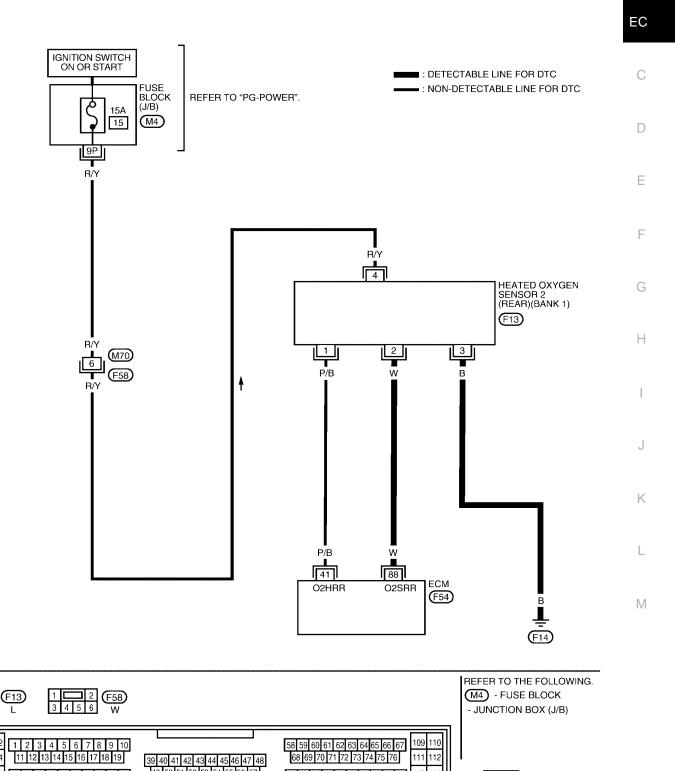
UBS003GA

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 88 [HO2S2 (B1) signal] or 90 [HO2S2 (B2) signal] and engine ground.
- 4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.63V at least once during this procedure.
 - If the voltage can be confirmed in step 4, step 5 is not necessary.
- Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in "D" position with "OD" OFF (A/T), 3rd gear position (M/T).
 - The voltage should be above 0.63V at least once during this procedure.
- 6. If NG, go to EC-1100, "Diagnostic Procedure".

Wiring Diagram BANK 1


103 104

105 106

UBS003GB

Α

EC-02S2B1-01

BBWA0058E

DTC P1147, P1167 HO2S2

[VQ]

Specification data are reference values and are measured between each terminal and ground.

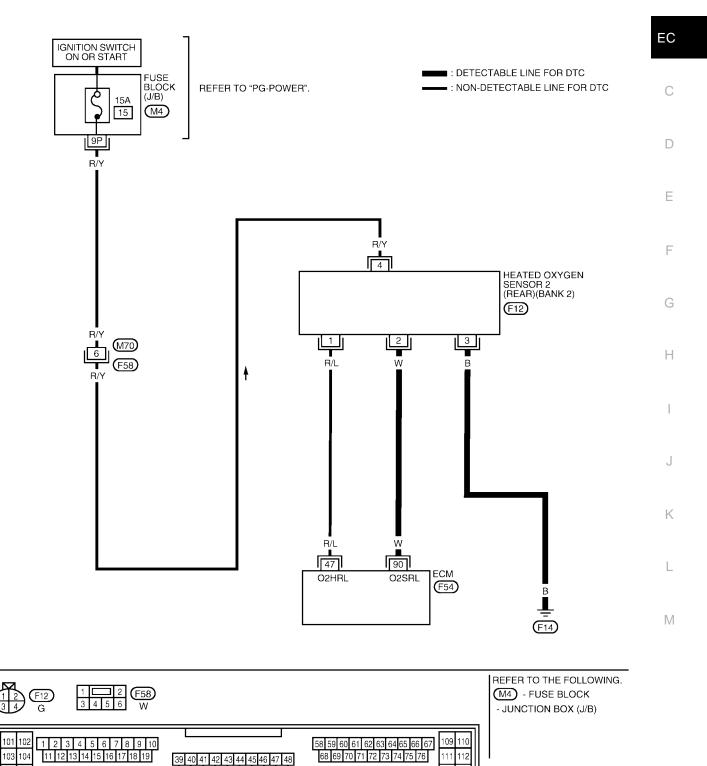
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
88	W	Heated oxygen sensor 2 (bank 1)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V

Α

BANK 2


105 106

107 108

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38

EC-O2S2B2-01

77 78 79 80 81 82 83 84 85 86

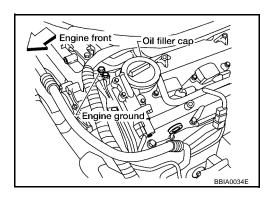
87 88 89 90 91 92 93 94 95

BBWA0059E

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
90	W	Heated oxygen sensor 2 (bank 2)	[Engine is running] • Warm-up condition	0 - Approximately 1.0V
			 Engine speed is 2,000 rpm. 	

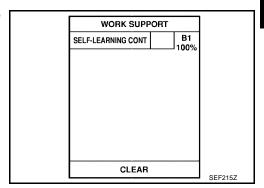

Diagnostic Procedure

UBS003GC

1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

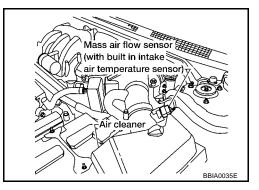


[VQ]

2. CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine?


⋈ Without CONSULT-II

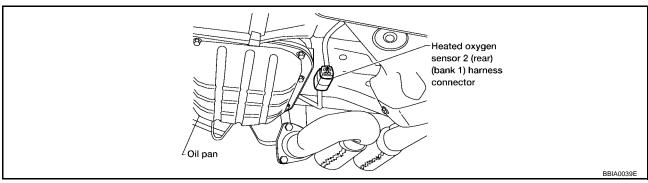
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-686, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine?

Yes >> Perform trouble diagnosis for DTC P0171or P0174. Refer to <u>EC-875</u>.

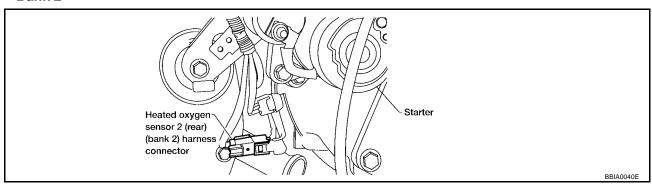
No >> GO TO 3.

EC

Е


Н

M


3. Check Ho2S2 ground circuit for open and short

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 2 harness connector.

Bank 1

Bank 2

3. Check harness continuity between HO2S2 terminal 3 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to power in harness or connectors.

[VQ]

$4.\,$ CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

Ī)
-	ι,
Į)

DTC	Tern	ninals	Bank
ыс	ECM	Sensor	Dank
P1147	88	2	1
P1167	90	2	2

Continuity should exist.

3. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Е

D

DTC	Term	ninals	Bank
ыс	ECM	Sensor	Dank
P1147	88	2	1
P1167	90	2	2

Continuity should not exist.

4. Also check harness for short to ground or short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-1103, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 2.

K

M

6. CHECK INTERMITTENT INCIDENT

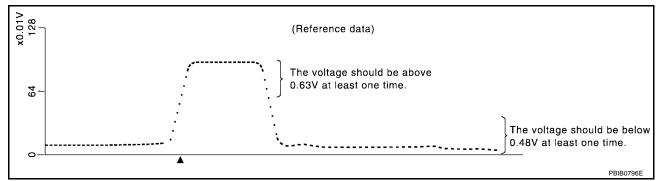
Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

UBS003GD

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2

(I) With CONSULT-II


- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-II.

ACTIVE TES	T	
FUEL INJECTION	25 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S1 (B1)	xxx v	
HO2S2 (B1)	xxx v	
HO2S1 MNTR (B1)	RICH	
HO2S2 MNTR (B1)	RICH	
	<u> </u>	SEF662Y

Revision: May 2004 EC-1103 2002 Altima

UBS003GE

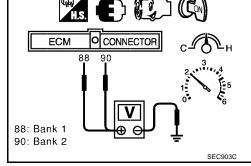
4. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)/(B2)" should be above 0.63V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)/(B2)" should be below 0.48V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II


- Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 88 [HO2S2 (B1) signal] or 90 [HO2S2 (B2) signal] and engine ground.
- 4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.63V at least once during this procedure.
 - If the voltage is above 0.63V at step 4, step 5 is not necessary.
- Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in "D" position with "OD" OFF (A/T), 3rd gear position (M/T).
 The voltage should be below 0.48V at least once during this procedure.
- 6. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

Refer to EX-6, "EXHAUST SYSTEM (VQ35DE)".

DTC P1148, P1168 CLOSED LOOP CONTROL

[VQ]

DTC P1148, P1168 CLOSED LOOP CONTROL

PFP:22690

On Board Diagnosis Logic

UBS003GF

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	-
P1148 1148 (Bank 1)	Closed loop control	The closed loop control function for bank 1 does not operate even when vehicle is driving in the specified condition.	The heated oxygen sensor 1 circuit is open or shorted.	
P1168 1168 (Bank 2)	function	The closed loop control function for bank 2 does not operate even when vehicle is driving in the specified condition.	Heated oxygen sensor 1Heated oxygen sensor heater	

DTC Confirmation Procedure

UBS003GG

Е

Н

M

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Never raise engine speed above 3,600 rpm during the "DTC Confirmation Procedure". If the engine speed limit is exceeded, retry the procedure from step 2.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Hold engine speed at 2,000 rpm and check one of the following.
- "HO2S1 (B1)/(B2)" voltage should go above 0.70V at least once.
- "HO2S1 (B1)/(B2)" voltage should go below 0.21V at least once.
 If the check result is NG, perform <u>EC-1106</u>, "<u>Diagnostic Procedure</u>".

If the check result is OK, perform the following step.

- 4. Let engine idle at least 5 minutes.
- Maintain the following condition at least 50 consecutive seconds.

DATA MON	IITOR	
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
COOLAN TEMP/S	XXX °C	
HO2S1 (B1)	XXX V	
HO2S1 (B2)	XXX V	
		SEC011

B/FUEL SCHDL	2.5 msec or more
ENG SPEED	More than 1,500 rpm
Selector lever	Suitable position
VHCL SPEED SE	More than 71 km/h (44 MPH)

During this test, P0132 and/or P0152 may be displayed on CONSULT-II screen.

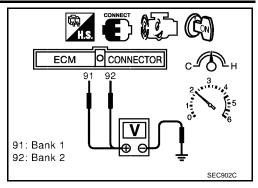
6. If DTC is detected, go to EC-1106, "Diagnostic Procedure".

Overall Function Check

UBS003GH

Use this procedure to check the overall function of the closed loop control. During this check, a DTC might not be confirmed.

WITH GST


1. Start engine and warm it up to normal operating temperature.

Revision: May 2004 **EC-1105** 2002 Altima

DTC P1148, P1168 CLOSED LOOP CONTROL

[VQ]

- 2. Set voltmeter probes between ECM terminal 91 [HO2S1 (B1) signal] or 92 [HO2S1 (B2) signal] and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no-load.
- The voltage should go above 0.70V at least once.
- The voltage should go below 0.21V at least once.
- 4. If NG, go to EC-1106, "Diagnostic Procedure".

UBS003GI

Diagnostic Procedure

Perform trouble diagnosis for "DTC P0133, P0153". Refer to EC-840, "Diagnostic Procedure" .

DTC P1211 ABS/TCS CONTROL UNIT

[VQ]

DTC P1211 ABS/TCS CONTROL UNIT

PFP:47850

Description

The malfunction information related to ABS or ABS/TCS is transferred through the CAN communication line from ABS actuator and electric unit (control unit) to ECM.

Be sure to erase the malfunction information such as DTC not only for ABS actuator and electric unit (control unit) but also for ECM after ABS or ABS/TCS related repair.

EC

On Board Diagnosis Logic

Freeze frame data is not stored in the ECM for this self-diagnosis. The MIL will not light up for this selfdiagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1211 1211	ABS/TCS control unit	ECM receives a malfunction information from ABS actuator and electric unit (Control unit).	ABS actuator and electric unit (control unit) ABS or ABS/TCS related parts

DTC Confirmation Procedure

UBS003GL

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

(III) WITH CONSULT-II

- Turn ignition switch "ON". 1.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 60 seconds.
- 4. If 1st trip DTC is detected, go to EC-1107, "Diagnostic Procedure".

DATA M	ONITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

UBS003GM

Go to BRC-7, "TROUBLE DIAGNOSIS" or BRC-50, "TROUBLE DIAGNOSIS".

M

EC-1107 Revision: May 2004 2002 Altima

UBS003GK

D

Е

Н

K

DTC P1212 ABS/TCS COMMUNICATION LINE

[VQ]

UBS003GN

DTC P1212 ABS/TCS COMMUNICATION LINE

PFP:47850

Description

NOTE:

If DTC P1212 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-761, "DTC U1000, U1001 CAN COMMUNICATION LINE".

This CAN communication line is used to control the smooth engine operation during the ABS or TCS operation. Pulse signals are exchanged between ECM and ABS actuator and electric unit (control unit).

Be sure to erase the malfunction information such as DTC not only for ABS actuator and electric unit (control unit) but also for ECM after ABS or ABS/TCS related repair.

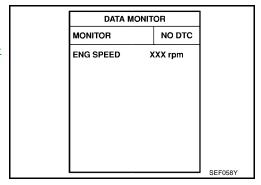
On Board Diagnosis Logic

UBS003GO

Freeze frame data is not stored in the ECM for this self-diagnosis. The MIL will not light up for this self-diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1212 1212	ABS/TCS communication line	ECM can not receive the information from ABS/TCS control unit continuously.	 Harness or connectors (The CAN communication line is open or shorted.) ABS actuator and electric unit (control unit) Dead (Weak) battery

DTC Confirmation Procedure


UBS003GF

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 10 seconds.
- 4. If a 1st trip DTC is detected, go to <u>EC-1108</u>, "<u>Diagnostic Procedure</u>".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

UBS003GQ

1. CHECK ABS ACTUATOR AND ELECTRIC UNIT (CONTROL UNIT) FUNCTION

Refer to BRC-7, "TROUBLE DIAGNOSIS" or BRC-50, "TROUBLE DIAGNOSIS".

>> INSPECTION END

[VQ]

DTC P1217 ENGINE OVER TEMPERATURE

PFP:00000

System Description

UBS003GR

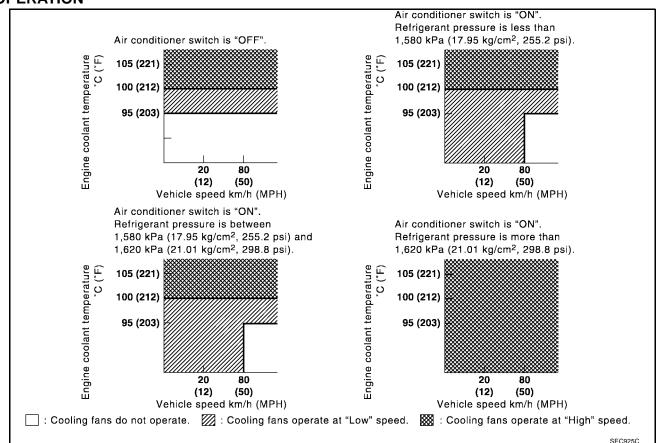
Α

EC

Е

NOTE:

If DTC P1217 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000 or U1001. Refer to EC-761, "DTC U1000, U1001 CAN COMMUNICATION LINE".


COOLING FAN CONTROL

Sensor	Input Signal to ECM	ECM function	Actuator	
USP sensor	Vehicle speed			
Engine coolant temperature sensor	Engine coolant temperature			
Air conditioner switch	Air conditioner "ON" signal*	Cooling fan control	Cooling fan relay(s)	
Ignition switch	Start signal			
Refrigerant pressure sensor	Refrigerant pressure			

^{*:} These signals are sent to ECM through CAN communication line.

The ECM controls the cooling fan corresponding to the vehicle speed, engine coolant temperature, refrigerant pressure, and air conditioner ON signal. The control system has 3-step control [HIGH/LOW/OFF]. The ECM controls cooling fan relays through CAN communication line.

OPERATION

CONSULT-II Reference Value in Data Monitor Mode

UBS003GS

M

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	• Engine: After warming up, idle	Air conditioner switch: OFF	OFF
AIR COND SIG	Engine: After warming up, idle the engine	Air conditioner switch: ON (Compressor operates.)	ON

MONITOR ITEM	CONDITION		SPECIFICATION
		Engine coolant temperature is 99°C (210°F) or less	OFF
COOLING FAN	Engine: After warming up, idle the engineAir conditioner switch: OFF	Engine coolant temperature is between 95°C (203°F) and 104°C (219°F)	LOW
		Engine coolant temperature is 100°C (212°F) or more	HIGH

On Board Diagnosis Logic

LIBS003GT

If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will rise.

When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1217 1217	Engine over temperature (Overheat)	 Cooling fan does not operate properly (Overheat). Cooling fan system does not operate properly (Overheat). Engine coolant was not added to the system using the proper filling method. 	 Harness or connectors (The cooling fan circuit is open or shorted.) Cooling fan Radiator hose Radiator Radiator cap Water pump Thermostat
			For more information, refer to <u>EC-1119</u> . "Main 12 Causes of Overheating".

CAUTION:

When a malfunction is indicated, be sure to replace the coolant. Refer to $\underline{\text{EC-1108}}$, "Description". Also, replace the engine oil. Refer to $\underline{\text{EC-1107}}$, "Description".

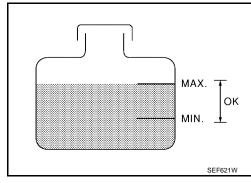
- 1. Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Be sure to use coolant with the proper mixture ratio. Refer to MA-13, "ANTI-FREEZE COOLANT MIXTURE RATIO".
- 2. After refilling coolant, run engine to ensure that no water-flow noise is emitted.

Overall Function Check

UBS003GU

Use this procedure to check the overall function of the cooling fan. During this check, a DTC might not be confirmed.

WARNING:


Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator.

Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

(III) WITH CONSULT-II

- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to EC-1113.

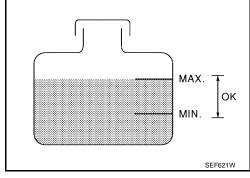
 "Diagnostic Procedure"
- 2. Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to EC-1113. "Diagnostic Procedure".
- 3. Turn ignition switch "ON".

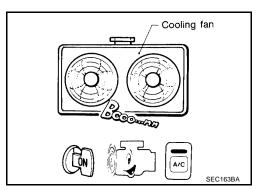
DTC P1217 ENGINE OVER TEMPERATURE

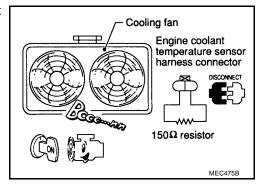
[VQ]

Perform "COOLING FAN" in "ACTIVE TEST" mode with CON-SULT-II.

5. If the results are NG, go to EC-1113, "Diagnostic Procedure".


ACTIVE TES	Т	
COOLING FAN	OFF	
MONITOR		
COOLAN TEMP/S	xxx c	
		SEF646


WITH GST


- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to EC-1113, "Diagnostic Procedure".
- Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to <u>EC-1113</u>, <u>"Diagnostic Procedure"</u>.
- 3. Start engine.

Be careful not to overheat engine.

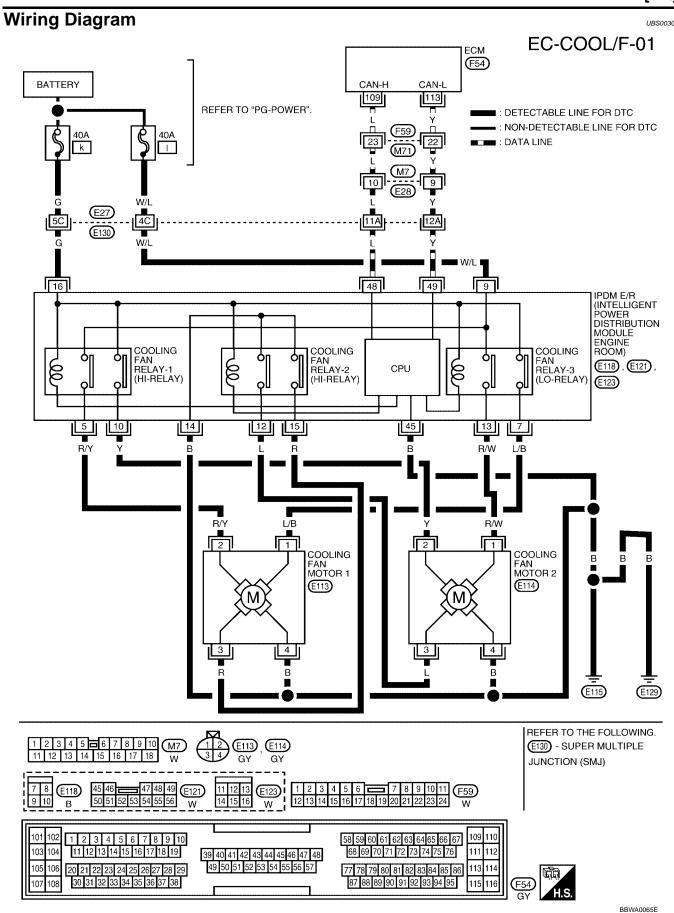
- 4. Turn air conditioner switch "ON".
- Turn blower fan switch "ON".
- Make sure that cooling fan operates at low speed. If NG, go to <u>EC-1113</u>, "<u>Diagnostic Procedure</u>".
 If OK, go to the following step.
- 7. Turn ignition switch "OFF".
- 8. Turn air conditioner switch and blower fan switch "OFF".
- Disconnect engine coolant temperature sensor harness connector.
- 10. Connect 150 Ω resistor to engine coolant temperature sensor harness connector.
- 11. Restart engine and make sure that cooling fan operates at higher speed than low speed.
 - Be careful not to overheat engine.
- 12. If NG, go to EC-1113, "Diagnostic Procedure".

Α

EC

D

Е


F

Η

K

L

M

DTC P1217 ENGINE OVER TEMPERATURE

[VQ]

UBS003GW

Diagnostic Procedure

1. INSPECTION START

Do you have CONSULT-II?

Yes or No

Yes >> GO TO 2.

>> GO TO 4. No

2. CHECK COOLING FAN LOW SPEED OPERATION

With CONSULT-II

- 1. Start engine and let it idle.
- 2. Select "COOLING FAN" in "ACTIVE TEST" mode with CON-SULT-II and touch "LOW" on the CONSULT-II screen.
- 3. Make sure that cooling fans-1 and -2 operate at low speed.

OK or NG

OK >> GO TO 3.

NG

>> Check cooling fan low speed control circuit. (Go to EC-1116, "PROCEDURE A" .)

ACTIVE TES		
COOLING FAN	LOW	
MONITOR		
COOLAN TEMP/S	XXX °C	
		SEF784

3. CHECK COOLING FAN HIGH SPEED OPERATION

(III) With CONSULT-II

- Touch "HIGH" on the CONSULT-II screen.
- 2. Make sure that cooling fans-1 and -2 operate at higher speed than low speed.

OK or NG

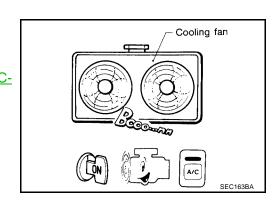
OK >> GO TO 6.

>> Check cooling fan high speed control circuit. (Go to EC-NG 1118, "PROCEDURE B" .)

ACTIVE TEST		
COOLING FAN	HIGH	
MONITOF	}	
COOLAN TEMP/S	XXX °C	
		SEF785Z

4. CHECK COOLING FAN LOW SPEED OPERATION

Without CONSULT-II


- 1. Start engine and let it idle.
- 2. Turn air conditioner switch "ON".
- 3. Turn blower fan switch "ON".
- 4. Make sure that cooling fans-1 and -2 operate at low speed.

OK or NG

OK >> GO TO 5.

>> Check cooling fan low speed control circuit. (Go to EC-NG

1116, "PROCEDURE A" .)

EC

Α

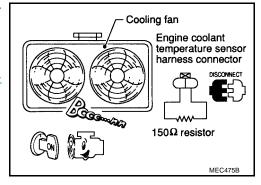
D

Е

Н

5. CHECK COOLING FAN HIGH SPEED OPERATION

Without CONSULT-II


- 1. Turn ignition switch "OFF".
- 2. Turn air conditioner switch and blower fan switch "OFF".
- 3. Disconnect engine coolant temperature sensor harness connector.
- 4. Connect 150Ω resistor to engine coolant temperature sensor harness connector.
- Restart engine and make sure that cooling fans-1 and -2 operate at higher speed than low speed.

OK or NG

OK >> GO TO 6.

NG

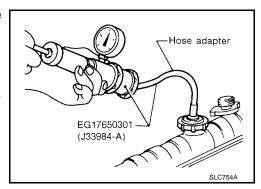
>> Check cooling fan high speed control circuit. (Go to EC-1118, "PROCEDURE B".)

6. CHECK COOLING SYSTEM FOR LEAK

Apply pressure to the cooling system with a tester, and check if the pressure drops.

Testing pressure: 157 kPa (1.6 kg/cm², 23 psi)

Higher than the specified pressure may cause radiator damage. Pressure should not drop.


OK or NG

NG

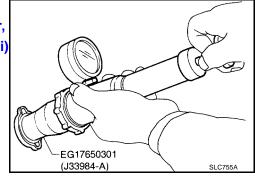
OK >> GO TO 7.

>> Check the following for leak

- Hose
- Radiator
- Water pump Refer to CO-41, "WATER PUMP".

7. CHECK RADIATOR CAP

Apply pressure to cap with a tester.


Radiator cap relief pressure: 59 - 98 kPa (0.59 - 0.98 bar,

0.6 - 1.0 kg/cm², 9 - 14 psi)

OK or NG

OK >> GO TO 8.

NG >> Replace radiator cap.

DTC P1217 ENGINE OVER TEMPERATURE

[VQ]

8. CHECK THERMOSTAT

1. Check valve seating condition at normal room temperatures. **It should seat tightly.**

2. Check valve opening temperature and valve lift.

Valve opening temperature: 82°C (180°F) [standard]
Valve lift: More than 8.6 mm/95°C (0.339 in/203°F)

3. Check if valve is closed at 5°C (9°F) below valve opening temperature.

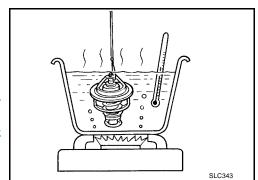
For details, refer to <u>CO-45</u>, "THERMOSTAT AND THERMOSTAT HOUSING".

OK >> GO TO 9.

NG >> Replace thermostat

Refer to EC-813, "Component Inspection".

OK or NG


OK >> GO TO 10.

NG >> Replace engine coolant temperature sensor.

10. CHECK MAIN 12 CAUSES

If the cause cannot be isolated, go to EC-1119, "Main 12 Causes of Overheating" .

>> INSPECTION END

EC

C

D

Е

F

G

Н

J

K

L

M

PROCEDURE A

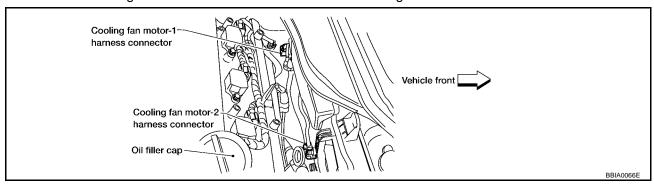
1. CHECK POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect IPDM E/R harness connectors E118 and E123.
- 3. Check voltage between IPDM E/R terminals 9, 16 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.


2. DETECT MALFUNCTIONING PART

Check the following.

- 40A fusible links
- Harness connectors E27, E130
- Harness for open or short between IPDM E/R and battery
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK COOLING FAN MOTORS CIRCUIT

Disconnect cooling fan motor-1 harness connector and cooling fan motor-2 harness connector.

 Check harness continuity between cooling fan motor-1 terminal 1 and IPDM E/R terminal 7, cooling fan motor-1 terminal 4 and body ground. Refer to wiring diagram.

Continuity should exist.

- 3. Also check harness for short to ground and short to power.
- Check harness continuity between cooling fan motor-2 terminal 1 and IPDM E/R terminal 13, cooling fan motor-2 terminal 4 and body ground. Refer to wiring diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

DTC P1217 ENGINE OVER TEMPERATURE

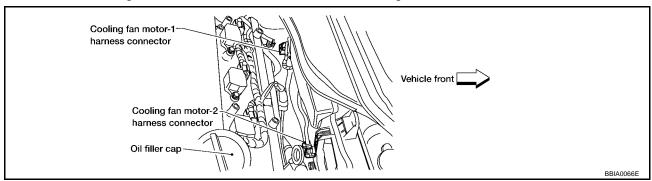
[VQ]

4. CHECK COOLING FAN MOTORS	А
Refer to EC-1119, "COOLING FAN MOTORS-1 AND -2" .	
OK or NG	
OK >> GO TO 5. NG >> Replace cooling fan motors.	EC
5. CHECK INTERMITTENT INCIDENT	С
Perform EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	
OK or NG	П
OK >> Replace IPDM E/R. Refer to PG-14, "IPDM E/R (INTELLIGENT POWER DISTRIBUTION MOD- ULE ENGINE ROOM)"	
NG >> Repair or replace harness or connector.	Е

Н

G

J


L

 \mathbb{N}

PROCEDURE B

1. CHECK COOLING FAN MOTORS CIRCUIT

- 1. Turn ignition switch "OFF".
- Disconnect cooling fan motor-1 harness connector and cooling fan motor-2 harness connector.

 Check harness continuity between the following; cooling fan motor-1 terminal 2 and IPDM E/R terminal 5, cooling fan motor-1 terminal 3 and IPDM E/R terminal 15, IPDM E/R terminal 14 and body ground. Refer to wiring diagram.

Continuity should exist.

- 4. Also check harness for short to ground and short to power.
- Check harness continuity between the following; cooling fan motor-2 terminal 2 and IPDM E/R terminal 10, cooling fan motor-2 terminal 3 and IPDM E/R terminal 12, IPDM E/R terminal 14 and body ground. Refer to wiring diagram.

Continuity should exist.

6. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 2.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

2. CHECK COOLING FAN MOTORS

Refer to EC-1119, "COOLING FAN MOTORS-1 AND -2".

OK or NG

OK >> GO TO 3.

NG >> Replace cooling fan motors.

3. CHECK INTERMITTENT INCIDENT

 $\hbox{Perform $\underline{\sf EC-754,"TROUBLE\ DIAGNOSIS\ FOR\ INTERMITTENT\ INCIDENT"$} \ .$

OK or NG

OK >> Replace IPDM E/R. Refer to PG-14, "IPDM E/R (INTELLIGENT POWER DISTRIBUTION MOD-ULE ENGINE ROOM)".

NG >> Repair or replace harness connectors.

DTC P1217 ENGINE OVER TEMPERATURE

[VQ]

Main 12 Causes of Overheating

UBS003GX

Α

D

Е

Н

UBS003GY

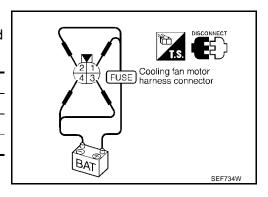
M

Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	 Blocked radiator Blocked condenser Blocked radiator grille Blocked bumper 	Visual	No blocking	_
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	MA-12
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	MA-22
	4	Radiator cap	Pressure tester	59 - 98 kPa (0.6 - 1.0 kg/cm ² , 9 - 14 psi) (Limit)	CO-33
ON*2	5	Coolant leaks	Visual	No leaks	<u>CO-32</u>
ON* ²	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	<u>CO-45</u>
ON* ¹	7	Cooling fan	CONSULT-II	Operating	See trouble diagnosis for DTC P1217 (EC-1109).
OFF	8	Combustion gas leak	Color checker chemical tester 4 Gas analyzer	Negative	_
ON* ³	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	MA-22
OFF* ⁴	10	Coolant return from reservoir tank to radia- tor	Visual	Should be initial level in reservoir tank	MA-22
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	EM-180
	12	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	EM-196

^{*1:} Turn the ignition switch ON.

For more information, refer to CO-29, "OVERHEATING CAUSE ANALYSIS" .

Component Inspection COOLING FAN MOTORS-1 AND -2


1. Disconnect cooling fan motor harness connectors.

Supply cooling fan motor terminals with battery voltage and check operation.

	Speed	Term	ninals
	Ореец	(+) (-)	
Cooling fan motor	Low	1	4
Cooming fair motor	High	1, 2	3, 4

Cooling fan motor should operate.

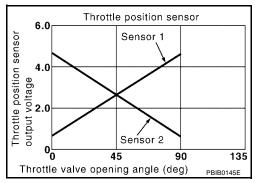
If NG, replace cooling fan motor.

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

UBS003GZ


DTC P1223, P1224 TP SENSOR

PFP:16119

Component Description

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

UBS003H0

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL SEN2	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	More than 0.36V
	Shift lever:D (A/T model)1st (M/T model)	Accelerator pedal: Fully depressed	Less than 4.75V

On Board Diagnosis Logic

UBS003H1

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1223 1223	Throttle position sensor 2 circuit low input	An excessively low voltage from the TP sensor 2 is sent to ECM.	Harness or connectors (The TP sensor 2 circuit is open or
P1224 1224	Throttle position sensor 2 circuit high input	An excessively high voltage from the TP sensor 2 is sent to ECM.	shorted.) • Electric throttle control actuator (TP sensor 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters in fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

DTC Confirmation Procedure

UBS003H2

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

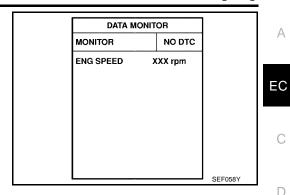
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

1. Turn ignition switch "ON".

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.


The ECM regulates an opening speed of approx. 5 seconds to an opening of 10 degrees.

So, the acceleration will be poor.

DTC P1223, P1224 TP SENSOR

[VQ]

- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-1123, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Α

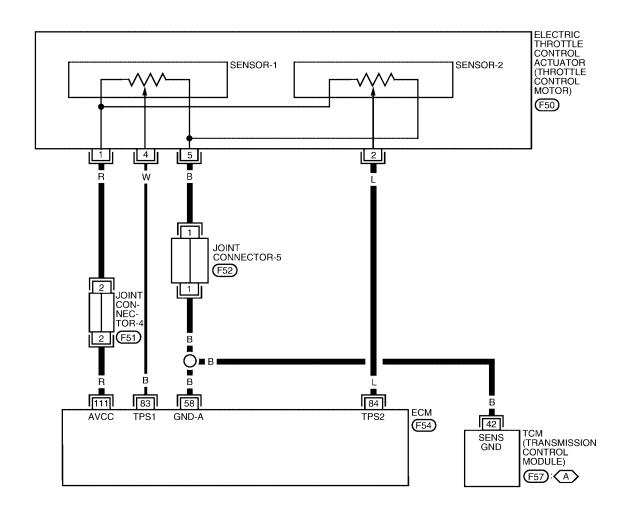
С

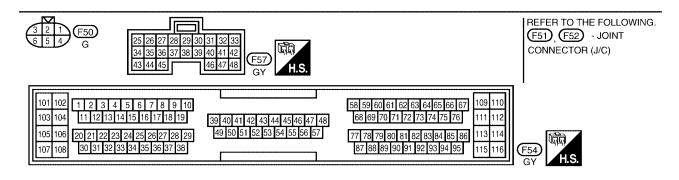
D

Е

Н

M


Wiring Diagram


UBS003H3

EC-TPS2-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

A : WITH A/T

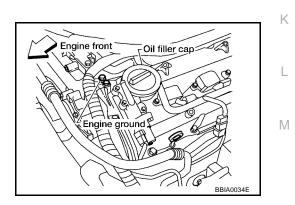
BBWA0194E

UBS003H4

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

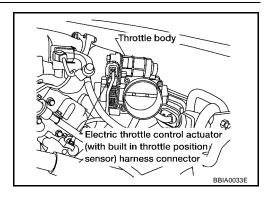
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
58	В	Sensors' ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	C
		Throttle position sensor 1	[Ignition switch "ON"] Gear position: "D" (A/T models) Gear position: "1st" (M/T models) Accelerator pedal fully released	More than 0.36V	D
83 W	VV		[Ignition switch "ON"] Gear position: "D" (A/T models) Gear position: "1st" (M/T models) Accelerator pedal fully depressed	Less than 4.75V	E F
84 L	L Throttle position sensor 2	[Ignition switch "ON"] Gear position: "D" (A/T models) Gear position: "1st" (M/T models) Accelerator pedal fully released	Less than 4.75V	G	
		Tillottie position sensor 2	 [Ignition switch "ON"] Gear position: "D" (A/T models) Gear position: "1st" (M/T models) Accelerator pedal fully depressed 	More than 0.36V	H
111	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V	_


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

1. Turn ignition switch "OFF".

2. Loosen and retighten engine ground screws.

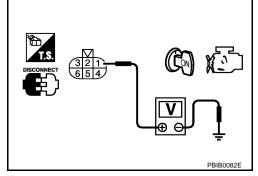

>> GO TO 2.

Revision: May 2004 EC-1123 2002 Altima

2. CHECK THROTTLE POSITION SENSOR 2 POWER SUPPLY CIRCUIT

- Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch "ON".

 Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG

>> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK THROTTLE POSITION SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between electric throttle control actuator terminal 5 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-5
- Harness for open or short between electric throttle control actuator and ECM
- Harness for open or short between electric throttle control actuator and TCM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK THROTTLE POSITION SENSOR 2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 84 and electric throttle control actuator terminal 2. Refer to Wiring Diagram.

EC

Α

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

D

6. CHECK THROTTLE POSITION SENSOR

Refer to EC-1125, "Component Inspection".

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

F

Е

7. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-668, "Throttle Valve Closed Position Learning".
- Perform <u>EC-668</u>, "Idle Air Volume Learning".

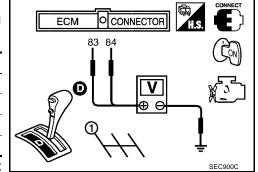
Н

>> INSPECTION END

8. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

M


LIBSONSHE

>> INSPECTION END

Component Inspection THROTTLE POSITION SENSOR

- Reconnect all harness connectors disconnected.
- 2. Perform EC-668, "Throttle Valve Closed Position Learning".
- 3. Turn ignition switch "ON".
- Set selector lever to "D" position (A/T models) or "1st" position (M/T models).
- Check voltage between ECM terminals 83 (TP sensor 1signal), 84 (TP sensor 2signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
83	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
84	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- 6. If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform EC-668, "Throttle Valve Closed Position Learning".
- 8. Perform EC-668, "Idle Air Volume Learning".

DTC P1223, P1224 TP SENSOR

[VQ]

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

UBS003H6

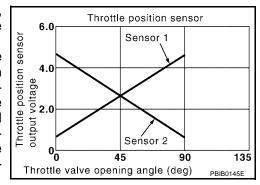
Refer to EM-114, "INTAKE MANIFOLD".

DTC P1225 TP SENSOR

PFP:16119

Component Description

UBS003H7


EC

Е

M

Electric Throttle Control Actuator consists of throttle control motor, acceleration pedal position sensor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

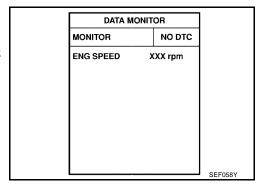
UBS003H8

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1225 1225	Closed throttle position learning performance problem	Closed throttle position learning value is excessively low.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure

UBS003H9

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(II) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Turn ignition switch "OFF", wait at least 10 seconds.
- 4. Turn ignition switch "ON".
- 5. If 1st trip DTC is detected, go to EC-1128, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

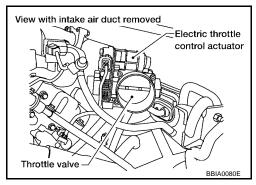
DTC P1225 TP SENSOR

[VQ]

Diagnostic Procedure

1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY

UBS003HA


- 1. Turn ignition switch "OFF".
- 2. Remove the intake air duct.
- 3. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG >> Remo

>> Remove the foreign matter and clean the electric throttle control actuator inside.

2. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-668, "Throttle Valve Closed Position Learning".
- 3. Perform EC-668, "Idle Air Volume Learning".

>> INSPECTION END

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-114, "INTAKE MANIFOLD".

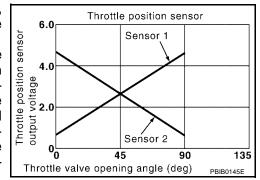
UBS003HB

DTC P1226 TP SENSOR

PFP:16119

Component Description

UBS003HC


EC

Е

M

Electric Throttle Control Actuator consists of throttle control motor, acceleration pedal position sensor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition

On Board Diagnosis Logic

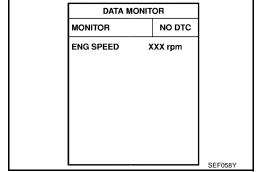
UBS003HD

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1226 1226	Closed throttle position learning performance problem	Closed throttle position learning is not performed successfully, repeatedly.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure

UBS003HE

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(II) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Turn ignition switch "OFF", wait at least 10 seconds.
- 4. Turn ignition switch "ON".
- 5. Repeat steps 3 and 4, 32 times.
- If 1st trip DTC is detected, go to <u>EC-1130, "Diagnostic Procedure"</u>.

WITH GST

Follow the procedure "With CONSULT-II" above.

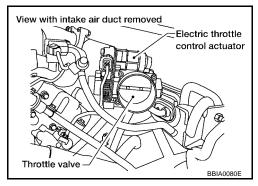
DTC P1226 TP SENSOR

[VQ]

Diagnostic Procedure

1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY

UBS003HF


- 1. Turn ignition switch "OFF".
- 2. Remove the intake air duct.
- 3. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG >> Remo

>> Remove the foreign matter and clean the electric throttle control actuator inside.

$2. \ \mathsf{REPLACE} \ \mathsf{ELECTRIC} \ \mathsf{THROTTLE} \ \mathsf{CONTROL} \ \mathsf{ACTUATOR}$

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-668, "Throttle Valve Closed Position Learning".
- 3. Perform EC-668, "Idle Air Volume Learning".

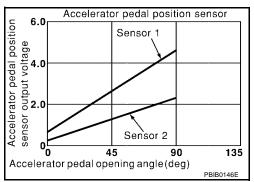
>> INSPECTION END

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-114, "INTAKE MANIFOLD".

UBS003HG

DTC P1227, P1228 APP SENSOR


PFP:18002

Component Description

UBS003HH

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM

receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN1	Ignition switch: ON (engine stopped)	Accelerator pedal: Fully released	0.41 - 0.71V
ACCEL SEN2		Accelerator pedal: Fully depressed	More than 4.2V
CLSD THL POS	POS • Ignition switch: ON	Accelerator pedal: Fully released	ON
CLSD THE POS		Accelerator pedal: Slightly depressed	OFF

On Board Diagnosis Logic

UBS003HJ

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name DTC detecting condition		Possible cause
P1227 1227	Accelerator pedal position sensor 2 circuit low input	An excessively low voltage from the APP sensor 2 is sent to ECM.	Harness or connectors (The APP sensor 2 circuit is open or shorted.)
P1228 1228	Accelerator pedal position sensor 2 circuit high input	An excessively high voltage from the APP sensor 2 is sent to ECM.	Accelerator pedal position sensor (Accelerator pedal position sensor 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters in fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates an opening speed of approx. 5 seconds to an opening of 10 degrees.

So, the acceleration will be poor.

DTC Confirmation Procedure

UBS003HK

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

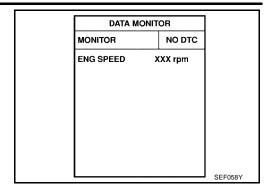
Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(WITH CONSULT-II

1. Turn ignition switch "ON".

EC-1131 Revision: May 2004 2002 Altima

EC

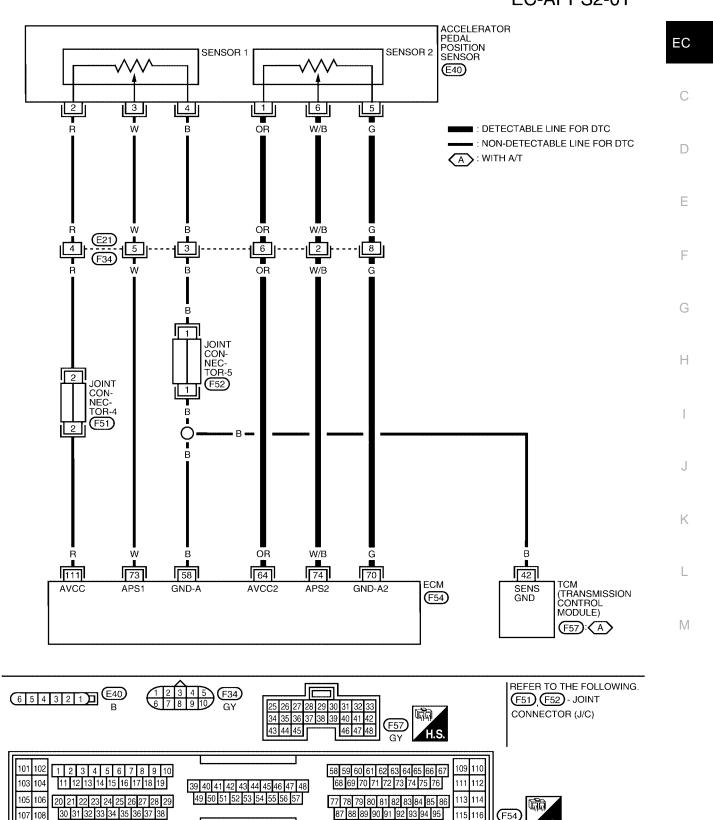

Α

M

DTC P1227, P1228 APP SENSOR

[VQ]

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-1134, "Diagnostic Procedure".


WITH GST

Follow the procedure "With CONSULT-II" above.

Α

Wiring Diagram

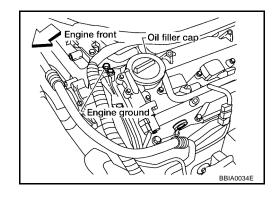
EC-APPS2-01

BBWA0198E

CAUTION:

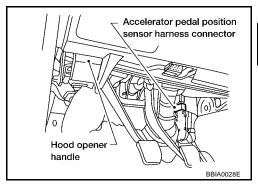
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
58	В	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
64	OR	Accelerator pedal position sensor 2 power supply	[Ignition switch "ON"]	Approximately 2.5V
70	G	Accelerator pedal position sensor 2 ground	[Ignition switch "ON"]	Approximately 0V
73		Accelerator pedal position sensor 1	[Ignition switch "ON"] • Accelerator pedal fully released	0.41 - 0.71V
73 W	VV		[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 4.2V
74	74 W/B	W/B Accelerator pedal position sensor 2	[Ignition switch "ON"] • Accelerator pedal fully released	0.21 - 0.36V
74			[Ignition switch "ON"] • Accelerator pedal fully depressed	More than 2.1V
111	R	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

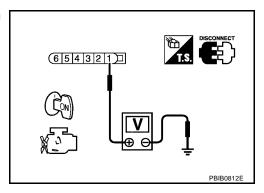
UBS003HM


- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT

- Disconnect accelerator pedal position (APP) sensor harness connector.
- Turn ignition switch "ON".



3. Check voltage between APP sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 2.5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E21, F34
- Harness for open or short between ECM and accelerator pedal position sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK APP SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- 2. Check harness continuity between APP sensor terminal 5 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E21, F34
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

Α

D

Е

K

M

2002 Altima

6. CHECK APP SENSOR 2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 74 and APP sensor terminal 6. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E21, F34
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK APP SENSOR

Refer to EC-1136, "Component Inspection".

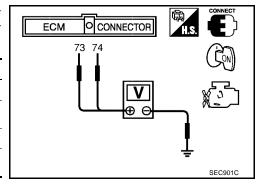
OK or NG

OK >> GO TO 9.

NG >> Replace accelerator pedal assembly.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection ACCELERATOR PEDAL POSITION SENSOR

UBS003HN

- 1. Reconnect all harness connectors disconnected.
- 2. Turn ignition switch "ON".
- 3. Check voltage between ECM terminals 73 (APP sensor 1 signal), 74 (APP sensor 2 signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
73	Fully released	0.41 - 0.71V
(Accelerator pedal position sensor 1)	Fully depressed	More than 4.2V
74	Fully released	0.21 - 0.36V
(Accelerator pedal position sensor 2)	Fully depressed	More than 2.1V

If NG, replace accelerator pedal assembly.

Removal and Installation ACCELERATOR PEDAL

Refer to ACC-2, "ACCELERATOR CONTROL SYSTEM".

UBS003HO

DTC P1229 SENSOR POWER SUPPLY

On Board Diagnosis Logic

PFP:16119

UBS003HP

D

Е

Н

K

M

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1229 1229	Sensor power supply circuit short	ECM detects a voltage of power source for sensor is excessively low or high.	 Harness or connectors (The TP sensor 1 and 2 circuit is shorted.) (APP sensor 1 circuit is shorted.) (MAF sensor circuit is shorted.) (EVAP control system pressure sensor circuit is shorted.) (Power steering pressure sensor circuit is shorted.) (Refrigerant pressure sensor circuit is shorted.) (Refrigerant pressure sensor circuit is shorted.) (Electric throttle control actuator (TP sensor 1 and 2) Accelerator pedal position sensor (APP sensor 1) MAF sensor EVAP control system pressure sensor Power steering pressures sensor Refrigerant pressures sensor Refrigerant pressures sensor ECM pin terminal

FAIL-SAFE MODE

When the malfunction is detected, ECM enters in fail-safe mode and the MIL lights up.

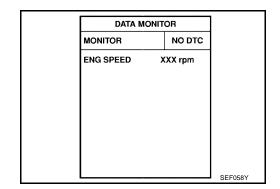
Engine operation condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

UBS003HQ

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

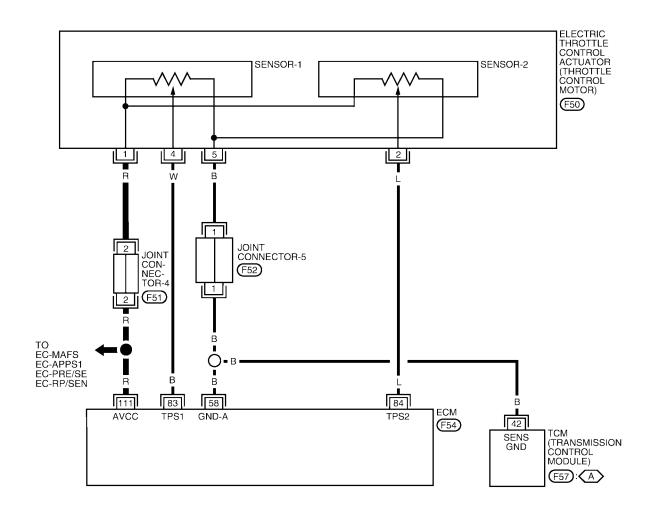
Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

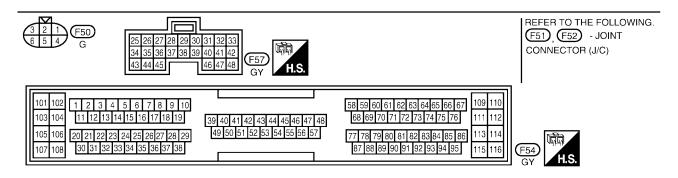
(P) WITH CONSULT-II

- Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- If DTC is detected, go to <u>EC-1139</u>, "<u>Diagnostic Procedure</u>".

WITH GST

Follow the procedure "WITH CONSULT-II" above.


Wiring Diagram


UBS003HF

EC-SEN/PW-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

A : WITH A/T

WBWA0005E

DTC P1229 SENSOR POWER SUPPLY

[VQ]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
111	R	Sensor's power sup- ply	[Ignition switch "ON"]	Approximately 5V

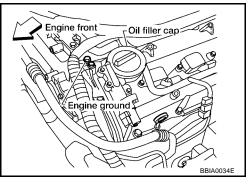
Diagnostic Procedure

UBS003HS

EC

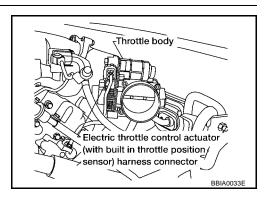
D

Е


Н

M

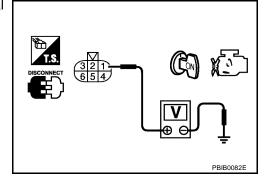
1. RETIGHTEN GROUND SCREWS


- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch "ON".



 Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 3.

3. CHECK SENSOR POWER SUPPLY CIRCUITS

Check the following.

Harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminals	Reference Wiring Diagram
	Electric throttle control actuator terminal 1	EC-1138
	APP sensor terminal 2	EC-1133
111	MAF sensor terminal 2	EC-798
	EVAP control system pressure sensor terminal 1	EC-985
	Power steering pressure sensor terminal 3	EC-1032
	Refrigerant pressure sensor terminal 1	EC-1267

ECM pin terminal.

OK or NG

OK >> GO TO 4.

NG >> Repair short to ground or short to power in harness or connectors.

4. CHECK COMPONENTS

Check the following.

- Accelerator pedal position sensor (Refer to <u>EC-1136</u> "Component Inspection".)
- Mass air flow sensor (Refer to <u>EC-794</u> "Component Inspection".)
- EVAP control system pressure sensor (Refer to <a>EC-988 "Component Inspection".)
- Power steering pressure sensor (Refer to EC-1034 "Component Inspection".)
- Refrigerant pressure sensor (Refer to EC-1268 "Component Inspection".)

OK or NG

OK >> GO TO 7.

NG >> Replace malfunctioning component.

5. CHECK THROTTLE POSITION SENSOR

Refer to EC-904 "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

6. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace electric throttle control actuator.
- 2. Perform EC-668, "Throttle Valve Closed Position Learning".
- 3. Perform EC-668, "Idle Air Volume Learning".

>> INSPECTION END

7. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

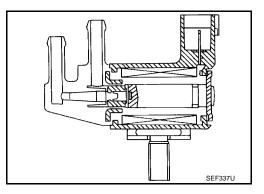
DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

PFP:14920

Description SYSTEM DESCRIPTION

UBS003HT

D


Е

Sensor	Input Signal to ECM	ECM function	Actuator	E
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Ignition switch	Start signal			[
Throttle position sensor	Throttle position	EVAP canister	EVAP canister purge vol-	
Accelerator pedal position switch	Accelerator pedal position	purge flow control	ume control solenoid valve	,
Heated oxygen sensors 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)			l
Fuel tank temperature sensor	Fuel temperature in fuel tank			
Vehicle speed signal (CAN communication line)	Vehicle speed			ı

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/ OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

CONSULT-II Reference Value in Data Monitor Mode

UBS003HU

M

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle (Vehicle stopped)	0%
PURG VOL C/V	 Air conditioner switch "OFF" 		
	Shift lever: "N"	2,000 rpm	_
	No-load		

DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

On Board Diagnosis Logic

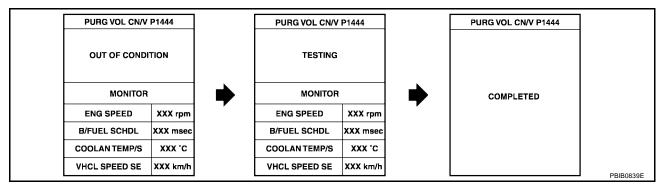
UBS003HV

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1444 1444	EVAP canister purge volume control solenoid valve	The canister purge flow is detected during the specified driving conditions, even when EVAP canister purge volume control solenoid valve is completely closed.	 EVAP control system pressure sensor EVAP canister purge volume control solenoid valve (The valve is stuck open.) EVAP canister vent control valve EVAP canister Hoses (Hoses are connected incorrectly or clogged.)

DTC Confirmation Procedure

UBS003HW

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

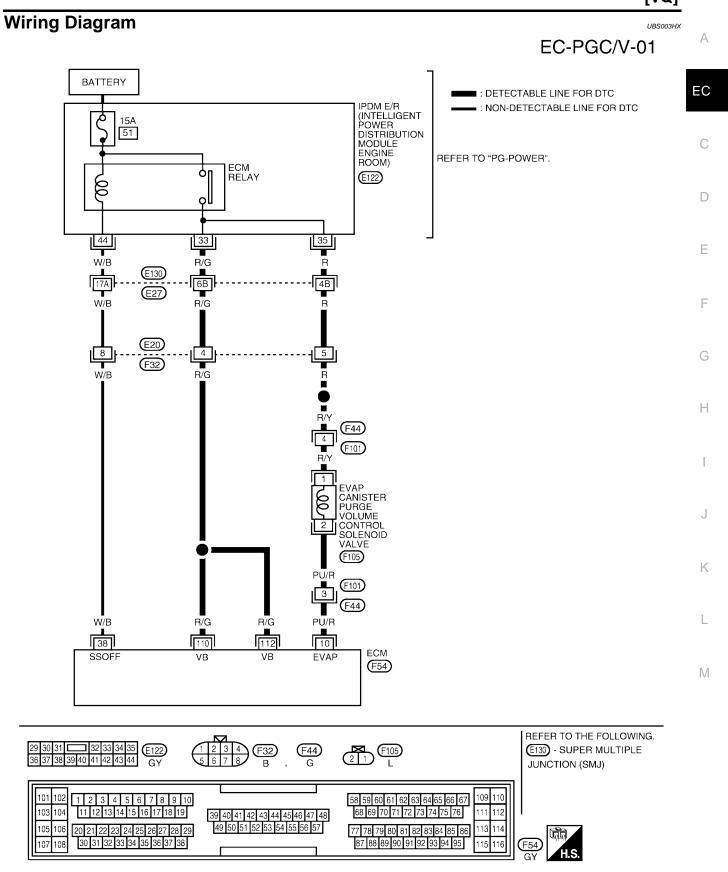
TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Turn ignition switch "ON".
- Select "PURG VOL CN/V P1444" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 5. Touch "START".

6. Start engine and let it idle until "TESTING" on CONSULT-II changes to "COMPLETED". (It will take approximately 10 seconds.)


If "TESTING" is not displayed after 5 minutes, retry from step 2.

7. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-1144, "Diagnostic Procedure".

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Start engine and let it idle for at least 20 seconds.
- 4. Select "MODE 7" with GST.
- If 1st trip DTC is detected, go to EC-1144, "Diagnostic Procedure".

DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE [VQ]

BBWA0068E

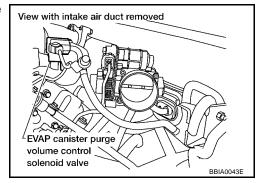
Specification data are reference values and are measured between each terminal and ground.

DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
10	PU/R	EVAP canister purge volume control sole-	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)★
	7 6/10	noid valve	 [Engine is running] Engine speed is about 2,000 rpm (More than 100 seconds after starting engine). 	BATTERY VOLTAGE (11 - 14V) * 100 V/Div 50 ms/Div 7 SEC991C

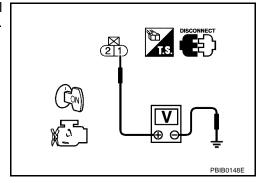

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

UBS003HY

1. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIR-CUIT

- Turn ignition switch "OFF".
- 2. Disconnect EVAP canister purge volume control solenoid valve harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- Harness connectors F44, F101
- IPDM E/R harness connector E122
- Harness for open or short between EVAP canister purge volume control solenoid valve and IPDM E/R
- Harness for open or short between ECM and IPDM E/R
 - >> Repair harness or connectors.

3. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIR-CUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 10 and EVAP canister purge volume control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F44, F101
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE

Check disconnection or improper connection of hose connected to EVAP control system pressure sensor. OK or NG

OK >> GO TO 6. NG >> Repair it.

6. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- Disconnect EVAP control system pressure sensor harness connector.
- Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 7.

NG >> Replace EVAP control system pressure sensor.

EC

D

Е

G

Н

11

n

1

M

7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-988, "Component Inspection".

OK or NG

OK (With CONSULT-II)>>GO TO 8.

OK (Without CONSULT-II)>>GO TO 9.

NG >> Replace EVAP control system pressure sensor.

8. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Reconnect harness connectors disconnected.
- Start engine.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 10. NG >> GO TO 9.

ACTIVE TES	т
PURG VOL CONT/V 0 %	
MONITOR	
ENG SPEED	XXX rpm
HO2S1 MNTR (B1)	LEAN
HO2S1 MNTR (B2)	LEAN
A/F ALPHA-B1	XXX %
A/F ALPHA-B2	XXX %
	<u> </u>

9. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-1148, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace EVAP canister purge volume control solenoid valve.

10. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 11.

NG >> Clean the rubber tube using an air blower.

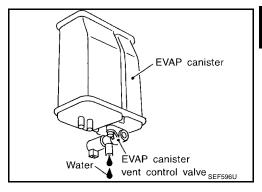
11. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-981, "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> Replace EVAP canister vent control valve.


DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

12. CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

Yes or No

Yes >> GO TO 13. No >> GO TO 16.

13. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK >> GO TO 15. NG >> GO TO 14.

14. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

15. CHECK WATER SEPARATOR

Refer to EC-968, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Clean or replace water separator.

16. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

EC

D

Е

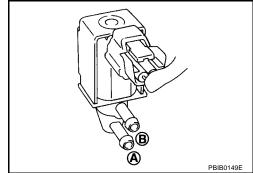
F

П

J

K

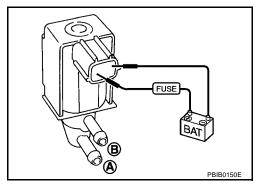
M


DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE [VQ]

Component Inspection EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE With CONSULT-II

UBS003HZ

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.


Condition (PURG VOL CONT/V value)	Air passage continuity between A and B
100.0%	Yes
0.0%	No

Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Removal and Installation EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

UBS00310

Refer to EM-114, "INTAKE MANIFOLD".

DTC P1446 EVAP CANISTER VENT CONTROL VALVE

PFP:14935

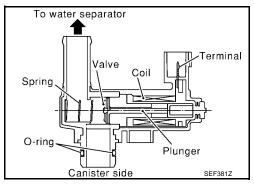
Component Description

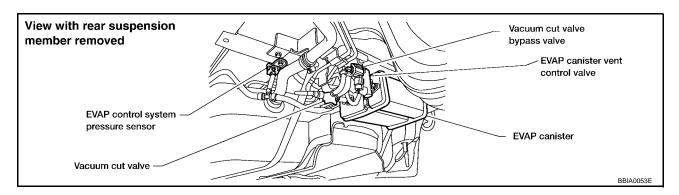
UBS003I1

Α

EC

Е


Н


The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

UBS003I2

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

On Board Diagnosis Logic

3500313

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1446 1446	EVAP canister vent control valve close	EVAP canister vent control valve remains closed under specified driving conditions.	EVAP canister vent control valve
			EVAP control system pressure sensor and the circuit
			 Blocked rubber tube to EVAP canister vent control valve
			Water separator
			EVAP canister is saturated with water

DTC Confirmation Procedure

UBS00314

M

CAUTION:

Always drive vehicle at a safe speed.

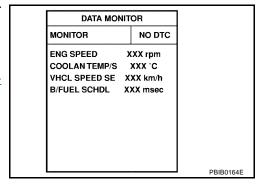
NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine.

DTC P1446 EVAP CANISTER VENT CONTROL VALVE

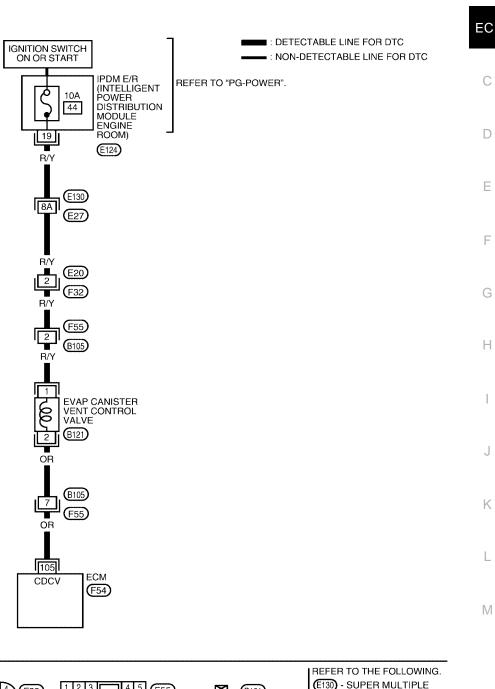

[VQ]

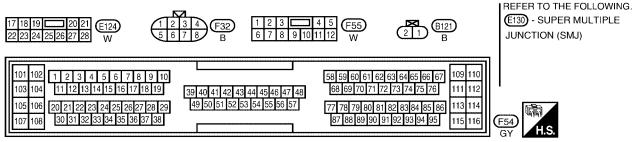
4. Drive vehicle at a speed of approximately 80 km/h (50 MPH) for a maximum of 15 minutes.

NOTE:

If a malfunction exists, NG result may be displayed quicker.

5. If 1st trip DTC is detected, go to EC-1152, "Diagnostic Procedure".


WITH GST


Follow the procedure "WITH CONSULT-II" above.

UBS00315

Wiring Diagram

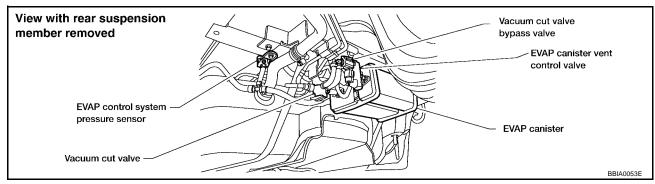
EC-VENT/V-01

BBWA0069E

Α

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
105	OR	EVAP canister vent control valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UB\$00316

1. CHECK RUBBER TUBE

- 1. Turn ignition switch "OFF".
- 2. Disconnect rubber tube connected to EVAP canister vent control valve.

3. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 2.

NG >> Clean rubber tube using an air blower.

2. CHECK WATER SEPARATOR

Refer to EC-968, "Component Inspection".

OK or NG

OK >> GO TO 3.

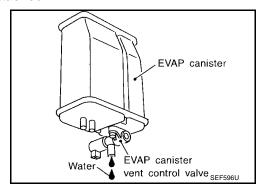
NG >> Clean or replace water separator.

3. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-1153, "EVAP CANISTER VENT CONTROL VALVE".

OK or NG

OK >> GO TO 4.


NG >> Replace EVAP canister vent control valve.

4. CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- Check if water will drain from the EVAP canister.

Yes or No

Yes >> GO TO 5. No >> GO TO 7.

DTC P1446 EVAP CANISTER VENT CONTROL VALVE

[VQ] Weigh the EVAP canister with the EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb). EC

6. DETECT MALFUNCTIONING PART

Check the following.

OK or NG OK

NG

EVAP canister for damage

5. CHECK EVAP CANISTER

>> GO TO 7.

>> GO TO 6.

- EVAP hose between EVAP canister and water separator for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

/. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE

Check disconnection or improper connection of hose connected to EVAP control system pressure sensor. OK or NG

OK >> GO TO 8.

NG >> Repair it.

8. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- Disconnect EVAP control system pressure sensor harness connector.
- Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 9.

NG >> Replace EVAP control system pressure sensor.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-988, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace EVAP control system pressure sensor.

10. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection **EVAP CANISTER VENT CONTROL VALVE**

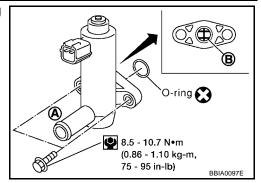
(P) With CONSULT-II

1. Remove EVAP canister vent control valve from EVAP canister.

EC-1153 Revision: May 2004 2002 Altima

D

Е


Н

K

M

LIBS00317

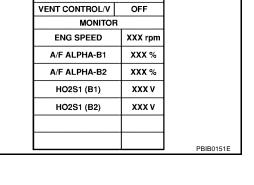
- Check portion **B** of EVAP canister vent control valve for being rusted.
 - If NG, replace EVAP canister vent control valve.
 - If OK, go to next step.
- 3. Reconnect harness connectors disconnected.
- 4. Turn ignition switch "ON".
- 5. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.

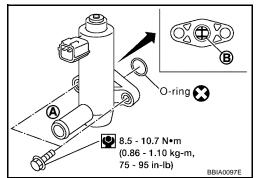
ACTIVE TEST

6. Check air passage continuity and operation delay time.

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

Operation takes less than 1 second.


If NG, replace EVAP canister vent control valve.


If OK, go to next step.

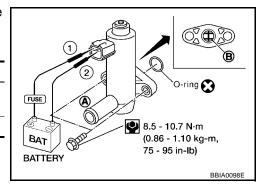
- 7. Clean the air passage (Portion **A** to **B**) of EVAP canister vent control valve using an air blower.
- 8. Perform step 6 again.

⋈ Without CONSULT-II

- 1. Remove EVAP canister vent control valve from EVAP canister.
- Check portion **B** of EVAP canister vent control valve for being rusted.

3. Check air passage continuity and operation delay time under the following conditions.

Make sure new O-ring is installed properly.


Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

Operation takes less than 1 second.

If NG, replace EVAP canister vent control valve.

If OK, go to next step.

- 4. Clean the air passage (Portion **A** to **B**) of EVAP canister vent control valve using an air blower.
- Perform step 3 again.

DTC P1448 EVAP CANISTER VENT CONTROL VALVE

PFP:14935

Component Description

UBS00318

Α

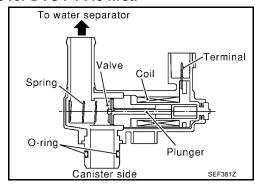
EC

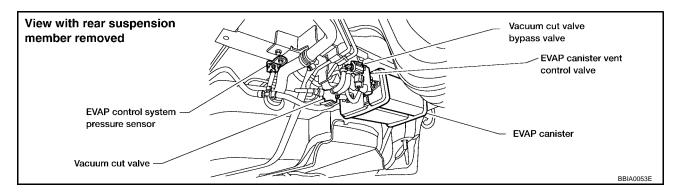
Е

Н

M

NOTE:


If DTC P1448 is displayed with P0442, perform trouble diagnosis for DTC P1448 first.


The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

UBS003I9

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

On Board Diagnosis Logic

UBS003IA

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
			EVAP canister vent control valve
			 EVAP control system pressure sensor and the circuit
P1448 1448		EVAP canister vent control valve remains opened under specified driving conditions.	 Blocked rubber tube to EVAP canister vent control valve
·		Water separator	
			EVAP canister is saturated with water
			 Vacuum cut valve

DTC Confirmation Procedure

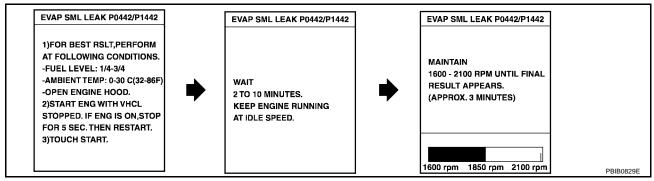
UBS003IB

NOTE:

- If DTC P1448 is displayed with P0442, perform trouble diagnosis for DTC P1448 first.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(I) WITH CONSULT-II

TESTING CONDITION:

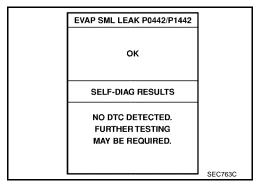

 Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.

- Always perform test at a temperature of 0 to 30°C (32 to 86°F).
- 1. Turn ignition switch "ON".
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 4. Make sure that the following conditions are met.

COOLAN TEMP/S	0 - 70°C (32 - 158°F)
INT/A TEMP SE	0 - 30°C (32 - 86°F)

5. Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.


If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to <u>EC-704, "Basic Inspection"</u>.

Make sure that "OK" is displayed. If "NG" is displayed, go to the following step.

NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

- 7. Stop engine and wait at least 10 seconds, then turn "ON".
- 8. Disconnect hose from water separator.

- 9. Select "VENT CONTROL/V" of "ACTIVE TEST" mode with CONSULT-II.
- 10. Touch "ON" and "OFF" alternately.

A	CTIVE TES	T	1
VENT CON	ITROL/V	OFF	1
	MONITOR		
ENG S	PEED	XXX rpm	
A/F ALI	PHA-B1	XXX %	
A/F ALI	PHA-B2	XXX %	
HO2S	1 (B1)	xxx v	
HO2S	1 (B2)	xxx v]
			1
			1
		<u> </u>	PBIB0151E

DTC P1448 EVAP CANISTER VENT CONTROL VALVE

[VQ]

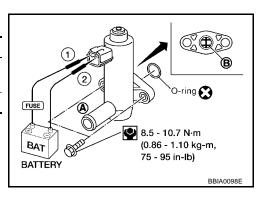
11. Make sure the following.

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

If the result is NG, go to $\underline{\text{EC-}1159}$, "Diagnostic Procedure" . If the result is OK, go to "Diagnostic Procedure" for DTC P0442, $\underline{\text{EC-}963}$.

Overall Function Check

IBS003IC


Use this procedure to check the overall function of the EVAP canister vent control valve circuit. During this check, a DTC might not be confirmed.

WITH GST

- 1. Disconnect hose from water separator.
- 2. Disconnect EVAP canister vent control valve harness connector.
- 3. Verify the following.

Condition	Air passage continuity
12V direct current supply between terminals 1 and 2	No
No supply	Yes

If the result is NG, go to $\underline{\text{EC-1159}}$, "Diagnostic Procedure" . If the result is OK, go to "Diagnostic Procedure" for DTC P0442, $\underline{\text{EC-963}}$.

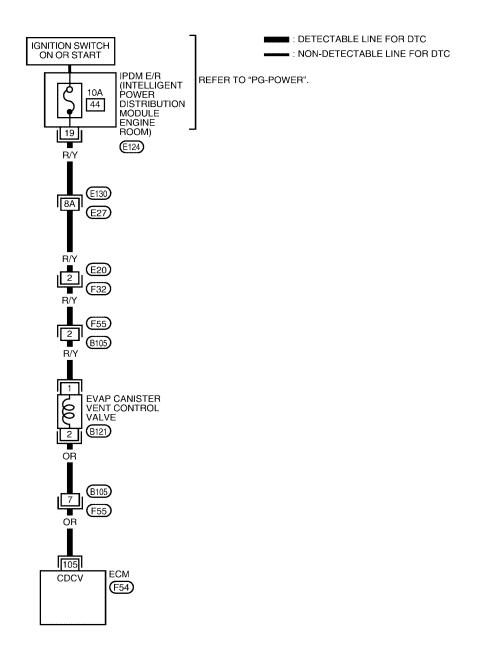
Α

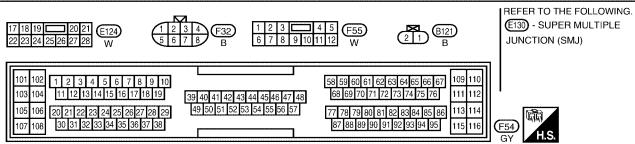
EC

C

D

Е


F



Н

Wiring Diagram

EC-VENT/V-01

BBWA0069E

DTC P1448 EVAP CANISTER VENT CONTROL VALVE

[VQ]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
105	OR	EVAP canister vent control valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS003IE

EC

D

Е

Н

M

1. CHECK RUBBER TUBE

- 1. Turn ignition switch "OFF".
- Disconnect rubber tube connected to EVAP canister vent control valve.

3. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 2.

NG >> Clean rubber tube using an air blower.

2. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-1161, "EVAP CANISTER VENT CONTROL VALVE" .

OK or NG

OK >> GO TO 3.

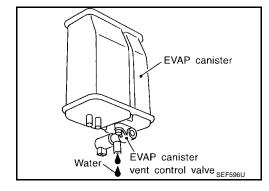
NG >> Replace EVAP canister vent control valve.

3. CHECK VACUUM CUT VALVE

Refer to EC-1187, "Component Inspection".

OK or NG

OK >> GO TO 6.


NG >> Replace vacuum cut valve.

4. CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

Yes or No

Yes >> GO TO 5. No >> GO TO 7.

5. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE

Check disconnection or improper connection of hose connected to EVAP control system pressure sensor. OK or NG

OK >> GO TO 8. NG >> Repair it.

8. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- 1. Disconnect EVAP control system pressure sensor harness connector.
- 2. Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 9.

NG >> Replace EVAP control system pressure sensor.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-988, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace EVAP control system pressure sensor.

DTC P1448 EVAP CANISTER VENT CONTROL VALVE

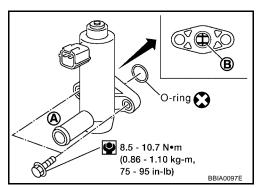
[VQ]

UBS003IF

10. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection EVAP CANISTER VENT CONTROL VALVE

(P) With CONSULT-II

- Remove EVAP canister vent control valve from EVAP canister.
- Check portion **B** of EVAP canister vent control valve for being rusted.

If NG, replace EVAP canister vent control valve. If OK, go to next step.

- 3. Reconnect harness connectors disconnected.
- 4. Turn ignition switch "ON".
- 5. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.

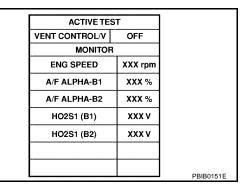
Check air passage continuity and operation delay time.

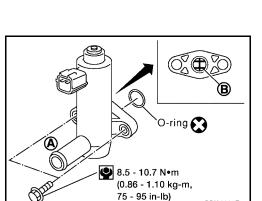
Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

Operation takes less than 1 second.

If NG, replace EVAP canister vent control valve.

If OK, go to next step.


- 7. Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower.
- Perform step 6 again.


⋈ Without CONSULT-II

Remove EVAP canister vent control valve from EVAP canister.

2.

Check portion **B** of EVAP canister vent control valve for being rusted.

EC

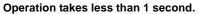
Е

Н

M

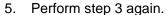
BBIA0097F

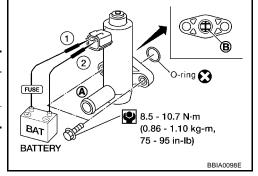
DTC P1448 EVAP CANISTER VENT CONTROL VALVE


[VQ]

3. Check air passage continuity and operation delay time under the following conditions.

Make sure new O-ring is installed properly.


Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes



If NG, replace EVAP canister vent control valve. If OK, go to next step.

DTC P1456 EVAP CONTROL SYSTEM

PFP:14710

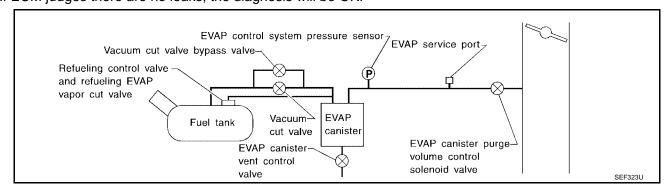
On Board Diagnosis Logic

EBS00KC2

Α

EC

D


Е

This diagnosis detects very small leaks in the EVAP line between fuel tank and EVAP canister purge volume control solenoid valve, using of vapor pressure in the fuel tank in the same way as conventional EVAP small leak.

If ECM judges a leak which corresponds to a very small leak, the very small leak P1456 will be detected.

If ECM judges a leak equivalent to a small leak, EVAP small leak P1442 will be detected.

If ECM judges there are no leaks, the diagnosis will be OK.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	(
		Incorrect fuel tank vacuum relief valve		
		Incorrect fuel filler cap used		
		Fuel filler cap remains open or fails to close.		
			Foreign matter caught in fuel filler cap.	
		Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.		
			Foreign matter caught in EVAP canister vent control valve.	
			EVAP canister or fuel tank leaks	
P1456 1456 Evaporative emission control system very small leak (positive pressure check) • EVAP system has a very small leak. • EVAP system does not operate properly.		EVAP purge line (pipe and rubber tube) leaks		
		EVAP purge line rubber tube bent		
	EVAP system has a very small leak.	Blocked or bent rubber tube to EVAP control system pressure sensor		
		EVAP system does not operate prop-	Loose or disconnected rubber tube	
	ressure check) erly.	EVAP canister vent control valve and the circuit		
		EVAP canister purge volume control solenoid valve and the circuit		
		Fuel tank temperature sensor		
	O-ring of EVAP canister vent control valve is missing or damaged			
		EVAP canister is saturated with water		
			EVAP control system pressure sensor	
			Refueling control valve	
			ORVR system leaks	
			Fuel level sensor and the circuit	
			Foreign matter caught in EVAP canister purge vol- ume control solenoid valve	

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

EBS00KC3

NOTF:

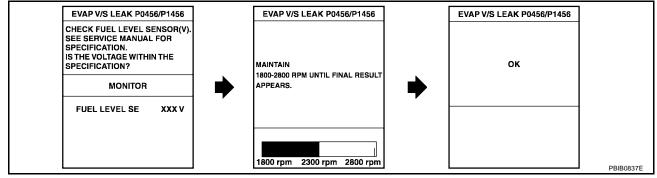
- If DTC P1456 is displayed with P1442, first perform trouble diagnosis for DTC P1456.
- After repair, make sure that the hoses and clips are installed properly.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- If any of following conditions are met just before the DTC confirmation procedure, leave the vehicle for more than 1 hour.
- Fuel filler cap is removed.
- Refilled or drained the fuel.
- EVAP component parts is/are removed.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) WITH CONSULT-II

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2. Make sure the following conditions are met.


FUEL LEVEL SE: 0.25 - 1.15V

COOLAN TEMP/S: 0 - 32°C (32 - 90°F) FUEL T/TMP SE: 0 - 35°C (32 - 95°F) INT A/TEMP SE: More than 0°C (32°F)

If NG, turn ignition switch "OFF" and leave the vehicle in a cool place (soak the vehicle) or refilling/draining fuel until the output voltage condition of the "FUEL LEVEL SE" meets within the range above and leave the vehicle for more than 1 hour. Then start from step 1).

- 3. Turn ignition switch "OFF" and wait at least 10 seconds.
- 4. Turn ignition switch "ON".
- Select "EVAP V/S LEAK P0456/P1456" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

Make sure that "OK" is displayed.

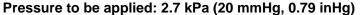
If "NG" is displayed, refer to EC-1165, "Diagnostic Procedure".

NOTE:

- If the engine speed cannot be maintained within the range displayed on CONSULT-II screen, go to <u>EC-704</u>, "Basic Inspection".
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

Overall Function Check

EBS00KC


WITH GST

Use this procedure to check the overall function of the EVAP very small leak function. During this check, a 1st trip DTC might not be confirmed.

CAUTION

- Never use compressed air, doing so may damage the EVAP system.
- Do not start engine.

- Do not exceeded 4.12 kPa (0.042 kg/cm², 0.6 psi).
- Attach the EVAP service port adapter securely to the EVAP ser-1. vice port.
- 2. Set the pressure pump and a hose.
- 3. Also set a vacuum gauge via 3-way connector and a hose.
- 4. Turn ignition switch "ON".
- Connect GST and select MODE 8.
- 6. Using MODE 8 control the EVAP canister vent control valve (close) and vacuum cut valve bypass valve (open).
- 7. Apply pressure and make sure the following conditions are satisfied.

Time to be waited after the pressure drawn in to the EVAP system and the pressure to be dropped: 60 seconds and the pressure should not be dropped more than 0.4 kPa (3 mmHg, 0.12 inHg).

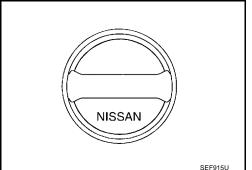
If NG, go to EC-1165, "Diagnostic Procedure". If OK, go to next step.

- 8. Disconnect GST.
- 9. Start engine and warm it up to normal operating temperature.
- 10. Turn ignition switch "OFF" and wait at least 10 seconds.
- 11. Restart engine and let it idle for 90 seconds.
- 12. Keep engine speed at 2,000 rpm for 30 seconds.
- 13. Turn ignition switch "OFF".

NOTE:

For more information, refer to GST instruction manual.

Diagnostic Procedure


1. CHECK FUEL FILLER CAP DESIGN

- Turn ignition switch "OFF".
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4. EVAP service port adapter service port Pressure amua SEF916U

EC

Α

Е

Н

EBS00KC5

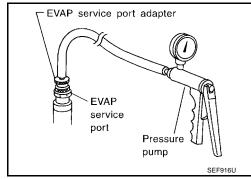
4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-1289, "FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FILLER CAP)".

OK or NG

OK >> GO TO 5.

NG >> Replace fuel filler cap with a genuine one.

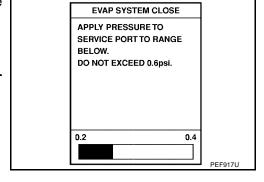

5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely.

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

Models with CONSULT-II>>GO TO 6.
Models without CONSULT-II>>GO TO 7.

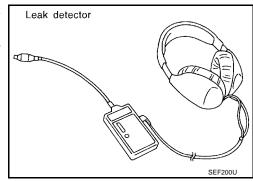

6. CHECK FOR EVAP LEAK

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

NOTE:

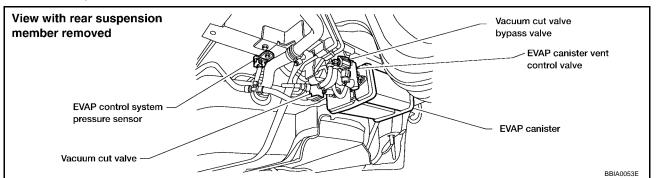
- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.



 Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to <u>EC-1287</u>, "EVAPORATIVE EMISSION LINE DRAW-ING".

OK or NG

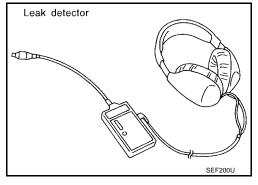
OK >> GO TO 8.


NG >> Repair or replace.

. CHECK FOR EVAP LEAK

⋈ Without CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)


Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-1287, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

8. CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT

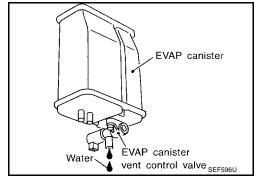
Refer to EC-1155, "DTC Confirmation Procedure".

OK or NG

OK

NG >> Repair or replace EVAP canister vent control valve and O-ring or harness/connector.

9. CHECK IF EVAP CANISTER SATURATED WITH WATER


- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 10.

No (With CONSULT-II)>>GO TO 12.

No (Without CONSULT-II)>>GO TO 13.

EC

D

Н

10. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK (With CONSULT-II)>>GO TO 12. OK (Without CONSULT-II)>>GO TO 13. NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection

>> Repair hose or replace EVAP canister.

12. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 15. NG >> GO TO 14.

ACTIVE TES	Т	
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XX %	
HO2S1 MNTR (B1)	LEAN	
		PBIB0828E

13. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Stop engine.
- Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 16. NG >> GO TO 14.

14. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to <u>EC-646, "Vacuum Hose Drawing"</u> .

OK or NG

OK >> GO TO 15.

NG >> Repair or reconnect the hose.

DTC P1456 EVAP CONTROL SYSTEM

[VQ]

15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-975, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace EVAP canister purge volume control solenoid valve.

16. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-988, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace fuel level sensor unit.

17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-988, "Component Inspection".

OK or NG

OK >> GO TO 18.

NG >> Replace EVAP control system pressure sensor.

18. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to EC-1287, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 19.

NG >> Repair or reconnect the hose.

19. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 20.

20. CHECK REFUELING EVAP VAPOR LINE

Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to EC-1292, "ON BOARD REFUELING VAPOR RECOVERY (ORVR)"

OK or NG

OK >> GO TO 21.

NG >> Repair or replace hoses and tubes.

21. CHECK SIGNAL LINE AND RECIRCULATION LINE

Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 22.

NG >> Repair or replace hoses, tubes or filler neck tube.

22. CHECK REFUELING CONTROL VALVE

OK >> GO TO 23.

>> Replace refueling control valve with fuel tank. NG

EC-1169 Revision: May 2004 2002 Altima

EC

D

Е

M

Refer to EC-1295, "Component Inspection".

OK or NG

DTC P1456 EVAP CONTROL SYSTEM

[VQ]

23. CHECK FUEL LEVEL SENSOR

Refer to DI-21, "FUEL LEVEL SENSOR UNIT CHECK".

OK or NG

OK >> GO TO 24.

NG >> Replace fuel level sensor unit.

24. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

DTC P1464 FUEL LEVEL SENSOR

[VQ]

DTC P1464 FUEL LEVEL SENSOR

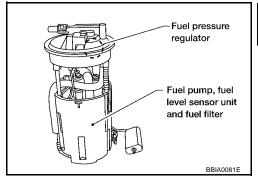
PFP:25060

Component Description

UBS003IG

Α

EC


D

Е

M

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnosis Logic

UBS003IH

ECM receives two signals from the fuel level sensor.

One is fuel level sensor power supply circuit, and the other is fuel level sensor ground circuit.

This diagnosis indicates the latter to detect open circuit malfunction.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1464 1464	Fuel level sensor circuit ground signal	A high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted)

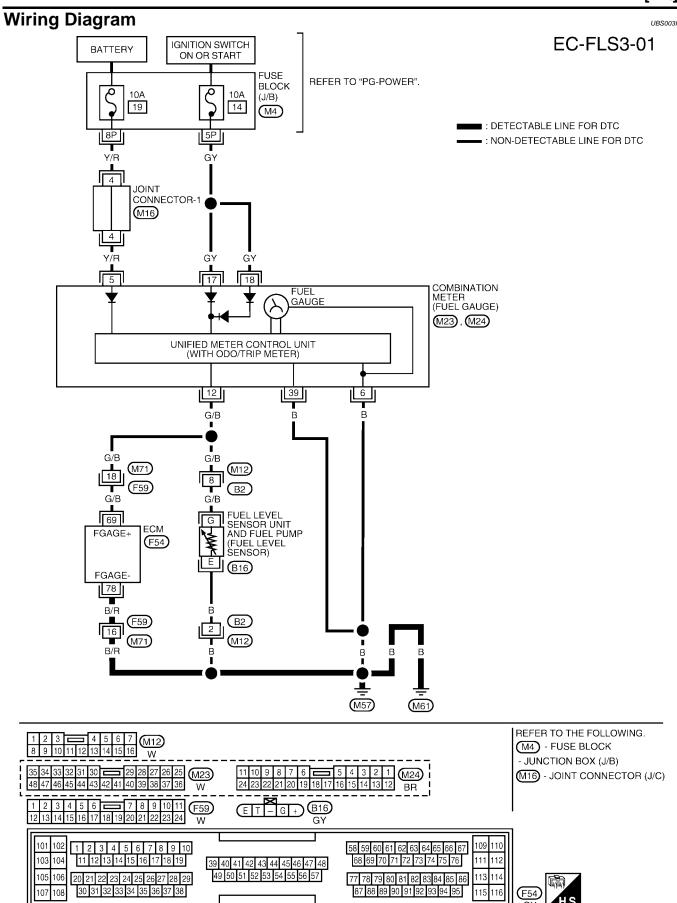
DTC Confirmation Procedure

UBS003II

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(III) WITH CONSULT-II


- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-1173, "Diagnostic Procedure".

DATA MONITOR		
MONITOR	NO DTC	
FUELT/TMP SE	XXX °C	
FUEL LEVEL SE	xxx v	
		SEF195Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

BBWA0085E

Specification data are reference values and are measured between each terminal and ground.

DTC P1464 FUEL LEVEL SENSOR

[VQ]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE	ITEM	CONDITION	DATA (DC Voltage)	Е
69	G/B	Fuel level sensor	[Ignition switch "ON"]	Approximately 0 - 4.8V Output voltage varies with fuel level.	
78	В	Fuel level sensor ground	[Engine is running] • Idle speed	Approximately 0V	

Diagnostic Procedure

UBSOO3IK

Е

Н

M

1. CHECK FUEL LEVEL SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 78 and body ground. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to power.

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F59, M71
- Harness for open and short between ECM and body ground
 - >> Replace open circuit or short to power in harness or connectors.

3. CHECK FUEL LEVEL SENSOR

Refer to DI-21, "Electrical Components Inspection".

OK or NG

OK >> GO TO 4.

NG >> Replace fuel level sensor unit.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Removal and Installation FUEL LEVEL SENSOR

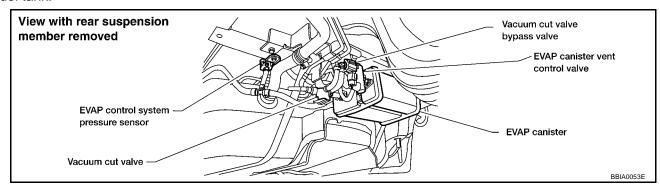
Refer to FL-5, "Removal and Installation".

UBS003IL

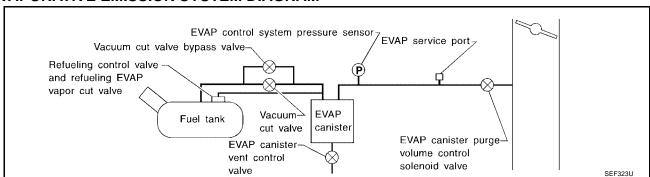
DTC P1490 VACUUM CUT VALVE BYPASS VALVE

PFP:17372

Description COMPONENT DESCRIPTION


UBS003IM

The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.


The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

EVAPORATIVE EMISSION SYSTEM DIAGRAM

CONSULT-II Reference Value in Data Monitor Mode

UBS003IN

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPAS S/V	Ignition switch: ON	OFF

On Board Diagnosis Logic

UBS003IO

DTC	No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1490 1490)	Vacuum cut valve bypass valve circuit	An improper voltage signal is sent to ECM through vacuum cut valve bypass valve.	 Harness or connectors (The vacuum cut valve bypass valve circuit is open or shorted) Vacuum cut valve bypass valve

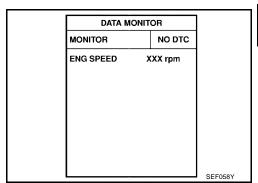
DTC Confirmation Procedure

UBS003IF

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:


Before performing the following procedure, confirm that battery voltage is more than 11V at idle speed.

DTC P1490 VACUUM CUT VALVE BYPASS VALVE

[VQ]

WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait at least 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-1177, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

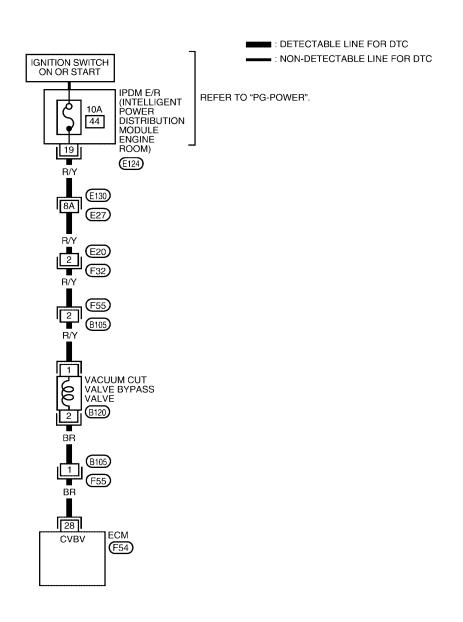
EC

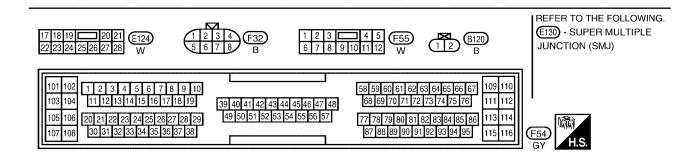
Α

 D

C

Е


F


Н

Wiring Diagram

UBS003IQ

EC-BYPS/V-01

BBWA0086E

DTC P1490 VACUUM CUT VALVE BYPASS VALVE

[VQ]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
28	BR	Vacuum cut valve bypass valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS003IR

EC

D

Е

1. INSPECTION START

Do you have CONSULT-II?

Yes or No

Yes >> GO TO 2. No >> GO TO 3.

2. CHECK VACUUM CUT VALVE BYPASS VALVE CIRCUIT

(II) With CONSULT-II

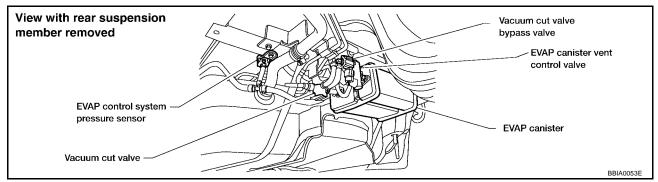
- 1. Turn ignition switch "OFF" and then "ON".
- 2. Select "VC/V BYPASS/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Touch "ON/OFF" on CONSULT-II screen.
- 4. Make sure that clicking sound is heard from the vacuum cut valve bypass valve.

OK or NG

OK >> GO TO 7. NG >> GO TO 3.

ACTIVE TES	Т
VC/V BYPASS/V	OFF
MONITOR	
ENG SPEED	XXX rpm
A/F ALPHA-B1	XXX %
A/F ALPHA-B2	XXX %
HO2S1 MNTR (B1)	LEAN
HO2S1 MNTR (B2)	LEAN
	<u>,, , , , , , , , , , , , , , , , , , ,</u>

Н

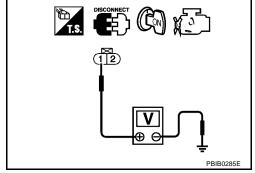

1

K

L

3. CHECK VACUUM CUT VALVE BYPASS VALUE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect vacuum cut valve bypass valve harness connector.



- 3. Turn ignition switch "ON".
- 4. Check voltage between vacuum cut valve bypass valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- Harness connectors F55, B105
- IPDM E/R connector E124
- 10A fuse
- Harness for open or short between vacuum cut valve bypass valve and fuse
 - >> Repair harness or connectors.

5. CHECK VACUUM CUT VALVE BYPASS VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 28 and vacuum cut valve bypass valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

DTC P1490 VACUUM CUT VALVE BYPASS VALVE

[VQ]

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B105, F55
- Harness for open or short between vacuum cut valve bypass valve and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK VACUUM CUT VALVE BYPASS VALVE

Refer to EC-1179, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace vacuum cut valve bypass valve.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

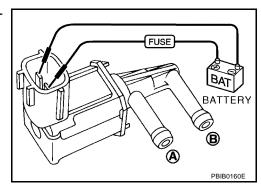
Component Inspection VACUUM CUT VALVE BYPASS VALVE

(P) With CONSULT-II

- 1. Reconnect harness disconnected connectors.
- 2. Turn ignition switch ON.
- 3. Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time under the following conditions.

Condition VC/V BYPASS/V	Air passage continuity between A and B
ON	Yes
OFF	No

Operation takes less than 1 second.


CONNECT ACTIVE TEST VC/V BYPASS/V OFF MONITOR ENG SPEED XXX rpm A/F ALPHA-B1 XXX % A/F ALPHA-B2 XXX % HO2S1 MNTR (B1) LEAN HO2S1 MNTR (B2) LEAN PBIB0159E

⋈ Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Operation takes less than 1 second.

EC

D

Е

UBS003IS

Н

1

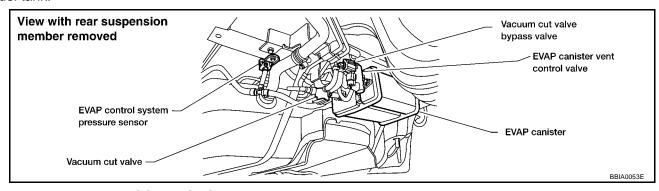
K

L

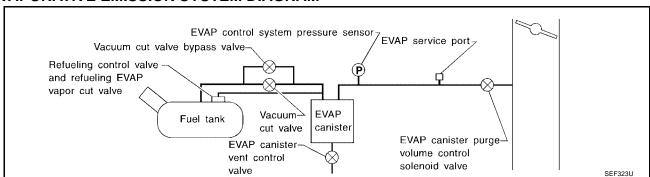
DTC P1491 VACUUM CUT VALVE BYPASS VALVE

PFP:17372

Description COMPONENT DESCRIPTION


UBS003IT

The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.


The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

EVAPORATIVE EMISSION SYSTEM DIAGRAM

CONSULT-II Reference Value in Data Monitor Mode

UBS003IU

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPAS S/V	Ignition switch: ON	OFF

On Board Diagnosis Logic

UBS003IV

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1491 1491	Vacuum cut valve bypass valve	Vacuum cut valve bypass valve does not operate properly.	 Vacuum cut valve Vacuum cut valve Bypass hoses for clogging EVAP control system pressure sensor and circuit EVAP canister vent control valve Hose between fuel tank and vacuum cut valve clogged Hose between vacuum cut valve and EVAP canister clogged EVAP canister EVAP purge port of fuel tank for clogging

DTC P1491 VACUUM CUT VALVE BYPASS VALVE

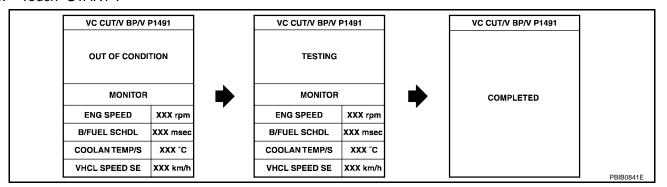
[VQ]

UBS003IW

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of more than 0°C (32°F).

(P) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 10 seconds.
- 4. Start engine and let it idle for at least 70 seconds.
- Select "VC CUT/V BP/V P1491" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START".

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 30 seconds.)

ENG SPEED	More than 1,000 rpm
Selector lever	Suitable position
Vehicle speed	More than 37 km/h (23 MPH)
B/FUEL SCHDL	1.0 - 10.0 msec

If "TESTING" is not displayed after 5 minutes, retry from step 3.

8. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-1184, "Diagnostic Procedure".

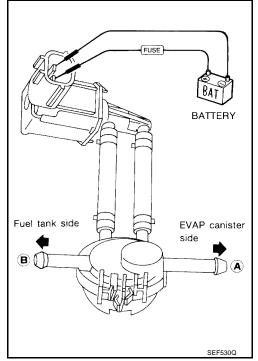
Overall Function Check

Use this procedure to check the overall function of vacuum cut valve bypass valve. During this check, the 1st trip DTC might not be confirmed.

WITH GST

1. Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.

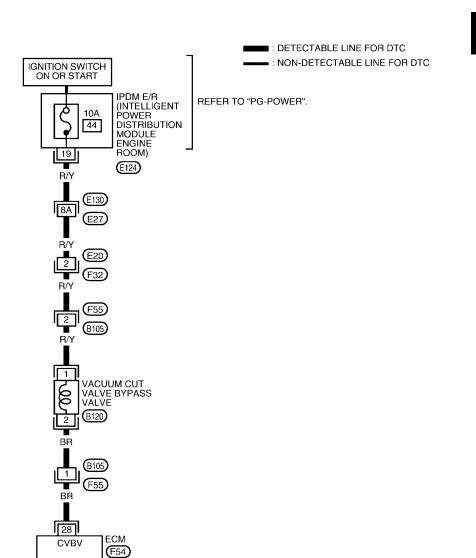
EC

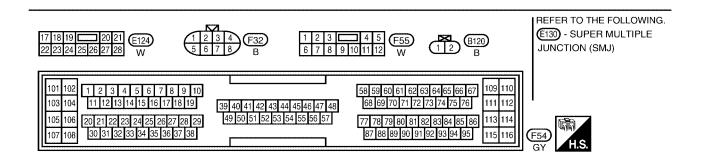

Α

D

Е

Н


- 2. Apply vacuum to port ${\bf A}$ and check that there is no suction from port ${\bf B}$.
- 3. Apply vacuum to port ${\bf B}$ and check that there is suction from port ${\bf A}$.
- 4. Blow air in port **B** and check that there is a resistance to flow out of port **A**.
- 5. Supply battery voltage to the terminal.
- 6. Blow air in port A and check that air flows freely out of port B.
- 7. Blow air in port B and check that air flows freely out of port A.
- 8. If NG, go to EC-1184, "Diagnostic Procedure".



UBS003IY

Wiring Diagram

EC-BYPS/V-01

BBWA0086E

Α

EC

D

Ε

G

Н

.

K

L

DTC P1491 VACUUM CUT VALVE BYPASS VALVE

[VQ]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

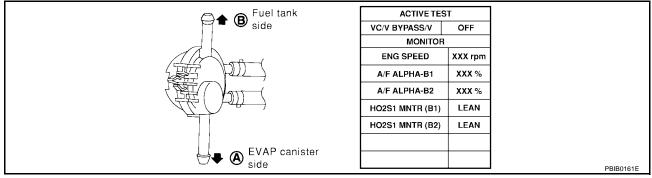
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
28	BR	Vacuum cut valve bypass valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS003IZ

1. INSPECTION START

Do you have CONSULT-II?


Yes or No

Yes >> GO TO 2. No >> GO TO 3.

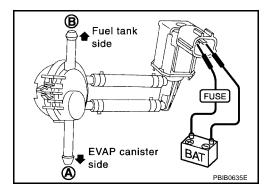
2. CHECK VACUUM CUT VALVE BYPASS VALVE OPERATION

(II) With CONSULT-II

- Turn ignition switch "OFF".
- 2. Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- 3. Apply vacuum to port A and check that there is no suction from port B.
- 4. Apply vacuum to port B and check that there is suction from port A.
- 5. Blow air in port B and check that there is a resistance to flow out of port A.
- 6. Turn ignition switch "ON".
- 7. Select "VC/V BYPASS/V" in "ACTIVE TEST" mode with CONSULT-II and touch "ON".
- 8. Blow air in port A and check that air flows freely out of port B.
- 9. Blow air in port B and check that air flows freely out of port A.

OK or NG

OK >> GO TO 4. NG >> GO TO 5.


3. CHECK VACUUM CUT VALVE BYPASS VALVE OPERATION

⋈ Without CONSULT-II

- Turn ignition switch "OFF".
- 2. Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- 3. Apply vacuum to port A and check that there is no suction from port B.
- 4. Apply vacuum to port B and check that there is suction from port A.
- 5. Blow air in port B and check that there is a resistance to flow out of port A.
- 6. Disconnect vacuum cut valve bypass valve harness connector.
- Supply battery voltage to the terminal.
- 8. Blow air in port A and check that air flows freely out of port B.
- 9. Blow air in port B and check that air flows freely out of port A.

OK or NG

OK >> GO TO 4. NG >> GO TO 7.

4. CHECK EVAP PURGE LINE

Check EVAP purge line between EVAP canister and fuel tank for clogging or disconnection.

OK or NG

OK >> GO TO 5.

NG >> Repair it.

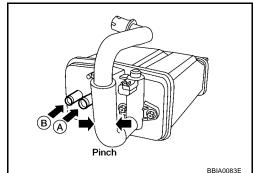
5. CHECK EVAP PURGE PORT

Check EVAP purge port of fuel tank for clogging.

OK or NG

OK >> GO TO 6.

NG >> Clean EVAP purge port.


6. CHECK EVAP CANISTER

- Pinch the fresh air hose.
- 2. Blow air into port A and check that it flows freely out of port B.

OK or NG

OK >> GO TO 12.

NG >> Replace EVAP canister.

7. CHECK BYPASS HOSE

Check bypass hoses for clogging.

OK or NG

OK >> GO TO 8.

NG >> Repair or replace hoses.

EC-1185 2002 Altima Revision: May 2004

EC

Е

8. CHECK VACUUM CUT VALVE BYPASS VALVE

Refer to EC-1187, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace vacuum cut valve bypass valve.

9. CHECK VACUUM CUT VALVE

Refer to EC-1187, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace vacuum cut valve.

10. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE

- 1. Turn ignition switch "OFF".
- 2. Check disconnection or improper connection of hose connected to EVAP control system pressure sensor.

OK or NG

OK >> GO TO 11.

NG >> Repair or replace.

11. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- 1. Disconnect EVAP control system pressure sensor harness connector.
- 2. Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 12.

NG >> Replace EVAP control system pressure sensor.

12. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-988, "Component Inspection".

OK or NG

OK >> GO TO 13.

NG >> Replace EVAP control system pressure sensor.

13. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 14.

NG >> Clean the rubber tube using an air blower.

14. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-981, "Component Inspection".

OK or NG

OK >> GO TO 15.

NG >> Replace EVAP canister vent control valve.

DTC P1491 VACUUM CUT VALVE BYPASS VALVE

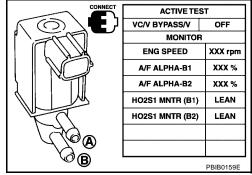
[VQ]

UBS003J0

15. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection VACUUM CUT VALVE BYPASS VALVE

(P) With CONSULT-II

- 1. Reconnect harness disconnected connectors.
- 2. Turn ignition switch ON.
- 3. Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time under the following conditions.

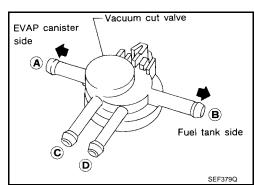
Condition VC/V BYPASS/V	Air passage continuity between A and B	
ON	Yes	
OFF	No	

Operation takes less than 1 second.

With GST

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B	
12V direct current supply between terminals 1 and 2	Yes	
No supply	No	


Operation takes less than 1 second.

FUSE BATTERY BATTERY PBIB0160E

VACUUM CUT VALVE

Check vacuum cut valve as follows:

- Plug port C and D with fingers.
- Apply vacuum to port A and check that there is no suction from port B.
- Apply vacuum to port B and check that there is suction from port A.
- Blow air in port B and check that there is a resistance to flow out of port A.
- Open port C and D.
- Blow air in port A check that air flows freely out of port C.
- Blow air in port B check that air flows freely out of port D.

EC

D

Ε

G

Н

ı

J

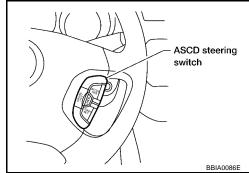
K

L

M

11

UBS003J1


DTC P1564 ASCD STEERING SWITCH

Component Description

PFP:25551

ASCD steering switch has variant values of electrical resistance for each button. ECM reads voltage variation of switch, and determines which button is operated.

Refer to <u>EC-1300</u>, "<u>AUTOMATIC SPEED CONTROL DEVICE</u> (<u>ASCD</u>)" for the ASCD function.

CONSULT-II Reference Value in Data Monitor Mode

UBS003.12

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
MAIN SW	Ignition switch: ON	CRUISE switch pressed	ON
		CRUISE switch released	OFF
CANCEL	Ignition switch: ON	CANCEL switch pressed	ON
		CANCEL switch released	OFF
RESUME/ACC	Ignition switch: ON	ACCEL/RES switch pressed	ON
RESUME/ACC		ACCEL/RES switch released	OFF
SET SW	Ignition switch: ON	COAST/SET switch pressed	ON
		COAST/SET switch released	OFF

On Board Diagnosis Logic

UBS003J3

NOTE:

If DTC P1564 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to <u>EC-1036</u>.

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P1564 1564	ASCD steering switch	 An excessively high voltage signal from the ASCD steering switch is sent to ECM. ECM detects that input signal from the ASCD steering switch is out of the specified range. ECM detects that the ASCD steering switch is stuck ON. 	 Harness or connectors (The switch circuit is open or shorted.) ASCD steering switch ECM

DTC Confirmation Procedure

UBS003J4

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 10 seconds.
- 4. Press "CRUISE" switch for at least 10 seconds, then release it and wait at least 10 seconds.
- Press "ACCEL/RES" switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 6. Press "COAST/SET" switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 7. Press "CANCEL" switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 8. If 1st trip DTC is detected, go to EC-1192, "Diagnostic Procedure".

DTC P1564 ASCD STEERING SWITCH

[VQ]

	۱۸/	ITU	GS	_
GST)	vv	ΙΙН	GO	

Follow the procedure "WITH CONSULT-II" above.

EC

Α

С

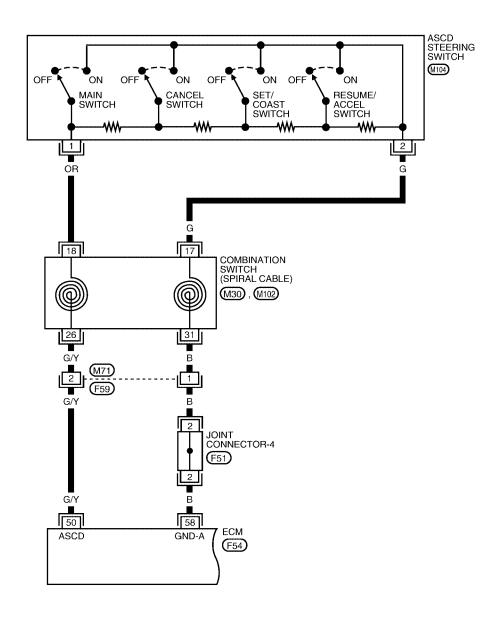
D

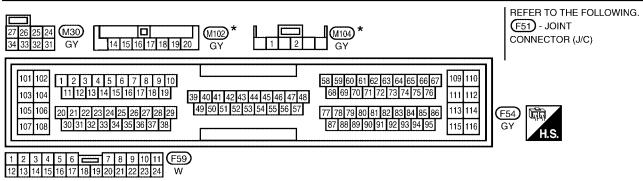
Е

F

G

Н


1


K

Wiring Diagram

UBS003J

EC-ASC/SW-01

*: This connector is not shown in "HARNESS LAYOUT" of PG section.

BBIA0227E

DTC P1564 ASCD STEERING SWITCH

[VQ]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
			[Ignition switch "ON"] • ASCD steering switch is "OFF".	Approximately 4.0V	C
			[Ignition switch "ON"] • CRUISE switch is "ON".	Approximately 0V	=
50 G/Y	ASCD steering switch	[Ignition switch "ON"] • CANCEL switch is "ON".	Approximately 1V	D	
			[Ignition switch "ON"] • COAST/SET switch is "ON".	Approximately 2V	E
			[Ignition switch "ON"] • ACCEL/RES switch is "ON".	Approximately 3V	F
58	В	Sensors' ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	G

Н

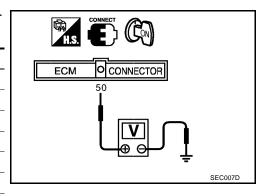
i

Diagnostic Procedure

1. CHECK ASCD STEERING SWITCH CIRCUIT

UBS003J6

(P) With CONSULT-II


- 1. Turn ignition switch "ON".
- 2. Select "MAIN SW", "RESUME/ACC SW", "SET SW" and "CANCEL SW" in "DATA MONITOR" mode with CONSULT-II.
- 3. Check each item indication under the following conditions.

Switch	Monitor item	Condition	Indication
CRUISE	MAIN SW	Pressed	ON
CINOISE	WAIN OW	Released	OFF
COAST/SET	SET SW	Pressed	ON
COAST/SET	SET SW	Released	OFF
ACCEL/RES	RESUME/ACC SW	Pressed	ON
ACCLL/NES	RESONE/ACC SW	Released	OFF
CANCEL	CANCEL SW	Pressed	ON
CANGLE	CANCLL SW	Released	OFF

Without CONSULT-II

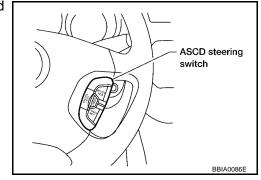
- 1. Turn ignition switch "ON".
- 2. Check voltage between ECM terminal 50 and ground with pressing each button.

Condition	Voltage [V]
Pressed	Approx. 0.5
Released	Approx. 4.0
Pressed	Approx. 2.0
Released	Approx. 4.0
Pressed	Approx. 3.0
Released	Approx. 4.0
Pressed	Approx. 1.0
Released	Approx. 4.0
	Pressed Released Pressed Released Pressed Pressed Pressed Released Pressed

OK or NG

OK >> GO TO 7. NG >> GO TO 2.

2. Check ascd steering switch ground circuit for open and short


- 1. Turn ignition switch "OFF".
- 2. Disconnect ASCD steering harness connector.
- 3. Check harness continuity between switch terminal 2 and ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

DTC P1564 ASCD STEERING SWITCH

[VQ] 3. detect malfunctioning part Check the following. Harness connectors M71, F59 EC Joint connector-4 Combination switch (spiral cable) Harness for open and short between ECM and ASCD steering switch >> Repair open circuit or short to power in harness or connectors. 4. CHECK ASCD STEERING SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT D 1. Disconnect ECM harness connector. Е 2. Check harness continuity between ECM terminal 50 and ASCD steering switch terminal 1. Refer to Wiring Diagram. Continuity should exist. 3. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 6. NG >> GO TO 5. 5. DETECT MALFUNCTIONING PART Check the following. Harness connectors M71, F59 Combination switch (spiral cable) Harness for open and short between ECM and ASCD steering switch >> Repair open circuit or short to ground or short to power in harness or connectors. 6. CHECK ASCD STEERING SWITCH Refer to EC-1194, "Component Inspection".

OK or NG

OK >> GO TO 7.

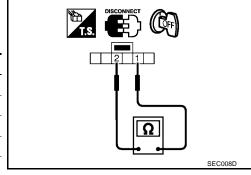
NG >> Replace ASCD steering switch.

7. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

DTC P1564 ASCD STEERING SWITCH


[VQ]

Component Inspection ASCD STEERING SWITCH

UBS003J7

- 1. Disconnect ASCD steering switch.
- 2. Check continuity between ASCD steering switch terminals 1 and 2 with pushing each switch.

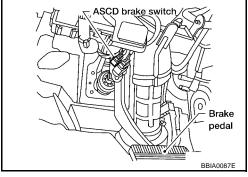
Switch	Condition	Resistance [Ω]
CRUISE SW	Pressed	Approx. 0
CROISE SW	Released	Approx. 4,000
COAST/SET SW	Pressed	Approx. 660
COAST/SET SW	Released	Approx. 4,000
ACCEL/RES SW	Pressed	Approx. 1,480
ACCEL/RES SW	Released	Approx. 4,000
CANCEL SW	Pressed	Approx. 250
CANOLL SW	Released	Approx. 4,000

DTC P1572 ASCD BRAKE SWITCH

PFP:25320

Component Description

UBS003J8


EC

D

Е

When the brake pedal is depressed, ASCD brake switch is turned OFF and stop lamp switch is turned ON. ECM detects the state of the brake pedal by this input of two kinds (ON/OFF signal). Refer to EC-1300, "AUTOMATIC SPEED CONTROL DEVICE

(ASCD)" for the ASCD function.

CONSULT-II Reference Value in Data Monitor Mode

LIBS003.19

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW 1	Ignition switch: ON	Brake pedal fully released	ON
(ASCD brake switch)	• Igridion switch. ON	Brake pedal depressed	OFF
BRAKE SW 2	Ignition switch: ON	Brake pedal fully released	OFF
(stop lamp switch)	• Ignition switch: ON	Brake pedal depressed	ON

On Board Diagnosis Logic

LIBS003.IA

NOTE:

If DTC P 1572 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to **EC-1036**

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause	
P1572 1572	ASCD brake switch	When the vehicle speed is above 30 km/h (19 MPH), ON signals from the stop lamp switch and the ASCD brake switch are sent to the ECM at the same time.	Harness or connectors (The stop lamp switch circuit is open or shorted.) Harness or connectors (The ASCD brake switch circuit is open or shorted.) Harness or connectors (The ASCD clutch switch circuit is open or shorted.) Stop lamp switch ASCD brake switch ASCD clutch switch Incorrect stop lamp switch installation Incorrect ASCD brake switch installation Incorrect ASCD clutch switch installation	- J K L
			ECM	

DTC confirmation Procedure

UBS003JB

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Steps 3 and 4 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

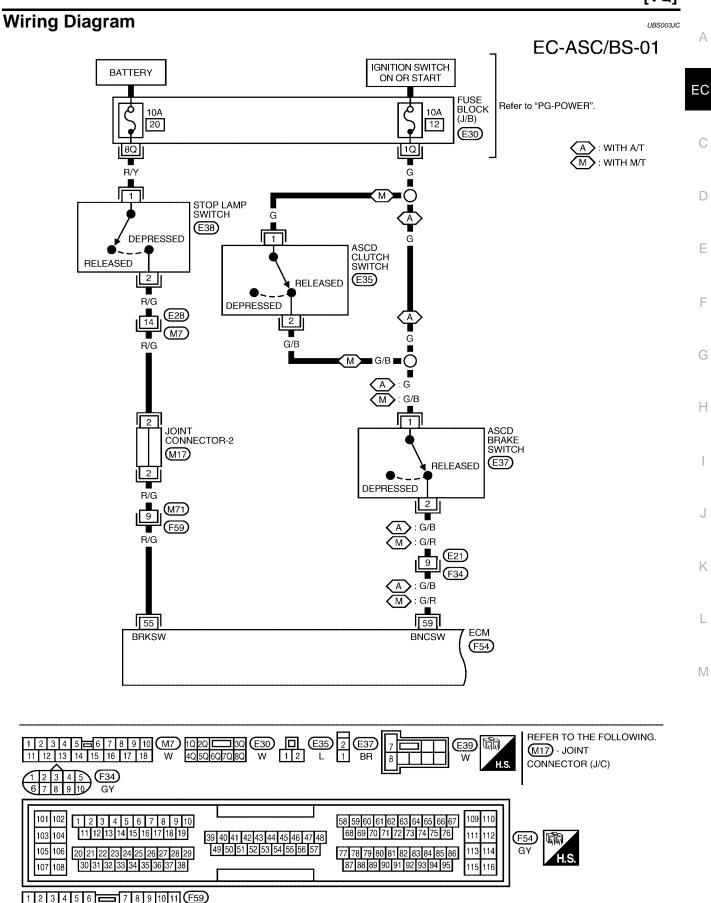
(P) WITH CONSULT-II

- 1. Start engine (TCS switch "OFF").
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Drive the vehicle for at least 5 consecutive seconds under the following condition.

VHCL SPEED SE	More than 30 km/h (19 MPH)	
Selector lever	Suitable position	

If 1st trip DTC is detected, go to <u>EC-1198</u>, "<u>Diagnostic Procedure</u>" . If 1st trip DTC is not detected, go to the following step.

4. Drive the vehicle for at least 5 consecutive seconds under the following condition.


VHCL SPEED SE	More than 30 km/h (19 MPH)
Selector lever	Suitable position
Driving location	Depress the brake pedal for more than five seconds so as not to come off from the above-mentioned condition.

5. If 1st trip DTC is detected, go to EC-1198, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

BBWA0202E

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
55	R/G	Stop lamp switch	[Ignition switch "ON"] • Brake pedal is fully released	Approximately 0V
33	55 R/G Stop lamp switch		[Ignition switch "ON"] • Brake pedal is depressed	BATTERY VOLTAGE (11 - 14V)
59	G/B (A/T)	ASCD brake switch	[Ignition switch "ON"] Brake pedal is fully released Clutch pedal is fully released (M/T models)	BATTERY VOLTAGE (11 - 14V)
39	G/R (M/T)	ASCD DIAKE SWILLII	[Ignition switch "ON"] • Brake pedal is depressed • Clutch pedal is depressed (M/T models)	Approximately 0V

Diagnostic Procedure

UBS003JD

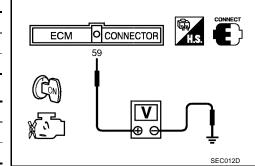
1. CHECK OVERALL FUNCTION-I

(II) With CONSULT-II

- Turn ignition switch "ON".
- Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-II.
- Check "BRAKE SW1" indication under the following conditions.

A/T models

INDICATION
OFF
ON
INDICATION
OFF
ON


DATA MC	NITOR	
MONITOR	NO DTC	
BRAKE SW1	OFF	
		SEC01

⋈ Without CONSULT-II

- 1. Turn ignition switch "ON".
- Check voltage between ECM terminal 59 and ground under the following conditions.

A/T models

CONDITION	VOLTAGE
When brake pedal is depress	Approximately 0V
When brake pedal is fully released	Battery voltage
M/T models	
CONDITION	VOLTAGE

OK or NG

>> GO TO 2. OK

NG (M/T models) >>GO TO 3.

When clutch pedal and brake pedal are fully released

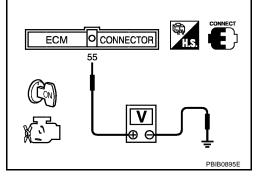
NG (A/T models) >>GO TO 8.

Battery voltage

DTC P1572 ASCD BRAKE SWITCH

[VQ]

2. CHECK OVERALL FUNCTION-II


(E) With CONSULT-II Check "BRAKE SW2" indication in "DATA MONITOR" mode.

CONDITION	INDICATION
When brake pedal is released	OFF
When brake pedal is depressed	ON

DATA MO	NITOR	
MONITOR	NO DTC	
BRAKE SW2	OFF	
		SEC013D

Without CONSULT-II
 Check voltage between ECM terminal 55 and ground under the following conditions.

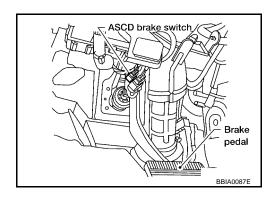
CONDITION	VOLTAGE
When brake pedal is released	Approximately 0V
When brake pedal is depressed	Battery voltage

OK or NG

OK >> GO TO 18.

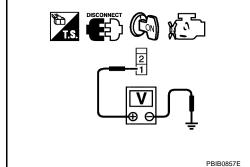
NG >> GO TO 13. EC

C


 D

Е

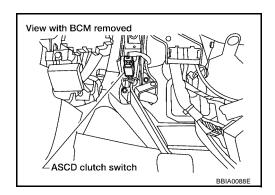
Н


3. CHECK ASCD CLUTCH SWITCH CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ASCD brake switch harness connector.
- 3. Turn ignition switch "ON".

4. Check voltage between ASCD brake switch terminal 1 and ground under the following conditions with CONSULT-II or tester.

CONDITION	VOLTAGE
When clutch pedal is released	Battery voltage
When clutch pedal is depressed	Approx. 0V

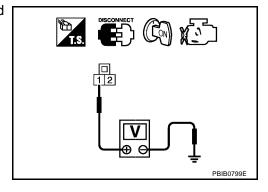


OK or NG

OK >> GO TO 10. NG >> GO TO 4.

4. CHECK ASCD CLUTCH SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ASCD clutch switch harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between ASCD clutch switch terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E30
- 10A fuse
- Harness for open or short between ASCD clutch switch and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK ASCD CLUTCH SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between ASCD clutch switch terminal 2 and ASCD brake switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

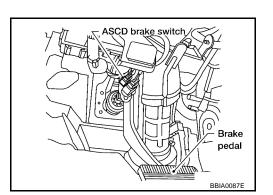
OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK ASCD CLUTCH SWITCH

Refer to EC-1204, "Component Inspection"

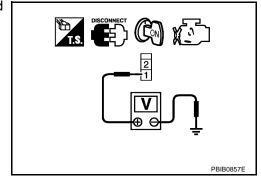

OK or NG

OK >> GO TO 18.

NG >> Replace ASCD clutch switch.

8. CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ASCD brake switch harness connector.
- Turn ignition switch "ON".



4. Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10. NG >> GO TO 9.

EC

D

Е

Н

K

L

9. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E30
- 10A fuse
- Harness for open or short between ASCD brake switch and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

10. CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 59 and ASCD brake switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground or short to power.

OK or NG

OK >> GO TO 12. NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

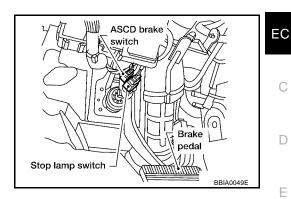
Check the following.

- Harness connectors E21, F34
- Harness for open or short between ECM and ASCD brake switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

12. CHECK ASCD BRAKE SWITCH

Refer to EC-1204, "Component Inspection"

OK or NG

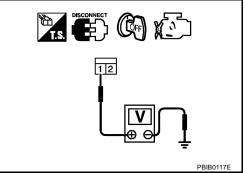

OK >> GO TO 18.

NG >> Replace ASCD brake switch.

M

13. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- Turn ignition switch "OFF".
- 2. Disconnect stop lamp switch harness connector.



3. Check voltage between stop lamp switch terminal 1 and ground with CONSULT -II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 15. NG >> GO TO 14.

14. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E30
- 10A fuse
- Harness for open or short between stop lamp switch and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

15. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector. 1.
- 2. Check harness continuity between ECM terminal 55 and stop lamp switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 17. NG >> GO TO 16.

16. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E28, M7
- Harness connectors M71, F59
- Joint connector-2
- Harness for open or short between ECM and stop lamp switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

17. CHECK STOP LAMP SWITCH

Refer to EC-1204, "Component Inspection"

OK or NG

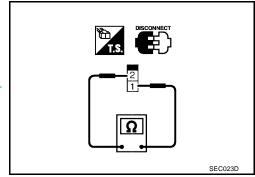
OK >> GO TO 18.

NG >> Replace stop lamp switch.

18. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

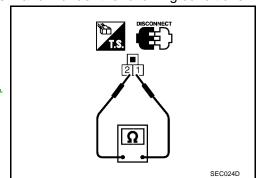

Component Inspection ASCD BRAKE SWITCH

UBS003JE

- 1. Turn ignition switch "OFF".
- 2. Disconnect ASCD brake switch harness connector.
- 3. Check harness continuity between ASCD brake switch terminals 1 and 2 under the following conditions.

Condition	Continuity
When brake pedal is fully released.	Should exist.
When brake pedal is depressed.	Should not exist.

If NG, adjust ASCD brake switch installation, refer to <u>BR-6</u>, <u>"BRAKE PEDAL"</u>, and perform step 3 again.



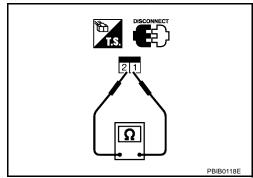
ASCD CLUTCH SWITCH (FOR M/T MODELS)

- 1. Turn ignition switch "OFF".
- 2. Disconnect ASCD clutch switch harness connector.
- 3. Check harness continuity between ASCD clutch switch terminals 1 and 2 under the following conditions.

Condition	Continuity
When clutch pedal is fully released.	Should exist.
When clutch pedal is depressed.	Should not exist.

If NG, adjust ASCD clutch switch installation, refer to <u>CL-5</u>, <u>"CLUTCH PEDAL"</u>, and perform step 3 again.

DTC P1572 ASCD BRAKE SWITCH


[VQ]

STOP LAMP SWITCH

- 1. Turn ignition switch "OFF".
- 2. Disconnect stop lamp switch harness connector.
- 3. Check harness continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Condition	Continuity
When brake pedal is fully released.	Should not exist.
When brake pedal is depressed.	Should exist.

If NG, adjust stop lamp switch installation, refer to <u>BR-6</u>, <u>"BRAKE PEDAL"</u>, and perform step 3 again.

EC

Α

С

D

Е

F

Н

DTC P1574 ASCD VEHICLE SPEED SENSOR

PFP:31036

Component Description

LIBS003.IE

The ECM receives two vehicle speed sensor signals via CAN communication line. One is sent from combination meter, and the other is from TCM (Transmission control module). The ECM uses these signals for ASCD control. Refer to EC-1300, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for ASCD functions.

On Board Diagnosis Logic

UBS003JG

NOTE:

- If DTC P1574 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-761, "DTC U1000, U1001 CAN COMMUNICATION LINE".
- If DTC P1574 is displayed with DTC P0500, first perform the trouble diagnosis for DTC P0500.
 Refer to <u>EC-1025</u>, "DTC P0500 VSS"
- If DTC P1574 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605.
 Refer to <u>EC-1036</u>, "DTC P0605 ECM"

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P1574 1574	ASCD vehicle speed sensor	ECM detects a difference between two vehicle speed signals is out of the specified range.	 Harness or connectors (The CAN communication line is open or shorted.) Harness or connectors (The combination meter circuit is open or shorted.) Combination meter Vehicle speed sensor TCM ECM

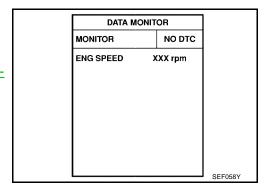
DTC Confirmation Procedure

UBS003JH

CAUTION:

Always drive vehicle at a safe speed.

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Step 3 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(II) WITH CONSULT-II

- 1. Start engine (TCS switch "OFF").
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Drive the vehicle at more than 40 km/h (25 MPH).
- 4. If 1st trip DTC is detected, go to EC-1207, "Diagnostic Procedure".

S WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P1574 ASCD VEHICLE SPEED SENSOR

[VQ] **Diagnostic Procedure** UBS003JI Α 1. CHECK DTC WITH TCM Check DTC with TCM. Refer to AT-36, "ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION". EC OK or NG OK >> GO TO 2. NG >> Perform trouble shooting relevant to DTC indicated. C 2. CHECK VEHICLE SPEED SENSOR CIRCUIT Refer to DI-19, "Vehicle Speed System". D OK or NG OK >> GO TO 3. NG >> Repair or replace. Е 3. CHECK COMBINATION METER Check combination meter function. F Refer to DI-4, "COMBINATION METERS". >> INSPECTION END Н M

DTC P1706 PNP SWITCH

Component Description

UBS003JJ

PFP:32006

When the gear position is "P" (A/T models only) or "N", park/neutral position (PNP) switch is "ON". ECM detects the position because the continuity of the line (the "ON" signal) exists.

CONSULT-II Reference Value in Data Monitor Mode

UBS003JK

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
P/N POSI SW	Ignition switch: ON	Shift lever: P or N (A/T model) N (M/T model)	ON
		Shift lever: Except above	OFF

On Board Diagnosis Logic

UBS003JL

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1706 1706	Park/neutral position switch	The signal of the park/neutral position (PNP) switch is not changed in the process of engine starting and driving.	 Harness or connectors [The park/neutral position (PNP) switch circuit is open or shorted.] Park/neutral position (PNP) switch

DTC Confirmation Procedure

LIBS003.IM

CAUTION:

Always drive vehicle at a safe speed.

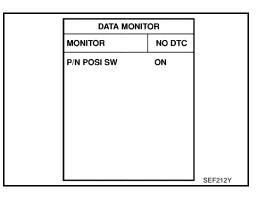
NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(III) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- Select "P/N POSI SW" in "DATA MONITOR" mode with CON-SULT-II. Then check the "P/N POSI SW" signal under the following conditions.

Position (Selector lever)	Known-good signal
"N" and "P" position	ON
Except the above position	OFF


If NG, go to EC-1211, "Diagnostic Procedure".

If OK, go to following step.

- Select "DATA MONITOR" mode with CONSULT-II.
- 4. Start engine and warm it up to normal operating temperature.
- Maintain the following conditions for at least 60 consecutive seconds.

ENG SPEED	More than 1,400 rpm
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	More than 2.0 msec
VHCL SPEED SE	More than 64 km/h (40 MPH)
Selector lever	Suitable position (A/T) 5th position (M/T)

If 1st trip DTC is detected, go to <u>EC-1211</u>, "<u>Diagnostic Procedure</u>".

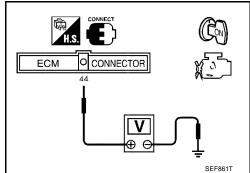
DATA MC	NITOR	
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
COOLAN TEMP/S	S XXX °C	
VHCL SPEED SE	XXX km/h	
P/N POSI SW	OFF	
B/FUEL SCHDL	XXX msec	

DTC P1706 PNP SWITCH

[VQ]

Overall Function Check

S003.IN


Use this procedure to check the overall function of the park/neutral position (PNP) switch circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Turn ignition switch "ON".
- 2. Check voltage between ECM terminal 44 (PNP switch signal) and body ground under the following conditions.

Condition (Gear position)	Voltage V (Known good data)	
"P" (A/T models only) and "N" position	Approx. 0	
Except the above position	A/T models BATTERY VOLTAGE (11 - 14V)	
	M/T Approximately 5V	

3. If NG, go to EC-1211, "Diagnostic Procedure".

EC

Α

С

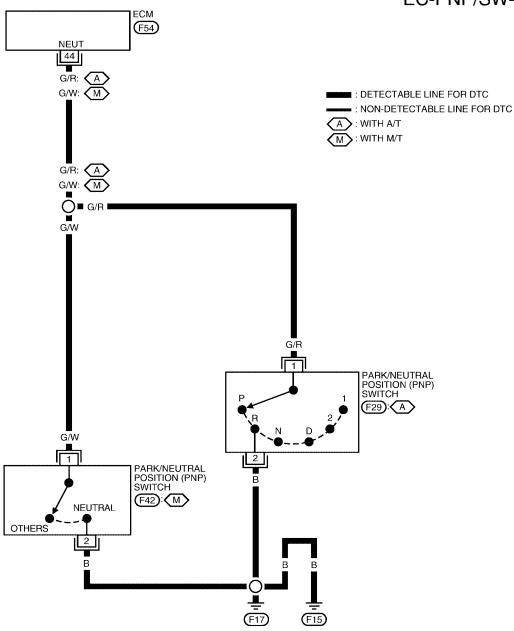
D

Е

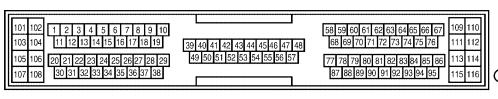
F

G

Н


1

i


Wiring Diagram

UBS003.IO

EC-PNP/SW-01

BBWA0087E

D

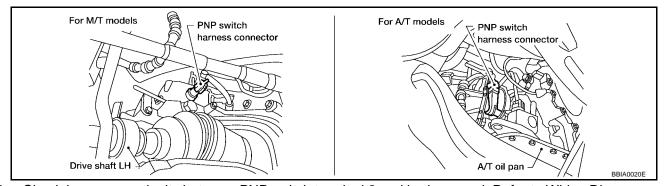
Е

Н

LIBS003.IE

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	E
			[Ignition switch "ON"] ■ Shift lever position is "P" or "N" (A/T models), "Neutral" (M/T models).	Approximately 0V	_
44	G/R (A/T) G/W (M/T)	PNP switch	[Ignition switch "ON"] • Except the above position	A/T models BATTERY VOLTAGE (11 - 14V) M/T models Approximately 5V	_

Diagnostic Procedure

1. CHECK GROUND CIRCUIT

1. Turn ignition switch "OFF".

2. Disconnect PNP switch harness connector.

3. Check harness continuity between PNP switch terminal 2 and body ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 2.

NG >> Repair open circuit or short to power in harness or connectors.

2. CHECK INPUT SIGNAL CIRCUIT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 44 and PNP switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground short to power in harness or connectors.

3. CHECK PNP SWITCH

Refer to AT-106 (A/T models) or MT-12 (M/T models).

OK or NG

OK >> GO TO 4.

NG >> Replace PNP switch.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

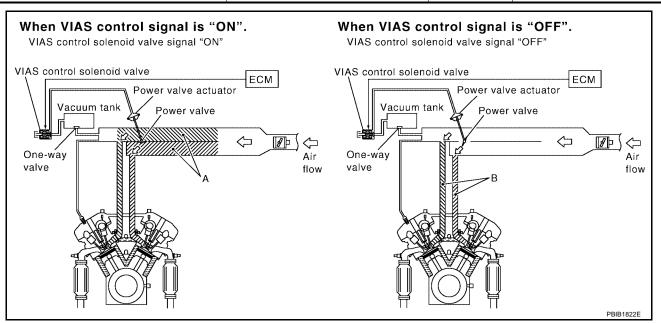
DTC P1800 VIAS CONTROL SOLENOID VALVE

PFP:14955

Description SYSTEM DESCRIPTION

UBS003JQ

EC


D

Е

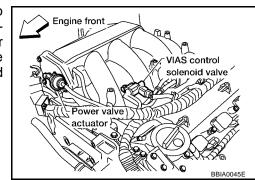
Н

M

Sensor Input Signal to ECM		ECM function	Actuator
Mass air flow sensor	Amount of intake air		
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Accelerator pedal position		
Ignition switch	Start signal	VIAS control	VIAS control solenoid valve
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed	Engine speed	
Engine coolant temperature sensor	Engine coolant temperature		

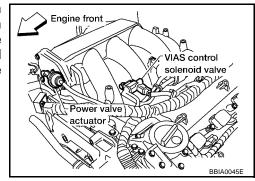
When the engine is running at medium speed, the ECM sends the ON signal to the VIAS control solenoid valve. This signal introduces the intake manifold vacuum into the power valve actuator and therefore closes the power valve.

Under this condition, the effective intake manifold length is equivalent to the total length of passage A and passage B. This long intake manifold provides increased amount of intake air, which results in improved suction efficiency and higher torque.


When engine is running at low or high speed, the ECM sends the OFF signal to the VIAS control solenoid valve and the power valve is opened.

Under this condition, the effective intake manifold length is equivalent to the length of passage B. This shortened intake manifold length results in enhanced engine output due to reduced suction resistance under high speeds.

COMPONENT DESCRIPTION


Power Valve

The power valve is installed in intake manifold collector and used to control the suction passage of the variable induction air control system. It is set in the fully closed or fully opened position by the power valve actuator operated by the vacuum stored in the surge tank. The vacuum in the surge tank is controlled by the VIAS control solenoid valve.

VIAS Control Solenoid Valve

The VIAS control solenoid valve cuts the intake manifold vacuum signal for power valve control. It responds to ON/OFF signals from the ECM. When the solenoid is off, the vacuum signal from the intake manifold is cut. When the ECM sends an ON signal the coil pulls the plunger downward and feeds the vacuum signal to the power valve actuator.

On Board Diagnosis Logic

UBS003JR

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1800 1800	VIAS control solenoid valve circuit	An excessively low or high voltage signal is sent to ECM through the valve	 Harness or connectors (The solenoid valve circuit is open or shorted.) VIAS control solenoid valve

CONSULT-II Reference Value in Data Monitor Mode

UBS003JS

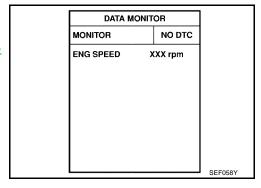
Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
VIAS S/V	Engine: After warming up	1,800 - 3,600 rpm	ON
• Engine. After warming up	Eligilie. Aitei wairiing up	Except the above condition	OFF

DTC Confirmation Procedure

UBS003JT

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 11V at idle.

(III) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 5 seconds.
- 4. If 1st trip DTC is detected, go to <u>EC-1216, "Diagnostic Procedure"</u>.

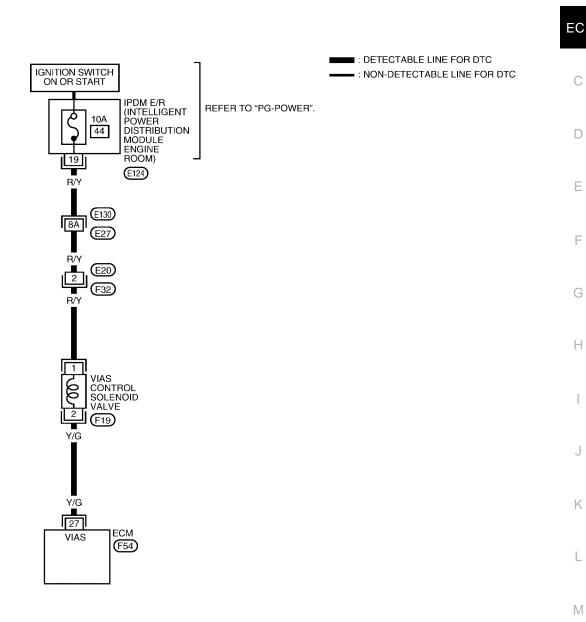
WITH GST

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram

UBS003JU

Α


C


D

Е

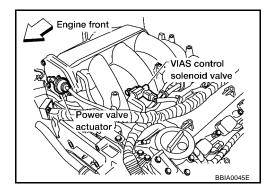
Н

EC-VIAS/V-01

BBWA0088E

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

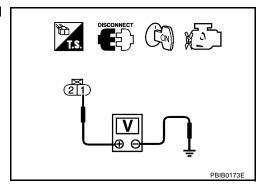

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
27 Y/G	VIAS control solenoid	[Engine is running] ● Engine speed is 1,800 - 3,600 rpm	0 - 1.0V	
Z1	170	valve	[Engine is running]Except the above condition	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS003JV

1. CHECK VIAS CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect VIAS control solenoid valve harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- IPDM E/R connector E124
- 10A fuse
- Harness continuity between fuse and VIAS control solenoid valve

>> Repair harness or connectors.

$3.\,$ check vias control solenoid valve output signal circuit for open and short

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 27 and VIAS control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK VIAS CONTROL SOLENOID VALVE

Refer to EC-1217, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace VIAS control solenoid valve.

5. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

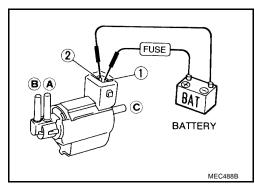
Component Inspection VIAS CONTROL SOLENOID VALVE

With CONSULT-II

- 1. Reconnect harness connectors disconnected.
- 2. Turn ignition switch ON.
- 3. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode.
- Check air passage continuity and operation delay time under the following conditions.

Condition VIAS SOL VALVE	Air passage continuity between A and B	Air passage continuity between A and C
ON	Yes	No
OFF	No	Yes

Operation takes less than 1 second.


ACTIVE TEST VIAS SOL VALVE $\mathbf{B}(\mathbf{A})$ MONITOR ENG SPEED XXX rpn PBIB0177E

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes

Operation takes less than 1 second.

EC-1217 Revision: May 2004 2002 Altima

EC

D

Е

Н

LIBS003.IW

DTC P1800 VIAS CONTROL SOLENOID VALVE

[VQ]

Removal and Installation VIAS CONTROL SOLENOID VALVE

Refer to EM-114, "INTAKE MANIFOLD".

UBS003JX

DTC P1805 BRAKE SWITCH

[VQ]

DTC P1805 BRAKE SWITCH

PFP:25320

Description

UBS003JY

Brake switch signal is applied to the ECM through the stop lamp switch when the brake pedal is depressed. This signal is used mainly to decrease the engine speed when the vehicle is driving.

CONSULT-II Reference Value in Data Monitor Mode

UBS003JZ

EC

D

Е

Н

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW	Ignition switch: ON	Brake pedal: Fully released	OFF
DIVARE OW	• Igrittori switch. ON	Brake pedal: Slightly depressed	ON

On Board Diagnosis Logic

UBS003K0

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1805 1805	Brake switch	A brake switch signal is not sent to ECM for an extremely long time while the vehicle is driving.	 Harness or connectors (Stop lamp switch circuit is open or shorted.) Stop lamp switch

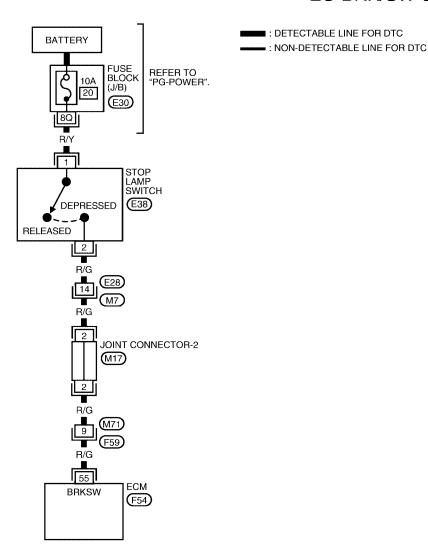
DTC Confirmation Procedure

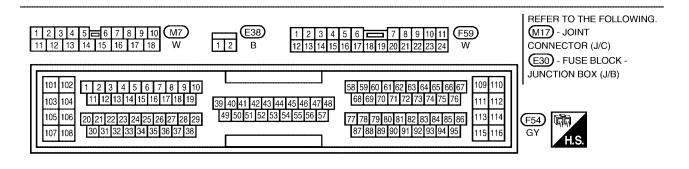
UBS003K1

(P) WITH CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Fully depress the brake pedal for at least 5 seconds.
- 3. Erase the DTC with CONSULT-II.
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- 5. If 1st trip DTC is detected, go to <u>EC-1221, "Diagnostic Procedure"</u>.

DATA MONITOR]
MONITOR	NO DTC	
ENG SPEED	XXX rpm	1
		SEF058Y


WITH GST


Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram

UBS003K2

EC-BRK/SW-01

BBWA0206E

DTC P1805 BRAKE SWITCH

[VQ]

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
55 R/G	P/C	R/G Stop lamp switch	[Engine is running] ● Brake pedal fully released	Approximately 0V
	NG		[Engine is running] • Brake pedal fully depressed	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS003K3

EC

D

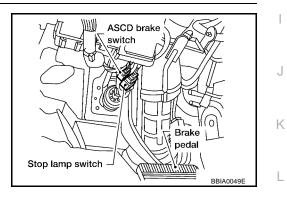
Е

1. CHECK STOP LAMP SWITCH CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Check the stop lamp when depressing and releasing the brake pedal.

Brake pedal	Stop lamp
Fully released	Not illuminated
Depressed	Illuminated

OK or NG

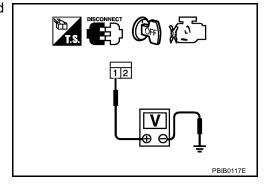

OK >> GO TO 4. NG >> GO TO 2.

Н

M

2. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

1. Disconnect stop lamp switch harness connector.



2. Check voltage between stop lamp switch terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

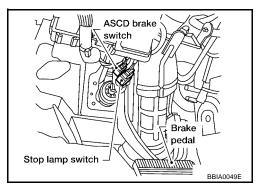
OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- 10A fuse
- Fuse block (J/B) connector E30
- Harness for open and short between stop lamp switch and battery
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT


- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Disconnect stop lamp switch harness connector.
- Check harness continuity between ECM terminal 55 and stop lamp switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E28, M7
- Harness connectors M71, F59
- Joint connector-2
- Harness for open or short between ECM and stop lamp switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK STOP LAMP SWITCH

Refer to EC-1223, "Component Inspection".

OK or NG

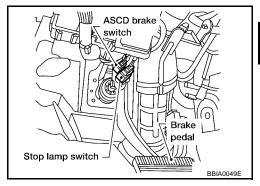
OK >> GO TO 7.

NG >> Replace stop lamp switch.

7. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

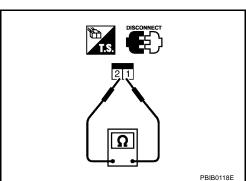
>> INSPECTION END


DTC P1805 BRAKE SWITCH

[VQ]

Component Inspection STOP LAMP SWITCH

UBS003K4


1. Disconnect stop lamp switch harness connector.

2. Check continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Conditions	Continuity
Brake pedal fully released	Should not exist.
Brake pedal depressed	Should exist.

3. If NG, replace stop lamp switch.

EC

Α

С

D

Е

F

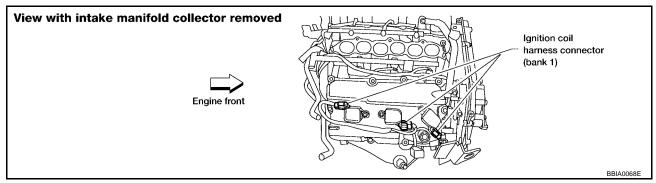
G

Н

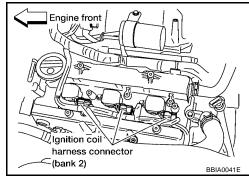
J

<

L

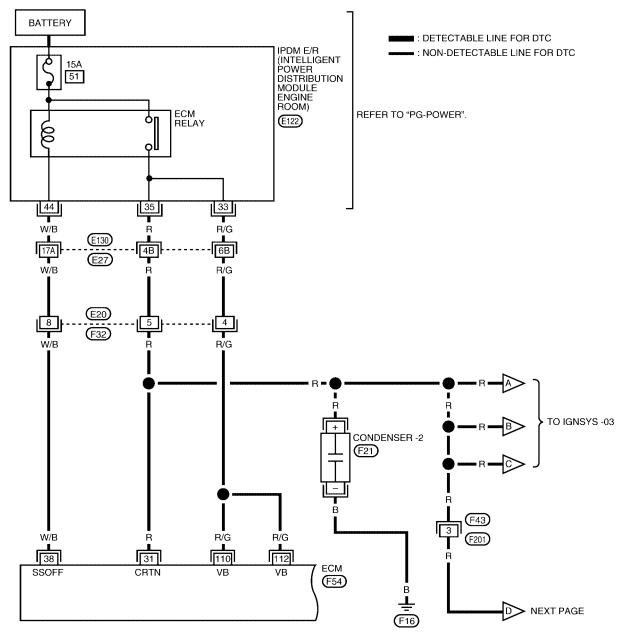

IGNITION SIGNAL PFP:22448

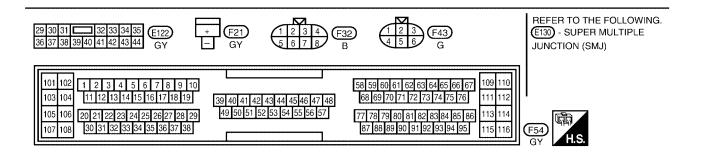
Component Description IGNITION COIL & POWER TRANSISTOR


UBS003K5

The ignition signal from the ECM is sent to and amplified by the power transistor. The power transistor turns on and off the ignition coil primary circuit. This on-off operation induces the proper high voltage in the coil secondary circuit.

Bank 1


Bank 2



[VQ]

EC-IGNSYS-01

BBWA0081E

EC

Α

D

C

Е

Н

CAUTION:

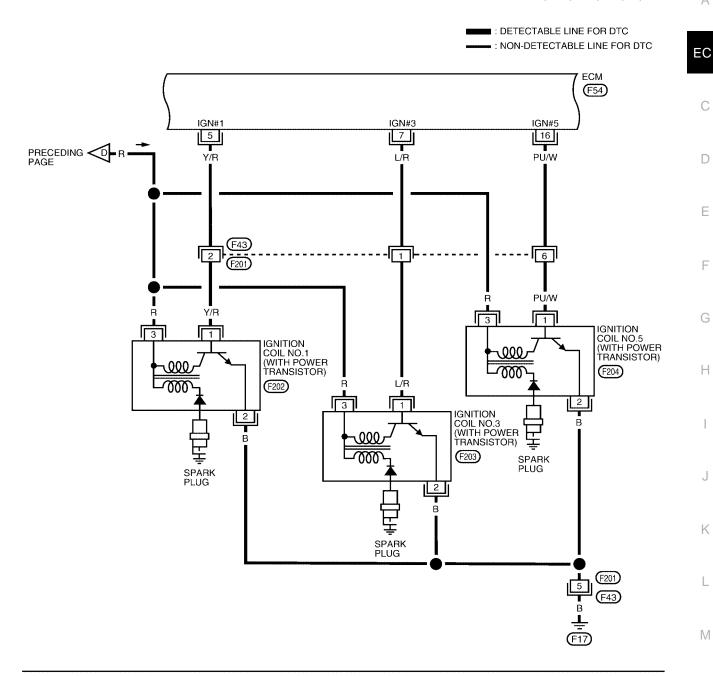
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

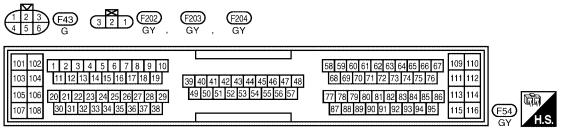
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
31	R	Counter current return	ounter current return [Ignition switch "ON"]	
38	W/B	ECM relay (Self shut-off)	[Engine is running] [Ignition switch "OFF"] • For a few seconds after turning ignition switch "OFF"	0 - 1.5V
		(Sell Silut-Oll)	[Ignition switch "OFF"] ● A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
110 112	R/G R/G	Power supply for ECM	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

Α

C

D


Е


F

Н

M

EC-IGNSYS-02

BBWA0082E

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
5 7	Y/R L/R	Ignition signal No. 1 Ignition signal No. 3	[Engine is running] • Warm-up condition • Idle speed	0 - 0.2V★
16	PU/W	Ignition signal No. 5	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0.1 - 0.3V★

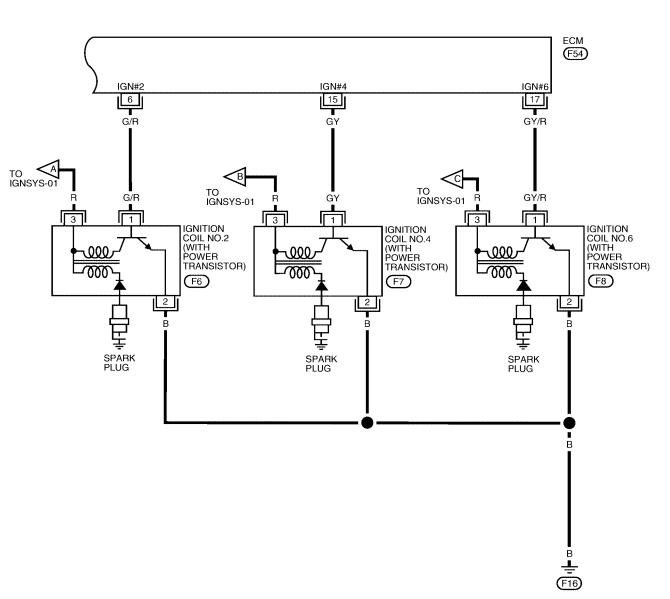
^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

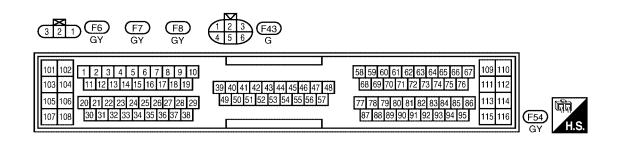
Α

EC

C

D


Е


Н

M

EC-IGNSYS-03

BBWA0083E

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
6 15	G/R GY	Ignition signal No. 2 Ignition signal No. 4	[Engine is running] • Warm-up condition • Idle speed	0 - 0.2V★
17	GY/R	Ignition signal No. 6	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0.1 - 0.3V★

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

UBS003K7

1. CHECK ENGINE START

Turn ignition switch "OFF", and restart engine.

Is engine running?

Yes or No

Yes (With CONSULT-II)>>GO TO 2. Yes (Without CONSULT-II)>>GO TO 3. No >> GO TO 4.

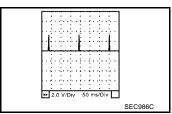
2. CHECK OVERALL FUNCTION

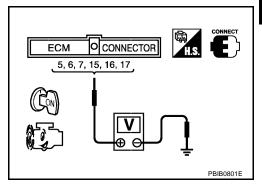
(P) With CONSULT-II

- Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 2. Make sure that each circuit produces a momentary engine speed drop.

OK or NG

OK >> **INSPECTION END**NG >> GO TO 10.


ACTIVE TES	ST	
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		DDIDO400E
		PBIB0133E


[VQ]

3. CHECK OVERALL FUNCTION

⋈ Without CONSULT-II

- 1. Let engine idle.
- 2. Read the voltage signal between ECM terminals 5, 6, 7, 15, 16, 17 and ground with an oscilloscope.
- 3. Verify that the oscilloscope screen shows the signal wave as shown below.

OK or NG

OK >> INSPECTION END

NG >> GO TO 10.

4. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- 2. Check voltage between ECM terminals 110, 112 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5.

NG >> Go to EC-755, "POWER SUPPLY CIRCUIT FOR ECM"

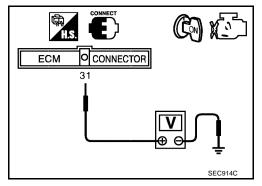
ECM OCONNECTOR

110, 112

V

B

SEC913C


5. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-II

Check voltage between ECM terminal 31 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 6.

EC

С

D

Е

G

F

Н

K

L

6. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-III

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect IPDM E/R harness connector.
- 4. Check harness continuity between ECM terminal 31 and IPDM E/R terminal 35. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> Replace IPDM E/R.

NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connector E130, E27
- Harness or connectors E20, F32
- Harness for open and short between ECM and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK CONDENSER CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect condenser harness connector.
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 31 and condenser terminal +, condenser terminal – and engine ground. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

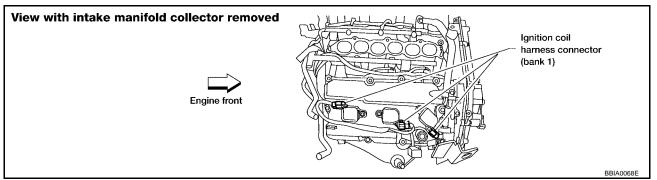
NG >> Repair open circuit or short to ground or short to power in harness or connectors.

Intake manifold collector Condenser-2 BBIA0044E

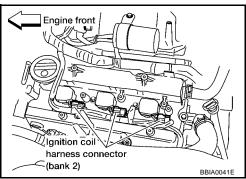
9. CHECK CONDENSER

Refer to EC-1234, "Component Inspection".

OK or NG


OK >> GO TO 10.

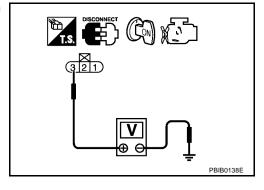
NG >> Replace condenser.


10. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-V

- 1. Turn ignition switch OFF.
- 2. Reconnect all harness connectors disconnected.
- 3. Disconnect ignition coil harness connector.

Bank 1

Bank 2



- 4. Turn ignition switch ON.
- 5. Check voltage between ignition coil terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 12. NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F43, F201
- Harness for open or short between ignition coil and ECM
- Harness for open or short between ignition coil and harness connector F32
 - >> Repair or replace harness or connectors.

EC

С

D

Е

F

G

Н

1 \

L

12. CHECK IGNITION COIL GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Check harness continuity between ignition coil terminal 2 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to power.

OK or NG

```
OK >> GO TO 14.
NG >> GO TO 13.
```

13. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F43, F201
- Harness for open or short between ignition coil and engine ground
 - >> Repair open circuit or short to power in harness or connectors.

14. CHECK IGNITION COIL OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminals 5, 6, 7, 15, 16, 17 and ignition coil terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

```
OK >> GO TO 16.
NG >> GO TO 15.
```

15. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F43, F201
- Harness for open or short between ignition coil and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

16. CHECK IGNITION COIL WITH POWER TRANSISTOR

Refer to EC-1234, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace ignition coil with power transistor.

17. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection IGNITION COIL WITH POWER TRANSISTOR

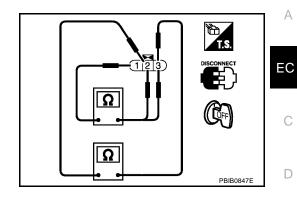
Turn ignition switch "OFF".

UBS003K8

IGNITION SIGNAL

[VQ]

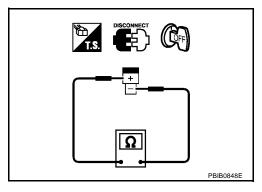
Α


С

D

Е

- Disconnect ignition coil harness connector.
- 3. Check resistance between ignition coil terminals as follows.


Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]	
1 and 2	Except 0 or ∞	
1 and 3	Except 0	
2 and 3	Except o	

CONDENSER

- 1. Turn ignition switch "OFF".
- 2. Disconnect condenser harness connector.
- 3. Check resistance between condenser terminals + and -.

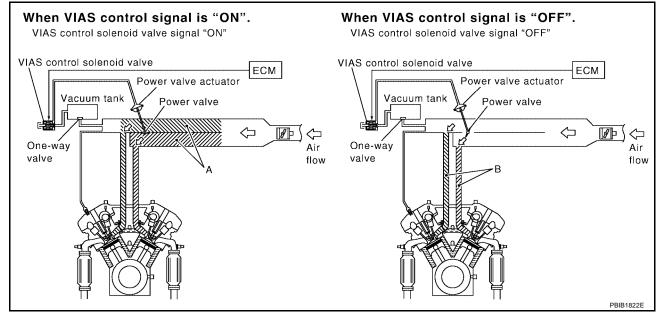
Resistance	Above 1 MΩ at 25°C (77°F)

UBS003K9

Removal and Installation IGNITION COIL WITH POWER TRANSISTOR

Refer to EM-128, "IGNITION COIL".

EC-1235 Revision: May 2004 2002 Altima


Н

VIAS PFP:14956

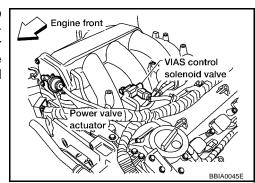
Description SYSTEM DESCRIPTION

UBS003KA

Sensor	Input Signal to ECM	ECM function	Actuator	
Mass air flow sensor	Amount of intake air			
Throttle position sensor	Throttle position			
Accelerator pedal position sensor	Accelerator pedal position			
Ignition switch	Start signal	VIAS control	VIAS control solenoid valve	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed			
Engine coolant temperature sensor	Engine coolant temperature			

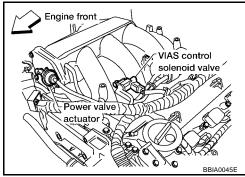
When the engine is running at medium speed, the ECM sends the ON signal to the VIAS control solenoid valve. This signal introduces the intake manifold vacuum into the power valve actuator and therefore closes the power valve.

Under this condition, the effective intake manifold length is equivalent to the total length of passage A and passage B. This long intake manifold provides increased amount of intake air, which results in improved suction efficiency and higher torque.


When engine is running at low or high speed, the ECM sends the OFF signal to the VIAS control solenoid valve and the power valve is opened.

Under this condition, the effective intake manifold length is equivalent to the length of passage B. This shortened intake manifold length results in enhanced engine output due to reduced suction resistance under high speeds.

COMPONENT DESCRIPTION


Power Valve

The power valve is installed in intake manifold collector and used to control the suction passage of the variable induction air control system. It is set in the fully closed or fully opened position by the power valve actuator operated by the vacuum stored in the surge tank. The vacuum in the surge tank is controlled by the VIAS control solenoid valve.

VIAS Control Solenoid Valve

The VIAS control solenoid valve cuts the intake manifold vacuum signal for power valve control. It responds to ON/OFF signals from the ECM. When the solenoid is off, the vacuum signal from the intake manifold is cut. When the ECM sends an ON signal the coil pulls the plunger downward and feeds the vacuum signal to the power valve actuator.

CONSULT-II Reference Value in Data Monitor Mode

UBS003KB

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
VIAS S/V	Engine: After warming up	1,800 - 3,600 rpm	ON
VIAO O/ V	Eligilie. Aitei waiming up	Except the above condition	OFF

Revision: May 2004 **EC-1237** 2002 Altima

EC

Α

С

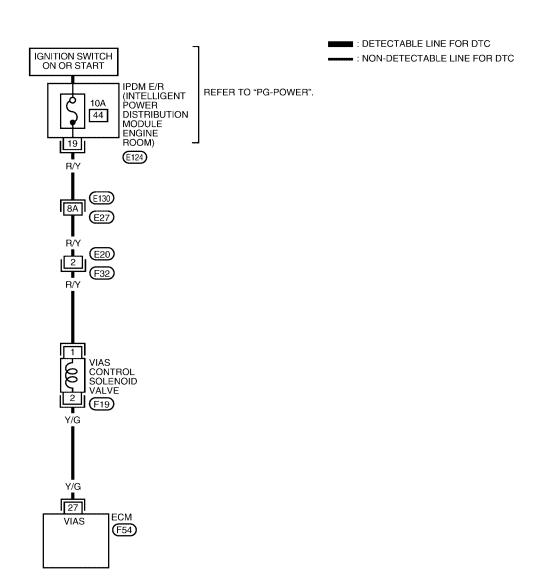
D

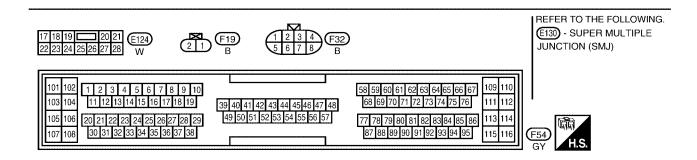
-

Е

F

7


Н


ı

ı

IBSOOSKC

EC-VIAS-01

BBWA0197E

UBS003KD

EC

D

Е

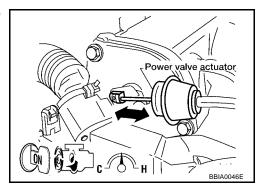
F

Н

M

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
27 Y/G	VIAS control solenoid	[Engine is running] ● Engine speed is 1,800 - 3,600 rpm	0 - 1.0V	
21	170	valve	[Engine is running]Except the above condition	BATTERY VOLTAGE (11 - 14V)

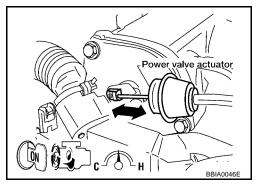
Diagnostic Procedure

1. CHECK OVERALL FUNCTION

(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Turn VIAS control solenoid valve "ON" and "OFF", and make sure that power valve actuator rod moves.

⊗ Without CONSULT-II


- 1. Start engine and warm it up to normal operating temperature.
- 2. Rev engine quickly up to above 5,000 rpm and make sure that power valve actuator rod moves.

OK or NG

OK >> INSPECTION END

NG (With CONSULT-II) >>GO TO 2.

NG (Without CONSULT-II) >>GO TO 3.

2. CHECK VACUUM EXISTENCE

(II) With CONSULT-II

- Stop engine and disconnect vacuum hose connected to power valve actuator.
- 2. Start engine and let it idle.
- 3. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode with CONSULT-II.
- 4. Turn VIAS control solenoid valve "ON" and "OFF", and check vacuum existence under the following conditions.

VIAS SOL VALVE	Vacuum
ON	Should exist.
OFF	Should not exist.

ACTIVE TEST		
VIAS SOL VALVE	OFF	
MONITOR		
ENG SPEED	XXX rpm	
<u> </u>		I
		PBIB0844E

OK or NG

OK >> Repair or replace power valve actuator.

NG >> GO TO 4.

3. CHECK VACUUM EXISTENCE

⋈ Without CONSULT-II

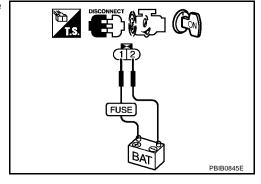
- Stop engine and disconnect vacuum hose connected to power valve actuator.
- 2. Disconnect VIAS control solenoid valve harness connector.
- 3. Start engine and let it idle.
- 4. Apply 12V of direct current between VIAS control solenoid valve terminals 1 and 2.
- 5. Check vacuum existence under the following conditions.

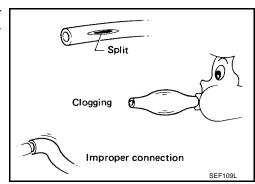
Condition	Vacuum
12V direct current supply	Should exist.
No supply	Should not exist.

OK or NG

OK >> Repair or replace power valve actuator.

NG >> GO TO 4.


4. CHECK VACUUM HOSE


- 1. Stop engine.
- 2. Check hoses and tubes between intake manifold and power valve actuator for crack, clogging, improper connection or disconnection. Refer to EC-646, "Vacuum Hose Drawing".

OK or NG

OK >> GO TO 5.

NG >> Repair hoses or tubes.

EC

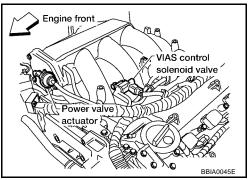
D

Е

Н

5. CHECK VACUUM TANK

Refer to EC-1242, "Component Inspection".

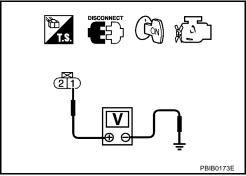

OK or NG

OK >> GO TO 6.

NG >> Replace vacuum tank.

6. CHECK VIAS CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- Turn ignition switch "OFF". 1.
- 2. Disconnect VIAS control solenoid valve harness connector.
- Turn ignition switch "ON".



4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E20, F32
- IPDM E/R connector E124
- 10A fuse
- Harness continuity between fuse and VIAS control solenoid valve

>> Repair harness or connectors.

K

8. CHECK VIAS CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 27 and VIAS control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK VIAS CONTROL SOLENOID VALVE

Refer to EC-1242, "Component Inspection".

OK or NG

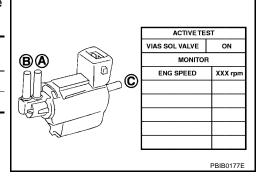
OK >> GO TO 10.

NG >> Replace VIAS control solenoid valve.

10. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

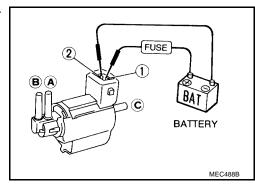

Component Inspection VIAS CONTROL SOLENOID VALVE

UBS003KE

- (III) With CONSULT-II
- 1. Reconnect harness connectors disconnected.
- 2. Turn ignition switch ON.
- 3. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode.
- Check air passage continuity and operation delay time under the following conditions.

Condition VIAS SOL VALVE	Air passage continuity between A and B	Air passage continuity between A and C
ON	Yes	No
OFF	No	Yes

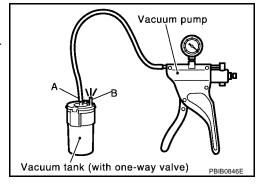
Operation takes less than 1 second.



⋈ Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes


Operation takes less than 1 second.

[VQ]

VACUUM TANK

- 1. Disconnect vacuum hose connected to vacuum tank.
- 2. Connect a vacuum pump to the center port of vacuum tank.
- 3. Apply vacuum and make sure that vacuum exists at the other port.

UBS003KF

Removal and Installation VIAS CONTROL SOLENOID VALVE

Refer to EM-114, "INTAKE MANIFOLD".

Revision: May 2004 **EC-1243** 2002 Altima

EC

Α

С

D

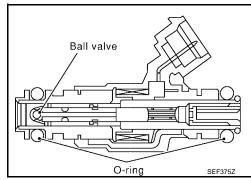
Е

F

G

Н

L


UBS003KG

INJECTOR CIRCUIT

PFP:16600

Component Description

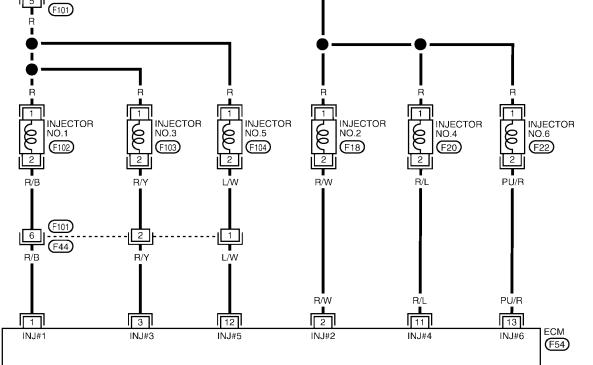
The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the injector circuit, the coil in the injector is energized. The energized coil pulls the needle valve back and allows fuel to flow through the injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.

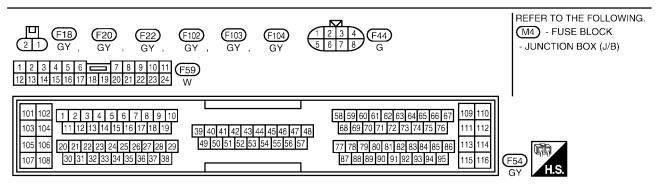
CONSULT-II Reference Value in Data Monitor Mode

UBS003KH

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	
	Engine: After warming up Shift lever: N	Idle	2.3 - 2.9 msec	
Air conditioner switch: OFF No-load	2,000 rpm	2.3 - 2.9 msec		
	Engine: After warming up	Idle	2.0 - 3.0 msec	
INJ PULSE-B1 INJ PULSE-B2	Shift lever: NAir conditioner switch: OFFNo-load	2,000 rpm	1.9 - 2.9 msec	


[VQ]


Н

K

M

Wiring Diagram Α **EC-INJECT-01** IGNITION SWITCH ON OR START EC ■ : DETECTABLE LINE FOR DTC FUSE BLOCK REFER TO "PG-POWER". : NON-DETECTABLE LINE FOR DTC 10A (J/B) 1 (M4)D Е

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

Specification data are reference values and are measured between each terminal and body ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
1 2 3	R/B R/W R/Y	Injector No. 1 Injector No. 2 Injector No. 3	[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)★
11 12 13	R/L L/W PU/R	Injector No. 4 Injector No. 5 Injector No. 6	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm	BATTERY VOLTAGE (11 - 14V)* INDICATE: SEC985C

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

UBS003KJ

1. INSPECTION START

Turn ignition switch to "START". Is any cylinder ignited?

Yes or No

Yes >> GO TO 2. No >> GO TO 3.

INJECTOR CIRCUIT

[VQ]

EC

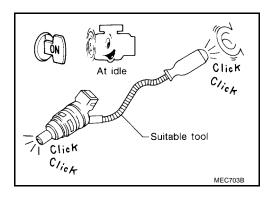
C

D

Е

F

2. CHECK OVERALL FUNCTION


(I) With CONSULT-II

- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Make sure that each circuit produces a momentary engine speed drop.

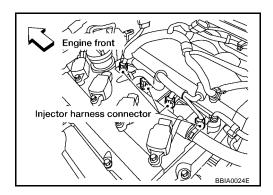
ACT	ACTIVE TEST			
POWER BALA	ANCE		ļ	
МС	NITOR		ļ	
ENG SPE	ED	XXX rpm		
MAS A/F S	E-B1	xxx v		
			PBIB0133E	=

W Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound. Clicking noise should be heard.

OK or NG

OK >> INSPECTION END

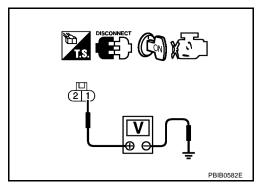

NG >> GO TO 3.

Н

r\

3. CHECK INJECTOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect injector harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between injector terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M71, F59
- Harness connectors F44, F101
- Fuse block (J/B) connector M4
- 10A fuse
- Harness for open or short between injector and fuse
 - >> Repair harness or connectors.

5. CHECK INJECTOR OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between injector terminal 2 and ECM terminals 1, 2, 3, 11, 12, 13. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

INJECTOR CIRCUIT

[VQ]

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F44, F101
- Harness for open or short between injector and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK INJECTOR

Refer to EC-1249, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace injector.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection **INJECTOR**

1. Disconnect injector harness connector.

2. Check resistance between terminals as shown in the figure.

Resistance: 13.5 - 17.5 Ω [at 20°C (68°F)]

Removal and Installation **INJECTOR**

Refer to EM-131, "FUEL INJECTOR AND FUEL TUBE" .

UBS003KL

EC

D

Е

UBS003KK

Н

START SIGNAL

[VQ]

START SIGNAL PFP:48750

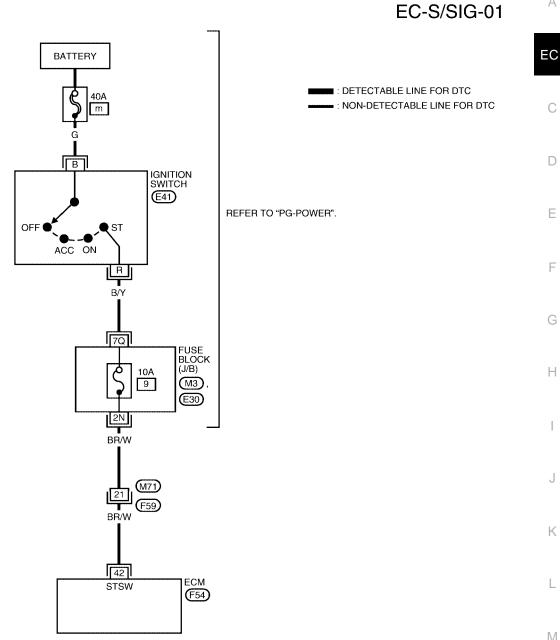
CONSULT-II Reference Value in Data Monitor Mode

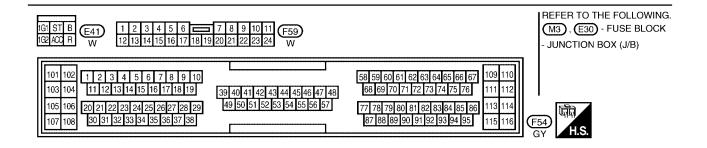
UBS003KM

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
START SIGNAL	• Ignition switch: $ON \rightarrow START \rightarrow ON$	$OFF \to ON \to OFF$

[VQ]


Α


C

D

Е

Wiring Diagram

BBWA0090E

Н

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
42	BR/W	Start signal	[Ignition switch "ON"]	Approximately 0V
42	DIX/W	Start Signal	[Ignition switch "START"]	9 - 14V

Diagnostic Procedure

UBS003KO

1. INSPECTION START

Do you have CONSULT-II?

Yes or No

Yes >> GO TO 2. No >> GO TO 3.

2. CHECK OVERALL FUNCTION

(II) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Check "START SIGNAL" in "DATA MONITOR" mode with CON-SULT-II under the following conditions.

Condition	START SIGNAL
Ignition switch "ON"	OFF
Ignition switch "START"	ON

OK or NG

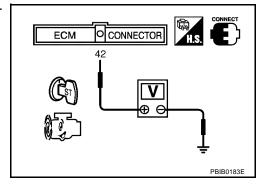
OK >> INSPECTION END

NG >> GO TO 4.

DATA MON	NITOR	
MONITOR	NO DTC	
START SIGNAL	OFF	
CLSD THL POS	ON	
AIR COND SIG	OFF	
P/N POSI SW	ON	
		PBIB0182E

3. CHECK OVERALL FUNCTION

W Without CONSULT-II


Check voltage between ECM terminal 42 and ground under the following conditions.

Condition	Voltage
Ignition switch "START"	Battery voltage
Other positions	Approximately 0V

OK or NG

OK >> INSPECTION END

NG >> GO TO 4.

4. CHECK STARTING SYSTEM

Turn ignition switch "OFF", then turn it to "START".

Does starter motor operate?

Yes or No

Yes >> GO TO 5.

No >> Refer to <u>SC-9</u>, "STARTING SYSTEM".

START SIGNAL

[VQ]

M

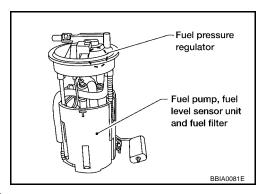
5. CHECK FUSE 1. Turn ignition switch "OFF". 2. Disconnect 10A fuse. EC 3. Check if 10A fuse is OK. OK or NG OK >> GO TO 6. NG >> Replace 10A fuse. 6. CHECK START SIGNAL INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT D 1. Disconnect ECM harness connector. 2. Disconnect ignition switch harness connector. 3. Check harness continuity between ECM terminal 42 and ignition switch terminal R. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 8. NG >> GO TO 7. 7. DETECT MALFUNCTIONING PART Check the following. Harness connectors M71, F59 Fuse block (J/B) connectors M3, E30 Harness for open or short between ignition switch and fuse block (J/B) Harness for open or short between ECM and fuse block (J/B) >> Repair open circuit or short to ground or short to power in harness or connectors. 8. CHECK INTERMITTENT INCIDENT K Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". >> INSPECTION END

Revision: May 2004 **EC-1253** 2002 Altima

FUEL PUMP CIRCUIT

DescriptionSYSTEM DESCRIPTION

PFP:17042


Sensor	Input Signal to ECM	ECM Function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed	Fuel pump control	Fuel pump relay
Ignition switch	Start signal		

The ECM activates the fuel pump for several seconds after the ignition switch is turned on to improve engine startability. If the ECM receives a engine speed signal from the camshaft position sensor (PHASE), it knows that the engine is rotating, and causes the pump to operate. If the engine speed signal is not received when the ignition switch is ON, the engine stalls. The ECM stops pump operation and prevents battery discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

Condition	Fuel pump operation	
Ignition switch is turned to ON.	Operates for 1 second.	
Engine running and cranking	Operates.	
When engine is stopped	Stops in 1.5 seconds.	
Except as shown above	Stops.	

COMPONENT DESCRIPTION

A turbine type design fuel pump is used in the furl tank.

CONSULT-II Reference Value in Data Monitor Mode

UBS003KQ

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
FUEL PUMP RLY	For 1 seconds after turning ignition switch ONEngine running or cranking	ON
	Except above conditions	OFF

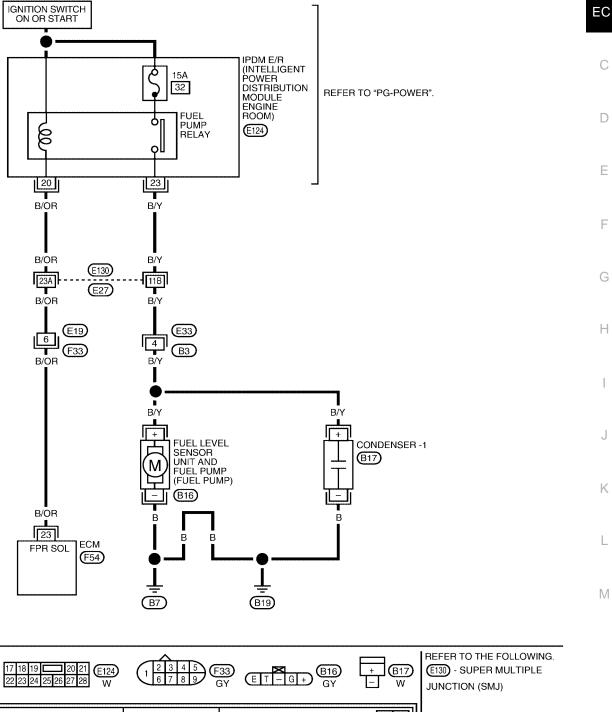
Α

Wiring Diagram

E33

102

108


103 104

105 106 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

EC-F/PUMP-01

109

58 59 60 61 62 63 64 65 66 67

77 78 79 80 81 82 83 84 85 86

BBWA0091E

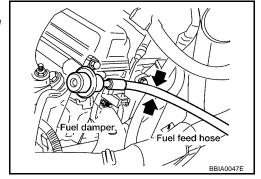
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
23	B/OR	Fuel pump relay	[Ignition switch "ON"]● For 1 seconds after turning ignition switch "ON"[Engine is running]	0 - 1.5V
	Б/СК	r doi pamp rolay	[Ignition switch "ON"] ■ More than 1 seconds after turning ignition switch "ON".	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

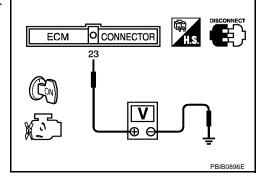

UBS003KS

1. CHECK OVERALL FUNCTION

- 1. Turn ignition switch "ON".
- Pinch fuel feed hose with two fingers.
 Fuel pressure pulsation should be felt on the fuel feed hose for 1 second after ignition switch is turned "ON".

OK or NG

OK >> INSPECTION END NG >> GO TO 2.

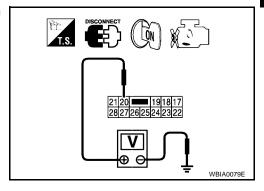

$2. \ \mathsf{CHECK} \ \mathsf{FUEL} \ \mathsf{PUMP} \ \mathsf{POWER} \ \mathsf{SUPPLY} \ \mathsf{CIRCUIT}\text{-}\mathsf{I}$

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Turn ignition switch "ON".
- 4. Check voltage between ECM terminal 23 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 3.


3. CHECK FUEL PUMP POWER SUPPLY CIRCUIT-I

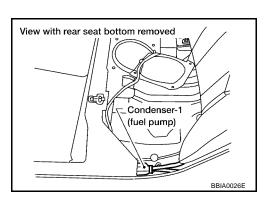
- 1. Turn ignition switch "OFF".
- 2. Disconnect IPDM E/R harness connector E124.
- 3. Turn ignition switch "ON".
- 4. Check voltage between IPDM E/R terminal 20 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 13.

4. DETECT MALFUNCTIONING PART


Check the following.

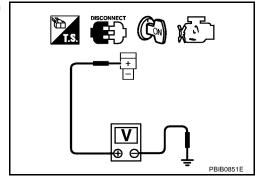
- Harness connectors E130, E27
- Harness connectors E19, F33
- Harness for open or short between IPDM E/R and ECM

>> Repair harness or connectors.

5. CHECK CONDENSER POWER SUPPLU CIRCUIT-I

- 1. Turn ignition switch "OFF".
- 2. Reconnect all harness connectors disconnected.
- 3. Disconnect condenser harness connector.
- 4. Turn ignition switch "ON".

5. Check voltage between condenser terminal + and ground with CONSULT-II or tester.


Voltage: Battery voltage should exist for 1 second after ignition switch is turned

"ON".

6. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 6.

EC

_

D

Е

G

Н

K

L

6. CHECK 15A FUSE

- 1. Turn ignition switch "OFF".
- 2. Disconnect 15A fuse.
- 3. Check 15A fuse.

OK or NG

OK >> GO TO 7. NG >> Replace fuse.

7. CHECK CONDENSER POWER SUPPLY CIRCUIT-II

- 1. Disconnect IPDM E/R harness connector E124.
- 2. Check harness continuity between IPDM E/R terminal 23 and condenser terminal +. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 13. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E33, B3
- Harness for open or short between IPDM E/R and condenser
 - >> Repair harness or connectors.

9. CHECK CONDENSER GROUND CIRCUIT

 Check harness continuity between condenser terminal – and body ground. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to power.

OK or NG

OK >> GO TO 10.

NG >> Repair open circuit or short to power in harness or connectors.

10. CHECK CONDENSER

Refer to EC-1259, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> Replace condenser.

[VQ]

11. CHECK FUEL PUMP POWER SUPPLU AND GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Disconnect fuel level sensor unit and fuel pump harness connector.
- 3. Check harness continuity between fuel pump terminal + and harness connector B3 terminal 4, furl pump terminal and body ground.

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 12.

NG >> Repair open circuit or short to power in harness or connectors.

12. CHECK CONDENSER

Refer to EC-1259, "Component Inspection".

OK or NG

OK >> GO TO 13.

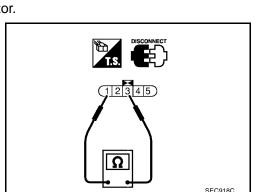
NG >> Replace fuel pump.

13. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> Replace IPDM E/R.


NG >> Repair or replace harness or connectors.

Component Inspection FUEL PUMP

Disconnect fuel level sensor unit and fuel pump harness connector.

2. Check resistance between fuel level sensor unit and fuel pump terminals 3 and 5.

Resistance: Approximately 1.0 Ω [at 25°C (77°F)]

CONDENSER

- 1. Turn ignition switch "OFF".
- Disconnect condenser harness connector.

Rear seat access

Fuel level sensor unit and fuel pump harness connector

BBIA0012E

EC

Α

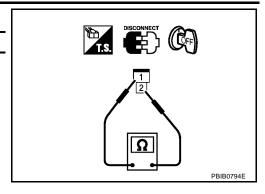
С

D

Е

Г

UBS003KT


L

FUEL PUMP CIRCUIT

[VQ]

3. Check resistance between condenser terminals as 1 and 2.

Resistance Above 1 MΩ at 25°C (77°F)

Removal and Installation FUEL PUMP

UBS003KU

Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY" .

ELECTRONIC CONTROLLED ENGINE MOUNT

[VQ]

ELECTRONIC CONTROLLED ENGINE MOUNT

PFP:11270

System Description

UBS003KV

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed	Engine mount	Electronic controlled engine
Vehicle speed sensor (CAN communication line)	Vehicle speed	control	mount

EC

C

D

The ECM controls the engine mount operation corresponding to the engine speed and the vehicle speed. THe control system has 2-step control [Soft/Hard]

Vehicle condition	Engine mount control
Idle (with vehicle stopped)	Soft
Driving	Hard

Е

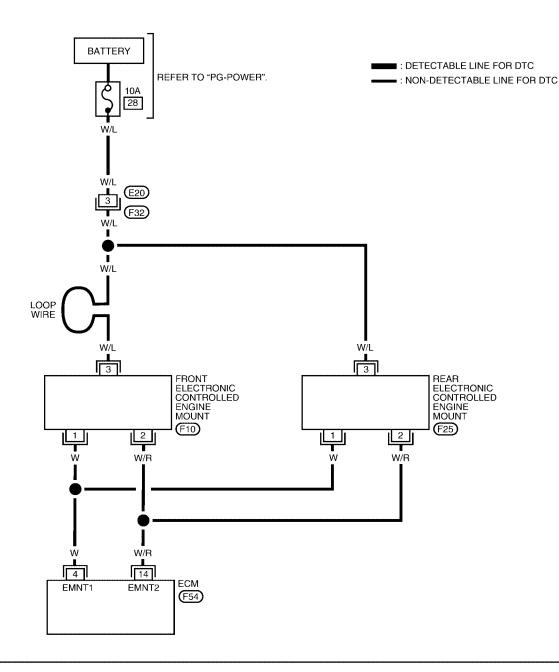
CONSULT-II Reference Value in Data Monitor Mode

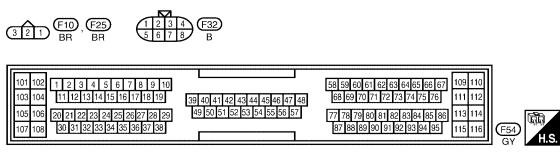
UBS003KW

MONITOR ITEM	CONDITION		SPECIFICATION
ENGINE MOUNT	Engine: Running	Idle	"IDLE"
LINGINE MOONT	• Engine: Numining	Except above	"TRVL"

Н

J


<


L

Wiring Diagram

083003

EC-EMNT-01

BBWA0094E

ELECTRONIC CONTROLLED ENGINE MOUNT

[VQ]

EC

D

Е

Н

K

UBS003KY

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
4	W	Electronic controlled	[Engine is running] ● Idle speed	0 - 1.0V
4	engine mount-1		[Engine is running] • Except above condition	BATTERY VOLTAGE (11 - 14V)
14	W/R	Electronic controlled	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)
14	engine mount-2		[Engine is running] • Except above condition	0 - 1.0V

Diagnostic Procedure

1. CHECK OVERALL FUNCTION

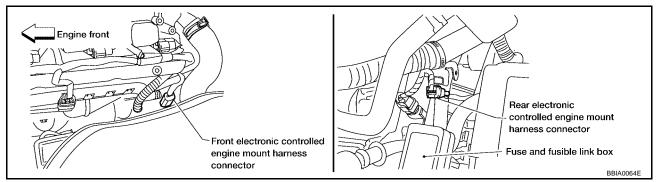
(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Shift selector lever to "D" range while depressing the brake pedal and pulling the parking brake control lever.
- 3. Perform "ENGINE MOUNTING" in "ACTIVE TEST" mode with CONSULT-II and check that the vibration changes according to switching the condition (with vehicle stopped).

ACTIVE TES	Ŧ	
ENGINE MOUNTING	IDLE	
MONITOR		
ENG SPEED	XXX rpm	
COOLAN TEMP/S	COOLAN TEMP/S XXX °C	
		SEC2370

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Shift selector lever to "D" range while depressing the brake pedal and pulling the parking brake control lever.
- 3. Disconnect front or rear electronic controlled engine mount harness connector when engine speed is more than 1,000 rpm.
- 4. When returning engine speed to idle speed, check that body vibration increases compared with the condition of the above step 2 (with vehicle stopped).

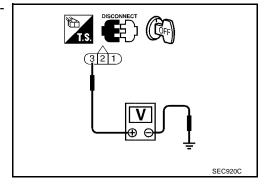

OK or NG

OK >> INSPECTION END

NG >> GO TO 2.

2. CHECK ELECTRONIC CONTROLLED ENGINE MOUNT POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect front or rear electronic controlled engine mount harness connector.



Check voltage between electronic controlled engine mount terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E20, F32
- 10A fuse
- Harness for open and short between electronic controlled engine mount and battery
 - >> Repair harness or connectors.

4. CHECK ELECTRONIC CONTROLLED ENGINE MOUNT OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminals and electronic engine mount terminals as follows. Refer to Wiring Diagram.

ECM terminal	Front electronic controlled engine mount terminal	Rear electronic controlled engine mount terminal
4	1	2
14	1	2

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

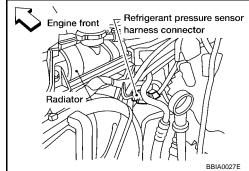
NG >> Repair open circuit or short to ground or short to power in harness or connectors.

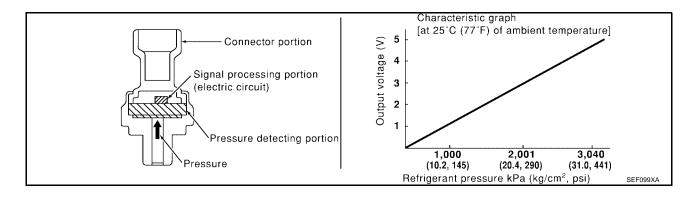
ELECTRONIC CONTROLLED ENGINE MOUNT

[VQ] 5. CHECK ELECTRONIC CONTROLLED ENGINE MOUNT Visually check front and rear electronic controlled engine mount. OK or NG EC >> GO TO 6. OK NG >> Replace front or rear electronic controlled engine mount. 6. CHECK INTERMITTENT INCIDENT Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" . D >> INSPECTION END Е Н

M

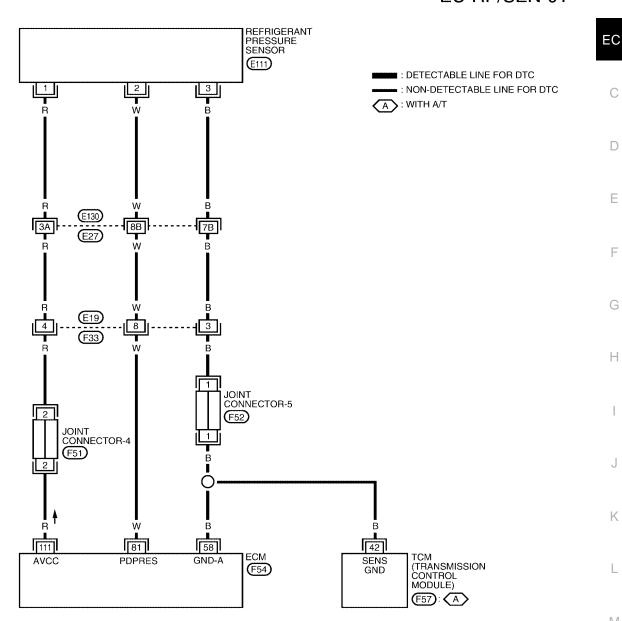
Revision: May 2004 **EC-1265** 2002 Altima

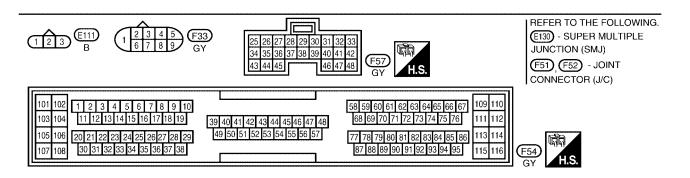

REFRIGERANT PRESSURE SENSOR


Component Description

PFP:92136

UBS003KZ


The refrigerant pressure sensor is installed at the liquid tank of the air conditioner system. The sensor uses an electrostatic volume pressure transducer to convert refrigerant pressure to voltage. The voltage signal is sent to ECM, and ECM controls cooling fan system.



Wiring Diagram

EC-RP/SEN-01

BBWA0093E

C

Α

D

Е

Н

CAUTION:

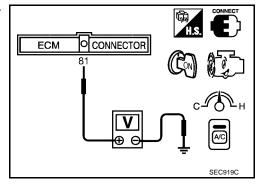
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
58	В	Sensors' ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
81	W	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower switch are "ON". (Compressor operates.) 	1.0 - 4.0V
111	R	Sensor's power sup- ply	[Ignition switch "ON"]	Approximately 5V

Diagnostic Procedure

UBS003L1

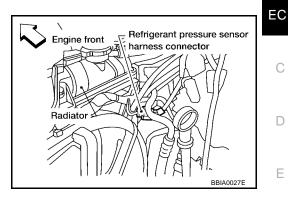
1. CHECK REFRIGERANT PRESSURE SENSOR OVERALL FUNCTION


- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn A/C switch and blower switch "ON".
- 3. Check voltage between ECM terminal 81 and ground with CON-SULT-II or tester.

Voltage: 1.0 - 4.0V

OK or NG

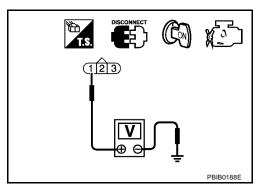
OK >> INSPECTION END


NG >> GO TO 2.

Н

2. CHECK REFRIGERANT PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn A/C switch and blower switch "OFF".
- 2. Stop engine.
- 3. Disconnect refrigerant pressure sensor harness connector.
- 4. Turn ignition switch "ON".



Check voltage between refrigerant pressure sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E19, F33
- Joint connector-4
- Harness for open or short between ECM and refrigerant pressure sensor

>> Repair harness or connectors.

4. CHECK REFRIGERANT PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch "OFF".
- 2. Check harness continuity between refrigerant pressure sensor terminal 3 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 6.

NG >> GO TO 5.

Revision: May 2004

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E19, F33
- Joint connector-5
- Harness for open or short between ECM and refrigerant pressure sensor
- Harness for open or short between TCM and refrigerant pressure sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK REFRIGERANT PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 81 and refrigerant pressure sensor terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E130, E27
- Harness connectors E19, F33
- Harness for open or short between ECM and refrigerant pressure sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK INTERMITTENT INCIDENT

Refer to $\underline{\mathsf{EC-754}}$, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> Replace refrigerant pressure sensor.

NG >> Repair or replace.

Removal and Installation REFRIGERANT PRESSURE SENSOR

UBS003L2

Refer to MTC-88, "Removal and Installation for Refrigerant Pressure Sensor" (manual A/C) or ATC-126, "Removal and Installation for Refrigerant Pressure Sensor" (auto A/C).

ELECTRICAL LOAD SIGNAL

[VQ]

ELECTRICAL LOAD SIGNAL

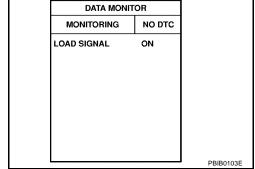
PFP:25350

Description

......

The electrical load signal (Headlamp switch signal, rear window defogger switch signal, etc.) is transferred through the CAN communication line from BCM to ECM via IPDM E/R.

UBS003L4


EC

Diagnostic Procedure

1. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-I

- 1. Turn ignition switch "ON".
- 2. Connect CONSULT-II or GST and select "DATA MONITOR" mode.
- Select "LOAD SIGNAL" and check indication under the following conditions.

Condition	Indication
Rear window defogger switch "ON"	ON
Rear window defogger switch "OFF"	OFF

OK or NG

OK >> GO TO 2. NG >> GO TO 3.

2. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-II

Check "LOAD SIGNAL" indication under the following conditions.

Condition	Indication
Lighting switch "ON" at 2nd position	ON
Lighting switch "OFF"	OFF

DATA MONITOR MONITORING NO DTC LOAD SIGNAL ON

OK or NG

OK >> INSPECTION END

NG >> GO TO 4.

3. CHECK REAR WINDOW DEFOGGER SYSTEM

Refer to GW-41, "REAR WINDOW DEFOGGER".

>> INSPECTION END

4. CHECK HEADLAMP SYSTEM

Refer to LT-5, "HEADLAMP (FOR USA)" or LT-28, "HEADLAMP (FOR CANADA) - DAYTIME LIGHT SYSTEM -" .

>> INSPECTION END

G

Е

Н

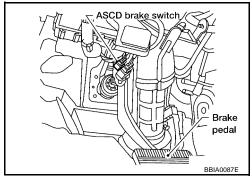
-

J

K

PBIB0103E

UBS003L5

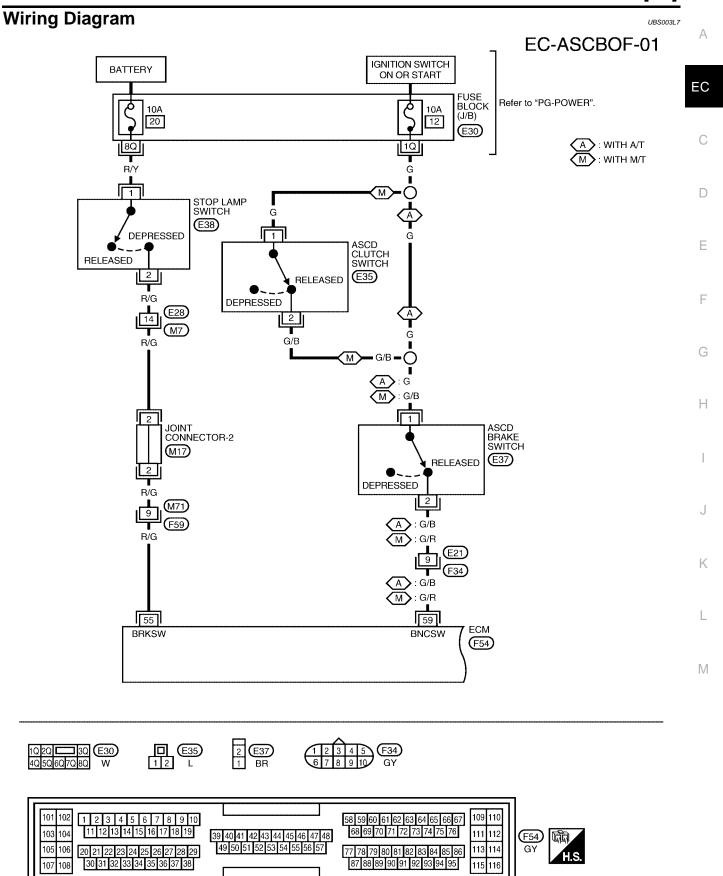

ASCD BRAKE SWITCH

Component Description

PFP:25320

When depress on the brake pedal, ASCD brake switch is turned OFF and stop lamp switch is turned ON. ECM detects the state of the brake pedal by this input of two kinds (ON/OFF signal)

Refer to <u>EC-1300</u>, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for the ASCD function.



CONSULT-II Reference Value in Data Monitor Mode

UBS003L6

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW 1	Ignition switch: ON	Brake pedal fully released	ON
(ASCD brake switch)	• Igrillion switch. ON	Brake pedal depressed	OFF
BRAKE SW 2	Ignition switch: ON	Brake pedal fully released	OFF
(stop lamp switch)	• Ignition switch. ON	Brake pedal depressed	ON

BBWA0203E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
55	P/C	Stan Jamp switch	[Ignition switch "ON"] • Brake pedal is fully released	Approximately 0V
55	55 R/G Stop lamp switch		[Ignition switch "ON"] • Brake pedal is depressed	BATTERY VOLTAGE (11 - 14V)
59	G/B (A/T)	ASCD brake switch	[Ignition switch "ON"] Brake pedal is fully released Clutch pedal is fully released (M/T models)	BATTERY VOLTAGE (11 - 14V)
39	G/R (M/T)	ASOD BIANG SWILDI	[Ignition switch "ON"] Brake pedal is depressed Clutch pedal is depressed (M/T models)	Approximately 0V

ASCD BRAKE SWITCH

[VQ]

UBS003L8

Diagnostic Procedure

1. CHECK OVERALL FUNCTION-I

(II) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-II.
- 3. Check "BRAKE SW1" indication under the following conditions.

A/T models

CONDITION	INDICATION
When brake pedal is depress	OFF
When brake pedal is fully released	ON
M/T models	

CONDITION	INDICATION
When clutch pedal or brake pedal is depressed	OFF
When clutch pedal and brake pedal are fully released	ON

NO DTC
OFF

(X) Without CONSULT-II


- 1. Turn ignition switch "ON".
- 2. Check voltage between ECM terminal 59 and ground under the following conditions.

A/T models

CONDITION	VOLTAGE
When brake pedal is depress	Approximately 0V
When brake pedal is fully released	Battery voltage

M/T models

CONDITION	VOLTAGE
When clutch pedal or brake pedal is depressed	Approximately 0V
When clutch pedal and brake pedal are fully released	Battery voltage

OK or NG

OK >> GO TO 2.

NG (M/T models) >>GO TO 3.

NG (A/T models) >>GO TO 8.

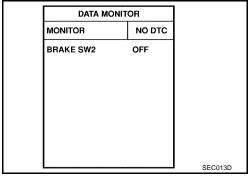
EC

Α

C

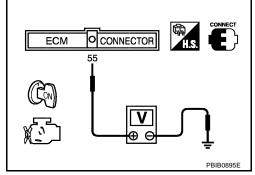
D

Е


Н

K

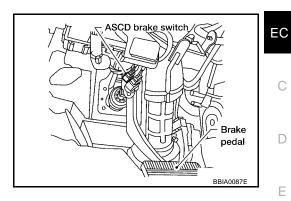
2. CHECK OVERALL FUNCTION-II


(E) With CONSULT-II Check "BRAKE SW2" indication in "DATA MONITOR" mode.

CONDITION	INDICATION
When brake pedal is released	OFF
When brake pedal is depressed	ON

Without CONSULT-II
 Check voltage between ECM terminal 55 and ground under the following conditions.

CONDITION	VOLTAGE
When brake pedal is released	Approximately 0V
When brake pedal is depressed	Battery voltage


OK or NG

OK >> INSPECTION END

NG >> GO TO 13.

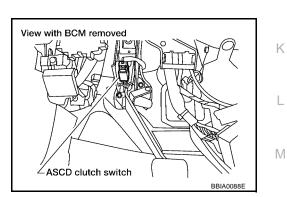
3. CHECK ASCD CLUTCH SWITCH CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ASCD brake switch harness connector.
- 3. Turn ignition switch "ON".

4. Check voltage between ASCD brake switch terminal 1 and ground under the following conditions with CONSULT-II or tester.

CONDITION	VOLTAGE
When clutch pedal is released	Battery voltage
When clutch pedal is depressed	Approx. 0V

Н

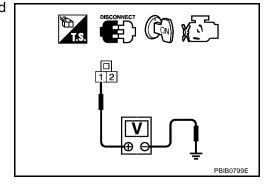

PBIB0857E

OK or NG

OK >> GO TO 10. NG >> GO TO 4.

4. CHECK ASCD CLUTCH SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ASCD clutch switch harness connector.
- 3. Turn ignition switch "ON".



4. Check voltage between ASCD clutch switch terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E30
- 10A fuse
- Harness for open or short between ASCD clutch switch and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK ASCD CLUTCH SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Check harness continuity between ASCD clutch switch terminal 2 and ASCD brake switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

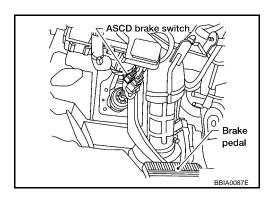
OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK ASCD CLUTCH SWITCH

Refer to EC-1204, "Component Inspection"

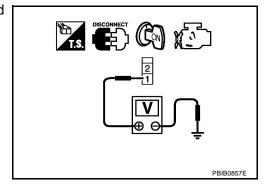

OK or NG

OK >> GO TO 18.

NG >> Replace ASCD clutch switch.

8. CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ASCD brake switch harness connector.
- 3. Turn ignition switch "ON".

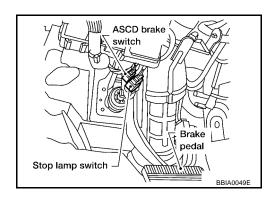


4. Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10. NG >> GO TO 9.

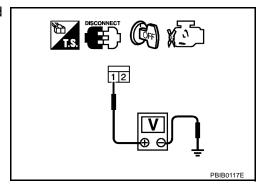


ASCD BRAKE SWITCH

[VQ] 9. DETECT MALFUNCTIONING PART Check the following. Fuse block (J/B) connector E30 EC 10A fuse Harness for open or short between ASCD brake switch and fuse >> Repair open circuit or short to ground or short to power in harness or connectors. 10. CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT D 1. Turn ignition switch "OFF". Disconnect ECM harness connector. Е 3. Check harness continuity between ECM terminal 59 and ASCD brake switch terminal 2. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground or short to power. OK or NG OK >> GO TO 12. >> GO TO 11. NG 11. DETECT MALFUNCTIONING PART Check the following. Harness connectors E21, F34 Harness for open or short between ECM and ASCD brake switch >> Repair open circuit or short to ground or short to power in harness or connectors. 12. CHECK ASCD BRAKE SWITCH Refer to EC-1204, "Component Inspection" OK or NG >> GO TO 18. OK NG >> Replace ASCD brake switch.

13. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect stop lamp switch harness connector.



3. Check voltage between stop lamp switch terminal 1 and ground with CONSULT -II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 15. NG >> GO TO 14.

14. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E30
- 10A fuse
- Harness for open or short between stop lamp switch and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

15. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 55 and stop lamp switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 17. NG >> GO TO 16.

ASCD BRAKE SWITCH

[VQ] 16. DETECT MALFUNCTIONING PART Check the following. Harness connectors E28, M7 EC Harness connectors M71, F59 Joint connector-2 Harness for open or short between ECM and stop lamp switch >> Repair open circuit or short to ground or short to power in harness or connectors. 17. CHECK STOP LAMP SWITCH D Refer to EC-1204, "Component Inspection" Е OK or NG OK >> GO TO 18. NG >> Replace stop lamp switch. 18. CHECK INTERMITTENT INCIDENT Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". >> INSPECTION END Н

ASCD INDICATOR

[VQ]

ASCD INDICATOR PFP:24814

Component Description

UBS003L9

ASCD indicator lamp illuminates to indicate ASCD operation status. Lamp has two indicators, CRUISE and SET, and is integrated in combination meter.

CRUISE indicator illuminates when CRUISE switch on ASCD steering switch is turned ON to indicated that ASCD system is ready for operation.

SET indicator illuminates when following conditions are met.

- CRUISE indicator is illuminated.
- SET switch on ASCD steering switch is turned ON while vehicle speed is within the range of ASCD setting.

SET indicator remains lit during ASCD control.

Refer to EC-1300, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for the ASCD function.

CONSULT-II Reference Value in Data Monitor Mode

UBS003LA

Specification data are reference value.

MONITOR ITEM	CONDITION		SPECIFICATION
CRUISE LAMP	• Ignition switch: ON	CRUISE switch pressed	ON
CRUISE LAWIP	• Ignition Switch. ON	CRUISE switch released	OFF
	CRUISE switch: ON	COAST/SET switch pressed	ON
SET LAMP	When vehicle speed is between 40 km/h (25 MPH) and 144 km/h (89 MPH)	COAST/SET switch released	OFF

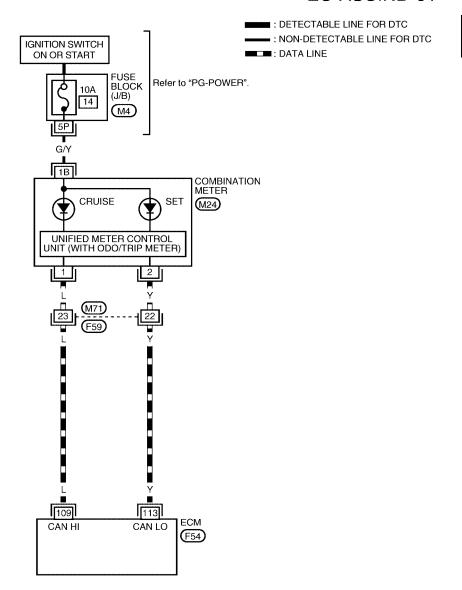
Wiring Diagram

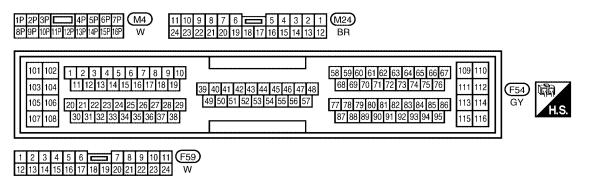
UBS003LB

Α

EC

C


D


Е

Н

M

EC-ASCIND-01

WBWA0006E

ASCD INDICATOR

[VQ]

UBS003LC

Diagnostic Procedure

1. CHECK OVERALL FUNCTION

Check ASCD indicator under the following conditions.

ASCD INDICATOR	CONDITION		SPECIFICATION
CRUISE LAMP	Ignition switch: ON	CRUISE switch pressed	ON
CROISE LAWIF	• Igilillori switch. ON	CRUISE switch released	OFF
	CRUISE switch: ON	COAST/SET switch pressed	ON
SET LAMP	When vehicle speed is between 40 km/h (25 MPH) and 144 km/h (89 MPH)	COAST/SET switch released	OFF

OK or NG

OK >> INSPECTION END

NG >> GO TO 2.

2. CHECK DTC

Check that DTC U1000 or U1001is not displayed.

Yes or No

Yes >> Perform trouble diagnoses for DTC U1000, U1001, refer to EC-761, "DTC U1000, U1001 CAN COMMUNICATION LINE".

No >> GO TO 3.

3. CHECK COMBINATION METER OPERATION

Does combination meter operate normally?

Yes or No

Yes >> GO TO 4.

No >> Check combination meter circuit. Refer to DI-4, "COMBINATION METERS".

4. CHECK INTERMITTENT INCIDENT

Refer to EC-754, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

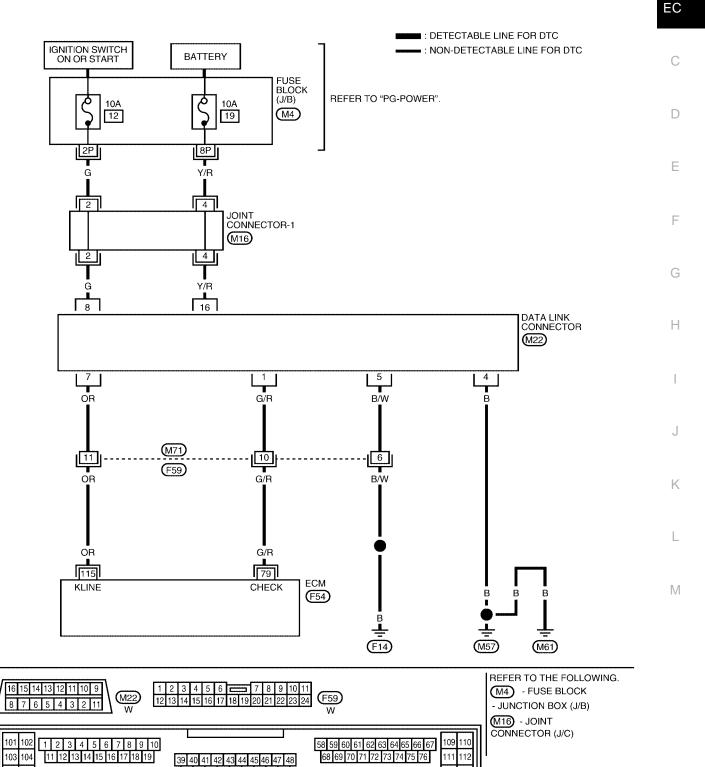
DATA LINK CONNECTOR Wiring Diagram

101

105 106

108

20 21 22 23 24 25 26 27 28 29


30 31 32 33 34 35 36 37 38

PFP:24814

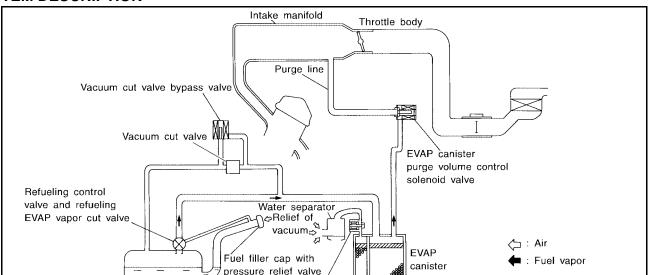
UBS003LD

Α

EC-DLC-01

77 78 79 80 81 82 83 84 85 86

87 88 89 90 91 92 93 94 95


49 50 51 52 53 54 55 56 57

UBS003LE

EVAPORATIVE EMISSION SYSTEM

PFP:14950

Description SYSTEM DESCRIPTION

The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.

EVÁP canister

vent control valve

and vacuum relief

valve

Fuel tank

The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the vapor is stored there when the engine is not operating or when refueling to the fuel tank.

The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the engine is operating. EVAP canister purge volume control solenoid valve is controlled by ECM. When the engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is proportionally regulated as the air flow increases.

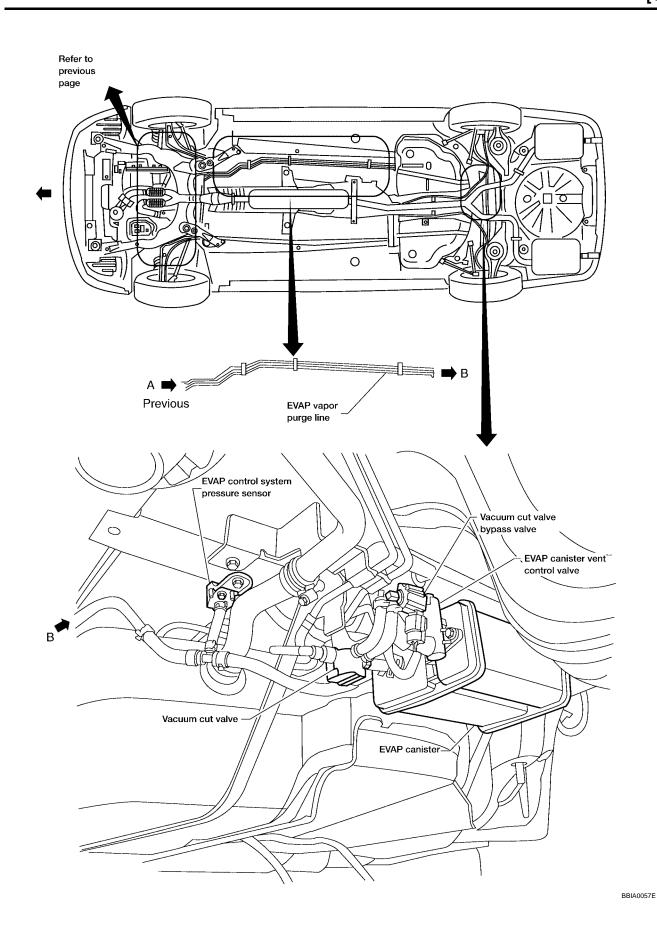
EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating and idling.

EVAPORATIVE EMISSION LINE DRAWING

EC

С

D


Е

Κ

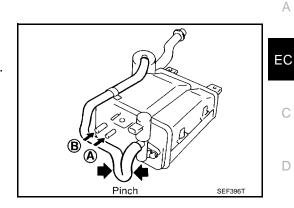
Α

Intake manifold collector **EVAP** canister purge volume control solenoid valve EVAP service port Н A (To next page) \mathbb{N}

BBIA0056E

UBS003LF

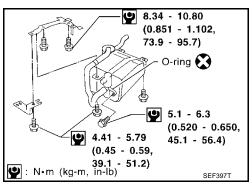
Е


Н

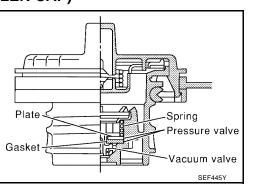
M

Component Inspection EVAP CANISTER

Check EVAP canister as follows:


- Pinch the fresh air hose.
- 2. Blow air into port A and check that it flows freely out of port B.

Tightening Torque


Tighten EVAP canister as shown in the figure.

Make sure new O-ring is installed properly between EVAP canister and EVAP canister vent control valve.

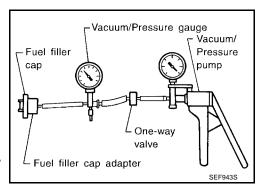
FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FILLER CAP)

Wipe clean valve housing.

2. Check valve opening pressure and vacuum.

Pressure: 15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 -

2.90 psi)


Vacuum: -6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm², -

0.87 to -0.48 psi)

3. If out of specification, replace fuel filler cap as an assembly.

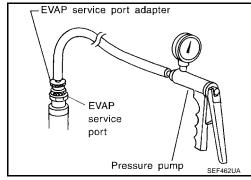
CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

VACUUM CUT VALVE AND VACUUM CUT VALVE BYPASS VALVE

Refer to <u>EC-1179</u>.

EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE


Refer to EC-975.

FUEL TANK TEMPERATURE SENSOR

Refer to EC-898.

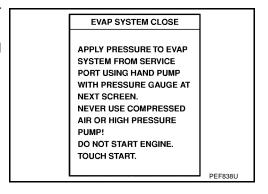
EVAP SERVICE PORT

Positive pressure is delivered to the EVAP system through the EVAP service port. If fuel vapor leakage in the EVAP system occurs, use a leak detector to locate the leak.

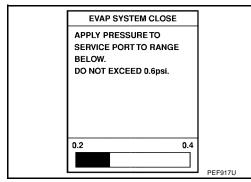
How to Detect Fuel Vapor Leakage

UBS003LG

CAUTION:

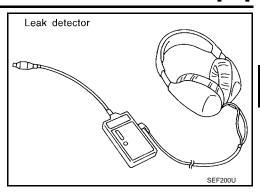

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in EVAP system.

NOTE:

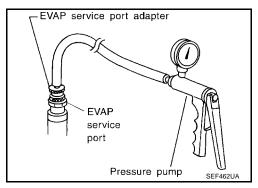

- Do not start engine.
- Improper installation of EVAP service port adapter to the EVAP service port may cause a leak.

(II) WITH CONSULT-II

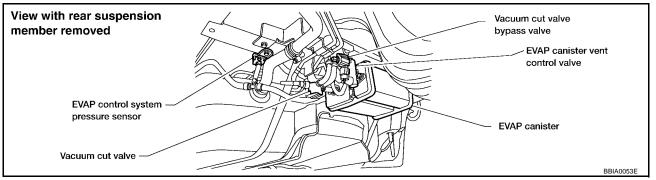
- 1. Attach the EVAP service port adapter securely to the EVAP service port.
- 2. Also attach the pressure pump and hose to the EVAP service port adapter.
- 3. Turn ignition switch "ON".
- 4. Select the "EVAP SYSTEM CLOSE" of "WORK SUPPORT MODE" with CONSULT-II.
- 5. Touch "START". A bar graph (Pressure indicating display) will appear on the screen.


- 6. Apply positive pressure to the EVAP system until the pressure indicator reaches the middle of the bar graph.
- 7. Remove EVAP service port adapter and hose with pressure pump.

EVAPORATIVE EMISSION SYSTEM


[VQ]

Locate the leak using a leak detector. Refer to <u>EC-1287</u>, <u>"EVAP-ORATIVE EMISSION LINE DRAWING"</u>.



WITHOUT CONSULT-II

- Attach the EVAP service port adapter securely to the EVAP service port.
- 2. Also attach the pressure pump with pressure gauge to the EVAP service port adapter.

3. Apply battery voltage to between the terminals of both EVAP canister vent control valve and vacuum cut valve bypass valve to make a closed EVAP system.

- 4. To locate the leak, deliver positive pressure to the EVAP system until pressure gauge points reach 1.38 to 2.76 kPa (0.014 to 0.028 kg/cm², 0.2 to 0.4 psi).
- 5. Remove EVAP service port adapter and hose with pressure pump.
- 6. Locate the leak using a leak detector. Refer to EC-1287, "EVAPORATIVE EMISSION LINE DRAWING".

Revision: May 2004 **EC-1291** 2002 Altima

EC

Α

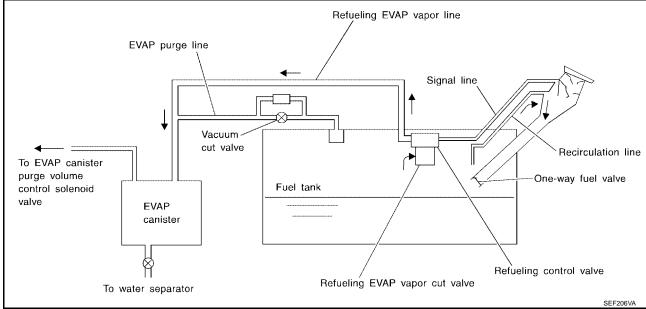
D

Е

F

G

Н


K

ON BOARD REFUELING VAPOR RECOVERY (ORVR)

PFP:00032

System Description

UBS003LH

From the beginning of refueling, the fuel tank pressure goes up. When the pressure reaches the setting value of the refueling control valve (RCV) opening pressure, the RCV is opened. After RCV opens, the air and vapor inside the fuel tank go through refueling EVAP vapor cut valve, RCV and refueling vapor line to the EVAP canister. The vapor is absorbed by the EVAP canister and the air is released to the atmosphere.

When the refueling has reached the full level of the fuel tank, the refueling EVAP vapor cut valve is closed and refueling is stopped because of auto shut-off. The vapor which was absorbed by the EVAP canister is purged during driving.

The RCV is always closed during driving and the evaporative emission control system is operated the same as conventional system.

WARNING:

When conducting inspections below, be sure to observe the following:

- Put a "CAUTION: INFLAMMABLE" sign in workshop.
- Do not smoke while servicing fuel system. Keep open flames and sparks away from work area.
- Be sure to furnish the workshop with a CO₂ fire extinguisher.

CAUTION:

- Before removing fuel line parts, carry out the following procedures:
- Put drained fuel in an explosion-proof container and put lid on securely.
- Release fuel pressure from fuel line. Refer to "Fuel Pressure Release", EC-670.
- Disconnect battery ground cable.
- Always replace O-ring when the fuel gauge retainer is removed.
- Do not kink or twist hose and tube when they are installed.
- Do not tighten hose and clamps excessively to avoid damaging hoses.
- After installation, run engine and check for fuel leaks at connection.
- Do not attempt to top off the fuel tank after the fuel pump nozzle shuts off automatically.
 Continued refueling may cause fuel overflow, resulting in fuel spray and possibly a fire.

ON BOARD REFUELING VAPOR RECOVERY (ORVR)

[VQ]

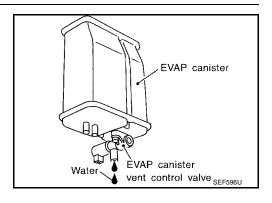
Diagnostic Procedure SYMPTOM: FUEL ODOR FROM EVAP CANISTER IS STRONG.

UBS003LI

1. CHECK EVAP CANISTER

- Remove EVAP canister with EVAP canister vent control valve attached.
- Weigh the EVAP canister with EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).

OK or NG


OK >> GO TO 2. NG >> GO TO 3.

$2.\,$ check if evap canister saturated with water

Does water drain from the EVAP canister?

Yes or No

>> GO TO 3. Yes >> GO TO 6. No

3. REPLACE EVAP CANISTER

Replace EVAP canister with a new one.

>> GO TO 4.

4. CHECK WATER SEPARATOR

Refer to EC-1295, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace water separator.

5. DETECT MALFUNCTIONING PART

Check the EVAP hose between EVAP canister and water separator for clogging or poor connection.

>> Repair or replace EVAP hose.

6. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-1295, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

7. CHECK REFUELING CONTROL VALVE

Refer to EC-1295, "Component Inspection".

OK or NG

OK >> INSPECTION END

NG >> Replace refueling control valve with fuel tank.

EC-1293 Revision: May 2004 2002 Altima

EC

Α

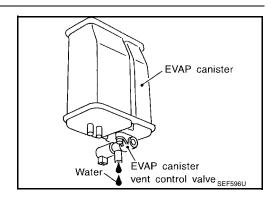
Е

SYMPTOM: CANNOT REFUEL/FUEL ODOR FROM THE FUEL FILLER OPENING IS STRONG WHILE REFUELING.

1. CHECK EVAP CANISTER

- Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Weigh the EVAP canister with EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).

OK or NG


OK >> GO TO 2. NG >> GO TO 3.

2. CHECK IF EVAP CANISTER SATURATED WITH WATER

Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 3. No >> GO TO 6.

3. REPLACE EVAP CANISTER

Replace EVAP canister with a new one.

>> GO TO 4.

4. CHECK WATER SEPARATOR

Refer to EC-1295, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace water separator.

5. DETECT MALFUNCTIONING PART

Check the EVAP hose between EVAP canister and water separator for clogging or poor connection.

>> Repair or replace EVAP hose.

6. CHECK VENT HOSES AND VENT TUBES

Check hoses and tubes between EVAP canister and refueling control valve for clogging, kink, looseness and improper connection.

OK or NG

OK >> GO TO 7.

NG >> Repair or replace hoses and tubes.

7. CHECK FILLER NECK TUBE

Check signal line and recirculation line for clogging, dents and cracks.

OK or NG

OK >> GO TO 8.

NG >> Replace filler neck tube.

Revision: May 2004 **EC-1294** 2002 Altima

ON BOARD REFUELING VAPOR RECOVERY (ORVR)

[VQ]

EC

D

Е

Н

8. CHECK REFUELING CONTROL VALVE

Refer to EC-1295, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace refueling control valve with fuel tank.

9. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-1295, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

10. CHECK FUEL FILLER TUBE

Check filler neck tube and hose connected to the fuel tank for clogging, dents and cracks.

OK or NG

OK >> GO TO 11.

NG >> Replace fuel filler tube.

11. CHECK ONE-WAY FUEL VALVE-I

Check one-way valve for clogging.

OK or NG

OK >> GO TO 12.

NG >> Repair or replace one-way fuel valve with fuel tank.

12. CHECK ONE-WAY FUEL VALVE-II

- 1. Make sure that fuel is drained from the tank.
- Remove fuel filler tube and hose.
- Check one-way fuel valve for operation as follows. When a stick is inserted, the valve should open, when removing stick it should close.

Do not drop any material into the tank.

OK or NG

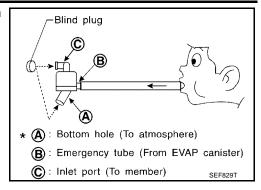
OK >> INSPECTION END

NG >> Replace fuel filler tube or replace one-way fuel valve with fuel tank.

One-way fuel valve Fuel tank SEF66SU

UBS003LJ

M


Component Inspection WATER SEPARATOR

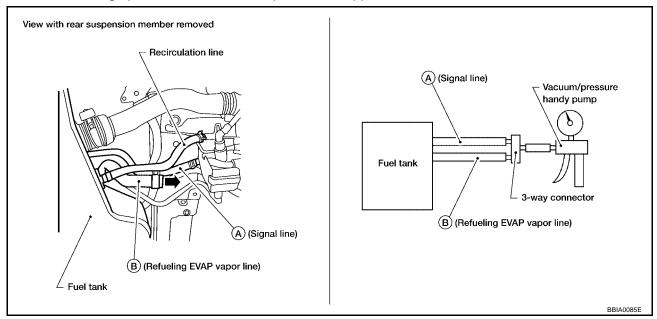
- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.

- 4. Check that **A** and **C** are not clogged by blowing air into **B** with **A**, and then **C** plugged.
- 5. In case of NG in items 2 4, replace the parts.

NOTE:

Do not disassemble water separator.

REFUELING EVAP VAPOR CUT VALVE


(P) With CONSULT-II

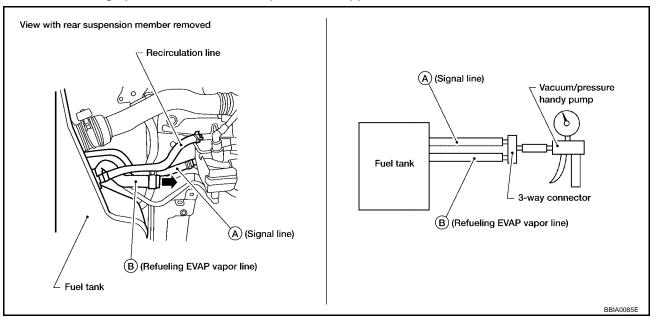
- 1. Remove fuel tank. Refer to FL-8, "FUEL TANK".
- 2. Drain fuel from the tank as follows:
- Remove fuel feed hose located on the fuel gauge retainer.
- b. Connect a spare fuel hose, one side to fuel gauge retainer where the hose was removed and the other side to a fuel container.
- c. Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.

 Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

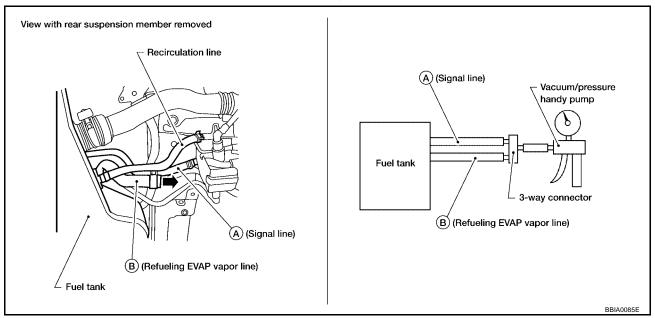
- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [–13.3 kPa (–100 mmHg, –3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

With GST


- 1. Remove fuel tank. Refer to FL-8, "FUEL TANK".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel gauge retainer.
- b. Drain fuel from the tank using a hand pump into a fuel container.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.

Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.

- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.


Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [–13.3 kPa (–100 mmHg, –3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

REFUELING CONTROL VALVE

- 1. Remove fuel filler cap.
- Check air continuity between hose ends A and B.Blow air into the hose end B. Air should flow freely into the fuel tank.
- 3. Blow air into hose end A and check there is no leakage.
- Apply pressure to both hose ends A and B [20 kPa (150 mmHg, 5.91 inHg)] using a pressure pump and a suitable 3-way connector. Check that there is no leakage.

Revision: May 2004 **EC-1297** 2002 Altima

EC

Α

П

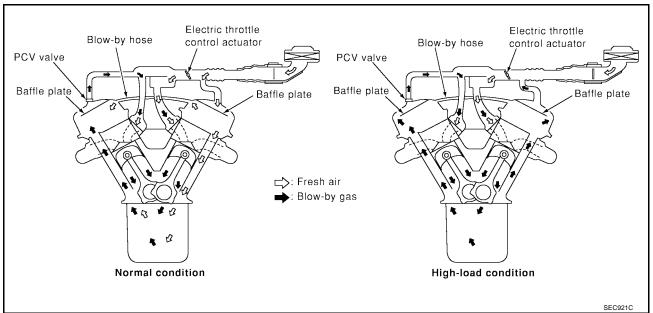
Е

.

G

Н

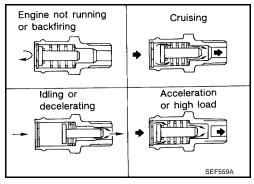
K


L

UBS003LK

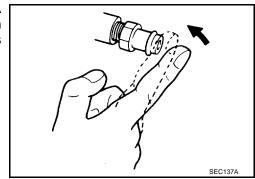
POSITIVE CRANKCASE VENTILATION

Description SYSTEM DESCRIPTION


PFP:11810

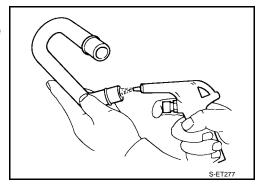
This system returns blow-by gas to the intake manifold.

The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake manifold. During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve. Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air. The ventilating air is then drawn from the air inlet tubes into the crankcase. In this process the air passes through the hose connecting air inlet tubes to rocker cover. Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve. The flow goes through the hose connection in the reverse direction.


On vehicles with an excessively high blow-by, the valve does not meet the requirement. This is because some of the flow will go through the hose connection to the air inlet tubes under all conditions.

Component Inspection PCV (POSITIVE CRANKCASE VENTILATION) VALVE

With engine running at idle, remove PCV valve from rocker cover. A properly working valve makes a hissing noise as air passes through it. A strong vacuum should be felt immediately when a finger is placed over valve inlet.



POSITIVE CRANKCASE VENTILATION

[VQ]

PCV VALVE VENTILATION HOSE

- 1. Check hoses and hose connections for leaks.
- 2. Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.

EC

Α

С

D

Е

Н

K

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

PFP:18930

System Description INPUT/OUTPUT SIGNAL CHART

UBS003LM

Sensor	Input signal to ECM	ECM function	Actuator
ASCD brake switch	Brake pedal operation		
Stop lamp switch	Brake pedal operation		
ASCD clutch switch (M/T models)	Clutch pedal operation		
ASCD steering switch	ASCD steering switch operation	ASCD vehicle speed control	Electric throttle control actuator
Park/Neutral position (PNP) switch (A/T models)	Gear position		
Combination meter	Vehicle speed		
TCM	Powertrain revolution		

BASIC ASCD SYSTEM

Refer to Owner's Manual for ASCD operating instructions.

Automatic Speed Control Device (ASCD) allows a driver to keep vehicle at predetermined constant speed without depressing accelerator pedal. Driver can set vehicle speed in advance between approximately 40 km/h (25 MPH) and 144 km/h (89 MPH).

ECM controls throttle angle of electric throttle control actuator to regulate engine speed.

Operation status of ASCD is indicated by CRUISE indicator and SET indicator in combination meter. If any malfunction occurs in ASCD system, it automatically deactivates control.

SET OPERATION

Press ASCD CRUISE switch (Main switch). (The CRUISE indicator in combination meter illuminates.) When vehicle speed reaches a desired speed between approximately 40 km/h (25 MPH) and 144 km/h (89 MPH), press SET switch. (Then SET indicator in combination meter illuminates.)

ACCEL OPERATION

If the RESUME/ACCEL switch is depressed during cruise control driving, increase the vehicle speed until the switch is released or vehicle speed reaches maximum speed controlled by the system. And then ASCD will keep the new set speed.

CANCEL OPERATION

When any of following conditions exist, cruise operation will be canceled.

- CANCEL switch is depressed
- Brake pedal is depressed
- Clutch pedal is depressed (M/T models)

If MAIN switch is turned to OFF during ASCD is activated, all of ASCD operations will be canceled and vehicle speed memory will be erased.

COAST OPERATION

When the SET/COAST switch is depressed during cruise control driving, decrease vehicle set speed until the switch is released. And then ASCD will keep the new set speed.

RESUME OPERATION

When the RESUME/ACCEL switch is depressed after cancel operation other than depressing MAIN switch is performed, vehicle speed will return to last set speed. To resume vehicle set speed, vehicle condition must meet following conditions.

- Brake pedal is released.
- Clutch pedal is released (M/T models)
- A/T selector lever is in other than P and N position (A/T models)
- Vehicle speed is greater than 40 km/h (25 MPH) and less than 144 km/h (89 MPH)

Component Description ASCD STEERING SWITCH

UBS003LN

Refer to EC-1188.

AUTOMATIC SPEED CONTROL DEVICE (ASCD) [VQ] **ASCD BRAKE SWITCH** Α Refer to <u>EC-1195</u>, and <u>EC-1272</u>. **ASCD CLUTCH SWITCH** Refer to <u>EC-1195</u> and <u>EC-1272</u>. EC **STOP LAMP SWITCH** Refer to <u>EC-1195</u>, <u>EC-1219</u> and <u>EC-1272</u>. С **ELECTRIC THROTTLE CONTROL ACTUATOR** Refer to $\underline{\text{EC-}1053}$, $\underline{\text{EC-}1055}$, $\underline{\text{EC-}1062}$ and $\underline{\text{EC-}1067}$. **ASCD INDICATOR** D Refer to EC-1282. Е F G Н

K

L

SERVICE DATA AND SPECIFICATIONS (SDS)

DERVIOL DATA AND OF LOW TOATIONS (ODO)

PFP:00030

Fuel pressure at idling kPa (kg/cm ² , psi)	Approximately 350 (3.7, 51)

Idle Speed and Ignition Timing

UBS003LP

UBS003LO

Target idle speed	No-load*1 (in "P" or N" position)	700±50 rpm
Air conditioner: ON	In "P" or N" position	825 rpm or more
Ignition timing	In "P" or N" position	15° ± 5° BTDC

^{*1:} Under the following conditions:

· Air conditioner switch: OFF

Fuel Pressure

- Electric load: OFF (Lights, heater fan & rear window defogger)
- Steering wheel: Kept in straight-ahead position

Calculated Load Value

UBS003LQ

	Calculated load value % (Using CONSULT-II or GST)	
At idle	10 - 35	
At 2,500 rpm	10 - 35	

Mass Air Flow Sensor

UBS003LR

Supply voltage	Battery voltage (11 - 14V)
Output voltage at idle	1.1 - 1.5*V
Mass air flow (Using CONSULT-II or GST)	2.0 - 6.0 g·m/sec at idle* 7.0 - 20.0 g·m/sec at 2,500 rpm*

^{*:} Engine is warmed up to normal operating temperature and running under no-load.

Intake Air Temperature Sensor

UBS003LS

Temperature °C (°F)	Resistance kΩ
25 (77)	1.9 - 2.1
80 (176)	0.31 - 0.37

Engine Coolant Temperature Sensor

LIBS003L

Temperature °C (°F)	Resistance k Ω
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

Heated Oxygen Sensor 1 Heater

UBS003LU

Resistance [at 25°C (77°F)]	$2.3 - 4.3\Omega$

Heated Oxygen sensor 2 Heater

UBS003LV

Resistance [at 25°C (77°F)] 2.3 - 4.3Ω	
---	--

Crankshaft Position Sensor (POS)

UBS003LW

Refer to EC-941, "Component Inspection".

Camshaft Position Sensor (PHASE)

UBS003LX

Refer to EC-949, "Component Inspection".

Throttle Control Motor

UBS003LY

Resistance [at 25°C (77°F)]	Approximately 1 - 15Ω

SERVICE DATA AND SPECIFICATIONS (SDS)

SERVICE DATA A	ND SPECIFICATIONS (SDS)	[VQ]
Injector		UBS003LZ
Resistance [at 20°C (68°F)]	13.5 - 17.5Ω	
Fuel Pump		<i>UB</i> S003М0
Resistance [at 25°C (77°F)]	Approximately 1.0Ω	
		(
		ı
		ı

M

Н