D

Е

J

CONTENTS

TROUBLE DIAGNOSIS74 QG18DE Trouble Diagnosis Introduction74 MODIFICATION NOTICE 15 DTC Inspection Priority Chart78 Fail-safe Chart80 How to Check Vehicle Type15 Basic Inspection81 INDEX FOR DTC 16 Symptom Matrix Chart86 Alphabetical Index 16 Engine Control Component Parts Location 90 Circuit Diagram102 PRECAUTIONS 22 ECM Harness Connector Terminal Layout 106 Precautions for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TEN-CONSULT-II Function 114 SIONER" 22 Generic Scan Tool (GST)129 On Board Diagnostic (OBD) System of Engine and CONSULT-II Reference Value in Data Monitor Mode . 130 Major Sensor Reference Graph in Data Monitor Wiring Diagrams and Trouble Diagnosis 25 Mode133 PREPARATION 26 TROUBLE DIAGNOSIS - SPECIFICATION VALUE 136 Testing Condition136 ENGINE CONTROL SYSTEM 28 Inspection Procedure136 System Diagram 28 Diagnostic Procedure137 TROUBLE DIAGNOSIS FOR INTERMITTENT INCI-DENT140 Diagnostic Procedure140 Fuel Cut Control (at No Load & High Engine Speed).. 33 POWER SUPPLY CIRCUIT FOR ECM141 CAN communication34 Wiring Diagram141 BASIC SERVICE PROCEDURE35 Diagnostic Procedure142 Idle Speed and Ignition Timing Check 35 DTC U1000, U1001 CAN COMMUNICATION LINE 148 Idle Speed/Ignition Timing/Idle Mixture Ratio On Board Diagnosis Logic148 Accelerator Pedal Released Position Learning 47 DTC Confirmation Procedure148 Throttle Valve Closed Position Learning 47 Wiring Diagram 149 Idle Air Volume Learning 47 Diagnostic Procedure150 Fuel Pressure Check49 DTC P0011 IVT CONTROL151 ON BOARD DIAGNOSTIC (OBD) SYSTEM52 Introduction 52 CONSULT-II Reference Value in Data Monitor Mode Two Trip Detection Logic 52 Emission-related Diagnostic Information 53 On Board Diagnosis Logic152

DTC Confirmation Procedure	152	DTC Confirmation Procedure	191
Diagnostic Procedure	153	Diagnostic Procedure	191
DTC P0037, P0038 HO2S2 HEATER	154	Component Inspection	191
Description	154	Removal and Installation	192
CONSULT-II Reference Value in Data Monitor	·Mode	DTC P0127 IAT SENSOR	193
	. 154	Component Description	193
On Board Diagnosis Logic	154	On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Wiring Diagram		Diagnostic Procedure	
Diagnostic Procedure		Component Inspection	
Component Inspection		DTC P0128 THERMOSTAT FUNCTION	196
Removal and Installation		On Board Diagnosis Logic	
DTC P0101 MAF SENSOR		DTC Confirmation Procedure	
Component Description		Diagnostic Procedure	
CONSULT-II Reference Value in Data Monitor		Component Inspection	
OCIVOCE III CICIONO VAIGO II DALA MOI II CI	.160	Removal and Installation	
On Board Diagnosis Logic		DTC P0138 HO2S2	
DTC Confirmation Procedure		Component Description	
Overall Function Check		CONSULT-II Reference Value in Data Monitor	
		CONSOLT-II Nei ei ei ile value ii Dala Moriiloi	.198
Wiring Diagram		On Board Diagnosia Logia	
Diagnostic Procedure		On Board Diagnosis Logic	
Component Inspection		DTC Confirmation Procedure	
DTC P0102, P0103 MAF SENSOR		Wiring Diagram	
Component Description		Diagnostic Procedure	
CONSULT-II Reference Value in Data Monitor		Component Inspection	
0.5 15 11 1	.168	Removal and Installation	
On Board Diagnosis Logic		DTC P0139 HO2S2	
DTC Confirmation Procedure		Component Description	
Wiring Diagram		CONSULT-II Reference Value in Data Monitor	
Diagnostic Procedure			.204
Component Inspection		On Board Diagnosis Logic	
DTC P0112, P0113 IAT SENSOR		DTC Confirmation Procedure	
Component Description		Overall Function Check	
On Board Diagnosis Logic		Wiring Diagram	
DTC Confirmation Procedure		Diagnostic Procedure	
Wiring Diagram		Component Inspection	
Diagnostic Procedure		Removal and Installation	
Component Inspection		DTCP0171FUELINJECTIONSYSTEMFUNC	
DTC P0117, P0118 ECT SENSOR		On Board Diagnosis Logic	
Component Description		DTC Confirmation Procedure	
On Board Diagnosis Logic		Wiring Diagram	
DTC Confirmation Procedure		Diagnostic Procedure	
Wiring Diagram		DTCP0172FUELINJECTIONSYSTEMFUNC	
Diagnostic Procedure	182	On Board Diagnosis Logic	
Component Inspection	183	DTC Confirmation Procedure	219
Removal and Installation		Wiring Diagram	
DTC P0122, P0123 TP SENSOR	184	Diagnostic Procedure	222
Component Description	184	DTC P0181 FTT SENSOR	226
CONSULT-II Reference Value in Data Monitor	·Mode	Component Description	226
	. 184	On Board Diagnosis Logic	226
On Board Diagnosis Logic	184	DTC Confirmation Procedure	226
DTC Confirmation Procedure	185	Wiring Diagram	
Wiring Diagram	186	Diagnostic Procedure	229
Diagnostic Procedure	187	Component Inspection	
Component Inspection		Removal and Installation	
Remove and Installation		DTC P0182, P0183 FTT SENSOR	
DTC P0125 ECT SENSOR		Component Description	
Component Description		On Board Diagnosis Logic	
On Board Diagnosis Logic		DTC Confirmation Procedure	

Wiring Diagram	232	DTC Confirmation Procedure	276	
Diagnostic Procedure	233	Diagnostic Procedure		Α
Component Inspection		DTC P0444, P0445 EVAP CANISTER PURGE V		
Removal and Installation		UME CONTROL SOLENOID VALVE		
DTC P0222, P0223 TP SENSOR		Description		EC
Component Description		CONSULT-II Reference Value in Data Monitor M		
CONSULT-II Reference Value in Data Monitor Mo			. 284	
	. 235	On Board Diagnosis Logic		С
On Board Diagnosis Logic		DTC Confirmation Procedure		
DTC Confirmation Procedure		Wiring Diagram		
Wiring Diagram		Diagnostic Procedure		
Diagnostic Procedure		Component Inspection		D
Component Inspection		Removal and Installation		
Removal and Installation		DTC P0447 EVAP CANISTER VENT CONTRO		
DTC P0300 - P0304 NO. 4 - 1 CYLINDER MISFIR	•	VALVE		Е
MULTIPLE CYLINDER MISFIRE		Component Description		
On Board Diagnosis Logic		CONSULT-II Reference Value in Data Monitor M		
DTC Confirmation Procedure		0.0.10:	. 291	F
Diagnostic Procedure		On Board Diagnosis Logic		
DTC P0327, P0328 KS		DTC Confirmation Procedure		
Component Description		Wiring Diagram		
On Board Diagnosis Logic		Diagnostic Procedure		G
DTC Confirmation Procedure		Component Inspection		
Wiring Diagram		DTC P0451 EVAP CONTROL SYSTEM PRESSU		
Diagnostic Procedure		SENSOR		Н
Component Inspection		Component Description		
Removal and Installation		CONSULT-IIReference Value in Data Monitor M		
DTC P0335 CKP SENSOR (POS)		On Board Diagnosis Logic	. 298	
Component DescriptionCONSULT-II Reference Value in Data Monitor		On Board Diagnosis Logic DTC Confirmation Procedure		
CONSULT-IT Reference value in Data Monitor Mo	ue . 252			
On Board Diagnosis Logic		Diagnostic Procedure		J
DTC Confirmation Procedure		Component InspectionDTC P0452 EVAP CONTROL SYSTEM PRESSU		0
Wiring Diagram		SENSOR		
Diagnostic Procedure		Component Description		1/
Component Inspection		CONSULT-II Reference Value in Data Monitor M		K
Removal and Installation		CONSOLT-ITTEREFERICE VALUE IT DATA MONITOR IN	. 300	
DTC P0340 CMP SENSOR (PHASE)		On Board Diagnosis Logic		
Component Description		DTC Confirmation Procedure		L
On Board Diagnosis Logic		Wiring Diagram		
DTC Confirmation Procedure		Diagnostic Procedure		
Wiring Diagram		Component Inspection		\mathbb{N}
Diagnostic Procedure		DTCP0453EVAPCONTROLSYSTEMPRESSU		
Component Inspection		SENSOR		
Removal and Installation		Component Description		
DTC P0420 THREE WAY CATALYST FUNCTION		CONSULT-II Reference Value in Data Monitor M		
On Board Diagnosis Logic			. 306	
DTC Confirmation Procedure		On Board Diagnosis Logic		
Overall Function Check		DTC Confirmation Procedure		
Diagnostic Procedure		Wiring Diagram		
DTC P0441 EVAP CONTROL SYSTEM		Diagnostic Procedure		
System Description		Component Inspection		
On Board Diagnosis Logic		DTC P0455 EVAP CONTROL SYSTEM		
DTC Confirmation Procedure		On Board Diagnosis Logic		
Overall Function Check		DTC Confirmation Procedure		
Diagnostic Procedure		Diagnostic Procedure		
DTC P0442 EVAP CONTROL SYSTEM		DTC P0456 EVAP CONTROL SYSTEM		
On Board Diagnosis Logic		On Board Diagnosis Logic		
		DTC Confirmation Procedure		

Overall Function Check	324	Component Inspection	356
Diagnostic Procedure	325	Removal and Installation	
DTC P0460 FUEL LEVEL SENSOR		DTC P1065 ECM POWER SUPPLY	
Component Description	331	Component Description	357
On Board Diagnostic Logic	331	On Board Diagnosis Logic	357
DTC Confirmation Procedure		DTC Confirmation Procedure	
Diagnostic Procedure	332	Wiring Diagram	
Removal and Installation		Diagnostic Procedure	
DTC P0461 FUEL LEVEL SENSOR		DTC P1102 MAF SENSOR	
Component Description		Component Description	
On Board Diagnostic Logic		CONSULT-II Reference Value in Data Monitor M	
Overall Function Check			.361
Diagnostic Procedure		On Board Diagnosis Logic	
Removal and Installation		DTC Confirmation Procedure	
DTC P0462, P0463 FUEL LEVEL SENSOR .		Wiring Diagram	
Component Description		Diagnostic Procedure	
On Board Diagnostic Logic		Component Inspection	
DTC Confirmation Procedure		DTC P1111 IVT CONTROL SOLENOID VALVE	
Diagnostic Procedure		Description	
Removal and Installation		•	
		CONSULT-II Reference Value in Data Monitor M	
DTC P0500 VSS		On Board Biomonia Lonia	.369
Component Description		On Board Diagnosis Logic	
On Board Diagnosis Logic		DTC Confirmation Procedure	
DTC Confirmation Procedure		Wiring Diagram	
Overall Function Check		Diagnostic Procedure	
Diagnostic Procedure		Component Inspection	
DTC P0506 ISC SYSTEM		Removal and Installation	
Description		DTC P1121 ELECTRIC THROTTLE CONTROL	
On Board Diagnosis Logic		ACTUATOR	
DTC Confirmation Procedure	339	Component Description	
Diagnostic Procedure	340	On Board Diagnosis Logic	373
DTC P0507 ISC SYSTEM	341	DTC Confirmation Procedure	373
Description	341	Diagnostic Procedure	374
On Board Diagnosis Logic	341	DTC P1122 ELECTRIC THROTTLE CONTROL	-
DTC Confirmation Procedure		FUNCTION	375
Diagnostic Procedure	342	Description	375
DTC P0550 PSP SENSOR		On Board Diagnosis Logic	
Component Description		DTC Confirmation Procedure	
CONSULT-II Reference Value in Data Monitor		Wiring Diagram	
	.343	Diagnostic Procedure	
On Board Diagnosis Logic		Component Inspection	
DTC Confirmation Procedure		Removal and Installation	
Wiring Diagram		DTCP1124, P1126 THROTTLE CONTROL MOT	
Diagnostic Procedure		RELAY	
Component Inspection		Component Description	
DTC P0605 ECM		CONSULT-II Reference Value in Data Monitor M	
Component Description		CONSOLI-III (elelelice value ii Data Mollito) Mi	.382
		On Poord Diagnosis Logic	
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Diagnostic Procedure		Wiring Diagram	
DTC P1031, P1032 A/F SENSOR 1 HEATER		Diagnostic Procedure	
Description		Component Inspection	
CONSULT-II Reference Value in Data Monitor		DTC P1128 THROTTLE CONTROL MOTOR	
	. 351	Component Description	
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Wiring Diagram		Wiring Diagram	
Diagnostic Procedure	354	Diagnostic Procedure	389

Component Inspection	390	Overall Function Check	429	
Removal and Installation		Wiring Diagram		Α
DTC P1132 SWIRL CONTROL VALVE		Diagnostic Procedure		
Component Description		Main 12 Causes of Overheating		
CONSULT-II Reference Value in Data Monitor Mo		Component Inspection		EC
	. 392	DTC P1225 TP SENSOR		
On Board Diagnosis Logic		Component Description		
DTC Confirmation Procedure		On Board Diagnosis Logic		
Wiring Diagram		DTC Confirmation Procedure		С
Diagnostic Procedure	395	Diagnostic Procedure	443	
Removal and Installation		Removal and Installation		
DTC P1137 SWIRL CONTROL VALVE CONTRO	OL	DTC P1226 TP SENSOR	444	D
POSITION SENSOR	397	Component Description	444	
Component Description		On Board Diagnosis Logic	444	
CONSULT-II Reference Value in Data Monitor Mo	ode	DTC Confirmation Procedure	444	Е
	. 397	Diagnostic Procedure	445	_
On Board Diagnosis Logic	397	Removal and Installation		
DTC Confirmation Procedure	398	DTC P1229 SENSOR POWER SUPPLY	446	_
Wiring Diagram	399	On Board Diagnosis Logic	446	F
Diagnostic Procedure	401	DTC Confirmation Procedure	446	
Removal and Installation		Wiring Diagram	447	
DTC P1138 SWIRL CONTROL VALVE	405	Diagnostic Procedure	448	G
Description		DTC P1271 A/F SENSOR 1		
CONSULT-II Reference Value in Data Monitor Mo	ode	Component Description	450	
	. 406	CONSULT-II Reference Value in Data Monitor I	Mode	Н
On Board Diagnosis Logic	406		. 450	
DTC Confirmation Procedure		On Board Diagnosis Logic	450	
Wiring Diagram	407	DTC Confirmation Procedure		
Diagnostic Procedure		Overall Function Check		
Removal and Installation		Wiring Diagram		
DTC P1146 HO2S2		Diagnostic Procedure		
Component Description		Removal and Installation		J
CONSULT-II Reference Value in Data Monitor Mo		DTC P1272 A/F SENSOR 1		
	. 413	Component Description		
On Board Diagnosis Logic		CONSULT-II Reference Value in Data Monitor I		K
DTC Confirmation Procedure			. 456	1 \
Overall Function Check		On Board Diagnosis Logic	456	
Wiring Diagram		DTC Confirmation Procedure		
Diagnostic Procedure		Overall Function Check		L
Component Inspection		Wiring Diagram		
Removal and Installation		Diagnostic Procedure		
DTC P1147 HO2S2		Removal and Installation		M
Component Description		DTC P1273 A/F SENSOR 1		
CONSULT-II Reference Value in Data Monitor Mo		Component Description		
CONCOL. Interesence valdem Batamerine	. 420	CONSULT-II Reference Value in Data Monitor I		
On Board Diagnosis Logic	_	CONTOCT III COLONO VALGO III DALA MOTIMOTI	. 462	
DTC Confirmation Procedure		On Board Diagnosis Logic	_	
Overall Function Check		DTC Confirmation Procedure		
Wiring Diagram		Overall Function Check		
Diagnostic Procedure		Wiring Diagram		
Component Inspection		Diagnostic Procedure		
Removal and Installation		Removal and Installation		
DTC P1148 CLOSED LOOP CONTROL		DTC P1274 A/F SENSOR 1		
On Board Diagnosis Logic		Component Description		
DTC P1217 ENGINE OVER TEMPERATURE		CONSULT-II Reference Value in Data Monitor I		
System Description		CONTROL Inverse serve value in Data WOI III OH	. 469	
CONSULT-II Reference Value in Data Monitor Mo		On Board Diagnosis Logic		
CONSOLI-III (GIGIGIICE VAIUGIII DAIAIVIOIIIIOI IVIC	. 428	DTC Confirmation Procedure		
On Board Diagnosis Logic	_	Overall Function Check		
Un Duard Diagnosis Lugic	+∠૭	Overall i uniction oneck	410	

Wiring Diagram	472	DTC Confirmation Procedure	510
Diagnostic Procedure		Wiring Diagram	512
Removal and Installation		Diagnostic Procedure	
DTC P1276 A/F SENSOR 1	476	Component Inspection	516
Component Description		DTC P1572 ASCD BRAKE SWITCH	517
CONSULT-II Reference Value in Data Monito		Component Description	
	. 476	CONSULT-II Reference Value in Data Monitor Mod	
On Board Diagnosis Logic	476		.517
DTC Confirmation Procedure		On Board Diagnosis Logic	517
Overall Function Check		DTC Confirmation Procedure	
Wiring Diagram		Wiring Diagram	
Diagnostic Procedure		Diagnostic Procedure	
Removal and Installation		Component Inspection	
DTC P1278 A/F SENSOR 1		DTC P1574 ASCD VEHICLE SPEED SENSOR .	528
Component Description		Component Description	
CONSULT-II Reference Value in Data Monito		On Board Diagnosis Logic	
CONCOLI INVOICIONO VALGONI DALA MONICO	. 482	DTC Confirmation Procedure	
On Board Diagnosis Logic		Diagnostic Procedure	
DTC Confirmation Procedure		DTC P1706 PNP SWITCH	
Overall Function Check		Component Description	
Wiring Diagram		CONSULT-II Reference Value in Data Monitor Mod	
Diagnostic Procedure		CONSOLT-III (elefetice value ii Data Mortito i Mot	.530
Removal and Installation		On Board Diagnosis Logic	
DTC P1279 A/F SENSOR 1		DTC Confirmation Procedure	
		Overall Function Check	
Component Description			
CONSULT-II Reference Value in Data Monito		Wiring Diagram	
On Board Diamenia Lonia	. 489	Diagnostic Procedure	
On Board Diagnosis Logic		DTC P1805 BRAKE SWITCH	
DTC Confirmation Procedure		Description	
Overall Function Check		CONSULT-IIReference Value in Data Monitor Mod	
Wiring Diagram		On Deard Diamental Lania	.534
Diagnostic Procedure		On Board Diagnosis Logic	
Removal and Installation		DTC Confirmation Procedure	
DTC P1444 EVAP CANISTER PURGE VOL		Wiring Diagram	
CONTROL SOLENOID VALVE		Diagnostic Procedure	
Description		Component Inspection	
CONSULT-II Reference Value in Data Monito		DTC P2122, P2123 APP SENSOR	
O . D D'	. 496	Component Description	
On Board Diagnosis Logic		CONSULT-IIReference Value in Data Monitor Mod	
DTC Confirmation Procedure		0 - 0 10	.540
Wiring Diagram		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
Component Inspection		Wiring Diagram	
Removal and Installation		Diagnostic Procedure	
DTC P1446 EVAP CANISTER VENT CONT		Component Inspection	
VALVE		Removal and Installation	
Component Description		DTC P2127, P2128 APP SENSOR	
CONSULT-II Reference Value in Data Monito		Component Description	
	. 504	CONSULT-II Reference Value in Data Monitor Mod	
On Board Diagnosis Logic			.546
DTC Confirmation Procedure		On Board Diagnosis Logic	
Wiring Diagram		DTC Confirmation Procedure	
Diagnostic Procedure		Wiring Diagram	
Component Inspection		Diagnostic Procedure	
DTC P1564 ASCD STEERING SWITCH		Component Inspection	
Component Description		Removal and Installation	
CONSULT-II Reference Value in Data Monito		DTC P2135 TP SENSOR	
	.510	Component Description	
On Board Diagnosis Logic	510	CONSULT-IIReference Value in Data Monitor Mod	et

	. 553		618	
On Board Diagnosis Logic		Wiring Diagram		Α
DTC Confirmation Procedure		Diagnostic Procedure		
Wiring Diagram		MIL & DATA LINK CONNECTORS		
Diagnostic Procedure		Wiring Diagram		
Component Inspection		EVAPORATIVE EMISSION SYSTEM		EC
Removal and Installation		Description		
DTC P2138 APP SENSOR		Component Inspection		
Component Description		Removal and Installation		С
CONSULT-II Reference Value in Data Monitor Mo		How to Detect Fuel Vapor Leakage		
CONCOL! Interested value in Data Worldon	. 559	ON BOARD REFUELING VAPOR RECOVERY	. 020	
On Board Diagnosis Logic		(ORVR)	627	D
DTC Confirmation Procedure		System Description		
Wiring Diagram		Diagnostic Procedure		
Diagnostic Procedure		Component Inspection		_
Component Inspection		POSITIVE CRANKCASE VENTILATION		Е
Removal and Installation		Description		
IGNITION SIGNAL		Component Inspection		
				F
Component Description		AUTOMATIC SPEED CONTROL DEVICE (ASCD)		
Wiring Diagram		System Description		
Diagnostic Procedure		Component Description		
Component Inspection		SERVICE DATA AND SPECIFICATIONS (SDS)		G
Removal and Installation		Fuel Pressure		
INJECTOR		Idle Speed and Ignition Timing		
Component Description		Mass Air Flow Sensor		Н
CONSULT-II Reference Value in Data Monitor Mo		Engine Coolant Temperature Sensor		
Mr.: B:	. 578	Fuel Pump		
Wiring Diagram		Injector		
Diagnostic Procedure		Resistor		
Component Inspection		Throttle Control Motor		
Removal and Installation		Air Fuel Ratio (A/F) Sensor 1 Heater		
FUEL PUMP		Heated Oxygen Sensor 2 Heater		J
System Description		Calculated Load Value		
CONSULT-II Reference Value in Data Monitor Mo		Intake Air Temperature Sensor		
	. 585	Crankshaft Position Sensor (POS)		K
Wiring Diagram		Fuel Tank Temperature Sensor	638	
Diagnostic Procedure				
Component Inspection		QR25DE		L
Removal and Installation		INDEX COD DTO		
REFRIGERANT PRESSURE SENSOR		INDEX FOR DTC		
Description		Alphabetical Index		M
Wiring Diagram		DTC No. Index		IVI
Diagnostic Procedure		PRECAUTIONS	646	
Removal and Installation		Precautions for Supplemental Restraint System		
ELECTRICAL LOAD SIGNAL		(SRS) "AIR BAG" and "SEAT BELT PRE-TEN-	0.40	
CONSULT-II Reference Value in Data Monitor Mo	de . 596	SIONER" On Board Diagnostic (OBD) System of Engine and		
Wiring Diagram	597	A/T		
Diagnostic Procedure		Precaution	646	
ASCD BRAKE SWITCH		Wiring Diagrams and Trouble Diagnosis	649	
Component Description		PREPARATION		
CONSULT-II Reference Value in Data Monitor Mo		Special Service Tools		
	. 608	Commercial Service Tools		
Wiring Diagram		ENGINE CONTROL SYSTEM		
Diagnostic Procedure		System Diagram		
Component Inspection		Vacuum Hose Drawing		
ASCD INDICATOR		System Chart		
Component Description		Multiport Fuel Injection (MFI) System		
CONSULT-II Reference Value in Data Monitor Mo		Electronic Ignition (EI) System		
			-	

Air Conditioning Cut Control659	DTC P0011 IVT CONTROL	792
Fuel Cut Control (at No Load and High Engine	Description	
Speed)	CONSULT-IIReference Value in Data Monito	
CAN communication661	CONCOL! Interested value in Batamerine	.792
BASIC SERVICE PROCEDURE662	On Board Diagnosis Logic	_
Idle Speed and Ignition Timing Check662	DTC Confirmation Procedure	
Idle Speed/Ignition Timing/Idle Mixture Ratio	Diagnostic Procedure	
Adjustment (A/T MODELS ULEV AND M/T MOD-	DTC P0031, P0032 HO2S1 HEATER	
ELS)663	Description	
Idle Speed/Ignition Timing/Idle Mixture Ratio	CONSULT-IIReference Value in Data Monito	
Adjustment (A/T MODELS EXCEPT ULEV) 674	CONCOLL INTERCORDE VALGORIDA CAMOLINO	.795
Accelerator Pedal Released Position Learning 684	On Board Diagnosis Logic	
Throttle Valve Closed Position Learning684	DTC Confirmation Procedure	
Idle Air Volume Learning685	Wiring Diagram	
Fuel Pressure Check	Diagnostic Procedure	
ON BOARD DIAGNOSTIC (OBD) SYSTEM689	Component Inspection	
Introduction	Removal and Installation	
Two Trip Detection Logic	DTC P0037, P0038 HO2S2 HEATER	
Emission-related Diagnostic Information690	Description	
NVIS (Nissan Vehicle Immobilizer System—NATS)	CONSULT-IIReference Value in Data Monito	
.706	CONSULT-ITRETETETICE VALUE IT DATA MOTITO	.801
Malfunction Indicator Lamp (MIL)706	On Board Diagnosis Logic	
OBD System Operation Chart709	DTC Confirmation Procedure	
TROUBLE DIAGNOSIS715		
	Wiring Diagram	
Trouble Diagnosis Introduction	Diagnostic Procedure	
DTC Inspection Priority Chart720	Component Inspection	
Fail-safe Chart	Removal and Installation	
Basic Inspection	DTC P0101 MAF SENSOR	
Symptom Matrix Chart	Component Description	
Engine Control Component Parts Location732	CONSULT-IIReference Value in Data Monito	
Circuit Diagram	On Deand Diamenia Lania	.807
ECM Harness Connector Terminal Layout746	On Board Diagnosis Logic	
ECM Terminals and Reference Value746	DTC Confirmation Procedure	
CONSULT-II Function	Overall Function Check	
Generic Scan Tool (GST) Function	Wiring Diagram	
CONSULT-II Reference Value in Data Monitor Mode	Diagnostic Procedure	
.769	Component Inspection	
Major Sensor Reference Graph in Data Monitor	Removal and Installation	
Mode772	DTC P0102, P0103 MAF SENSOR	
TROUBLE DIAGNOSIS - SPECIFICATION VALUE 777	Component Description	
Description	CONSULT-II Reference Value in Data Monito	
Testing Condition	0.0.10:	.815
Inspection Procedure777	On Board Diagnosis Logic	
Diagnostic Procedure778	DTC Confirmation Procedure	
TROUBLE DIAGNOSIS FOR INTERMITTENT INCI-	Wiring Diagram	
DENT781	Diagnostic Procedure	
Description781	Component Inspection	
Diagnostic Procedure781	Removal and Installation	
POWER SUPPLY CIRCUIT FOR ECM782	DTC P0112, P0113 IAT SENSOR	
Wiring Diagram782	Component Description	
Diagnostic Procedure783	On Board Diagnosis Logic	
Component Inspection788	DTC Confirmation Procedure	
DTC U1000, U1001 CAN COMMUNICATION LINE 789	Wiring Diagram	
Description789	Diagnostic Procedure	
On Board Diagnosis Logic789	Component Inspection	
DTC Confirmation Procedure789	Removal and Installation	
Wiring Diagram790	DTC P0117, P0118 ECT SENSOR	
Diagnostic Procedure791	Component Description	
	On Board Diagnosis Logic	827

DTC Confirmation Procedure	828		. 862
Wiring Diagram	829	On Board Diagnosis Logic	862
Diagnostic Procedure		DTC Confirmation Procedure	
Component Inspection	831	Overall Function Check	864
Removal and Installation		Wiring Diagram	
DTC P0122, P0123 TP SENSOR	832	Diagnostic Procedure	866
Component Description	832	Component Inspection	867
CONSULT-II Reference Value in Data Monitor M	lode	Removal and Installation	868
	. 832	DTC P0138 HO2S2	869
On Board Diagnosis Logic	832	Component Description	869
DTC Confirmation Procedure	833	CONSULT-II Reference Value in Data Monitor M	ode
Wiring Diagram	834		. 869
Diagnostic Procedure	835	On Board Diagnosis Logic	869
Component Inspection	837	DTC Confirmation Procedure	
Remove and Installation		Wiring Diagram	871
DTC P0125 ECT SENSOR	838	Diagnostic Procedure	872
Component Description	838	Component Inspection	
On Board Diagnosis Logic	838	Removal and Installation	
DTC Confirmation Procedure		DTC P0139 HO2S2	875
Diagnostic Procedure	839	Component Description	875
Component Inspection		CONSULT-II Reference Value in Data Monitor M	
Removal and Installation			. 875
DTC P0127 IAT SENSOR	841	On Board Diagnosis Logic	875
Component Description	841	DTC Confirmation Procedure	
On Board Diagnosis Logic		Overall Function Check	876
DTC Confirmation Procedure		Wiring Diagram	878
Diagnostic Procedure	842	Diagnostic Procedure	
Component Inspection		Component Inspection	
Removal and Installation		Removal and Installation	
DTC P0128 THERMOSTAT FUNCTION	844	DTC P0171 FUEL INJECTION SYSTEM FUNCT	ON 883
On Board Diagnosis Logic	844	On Board Diagnosis Logic	883
DTC Confirmation Procedure		DTC Confirmation Procedure	
Diagnostic Procedure	844	Wiring Diagram	885
Component Inspection		Diagnostic Procedure	
Removal and Installation		DTC P0172 FUEL INJECTION SYSTEM FUNCT	
DTC P0132 HO2S1	846	On Board Diagnosis Logic	894
Component Description	846	DTC Confirmation Procedure	
CONSULT-II Reference Value in Data Monitor M		Wiring Diagram	896
	. 846	Diagnostic Procedure	898
On Board Diagnosis Logic	846	DTC P0181 FTT SENSOR	
DTC Confirmation Procedure		Component Description	904
Wiring Diagram	848	On Board Diagnosis Logic	904
Diagnostic Procedure		DTC Confirmation Procedure	
Component Inspection		Wiring Diagram	906
Removal and Installation		Diagnostic Procedure	
DTC P0133 HO2S1	852	Component Inspection	908
Component Description	852	Removal and Installation	
CONSULT-II Reference Value in Data Monitor M		DTC P0182, P0183 FTT SENSOR	909
	. 852	Component Description	
On Board Diagnosis Logic	852	On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Overall Function Check		Wiring Diagram	
Wiring Diagram		Diagnostic Procedure	
Diagnostic Procedure		Component Inspection	
Component Inspection		Removal and Installation	
Removal and Installation		DTC P0222, P0223 TP SENSOR	
DTC P0134 HO2S1		Component Description	
Component Description		CONSULT-II Reference Value in Data Monitor M	
CONSULT-II Reference Value in Data Monitor M			. 913

On Board Diagnosis Logic	913	Wiring Diagram	965
DTC Confirmation Procedure		Diagnostic Procedure	
Wiring Diagram		Component Inspection	
Diagnostic Procedure		Removal and Installation	
Component Inspection		DTC P0447 EVAP CANISTER VENT CONTRO)L
Removal and Installation		VALVE	
DTC P0300 - P0304 NO. 4 - 1 CYLINDER MISI	FIRE,	Component Description	969
MULTIPLE CYLINDER MISFIRE		CONSULT-IIReference Value in Data Monitor M	
On Board Diagnosis Logic	919		.969
DTC Confirmation Procedure		On Board Diagnosis Logic	969
Diagnostic Procedure	920	DTC Confirmation Procedure	
DTC P0327, P0328 KS		Wiring Diagram	971
Component Description		Diagnostic Procedure	972
On Board Diagnosis Logic		Component Inspection	
DTC Confirmation Procedure		DTCP0452EVAPCONTROLSYSTEMPRESSU	JRE
Wiring Diagram	927	SENSOR	
Diagnostic Procedure	928	Component Description	976
Component Inspection	929	CONSULT-IIReference Value in Data Monitor M	1ode
Removal and Installation			.976
DTC P0335 CKP SENSOR (POS)	930	On Board Diagnosis Logic	976
Component Description		DTC Confirmation Procedure	
CONSULT-II Reference Value in Data Monitor		Wiring Diagram	978
	. 930	Diagnostic Procedure	979
On Board Diagnosis Logic	930	Component Inspection	981
DTC Confirmation Procedure		DTCP0453EVAPCONTROLSYSTEMPRESSU	
Wiring Diagram	931	SENSOR	
Diagnostic Procedure		Component Description	982
Component Inspection	934	CONSULT-IIReference Value in Data Monitor M	1ode
Removal and Installation	934		.982
DTC P0340 CMP SENSOR (PHASE)	935	On Board Diagnosis Logic	982
Component Description	935	DTC Confirmation Procedure	983
On Board Diagnosis Logic	935	Wiring Diagram	984
DTC Confirmation Procedure	935	Diagnostic Procedure	985
Wiring Diagram	936	Component Inspection	
Diagnostic Procedure	937	DTC P0455 EVAP CONTROL SYSTEM	990
Component Inspection	940	On Board Diagnosis Logic	990
Removal and Installation	940	DTC Confirmation Procedure	991
DTC P0420 THREE WAY CATALYST FUNCT	TION . 941	Diagnostic Procedure	992
On Board Diagnosis Logic	941	DTC P0456 EVAP CONTROL SYSTEM	998
DTC Confirmation Procedure	941	On Board Diagnosis Logic	
Overall Function Check	943	DTC Confirmation Procedure	999
Diagnostic Procedure		Overall Function Check	1000
DTC P0441 EVAP CONTROL SYSTEM	949	Diagnostic Procedure	1001
System Description	949	DTC P0460 FUEL LEVEL SENSOR	1008
On Board Diagnosis Logic	949	Component Description	1008
DTC Confirmation Procedure	950	On Board Diagnostic Logic	1008
Overall Function Check	950	DTC Confirmation Procedure	1008
Diagnostic Procedure	951	Diagnostic Procedure	1009
DTC P0442 EVAP CONTROL SYSTEM	955	Removal and Installation	1009
On Board Diagnosis Logic		DTC P0461 FUEL LEVEL SENSOR	
DTC Confirmation Procedure		Component Description	
Diagnostic Procedure		On Board Diagnostic Logic	
DTC P0444, P0445 EVAP CANISTER PURGE		Overall Function Check	
UME CONTROL SOLENOID VALVE		Diagnostic Procedure	
Description		Removal and Installation	
CONSULT-II Reference Value in Data Monitor	Mode	DTC P0462, P0463 FUEL LEVEL SENSOR	
	. 963	Component Description	
On Board Diagnosis Logic		On Board Diagnostic Logic	
DTC Confirmation Procedure	064	DTC Confirmation Procedure	1012

Diagnostic Procedure		ACTUATOR		
Removal and Installation		Component Description		A
DTC P0500 VSS		On Board Diagnosis Logic		
Component Description		DTC Confirmation Procedure		
On Board Diagnosis Logic		Diagnostic Procedure	1044	С
DTC Confirmation Procedure		DTC P1122 ELECTRIC THROTTLE CONTROL		L
Overall Function Check		FUNCTION		
Diagnostic Procedure		Description		С
DTC P0506 ISC SYSTEM		On Board Diagnosis Logic	1045	J
Description	1016	DTC Confirmation Procedure		
On Board Diagnosis Logic		Wiring Diagram		
DTC Confirmation Procedure	1016	Diagnostic Procedure		D
Diagnostic Procedure	1017	Component Inspection	1050	
DTC P0507 ISC SYSTEM	1018	Removal and Installation	1051	
Description	1018	DTC P1124, P1126 THROTTLE CONTROL MOTO	OR	Е
On Board Diagnosis Logic	1018	RELAY	1052	_
DTC Confirmation Procedure		Component Description	1052	
Diagnostic Procedure	1019	CONSULT-II Reference Value in Data Monitor Mo	de .	_
DTC P0550 PSP SENSOR			1052	F
Component Description	1020	On Board Diagnosis Logic	1052	
CONSULT-II Reference Value in Data Moni		DTC Confirmation Procedure		
	1020	Wiring Diagram	1054	G
On Board Diagnosis Logic	1020	Diagnostic Procedure		
DTC Confirmation Procedure		Component Inspection		
Wiring Diagram		DTC P1128 THROTTLE CONTROL MOTOR		Н
Diagnostic Procedure		Component Description		
Component Inspection		On Board Diagnosis Logic		
DTC P0605 ECM		DTC Confirmation Procedure		
Component Description		Wiring Diagram		
On Board Diagnosis Logic		Diagnostic Procedure		
DTC Confirmation Procedure		Component Inspection		
Diagnostic Procedure		Removal and Installation		J
DTC P1031, P1032 A/F SENSOR 1 HEAT		DTC P1143 HO2S1		
Description		Component Description		
CONSULT-II Reference Value in Data Moni		CONSULT-II Reference Value in Data Monitor Mo	_	K
	1028		1062	. \
On Board Diagnosis Logic		On Board Diagnosis Logic		
DTC Confirmation Procedure		DTC Confirmation Procedure		
Wiring Diagram		Overall Function Check		L
Diagnostic Procedure		Diagnostic Procedure		
Component Inspection		Component Inspection		
Removal and Installation		Removal and Installation		VI
DTC P1065 ECM POWER SUPPLY		DTC P1144 HO2S1		
Component Description		Component Description		
On Board Diagnosis Logic		CONSULT-II Reference Value in Data Monitor Mo		
DTC Confirmation Procedure		CONCOL! Interested value in Batamer interior	1068	
Wiring Diagram		On Board Diagnosis Logic		
Diagnostic Procedure		DTC Confirmation Procedure		
DTC P1111 IVT CONTROL SOLENOID VA		Overall Function Check		
Description		Diagnostic Procedure		
CONSULT-II Reference Value in Data Moni		Component Inspection		
CONSOLI-III (CICICIDE VAIUCIII DAIAIVIOIII	1039	Removal and Installation		
On Board Diagnosis Logic		DTC P1146 HO2S2		
DTC Confirmation Procedure		Component Description		
		CONSULT-II Reference Value in Data Monitor Mo		
Wiring Diagram		CONSULT-II Reference value in Data WOHITO I WO	1074	
Diagnostic Procedure		On Roard Diagnosis Logic	-	
Component Inspection		On Board Diagnosis Logic		
Removal and Installation		DTC Confirmation Procedure		
DTC P1121 ELECTRIC THROTTLE CONT	INUL	Overall Function Check	1013	

Wiring Diagram	1077	Diagnostic Procedure	1117
Diagnostic Procedure	1078	Removal and Installation	1118
Component Inspection		DTC P1272 A/F SENSOR 1	1119
Removal and Installation		Component Description	
DTC P1147 HO2S2		CONSULT-II Reference Value in Data Mo	
Component Description			1119
CONSULT-II Reference Value in Data Monit		On Board Diagnosis Logic	
	1082	DTC Confirmation Procedure	
On Board Diagnosis Logic		Overall Function Check	
DTC Confirmation Procedure		Wiring Diagram	
Overall Function Check		Diagnostic Procedure	
Wiring Diagram		Removal and Installation	
Diagnostic Procedure		DTC P1273 A/F SENSOR 1	
Component Inspection		Component Description	
Removal and Installation		CONSULT-IIReference Value in Data Mo	
DTC P1148 CLOSED LOOP CONTROL			1125
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure (A/T MODEL		DTC Confirmation Procedure	
AND M/T MODELS)		Overall Function Check	
Overall Function Check (A/T MODELS ULE		Wiring Diagram	
M/T MODELS)		Diagnostic Procedure	
Diagnostic Procedure (A/T MODELS ULEV		Removal and Installation	
T MODELS)		DTC P1274 A/F SENSOR 1	
DTC P1217 ENGINE OVER TEMPERATUR		Component Description	
System Description		CONSULT-IIReference Value in Data Mo	
CONSULT-II Reference Value in Data Monit		0.5 (5)	1132
0.5.15:	1092	On Board Diagnosis Logic	
On Board Diagnosis Logic		DTC Confirmation Procedure	
Overall Function Check		Overall Function Check	
Wiring Diagram		Wiring Diagram	
Diagnostic Procedure		Diagnostic Procedure	
Main 12 Causes of Overheating		Removal and Installation	
Component Inspection		DTC P1276 A/F SENSOR 1	
DTC P1225 TP SENSOR		Component Description	
Component Description		CONSULT-II Reference Value in Data Mo	
On Board Diagnosis Logic		On Board Diagnosis Logic	1139
DTC Confirmation Procedure		On Board Diagnosis Logic DTC Confirmation Procedure	
Diagnostic Procedure		Overall Function Check	
Removal and Installation DTC P1226 TP SENSOR			
		Wiring Diagram Diagnostic Procedure	
Component Description On Board Diagnosis Logic		Removal and Installation	
DTC Confirmation Procedure		DTC P1278 A/F SENSOR 1	
Diagnostic Procedure		Component Description	
Removal and Installation		CONSULT-II Reference Value in Data Mo	
DTC P1229 SENSOR POWER SUPPLY		CONSOLT-IIIVererence value in Data wit	1145
On Board Diagnosis Logic		On Board Diagnosis Logic	_
DTC Confirmation Procedure		DTC Confirmation Procedure	
Wiring Diagram		Overall Function Check	
Diagnostic Procedure		Wiring Diagram	
DTC P1271 A/F SENSOR 1		Diagnostic Procedure	
Component Description		Removal and Installation	
CONSULT-II Reference Value in Data Monit		DTC P1279 A/F SENSOR 1	
	1113	Component Description	
On Board Diagnosis Logic	_	CONSULT-II Reference Value in Data Mo	
DTC Confirmation Procedure		CONCOLT III GIGIGIICG VAIUGIII DAIAIMI	1152
Overall Function Check		On Board Diagnosis Logic	_
Wiring Diagram		DTC Confirmation Procedure	
Trining Diagram	110	Overall Function Check	
		O TOTALL LA GLIGHT OFFICIAL	

Wiring Diagram	1155		1198
Diagnostic Procedure	1156	On Board Diagnosis Logic	1198
Removal and Installation	1158	DTC Confirmation Procedure	1198
DTC P1444 EVAP CANISTER PURGE VOL	UME	Wiring Diagram	1199
CONTROL SOLENOID VALVE	1159	Diagnostic Procedure	1200
Description	1159	Component Inspection	1202
CONSULT-II Reference Value in Data Monito	rMode	Removal and Installation	1203
	1159	DTC P1805 BRAKE SWITCH	1204
On Board Diagnosis Logic	1160	Description	1204
DTC Confirmation Procedure	1160	CONSULT-II Reference Value in Data Monitor	[·] Mode
Wiring Diagram	1161		1204
Diagnostic Procedure	1163	On Board Diagnosis Logic	1204
Component Inspection		DTC Confirmation Procedure	
Removal and Installation		Wiring Diagram	1205
DTC P1446 EVAP CANISTER VENT CONT		Diagnostic Procedure	
VALVE		Component Inspection	
Component Description	1167	DTC P2122, P2123 APP SENSOR	
CONSULT-II Reference Value in Data Monito		Component Description	
	1167	CONSULT-II Reference Value in Data Monitor	
On Board Diagnosis Logic	1167		1210
DTC Confirmation Procedure		On Board Diagnosis Logic	1210
Wiring Diagram		DTC Confirmation Procedure	
Diagnostic Procedure		Wiring Diagram	
Component Inspection		Diagnostic Procedure	
DTC P1564 ASCD STEERING SWITCH		Component Inspection	
Component Description		Removal and Installation	
CONSULT-II Reference Value in Data Monito		DTC P2127, P2128 APP SENSOR	
	1174	Component Description	
On Board Diagnosis Logic	1174	CONSULT-II Reference Value in Data Monitor	
DTC Confirmation Procedure			1217
Wiring Diagram		On Board Diagnosis Logic	1217
Diagnostic Procedure		DTC Confirmation Procedure	
Component Inspection		Wiring Diagram	1219
DTC P1572 ASCD BRAKE SWITCH		Diagnostic Procedure	
Component Description		Component Inspection	1223
CONSULT-II Reference Value in Data Monito		Removal and Installation	
	1181	DTC P2135 TP SENSOR	1224
On Board Diagnosis Logic	1181	Component Description	1224
DTC Confirmation Procedure	1182	CONSULT-II Reference Value in Data Monitor	·Mode
Wiring Diagram	1183		1224
Diagnostic Procedure	1185	On Board Diagnosis Logic	1224
Component Inspection	1190	DTC Confirmation Procedure	1225
DTC P1574 ASCD VEHICLE SPEED SENS	OR1192	Wiring Diagram	1226
Component Description		Diagnostic Procedure	1227
On Board Diagnosis Logic		Component Inspection	1229
DTC Confirmation Procedure	1192	Removal and Installation	
Diagnostic Procedure	1193	DTC P2138 APP SENSOR	
DTC P1706 PNP SWITCH	1194	Component Description	
Component Description		CONSULT-II Reference Value in Data Monitor	·Mode
CONSULT-II Reference Value in Data Monito	rMode		1230
	1194	On Board Diagnosis Logic	
On Board Diagnosis Logic		DTC Confirmation Procedure	
DTC Confirmation Procedure		Wiring Diagram	
Overall Function Check		Diagnostic Procedure	
Wiring Diagram		Component Inspection	
Diagnostic Procedure		Removal and Installation	
DTC P1800 VIAS CONTROL SOLENOID V		IGNITION SIGNAL	
Component Description		Component Description	
CONSULT-II Reference Value in Data Monito	rMode	Wiring Diagram	1238

Diagnostic Procedure	1243	Wiring Diagram	1293
Component Inspection		Diagnostic Procedure	
Removal and Installation		ASCD INDICATOR	
VIAS	1249	Component Description	1300
Description	1249	CONSULT-II Reference Value in Data Monitor Mo	
CONSULT-II Reference Value in Data Moni			1300
	1250	Wiring Diagram	1301
Wiring Diagram	1251	Diagnostic Procedure	
Diagnostic Procedure		DATA LINK CONNECTOR	
Component Inspection	1256	Wiring Diagram	1303
Removal and Installation		EVAPORATIVE EMISSION SYSTEM	
INJECTOR CIRCUIT	1258	Description	
Component Description	1258	Component Inspection	
CONSULT-II Reference Value in Data Moni		Removal and Installation	
	1258	How to Detect Fuel Vapor Leakage	
Wiring Diagram	1259	ON BOARD REFUELING VAPOR RECOVERY	
Diagnostic Procedure		(ORVR)	1312
Component Inspection		System Description	
Removal and Installation		Diagnostic Procedure	
FUEL PUMP CIRCUIT		Component Inspection	
Description		POSITIVE CRANKCASE VENTILATION	
CONSULT-II Reference Value in Data Moni	itorMode	Description	1317
	1264	Component Inspection	1317
Wiring Diagram	1265	AUTOMATIC SPEED CONTROL DEVICE (ASCI	
Diagnostic Procedure		System Description	<u>.</u> 1319
Component Inspection		Component Description	
Removal and Installation		SERVICE DATA AND SPECIFICATIONS (SDS)	
REFRIGERANT PRESSURE SENSOR		Fuel Pressure	
Component Description	1269	Idle Speed and Ignition Timing	1321
Wiring Diagram		Calculated Load Value	
Diagnostic Procedure		Mass Air Flow Sensor	1321
Removal and Installation		Intake Air Temperature Sensor	1321
ELECTRICAL LOAD SIGNAL	1274	Engine Coolant Temperature Sensor	
CONSULT-II Reference Value in Data Moni	itorMode	Heated Oxygen Sensor 1 Heater	1321
	1274	Air Fuel Ratio (A/F) Sensor 1 Heater	1321
Wiring Diagram	1275	Heated Oxygen Sensor 2 Heater	1321
Diagnostic Procedure		Air-fuel ratio (A/F) sensor 1	1321
ASCD BRAKE SWITCH	1292	Crankshaft Position Sensor (POS)	1321
Component Description	1292	Camshaft Position Sensor (PHASE)	
CONSULT-II Reference Value in Data Moni	itorMode	Throttle Control Motor	
	1292	Injector	1322
		Fuel Pump	

MODIFICATION NOTICE

[QG18DE]

MODIFICATION NOTICE

PFP:00000

Modification Notice

UBS00IS9

- DTC P0451 has been added.
- On Board Diagnosis Logic for DTC P0138 has been changed.

How to Check Vehicle Type

Check the vehicle serial number to confirm the type of vehicles.

Vehicle Type	Vehicle Serial Number
Type I (Initial products)	Up to serial 848644
Type II (Modification adopted products)	From serial 848645

EC

Α

UBS00ISA

 D

С

Е

F

G

Н

Κ

L

INDEX FOR DTC

PFP:00024

UBS00B2D

Alphabetical Index

NOTE:

If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-148, "DTC U1000, U1001 CAN COMMUNICATION LINE" .

×: Applicable —: Not applicable

	DTC	;*1		MII licht	
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM*3	Trip	MIL light- ing up	Reference page
A/F S1 HTR (B1)	P1031	1031	2	×	EC-351
A/F S1 HTR (B1)	P1032	1032	2	×	EC-351
A/F SEN1 (B1)	P1271	1271	2	×	EC-450
A/F SEN1 (B1)	P1272	1272	2	×	EC-456
A/F SEN1 (B1)	P1273	1273	2	×	EC-462
A/F SEN1 (B1)	P1274	1274	2	×	EC-469
A/F SEN1 (B1)	P1276	1276	2	×	EC-476
A/F SEN1 (B1)	P1278	1278	2	×	EC-482
A/F SEN1 (B1)	P1279	1279	2	×	EC-489
A/T 1ST GR FNCTN	P0731	0731	2	×	<u>AT-135</u>
A/T 2ND GR FNCTN	P0732	0732	2	×	<u>AT-140</u>
A/T 3RD GR FNCTN	P0733	0733	2	×	<u>AT-145</u>
A/T 4TH GR FNCTN	P0734	0734	2	×	<u>AT-150</u>
A/T TCC S/V FNCTN	P0744	0744	2	×	<u>AT-163</u>
APP SEN 1/CIRC	P2122	2122	1	×	EC-540
APP SEN 1/CIRC	P2123	2123	1	×	EC-540
APP SEN 2/CIRC	P2127	2127	1	×	EC-546
APP SEN 2/CIRC	P2128	2128	1	×	EC-546
APP SENSOR	P2138	2138	1	×	EC-559
ASCD BRAKE SW	P1572	1572	1	_	EC-517
ASCD SW	P1564	1564	1	_	EC-510
ASCD VHL SPD SEN	P1574	1574	1	_	EC-528
ATF TEMP SEN/CIRC	P0710	0710	2	×	<u>AT-120</u>
BRAKE SW/CIRCUIT	P1805	1805	2	_	EC-534
CAN COMM CIRCUIT	U1000	1000* ⁵	1	×	EC-148
CAN COMM CIRCUIT	U1001	1001* ⁵	2	_	EC-148
CKP SEN/CIRCUIT	P0335	0335	2	×	EC-252
CLOSED LOOP-B1	P1148	1148	1	×	EC-427
CMP SEN/CIRCUIT	P0340	0340	2	×	EC-259
CTP LEARING	P1225	1225	2	_	EC-442
CTP LEARING	P1226	1226	2	_	EC-444
CYL 1 MISFIRE	P0301	0301	2	×	EC-241
CYL 2 MISFIRE	P0302	0302	2	×	EC-241
CYL 3 MISFIRE	P0303	0303	2	×	EC-241
CYL 4 MISFIRE	P0304	0304	2	×	EC-241
ECM	P0605	0605	1 or 2	× or —	EC-348
ECM BACK UP/CIRC	P1065	1065	2	×	EC-357

					[QG10DL]	_
	DT	C* ¹				
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM*3	Trip	MIL light- ing up	Reference page	А
ECT SEN/CIRC	P0117	0117	1	×	EC-179	EC
ECT SEN/CIRC	P0118	0118	1	×	EC-179	
ECT SENSOR	P0125	0125	1	×	EC-190	-
ENG OVER TEMP	P1217	1217	1	×	EC-428	С
ENGINE SPEED SIG	P0725	0725	2	×	<u>AT-131</u>	-
ETC ACTR	P1121	1121	1 or 2	×	EC-373	D
ETC FUNCTION/CIRC	P1122	1122	1	×	EC-375	
ETC MOT	P1128	1128	1	×	EC-387	-
ETC MOT PWR	P1124	1124	1	×	EC-382	Е
ETC MOT PWR	P1126	1126	1	×	EC-382	=
EVAP GROSS LEAK	P0455	0455	2	×	EC-314	_
EVAP PURG FLOW/MON	P0441	0441	2	×	EC-269	F
EVAP SMALL LEAK	P0442	0442	2	×	EC-275	=
EVAP SYS PRES SEN*8	P0451	0451	2	×	<u>EC-298</u>	G
EVAP SYS PRES SEN	P0452	0452	2	×	EC-300	=
EVAP SYS PRES SEN	P0453	0453	2	×	EC-306	
EVAP VERY SML LEAK	P0456	0456	2	×	EC-322	. H
FTT SEN/CIRCUIT	P0182	0182	2	×	EC-231	=
FTT SEN/CIRCUIT	P0183	0183	2	×	EC-231	
FTT SENSOR	P0181	0181	2	×	EC-226	-
FUEL LEVEL SEN SLOSH	P0460	0460	2	×	EC-331	
FUEL LEVEL SENSOR	P0461	0461	2	×	EC-333	J
FUEL LEVEL SEN/CIRC	P0462	0462	2	×	EC-335	=
FUEL LEVEL SEN/CIRC	P0463	0463	2	×	EC-335	K
FUEL SYS-LEAN-B1	P0171	0171	2	×	EC-212	-
FUEL SYS-RICH-B1	P0172	0172	2	×	EC-219	-
HO2S2 (B1)	P0138	0138	2	×	EC-198	L
HO2S2 (B1)	P0139	0139	2	×	EC-204	-
HO2S2 (B1)	P1146	1146	2	×	EC-413	M
HO2S2 (B1)	P1147	1147	2	×	EC-420	
HO2S2 HTR (B1)	P0037	0037	2	×	EC-154	-
HO2S2 HTR (B1)	P0038	0038	2	×	EC-154	-
IAT SEN CIRCUIT	P0112	0112	2	×	EC-175	=
IAT SEN CIRCUIT	P0113	0113	2	×	EC-175	=
IAT SEN CIRCUIT	P0127	0127	2	×	EC-193	-
INT/V TIM CONT-B1	P0011	0011	2	×	EC-151	-
INT/V TIM V/CIR-B1	P1111	1111	2	×	EC-368	-
ISC SYSTEM	P0506	0506	2	×	EC-339	=
ISC SYSTEM	P0507	0507	2	×	EC-341	=
KNOCK SEN/CIRC-B1	P0327	0327	2	_	EC-247	=
KNOCK SEN/CIRC-B1	P0328	0328	2	_	EC-247	=
L/PRES SOL/CIRC	P0745	0745	2	×	<u>AT-173</u>	-

	DT	C* ¹		NAIL limbs	
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM*3	Trip	MIL light- ing up	Reference page
MAF SEN/CIRCUIT	P0101	0101	1	×	EC-160
MAF SEN/CIRCUIT	P0102	0102	1	×	EC-168
MAF SEN/CIRCUIT	P0103	0103	1	×	EC-168
MAF SEN/CIRCUIT	P1102	1102	1	×	EC-361
MULTI CYL MISFIRE	P0300	0300	2	×	EC-241
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	No DTC	Flashing* ⁴	_	Flashing* ⁴	<u>EC-67</u>
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	0000	_	_	_
O/R CLTCH SOL/CIRC	P1760	1760	2	×	<u>AT-193</u>
P-N POS SW/CIRCUIT	P1706	1706	2	×	EC-530
PNP SW/CIRC	P0705	0705	2	×	<u>AT-115</u>
PURG VOLUME CONT/V	P0444	0444	2	×	EC-284
PURG VOLUME CONT/V	P0445	0445	2	×	EC-284
PURG VOLUME CONT/V	P1444	1444	2	×	EC-496
PW ST P SEN/CIRC	P0550	0550	2	_	EC-343
SENSOR POWER/CIRC	P1229	1229	1	×	EC-446
SFT SOL A/CIRC	P0750	0750	1	×	<u>AT-179</u>
SFT SOL B/CIRC	P0755	0755	1	×	<u>AT-179</u>
SWIRL CONT VALVE*7	P1138	1138	2	×	EC-405
SWL CON/V POSI SEN* ⁷	P1137	1137	2	×	EC-397
TCC SOLENOID/CIRC	P0740	0740	2	×	<u>AT-159</u>
THERMSTAT FNCTN	P0128	0128	2	×	EC-231
TP SEN 1/CIRC	P0222	0222	1	×	EC-235
TP SEN 1/CIRC	P0223	0223	1	×	EC-235
TP SEN 2/CIRC	P0122	0122	1	×	EC-184
TP SEN 2/CIRC	P0123	0123	1	×	EC-184
TP SEN/CIRC A/T	P1705	1705	1	×	<u>AT-187</u>
TP SENSOR	P2135	2135	1	×	EC-553
TW CATALYST SYS-B1	P0420	0420	2	×	EC-265
VARI SWL CON/SV-B1* ⁷	P1132	1132	2	×	EC-392
VEH SPD SEN/CIR A/T*6	P0720	0720	2	×	<u>AT-126</u>
VEH SPEED SEN/CIRC*6	P0500	0500	2	×	EC-337
VENT CONTROL VALVE	P0447	0447	2	×	EC-291
VENT CONTROL VALVE	P1446	1446	2	×	EC-504

^{*1: 1}st trip DTC No. is the same as DTC No.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results). This number is controlled by NISSAN.

^{*4:} When engine is running.

^{*5:} The troubleshooting for this DTC needs CONSULT-II.

^{*6:} When the fail-safe operations for both self-diagnoses occur, the MIL illuminates.

^{*7:} SULEV models

^{*8:} Type II vehicles

DTC No. Index

NOTE:

If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <a href="https://example.com/en-line-reference-based-section-based

DTC	C*1	Marina		MIII limitation -		
CONSULT-II GST* ²	ECM*3	Items (CONSULT-II screen terms)	Trip	MIL lighting up	Reference page	С
No DTC	Flashing* ⁴	NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	_	Flashing*4	EC-67	D
U1000	1000* ⁵	CAN COMM CIRCUIT	1	×	<u>EC-148</u>	
U1001	1001* ⁵	CAN COMM CIRCUIT	2	_	EC-148	Е
P0000	0000	NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	_	_	_	
P0011	0011	INT/V TIM CONT-B1	2	×	EC-151	-
P0037	0037	HO2S2 HTR (B1)	2	×	EC-154	
P0038	0038	HO2S2 HTR (B1)	2	×	<u>EC-154</u>	(
P0101	0101	MAF SEN/CIRCUIT	1	×	EC-160	
P0102	0102	MAF SEN/CIRCUIT	1	×	EC-168	
P0103	0103	MAF SEN/CIRCUIT	1	×	EC-168	-
P0112	0112	IAT SEN/CIRCUIT	2	×	EC-175	
P0113	0113	IAT SEN/CIRCUIT	2	×	EC-175	
P0117	0117	ECT SEN/CIRC	1	×	EC-179	
P0118	0118	ECT SEN/CIRC	1	×	EC-179	
P0122	0122	TP SEN 2/CIRC	1	×	<u>EC-184</u>	
P0123	0123	TP SEN 2/CIRC	1	×	EC-184	
P0125	0125	ECT SENSOR	1	×	EC-190	ŀ
P0127	0127	IAT SEN/CIRCUIT	2	×	EC-193	ľ
P0128	0128	THERMSTAT FNCTN	2	×	EC-196	
P0138	0138	HO2S2 (B1)	2	×	EC-198	l
P0139	0139	HO2S2 (B1)	2	×	EC-204	
P0171	0171	FUEL SYS-LEAN-B1	2	×	EC-212	
P0172	0172	FUEL SYS-RICH-B1	2	×	EC-219	1
P0181	0181	FTT SENSOR	2	×	EC-226	
P0182	0182	FTT SEN/CIRCUIT	2	×	EC-231	
P0183	0183	FTT SEN/CIRCUIT	2	×	EC-231	
P0222	0222	TP SEN 1/CIRC	1	×	EC-235	
P0223	0223	TP SEN 1/CIRC	1	×	EC-235	
P0300	0300	MULTI CYL MISFIRE	2	×	EC-241	
P0301	0301	CYL 1 MISFIRE	2	×	EC-241	
P0302	0302	CYL 2 MISFIRE	2	×	EC-241	
P0303	0303	CYL 3 MISFIRE	2	×	EC-241	
P0304	0304	CYL 4 MISFIRE	2	×	EC-241	
P0327	0327	KNOCK SEN/CIRC-B1	2	_	EC-247	
P0328	0328	KNOCK SEN/CIRC-B1	2	_	EC-247	

DTC [*]	*1	- Items		MIL lighting	
CONSULT-II GST* ²	ECM* ³	(CONSULT-II screen terms)	Trip	up	Reference page
P0335	0335	CKP SEN/CIRCUIT	2	×	EC-252
P0340	0340	CMP SEN/CIRCUIT	2	×	EC-259
P0420	0420	TW CATALYST SYS-B1	2	×	EC-265
P0441	0441	EVAP PURG FLOW/MON	2	×	EC-269
P0442	0442	EVAP SMALL LEAK	2	×	EC-275
P0444	0444	PURG VOLUME CONT/V	2	×	EC-284
P0445	0445	PURG VOLUME CONT/V	2	×	EC-284
P0447	0447	VENT CONTROL VALVE	2	×	EC-291
P0451	0451	EVAP SYS PRES SEN*8	2	×	EC-298
P0452	0452	EVAP SYS PRES SEN	2	×	EC-300
P0453	0453	EVAP SYS PRES SEN	2	×	EC-306
P0455	0455	EVAP GROSS LEAK	2	×	<u>EC-314</u>
P0456	0456	EVAP VERY SML LEAK	2	×	EC-322
P0460	0460	FUEL LEVEL SEN SLOSH	2	×	EC-331
P0461	0461	FUEL LEVEL SENSOR	2	×	EC-333
P0462	0462	FUEL LEVEL SEN/CIRC	2	×	EC-335
P0463	0463	FUEL LEVEL SEN/CIRC	2	×	EC-335
P0500	0500	VEH SPEED SEN/CIRC*6	2	×	EC-337
P0506	0506	ISC SYSTEM/CIRC	2	×	EC-339
P0507	0507	ISC SYSTEM/CIRC	2	×	EC-341
P0550	0550	PW ST P SEN/CIRC	2	_	EC-343
P0605	0605	ECM	1 or 2	× or —	EC-348
P0705	0705	PNP SW/CIRC	2	×	<u>AT-115</u>
P0710	0710	ATF TEMP SEN/CIRC	2	×	<u>AT-120</u>
P0720	0720	VEH SPD SEN/CIR A/T*6	2	×	<u>AT-126</u>
P0725	0725	ENGINE SPEED SIG	2	×	<u>AT-131</u>
P0731	0731	A/T 1ST GR FNCTN	2	×	AT-135
P0732	0732	A/T 2ND GR FNCTN	2	×	AT-140
P0733	0733	A/T 3RD GR FNCTN	2	×	AT-145
P0734	0734	A/T 4TH GR FNCTN	2	×	AT-150
P0740	0740	TCC SOLENOID/CIRC	2	×	AT-159
P0744	0744	A/T TCC S/V FNCTN	2	×	AT-163
P0745	0745	L/PRESS SOL/CIRC	2	×	AT-173
P0750	0750	SFT SOL A/CIRC	1	×	AT-179
P0755	0755	SFT SOL B/CIRC	1	×	<u>AT-183</u>
P1031	1031	A/F S1 HTR (B1)	2	×	EC-351
P1032	1032	A/F S1 HTR (B1)	2	×	EC-351
P1065	1065	ECM BACK UP/CIRC	2	×	EC-357
P1102	1102	MAF SENSOR	1	×	EC-361
P1111	1111	INT/V TIM V/CIR-B1	2	×	EC-368
P1121	1121	ETC ACTR	1 or 2	×	EC-373
P1122	1122	ETC FUNCTION/CIRC	1	×	EC-375

DTC	*1			NAIL P. L.C.		A
CONSULT-II GST* ²	ECM*3	Items (CONSULT-II screen terms)	Trip	MIL lighting up	Reference page	А
P1124	1124	ETC MOT PWR	1	×	EC-382	EC
P1126	1126	ETC MOT PWR	1	×	EC-382	
P1128	1128	ETC MOT	1	×	EC-387	
P1132	1132	VARI SWL CON/SV-B1* ⁷	2	×	EC-392	С
P1137	1137	SWL CON/V POSI SEN*7	2	_	EC-397	
P1138	1138	SWIRL CONT VALVE*7	2	×	EC-405	D
P1146	1146	HO2S2 (B1)	2	×	EC-413	
P1147	1147	HO2S2 (B1)	2	×	EC-420	_
P1148	1148	CLOSED LOOP-B1	1	×	EC-427	Е
P1217	1217	ENG OVER TEMP	1	×	EC-428	
P1225	1225	CTP LEARNING	2	_	EC-442	F
P1226	1226	CTP LEARNING	2	_	EC-444	
P1229	1229	SENSOR POWER/CIRC	1	×	EC-446	
P1271	1271	A/F SEN1 (B1)	2	×	EC-450	G
P1272	1272	A/F SEN1 (B1)	2	×	EC-456	
P1273	1273	A/F SEN1 (B1)	2	×	EC-462	Н
P1274	1274	A/F SEN1 (B1)	2	×	EC-469	
P1276	1276	A/F SEN1 (B1)	2	×	EC-476	
P1278	1278	A/F SEN1 (B1)	2	×	EC-482	I
P1279	1279	A/F SEN1 (B1)	2	×	EC-489	
P1444	1444	PURG VOLUME CONT/V	2	×	EC-496	J
P1446	1446	VENT CONTROL VALVE	2	×	EC-504	
P1564	1564	ASCD SW	1	_	<u>EC-510</u>	
P1572	1572	ASCD BRAKE SW	1	_	EC-517	K
P1574	1574	ASCD VHL SPD SEN	1	_	<u>EC-528</u>	
P1705	1705	TP SEN/CIRC A/T	1	×	<u>AT-187</u>	1
P1706	1706	P-N POS SW/CIRCUIT	2	×	EC-530	_
P1760	1760	O/R CLTCH SOL/CIRC	2	×	<u>AT-193</u>	
P1805	1805	BRAKE SW/CIRCUIT	2	_	<u>EC-534</u>	M
P2122	2122	APP SEN 1/CIRC	1	×	<u>EC-540</u>	
P2123	2123	APP SEN 1/CIRC	1	×	<u>EC-540</u>	
P2127	2127	APP SEN 2/CIRC	1	×	<u>EC-546</u>	
P2128	2128	APP SEN 2/CIRC	1	×	<u>EC-546</u>	
P2135	2135	TP SENSOR	1	×	<u>EC-553</u>	
P2138	2138	APP SENSOR	1	×	<u>EC-559</u>	

^{*1: 1}st trip DTC No. is the same as DTC No.

^{*2:} This number is prescribed by SEA J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results). This number is controlled by NISSAN.

^{*4:} When engine is running.

^{*5:} The troubleshooting for this DTC needs CONSULT-II.

^{*6:} When the fail-safe operations for both self-diagnoses occur, the MIL illuminates.

^{*7:} SULEV models

^{*8:} Type II vehicles

PRECAUTIONS PFP:00001

Precautions for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

UBS00BIN

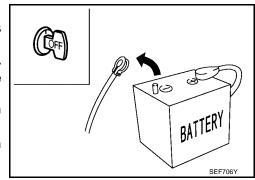
The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted. Information necessary to service the system safely is included in the SRS and SB sections of this Service Manual.

WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN/INFINITI dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the SRS section.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harness connectors

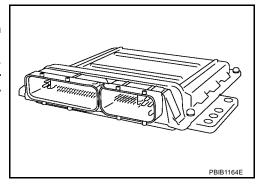
On Board Diagnostic (OBD) System of Engine and A/T

UBS00B2G

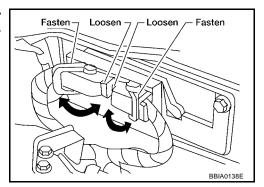

The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the driver of a malfunction causing emission deterioration.

CAUTION:

- Be sure to turn the ignition switch OFF and disconnect the negative battery cable before any repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves, etc. will cause the MIL to light up.
- Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will
 cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease,
 dirt, bent terminals, etc.)
- Certain systems and components, especially those related to OBD, may use a new style slidelocking type harness connector.
 For description and how to disconnect, refer to PG-47, "HARNESS CONNECTOR".
- Be sure to route and secure the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MIL to light up due to the short circuit.
- Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
 may cause the MIL to light up due to the malfunction of the EVAP system or fuel injection system,
 etc.
- Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and TCM (Transmission Control Module) before returning the vehicle to the customer.


Precautions

- Always use a 12 volt battery as power source.
- Do not attempt to disconnect battery cables while engine is running.
- Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect negative battery terminal. Failure to do so may damage the ECM because battery voltage is applied to ECM even if ignition switch is turned OFF.
- Before removing parts, turn ignition switch OFF and then disconnect battery ground cable.

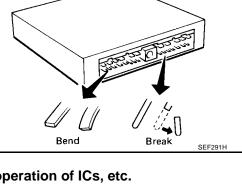


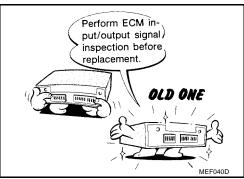
- Do not disassemble ECM.
- If a battery terminal is disconnected, the memory will return to the ECM value.

The ECM will now start to self-control at its initial value. Engine operation can vary slightly when the terminal is disconnected. However, this is not an indication of a malfunction. Do not replace parts because of a slight variation.

When connecting engine control system harness connector, fasten it securely with a lever as far as it will go as shown in the figure.

When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).


Make sure that there are not any bends or breaks on ECM pin terminals when connecting pin connectors.


Securely connect engine control system harness connec-

A poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs.

Keep engine control system harness at least 10 cm (4 in) away from adjacent harness, to prevent engine control system malfunctions due to receiving external noise, degraded operation of ICs, etc.

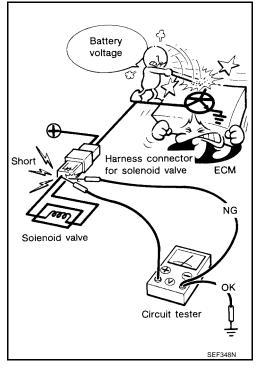
- Keep engine control system parts and harness dry.
- Before replacing ECM, perform "ECM terminals and Reference Value" inspection and make sure ECM functions properly. Refer to EC-106, "ECM Terminals and Reference Value"

EC-23

Α

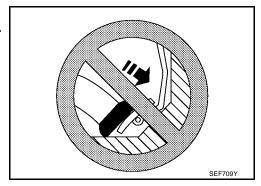
EC

D


Е

Н

 After performing each TROUBLE DIAGNOSIS, perform Overall Function Check or DTC Confirmation Procedure.
 The DTC should not be displayed in the DTC Confirmation Procedure if the repair is completed. The Overall Function Check should be a good result if the repair is completed.


- When measuring ECM signals with a circuit tester, never allow the two tester probes to contact.
 Accidental contact of probes will cause a short circuit and damage the ECM power transistor.
- Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the body ground.
- Handle mass air flow sensor carefully to avoid damage.
- Do not disassemble mass air flow sensor.
- Do not clean mass air flow sensor with any type of detergent.
- Even a slight leak in the air intake system can cause serious problems.
- Do not shock or jar the camshaft position sensor (PHASE), crankshaft position sensor (POS).

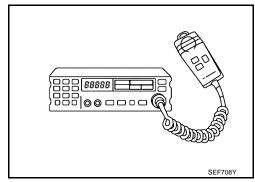
- Do not operate fuel pump when there is no fuel in lines.
- Tighten fuel hose clamps to the specified torque.

- Do not depress accelerator pedal when starting.
- Immediately after starting, do not rev up engine unnecessarily.
- Do not rev up engine just prior to shutdown.

PRECAUTIONS

[QG18DE]

- When installing C.B. ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on installation location.
- Keep the antenna as far as possible from the electronic control units.
- Keep the antenna feeder line more than 20 cm (8 in) away from the harness of electronic controls.
 Do not let them run parallel for a long distance.
- Adjust the antenna and feeder line so that the standingwave ratio can be kept smaller.
- Be sure to ground the radio to vehicle body.


Wiring Diagrams and Trouble Diagnosis

When you read Wiring diagrams, refer to the following:

- GI-13, "How to Read Wiring Diagrams".
- PG-3, "POWER SUPPLY ROUTING". for power distribution circuit

When you perform trouble diagnosis, refer to the following:

- GI-10, "HOW TO FOLLOW TEST GROUPS IN TROUBLE DIAGNOSES".
- GI-26, "How to Perform Efficient Diagnosis for an Electrical Incident".

UBS00B2I

F

Α

EC

C

D

Е

Н

ı

<

L

PREPARATION PFP:00002

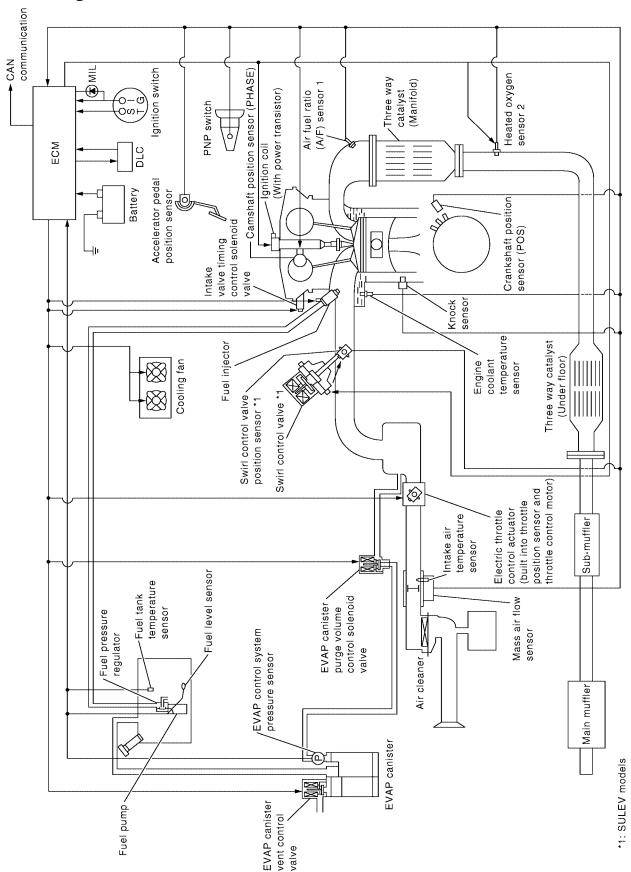
Special Service Tools

Tool number (Kent-Moore No.)	may differ from those of special service tools Description	
Tool name EG17650301 (J33984-A) Radiator cap tester adapter		Adapting radiator cap tester to radiator cap and radiator filler neck a: 28 (1.10) dia. b: 31.4 (1.236) dia. c: 41.3 (1.626) dia. Unit: mm (in)
KV10114400 (J-38365) Heated oxygen sensor wrench	S-NT564	Loosening or tightening heated oxygen sensor a: 22 mm (0.87 in)
KV109E0010 (J-46209) Break-out box	Break Cull Box 000000000000000000000000000000000000	Measuring the ECM signals with a circuit tester
KV109E0080 (J-45819) Y-cable adapter	S-NT825	Measuring the ECM signals with a circuit tester
(J-44321) Fuel pressure gauge kit	S-NT826	Checking fuel pressure
(J-45356) Fuel filler cap adapter		Checking fuel tank vacuum relief valve ope ing pressure
(J-44626) Air fuel ratio (A/F) sensor wrench	NT815	Loosening or tightening air fuel ratio (A/F) sensor 1

PREPARATION

Commercial Service Tools

[QG18DE]


Α Tool name Description Leak detector Locating the EVAP leak i.e.: (J41416) EC C EVAP service port adapter Applying positive pressure through EVAP ser-D i.e.: (J41413-OBD) vice port Е NT704 Oxygen sensor thread cleaner Reconditioning the exhaust system threads i.e.: (J-43897-18) before installing a new oxygen sensor or A/F (J-43897-12) sensor. Use with anti-seize lubricant shown Mating surface below. a: J-43897-18 18 mm with 1.5 mm pitch cylinde dia., for Zirconia Oxygen Sensor or A/F sensor b: J-43897-12 12 mm with 1.25 mm pitch Н AEM488 dia., for Titania Oxygen Sensor Anti-seize lubricant Lubricating oxygen sensor thread cleaning i.e: (PermatexTM 133AR or equivalent tool when reconditioning exhaust system meeting MIL specification MIL-A-907) threads. For disconnecting fuel tube quick connectors Fuel tube removal tool a: 7.9 mm (5/16 in)

ENGINE CONTROL SYSTEM

PFP:23710

UBS00B2L

System Diagram

ENGINE CONTROL SYSTEM

[QG18DE]

Α

Е

System Chart Input (Sensor) **ECM Function** Output (Actuator) Camshaft position sensor (PHASE) Fuel injection & mixture ratio control Fuel injectors Crankshaft position sensor (POS) EC Electronic ignition system Power transistor Mass air flow sensor Intake valve timing control sole-Intake valve timing control • Engine coolant temperature sensor noid valve Air fuel ratio (A/F) sensor 1 Fuel pump control Fuel pump relay Ignition switch Malfunction indicator lamp On board diagnostic system • Throttle position sensor (On the instrument panel) • PNP switch Swirl control valve*4 Swirl control valve control*4 · Air conditioner switch A/F sensor 1 heater and heated oxygen A/F sensor 1 heater and heated Knock sensor sensor 2 heater control oxygen sensor 2 heater EVAP control system pressure sensor EVAP canister purge volume con-EVAP canister purge flow control Fuel tank temperature sensor*1 trol solenoid valve Battery voltage Cooling fan control Cooling fan relays Power steering pressure sensor Air conditioning cut control Air conditioner relay Vehicle speed signal*3 ASCD vehicle speed control Electric throttle control actuator • Intake air temperature sensor Heated oxygen sensor 2*2 TCM (Transmission control module)*3 · Accelerator pedal position sensor Electrical load Swirl control valve position sensor*1 *4 ON BOARD DIAGNOSIS for EVAP system EVAP canister vent control valve Fuel level sensor*3 • Refrigerant pressure sensor Stop lamp switch · ASCD steering switch ASCD clutch switch ASCD brake switch

^{*1:} This sensor is not used to control the engine system. This is used only for the on board diagnosis.

^{*2:} This sensor is not used to control the engine system under normal conditions.

^{*3:} This input signal is sent to the ECM through CAN communication line.

^{*4:} SULEV models.

Multiport Fuel Injection (MFI) System INPUT/OUTPUT SIGNAL CHART

UBS00B2O

Sensor	Input Signal to ECM	ECM function	Actuator
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed*3 and piston number		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Air fuel ratio (A/F) sensor 1	Density of oxygen in exhaust gas		
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Accelerator pedal position	Fuel injec-	Fuel injectors
PNP switch	Gear position	tion & mix- ture ratio control	
Vehicle speed signal*2	Vehicle speed		
Air conditioner switch	Air conditioner operation		
Knock sensor	Engine knocking condition		
Electrical load	Electrical load signal		
Battery	Battery voltage*3		
Power steering pressure sensor	Power steering operation		
Heated oxygen sensor 2*1	Density of oxygen in exhaust gas		

^{*1:} Under normal conditions, this sensor is not for engine control operation.

SYSTEM DESCRIPTION

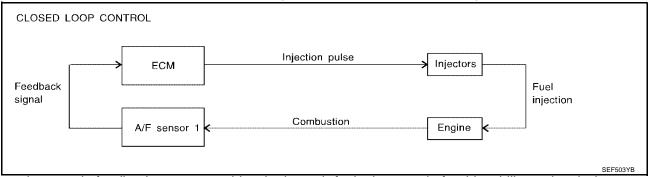
The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from both the camshaft position sensor and the mass air flow sensor.

VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION

In addition, the amount of fuel injected is compensated to improve engine performance under various operating conditions as listed below.

<Fuel increase>

- During warm-up
- When starting the engine
- During acceleration
- Hot-engine operation
- When selector lever is changed from N to D (A/T models)
- High-load, high-speed operation


<Fuel decrease>

- During deceleration
- During high engine speed operation

^{*2:} This signal is sent to the ECM through CAN communication line.

^{*3:} ECM determines the start signal status by the signals of engine speed and battery voltage.

MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The three way catalyst (manifold) can then better reduce CO, HC and NOx emissions. This system uses an air fuel ratio (A/F) sensor 1 in the exhaust manifold to monitor if the engine operation is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about the air fuel ratio (A/F) sensor 1, refer to EC-450. This maintains the mixture ratio within the stoichiometric range (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition.

Heated oxygen sensor 2 is located downstream of the three way catalyst (manifold). Even if the switching characteristics of the A/F sensor 1 shift, the air-fuel ratio is controlled to stoichiometric by the signal from heated oxygen sensor 2.

Open Loop Control

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

- Deceleration and acceleration
- High-load, high-speed operation
- Malfunction of A/F sensor 1 or its circuit
- Insufficient activation of A/F sensor 1 at low engine coolant temperature
- High engine coolant temperature
- During warm-up
- After shifting from N to D (A/T models)
- When starting the engine

MIXTURE RATIO SELF-LEARNING CONTROL

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from A/F sensor 1. This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both manufacturing differences (i.e., mass air flow sensor hot film) and characteristic changes during operation (i.e., injector clogging) directly affect mixture ratio.

Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.

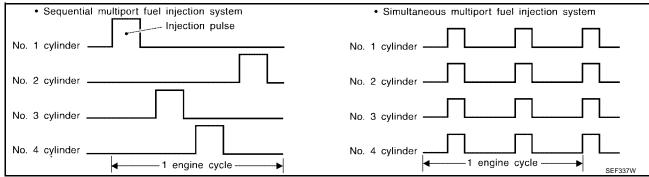
"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short term fuel trim and long term fuel trim.

"Short term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from A/F sensor 1 indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean.

"Long term fuel trim" is overall fuel compensation carried out long-term to compensate for continual deviation of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences, wear over time and changes in the usage environment.

EC

Α


D

3

Н

K

FUEL INJECTION TIMING

Two types of systems are used.

Sequential Multiport Fuel Injection System

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

Simultaneous Multiport Fuel Injection System

Fuel is injected simultaneously into all four cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.

The four injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

FUEL SHUT-OFF

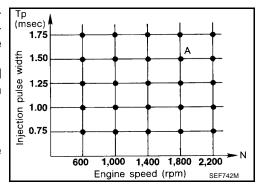
Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.

Electronic Ignition (EI) System INPUT/OUTPUT SIGNAL CHART

UBS00B2P

Sensor	Input Signal to ECM	ECM function	Actuator	
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed*2 and piston number			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature	Ignition timing control	Power transistor	
Throttle position sensor	Throttle position			
Accelerator pedal position sensor	Accelerator pedal position			
Vehicle speed signal*1	Vehicle speed			
Knock sensor	Engine knocking			
PNP switch	Gear position			
Battery	Battery voltage*2			

^{*1:} This signal is sent to the ECM through CAN communication line.


SYSTEM DESCRIPTION

The ignition timing is controlled by the ECM to maintain the best airfuel ratio for every running condition of the engine. The ignition timing data is stored in the ECM. This data forms the map shown in the figure.

The ECM receives information such as the injection pulse width and camshaft position sensor signal. Computing this information, ignition signals are transmitted to the power transistor.

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.

At starting

^{*2:} ECM determines the start signal status by the signals of engine speed and battery voltage.

- During warm-up
- At idle
- At low battery voltage
- During acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions.

If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

Air Conditioning Cut Control INPUT/OUTPUT SIGNAL CHART

UBS00B2Q

Α

EC

D

Е

Н

Sensor	Input Signal to ECM	ECM function	Actuator	
Air conditioner switch	Air conditioner ON signal			
PNP switch	Neutral position			
Throttle position sensor	Throttle valve opening angle			
Accelerator pedal position sensor	Accelerator pedal position		Air conditioner relay	
Camshaft position sensor (PHASE)	_ ·1	Air conditioner		
Crankshaft position sensor (POS)	Engine speed*1	cut control		
Engine coolant temperature sensor	Engine coolant temperature			
Battery	Battery voltage*1			
Refrigerant pressure sensor	Refrigerant pressure			
Power steering pressure sensor	Power steering operation			

^{*1:} ECM determines the start signal status by the signals of engine speed and battery voltage.

SYSTEM DESCRIPTION

This system improves engine operation when the air conditioner is used. Under the following conditions, the air conditioner is turned off.

- When the accelerator pedal is fully depressed.
- When cranking the engine.
- At high engine speeds.
- When the engine coolant temperature becomes excessively high.
- When operating power steering during low engine speed or low vehicle speed.
- When engine speed is excessively low.
- When the refrigerant pressure is excessively high or low.

Fuel Cut Control (at No Load & High Engine Speed) INPUT/OUTPUT SIGNAL CHART

UBS00B2R

Sensor	Input Signal to ECM	ECM function	Actuator
PNP switch	Neutral position		Fuel injectors
Vehicle speed signal*1	Vehicle speed		
Throttle position sensor	Throttle position	Fuel cut	
Accelerator pedal position sensor	Accelerator pedal position	control	
Engine coolant temperature sensor	Engine coolant temperature		
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed		

^{*1:} This signal is sent to the ECM through CAN communication line.

[QG18DE]

SYSTEM DESCRIPTION

If the engine speed is above 2,500 rpm with no load, (for example, in Neutral and engine speed over 2,500 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed. Fuel cut will operate until the engine speed reaches 2,000 rpm, then fuel cut is cancelled.

NOTE:

This function is different from deceleration control listed under <u>EC-30, "Multiport Fuel Injection (MFI)</u> <u>System"</u>.

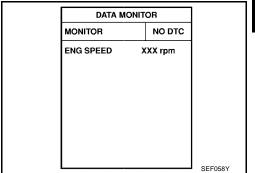
CAN communication SYSTEM DESCRIPTION

UBS00BJF

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

Refer to LAN-4, "CAN COMMUNICATION", about CAN communication for detail.

BASIC SERVICE PROCEDURE


PFP:00018

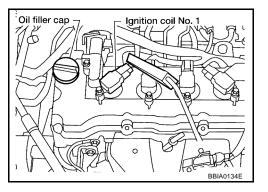
Idle Speed and Ignition Timing Check **IDLE SPEED**

UBS00B2T

(II) With CONSULT-II

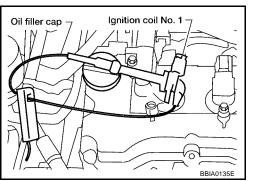
Check idle speed in "DATA MONITOR" mode with CONSULT-II.

With GST


Check idle speed in MODE 1 with GST.

IGNITION TIMING

Any of following two methods may be used.


Method A

- Slide the harness protector of ignition coil No. 1 to clear the wires.
- Attach timing light to the ignition coil No. 1 wires as shown in the 2. figure.
- Check ignition timing.

Method B

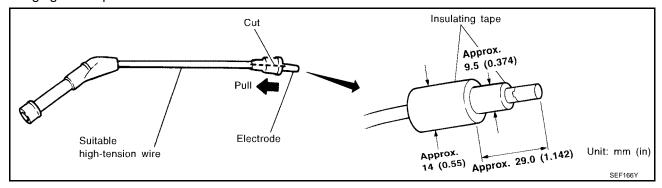
Remove No. 1 ignition coil.

EC

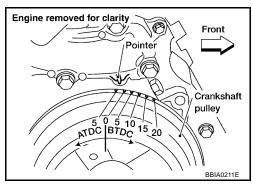
Α

D

C


Е

F


Н

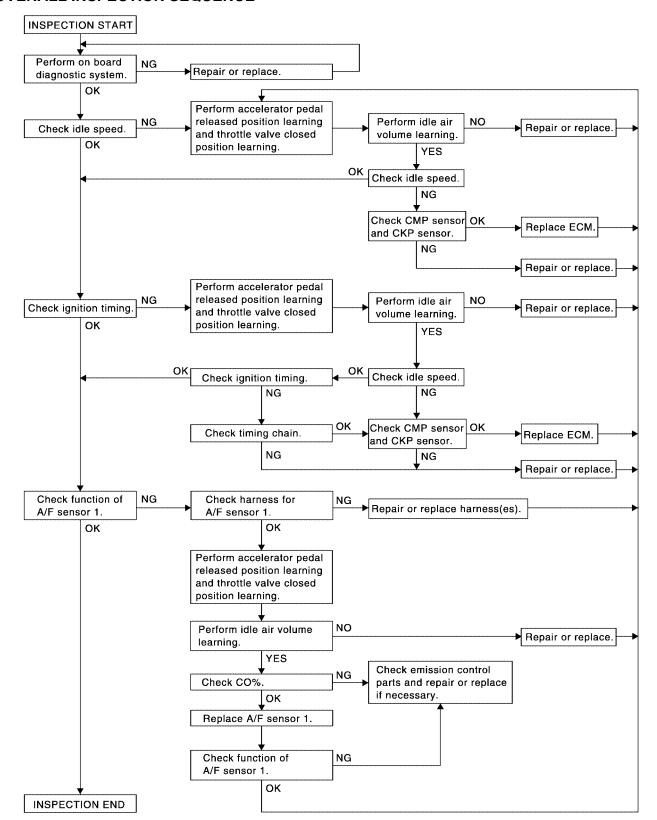
K

2. Connect No. 1 ignition coil and No. 1 spark plug with suitable high-tension wire as shown, and attach timing light clamp to this wire.

Check ignition timing.

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment PREPARATION

UBS00B2U

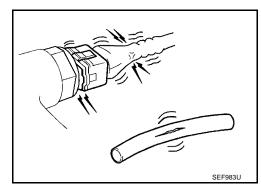

- 1. Make sure that the following parts are in good order.
 - Battery
 - Ignition system
 - Engine oil and coolant levels
 - Fuses
 - ECM harness connector
 - Vacuum hoses
 - Air intake system (Oil filler cap, oil level gauge, etc.)
 - Fuel pressure
 - Engine compression
 - Throttle valve
 - EVAP system
- 2. On models equipped with air conditioner, checks should be carried out while the air conditioner is OFF.
- 3. On models equipped with automatic transaxle, when checking idle speed, ignition timing and mixture ratio, checks should be carried out while shift lever is in P or N position.
- 4. When measuring CO percentage, insert probe more than 40 cm (15.7 in) into tail pipe.
- 5. Turn off headlamps, heater blower, rear window defogger.
- 6. Keep front wheels pointed straight ahead.
- 7. Make the check after the cooling fans has stopped.

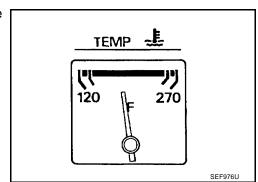
Α

EC

M

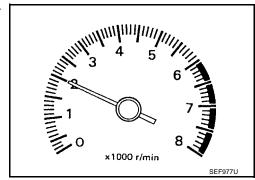
OVERALL INSPECTION SEQUENCE


NOTE:


If a vehicle contains a part which is operating outside of design specifications with no MIL illumination, the part shall not be replaced prior to emission testing unless it is determined that the part has been tampered with or abused in such a way that the diagnostic system cannot reasonably be expected to detect the resulting malfunction.

INSPECTION PROCEDURE

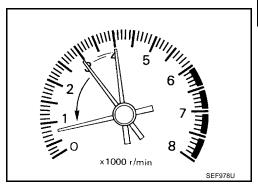
1. INSPECTION START


- Check service records for any recent repairs that may indicate a related malfunction, or a current need for scheduled maintenance.
- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Wiring harness for improper connections, pinches and cut
- Vacuum hoses for splits, kinks and improper connections
- Hoses and ducts for leaks
- Air cleaner clogging
- Gasket
- Throttle valve and throttle position sensor operation
- 3. Confirm that electrical or mechanical loads are not applied.
- Headlamp switch is OFF.
- Air conditioner switch is OFF.
- Rear window defogger switch is OFF.
- Steering wheel is in the straight-ahead position, etc.
- Start engine and warm it up until engine coolant temperature indicator points the middle of gauge. Ensure engine stays below 1,000 rpm.

- 5. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 6. Make sure that no DTC is displayed with CONSULT-II or GST. OK or NG

OK >> GO TO 3. NG >> GO TO 2.

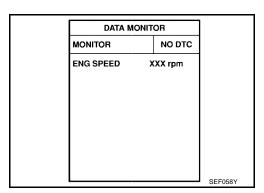
2. REPAIR OR REPLACE


Repair or replace components as necessary according to corresponding Diagnostic Procedure.

>> GO TO 3.

3. CHECK TARGET IDLE SPEED

(II) With CONSULT-II


- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.

3. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

M/T: 650 \pm 50 rpm

A/T: 800 \pm 50 rpm (in P or N position)

⋈ Without CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.
- 3. Check idle speed.

M/T: 650 \pm 50 rpm

A/T: 800 ± 50 rpm (in P or N position)

OK or NG

OK >> GO TO 10. NG >> GO TO 4.

4. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-47, "Accelerator Pedal Released Position Learning".

>> GO TO 5.

5. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-47, "Throttle Valve Closed Position Learning" .

>> GO TO 6.

EC

0

D

Е

F

G

Н

J

K

6. PERFORM IDLE AIR VOLUME LEARNING

Perform EC-47, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes >> GO TO 7.

No >> 1. Follow the instruction of Idle Air Volume Learning.

2. GO TO 4.

7. CHECK TARGET IDLE SPEED AGAIN

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

M/T: 650 \pm 50 rpm

A/T: 800 ± 50 rpm (in P or N position)

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed.

M/T: 650 \pm 50 rpm

A/T: 800 \pm 50 rpm (in P or N position)

OK or NG

OK >> GO TO 10. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Check camshaft position sensor (PHASE) and circuit. Refer to <u>EC-259</u>.
- Check crankshaft position sensor (POS) and circuit. Refer to <u>EC-252</u>.

OK or NG

OK >> GO TO 9.

NG >> 1. Repair or replace.

2. GO TO 4.

9. CHECK ECM FUNCTION

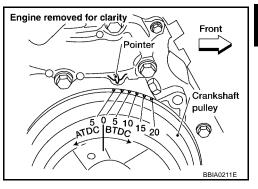
 Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is the rarely the case.)

>> GO TO 4.

10. CHECK IGNITION TIMING

1. Run engine at idle.

2. Check ignition timing with a timing light.


M/T: $7 \pm 5^{\circ}$ BTDC

A/T: $18 \pm 5^{\circ}$ BTDC (in P or N position)

OK or NG

OK (With CONSULT-II)>>GO TO 19. OK (Without CONSULT-II)>>GO TO 20.

NG >> GO TO 11.

11. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

1. Stop engine.

2. Perform EC-47, "Accelerator Pedal Released Position Learning".

>> GO TO 12.

12. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-47, "Throttle Valve Closed Position Learning".

>> GO TO 13.

13. PERFORM IDLE AIR VOLUME LEARNING

Perform EC-47, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes >> GO TO 14.

No >> 1. Follow the instruction of Idle Air Volume Learning.

2. GO TO 4.

14. CHECK TARGET IDLE SPEED AGAIN

(P) With CONSULT-II

1. Start engine and warm it up to normal operating temperature.

2. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

M/T: $650 \pm 50 \text{ rpm}$

A/T: 800 ± 50 rpm (in P or N position)

⋈ Without CONSULT-II

1. Start engine and warm it up to normal operating temperature.

2. Check idle speed.

M/T: 650 \pm 50 rpm

A/T: 800 ± 50 rpm (in P or N position)

OK or NG

OK >> GO TO 15. NG >> GO TO 17.

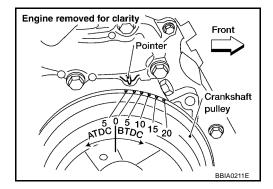
EC-41

EC

D

Е

15. CHECK IGNITION TIMING AGAIN


- 1. Run engine at idle.
- 2. Check ignition timing with a timing light.

M/T: $7 \pm 5^{\circ}$ BTDC

A/T: $18 \pm 5^{\circ}$ BTDC (in P or N position)

OK or NG

OK (With CONSULT-II)>>GO TO 19. OK (Without CONSULT-II)>>GO TO 20. NG >> GO TO 16.

16. CHECK TIMING CHAIN INSTALLATION

Check timing chain installation. Refer to EM-45.

OK or NG

OK >> GO TO 17.

NG >> 1. Repair the timing chain installation.

2. GO TO 4.

17. DETECT MALFUNCTIONING PART

Check the following.

- Check camshaft position sensor (PHASE) and circuit. Refer to EC-259.
- Check crankshaft position sensor (POS) and circuit. Refer to EC-252.

OK or NG

OK >> GO TO 18.

NG >> 1. Repair or replace.

2. GO TO 4.

18. CHECK ECM FUNCTION

1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is the rarely the case.)

>> GO TO 4.

BASIC SERVICE PROCEDURE

[QG18DE]

19. CHECK AIR FUEL RATIO (A/F) SENSOR 1 FUNCTION

(P) With CONSULT-II

- 1. Turn ignition switch OFF and wait at a least 10 seconds.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in D position with "OD" OFF (A/T) or 4th position (M/T).

NOTE:

Keep the accelerator pedal as steady as possible during the cruising.

4. Set "OD" ON, then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

- 5. Repeat steps 3 to 4 five times.
- 6. Stop the vehicle and connect CONSULT-II to the vehicle.
- 7. Make sure that no 1st trip DTC is displayed in "SELF-DIAG RESULTS" mode.

OK or NG

OK >> INSPECTION END

NG >> GO TO 21.

20. CHECK AIR FUEL RATIO (A/F) SENSOR 1 FUNCTION

Without CONSULT-II

- 1. Turn ignition switch OFF and wait at a least 10 seconds.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in D position with "OD" OFF (A/T) or 4th position (M/T).

NOTE:

Keep the accelerator pedal as steady as possible during the cruising.

4. Set "OD" ON, then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

- 5. Repeat steps 3 to 4 five times.
- 6. Stop the vehicle and connect GST to the vehicle.
- 7. Make sure that no (1st trip) DTC is displayed.

OK or NG

OK >> INSPECTION END

NG >> GO TO 21. EC

C

D

Е

Н

J

$21.\ \text{CHECK}$ AIR FUEL RATIO (A/F) SENSOR 1 (BANK 1) HARNESS

- 1. Turn ignition switch OFF and disconnect battery ground cable.
- 2. Disconnect ECM harness connector.
- 3. Disconnect A/F sensor 1 harness connector.
- 4. Check harness continuity between the following terminals. Refer to EC-453, "Wiring Diagram".

ECM Terminal	A/F sensor 1 terminal
2	4
16	1
35	5
56	6
75	2

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 22.

NG

>> 1. Repair open circuit or short to ground or short to power in harness connectors between ECM and A/F sensor 1.

2. GO TO 4.

22. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Reconnect ECM harness connector.
- 2. Perform EC-47, "Accelerator Pedal Released Position Learning" .

>> GO TO 23.

23. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-47, "Throttle Valve Closed Position Learning" .

>> GO TO 24.

24. PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-47, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes (With CONSULT-II)>>GO TO 25.

Yes (Without CONSULT-II)>>GO TO 26.

No >> 1. Follow the instruction of Idle Air Volume Learning.

2. GO TO 4.

25. снеск со%

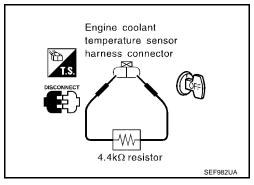
(II) With CONSULT-II

- 1. Start engine and warm it up until engine coolant temperature indicator points the middle of gauge.
- 2. Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- 3. Select "ENG COOLANT TEMP" in "ACTIVE TEST" mode.
- 4. Set "ENG COOLANT TEMP" to 5°C (41°F) by touching "DWN" and "Qd".
- 5. Start engine and rev it (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed.
- 6. Check CO%.

Idle CO: 3 – 11% and engine runs smoothly.

OK or NG

OK >> GO TO 28. NG >> GO TO 27.


26. снеск со%

⋈ Without CONSULT-II

- 1. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge.
- 2. Turn ignition switch OFF.
- 3. Disconnect engine coolant temperature sensor harness connector.
- 4. Connect a resistor (4.4 $k\Omega$) between terminals of engine coolant temperature sensor harness connector.
- 5. Start engine and rev it (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed.
- 6. Check CO%.

Idle CO: 3 – 11% and engine runs smoothly.

 After checking CO%, turn ignition switch OFF, disconnect the resistor from the terminals of engine coolant temperature sensor harness connector, and then connect engine coolant temperature sensor harness connector to engine coolant temperature sensor.

OK or NG

OK >> GO TO 28. NG >> GO TO 27.

27. RECONNECT AIR FUEL RATIO (A/F) SENSOR 1 HARNESS CONNECTOR

- 1. Turn ignition switch OFF.
- Reconnect A/F sensor 1 harness connector.

>> GO TO 31.

28. REPLACE AIR FUEL RATIO (A/F) SENSOR 1

- 1. Stop engine.
- 2. Replace A/F sensor 1.

With CONSULT-II>>GO TO 29. Without CONSULT-II>>GO TO 30.

 EC

Α

 D

Е

-

SEF172Y

Н

I

J

K

29. check air fuel ratio (a/f) sensor 1 function

(P) With CONSULT-II

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in D position with "OD" OFF (A/T) or 4th position (M/T).

NOTE:

Keep the accelerator pedal as steady as possible during the cruising.

4. Set "OD" ON, then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

- 5. Repeat steps 3 to 4 five times.
- 6. Stop the vehicle and connect CONSULT-II to the vehicle.
- 7. Make sure that no 1st trip DTC is displayed in "SELF-DIAG RESULTS" mode.

OK or NG

OK >> GO TO 4. NG >> GO TO 31.

30. Check air fuel ratio (a/f) sensor 1 function

Without CONSULT-II

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in D position with "OD" OFF (A/T) or 4th position (M/T).

NOTE:

Keep the accelerator pedal as steady as possible during the cruising.

4. Set "OD" ON, then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

- 5. Repeat steps 3 to 4 five times.
- 6. Stop the vehicle and connect GST to the vehicle.
- 7. Make sure that no (1st trip) DTC is displayed.

OK or NG

OK >> GO TO 4. NG >> GO TO 31.

31. DETECT MALFUNCTIONING PART

Check the following.

- Check fuel pressure regulator and repair or replace if necessary. Refer to <u>EC-49</u>, "Fuel Pressure Check".
- Check mass air flow sensor and its circuit, and repair or replace if necessary. Refer to <u>EC-160</u>, <u>EC-168</u> and <u>EC-361</u>.
- Check injector and its circuit, and repair or replace if necessary. Refer to EC-578.
- Check engine coolant temperature sensor and its circuit, and repair or replace if necessary. Refer to <u>EC-179</u> and <u>EC-190</u>.

OK or NG

OK >> GO TO 33.

NG >> 1. Repair or replace.

2. GO TO 32.

BASIC SERVICE PROCEDURE

[QG18DE]

32. erase unnecessary dtc

After this inspection, unnecessary DTC might be displayed.

Erase the stored memory in ECM and TCM. Refer to <u>EC-64, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u> and <u>AT-40</u>.

EC

>> GO TO 4.

33. CHECK ECM FUNCTION

1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is the rarely the case.)

Е

>> GO TO 4.

Accelerator Pedal Released Position Learning DESCRIPTION

UBS00B2V

Accelerator Pedal Released Position Learning is an operation to learn the fully released position of the accelerator pedal by monitoring the accelerator pedal position sensor output signal. It must be performed each time harness connector of accelerator pedal position sensor or ECM is disconnected.

OPERATION PROCEDURE

G

- 1. Make sure that accelerator pedal is fully released.
- 2. Turn ignition switch ON and wait at least 2 seconds.
- 3. Turn ignition switch OFF wait at least 10 seconds.
- 4. Turn ignition switch ON and wait at least 2 seconds.
- 5. Turn ignition switch OFF wait at least 10 seconds.

UBS00B2W

Throttle Valve Closed Position Learning DESCRIPTION

Throttle Valve Closed Position Learning is an operation to learn the fully closed position of the throttle valve by monitoring the throttle position sensor output signal. It must be performed each time harness connector of electric throttle control actuator of ECM is disconnected.

OPERATION PROCEDURE

- 1. Make sure that accelerator pedal is fully released.
- Turn ignition switch ON.
- 3. Turn ignition switch OFF wait at least 10 seconds.

 Make sure that throttle valve moves during above 10 seconds by confirming the operating sound.

Idle Air Volume Learning DESCRIPTION

UBS00B2X

Idle Air Volume Learning is an operation to learn the idle air volume that keeps each engine within the specific range. It must be performed under any of the following conditions:

- Each time electric throttle control actuator or ECM is replaced.
- Idle speed or ignition timing is out of specification.

PREPARATION

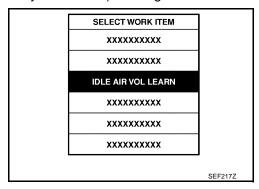
Before performing Idle Air Volume Learning, make sure that all of the following conditions are satisfied. Learning will be cancelled if any of the following conditions are missed for even a moment.

- Battery voltage: More than 12.9V (At idle)
- Engine coolant temperature: 70 95°C (158 203°F)
- PNP switch: ON
- Electric load switch: OFF

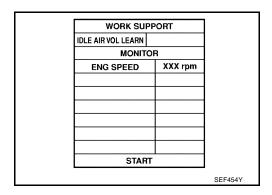
(Air conditioner, headlamp, rear window defogger)

On vehicles equipped with daytime light systems, if the parking brake is applied before the engine is started, the headlamp will not be illuminated.

- Steering wheel: Neutral (Straight-ahead position)
- Vehicle speed: Stopped
- Transmission: Warmed-up


For A/T models with CONSULT-II, drive vehicle until "FLUID TEMP SE" in "DATA MONITOR" mode of A/T system indicates less than 0.9V.

For A/T models without CONSULT-II and M/T models, drive vehicle for 10 minutes.


OPERATION PROCEDURE

(With CONSULT-II

- 1. Perform EC-47, "Accelerator Pedal Released Position Learning".
- 2. Perform EC-47, "Throttle Valve Closed Position Learning".
- 3. Start engine and warm it up to normal operating temperature.
- 4. Check that all items listed under the topic PREPARATION" (previously mentioned) are in good order.
- 5. Select "IDLE AIR VOL LEARN" in "WORK SUPPORT" mode.

Touch "START" and wait 20 seconds.

- Make sure that "CMPLT" is displayed on CONSULT-II screen. If "CMPLT" is not displayed, Idle Air Volume Learning will not be carried out successfully. In this case, find the cause of the incident by referring to the Diagnostic Procedure below.
- 8. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.

ITEM	SPECIFICATION
Idle speed	M/T: 650±50 rpm A/T: 800±50 rpm (in P or N position)
Ignition timing	M/T: 7±5° BTDC A/T: 18±5° BTDC (in P or N position)

⋈ Without CONSULT-II

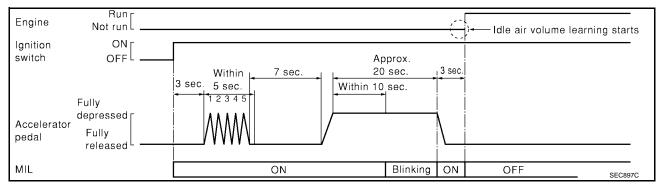
NOTE

- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.
- 1. Perform EC-47, "Accelerator Pedal Released Position Learning".

[QG18DE]

Α

EC


D

Е

Н

M

- 2. Perform EC-47, "Throttle Valve Closed Position Learning".
- 3. Start engine and warm it up to normal operating temperature.
- 4. Check that all items listed under the topic "PREPARATION" (previously mentioned) are in good order.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Confirm that accelerator pedal is fully released, turn ignition switch ON and wait 3 seconds.
- 7. Repeat the following procedure quickly five times within 5 seconds.
- a. Fully depress the accelerator pedal.
- b. Fully release the accelerator pedal.
- 8. Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 20 seconds until the MIL stops blinking and turned ON.
- Fully release the accelerator pedal within 3 seconds after the MIL turned ON.
- 10. Start engine and let it idle.
- 11. Wait 20 seconds.

12. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.

ITEM	SPECIFICATION
Idle speed	M/T: 650±50 rpm A/T: 800±50 rpm (in P or N position)
Ignition timing	M/T: 7±5° BTDC A/T: 18±5° BTDC (in P or N position)

13. If idle speed and ignition timing are not within the specification, the result will be incomplete. In this case, find the cause of the incident by referring to the Diagnostic Procedure below.

DIAGNOSTIC PROCEDURE

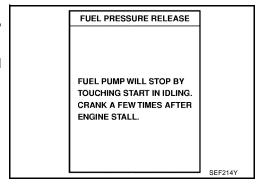
If idle air volume learning cannot be performed successfully, proceed as follows:

- Check that throttle valve is fully closed.
- 2. Check PCV valve operation.
- 3. Check that downstream of throttle valve is free from air leakage.
- When the above three items check out OK, engine component parts and their installation condition are questionable. Check and eliminate the cause of the incident.
 It is useful to perform <u>EC-136</u>, "TROUBLE DIAGNOSIS SPECIFICATION VALUE".
- 5. If any of the following conditions occur after the engine has started, eliminate the cause of the incident and perform Idle air volume learning all over again:
- Engine stalls.
- Erroneous idle.

Fuel Pressure Check FUEL PRESSURE RELEASE

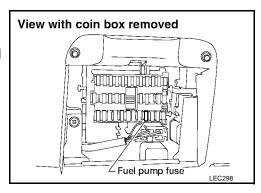
UBS00B2Y

Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger.

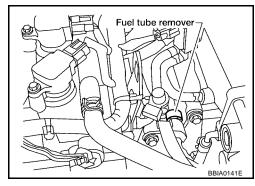

NOTE:

Prepare pans or saucers under the disconnected fuel line because the fuel may spill out. The fuel pressure cannot be completely released because B15 models do not have fuel return system.

EC-49


(II) With CONSULT-II

- 1. Start engine.
- 2. Perform "FUEL PRESSURE RELEASE" in "WORK SUPPORT" mode with CONSULT-II.
- 3. After engine stalls, crank it two or three times to release all fuel pressure.
- 4. Turn ignition switch OFF.

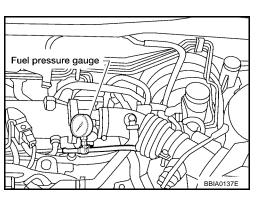

⊗ Without CONSULT-II

- 1. Remove fuse for fuel pump.
- 2. Start engine.
- 3. After engine stalls, crank it two or three times to release all fuel pressure.
- 4. Turn ignition switch OFF and reconnect fuel pump fuse.
- 5. Reinstall fuel pump fuse after servicing fuel system.

FUEL PRESSURE CHECK

- When reconnecting fuel line, always use new clamps.
- Make sure that clamp screws do not contact adjacent parts.
- Use a torque driver to tighten clamps.
- Use Fuel Pressure Gauge Kit J-44321 to check fuel pressure.
- 1. Release fuel pressure to zero.
- 2. Disconnect fuel hose from fuel feed tube (engine side) using fuel tube quick connect removal tool.

 Release quick connector and disconnect fuel hose from fuel feed tube (underbody side). Remove fuel hose assembly.
 CAUTION:


Do not install hose clamps over flared portions of fuel feed tubes or damage to fuel feed tubes may result.

- 4. Install fuel pressure gauge from kit J-44321 between fuel tubes using hose and clamps from kit.
- 5. Turn ignition switch ON and check for fuel leakage.
- 6. Start engine and read the indication on fuel pressure gauge.

At idle speed:

Approximately 350 kPa (3.57 kg/cm², 51 psi)

If results are unsatisfactory, check for fuel leakage in fuel line between fuel tank and injector. If OK, replace fuel level sensor unit and fuel pump assembly. Refer to $\underline{\text{EC-578}}$.

EC

Α

D

C

Е

F

G

Н

//

L

PFP:00028

Introduction

The ECM has an on board diagnostic system, which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

Emission-related diagnostic information	SAE Mode		
Diagnostic Trouble Code (DTC)	Mode 3 of SAE J1979		
Freeze Frame data	Mode 2 of SAE J1979		
System Readiness Test (SRT) code	Mode 1 of SAE J1979		
1st Trip Diagnostic Trouble Code (1st Trip DTC)	Mode 7 of SAE J1979		
1st Trip Freeze Frame data			
Test values and Test limits	Mode 6 of SAE J1979		
Calibration ID	Mode 9 of SAE J1979		

The above information can be checked using procedures listed in the table below.

X: Applicable —: Not applicable

	DTC	1st trip DTC	Freeze Frame data	1st trip Freeze Frame data	SRT code	Test value
CONSULT-II	×	×	×	×	×	_
GST	×	×*1	×	_	×	×
ECM	×	×*2	_	_	_	_

^{*1: 1}st trip DTCs for self-diagnoses concerning SRT items cannot be shown on the GST display.

The malfunction indicator lamp (MIL) on the instrument panel lights up when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode. (Refer to EC-80)

Two Trip Detection Logic

UBS00B30

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the ECM memory. The MIL will not light up at this stage. <1st trip>

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in the ECM memory, and the MIL lights up. The MIL lights up at the same time as when the DTC is stored. <2nd trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to light up or blink the MIL, and store DTC and Freeze Frame data, even in the 1st trip, as shown below.

X: Applicable —: Not applicable

		М	IL		DTC		1st trip DTC	
Items	1s	t trip	2nd trip		1st trip	2nd trip	1st trip	2nd trip
	Blinking	Lighting up	Blinking	Lighting up	display- ing	display- ing	display- ing	display- ing
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0304 is being detected	×	_	_	_	_	_	×	_
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0304 is being detected	_	_	×	_	_	×	_	_
One trip detection diagnoses (Refer to EC-427)	_	×	_	_	×	_	×	_
Except above	_	_	_	×	_	×	×	_

When there is an open circuit on MIL circuit, the ECM can not warn the driver by lighting MIL up when there is malfunction on engine control system.

Therefore, when electrical controlled throttle and part of ECM related diagnoses is continuously detected as NG for 5-trips, ECM warns the driver that engine control system has malfunction and MIL circuit is open by means of operating fail-safe function.

^{*2:} When DTC and 1st trip DTC simultaneously appear on the display, they cannot be clearly distinguished from each other.

[QG18DE]

The fail-safe function also operate when above diagnoses except MIL circuit are detected, and demands the driver to repair the malfunction.

Engine operating condition in fail-safe mode

Engine speed will not rise more then 2,500 rpm due to the fuel cut.

Emission-related Diagnostic Information EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS

UBS00B31

EC

	DTO	C* ¹		Test value/		
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	SRT code	Test limit (GST only)	1st trip DTC	Reference page
CAN COMM CIRCUIT	U1000	1000* ⁷	_	_	_	EC-148
CAN COMM CIRCUIT	U1001	1001* ⁷	_	_	×	EC-148
NO DTC IS DETECTED. FUR- THER TESTING MAY BE REQUIRED.	P0000	0000	_	_	_	_
INT/V TIMING CONT	P0011	0011	_	_	×	EC-151
HO2S2 HTR (B1)	P0037	0037	×	×	×* ⁵	EC-154
HO2S2 HTR (B1)	P0038	0038	×	×	×* ⁵	EC-154
MAF SEN/CIRCUIT	P0101	0101	_	_	_	EC-160
MAF SEN/CIRCUIT	P0102	0102	_	_	_	EC-168
MAF SEN/CIRCUIT	P0103	0103	_	_	_	EC-168
IAT SEN/CIRCUIT	P0112	0112	_	_	×	EC-175
IAT SEN/CIRCUIT	P0113	0113	_	_	×	EC-175
ECT SEN/CIRC	P0117	0117	_	_	_	EC-179
ECT SEN/CIRC	P0118	0118	_	_	_	EC-179
TP SEN2/CIRC	P0122	0122	_	_	_	EC-184
TP SEN2/CIRC	P0123	0123	_	_	_	EC-184
ECT SEN/CIRC	P0125	0125	_	_	_	EC-190
IAT SEN/CIRCUIT	P0127	0127	_	_	×	EC-193
THERMSTAT FNCTN	P0128	0128	_	_	×	EC-196
HO2S2 (B1)	P0138	0138	_	_	×	EC-198
HO2S2 (B1)	P0139	0139	×	×	×* ⁵	EC-204
FUEL SYS-LEAN-B1	P0171	0171	_	_	×	EC-212
FUEL SYS-RICH-B1	P0172	0172	_	_	×	EC-219
FTT SENSOR	P0181	0181	_	_	×	EC-226
FTT SEN/CIRCUIT	P0182	0182	_	_	×	EC-231
FTT SEN/CIRCUIT	P0183	0183	_	_	×	EC-231
TP SEN 1/CIRC	P0222	0222	_	_	_	EC-235
TP SEN 1/CIRC	P0223	0223	_	_	_	EC-235
MULTI CYL MISFIRE	P0300	0300	_	_	×	EC-241
CYL 1 MISFIRE	P0301	0301	_	_	×	EC-241
CYL 2 MISFIRE	P0302	0302	_	_	×	EC-241
CYL 3 MISFIRE	P0303	0303	_	_	×	EC-241
CYL 4 MISFIRE	P0304	0304	_	_	×	EC-241
KNOCK SEN/CIRC-B1	P0327	0327	_	_	×	EC-247
KNOCK SEN/CIRC-B1	P0328	0328	_	_	×	EC-247
CKP SEN/CIRCUIT	P0335	0335	_	_	×	EC-252

						[עפוסטב]
	DTC)* ¹		Test value/		
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	SRT code	Test limit (GST only)	1st trip DTC	Reference page
CMP SEN/CIRCUIT	P0340	0340	_	_	×	EC-259
TW CATALYST SYS-B1	P0420	0420	×	×	×* ⁵	EC-265
EVAP PURG FLOW/MON	P0441	0441	×	×	×* ⁵	EC-269
EVAP SMALL LEAK	P0442	0442	×	×	×* ⁵	EC-275
PURG VOLUME CONT/V	P0444	0444	_	_	×	EC-284
PURG VOLUME CONT/V	P0445	0445	_	_	×	EC-284
VENT CONTROL VALVE	P0447	0447	_	_	×	EC-291
EVAP SYS PRES SEN*9	P0451	0451	_	_	×	EC-298
EVAP SYS PRES SEN	P0452	0452	_	_	×	EC-300
EVAP SYS PRES SEN	P0453	0453	_	_	×	EC-306
EVAP GROSS LEAK	P0455	0455	_	×	×* ⁵	EC-314
EVAP VERY SML LEAK	P0456	0456	×* ⁴	_	×* ⁵	EC-322
FUEL LEVEL SEN SLOSH	P0460	0460	_	_	×	EC-331
FUEL LEVEL SENSOR	P0461	0461	_	_	×	EC-333
FUEL LEVEL SEN/CIRC	P0462	0462	_	_	×	EC-335
FUEL LEVEL SEN/CIRC	P0463	0463	_	_	×	EC-335
VEH SPEED SEN/CIRC*6	P0500	0500	_	_	×	EC-337
ISC SYSTEM/CIRC	P0506	0506	_	_	×	<u>EC-339</u>
ISC SYSTEM/CIRC	P0507	0507	_	_	×	EC-341
PW ST P SEN/CIRC	P0550	0550	_	_	×	EC-343
ECM	P0605	0605	_	_	×	EC-348
PNP SW/CIRC	P0705	0705	_	_	×	<u>AT-115</u>
ATF TEMP SEN/CIRC	P0710	0710	_	_	×	<u>AT-120</u>
VEH SPD SEN/CIR AT*6	P0720	0720	_	_	×	<u>AT-126</u>
ENGINE SPEED SIG	P0725	0725	_	_	×	AT-131
A/T 1ST GR FNCTN	P0731	0731	_	_	×	<u>AT-135</u>
A/T 2ND GR FNCTN	P0732	0732	_	_	×	<u>AT-140</u>
A/T 3RD GR FNCTN	P0733	0733	_	_	×	<u>AT-145</u>
A/T 4TH GR FNCTN	P0734	0734	_	_	×	<u>AT-150</u>
TCC SOLENOID/CIRC	P0740	0740	_	_	×	<u>AT-159</u>
A/T TCC S/V FNCTN	P0744	0744	_	_	×	<u>AT-163</u>
L/PRESS SOL/CIRC	P0745	0745	_	_	×	<u>AT-173</u>
SFT SOL A/CIRC	P0750	0750	_	_	_	<u>AT-179</u>
SFT SOL B/CIRC	P0755	0755	_	_	_	<u>AT-183</u>
A/F S1 HTR (B1)	P1031	1031	×	×	×* ⁵	EC-351
A/F S1 HTR (B1)	P1032	1032	×	×	×* ⁵	EC-351
ECM BACK UP/CIRC	P1065	1065	_	_	×	EC-357
MAF SENSOR	P1102	1102	_	_	_	EC-361
INT/V TIM V/CIR-B1	P1111	1111	_	_	×	EC-368
ETC ACTR	P1121	1121	_	_	× or —	EC-373
ETC FUNCTION/CIRC	P1122	1122	_	_	_	EC-375

[QG18DE]

						[40.05=]	
	DT	C* ¹		Test value/			٨
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM*3	SRT code	Test limit (GST only)	1st trip DTC	Reference page	А
ETC MOT PWR	P1124	1124	_	_	_	EC-382	EC
ETC MOT PWR	P1126	1126	_	_	_	EC-382	
ETC MOT PWR	P1128	1128	_	_	_	EC-387	
VARI SWL CON/SV-B1*8	P1132	1132	_	_	×	EC-392	С
SWIRL CON/V POSI SEN*8	P1137	1137	_	_	×	EC-397	
SWIRL CONT VALVE*8	P1138	1138	_	_	×	EC-405	D
HO2S2 (B1)	P1146	1146	×	×	×* ⁵	EC-413	
HO2S2 (B1)	P1147	1147	×	×	×* ⁵	EC-420	Е
CLOSED LOOP-B1	P1148	1148	_	_	_	EC-427	
ENG OVER TEMP	P1217	1217	_	_	_	EC-428	
CTP LEARNING	P1225	1225	_	_	×	EC-442	F
CTP LEARNING	P1226	1226	_	_	×	EC-444	
SENSOR POWER/CIRC	P1229	1229	_	_	_	EC-446	G
A/F SEN1 (B1)	P1271	1271	_	_	×	EC-450	
A/F SEN1 (B1)	P1272	1272	_	_	×	EC-456	
A/F SEN1 (B1)	P1273	1273	_	_	×	EC-462	Н
A/F SEN1 (B1)	P1274	1274	_	_	×	EC-469	
A/F SEN1 (B1)	P1276	1276	_	_	×	EC-476	1
A/F SEN1 (B1)	P1278	1278	×	×	×* ⁵	EC-482	'
A/F SEN1 (B1)	P1279	1279	×	×	×* ⁵	EC-489	
PURG VOLUME CONT/V	P1444	1444	_	_	×	EC-496	J
VENT CONTROL VALVE	P1446	1446	_	_	×	EC-504	
ASCD SW	P1564	1564	_	_	_	EC-510	K
ASCD BRAKE SW	P1572	1572	_	_	_	EC-517	
ASCD VHL SPD SEN	P1574	1574	_	_	_	EC-528	
TP SEN/CIRC A/T	P1705	1705	_	_	_	<u>AT-187</u>	L
P-N POS SW/CIRCUIT	P1706	1706	_	_	×	EC-530	
O/R CLTCH SOL/CIRC	P1760	1760	_	_	×	<u>AT-193</u>	M
BRAKE SW/CIRCUIT	P1805	1805	_	_	×	EC-534	
APP SEN 1/CIRC	P2122	2122	_	_	_	EC-540	
APP SEN 1/CIRC	P2123	2123	_	_	_	EC-540	
APP SEN 2/CIRC	P2127	2127	_	_	_	EC-546	
APP SEN 2/CIRC	P2128	2128	_	_	_	EC-546	
TP SENSOR	P2135	2135	_	_	_	EC-553	
APP SENSOR	P2138	2138	_			EC-559	

^{*1: 1}st trip DTC No. is the same as DTC No.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:} SRT code will not be set if the self-diagnostic result is NG.

^{*5:} This is not displayed with GST.

^{*6:} When the fail-safe operations for both self-diagnoses occur at the same time, the MIL illuminates.

^{*7:} The trouble shooting for these DTCs needs CONSULT-II.

^{*8:} SULEV models

^{*9:} Type II vehicles

DTC AND 1ST TRIP DTC

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip DTC will not be displayed.

If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MIL will not light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory and the MIL lights up. In other words, the DTC is stored in the ECM memory and the MIL lights up when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MIL during the 1st trip, the DTC and 1st trip DTC are stored in the ECM memory.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in <u>EC-64, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.

For malfunctions in which 1st trip DTCs are displayed, refer to EC-53, "EMISSION-RELATED DIAGNOSTIC <a href="INFORMATION ITEMS". These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-II.

1st trip DTC is specified in Mode 7 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a malfunction. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in Work Flow procedure Step II, refer to EC-75, "WORK FLOW". Then perform DTC Confirmation Procedure or Overall Function Check to try to duplicate the malfunction. If the malfunction is duplicated, the item requires repair.

How to Read DTC and 1st Trip DTC

DTC and 1st trip DTC can be read by the following methods.

With CONSULT-II

With GST

CONSULT-II or GST (Generic Scan Tool) Examples: P0340, P0350, P0705, P0750, etc.

These DTCs are prescribed by SAE J2012.

(CONSULT-II also displays the malfunctioning component or system.)

No Tools

The number of blinks of the MIL in the Diagnostic Test Mode II (Self-Diagnostic Results) indicates the DTC. Example: 0340, 1148, 1706, etc.

These DTCs are controlled by NISSAN.

- 1st trip DTC No. is the same as DTC No.
- Output of a DTC indicates a malfunction. However, GST or the Diagnostic Test Mode II do not indicate whether the malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT-II can identify malfunction status as shown below. Therefore, using CONSULT-II (if available) is recommended.

A sample of CONSULT-II display for DTC and 1st trip DTC is shown below. DTC or 1st trip DTC of a malfunction is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-II. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be [0].

If a 1st trip DTC is stored in the ECM, the time data will be [1t].

	SELF DIAG RESU	ILTS		SELF DIAG RESU	ILTS
	DTC RESULTS	TIME		DTC RESULTS	TIME
DTC	CKP SEN/CIRCUIT [P0335]	0	1st trip	CKP SEN/CIRCUIT [P0335]	1t
display			DTC display		

[QG18DE]

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed, base fuel schedule and intake air temperature at the moment a malfunction is detected.

Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data. The data, stored together with the DTC data, are called freeze frame data and displayed on CONSULT-II or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-II screen, not on the GST. For details, see<u>EC-118</u>, "Freeze Frame Data and 1st Trip Freeze Frame Data".

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the following priorities to update the data.

Priority	Items					
1	Freeze frame data	Misfire — DTC: P0300 - P0304 Fuel Injection System Function — DTC: P0171, P0172				
2		Except the above items (Includes A/T related items)				
3	1st trip freeze frame data					

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was stored in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is stored in the ECM memory, 1st trip freeze data is no longer stored (because only one freeze frame data or 1st trip freeze frame data can be stored in the ECM). If freeze frame data is stored in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in EC-64, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".

SYSTEM READINESS TEST (SRT) CODE

System Readiness Test (SRT) code is specified in Mode 1 of SAE J1979.

As part of an enhanced emissions test for Inspection & Maintenance (I/M), certain states require the status of SRT be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "INCMP", use the information in this Service Manual to set the SRT to "CMPLT".

In most cases the ECM will automatically complete its self-diagnosis cycle during normal usage, and the SRT status will indicate "CMPLT" for each application system. Once set as "CMPLT", the SRT status remains "CMPLT" until the self-diagnosis memory is erased.

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern; the SRT will indicate "INCMP" for these items.

NOTE:

The SRT will also indicate "INCMP" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

If, during the state emissions inspection, the SRT indicates "CMPLT" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "INCMP" for one or more of the SRT items the vehicle is returned to the customer untested.

NOTE:

If MIL is ON during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "CMPLT" for all test items. Therefore, it is important to check SRT ("CMPLT") and DTC (No DTCs) before the inspection.

SRT Item

The table below shows required self-diagnostic items to set the SRT to "CMPLT".

EC

D

Е

G

Н

<

L

[QG18DE]

SRT item (CONSULT-II indica- tion)	Perfor- mance Pri- ority* ¹	Required self-diagnostic items to set the SRT to "CMPLT"	Corresponding DTC No.
CATALYST	2	Three way catalyst function	P0420
EVAP SYSTEM	1	EVAP control system	P0442
	2	EVAP control system	P0441
	2	EVAP control system	P0456
HO2S	2	Air fuel ratio (A/F) sensor 1	P1278
		Air fuel ratio (A/F) sensor 1	P1279
		Heated oxygen sensor 2	P0139
		Heated oxygen sensor 2	P1146
		Heated oxygen sensor 2	P1147
HO2S HTR	2	Air fuel ratio (A/F) sensor 1 heater	P1031, P1032
		Heated oxygen sensor 2 heater	P0037, P0038

^{*1:} If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure), one by one based on the performance priority for models with CONSULT-II.

[QG18DE]

SRT Set Timing

SRT is set as "CMPLT" after self-diagnosis has been performed one or more times. Completion of SRT is done regardless of whether the result is OK or NG. The set timing is different between OK and NG results and is shown in the table below.

Self-diagnosis result Diagnosis				Example		
		Diagnosis	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
All OK	Case 1	P0400	OK (1)	— (1)	OK (2)	— (2)
		P0402	OK (1)	— (1)	—(1)	OK (2)
		P1402	OK (1)	OK (2)	— (2)	— (2)
		SRT of EGR	"CMPLT"	"CMPLT"	"CMPLT"	"CMPLT"
	Case 2	P0400	OK (1)	— (1)	—(1)	— (1)
		P0402	— (0)	— (0)	OK (1)	— (1)
		P1402	OK (1)	OK (2)	— (2)	— (2)
		SRT of EGR	"INCMP"	"INCMP"	"CMPLT"	"CMPLT"
NG exists	Case 3	P0400	OK	OK	_	_
		P0402	_	_	_	_
		P1402	NG	_	NG	NG (Consecutiv NG)
		(1st trip) DTC	1st trip DTC	_	1st trip DTC	DTC (= MIL "ON"
		SRT of EGR	"INCMP"	"INCMP"	"INCMP"	"CMPLT"

OK: Self-diagnosis is carried out and the result is OK.

NG: Self-diagnosis is carried out and the result is NG.

When all SRT related self-diagnoses show OK results in a single cycle (Ignition OFF-ON-OFF), the SRT will indicate "CMPLT". \rightarrow Case 1 above

When all SRT related self-diagnoses show OK results through several different cycles, the SRT will indicate "CMPLT" at the time the respective self-diagnoses have at least one OK result. → Case 2 above

If one or more SRT related self-diagnoses show NG results in 2 consecutive cycles, the SRT will also indicate "CMPLT". → Case 3 above

The table above shows that the minimum number of cycles for setting SRT as "INCMP" is one (1) for each self-diagnosis (Case 1 & 2) or two (2) for one of self-diagnoses (Case 3). However, in preparation for the state emissions inspection, it is unnecessary for each self-diagnosis to be executed twice (Case 3) for the following reasons:

- The SRT will indicate "CMPLT" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "CMPLT" of the SRT only with OK self-diagnosis results.
- When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to "CMPLT" of SRT, the self-diagnosis memory must be erased from ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "INCMP".

NOTE:

SRT can be set as "CMPLT" together with the DTC(s). Therefore, DTC check must always be carried out prior to the state emission inspection even though the SRT indicates "CMPLT".

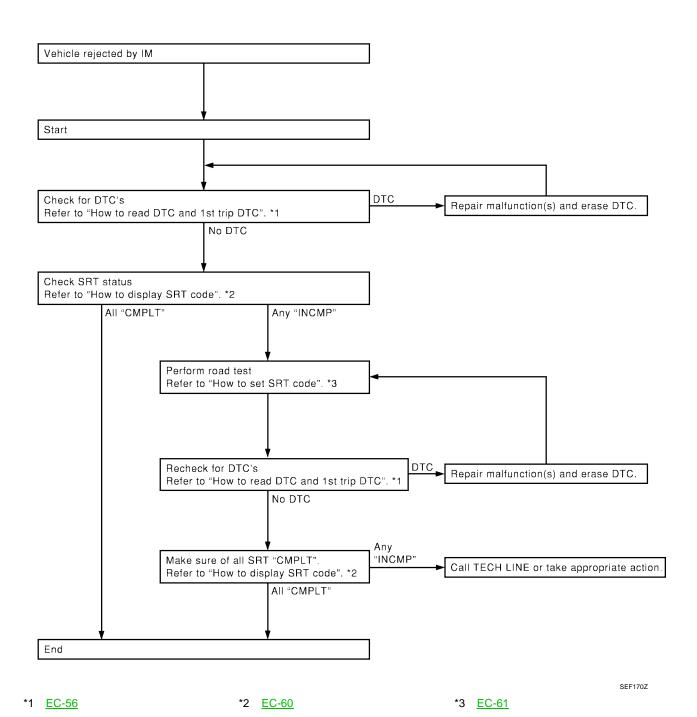
SRT Service Procedure

If a vehicle has failed the state emissions inspection due to one or more SRT items indicating "INCMP", review the flowchart diagnostic sequence on the next page.

EC

0

D


Е

F

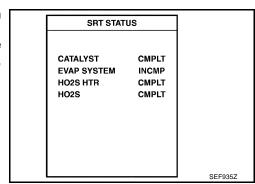
G

В. /

^{-:} Self-diagnosis is not carried out.

How to Display SRT Code

With CONSULT-II


Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-II.

For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-II screen; for items whose SRT codes are not set, "INCMP" is displayed.

With GST

Selecting Mode 1 with GST (Generic Scan Tool)

A sample of CONSULT-II display for SRT code is shown below. "INCMP" means the self-diagnosis is incomplete and SRT is not set. "CMPLT" means the self-diagnosis is complete and SRT is set.

[QG18DE]

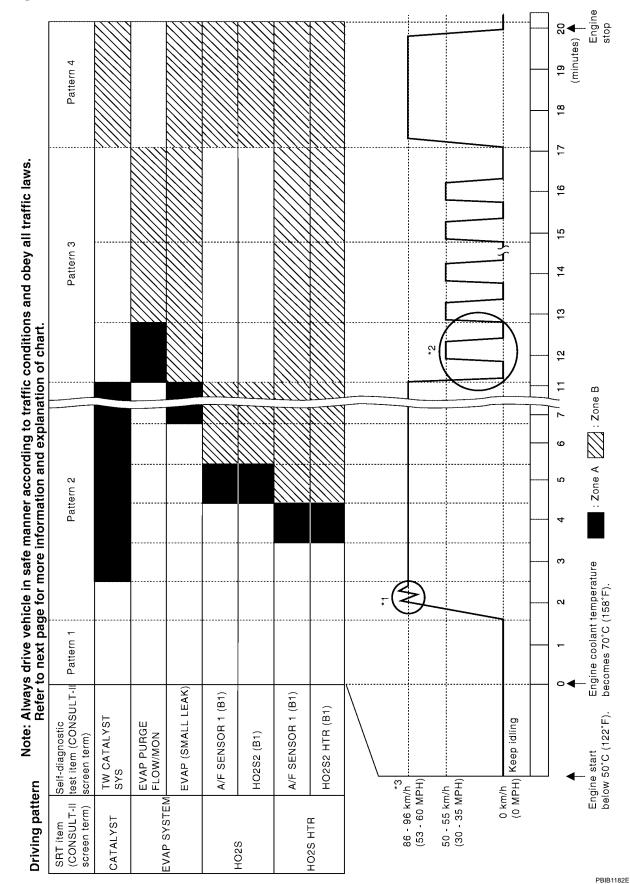
How to Set SRT Code

To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

Perform corresponding DTC Confirmation Procedure one by one based on Performance Priority in the table on<u>EC-57</u>.

Without CONSULT-II

The most efficient driving pattern in which SRT codes can be properly set is explained on the next page. The driving pattern should be performed one or more times to set all SRT codes.


EC

 D

Е

Н

Driving Pattern

Α

EC

Е

Н

M

The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.

Zone A refers to the range where the time required for the diagnosis under normal conditions* is the shortest.

Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.

- *: Normal conditions refer to the following:
- Sea level
- Flat road
- Ambient air temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions.
 Under different conditions [For example: ambient air temperature other than 20 30°C (68 86°F)], diagnosis may also be performed.

Pattern 1:

- The engine is started at the engine coolant temperature of −10 to 35°C (14 to 95°F) (where the voltage between the ECM terminal 73 and ground is 3.0 - 4.3V).
- The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminal 73 and ground is lower than 1.4V).
- The engine is started at the fuel tank temperature of warmer than 0°C (32°F) (where the voltage between the ECM terminal 107 and ground is less than 4.1V).

Pattern 2:

When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted. In this case, the time required for diagnosis may be extended.

Pattern 3:

• The driving pattern outlined in *2 must be repeated at least 3 times.

Pattern 4:

- Tests are performed after the engine has been operated for at least 17 minutes.
- The accelerator pedal must be held very steady during steady-state driving.
- If the accelerator pedal is moved, the test must be conducted all over again.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Operate the vehicle in the following driving pattern.
- 1. Decelerate vehicle to 0 km/h (0 MPH) and let engine idle.
- 2. Repeat driving pattern shown below at least 10 times.
- During acceleration, hold the accelerator pedal as steady as possible.
- *3: Checking the vehicle speed with GST is advised.

Suggested Transmission Gear Position for A/T Models

Set the selector lever in the D position with the overdrive switch turned ON.

Suggested Upshift Speeds for M/T Models

Shown below are suggested vehicle speeds for shifting into a higher

gear. These suggestions relate to fuel economy and vehicle performance. Actual upshift speeds will vary according to road conditions, the weather and individual driving habits.

	For normal acceleration in low altitude areas [less than 1,219 m (4,000 ft)]:	For quick acceleration in low altitude areas and high altitude areas [over 1,219 m (4,000 ft)]:
Gear change	ACCEL shift point km/h (MPH)	km/h (MPH)
1st to 2nd	24 (15)	24 (15)
2nd to 3rd	40 (25)	40 (25)
3rd to 4th	65 (40)	65 (40)
4th to 5th	75 (45)	75 (45)

50 - 55 km/h (30 - 35 MPH) 0 km/h (0 MPH) 10S 10S 20S

EC-63

Suggested Maximum Speed in Each Gear

Downshift to a lower gear if the engine is not running smoothly, or if you need to accelerate.

Do not exceed the maximum suggested speed (shown below) in any gear. For level road driving, use the highest gear suggested for that speed. Always observe posted speed limits and drive according to the road conditions to ensure safe operation. Do not over-rev the engine when shifting to a lower gear as it may cause engine damage or loss of vehicle control.

Gear	km/h (MPH)
1st	48 (30)
2nd	84 (52)
3rd	128 (80)
4th	_
5th	_

TEST VALUE AND TEST LIMIT (GST ONLY — NOT APPLICABLE TO CONSULT-II)

The following is the information specified in Mode 6 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is OK or NG while being monitored by the ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored.

Items for which these data (test value and test limit) are displayed are the same as SRT code items (13 test items).

These data (test value and test limit) are specified by Test ID (TID) and Component ID (CID) and can be displayed on the GST screen.

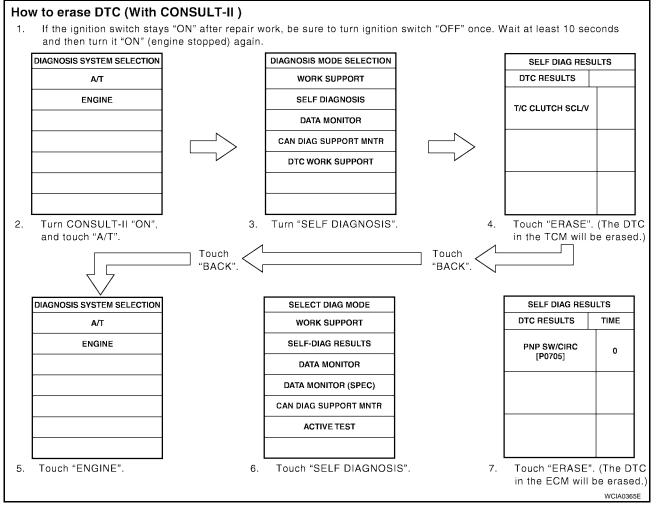
SRT item	Salf diagnostic test item	DTC	Test value (GST display)		Test limit	Conversion
SKT ILEIT	Self-diagnostic test item		TID	CID	rest iiriit	Conversion
CATALYST Three	Three way catalyst function	P0420	01H	01H	Max.	1/128
	Tillee way catalyst function	P0420	02H	81H	Min.	1
	EVAP control system (Small leak)	P0442	05H	03H	Max.	1/128 mm ²
EVAP SYSTEM	EVAP control system purge flow monitoring	P0441	06H	83H	Min.	20 mV
0.0.1	EVAP control system (Very small leak)	P0456	07H	03H	Max.	1/128 mm ²
	A/F sensor 1	P1278	45H	8EH	Min.	0.004
	A/F Sellsol I	P1279	48H	8EH	Min.	0.004
HO2S		P0139	19H	86H	Min.	10mV/500 ms
	Heated oxygen sensor 2	P1147	1AH	86H	Min.	10 mV
	•	P1146	1BH	06H	Max.	10 mV
LICOS LITE	A/F sensor 1 heater	P1032	57H	10H	Max.	5 mV
	AVE SellSULT Heater	P1031	58H	90H	Min.	5 mV
HO2S HTR	Heated oxygen sensor 2 heater	P0038	2DH	0AH	Max.	20 mV
	neated oxygen sensor 2 heater	P0037	2EH	8AH	Min.	20 mV

HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION How to Erase DTC

(P) WITH CONSULT-II

The emission related diagnostic information in the ECM can be erased by selecting "ERASE" in the "SELF-DIAG RESULTS" mode with CONSULT-II.

If DTCs are displayed for both ECM and TCM (Transmission control module), they need to be erased individually from the ECM and TCM (Transmission control module).


NOTE

If the DTC is not for AT related items (see EC-16, "INDEX FOR DTC"), skip steps 2 through 4.

- 1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- 2. Turn CONSULT-II ON and touch "AT".
- 3. Touch "SELF-DIAG RESULTS".

[QG18DE]

- 4. Touch "ERASE". [The DTC in the TCM (Transmission control module) will be erased.] Then touch "BACK" twice.
- 5. Touch "ENGINE".
- Touch "SELF-DIAG RESULTS".
- 7. Touch "ERASE". (The DTC in the ECM will be erased.)

WITH GST

The emission related diagnostic information in the ECM can be erased by selecting Mode 4 with GST.

NOTF:

If the DTC is not for AT related items (see EC-16, "INDEX FOR DTC"), skip step 2.

- If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once.
 Wait at least 10 seconds and then turn it ON (engine stopped) again.
- Perform AT-41, "HOW TO ERASE DTC (WITH GST)". (The DTC in the TCM will be erased.)
- 3. Select Mode 4 with GST (Generic Scan Tool).

NO TOOLS

NOTE:

If the DTC is not for AT related items (see EC-16, "INDEX FOR DTC"), skip step 2.

- 1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- Perform AT-41, "HOW TO ERASE DTC (NO TOOLS)". (The DTC in the TCM will be erased.)
- Change the diagnostic test mode from Mode II to Mode I by depressing the accelerator pedal. Refer to EC-67, "HOW TO SWITCH DIAGNOSTIC TEST MODE".
- If the battery is disconnected, the emission-related diagnostic information will be lost within 24 hours.
- The following data are cleared when the ECM memory is erased.

EC

Α

0

D

Е

F

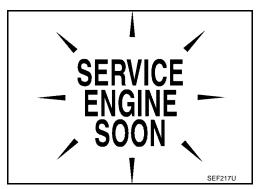
G

Н

J

K

- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values
- Others


Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

Malfunction Indicator Lamp (MIL) DESCRIPTION

UBS00B32

The MIL is located on the instrument panel.

- The MIL will light up when the ignition switch is turned ON without the engine running. This is a bulb check.
 If the MIL does not light up, refer to DI-26, "WARNING LAMPS" or see EC-621.
- When the engine is started, the MIL should go off.
 If the MIL remains on, the on board diagnostic system has detected an engine system malfunction.

ON BOARD DIAGNOSTIC SYSTEM FUNCTION

The on board diagnostic system has the following three functions.

Diagnostic Test Mode	KEY and ENG. Status	Function	Explanation of Function
Mode I	Ignition switch in ON position ON Engine stopped	BULB CHECK	This function checks the MIL bulb for damage (blown, open circuit, etc.). If the MIL does not come on, check MIL circuit.
	Engine running	MALFUNCTION WARNING	This is a usual driving condition. When a malfunction is detected twice in two consecutive driving cycles (two trip detection logic), the MIL will light up to inform the driver that a malfunction has been detected. The following malfunctions will light up or blink the MIL in the 1st trip.
			Misfire (Possible three way catalyst damage)One trip detection diagnoses
Mode II	Ignition switch in ON position	SELF-DIAGNOSTIC RESULTS	This function allows DTCs and 1st trip DTCs to be read.
	Engine stopped		

When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting MIL up when there is malfunction on engine control system.

[QG18DE]

Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected as NG for 5 trips, ECM warns the driver that engine control has system malfunction and MIL circuit is open by means of operating fail-safe function.

The fail-safe function also operates when above diagnoses except MIL circuit are detected, and demands the driver to repair the malfunction.

Engine operating condition in fail-safe mode Engine speed will not rise more than 2,500 rpm due to the fuel cut

EC

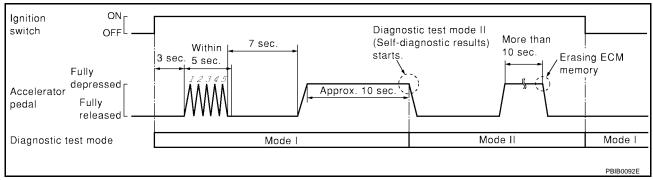
MIL Flashing Without DTC

If the ECM is in Diagnostic Test Mode II, MIL may flash when engine is running. In this case, check ECM diagnostic test mode. <u>EC-67</u>, "<u>HOW TO SWITCH DIAGNOSTIC TEST MODE</u>".

How to switch the diagnostic test (function) modes, and details of the above functions are described later. EC-67, "HOW TO SWITCH DIAGNOSTIC TEST MODE".

The following emission-related diagnostic information is cleared when the ECM memory is erased.

- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values
- Others


HOW TO SWITCH DIAGNOSTIC TEST MODE

NOTE:

- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.
- Always ECM returns to Diagnostic Test Mode I after ignition switch is turned OFF.

How to Set Diagnostic Test Mode II (Self-diagnostic Results)

- 1. Confirm that accelerator pedal is fully released, turn ignition switch ON and wait 3 seconds.
- 2. Repeat the following procedure quickly five times within 5 seconds.
- Fully depress the accelerator pedal.
- Fully release the accelerator pedal.
- 3. Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 10 seconds until the MIL starts blinking.
- 4. Fully release the accelerator pedal. ECM has entered to Diagnostic Test Mode II (Self-diagnostic results).

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

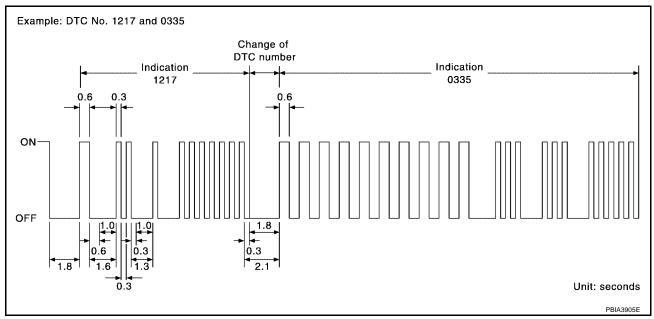
- Set ECM in Diagnostic Test Mode II (Self-diagnostic results). Refer to EC-68, "DIAGNOSTIC TEST MODE II — SELF-DIAGNOSTIC RESULTS".
- 2. Fully depress the accelerator pedal and keep it for more than 10 seconds. The emission-related diagnostic information has been erased from the backup memory in the ECM.
- Fully release the accelerator pedal, and confirm the DTC 0000 is displayed.

Е

Н

K

DIAGNOSTIC TEST MODE I — BULB CHECK


In this mode, the MIL on the instrument panel should stay ON. If it remains OFF, check the bulb. Refer to DI-26, "WARNING LAMPS" or see EC-621.

DIAGNOSTIC TEST MODE I — MALFUNCTION WARNING

MIL	Condition	
ON	When the malfunction is detected.	
OFF	No malfunction.	

DIAGNOSTIC TEST MODE II — SELF-DIAGNOSTIC RESULTS

In this mode, the DTC and 1st trip DTC are indicated by the number of blinks of the MIL as shown below. The DTC and 1st trip DTC are displayed at the same time. If the MIL does not illuminate in diagnostic test mode I (Malfunction warning), all displayed items are 1st trip DTCs. If only one code is displayed when the MIL illuminates in diagnostic test mode II (SELF-DIAGNOSTIC RESULTS), it is a DTC; if two or more codes are displayed, they may be either DTCs or 1st trip DTCs. DTC No. is same as that of 1st trip DTC. These unidentified codes can be identified by using the CONSULT-II or GST. A DTC will be used as an example for how to read a code.

A particular trouble code can be identified by the number of four-digit numeral flashes. The "zero" is indicated by the number of ten flashes. The length of time the 1,000th-digit numeral flashes on and off is 1.2 seconds consisting of an ON (0.6-second) - OFF (0.6-second) cycle.

The 100th-digit numeral and lower digit numerals consist of a 0.3-second ON and 0.3-second OFF cycle.

A change from one digit numeral to another occurs at an interval of 1.0-second OFF. In other words, the later numeral appears on the display 1.3 seconds after the former numeral has disappeared.

A change from one trouble code to another occurs at an interval of 1.8-second OFF.

In this way, all the detected malfunctions are classified by their DTC numbers. The DTC 0000 refers to no malfunction. (See <u>EC-16</u>, "INDEX FOR DTC")

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

The DTC can be erased from the back up memory in the ECM by depressing accelerator pedal. Refer to EC-64, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".

- If the battery is disconnected, the DTC will be lost from the backup memory within 24 hours.
- Be careful not to erase the stored memory before starting trouble diagnoses.

[QG18DE]

OBD System Operation Chart RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC AND DETECTABLE ITEMS

- When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MIL will come on. For details, refer to EC-52, "Two Trip Detection Logic".
- The MIL will go off after the vehicle is driven 3 times with no malfunction. The drive is counted only when the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting, the counter will reset.
- The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern C) without the same malfunction recurring. The "TIME" in "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-II will count the number of times the vehicle is driven.
- The 1st trip DTC is not displayed when the self-diagnosis results in OK for the 2nd trip.

SUMMARY CHART

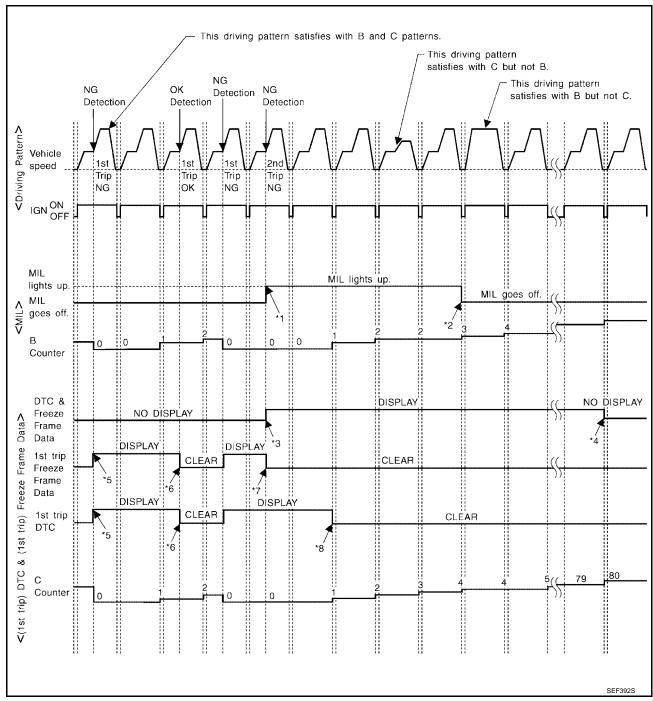
Items	Fuel Injection System	Misfire	Other
MIL (goes off)	3 (pattern B)	3 (pattern B)	3 (pattern B)
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)

For details about patterns B and C under "Fuel Injection System" and "Misfire", see EC-62. For details about patterns A and B under "Other", see EC-62.

EC

Α

D


Е

Н

^{*1:} Clear timing is at the moment OK is detected.

^{*2:} Clear timing is when the same malfunction is detected in the 2nd trip.

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR MISFIRE <EXHAUST QUALITY DETERIORATION>, FUEL INJECTION SYSTEM

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction. (The DTC and the freeze frame data still remain in ECM.)
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *8: 1st trip DTC will be cleared when vehicle is driven once (pattern C) without the same malfunction after DTC is stored in ECM.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *6: The 1st trip DTC and the 1st trip freeze frame data will be cleared at the moment OK is detected.

[QG18DE]

EXPLANATION FOR DRIVING PATTERNS FOR MISFIRE <EXHAUST QUALITY DETERIORA-TION>, FUEL INJECTION SYSTEM

<Driving Pattern B>

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunction.
- The MIL will go off when the B counter reaches 3. (*2 in OBD SYSTEM OPERATION CHART)

<Driving Pattern C>

Driving pattern C means the vehicle operation as follows:

The following conditions should be satisfied at the same time:

Engine speed: (Engine speed in the freeze frame data) ±375 rpm

Calculated load value: (Calculated load value in the freeze frame data) \times (1±0.1) [%]

Engine coolant temperature (T) condition:

- When the freeze frame data shows lower than 70°C (158°F), "T" should be lower than 70°C (158°F).
- When the freeze frame data shows higher than or equal to 70°C (158°F), "T" should be higher than or equal to 70°C (158°F).

Example:

If the stored freeze frame data is as follows:

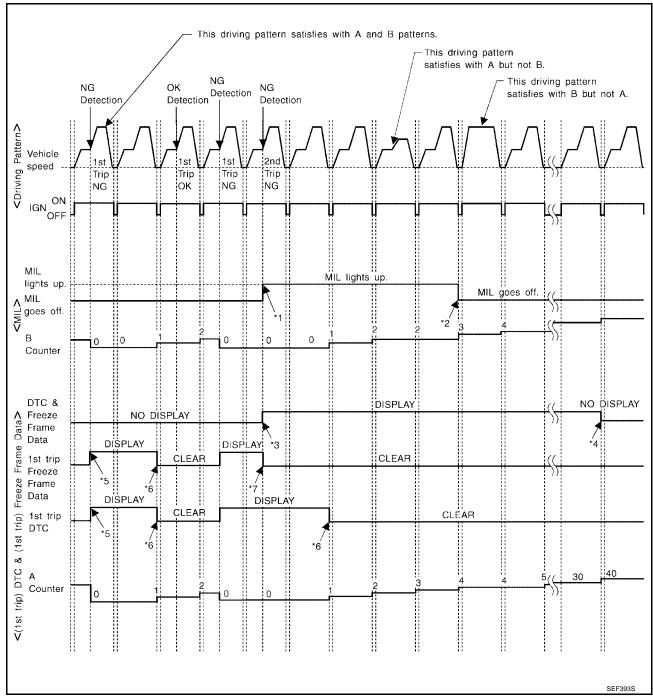
Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F)

To be satisfied with driving pattern C, the vehicle should run under the following conditions:

Engine speed: 475 - 1,225 rpm, Calculated load value: 27 - 33%, Engine coolant temperature: more than 70°C (158°F)

- The C counter will be cleared when the malfunction is detected regardless of vehicle conditions above.
- The C counter will be counted up when vehicle conditions above is satisfied without the same malfunction.
- The DTC will not be displayed after C counter reaches 80.
- The 1st trip DTC will be cleared when C counter is counted once without the same malfunction after DTC is stored in ECM.

EC


Α

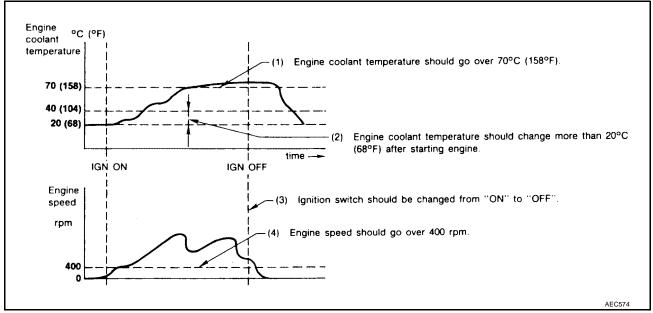
D

Е

Н

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS <u>EXCEPT</u> FOR MISFIRE <EXHAUST QUALITY DETERIORATION>, FUEL INJECTION SYSTEM

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction.


 (The DTC and the freeze frame data still remain in ECM.)
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *6: 1st trip DTC will be cleared after vehicle is driven once (pattern B) without the same malfunction.

[QG18DE]

EXPLANATION FOR DRIVING PATTERNS <u>EXCEPT</u> FOR MISFIRE <EXHAUST QUALITY DETERIORATION>, FUEL INJECTION SYSTEM

<Driving Pattern A>

- The A counter will be cleared when the malfunction is detected regardless of (1) (4).
- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

<Driving Pattern B>

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MIL will go off when the B counter reaches 3 (*2 in OBD SYSTEM OPERATION CHART).

EC

Α

П

Е

F

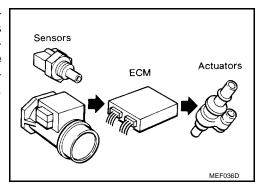
G

Н

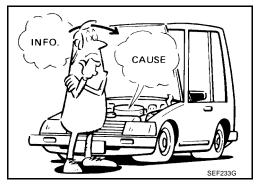
1

K

L

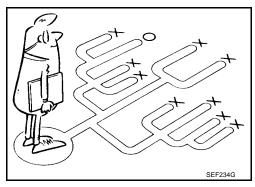

TROUBLE DIAGNOSIS

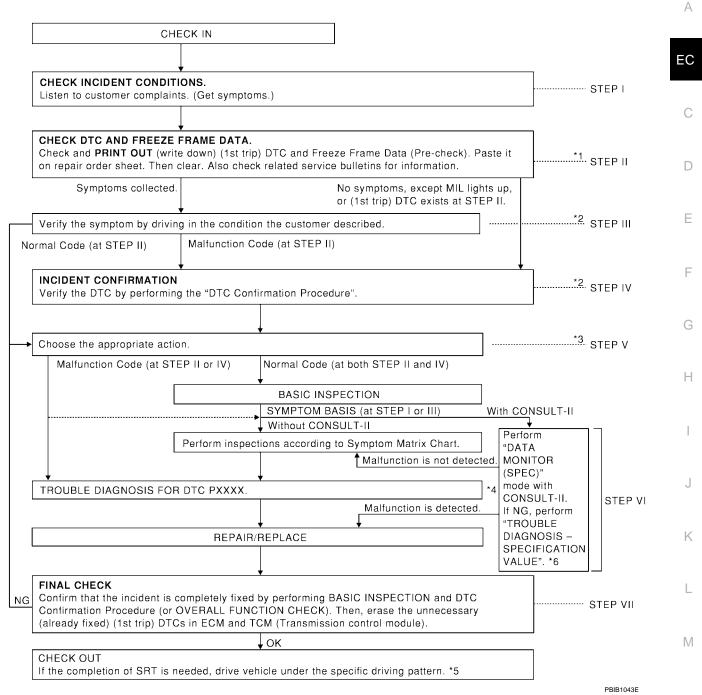
PFP:00004


Trouble Diagnosis Introduction INTRODUCTION

UBS00B34

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no malfunctions such as vacuum leaks, fouled spark plugs, or other malfunctions with the engine.


It is much more difficult to diagnose an incident that occurs intermittently rather than continuously. Most intermittent incidents are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.


A visual check only may not find the cause of the incidents. A road test with CONSULT-II (or GST) or a circuit tester connected should be performed. Follow the $\underline{\text{EC-75}}$.

Before undertaking actual checks, take a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such incidents, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A Diagnostic Worksheet like the example on EC-77, "Worksheet Sample" should be used.

Start your diagnosis by looking for conventional malfunctions first. This will help troubleshoot driveability malfunctions on an electronically controlled engine vehicle.

WORK FLOW

- *1: If time data of "SELF-DIAG RESULTS" is other than "0" or "1t", refer to <u>EC-140</u>, "TROUBLE DIAG-NOSIS FOR INTERMITTENT INCI-DENT".
- *4: If the malfunctioning part cannot be found, refer to <u>EC-140</u>, "TROUBLE <u>DIAGNOSIS FOR INTERMITTENT INCIDENT"</u>.
- *2: If the incident cannot be duplicated, refer to <u>EC-140</u>, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".
- *5: EC-62

- *3: If the on board diagnostic system cannot be performed, check main power supply and ground circuit.

 Refer to EC-141, "POWER SUPPLY CIRCUIT FOR ECM".
- *6: <u>EC-136</u>

DESCRIPTION FOR	R WORK FLOW
-----------------	-------------

STEP	DESCRIPTION FOR WORK FLOW
STEPI	Get detailed information about the conditions and the environment when the incident/symptom occurred using the EC-76. "DIAGNOSTIC WORKSHEET" .
STEP II	Before confirming the concern, check and write down (print out using CONSULT-II or GST) the (1st trip) DTC and the (1st trip) freeze frame data, then erase the DTC and the data. (Refer to <u>EC-64</u> .) The (1st trip) DTC and the (1st trip) freeze frame data can be used when duplicating the incident at STEP III & IV. If the incident cannot be verified, perform <u>EC-140</u> . "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". Study the relationship between the cause, specified by (1st trip) DTC, and the symptom described by the customer. (The Symptom Matrix Chart will be useful. See <u>EC-86. "Symptom Matrix Chart"</u> .) Also check related service bulletins for information.
STEP III	Try to confirm the symptom and under what conditions the incident occurs. The DIAGNOSTIC WORK SHEET and the freeze frame data are useful to verify the incident. Connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform EC-140 . "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" . If the malfunction code is detected, skip STEP IV and perform STEP V.
STEP IV	Try to detect the (1st trip) DTC by driving in (or performing) the DTC Confirmation Procedure. Check and read the (1st trip) DTC and (1st trip) freeze frame data by using CONSULT-II or GST. During the (1st trip) DTC verification, be sure to connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform EC-140 , "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". In case the DTC Confirmation Procedure is not available, perform the Overall Function Check instead. The (1st trip) DTC cannot be displayed by this check, however, this simplified check is an effective alternative. The NG result of the Overall Function Check is the same as the (1st trip) DTC detection.
STEP V	Take the appropriate action based on the results of STEP I through IV. If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC PXXXX. If the normal code is indicated, proceed to the BASIC INSPECTION. (Refer to <u>EC-81</u> , "Basic Inspection".) Then perform inspections according to the Symptom Matrix Chart. (Refer to <u>EC-86</u> , "Symptom Matrix Chart".)
STEP VI	Identify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the system for mechanical binding, loose connectors or wiring damage using (tracing) "Harness Layouts". Gently shake the related connectors, components or wiring harness with CONSULT-II set in "DATA MONITOR (AUTO TRIG)" mode. Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CONSULT-II. Refer to EC-106, EC-130. The Diagnostic Procedure in EC section contains a description based on open circuit inspection. A short circuit inspection is also required for the circuit check in the Diagnostic Procedure. For details, refer to "Circuit Inspection" in GI-26, "How to Perform Efficient Diagnosis for an Electrical Incident". Repair or replace the malfunction parts. If malfunctioning part cannot be detected, perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".
STEP VII	Once you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and circumstances which resulted in the customer's initial complaint. Perform the DTC Confirmation Procedure and confirm the normal code [DTC No. P0000] is detected. If the incident is still detected in the final check, perform STEP VI by using a method different from the previous one. Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) (1st trip) DTC in ECM and TCM (Transmission control module). (Refer to EC-64 , "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION" and AT-40 , "HOW TO ERASE DTC".)

DIAGNOSTIC WORKSHEET Description

There are many operating conditions that lead to the malfunction of engine components. A good grasp of such conditions can make trouble-shooting faster and more accurate.

In general, each customer feels differently about an incident. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one on the next page in order to organize all the information for troubleshooting.

Some conditions may cause the malfunction indicator lamp to come on steady or blink and DTC to be detected. Example:

Vehicle ran out of fuel, which caused the engine to misfire.

KEY POINTS

WHAT Vehicle & engine model
WHEN Date, Frequencies
WHERE..... Road conditions
HOW Operating conditions,
Weather conditions,

Symptoms

SEF907L

TROUBLE DIAGNOSIS

[QG18DE]

Α

EC

С

D

Е

F

G

Н

Κ

L

 \mathbb{N}

• Fuel filler cap was left off or incorrectly screwed on, allowing fuel to evaporate into the atmosphere.

Worksheet Sample

Incident Date Manuf. Date In Service Date	Customer nar	me MR/MS	Model & Year	VIN							
Fuel and fuel filler cap	Engine #		Trans.	Mileage							
Fuel filler cap was left off or incorrectly screwed on. Impossible to start No combustion Partial combustion Partial combustion affected by throttle position Partial combustion NOT affected by throttle position Possible but hard to start Others [Incident Date		Manuf. Date In Service Date								
Startability Partial combustion affected by throttle position Partial combustion NOT affected by throttle position Possible but hard to start Others [Fuel and fuel	filler cap									
Symptoms Others [☐ Startability	☐ Partial combustion affected by th	nrottle position I by throttle position							
□ Driveability □ Stumble □ Surge □ Knock □ Lack of power □ Intake backfire □ Exhaust backfire □ Others [□ Others [□ While idling □ At the time of start □ While idling □ While accelerating □ While decelerating	Symptoms	□ Idling		High idle							
☐ Engine stall ☐ While accelerating ☐ While decelerating		☐ Driveability	☐ Intake backfire ☐ Exhaust backfi	•							
	☐ Engine stall ☐ While accelerating ☐ While decelerating										
Incident occurrence Just after delivery Recently In the morning At night In the daytime	Incident occu	rrence	1	☐ In the daytime							
Frequency	Frequency		☐ All the time ☐ Under certain conditions ☐ Sometimes								
Weather conditions	Weather cond	ditions	☐ Not affected								
Weather		Weather	☐ Fine ☐ Raining ☐ Snowing	Others [
Temperature		Temperature	☐ Hot ☐ Warm ☐ Cool ☐	Cold Humid °F							
☐ Cold ☐ During warm-up ☐ After warm-up			☐ Cold ☐ During warm-up ☐ /	After warm-up							
Engine conditions Engine speed 0 2,000 4,000 6,000 8,000 rpm	Engine condit	tions		4,000 6,000 8,000 rpm							
Road conditions	Road condition	ons	☐ In town ☐ In suburbs ☐ Hig	hway 🔲 Off road (up/down)							
Driving conditions Not affected	Driving condit	tions	☐ At starting ☐ While idling ☐ At racing ☐ While accelerating ☐ While cruising ☐ While decelerating ☐ While turning (RH/LH) Vehicle speed ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐								
Malfunction indicator lamp O 10 20 30 40 50 60 MPH Not turned on	Malfunction in	ndicator lamp		30 40 50 60 MPH							

MTBL0017

DTC Inspection Priority Chart

LIBSOORS

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

NOTE:

If DTC U1000 and/or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-148.

Priority	Detected items (DTC)
1	U1000, U1001 CAN communication line
	• P0101, P0102, P0103, P1102 MAF sensor
	• P0112, P0113, P0127 IAT sensor
	• P0117, P0118, P0125 ECT sensor
	• P0122, P0123, P0222, P0223, P1225, P1226, P1229, P2135 Throttle position sensor
	P0128 Thermostat function
	• P0181, P0182, P0183 FTT sensor
	● P0327, P0328 Knock sensor
	P0335 Crankshaft position sensor (POS)
	P0340 Camshaft position sensor (PHASE)
	• P0460, P0461, P0462, P0463 Fuel level sensor
	P0500 Vehicle speed sensor
	● P0605 ECM
	P0705 Park/Neutral position (PNP) switch
	P1706 Park/Neutral position (PNP) switch
	 P2122, P2123, P2127, P2128, P2138 Accelerator pedal position sensor

TROUBLE DIAGNOSIS

[QG18DE]

Priority	Detected items (DTC)	_
2	P0037, P0038 Heated oxygen sensor 2 heater	_
	• P0138, P0139, P1146, P1147 Heated oxygen sensor 2	
	P0441 EVAP control system	
	• P0444, P0445, P1444 EVAP canister purge volume control solenoid valve	
	P0447, P1446 EVAP canister vent control valve	
	• P0451*, P0452, P0453 EVAP control system pressure sensor	
	P0550 Power steering pressure sensor	
	 P0705, P0710, P0720, P0725, P0740, P0745, P0750, P0755, P1705, P1706, P1760 A/T related sensors, solenoid valves and switches 	
	● P1031, P1032 A/F sensor 1 heater	
	P1065 ECM power supply	
	P1122 Electric throttle control function	
	P1124, P1126, P1128 Electric throttle control actuator	
	P1137 Swirl control valve control position sensor	
	P1138 Swirl control valve	
	P1217 Engine over temperature (OVER HEAT)	
	• P1271, P1272, P1273, P1274, P1276, P1278, P1279 A/F sensor 1	
	P1805 Brake switch	
3	P0011 IVT control	
	P0171, P0172 Fuel injection system function	
	P0300-P0304 Cylinder misfire	
	P0420 Three way catalyst function	
	 P0442, P0455, P0456 EVAP control system 	
	P0506, P0507 Idle speed control system	
	• P0731-P0734, P0744 A/T function	
	P1111 IVT control solenoid valve	
	P1121 Electric throttle control actuator	
	P1132 Swirl control valve	
	P1148 Closed loop control	
	P1564 ASCD steering switch	
	P1572 ASCD brake switch	
	P1574 ASCD vehicle speed sensor	

*: Type II vehicles

Fail-safe Chart

• When the DTC listed below is detected, the ECM enters fail-safe mode and the MIL lights up.

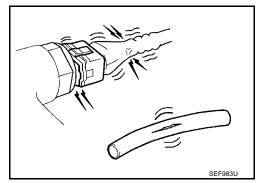
DTC No.	Detected items	Engine operating condition in fail-sa	afe mode							
P0102 P0103 P1102	Mass air flow sensor circuit	Engine speed will not rise more tha	n 2,400 rpm due to the fuel cut.							
P0117 P0118	Engine coolant tempera- ture sensor circuit	ignition switch ON or START.	determined by ECM based on the time after turning rolant temperature decided by ECM.							
		Condition	Engine coolant temperature decided (CONSULT-II display)							
		Just as ignition switch is turned ON or Start	40°C (104°F)							
		More than approx. 4 minutes after ignition ON or Start	80°C (176°F)							
		Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)							
		When the fail-safe system for engin ing fan operates while engine is run	e coolant temperature sensor is activated, the cool- ning.							
P0122 P0123 P0222 P0223 P2135	Throttle position sensor	The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees. The ECM regulates the opening speed of the throttle valve to be slower than the normal condition. So, the acceleration will be poor.								
P1121	Electric throttle control actuator (ECM detect the throttle valve is stuck open.)	the engine stalls.	down gradually by fuel cut. After the vehicle stops, sition, and engine speed will not exceed 1,000 rpm							
P1122	Electric throttle control function	ECM stops the electric throttle contributed opening (approx. 5 degrees) b	rol actuator control, throttle valve is maintained at a by the return spring.							
P1124 P1126	Throttle control motor relay	ECM stops the electric throttle contributed opening (approx. 5 degrees) b	rol actuator control, throttle valve is maintained at a by the return spring.							
P1128	Throttle control motor	ECM stops the electric throttle contributed opening (approx. 5 degrees) b	rol actuator control, throttle valve is maintained at a by the return spring.							
P1129	Sensor power supply	ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.								
P2122 P2123 P2127 P2128 P2138	Accelerator pedal position sensor	The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees. The ECM regulates the opening speed of the throttle valve to be slower than the normal condition. So, the acceleration will be poor.								

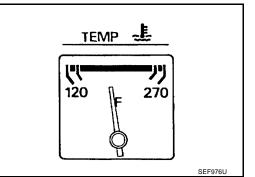
• When there is an open circuit on MIL circuit, the ECM can not warn the driver by lighting MIL up when there is malfunction on engine control system.

Therefore, when Electrical controlled throttle and part of ECM related diagnoses is continuously detected as NG for 5-trips, ECM warns the driver that engine control system has malfunction and MIL circuit is open by means of operating fail-safe function.

The fail-safe function also operates when above diagnoses except MIL circuit are detected, and demands the driver to repair the malfunction.

Engine operating condition in fail-safe mode	Engine speed will not rise more then 2.500 rpm due to the fuel cut.
Engine operating condition in rail safe mode	Engine speed will not use more then 2,500 ipin add to the raci cut.


Basic Inspection


JBS00B37

1. INSPECTION START

1. Check service records for any recent repairs that may indicate a related malfunction, or a current need for scheduled maintenance.

- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Wiring harness for improper connections, pinches and cut
- Vacuum hoses for splits, kinks and improper connections
- Hoses and ducts for leaks
- Air cleaner clogging
- Gasket
- 3. Confirm that electrical or mechanical loads are not applied.
- Headlamp switch is OFF.
- Air conditioner switch is OFF.
- Rear window defogger switch is OFF.
- Steering wheel is in the straight-ahead position, etc.
- Start engine and warm it up until engine coolant temperature indicator points the middle of gauge. Ensure engine stays below 1,000 rpm.

- 5. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 6. Make sure that no DTC is displayed with CONSULT-II or GST.

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. REPAIR OR REPLACE

Repair or replace components as necessary according to corresponding Diagnostic Procedure.

EC-81

>> GO TO 3.

Α

C

D

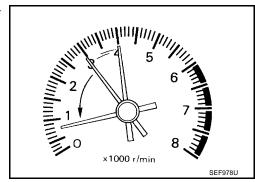
Е

F

Н

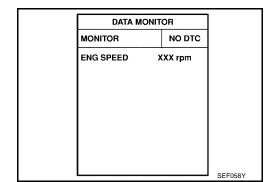
J

Κ


ı

L

3. CHECK TARGET IDLE SPEED


(P) With CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.

3. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

M/T: 650 ± 50 rpm A/T: 800 ± 50 rpm (in P or N position)

Without CONSULT-II

- Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.
- 3. Check idle speed.

M/T: 650 \pm 50 rpm

A/T: 800 \pm 50 rpm (in P or N position)

OK or NG

OK >> GO TO 10. NG >> GO TO 4.

4. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-47, "Accelerator Pedal Released Position Learning".

>> GO TO 5.

5. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-47, "Throttle Valve Closed Position Learning".

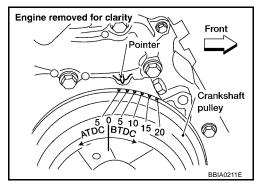
>> GO TO 6.

6. PERFORM IDLE AIR VOLUME LEARNING Refer to EC-47, "Idle Air Volume Learning". Is Idle Air Volume Learning carried out successfully? EC Yes or No Yes >> GO TO 7. No >> 1. Follow the instruction of Idle Air Volume Learning. 2. GO TO 4. 7. CHECK TARGET IDLE SPEED AGAIN D (P) With CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II. Е M/T: $650 \pm 50 \text{ rpm}$ A/T: 800 \pm 50 rpm (in P or N position) **⋈** Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Check idle speed. M/T: $650 \pm 50 \text{ rpm}$ A/T: 800 \pm 50 rpm (in P or N position) Н OK or NG OK >> GO TO 10. >> GO TO 8. NG 8. DETECT MALFUNCTIONING PART Check the following. Check camshaft position sensor (PHASE) and circuit. Refer to EC-259. Check crankshaft position sensor (POS) and circuit. Refer to EC-252. OK or NG OK >> GO TO 9. NG >> 1. Repair or replace. 2. GO TO 4. 9. CHECK ECM FUNCTION Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is the rarely the case.)

>> GO TO 4.

10. CHECK IGNITION TIMING

- 1. Run engine at idle.
- 2. Check ignition timing with a timing light.


M/T: $7 \pm 5^{\circ}$ BTDC

A/T: $18 \pm 5^{\circ}$ BTDC (in P or N position)

OK or NG

OK >> INSPECTION END

NG >> GO TO 11.

11. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-47, "Accelerator Pedal Released Position Learning".

>> GO TO 12.

12. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-47, "Throttle Valve Closed Position Learning" .

>> GO TO 13.

13. PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-47, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes >> GO TO 14.

No >> 1. Follow the instruction of Idle Air Volume Learning.

2. GO TO 4.

14. CHECK TARGET IDLE SPEED AGAIN

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

M/T: 650 \pm 50 rpm

A/T: 800 ± 50 rpm (in P or N position)

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed.

M/T: $650 \pm 50 \text{ rpm}$

A/T: 800 \pm 50 rpm (in P or N position)

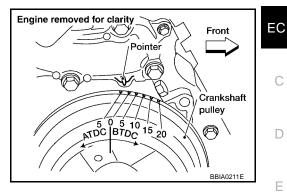
OK or NG

OK >> GO TO 15.

NG >> GO TO 17.

15. CHECK IGNITION TIMING AGAIN

- 1. Run engine at idle.
- 2. Check ignition timing with a timing light.


M/T: $7 \pm 5^{\circ}$ BTDC

A/T: $18 \pm 5^{\circ}$ BTDC (in P or N position)

OK or NG

OK >> INSPECTION END

NG >> GO TO 16.

16. CHECK TIMING CHAIN INSTALLATION

Check timing chain installation. Refer to EM-45, "INSTALLATION".

OK or NG

OK >> GO TO 17.

NG >> 1. Repair the timing chain installation.

2. GO TO 4.

17. DETECT MALFUNCTIONING PART

Check the following.

- Check camshaft position sensor (PHASE) and circuit. Refer to EC-259.
- Check crankshaft position sensor (POS) and circuit. Refer to EC-252.

OK or NG

OK >> GO TO 18.

NG >> 1. Repair or replace.

2. GO TO 4.

18. CHECK ECM FUNCTION

Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is the rarely the case.)

>> GO TO 4.

D

Е

F

K

Symptom Matrix Chart SYSTEM — ENGINE CONTROL SYSTEM

UBS00B38

							S'	/MPT	OM						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warra	nty symptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА	
Fuel	Fuel pump circuit	1	1	2	3	2		2	2			3		2	EC-585
	Fuel pressure regulator system	3	3	4	4	4	4	4	4	4		4			EC-49
	Injector circuit	1	1	2	3	2		2	2			2			EC-578
	Evaporative emission system	3	3	4	4	4	4	4	4	4		4			EC-622
Air	Positive crankcase ventilation system	3	3	4	4	4	4	4	4	4		4	1		EC-633
	Incorrect idle speed adjustment	3	3				1	1	1	1		1			EC-36
	Electric throttle control actuator	1	1	2	3	3	2	2	2	2		2		2	EC-373, EC-375
Igni- tion	Incorrect ignition timing adjustment	3	3	1	1	1		1	1			1			EC-81
	Ignition circuit	1	1	2	2	2		2	2			2			EC-566
Main p	ower supply and ground circuit	2	2	3	3	3		3	3		2	3		2	EC-141
Air cor	nditioner circuit	2	2	3	3	3	3	3	3	3		3		2	MTC-19

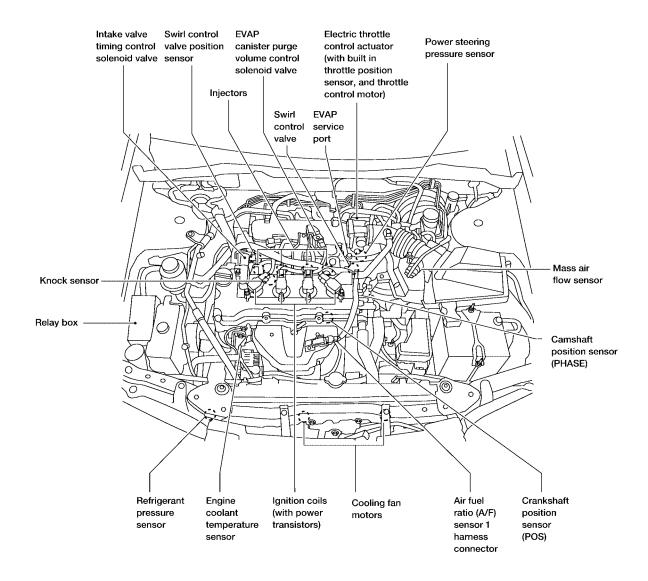
^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

													L	QG 10DE]	
						S	YMPT	MC							A
	HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	C D
Warranty symptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА		F
Crankshaft position sensor (POS) circuit	2	2												EC-252	Г
Camshaft position sensor (PHASE) circuit	2	2												EC-241	G
Mass air flow sensor circuit	1	1	2	2	2		2	2			2			EC-160, EC-168, EC-361	Н
A/F sensor 1		1	2	3	2		2	2			2			EC-450, EC-456, EC-462, EC-469, EC-476, EC-482, EC-489	J
Engine coolant temperature sensor circuit	1	1	2	2	2	3	2	2	3	1	2			EC-179, EC-190	V
Throttle position sensor circuit		1	2		2	2	2	2	2		2			EC-184, EC-235, EC-442, EC-444, EC-446, EC-553	K L
Accelerator pedal position sensor circuit			3	2	1	2			2					EC-540, EC-546, EC-559	M
Incorrect throttle position sensor adjustment		3	1		1	1	1	1	1		1			EC-81	•
Swirl control valve circuit	3	3						2						EC-405	
Intake valve timing control system		3	3		3		3				3			EC-368	
Vehicle speed sensor circuit		2	3		3						3			EC-337	_
Knock sensor circuit			2								3			EC-247	
ECM	2	2	3	3	3	3	3	3	3	3	3			EC-348, EC-80	-
PNP switch circuit			3		3	3	3	3	3		3			EC-530	≣•
Power steering pressure sensor circuit		2				3	3	3	3					EC-343	-
Electrical load signal circuit						3	3	3	3					EC-596	-

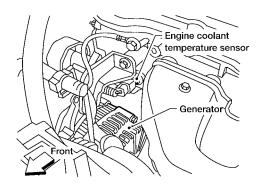
^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

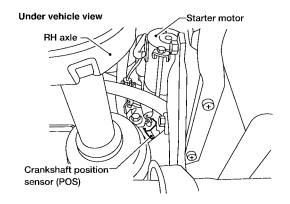
SYSTEM — ENGINE MECHANICAL & OTHER

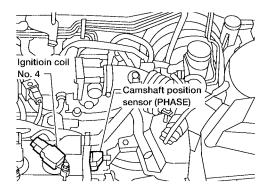
							S١	/MPT	MC									
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page			
Warranty s	symptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА				
Fuel	Fuel tank	- 5													<u>FL-7</u>			
	Fuel piping	5		5	5	5		5	5			5						
	Vapor lock		5															
	Valve deposit																	
	Poor fuel (Heavy weight gasoline, Low octane)	5					5	5	5		5	5			5			_
Air	Air duct																	
	Air cleaner																	
	Air leakage from air duct (Mass air flow sensor — electric throttle control actuator)		5	5		5		5	5			5						
	Electric throttle control actuator, Throttle wire	5			5		5			5					<u>EM-13</u>			
	Air leakage from intake mani- fold/Collector/Gasket														_			
Cranking	Battery	4				4		4	_					4				
	Generator circuit	1	1	1		1		1	1					1	<u>SC-4</u>			
	Starter circuit	3										1						
	Signal plate	6													EM-66			
	PNP switch	4													EC-530			

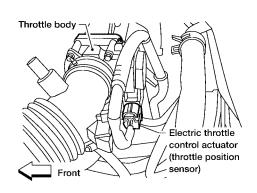

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

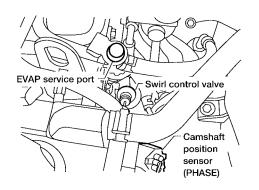
															[4010PF]										
							SY	/MPT	ОМ							Λ									
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	EC C D									
Warranty s	symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА		_									
Engine	Cylinder head	- 5	5	5	5	5		5	5			5				F									
	Cylinder head gasket	J	3	3	3	3		J	3		4	J	3												
	Cylinder block															G									
	Piston												4		<u>EM-52,EM-</u>										
	Piston ring	6	6	6	6	6		6	6			6			<u>66</u>	Н									
	Connecting rod															- 11									
	Bearing																								
	Crankshaft																								
Valve mecha-	Timing chain																								
nism	Camshaft	_		5	5	5	5	5	5	5	5	5	5	_	_		_	5			5			EM 50	J
	Intake valve timing control Intake valve	5	5	5	5	5		5	5			5			<u>EM-52</u>										
	Exhaust valve												3												
Exhaust	Exhaust manifold/Tube/															K									
	Muffler/Gasket	5	5	5	5	5		5	5			5			<u>EM-52</u>										
	Three way catalyst															L									
Lubrica- tion	Oil pan/Oil strainer/Oil pump/ Oil filter/Oil gallery	5	5	5	5	5		5	5			5	2		<u>EM-16</u> , <u>LU-8</u> , <u>LU-7</u>										
	Oil level (Low)/Filthy oil															M									
Cooling	Radiator/Hose/Radiator filler cap														007.000										
	Thermostat									5					<u>CO-7</u> , <u>CO-8</u>										
	Water pump	- 5	5	5	5	5		5	5		4	5													
	Water gallery																								
	Cooling fan									5					EC-428										
	Coolant level (low)/Contami- nated coolant														<u>CO-8</u>										

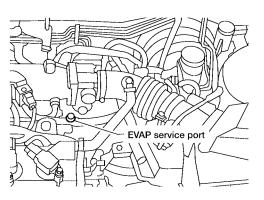

^{1 - 6:} The numbers refer to the order of inspection.


Engine Control Component Parts Location SULEV MODELS


LIBSOOB39




Α



EC

С

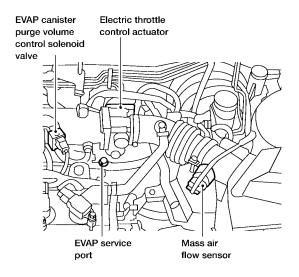
D

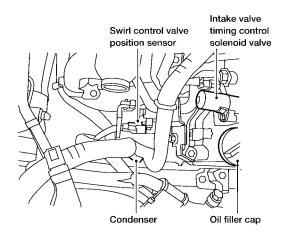
Е

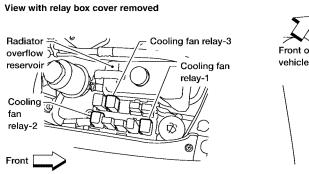
F

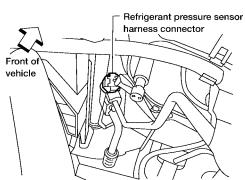
G

Н

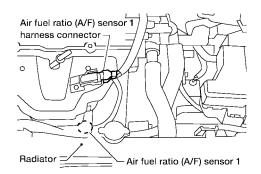

1

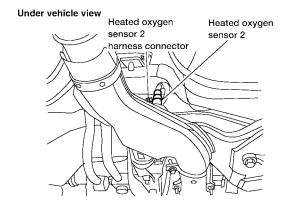

K


L

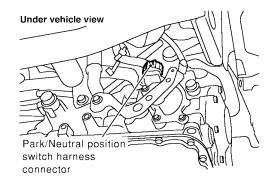

M

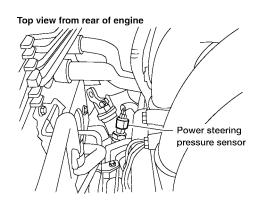
BBIA0169E


BBIA0170E

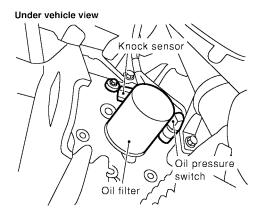

Α

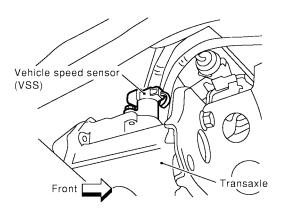
EC


C

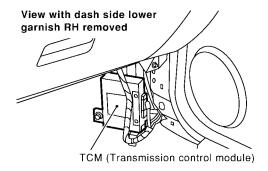

D

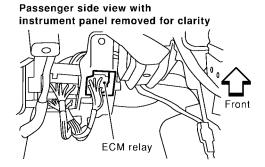
Е

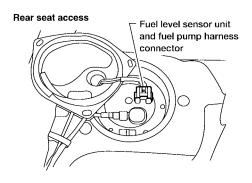


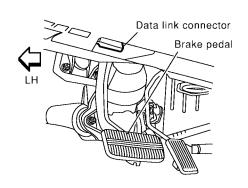

Н

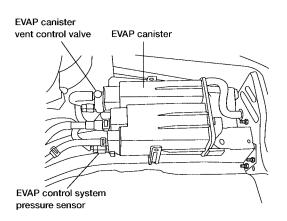
Κ

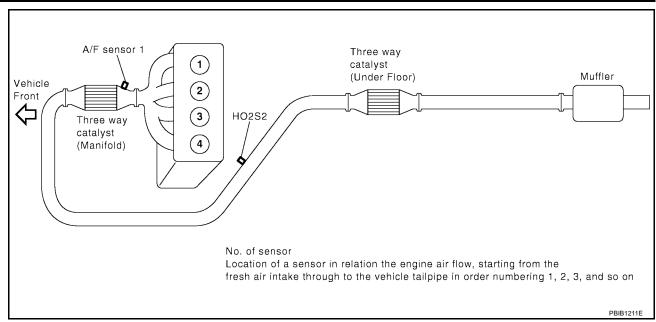

L

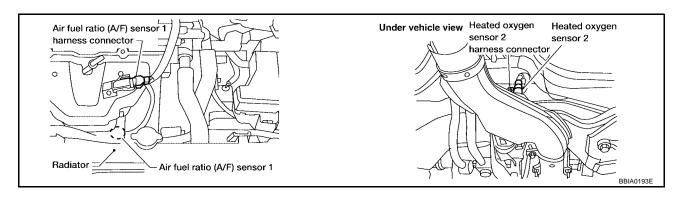

M






BBIA0139E





BBIA0171E

TROUBLE DIAGNOSIS

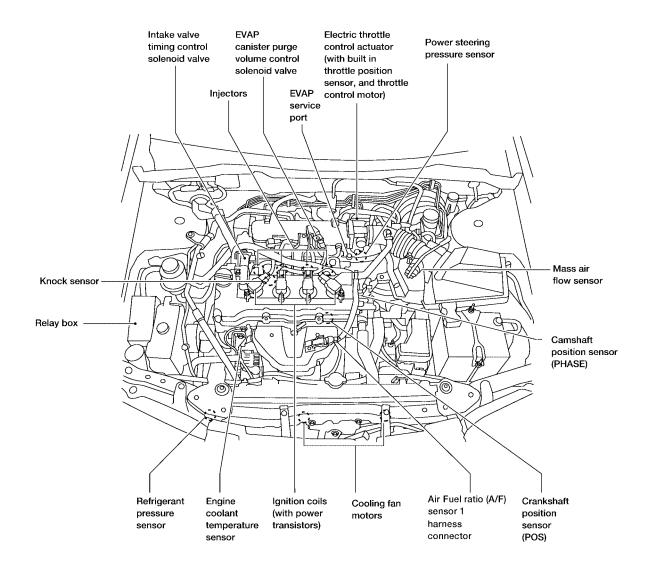
[QG18DE]

EC

Α

C

D


Е

F

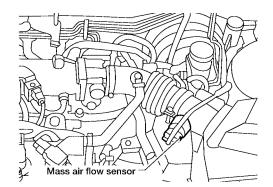
Н

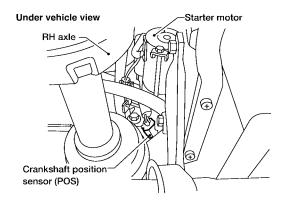
K

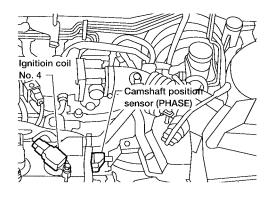
EXCEPT SULEV MODELS

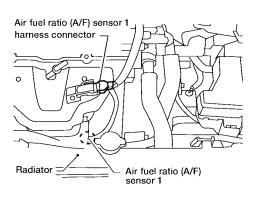
BBIA0297E

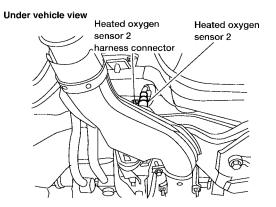
EC

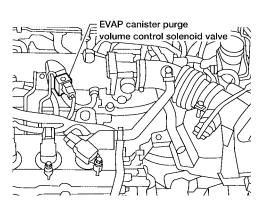

C

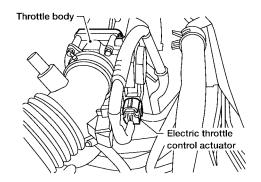

D

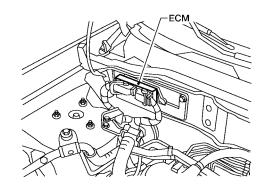

Е

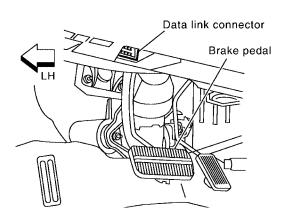

Н

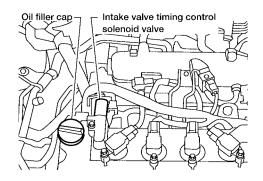

M

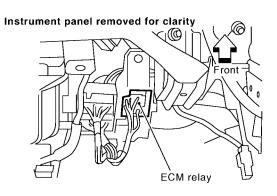




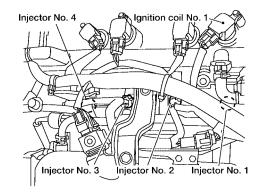


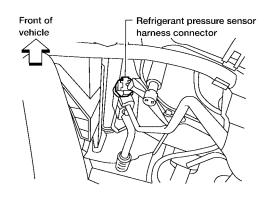

BBIA0298E

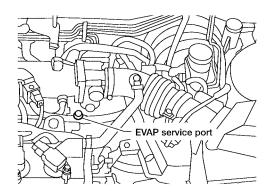


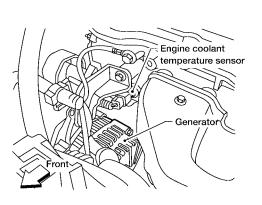


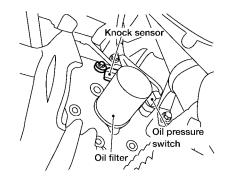
Rear seat access

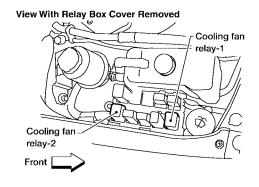





BBIA0143E


Α


EC



BBIA0144E

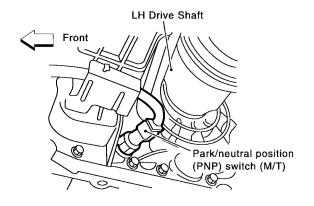
С

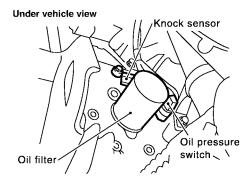
D

Е

F

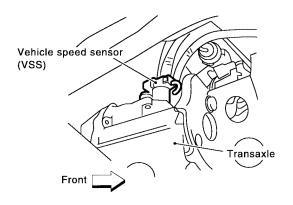
G

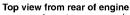

Н

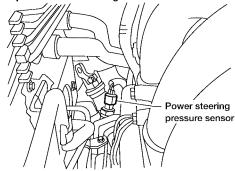

|

J

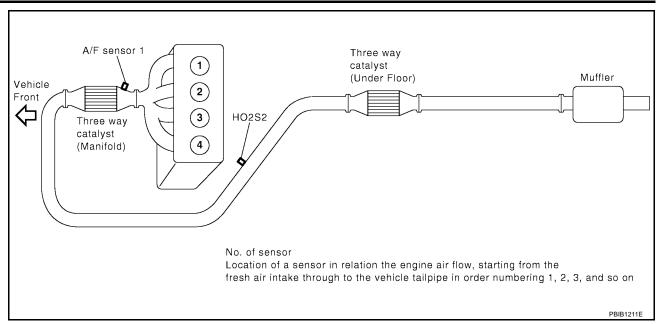

K

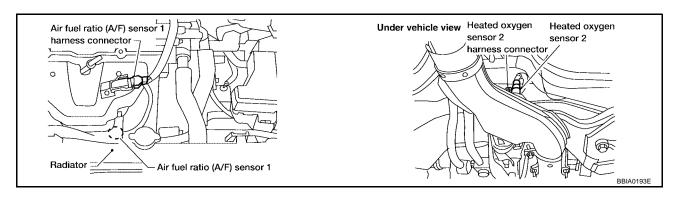

L





Under vehicle view





BBIA0145E

TROUBLE DIAGNOSIS

[QG18DE]

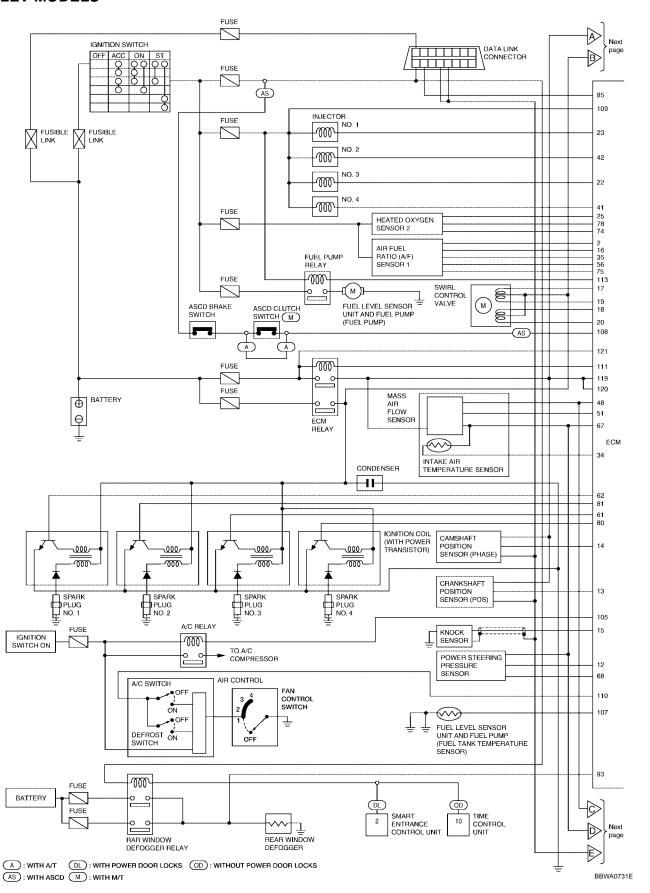
EC

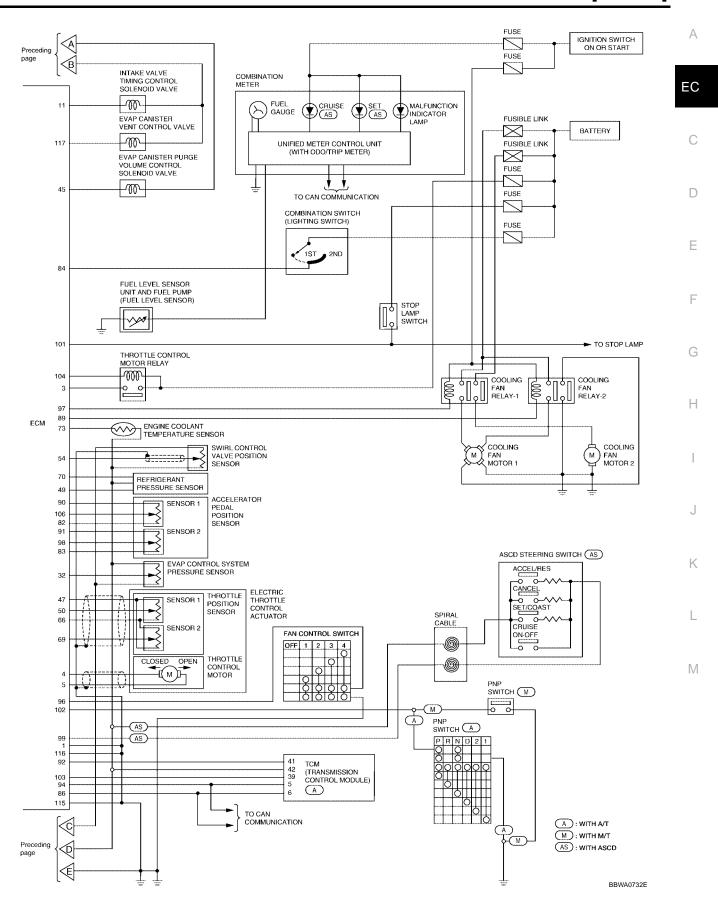
Α

C

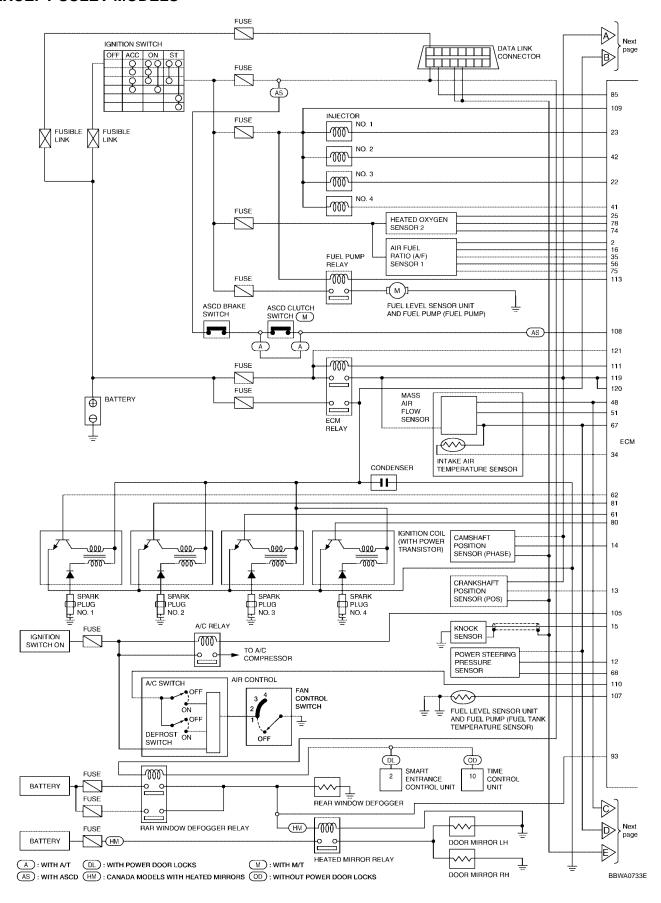
D

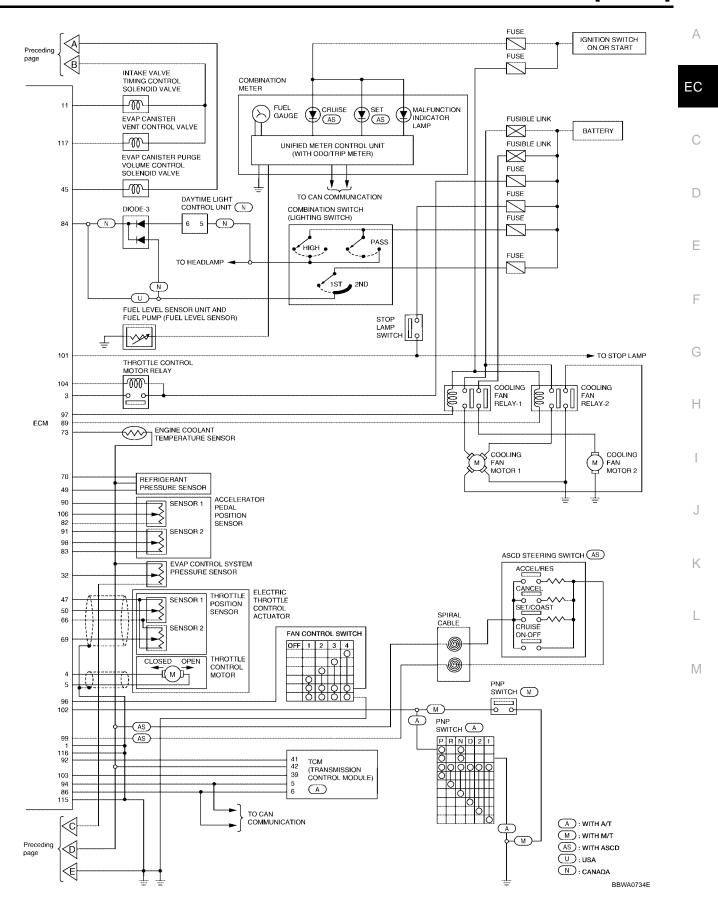
Е

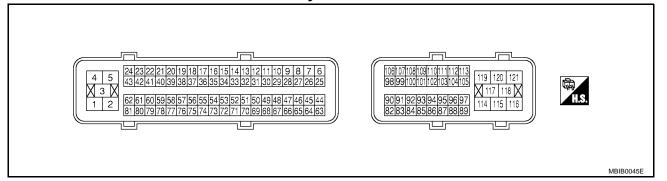

F


Н

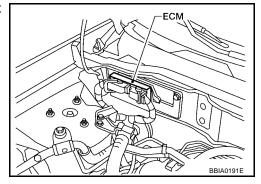
K

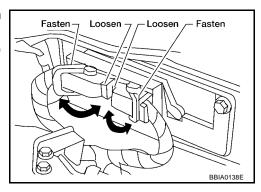

Circuit Diagram SULEV MODELS


UBS00B3A


EXCEPT SULEV MODELS

ECM Harness Connector Terminal Layout


JBS00B3


ECM Terminals and Reference Value PREPARATION

UBS00B3C

- ECM is located in the right side of the cowl top (behind the strut tower).
- 2. Remove ECM harness protector.

- 3. When disconnecting ECM harness connector, loosen it with levers as far as they will go as show at right.
- 4. Connect a bread-out box (SST) and Y-cable adapter (SST) between the ECM and ECM harness connector.
 - Use extreme care not to touch 2 pins at one time.
 - Data is for comparison and may not be exact.

ECM INSPECTION TABLE

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CALITION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
1	В	ECM ground	[Engine is running] • Idle speed	Engine ground
2	R	A/F sensor 1 heater	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ STATE STATE

				[QG18DE]	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	Α
3	R/W	Throttle control motor power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	EC
4	Р	Throttle control motor (Close)	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal is releasing 	0 - 14V★	C
5	L	Throttle control motor (Open)	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal is depressing 	0 - 14V★	E F
11	G/Y	Intake valve timing control solenoid valve	 [Engine is running] Warm-up condition Idle speed [Engine is running] Warm-up condition When revving engine up to 2,500 rpm-quickly. 	BATTERY VOLTAGE (11 - 14V) 7 - 10V★ PBIB1790E	G H I
12	Р	Power steering pressure sensor	 [Engine is running] Steering wheel is being turned [Engine is running] Steering wheel is not being turned 	0.5 - 4.0V 0.4 - 0.8V	K
13	Y	Crankshaft position sensor (POS)	[Engine is running] • Warm-up condition • Idle speed	Approximately 3.0V★ → SV/Div 1 ms/Div T PBIB0527E	M
			[Engine is running] ● Engine speed is 2,000 rpm	Approximately 3.0V★ Solvidia 1 ms/Div PBIB0528E	

				[QG18DE]
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
14	W/R	Camshaft position sensor (PHASE)	[Engine is running] ■ Warm-up condition ■ Idle speed	1.0 - 4.0 V★ → 5.0 V/Div 20 ms/Div PBIB0525E
			[Engine is running] ● Engine speed is 2,000 rpm.	1.0 - 4.0 V★ → 5.0 V/Div 20 ms/Div T PBIB0526E
15	W	Knock sensor	[Engine is running] • Idle speed	Approximately 2.5V
16	OR/L		[Engine is running] • Warm-up condition • Idle speed	Approximately 3.1V
35	B/Y	A/F sensor 1		Approximately 2.6V
56	OR			2 - 3V
75	W/L			2 - 3V
17 18 19 20	LG R/W PU/W L/Y	Swirl control valve	[Engine is running] ● Idle speed	0.1 - 14V
22 23 41 42	G/B R/B L/B Y/B	Injector No. 3 Injector No. 1 Injector No. 4 Injector No. 2	[Engine is running]Warm-up conditionIdle speed	BATTERY VOLTAGE (11 - 14V)★ → 10.0 V/Div 50 ms/Div T
			[Engine is running]Warm-up conditionEngine speed is 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ with the state of the state

[QG18DE]

				[QOIODL]
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
25	W/B	Heated oxygen sensor 2 heater	 [Engine is running] Warm-up condition Engine speed: Below 3,600 rpm after the following conditions are met. Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under on load 	0 - 1.0V
			[Ignition switch: ON] ■ Engine stopped. [Engine is running] ■ Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)
32	L	EVAP control system pressure sensor	[Ignition switch: ON]	Approximately 1.8 - 4.8V
34	Y/G	Intake air temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with intake air temperature.
45	GY/L EVAP canister purge vol-	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)★	
		ume control solenoid valve	 [Engine is running] ◆ Engine speed is about 2,000 rpm (More than 100 seconds after starting engine) 	Approximately 10V★ → 10.0 V/Div 50 ms/Div T PBIB0520E
47	В	Throttle position sensor power supply	[Ignition switch: ON]	Approximately 5V
48	R/W	Sensors' power supply	[Ignition switch: ON]	Approximately 5V
49	R/Y	Refrigerant pressure sensor power supply	[Ignition switch: ON]	Approximately 5V
50	W	Throttle position concer 1	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully released 	More than 0.36V
50	VV	Throttle position sensor 1	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully depressed 	Less than 4.75V

				[QG18DE]
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
51	L/R	Mass air flow sensor	[Engine is running] • Warm-up condition • Idle speed	1.0 - 1.7V
31	L/K	Mass all flow serisor	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm.	1.5 - 2.4V
		Cuirl control value position	 [Engine is running] Idle speed Engine coolant temperature is below 44°C (111°F). 	Approximately 5V
54	Y	Swirl control valve position sensor	 [Engine is running] Warm-up condition Idle speed Engine coolant temperature is above 45°C (113°F). 	0 - 1.0V
61 62	L/W BR	Ignition signal No. 3 Ignition signal No. 1	[Engine is running] • Warm-up condition • Idle speed	0 - 0.1V★
80 81	GY/R PU	Y/R Ignition signal No. 4	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - 0.2V★
66	R	Throttle position Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
67	B/W	Sensors' ground (MAF sensor / IAT sensor / PSP sensor / ASCD steering switch / EVAP control system pressure sensor / Refriger- ant pressure sensor / Swirl control valve position sen- sor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
68	G/R	Power steering pressure sensor power supply	[Ignition switch: ON]	Approximately 5V
69	G	Throttle position sensor 2	 [Ignition switch: ON] ● Engine stopped ● Shift lever: D (A/T), 1st (M/T) ● Accelerator pedal fully released 	Less than 4.75V
			 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully depressed 	More than 0.36V

				[QG18DE]	_
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	А
70	L	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower switch are ON (Compressor operates.) 	1.0 - 4.0V	EC
73	BR/W	Engine coolant temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with engine coolant temperature.	С
74	R/L	Heated oxygen sensor 2	 [Engine is running] Warm-up condition Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	0 - Approximately 1.0V	D E F
78	В	Heated oxygen sensor 2 ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	G
82	B/Y	Accelerator pedal position sensor 1 ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	Н
83	G	Accelerator pedal position sensor 2 ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	ı
84	PU	Electrical load signal (Headlamp signal)	[Lighting switch: ON] • Lighting switch is 2nd position [Lighting switch: ON]	BATTERY VOLTAGE (11 - 14V)	J
85	LG	DATA link connector	• Lighting switch is OFF [Ignition switch: ON]	Approximately 0V BATTERY VOLTAGE (11 - 14V)	K
86	Υ	CAN communication line	CONSULT-II or GST is disconnected. [Ignition switch: ON]	Approximately 2.3V	-
89	LG/B	Cooling fan relay (High)	[Engine is running] • Cooling fan is not operating [Engine is running]	BATTERY VOLTAGE (11 - 14V)	- L
			Cooling fan is high speed operating	0 - 1.0V	M
90	R	Accelerator pedal position sensor 1 power supply	[Ignition switch: ON]	Approximately 5V	=
91	R/G	Accelerator pedal position sensor 2 power supply	[Ignition switch: ON]	Approximately 5V	_
93	L/W	Electrical load signal (Rear window defogger signal)	[Ignition switch: ON] ■ Rear window defogger switch: ON [Ignition switch: ON] ■ Rear window defogger switch: OFF	BATTERY VOLTAGE (11 - 14V) Approximately 0V	-
94	L	CAN communication line	Rear window defogger switch: OFF [Ignition switch: ON]	Approximately 2.8V	_
96	Y/G	Electrical load signal	[Engine is running] • Heater fan switch: ON	Approximately 0V	_
30	1/G	(Heater fan signal)	[Engine is running] • Heater fan switch: OFF	Approximately 5V	-

		IR	OUBLE DIAGNOSIS	[QG18DE
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
97	LG/R	Cooling fan relay (Low)	[Ignition switch: ON] • Cooling fan is not operating	BATTERY VOLTAGE (11 - 14V)
91	LG/K	Cooling lair relay (Low)	[Ignition switch: ON] ■ Cooling fan is operating	0 - 1.0V
0.0	R/B	Accelerator pedal position	[Ignition switch: ON]Engine stoppedAccelerator pedal fully released	0.28 - 0.48V
98	sensor 2	[Ignition switch: ON]Engine stoppedAccelerator pedal fully depressed	More than 2.0V	
			[Ignition switch: ON] • ASCD steering switch: Released	Approximately 4V
	99 W/R ASO	W/R ASCD steering switch	[Ignition switch: ON] • CRUISE switch: Pressed	Approximately 0V
99			[Ignition switch: ON] • CANCEL switch: Pressed	Approximately 1V
			[Ignition switch: ON] • COAST/SET switch: Pressed	Approximately 2V
			[Ignition switch: ON] • ACCEL/RESUME switch: Pressed	Approximately 3V
	- 10		[Ignition switch: ON] • Brake pedal fully released	Approximately 0V
101	R/G	Stop lamp switch	[Ignition switch: ON] • Brake pedal depressed	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: ON] • Gear position: P or N	Approximately 0V
102	G/OR	PNP switch	[Ignition switch: ON] ● Except the above gear position	A/T models BATTERY VOLTAGE (11 - 14V) M/T models Approximately 5V
104	Р	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: ON]	0 - 1.0V
106	W	Accelerator pedal position	[Ignition switch: ON]Engine stoppedAccelerator pedal fully released	0.65 - 0.87V
100	VV	sensor 1	[Ignition switch: ON] • Engine stopped • Accelerator pedal fully depressed	More than 4.3V
107	OR	Fuel tank temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with fuel tank temperature.

[QG18DE]

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Ignition switch: ON]	
			Brake pedal: depressed	Approximately 0V
108	P/L	ASCD brake switch	Clutch pedal: depressed (M/T models)	
100	172	NOOD Brake Switch	[Ignition switch: ON]	BATTERY VOLTAGE
			Brake pedal: depressed	(11 - 14V)
			Clutch pedal: depressed (M/T models)	,
			[Ignition switch: OFF]	OV
109	B/R	Ignition switch	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
	111 W/G E0	N/G ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF]	0 - 1.0V
111			For a few seconds after turning ignition switch OFF	
			[Ignition switch: OFF]	BATTERY VOLTAGE
			 A few seconds passed after turning ignition switch OFF 	(11 - 14V)
			[Ignition switch: ON]	
			For 1 second after turning ignition switch ON	0 - 1.0V
113	B/P	Fuel pump relay	[Engine is running]	
			[Ignition switch: ON]	BATTERY VOLTAGE
			More than 1 second after turning ignition switch ON.	(11 - 14V)
115	В	ECM ground	[Engine is running]	Engine ground
116	В		Idle speed	=go g.oua
117	L/Y	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
121	W/L	Power supply for ECM (Buck-up)	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

M

CONSULT-II Function FUNCTION

UBS00B3D

Diagnostic test mode	Function
Work support	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-II unit.
Self-diagnostic results	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly.*1
Data monitor	Input/Output data in the ECM can be read.
Data monitor (SPEC)	Input/Output specification of the Basic fuel schedule, AFM, A/F feedback control value and the other data monitor items can be read.
CAN diagnostic support monitor	The results of transmit/receive diagnosis of CAN communication can be read.
Active test	Diagnostic Test Mode in which CONSULT-II drives some actuators apart from the ECMs and also shifts some parameters in a specified range.
DTC & SRT confirmation	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.
Function test	Conducted by CONSULT-II instead of a technician to determine each system is OK or NG.
ECM part number	ECM part number can be read.

^{*1} The following emission-related diagnostic information is cleared when the ECM memory is erased.

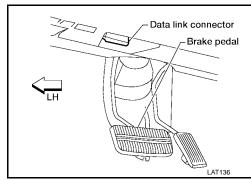
- 1. Diagnostic trouble codes
- 2. 1st trip diagnostic trouble codes
- 3. Freeze frame data
- 4. 1st trip freeze frame data
- 5. System readiness test (SRT) codes
- 6. Test values
- 7. Others

[QG18DE]

ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION

				D	IAGNOSTI	C TEST MC	DDE			Α
		WORK		DIAGNOS- ESULTS	DATA	DATA			RT CON- ATION	F.0
	Item	SUP- PORT	DTC*1	FREEZE FRAME DATA*2	MONI- TOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT	EC C
	Camshaft position sensor (PHASE)		×	×						
	Crankshaft position sensor (POS)		×			×				D
	Mass air flow sensor		×		×	×				
	Engine coolant temperature sensor		×	×	×	×	×			Е
	A/F sensor 1		×		×			×	×	
	Heated oxygen sensor 2		×		×	×		×	×	
	Vehicle speed sensor		×	×	×	×				
3TS	Accelerator pedal position sensor		×		×	×				
A	Throttle position sensor		×		×	×				G
	Fuel tank temperature sensor		×		×	×	×			
MPON	EVAP control system pressure sensor		×		×	×				Н
OL CON	Intake air temperature sensor		×	×	×	×				
질론	Knock sensor		×							
ENGINE CONTROL COMPONENT PARTS INPUT	Closed throttle position switch (Accelerator pedal position sensor signal)				×	×				
5	Air conditioner switch				×	×				J
ш	Park/neutral position (PNP) switch		×		×	×				
	Stop lamp switch		×		×	×				K
	Power steering pressure sensor		×		×	×				
	Battery voltage				×	×				
	Load signal				×	×				
	Swirl control valve position sensor		×		×	×				
	Fuel level sensor		×		×	×				N
	ASCD steering switch		×		×	×				
	ASCD brake switch		×		×	×				

				D	IAGNOSTI	C TEST MC	DE		
	Item		SELF-DIAGNOS- TIC RESULTS		DATA	DATA		DTC & SRT CON- FIRMATION	
			DTC*1	FREEZE FRAME DATA*2	MONI- TOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT
	Injectors				×	×	×		
	Power transistor (Ignition timing)	×			×	×	×		
ည	Throttle control motor relay		×		×	×			
AR.	Throttle control motor		×						
CONTROL COMPONENT PARTS OUTPUT	EVAP canister purge volume control solenoid valve		×		×	×	×		×
<u>8</u>	Air conditioner relay				×	×			
OL COMI	Fuel pump relay	×			×	×	×		
7 5	Cooling fan		×		×	×	×		
IRC	A/F sensor 1 heater		×		×	×		×	
Ö	Heated oxygen sensor 2 heater		×		×	×		×	
Ä	EVAP canister vent control valve		×		×	×	×		
ENGINE	Swirl control valve		×		×	×	×		
ш	Intake valve timing control sole- noid valve		×		×	×	×		
	Calculated load value			×	×	×			


X: Applicable

CONSULT-II INSPECTION PROCEDURE

CAUTION:

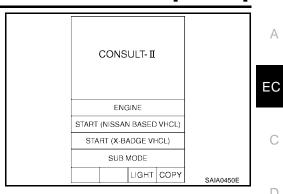
If CONSULT-II is used with no connection of CONSULT-II CONVERTER, malfunctions might be detected in self-diagnosis depending on control unit which carry out CAN communication.

- Turn ignition switch OFF.
- Connect CONSULT-II and "CONSULT-II CONVERTER" to data link connector, which is located under LH dash panel near the fuse box cover.

^{*1:} This item includes 1st trip DTCs.

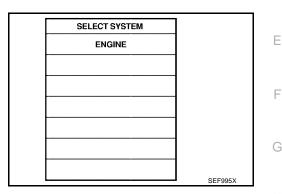
^{*2:} This mode includes 1st trip freeze frame data or freeze frame data. The items appear on CONSULT-II screen in freeze frame data mode only if a 1st trip DTC or DTC is detected. For details, refer to EC-53.

[QG18DE]

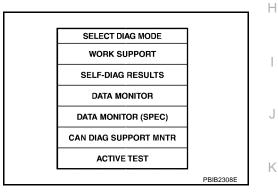

Α

C

D


M

- Turn ignition switch ON.
- Touch "START (NISSAN BASED VHCL)".


5. Touch "ENGINE".

If "ENGINE" is not indicated, go to GI-38, "CONSULT-II Data Link Connector (DLC) Circuit" .

6. Perform each diagnostic test mode according to each service procedure.

For further information, see the CONSULT-II Operation Manual.

WORK SUPPORT MODE

Work Item

WORK ITEM	CONDITION	USAGE
FUEL PRESSURE RELEASE	FUEL PUMP WILL STOP BY TOUCHING "START" DUR- ING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.	When releasing fuel pressure from fuel line
IDLE AIR VOL LEARN	THE IDLE AIR VOLUME THAT KEEPS THE ENGINE WITHIN THE SPECIFIED RANGE IS MEMORIZED IN ECM.	When learning the idle air volume
SELF-LEARNING CONT	THE COEFFICIENT OF SELF-LEARNING CONTROL MIXTURE RATIO RETURNS TO THE ORIGINAL COEF- FICIENT.	When clearing the coefficient of self-learning control value

EC-117

WORK ITEM	CONDITION	USAGE
EVAP SYSTEM CLOSE	CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN ORDER TO MAKE EVAP SYSTEM CLOSE UNDER THE FOLLOWING CONDITIONS.	When detecting EVAP vapor leak point of EVAP system
	• IGN SW ON	
	ENGINE NOT RUNNING	
	AMBIENT TEMPERATURE IS ABOVE 0°C (32°F).	
	NO VACUUM AND NO HIGH PRESSURE IN EVAP SYSTEM	
	 TANK FUEL TEMP. IS MORE THAN 0°C (32°F). 	
	WITHIN 10 MINUTES AFTER STARTING "EVAP SYSTEM CLOSE"	
	WHEN TRYING TO EXECUTE "EVAP SYSTEM CLOSE" UNDER ANY CONDITION OTHER THAN THE ABOVE, CONSULT-II WILL DISCONTINUE IT AND DISPLAY APPROPRIATE INSTRUCTIONS.	
	NOTE: WHEN STARTING ENGINE, CONSULT-II MAY DISPLAY "BATTERY VOLTAGE IS LOW. CHARGE BATTERY", EVEN IN USING CHARGED BATTERY.	
TARGET IDLE RPM ADJ*	IDLE CONDITION	When setting target idle speed
TARGET IGNITION TIMING ADJ*	IDLE CONDITION	When adjusting target ignition timing.

^{*:} This function is not necessary in the usual service procedure.

SELF-DIAG RESULTS MODE

Self Diagnostic Item

Regarding items of "DTC and 1st trip DTC", refer to EC-16, "INDEX FOR DTC".)

Freeze Frame Data and 1st Trip Freeze Frame Data

Freeze frame data item*1	Description
DIAG TROUBLE CODE [PXXXX]	The engine control component part/control system has a trouble code, it is displayed as "PXXXX". (Refer to EC-16, "INDEX FOR DTC" .)
FUEL SYS-B1	 "Fuel injection system status" at the moment a malfunction is detected is displayed. One mode in the following is displayed. Mode2: Open loop due to detected system malfunction Mode3: Open loop due to driving conditions (power enrichment, deceleration enrichment) Mode4: Closed loop - using oxygen sensor as feedback for fuel control Mode5: Open loop - has not yet satisfied condition to go to closed loop
CAL/LD VALUE [%]	The calculated load value at the moment a malfunction is detected is displayed.
COOLANT TEMP [°C] or [°F]	The engine coolant temperature at the moment a malfunction is detected is displayed.
	"Short-term fuel trim" at the moment a malfunction is detected is displayed.
S-FUEL TRIM-B1 [%]	The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel schedule.
	"Long-term fuel trim" at the moment a malfunction is detected is displayed.
L-FUEL TRIM-B1 [%]	The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule than short-term fuel trim.
ENGINE SPEED [rpm]	The engine speed at the moment a malfunction is detected is displayed.
VEHICL SPEED [km/ h] or [mph]	The vehicle speed at the moment a malfunction is detected is displayed.

[QG18DE]

Freeze frame data item*1	Description	
B/FUEL SCHDL [msec]	The base fuel schedule at the moment a malfunction is detected is displayed.	
INT/A TEMP SE [°C] or [°F]	The intake air temperature at the moment a malfunction is detected is displayed.	

	Α
_	EC
_	С
	D
	Е
	F
	G
	Н
	I
	J
	K

M

DATA MONITOR MODE Monitored Item

×: Applicable

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
ENG SPEED [rpm]	×	×	Indicates the engine speed computed from the signals of the crankshaft position sensor (POS) and camshaft position sensor (PHASE).	
MAS A/F SE-B1 [V]	×	×	The signal voltage of the mass air flow sensor is displayed.	When the engine is stopped, a certain value is indicated.
B/FUEL SCHDL [msec]		×	"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	
A/F ALPHA-B1 [%]		×	The mean value of the air-fuel ratio feedback correction factor per cycle is indicated.	 When the engine is stopped, a certain value is indicated. This data also includes the data for the air-fuel ratio learning control.
COOLAN TEMP/S [°C] or [°F]	×	×	The engine coolant temperature (determined by the signal voltage of the engine coolant temperature sen- sor) is displayed.	When the engine coolant temperature sensor is open or short-circuited, ECM enters fail-safe mode. The engine coolant temperature determined by the ECM is displayed.
A/F SEN1 (B1) [V]	×	×	The A/F signal computed from the input signal of the A/F sensor 1 is displayed.	
HO2S2 (B1) [V]	×	×	The signal voltage of the heated oxygen sensor 2 is displayed.	
HO2S2 MNTR (B1) [RICH/ LEAN]	×		Display of heated oxygen sensor 2 signal: RICH means the amount of oxygen after three way catalyst is relatively small. LEAN means the amount of oxygen after three way catalyst is relatively large.	When the engine is stopped, a certain value is indicated.
VHCL SPEED SE [km/h] or [mph]	×	×	The vehicle speed computed from the vehicle speed signal sent from combination meter is displayed.	
BATTERY VOLT [V]	×	×	The power supply voltage of ECM is displayed.	
ACCEL SEN 1 [V]	×	×	The accelerator pedal position sen-	
ACCEL SEN 2 [V]	×		sor signal voltage is displayed.	
THRTL SEN 1 [V]	×	×	The throttle position sensor signal	
THRTL SEN 2 [V]	×		voltage is displayed.	
FUEL T/TMP SE [°C] or [°F]	×		 The fuel temperature judged from the fuel tank temperature sensor sig- nal voltage is displayed. 	
INT/A TEMP SE [°C] or [°F]	×	×	The intake air temperature determined by the signal voltage of the intake air temperature sensor is indicated.	

				[עט ואטב]	
Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks	А
EVAP SYS PRES [V]	×		The signal voltage of EVAP control system pressure sensor is dis- played.		EC
FUEL LEVEL SE [V]	×		The signal voltage of the fuel level sensor is displayed.		С
START SIGNAL [ON/OFF]	×	×	Indicates start signal status [ON/ OFF] computed by the ECM according to the signals of engine speed and battery voltage.	After starting the engine, [OFF] is displayed regardless of the starter signal.	D
CLSD THL POS [ON/OFF]	×	×	Indicates idle position [ON/OFF] computed by ECM according to the accelerator pedal position sensor signal.		Е
AIR COND SIG [ON/OFF]	×	×	Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioner signal.		F
P/N POSI SW [ON/OFF]	×	×	Indicates [ON/OFF] condition from the park/neutral position (PNP) switch signal.		G
PW/ST SIGNAL [ON/OFF]	×	×	[ON/OFF] condition of the power steering system determined by the power steering pressure sensor sig- nal is indicated.		Н
LOAD SIGNAL [ON/OFF]	×	×	Indicates [ON/OFF] condition from the electrical load signal. ON rear defogger switch is ON and/or lighting switch is ON and/or heater fan switch is ON. OFF rear defogger switch is OFF and lighting switch is OFF and heater fan switch is OFF.		J
IGNITION SW [ON/OFF]	×		Indicates [ON/OFF] condition from ignition switch.		K
HEATER FAN SW [ON/OFF]	×		Indicates [ON/OFF] condition from the heater fan switch signal.		L
BRAKE SW [ON/OFF]		×	Indicates [ON/OFF] condition from the stop lamp switch signal.		
INJ PULSE-B1 [msec]		×	Indicates the actual fuel injection pulse width compensated by ECM according to the input signals.	When the engine is stopped, a certain computed value is indicated.	M
IGN TIMING [BTDC]		×	 Indicates the ignition timing computed by ECM according to the input signals. 	When the engine is stopped, a certain value is indicated.	
CAL/LD VALUE [%]			"Calculated load value" indicates the value of the current airflow divided by peak airflow.		
MASS AIRFLOW [g·m/s]			Indicates the mass airflow computed by ECM according to the signal volt- age of the mass airflow sensor.		
PURG VOL C/V [%]			 Indicates the EVAP canister purge volume control solenoid valve con- trol value computed by the ECM according to the input signals. The opening becomes larger as the value increases. 		

				[QG18DE]
Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
SWRL C/V (B1)[step]			 Indicates the swirl control valve control value computed by the ECM according to the input signals. The opening becomes larger as the value increases. 	
INT/V TIM (B1) [°CA]			Indicates [°CA] of intake camshaft advanced angle.	
INT/V SOL-B1 [%]			 The control value of the intake valve timing control solenoid valve (determined by ECM according to the input signals) is indicated. The advance angle becomes larger as the value increases. 	
AIR COND RLY [ON/OFF]		×	The air conditioner relay control condition (determined by ECM according to the input signal) is indicated.	
FUEL PUMP RLY [ON/OFF]		×	Indicates the fuel pump relay control condition determined by ECM according to the input signals.	
VENT CONT/V [ON/OFF]			 The control condition of the EVAP canister vent control valve (determined by ECM according to the input signal) is indicated. ON Closed OFF Open 	
THRTL RELAY [ON/OFF]		×	 Indicates the throttle control motor relay control condition determined by the ECM according to the input sig- nals. 	
COOLING FAN [ON/OFF]			Indicates the control condition of the cooling fan (determined by ECM according to the input signal). HIGH High speed operation LOW Low speed operation OFF Stop	
HO2S2 HTR (B1) [ON/OFF]			 Indicates [ON/OFF] condition of heated oxygen sensor 2 heater determined by ECM according to the input signals. 	
IDL A/V LEARN [ON/OFF]			Display the condition of idle air volume learning YET Idle air volume learning has not been performed yet. CMPLT Idle air volume learning has already been performed successfully.	
TRVL AFTER MIL [km] or [Mile]			Distance traveled while MIL is activated	
AC PRESS SEN [V]			The signal voltage from the refrigerant pressure sensor is displayed.	
VHCL SPEED SE [km/h] or [mph]			 The vehicle speed computed from the vehicle speed signal sent from combination meter is displayed. 	
SET VHCL SPD [km/h] or [mph]			The preset vehicle speed is displayed.	

				[QG18DE]	
Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks	Α
MAIN SW [ON/OFF]			Indicates [ON/OFF] condition from CRUISE switch signal.		EC
CANSEL SW [ON/OFF]			Indicates [ON/OFF] condition from CANCEL switch signal.		C
RESUME/ACC SW [ON/OFF]			Indicates [ON/OFF] condition from ACCEL/RES switch signal.		
SET SW [ON/OFF]			Indicates [ON/OFF] condition from COAST/SET switch signal.		D
BRAKE SW1 SW [ON/OFF]			Indicates [ON/OFF] condition from ASCD brake switch signal, and ASCD clutch switch signal (M/T models).		Е
BRAKE SW2 SW [ON/OFF]			Indicates [ON/OFF] condition of stop lamp switch signal.		F
VHCL SPD CUT [NON/CUT]			 Indicates the vehicle cruise condition. NON Vehicle speed is maintained at the ASCD set speed. CUT Vehicle speed increased to excessively high compared with the 		G
			ASCD set speed, and ASCD operation is cut off.		Н
LO SPEED CUT [NON/CUT]			Indicates the vehicle cruise condition. NON Vehicle speed is maintained at the ASCD set speed. CUT Vehicle speed increased to excessively low compared with the ASCD set speed, and ASCD operation is cut off.		J
AT OD MONITOR [ON/OFF]			Indicates [ON/OFF] condition of A/T O/D according to the input signal from the TCM.	For M/T models always OFF is displayed.	K
AT OD CANCEL [ON/OFF]			Indicates [ON/OFF] condition of A/T O/D cancel signal sent from the TCM.	For M/T models always OFF is displayed.	L
CRUISE LAMP [ON/OFF]			Indicates [ON/OFF] condition of CRUISE lamp determined by the ECM according to the input signals.		M
A/F S1 HTR (B1) [%]			 Indicates A/F sensor 1 heater control value computed by ECM according to the input signal. 		
, vi (III) [/0]			The current flow to the heater becomes larger as the value increases.		
SWL/C POSI SE [degree]	×		Indicates the swirl control value opening angle computed by ECM according to signal voltage of the swirl control valve position sensor.		
SET LAMP [ON/OFF]			Indicates [ON/OFF] condition of SET lamp determined by the ECM according to the input signals.		

[QG18DE]

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
Voltage [V]		•		
Frequency [msec], [Hz] or [%]				 Only "#" is displayed if item is unable to be measured. Figures with "#"s are temporary
DUTY-HI			Voltage, frequency, duty cycle or	
SUTY-LOW			pulse width measured by the probe.	ones. They are the same figures as
PLS WIDTH-HI				an actual piece of data which was just previously measured.
PLS WIDTH-LOW				, , , , , , , , , , , , , , , , , , , ,

NOTE:

• Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

Α

G

DATA MONITOR (SPEC) MODE Monitored Item

	ECM	Main			
Monitored item [Unit]	input signals	Main signals	Description	Remarks	EC
ENG SPEED [rpm]	×	×	 Indicates the engine speed computed from the signal of the crankshaft position sensor (POS) and camshaft position sensor (PHASE). 		С
MAS A/F SE-B1 [V]	×	×	The signal voltage of the mass air flow sensor specification is displayed.	When engine is running, specification range is indicated.	D
B/FUEL SCHDL [msec]		×	"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	When engine is running, specification range is indicated.	E
A/F ALPHA-B1 [%]		×	The mean value of the air-fuel ratio feed- back correction factor per cycle is indi- cated.	 When engine is running, specification range is indicated. This data also includes the data for the air-fuel ratio learning control. 	F

NOTE:

Any monitored item that dose not match the vehicle being diagnosed is deleted from the display automatically.

ACTIVE TEST MODE

Test Item

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
FUEL INJECTION	 Engine: Return to the original trouble condition Change the amount of fuel injection using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connectorFuel injectorsA/F sensor 1
IGNITION TIMING	 Engine: Return to the original trouble condition Timing light: Set Retard the ignition timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Perform Idle Air Volume Learning
POWER BALANCE	 Engine: After warming up, idle the engine. A/C switch: OFF Shift lever: N Cut off each injector signal one at a time using CONSULT-II. 	Engine runs rough or dies.	 Harness and connector Compression Injectors Power transistor Spark plugs Ignition coils
COOLING FAN	Ignition switch: ON Turn the cooling fan HI, LOW and OFF using CONSULT-II.	Cooling fan moves and stops.	 Harness and connector Cooling fan motor Cooling fan relay
ENG COOLANT TEMP	 Engine: Return to the original trouble condition Change the engine coolant temperature using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	 Harness and connector Engine coolant temperature sensor Fuel injectors
FUEL PUMP RELAY	 Ignition switch: ON (Engine stopped) Turn the fuel pump relay ON and OFF using CONSULT-II and listen to operating sound. 	Fuel pump relay makes the operating sound.	Harness and connector Fuel pump relay

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)		
VALVE TIMING SOL	Ignition switch: ON (Engine stopped) Turn solenoid valve ON and OFF with CONSULT-II and listen for operating sound	Solenoid valve makes an operating sound.	Harness and connector Solenoid valve		
PURG VOL CONT/V	 Engine: After warming up, run engine at 1,500 rpm. Change the EVAP canister purge volume control solenoid valve opening percent using CONSULT-II. 	Engine speed changes according to the opening percent.	Harness and connectorSolenoid valve		
FUEL/T TEMP SEN	Change the fuel tank temperature using CONSULT-II.				
VENT CONTROL/V	 Ignition switch: ON (Engine stopped) Turn solenoid valve ON and OFF with the CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connector Solenoid valve		
SWIRL CON- TROL VALVE	 Ignition switch: ON (Engine stopped) Change swirl control valve open- ing step using CONSULT-II. 	Swirl control valve makes an operating sound.	Harness and connector Swirl control valve		

DTC & SRT CONFIRMATION MODE SRT STATUS Mode

For details, refer to EC-57, "SYSTEM READINESS TEST (SRT) CODE" .

SRT Work Support Mode

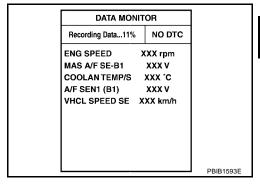
This mode enables a technician to drive a vehicle to set the SRT while monitoring the SRT status.

DTC Work Support Mode

Test mode	Test item	Condition	Reference page
	EVAP SML LEAK P0442/P1442*		EC-275
EVAPORATIVE	EVAP V/S LEAK P0456/P1456*		EC-496
SYSTEM	PURG VOL CN/V P1444		EC-496
	PURGE FLOW P0441		EC-269
	A/F SEN1 (B1) P1273		EC-462
	A/F SEN1 (B1) P1274	Refer to corresponding trouble diagnosis for	EC-469
A/F SEN1	A/F SEN1 (B1) P1276	DTC.	EC-476
	A/F SEN1 (B1) P1278		EC-482
	A/F SEN1 (B1) P1279		EC-489
	HO2S2 (B1) P1146		EC-413
HO2S2	HO2S2 (B1) P1147		EC-420
	HO2S2 (B1) P0139		EC-204

^{*:} DTC P1442 and P1456 does not apply to B15 models but appears in DTC Work Support Mode screen.

[QG18DE]

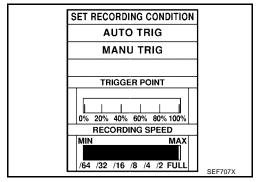

REAL TIME DIAGNOSIS IN DATA MONITOR MODE (RECORDING VEHICLE DATA) Description

CONSULT-II has two kinds of triggers and they can be selected by touching "SETTING" in "DATA MONITOR" mode.

- 1. "AUTO TRIG" (Automatic trigger):
 - The malfunction will be identified on the CONSULT-II screen in real time.

In other words, DTC/1st trip DTC and malfunction item will be displayed if the malfunction is detected by ECM.

At the moment a malfunction is detected by ECM, "MONITOR" in "DATA MONITOR" screen is changed to "Recording Data ... xx%" as shown at left, and the data after the malfunction detection is recorded. Then when the percentage reached 100%, "REAL-TIME DIAG" screen is displayed. If



"STOP" is touched on the screen during "Recording Data ... xx%", "REAL-TIME DIAG" screen is also displayed.

The recording time after the malfunction detection and the recording speed can be changed by "TRIG-GER POINT" and "Recording Speed". Refer to CONSULT-II OPERATION MANUAL.

- 2. "MANU TRIG" (Manual trigger):
 - DTC/1st trip DTC and malfunction item will not be displayed automatically on CONSULT-II screen even though a malfunction is detected by ECM.

DATA MONITOR can be performed continuously even though a malfunction is detected.

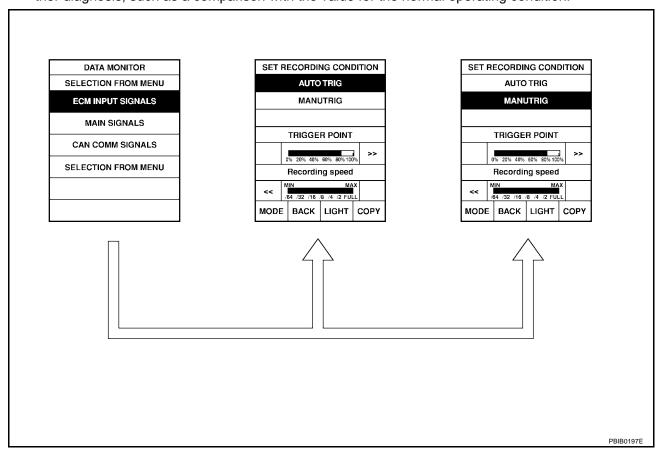
Operation

- 1. "AUTO TRIG"
 - While trying to detect the DTC/1st trip DTC by performing the DTC Confirmation Procedure, be sure to select to "DATA MONITOR (AUTO TRIG)" mode. You can confirm the malfunction at the moment it is detected.
 - While narrowing down the possible causes, CONSULT-II should be set in "DATA MONITOR (AUTO TRIG)" mode, especially in case the incident is intermittent.
 - When you are inspecting the circuit by gently shaking (or twisting) the suspicious connectors, components and harness in the DTC Confirmation Procedure, the moment a malfunction is found the DTC/1st trip DTC will be displayed. (Refer to GI-26, "How to Perform Efficient Diagnosis for an Electrical Incident", "Incident Simulation Tests".)
- "MANU TRIG"

EC

Α

F


G

Н

J

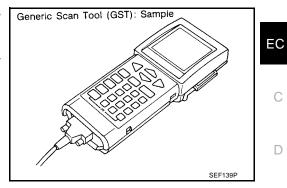
M

• If the malfunction is displayed as soon as "DATA MONITOR" is selected, reset CONSULT-II to "MANU TRIG". By selecting "MANU TRIG" you can monitor and store the data. The data can be utilized for further diagnosis, such as a comparison with the value for the normal operating condition.

[QG18DE]

Generic Scan Tool (GST) DESCRIPTION

UBS00B3E

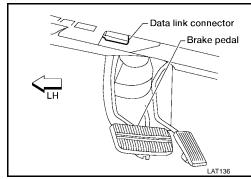

Α

С

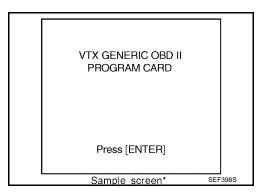
D

Generic Scan Tool (OBDII scan tool) complying with SAE J1978 has 8 different functions explained on the next page. ISO9141 is used as the protocol. The name "GST" or "Generic Scan Tool" is used in this service man-

ual.



FUNCTION


Di	iagnostic test mode	Function
MODE 1	READINESS TESTS	This mode gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, and system status information.
MODE 2	(FREEZE DATA)	This mode gains access to emission-related data value which were stored by ECM during the freeze frame. [For details, refer to EC-57, "FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA").]
MODE 3	DTCs	This mode gains access to emission-related power train trouble codes which were stored by ECM.
		This mode can clear all emission-related diagnostic information. This includes:
		Clear number of diagnostic trouble codes (MODE 1)
		Clear diagnostic trouble codes (MODE 3)
MODE 4	CLEAR DIAG INFO	Clear trouble code for freeze frame data (MODE 1)
		Clear freeze frame data (MODE 2)
		Reset status of system monitoring test (MODE 1)
		Clear on board monitoring test results (MODE 6 and 7)
MODE 6	(ON BOARD TESTS)	This mode accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.
MODE 7	(ON BOARD TESTS)	This mode enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.
		This mode can close EVAP system in ignition switch ON position (Engine stopped). When this mode is performed, following parts can be opened or closed.
		EVAP canister vent control valve open
		Vacuum cut valve bypass valve closed
		In the following conditions, this mode cannot function.
MODE 8	_	Low ambient temperature
		Low battery voltage
		Engine running
		Ignition switch OFF
		Low fuel temperature
		Too much pressure is applied to EVAP system
MODE 9	(CALIBRATION ID)	This mode enables the off-board test device to request specific vehicle information such as Vehicle Identification Number (VIN) and Calibration IDs.

GST INSPECTION PROCEDURE

- 1. Turn ignition switch OFF.
- Connect GST to data link connector for GST which is located under LH dash panel near the fuse box cover.

- 3. Turn ignition switch ON.
- 4. Enter the program according to instruction on the screen or in the operation manual.
 - (*: Regarding GST screens in this section, sample screens are shown.)

5. Perform each diagnostic mode according to each service proce-

For further information, see the GST Operation Manual of the tool maker.

OBD II FUNCTIONS F0: DATA LIST F1: FREEZE DATA F2: DTCs F3: SNAPSHOT F4: CLEAR DIAG INFO F5: O2 TEST RESULTS **F6: READINESS TESTS** F7: ON BOARD TESTS F8: EXPAND DIAG PROT

F9: UNIT CONVERSION Sample screen*

CONSULT-II Reference Value in Data Monitor Mode

UBS00B3F

SEF416S

Specification data are reference values.

Specification data are output/input values which are detected or supplied by the ECM at the connector.
 Specification data may not be directly related to their components signals by the connector.

* Specification data may not be directly related to their components signals/values/operations.
(i.e., Adjust ignition timing with a timing light before monitoring IGN TIMING. Specification data might be displayed even when ignition timing is not adjusted to specification. This IGN TIMING monitors the data calculated by the ECM according to the input signals from the

MONITOR ITEM	CONE	SPECIFICATION	
ENG SPEED	Tachometer: Connect Run engine and compare CONSU cation.	Almost the same speed as the tachometer indication.	
	Engine: After warming up	Idle	1.0 - 1.7V
MAS A/F SE-B1	Air conditioner switch: OFFShift lever: N (A/T), Neutral (M/T)No-load	2,500 rpm	1.5 - 2.4V
	Engine: After warming up	Idle	1.0 - 1.6 msec
B/FUEL SCHDL	Air conditioner switch: OFFShift lever: N (A/T), Neutral (M/T)No-load	2,000 rpm	0.7 - 1.3 msec

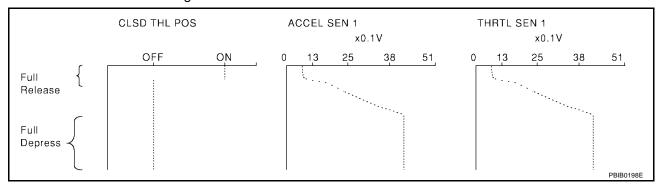
MONITOR ITEM	CONDITION		SPECIFICATION	
A/F ALPHA-B1	Engine: After warming up Maintaining engine speed at 2,000 rpm		53 - 155%	А
COOLAN TEMP/S	Engine: After warming up		More than 70°C (158°F)	F 0
A/F SEN1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V	EC
HO2S2 (B1)	 Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	Revving engine from idle to 3,000 rpm quickly	0 - 0.3V ←→ 0.6 - 1.0V	C
HO2S2 MNTR (B1)	 Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	Revving engine from idle to 3,000 rpm quickly	LEAN ←→ RICH	Е
VHCL SPEED SE	Turn drive wheels and compare CONSULT-II value with the speedometer indication.		Almost the same speed as the speedometer indication.	F
BATTERY VOLT	Ignition switch: ON (Engine stopped)	ed)	11 - 14V	•
ACCEL SEN1	Ignition switch: ON	Accelerator pedal: Fully released	0.65 - 0.87V	G
ACCEL SEIVI	(Engine stopped)	Accelerator pedal: Fully depressed	More than 4.3V	
ACCEL SEN2*	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	0.56 - 0.96V	≘•
ACCEL SENZ		Accelerator pedal: Fully depressed	More than 4.0V	Н
THRTL SEN1	Ignition switch: ON	Accelerator pedal: Fully released	More than 0.36V	
THRTL SEN2*	(Engine stopped)Shift lever: D(A/T), 1st (M/T)	Accelerator pedal: Fully depressed	Less than 4.75V	I
EVAP SYS PRES	• Ignition switch: ON		1.8 - 4.8V	
START SIGNAL	 Ignition switch: ON → START → ON 		$OFF \to ON \to OFF$	
	• Ignition switch: ON (Engine stopped)	Throttle valve: Idle position	ON	J
CLSD THL POS		Throttle valve: Slightly open	OFF	
	Engine: After warming up, idle the engine	A/C switch: OFF	OFF	K
AIR COND SIG		A/C switch: ON (Compressor operates)	ON	
P/N POSI SW	• Ignition switch: ON	Shift lever: P or N (A/T), Neutral (M/T)	ON	L
	3 11 1 11	Except above	OFF	
PW/ST SIGNAL	Engine: After warming up, idle the engine	Steering wheel in neutral position (Forward direction)	OFF	M
		The steering wheel is turned	ON	
LOAD SIGNAL		Rear window defogger switch and/ or lighting switch is in 2nd	ON	
	Ignition switch: ON	Rear window defogger switch is OFF and lighting switch is OFF	OFF	
IGNITION SW	• Ignition switch: $ON \rightarrow OFF \rightarrow ON$		$ON \to OFF \to ON$	
HEATED FAN OW	Engine: After warming up, idle	Heater fan is operating	ON	
HEATER FAN SW	the engine	Heater fan is not operating	OFF	
DDAKE SW	• Ignition quitable ON	Brake pedal: Fully released	OFF	
BRAKE SW	Ignition switch: ON	Brake pedal: Slightly depressed	ON	

MONITOR ITEM	CONE	SPECIFICATION	
	Engine: After warming up		
INJ PULSE-B1	 Air conditioner switch: OFF Shift lever: N (A/T), Neutral (M/T) No-load 	2,000 rpm	2.4 - 3.2 msec 1.9 - 3.2 msec
IGN TIMING	Engine: After warming upAir conditioner switch: OFF	Idle	A/T 18°+5° BTDC M/T 7°±5° BTDC
IGN TIWING	Shift lever: N (A/T), Neutral (M/T)No-load	2,000 rpm	More than 25° BTDC
	Engine: After warming up	Idle	20.0 - 35.5%
CAL/LD VALUE	 Air conditioner switch: OFF Shift lever: N (A/T), Neutral (M/T) No-load 	2,500 rpm	12.0 - 30.0%
	Engine: After warming up	Idle	1.4 - 4.0 g·m/s
MASS AIRFLOW	 Air conditioner switch: OFF Shift lever: N (A/T), Neutral (M/T) No-load 	2,500 rpm	5.0 - 10.0 g·m/s
	Engine: After warming up	Idle	0%
PURG VOL C/V	 Air conditioner switch: OFF Shift lever: N (A/T), Neutral (M/T) No-load 	2,000 rpm	_
SWL C/V (B1)	Engine: Idle the engine	Engine coolant temperature is below 44°C (111°F)	0 - 5 step
	• Engine. Idio the origine	Engine coolant temperature is above 45°C (113°F)	115 - 120 step
	Engine: After warming up	Idle	0% - 2%
INT/V SOL (B1)	 Shift lever: N (A/T), Neutral (M/T) Air conditioner switch: OFF No - load 	When revving engine up to 2,000 rpm quickly	Approx. 0% - 80%
AIR COND RLY	 Air conditioner switch: OFF → ON 		$OFF \to ON$
FUEL PUMP RLY	 Ignition switch is turned to ON (Operates for 1 seconds) Engine running and cranking When engine is stopped (Stops in 1 seconds) 		ON
	Except as shown above		OFF
VENT CONT/V	Ignition switch: ON		OFF
THRTL RELAY	Ignition switch: ON		ON
	Engine: After warming up	Idle	–5° - 5°CA
INT/V TIM (B1)	 Shift lever: N (A/T), Neutral (M/T) Air conditioner switch: OFF No - load 	When revving engine up to 2,000 rpm quickly	Approx. 0° - 30°CA
COOLING FAN		Engine coolant temperature is 94°C (201°F) or less	OFF
	After warming up engine, idle the engine.Air conditioner switch: OFF	Engine coolant temperature is between 95°C (203°F) and 104°C (219°F)	LOW
		Engine coolant temperature is 105°C (221°F) or more	HIGH

MONITOR ITEM	CONDITION		SPECIFICATION	•
	Engine speed: Above 3,600 rpm		OFF	- A
HO2S2 HTR (B1)	 Engine speed is below 3,600 rpm after the following conditions are met. Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 		ON	EC
TRVL AFTER MIL	Ignition switch: ON Vehicle has traveled after MIL has turned ON		0 - 65,535 km (0 - 40,723 mile)	С
A/F S1 HTR (B1)	Engine: After warming up, idle the	e engine	0 - 100%	=
. ,		Engine coolant temperature is below 44°C (111°F)	Approx. 0 deg.	D
SWL/C POSI SE	Engine: Idle the engine	Engine coolant temperature is above 45°C (113°F)	Approx. 80 deg.	- - E
	Ignition switch: ON (Engine stopped)	ed)	Approx. 0V	
AC PRESS SEN	Engine: Idle Air conditioner switch: OFF		1.0 - 4.0V	F
VEH SPEED SE	• Turn drive wheels and compare CONSULT-II value with the speedometer indication.		Almost the same speed as the speedometer indication.	•
SET VHCL SPD	Engine: Running	ASCD: Operating	The preset vehicle speed is displayed.	G
MAIN SW	a Ignition quitable ON	CRUISE switch: Pressed	ON	
WAIN OW	Ignition switch: ON	CRUISE switch: Released	OFF	Н
CANCEL SW	Ignition switch: ON	CRUISE switch: Pressed	ON	
CANCEL SW		CRUISE switch: Released	OFF	
RESUME/ACC SW	Ignition switch: ON	ACCEL/RES switch: Pressed	ON	
		ACCEL/RES switch: Released	OFF	•
SET SW	a lanition quitable ON	COAST/SET switch: Pressed	ON	J
	Ignition switch: ON	COAST/SET switch: Released	OFF	•
BRAKE SW1	Ignition switch: ON	Clutch pedal (M/T) and brake pedal: Fully released	ON	K
		Clutch pedal (M/T) and/or brake pedal: Depressed	OFF	
BRAKE SW2	Ignition switch: ON	Brake pedal: Fully released	OFF	L
		Brake pedal: Slightly Depressed	ON	
CRUISE LAMP	Ignition switch: ON	CRUISE switch: Pressed	ON	IV
ONOIGE EAWII		CRUISE switch: Released	OFF	_
	CRUISE switch: ON	COAST/SET switch: Pressed	ON	
SET LAMP	 When vehicle speed is between 40 km/h (25 MPH) and 144 km/h (89 MPH) 	COAST/SET switch: Released	OFF	

^{*:} Accelerator pedal position sensor 2 signal and throttle position sensor 2 signal are converted by ECM internally. Thus, they differ from ECM terminals voltage signal.

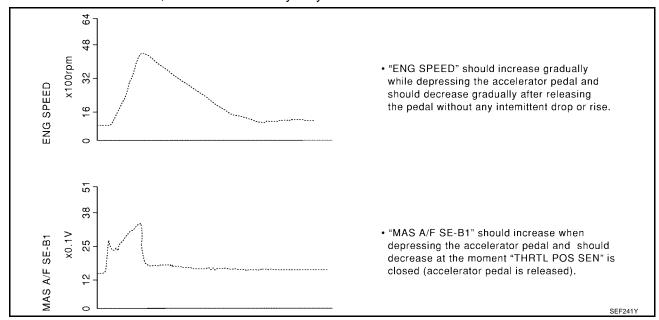
Major Sensor Reference Graph in Data Monitor Mode


UBS00B3G

The following are the major sensor reference graphs in "DATA MONITOR" mode.

CLSD THL POS, ACCEL SEN 1, THRTL SEN 1

Below is the data for "CLSD THL POS", "ACCEL SEN 1" and "THRTL SEN 1" when depressing the accelerator pedal with the ignition switch ON and with selector lever in D position.

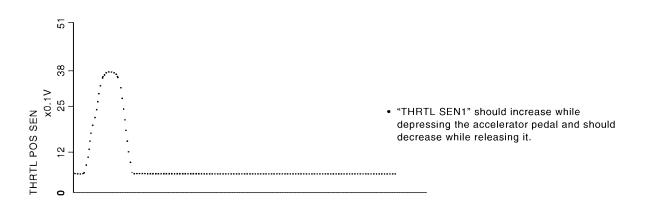

The signal of "ACCEL SEN 1" and "THRTL SEN 1" should rise gradually without any intermittent drop or rise after "CLSD THL POS" is changed from ON to OFF.

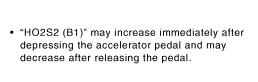
ENG SPEED, MAS A/F SE-B1, THRTL SEN 1, HO2S2 (B1), INJ PULSE-B1

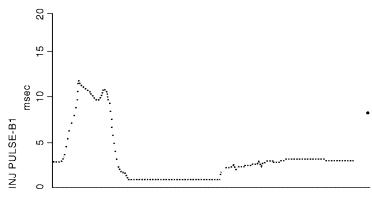
Below is the data for "ENG SPEED", "MAS A/F SE-B1", "THRTL SEN 1", "HO2S2 (B1/B2)" and "INJ PULSE" when revving engine quickly up to 4,800 rpm under no load after warming up engine to normal operating temperature.

Each value is for reference, the exact value may vary.

EC


C


D


Е

Н

M

x0.01V

64

HO2S2 (B1)

 "INJ PULSE-B1" should increase when depressing the accelerator pedal and should decrease when the pedal is released.

PBIB1594E

TROUBLE DIAGNOSIS - SPECIFICATION VALUE

[QG18DE]

TROUBLE DIAGNOSIS - SPECIFICATION VALUE

PFP:00031

Description

UBS00B3H

The specification (SP) value indicates the tolerance of the value that is displayed in "DATA MONITOR (SPEC)" mode of CONSULT-II during normal operation of the Engine Control System. When the value in "DATA MONITOR (SPEC)" mode is within the SP value, the Engine Control System is confirmed OK. When the value in "DATA MONITOR (SPEC)" mode is NOT within the SP value, the Engine Control System may have one or more malfunctions.

The SP value is used to detect malfunctions that may affect the Engine Control System, but will not light the MIL.

The SP value will be displayed for the following three items:

- B/FUEL SCHDL (The fuel injection pulse width programmed into ECM prior to any learned on board correction)
- A/F ALPHA-B1 (The mean value of air-fuel ratio feedback correction factor per cycle)
- MAS A/F SE-B1 (The signal voltage of the mass air flow sensor)

Testing Condition

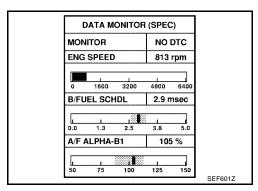
LIBS00B3L

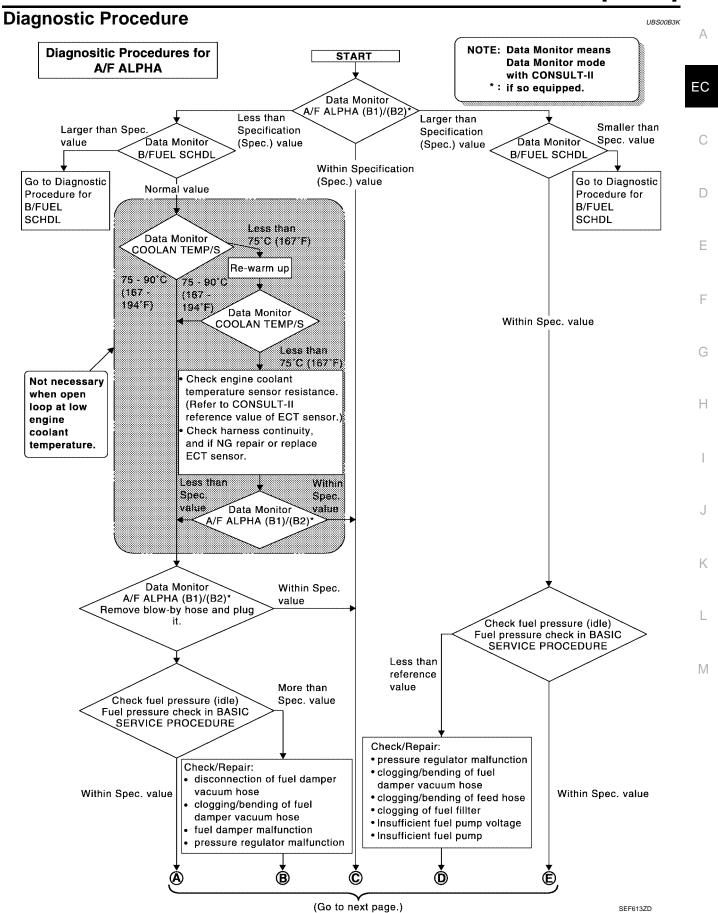
- Vehicle driven distance: More than 5,000 km (3,017 miles)
- Barometric pressure: 98.3 104.3 kPa (1.003 1.064 kg/cm², 14.25 15.12 psi)
- Atmospheric temperature: 20 30°C (68 86°F)
- Engine coolant temperature: 75 95°C (167 203°F)
- Transmission: Warmed-up*¹
- Electrical load: Not applied*²
- Engine speed: Idle

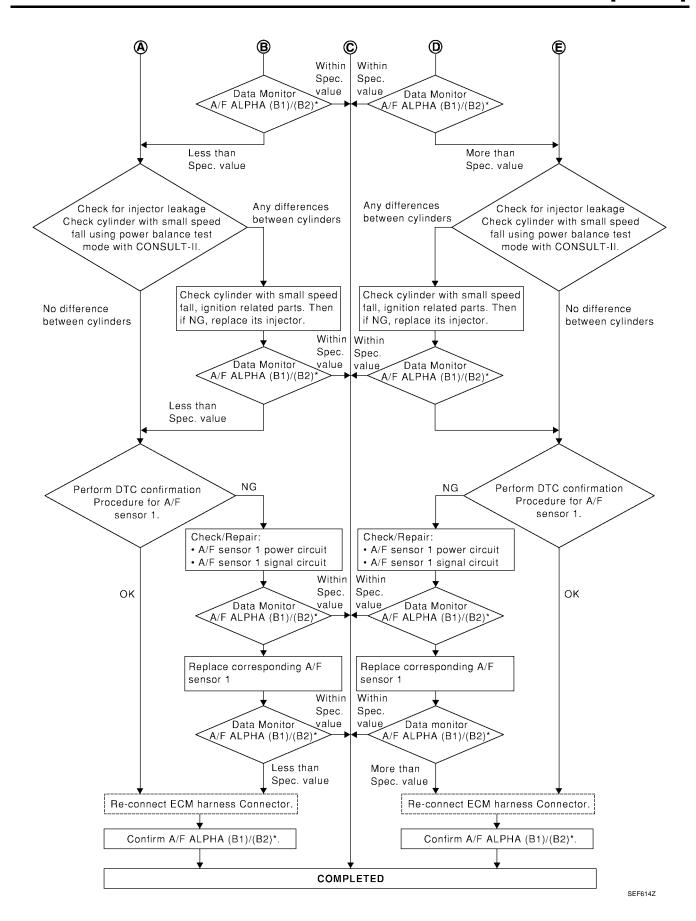
*1: For A/T models, after the engine is warmed up to normal operating temperature, drive vehicle until "FLUID TEMP SE" (A/T fluid temperature sensor signal) indicates more than 60°C (140°F).

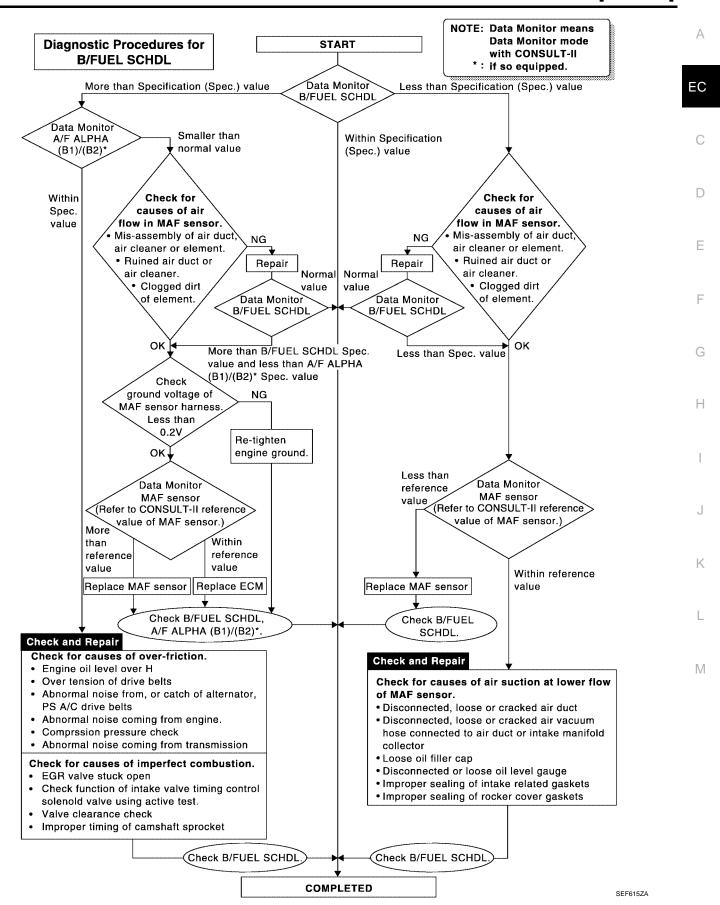
For MT models, drive vehicle for 5 minutes after the engine is warmed up to normal operating temperature.

*2: Rear window defogger switch, air conditioner switch, lighting switch are OFF. Cooling fans are not operating. Steering wheel is straight ahead.


Inspection Procedure


UBS00B3J


NOTE:


Perform "DATA MONITOR (SPEC)" mode in maximum scale display.

- Perform <u>EC-81</u>, "Basic Inspection".
- 2. Confirm that the testing conditions indicated above are met.
- 3. Select "B/FUEL SCHDL", "A/F ALPHA-B1" and "MAS A/F SE-B1" in "DATA MONITOR (SPEC)" mode with CONSULT-II.
- 4. Make sure that monitor items are within the SP value.
- 5. If NG, go to EC-137, "Diagnostic Procedure".

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT

[QG18DE]

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT

PFP:00006

Description

LIBOOODO

Intermittent incidents (I/I) may occur. In many cases, the malfunction resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on DTC (1st trip) visits. Realize also that the most frequent cause of I/I occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific malfunctioning area.

Common I/I Report Situations

STEP in Work Flow	Situation	
II The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other than		
III	The symptom described by the customer does not recur.	
IV	(1st trip) DTC data does not appear during the DTC CONFIRMATION PROCEDURE.	
VI The TROUBLE DIAGNOSIS for PXXXX does not indicate the malfunctioning area.		

Diagnostic Procedure

UBS00B3N

1. INSPECTION START

Erase (1st trip) DTCs. Refer to <u>EC-64, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.

>> GO TO 2.

2. CHECK GROUND TERMINALS

Check ground terminals for corroding or loose connection. Refer to $\underline{\text{Gl-26}}$, "How to Perform Efficient Diagnosis for an Electrical Incident", "GROUND INSPECTION".

OK or NG

OK >> GO TO 3.

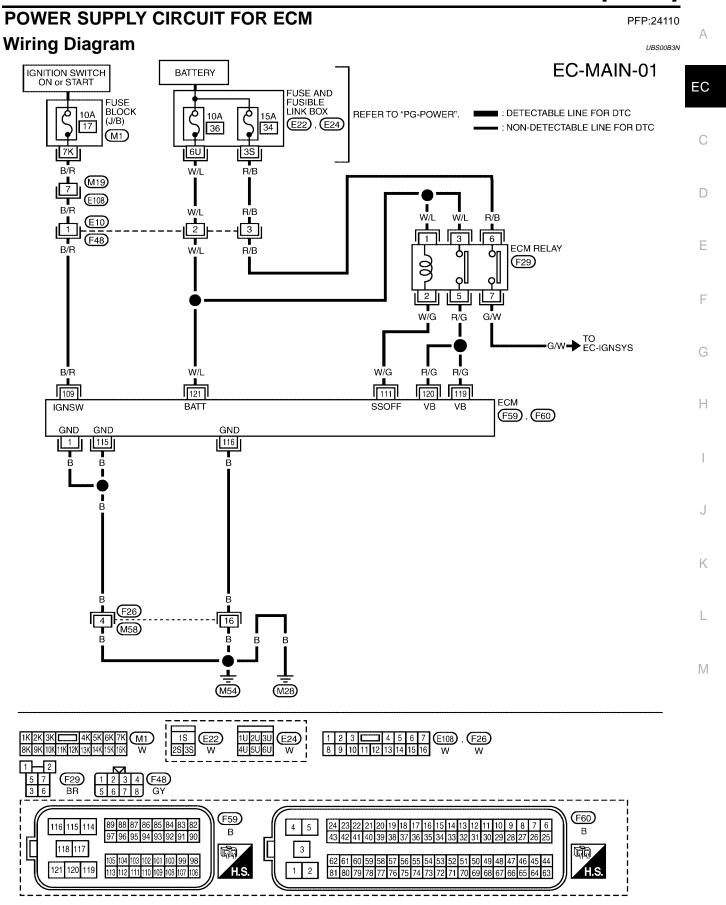
NG >> Repair or replace.

3. SEARCH FOR ELECTRICAL INCIDENT

Refer to <u>GI-26, "How to Perform Efficient Diagnosis for an Electrical Incident"</u>, "Incident Simulation Tests". OK or NG

OK >> GO TO 4.

NG >> Repair or replace.


4. CHECK CONNECTOR TERMINALS

Refer to GI-23, "How to Check Terminal", "How to Check Enlarged Contact Spring of Terminal".

OK or NG

OK >> INSPECTION END

NG >> Repair or replace connector.

UBS00B3O

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
1	В	ECM ground	[Engine is running] ● Idle speed	Engine ground
109	B/R	Ignition switch	[Ignition switch: OFF]	OV
			[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
111 W/			[Engine is running][Ignition switch: OFF]For a few seconds after turning ignition switch	0 - 1.0V
	W/G	ECM relay (Self shut-off)	OFF	
			 [Ignition switch: OFF] A few seconds passed after turning ignition switch OFF 	BATTERY VOLTAGE (11 - 14V)
115 116	B B	ECM ground	[Engine is running] • Idle speed	Engine ground
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

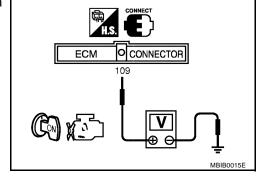
1. INSPECTION START

Start engine.

Is engine running?

Yes or No

Yes >> GO TO 9. No >> GO TO 2.

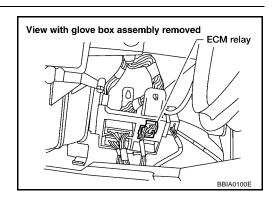

2. CHECK ECM POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF and then ON.
- 2. Check voltage between ECM terminal 109 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

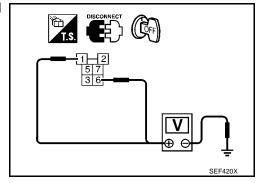

POWER SUPPLY CIRCUIT FOR ECM

[QG18DE]

Check the following.	
 Harness connectors E10, F48 Harness connectors M19, E108 Fuse block (J/B) connector M1 	EC
10A fuseHarness for open or short between ECM and fuse	С
>> Repair open circuit or short to ground or short to power in harness or connectors.	D
4. CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT	
Turn ignition switch OFF. Disconnect ECM harness connector.	E
 Check harness continuity between ECM terminals 1, 115, 116, and engine ground. Refer to Wiring Diagram. 	F
Continuity should exist.	
4. Also check harness for short to power. OK or NG	G
OK >> GO TO 6. NG >> GO TO 5.	Н
5. detect malfunctioning part	
Check the following. Harness connectors F26, M58	I
Harness for open or short between ECM and ground	J
>> Repair open circuit or short to power in harness or connectors.	
	K
	L

6. CHECK ECM POWER SUPPLY CIRCUIT-II

1. Disconnect ECM relay.



2. Check voltage between ECM relay terminals 1, 6 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10, F48
- Fuse and fusible link box connectors E22, E24
- 10A fuse
- 15A fuse
- Harness for open or short between ECM relay and battery
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK ECM RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-I

1. Check harness continuity between ECM terminal 111 and ECM relay terminal 2.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> Go to EC-566, "IGNITION SIGNAL".

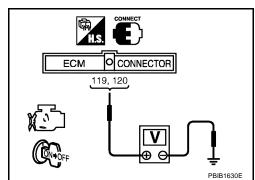
NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK ECM POWER SUPPLY CIRCUIT-III

- 1. Stop engine.
- 2. Turn ignition switch ON and then OFF.
- 3. Check voltage between ECM terminals 119, 120 and ground with CONSULT-II or tester.

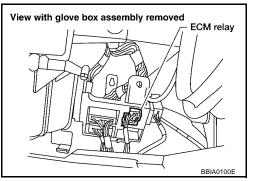
Voltage: After turning ignition switch OFF, bat-

tery voltage will exist for a few seconds,


then drop to approximately 0V.

OK or NG

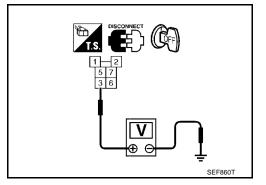
OK >> GO TO 15.


NG (Battery voltage does not exist.)>>GO TO 10.

NG (Battery voltage exists for more than a few seconds.)>>GO TO

10. CHECK ECM POWER SUPPLY CIRCUIT-IV

- 1. Disconnect ECM harness connector.
- 2. Disconnect ECM relay.



3. Check voltage between ECM relay terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 12. NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the harness for open or short between ECM relay and harness connector F48.

>> Repair harness or connectors.

EC

D

Е

Н

Κ

L

_

12. CHECK ECM POWER SUPPLY CIRCUIT-V

Check harness continuity between ECM terminals 119, 120 and ECM relay terminal 5.

Refer to Wiring Diagram.

Continuity should exist.


2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 13.

NG

>> Repair open circuit or short to ground or short to power in harness or connectors.

13. CHECK ECM RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-II

Check harness continuity between ECM terminal 111 and ECM relay terminal 2. Refer to Wiring Diagram.

Continuity should exist.

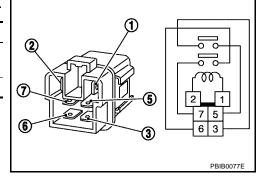
2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 14.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

14. CHECK ECM RELAY


- Apply 12V direct current between ECM relay terminals 1 and 2.
- Check continuity between ECM relay terminals 3 and 5, 6 and 7.

Condition	Continuity
12V direct current supply between terminals 1 and 2	Yes
OFF	No

OK or NG

>> GO TO 15. OK

NG >> Replace ECM relay.

15. CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminals 1, 115, 116, and engine ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 17.

NG >> GO TO 16.

POWER SUPPLY CIRCUIT FOR ECM

[QG18DE]

 \mathbb{N}

	[@CIODE]	
16. DETECT MALFUNCTIONING PART		А
Check the following.		
Harness connectors F26, M58 Harness for one or phort between F6M and ground		EC
Harness for open or short between ECM and ground		
>> Repair open circuit or short to power in harness or connectors.		С
17. CHECK INTERMITTENT INCIDENT		
Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .		D
>> INSPECTION END		Е
		F
		1
		G
		Н
		I
		J
		K
		L

DTC U1000, U1001 CAN COMMUNICATION LINE

[QG18DE]

DTC U1000, U1001 CAN COMMUNICATION LINE

PFP:23710

Description

UBS00B3P

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

On Board Diagnosis Logic

UBS00B3Q

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
U1000* ² 1000* ² U1001* ¹ 1001* ¹	CAN communication line	 ECM cannot communicate to other control units. ECM cannot communicate for more than the specified time. 	Harness or connectors (CAN communication line is open or shorted)

^{*1:} The MIL will not light up for this diagnosis.

DTC Confirmation Procedure

UBS00B3R

- 1. Turn ignition switch ON and wait at least 3 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- If 1st trip DTC is detected, go to <u>EC-150, "Diagnostic Procedure"</u>.

^{*2:} This self-diagnosis has the one trip detection logic.

DTC U1000, U1001 CAN COMMUNICATION LINE

[QG18DE]

Wiring Diagram

JBS00B3S

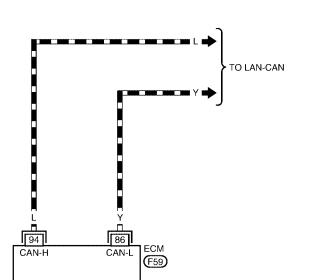
Α

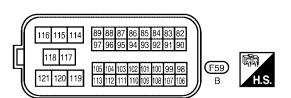
EC

С

D

Е


G


Н

M

EC-CAN-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC
: DATA LINE

DTC U1000, U1001 CAN COMMUNICATION LINE

[QG18DE]

Diagnostic Procedure

Go to LAN-4, "CAN COMMUNICATION" .

UBS00B3T

[QG18DE]

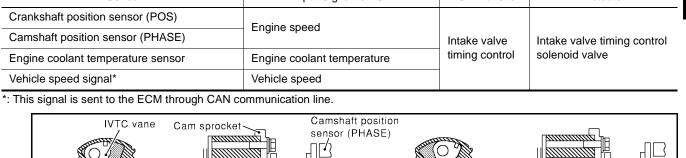
DTC P0011 IVT CONTROL

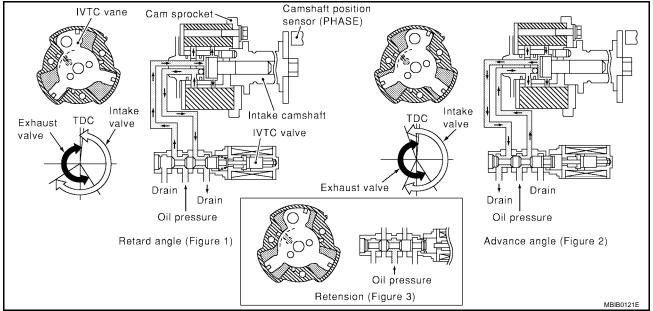
PFP:23796

Description SYSTEM DESCRIPTION

UBS00B3U

Α


EC


D

Е

Н

Sensor	Input Signal to ECM	ECM Function	Actuator
Crankshaft position sensor (POS)	Engine speed		
Camshaft position sensor (PHASE)	- Lingilie speed	Intake valve timing control	Intake valve timing control solenoid valve
Engine coolant temperature sensor	Engine coolant temperature		
Vehicle speed signal*	Vehicle speed		

This mechanism hydraulically controls cam phases continuously with the fixed operating angle of the intake valve.

The ECM receives signals such as crankshaft position, camshaft position, engine speed, and engine coolant temperature. Then, the ECM sends ON/OFF pulse duty signals to the intake valve timing control solenoid valve depending on driving status. This makes it possible to control the shut/open timing of the intake valve to increase engine torque in low/mid speed range and output in high-speed range.

CONSULT-II Reference Value in Data Monitor Mode

LIBSOOB3V

M

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	–5° - 5°CA
INT/V TIM (B1)	TIM (B1) • Shift lever: N (A/T), Neutral (M/T) • Air conditioner switch: OFF • No-load	When revving engine up to 2,000 rpm quickly	Approx. 0° - 30°CA
	Engine: After warming up	Idle	0% - 2%
INT/V SOL (B1)	Shift lever: N (A/T), Neutral (M/T)Air conditioner switch: OFFNo-load	When revving engine up to 2,000 rpm quickly	Approx. 0% - 80%

On Board Diagnosis Logic

UBS00B3W

DTC No.	Trouble diagnosis name	Detecting condition	Possible cause
P0011 0011	Intake valve timing control performance	There is a gap between angle of target and phase-control angle degree.	 Crankshaft position sensor (POS) Camshaft position sensor (PHASE) Accumulation of debris to the signal pick-up portion of the camshaft

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode.

Detected items	Engine operating condition in fail-safe mode
Intake valve timing control	The signal is not energized to the solenoid valve and the valve control does not function

DTC Confirmation Procedure

UBS00B3X

CAUTION:

Always drive at a safe speed.

NOTE

- If DTC P0011 is displayed with DTC P1111, first perform trouble diagnosis for DTC P1111. See <u>EC-368, "DTC P1111 IVT CONTROL SOLENOID VALVE"</u>.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10V and 16V at idle.

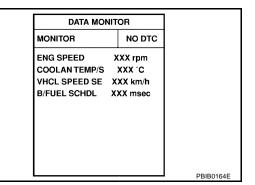
(II) WITH CONSULT-II

- 1. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to the normal operating temperature.
- 3. Maintain the following conditions for at least 6 consecutive seconds.

Hold the accelerator pedal as steady as possible.

ENG SPEED	500 - 2,000 rpm
Selector lever	P or N position

 Stop vehicle with engine running and let engine idle for 10 seconds.


- 5. If 1st trip DTC is detected, go to <u>EC-153, "Diagnostic Procedure"</u>. If 1st trip DTC is not detected, go to next step.
- 6. Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	1,800 - 3,175 rpm (A constant rotation is maintained.)
Selector lever	1st or 2nd position
Driving location uphill	Oriving vehicle uphill (Increased engine load will help maintain the driving conditions required for this test.)

7. If 1st trip DTC is detected, go to EC-153, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P0011 IVT CONTROL

[QG18DE]

Diagnostic Procedure

IBSOOBSV

1. CHECK CRANKSHAFT POSITION SENSOR (POS)

-

EC

D

Е

Α

Refer to EC-257, "Component Inspection".

OK or NG

OK >> GO TO 2.

NG >> Replace crankshaft position sensor (POS).

2. CHECK CAMSHAFT POSITION SENSOR (PHASE)

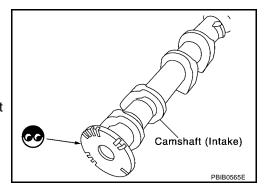
Refer to EC-264, "Component Inspection".

OK or NG

OK >> GO TO 3.

NG >> Replace camshaft position sensor (PHASE).

3. CHECK CAMSHAFT (INTAKE)


Check the following.

- Accumulation of debris to the signal plate of camshaft rear end
- Chipping signal plate of camshaft rear end

OK or NG

OK >> GO TO 4.

NG >> Remove debris and clean the signal plate of camshaft rear end or replace camshaft.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

For wiring diagram refer to <u>EC-254, "Wiring Diagram"</u> for CKP sensor (POS) and <u>EC-260, "Wiring Diagram"</u> for CMP sensor (PHASE).

>> INSPECTION END

K

Н

L

DTC P0037, P0038 HO2S2 HEATER

PFP:226A0

Description SYSTEM DESCRIPTION

UBS00B3Z

Sensor	Input Signal to ECM	ECM Function	Actuator
Camshaft position sensor (PHASE)	- Engine speed		
Crankshaft position sensor (POS)	Lingine speed	Heated oxygen sensor 2	Heated oxygen sensor 2 heater
Engine coolant temperature sensor	Engine coolant temperature	heater control	rieated oxygen sensor 2 neater
Mass air flow sensor	Amount of intake air		

The ECM performs ON/OFF control of the heated oxygen sensor 2 heater corresponding to the engine speed, amount of intake air and engine coolant temperature.

OPERATION

Engine speed rpm	Heated oxygen sensor 2 heater
Above 3,600	OFF
Below 3,600 rpm after the following conditions are met.	
Engine: After warming up	ON
 Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	OIV

CONSULT-II Reference Value in Data Monitor Mode

UBS00B40

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S2 HTR (B1)	 Engine speed: Below 3,600 rpm after the following conditions are met. Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	ON
	Engine speed: Above 3,600 rpm	OFF

On Board Diagnosis Logic

UBS00B41

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0037 0037	Heated oxygen sensor 2 heater control circuit low	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range. (An excessively low voltage signal is sent to ECM through the heated oxygen sensor 2 heater.)	 Harness or connectors (The heated oxygen sensor 2 heater circuit is open or shorted.) Heater oxygen sensor 2 heater
P0038 0038	Heated oxygen sensor 2 heater control circuit high	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range. (An excessively high voltage signal is sent to ECM through the heated oxygen sensor 2 heater.)	 Harness or connectors (The heated oxygen sensor 2 heater circuit is shorted.) Heater oxygen sensor 2 heater

DTC Confirmation Procedure

UBS00B42

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

DTC P0037, P0038 HO2S2 HEATER

[QG18DE]

- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.
- 6. If 1st trip DTC is detected, go to EC-157, "Diagnostic Procedure"

DATA MONITOR

MONITOR

NO DTC

ENG SPEED XXX rpm
COOLAN TEMP/S XXX °C

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 7. Let engine idle for 1 minute.
- 8. Select MODE 3 with GST.
- If DTC is detected, go to <u>EC-157, "Diagnostic Procedure"</u>.
- When using GST, DTC Confirmation Procedure should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

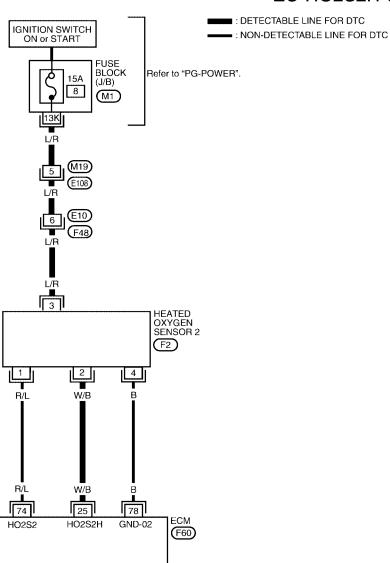
EC

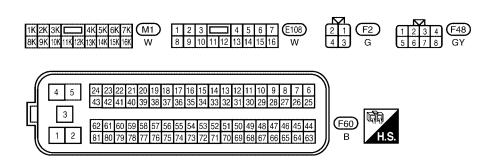
Α

D

Е

F


I


L

Wiring Diagram

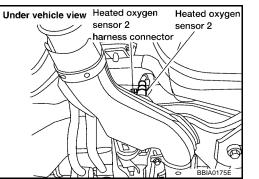
UBS00B43

EC-HO2S2H-01

BBWA0674E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

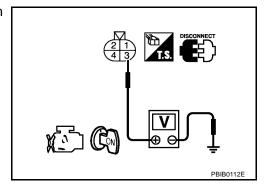

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
25 \	W/B	Heated oxygen sensor 2 heater	 [Engine is running] Warm-up condition Engine speed: Below 3,600 rpm after the following conditions are met. Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under on load 	0 - 1.0V
			 [Ignition switch: ON] Engine stopped. [Engine is running] Engine speed is above 3,600 rpm. 	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

1. CHECK HO2S2 POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 2 harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between HO2S2 terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

Α

EC

D

Е

UBS00B44

-

I

Н

K

L

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10, F48
- Harness connectors E108, M19
- Fuse block (J/B) connector M1
- 15A fuse
- Harness for open or short between heated oxygen sensor 2 and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK HO2S2 OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 25 and HO2S2 terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK HEATED OXYGEN SENSOR 2 HEATER

Refer to EC-159, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace heated oxygen sensor 2.

5. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2 HEATER

UBS00B45

Α

C

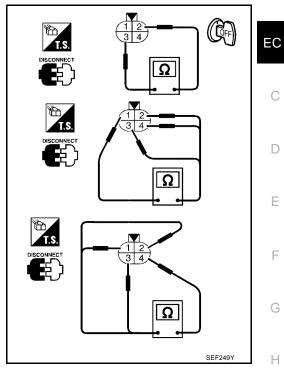
D

Е

Н

K

L


M

1. Check resistance between HO2S2 terminals as follows.

Terminal No.	Resistance
2 and 3	8 -10 Ω at 25°C (77°F)
1 and 2, 3, 4	∞ Ω
4 and 1, 2, 3	(Continuity should not exist)

If NG, replace heated oxygen sensor 2.

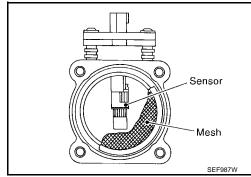
- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

Refer to EX-3, "EXHAUST SYSTEM".

UBS00B46

EC-159


DTC P0101 MAF SENSOR

Component Description

PFP:22680

UBS00B47

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the greater the heat loss. Therefore, the ECM must supply more electric current to maintain the temperature of the hot film as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

UBS00B48

Specification data are reference values.

MONITOR ITEM	CONDITIO	CONDITION		
MAS A/F SE-B1	 Engine: After warming up Air conditioner switch: OFF Shift lever: N (A/T), Neutral (M/T) No-load 	2,500 rpm	1.0 - 1.7V 1.5 - 2.4V	
CAL/LD VALUE	Engine: After warming up Air conditioner switch: OFF Shift lever: N (A/T), Neutral (M/T) No-load		20.0 - 35.5% 12.0 - 30.0%	
MASS AIRFLOW	 Engine: After warming up Air conditioner switch: OFF Shift lever: N (A/T), Neutral (M/T) No-load 	2,500 rpm	1.4 - 4.0 g·m/s 5.0 - 10.0 g·m/s	

On Board Diagnosis Logic

UBS00B49

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name		DTC detecting condition	Possible cause	
		A)		A high voltage from the sensor is sent to ECM under light load driving condition.	Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor
P0101 0101	Mass air flow sensor cir- cuit range/performance problem	В)	A low voltage from the sensor is sent to ECM under heavy load driving condition.	Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor	

DTC Confirmation Procedure

UBS00B4A

Perform PROCEDURE FOR MALFUNCTION A first. If the 1st trip DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B.

PROCEDURE FOR MALFUNCTION A

NOTE:


If engine will not start or stops soon, wait at least 10 seconds with engine stopped (Ignition switch ON) instead of running engine at idle speed.

DTC P0101 MAF SENSOR

[QG18DE]

(P) With CONSULT-II

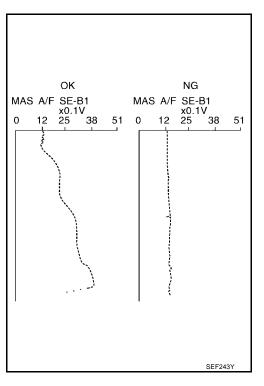
- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and warm it up to normal operating temperature.
- 4. Run engine for at least 10 seconds at idle speed.
- 5. If DTC is detected, go to EC-164, "Diagnostic Procedure".

With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION B

CAUTION:


Always driver vehicle at a safe speed.

(II) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Start engine and warm it up to normal operating temperature.

 If engine cannot be started, go to EC-164, "Diagnostic Procedure".
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- 4. Check the voltage of "MAS A/F SE-B1" with "DATA MONITOR".
- 5. Increases engine speed to about 4,000 rpm.
- 6. Monitor the linear voltage rise in response to engine speed increases.

If NG, go to $\underline{\text{EC-}164}$, "Diagnostic Procedure" . If OK, go to following step.

Α

EC

D

Е

G

Н

I

1 \

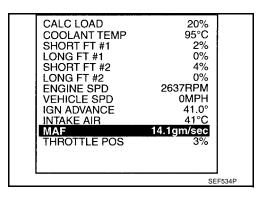
7. Maintain the following conditions for at least 10 consecutive seconds.

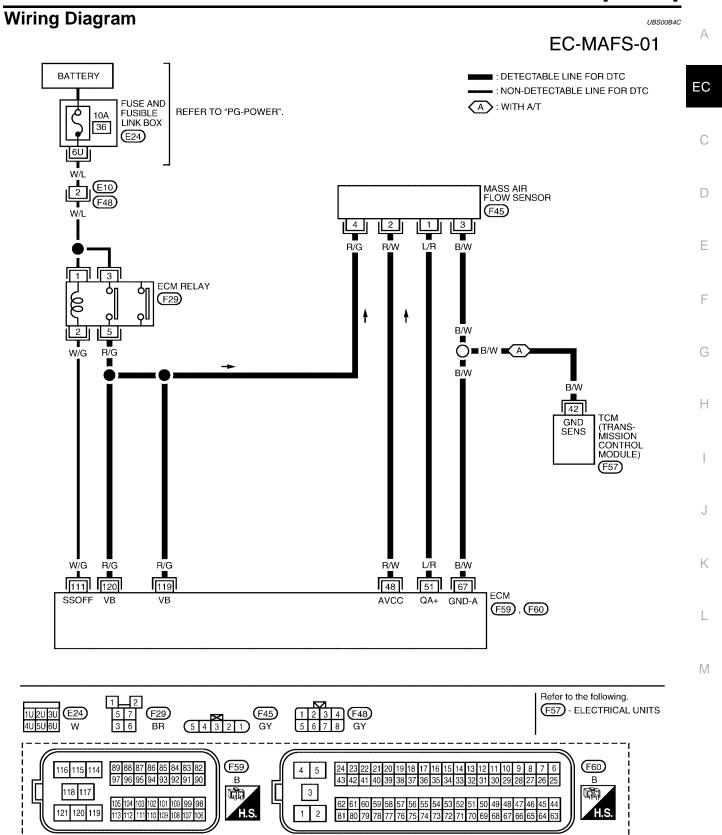
ENG SPEED	More than 2,000 rpm
THRTL SEN 1	More than 3.0V
THRTL SEN 2	More than 3.0V
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

	DATA MON	ΝT	OR		
MONI	ITOR		NO DTC		
VHCL THRT	SPEED . SPEED SE 'L SEN 1 'L SEN 2	X	XX rpm XX km/h XXX V XXX V		
				PBIB0	199E

8. If DTC is detected, go to EC-164, "Diagnostic Procedure".

Overall Function Check


JBS00B4B


Use this procedure to check the overall function of the mass air flow sensor circuit. During this check, a DTC might not be confirmed.

PROCEDURE FOR MALFUNCTION B

With GST

- 1. Turn ignition switch ON.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Select MODE 1 with GST.
- 4. Check the mass air flow sensor signal with MODE 1.
- 5. Check for linear mass air flow rise in response to increases to about 4,000 rpm in engine speed.
- 6. If NG, go to EC-164, "Diagnostic Procedure".

BBWA0675E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
48	R/W	Sensors' power supply [Ignition switch: ON]		Approximately 5V
51 L/R Mass air flow sensor -		Mong oir flow gongor	[Engine is running]Warm-up conditionIdle speed	1.0 - 1.7V
		Mass all now sensor	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm.	1.5 - 2.4V
67	B/W	Sensors' ground (MAF sensor / IAT sensor / PSP sensor / ASCD steer- ing switch / EVAP control system pressure sensor / Refrigerant pressure sen- sor / Swirl control valve position sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
111	W/G	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] ● For a few seconds after turning ignition switch OFF [Ignition switch: OFF]	0 - 1.0V
			A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS00B4D

1. INSPECTION START

Which malfunction (A or B) is duplicated?

A or B

A >> GO TO 3.

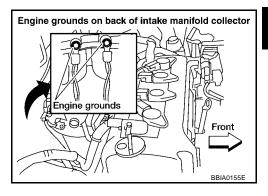
B >> GO TO 2.

2. CHECK INTAKE AIR LEAK

Check the following for connections.

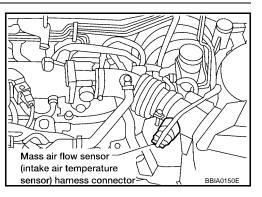
- Air duct
- Vacuum hoses
- Intake air passage between air duct and collector

OK or NG


OK >> GO TO 3.

NG >> Reconnect the parts.

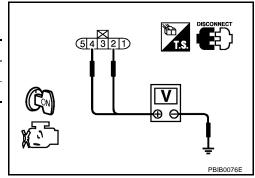
3. RETIGHTEN GROUND SCREWS


- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 4.

4. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect mass air flow sensor harness connector.
- 2. Turn ignition switch ON.


3. Check voltage between MAF sensor terminals 2, 4 and ground with CONSULT-II or tester.

Terminal	Voltage
2	Approximately 5V
4	Battery voltage

OK or NG

OK >> GO TO 6.

NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between ECM relay and mass air flow sensor
- Harness for open or short between mass air flow sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

Α

D

Е

F

G

Н

J

K

6. CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Disconnect TCM harness connector.
- 4. Check harness continuity between MAF sensor terminal 3 and ECM terminal 67, TCM terminal 42. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between mass air flow sensor and ECM
- Harness for open or short between mass air flow sensor and TCM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between MAF sensor terminal 1 and ECM terminal 51. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK MASS AIR FLOW SENSOR

Refer to EC-167, "Component Inspection".

OK or NG

OK >> GO TO 10.

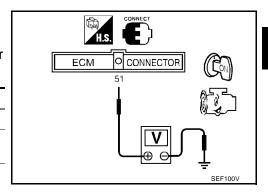
NG >> Replace mass air flow sensor.

10. CHECK INTERMITTENT INCIDENT

Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0101 MAF SENSOR


[QG18DE]

Component Inspection MASS AIR FLOW SENSOR

IBS00B4F

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- Check voltage between ECM terminal 51 (Mass air flow sensor signal) and ground.

Conditions	Voltage V
Ignition switch: ON (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.0 - 1.7
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.5 - 2.4
Idle to about 4,000 rpm*	1.0 - 1.7 to Approx. 4.0

- *: Check for linear voltage rise in response to increases to about 4,000 rpm in engine speed.
- 4. If the voltage is out of specification, proceed the following.
 - Turn ignition switch OFF.
 - Disconnect mass air flow sensor harness connector and reconnect it again.
 - Perform step 2 and 3 again.
- 5. If NG, remove mass air flow sensor from air duct. Check hot film for damage or dust.
- 6. If NG, clean or replace mass air flow sensor.

EC

Α

С

D

Е

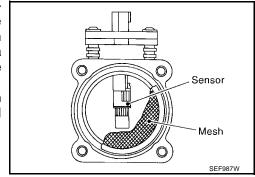
F

G

Н

/

ı


DTC P0102, P0103 MAF SENSOR

Component Description

PFP:22680

UBS00B4F

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the greater the heat loss. Therefore, the ECM must supply more electric current to maintain the temperature of the hot film as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

UBS00B4G

Specification data are reference values.

MONITOR ITEM	CONDITIO	CONDITION		
MAS A/F SE-B1	 Engine: After warming up Air conditioner switch: OFF Shift lever: N (A/T), Neutral (M/T) No-load 	2,500 rpm	1.0 - 1.7V 1.5 - 2.4V	
CAL/LD VALUE	 Engine: After warming up Air conditioner switch: OFF Shift lever: N (A/T), Neutral (M/T) No-load 	2,500 rpm	20.0 - 35.5% 12.0 - 30.0%	
MASS AIRFLOW	 Engine: After warming up Air conditioner switch: OFF Shift lever: N (A/T), Neutral (M/T) No-load 	2,500 rpm	1.4 - 4.0 g·m/s 5.0 - 10.0 g·m/s	

On Board Diagnosis Logic

UBS00B4H

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0102 0102	Mass air flow sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor
P0103 0103	Mass air flow sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)Mass air flow sensor

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.

DTC Confirmation Procedure

UBS00B4I

NOTE:

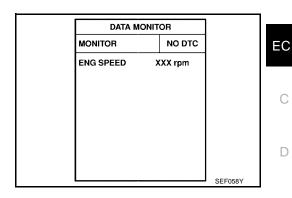
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

DTC P0102, P0103 MAF SENSOR

[QG18DE]

Α

D

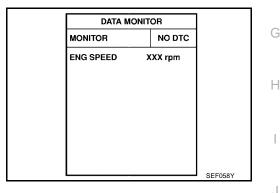

Е

F

PROCEDURE FOR DTC P0102

(II) With CONSULT-II

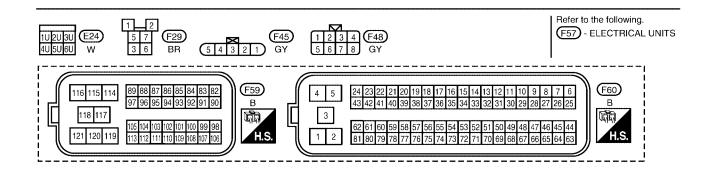
- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- 4. If DTC is detected, go to EC-177, "Diagnostic Procedure".


With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR DTC P0103

(II) With CONSULT-II


- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- 4. If DTC is detected, go to EC-177, "Diagnostic Procedure". If DTC is not detected, go to next step.
- 5. Start engine and wait at least 5 seconds.
- 6. If DTC is detected, go to EC-177, "Diagnostic Procedure".

With GST

Follow the procedure "With CONSULT-II" above.

[QG18DE] **Wiring Diagram** EC-MAFS-01 BATTERY : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC FUSE AND A: WITH A/T FUSIBLE LINK BOX REFER TO "PG-POWER". 36 (E24) MASS AIR FLOW SENSOR (F45) 3 L/R ECM RELAY (F29) B/W B/W A B/W 42 TCM (TRANS-MISSION CONTROL MODULE) GND SENS (F57) B/W 67 W/G R/G L/R R/G R/W 119 48 51 SSOFF GND-A

BBWA0675E

(F59), (F60)

[QG18DE]

Α

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
48	R/W	Sensors' power supply	[Ignition switch ON]	Approximately 5V	С
			[Engine is running] • Warm-up condition • Idle speed	1.0 - 1.7V	D
51	L/R	Mass air flow sensor	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm.	1.5 - 2.4V	E
67	B/W	Sensors' ground (MAF sensor / IAT sensor / PSP sensor / ASCD steer- ing switch / EVAP control system pressure sensor / Refrigerant pressure sen- sor / Swirl control valve position sensor)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	F G
111	W/G	ECM relay (Self shut-off)	[Engine is running][Ignition switch: OFF]For a few seconds after turning ignition switch OFF	0 - 1.0V	Н
		[Ignition switch: OFF]● A few seconds passed after turning ign switch OFF	A few seconds passed after turning ignition	BATTERY VOLTAGE (11 - 14V)	I
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	J

Diagnostic Procedure

1. INSPECTION START

Which malfunction (P0102 or P0103) is duplicated?

P0102 or P0103

P0102 >> GO TO 2.

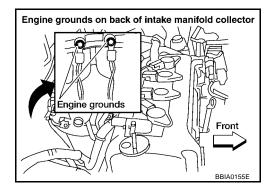
P0103 >> GO TO 3.

2. CHECK INTAKE SYSTEM

Check the following for connections.

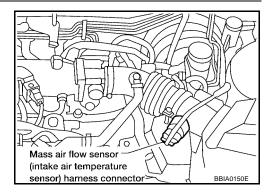
- Air duct
- Vacuum hoses
- Intake air passage between air duct to manifold

OK or NG


OK >> GO TO 3.

NG >> Reconnect the parts.

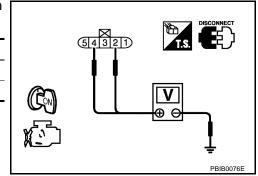
3. RETIGHTEN GROUND SCREWS


- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 4.

4. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect mass air flow sensor harness connector.
- 2. Turn ignition switch ON.


3. Check voltage between MAF terminals 2, 4 and ground with CONSULT-II or tester.

Terminal	Voltage
2	Approximately 5V
4	Battery voltage

OK >> GO TO 6.

NG >> GO TO 5.

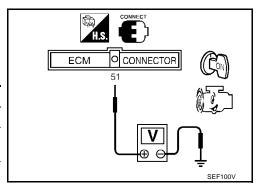
5. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between ECM relay and mass air flow sensor
- Harness for open or short between mass air flow sensor and ECM
 - >> Repair harness or connectors.

6. CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT Turn ignition switch OFF. Disconnect ECM harness connector. EC 3. Disconnect TCM harness connector. 4. Check harness continuity between MAF sensor terminal 3 and ECM terminal 67, TCM terminal 42. Refer to Wiring Diagram. Continuity should exist. 5. Also check harness for short to ground and short to power. OK or NG D >> GO TO 8. OK NG >> GO TO 7. Е 7. DETECT MALFUNCTIONING PART Check the following. Harness for open or short between mass air flow sensor and ECM Harness for open or short between mass air flow sensor and TCM >> Repair open circuit or short to ground or short to power in harness or connectors. 8. CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR POEN AND SHORT Check harness continuity between MAF sensor terminal 1 and ECM terminal 51. Refer to Wiring Diagram. Continuity should exist. 2. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 9. NG >> Repair open circuit or short to ground or short to power in harness or connectors. 9. CHECK MASS AIR FLOW SENSOR Refer to EC-178, "Component Inspection". OK or NG OK >> GO TO 10. NG >> Replace mass air flow sensor. M 10. CHECK INTERMITTENT INCIDENT

Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection MASS AIR FLOW SENSOR

UBS00B4L

- Reconnect all harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 51 (Mass air flow sensor signal) and ground.

Conditions	Voltage V
Ignition switch: ON (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.0 - 1.7
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.5 - 2.4
Idle to about 4,000 rpm*	1.0 - 1.7 to Approx. 4.0

^{*:} Check for linear voltage rise in response to increases to about 4,000 rpm in engine speed.

- 4. If the voltage is out of specification, proceed the following.
 - Turn ignition switch OFF.
 - Disconnect mass air flow sensor harness connector and reconnect it again.
 - Perform step 2 and 3 again.
- 5. If NG, remove mass air flow sensor from air duct. Check hot film for damage or dust.
- 6. If NG, clean or replace mass air flow sensor.

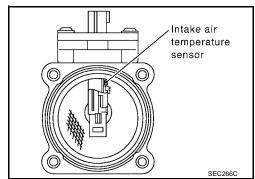
DTC P0112, P0113 IAT SENSOR

PFP:22630

Component Description

UBS00B4M

Α


EC

Е

Н

The intake air temperature sensor is built-into mass air flow sensor. The sensor detects intake air temperature and transmits a signal to the FCM

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
-10(14)	4.43	7.9 - 9.3
25 (77)	3.32	1.9 - 2.1
80 (176)	1.23	0.31 - 0.37

^{*:} These data are reference values and are measured between ECM terminal 34 (Intake air temperature sensor) and ground.

CAUTION:

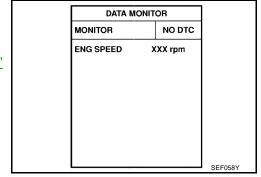
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

UBS00B4N

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0112 0112	Intake air temperature sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0113 0113	Intake air temperature sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Intake air temperature sensor

DTC Confirmation Procedure

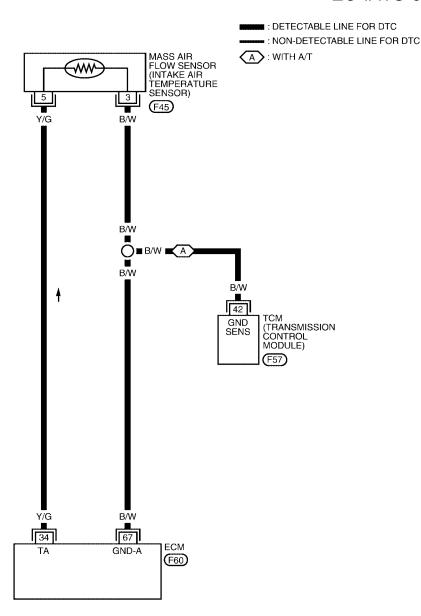

UBS00B4O

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-177, "Diagnostic Procedure"

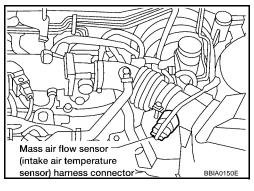

WITH GST

Follow the procedure "With CONSULT-II" above.

Wiring Diagram

UBS00B4F

EC-IATS-01



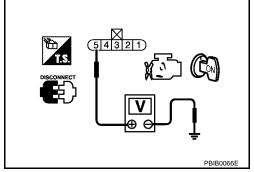
BBWA0676E

Diagnostic Procedure

1. CHECK INTAKE AIR TEMPERATURE SENSOR POWER SUPPLY

- Turn ignition switch OFF.
- 2. Disconnect mass air flow sensor (intake air temperature sensor is built-into) sensor harness connector.
- 3. Turn ignition switch ON.

4. Check voltage between mass air flow sensor terminal 5 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG

>> Repair open circuit or short to ground or short to power in harness or connectors.

$2.\,$ CHECK INTAKE AIR TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector.
- Check harness continuity between mass air flow sensor terminal 3 and ECM terminal 67, TCM terminal

Refer to wiring diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between TCM and intake air temperature sensor
- Harness for open or short between ECM and intake air temperature sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK INTAKE AIR TEMPERATURE SENSOR

Refer to EC-178, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace mass air flow sensor with intake air temperature sensor.

Α

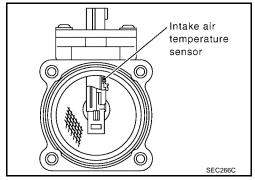
EC

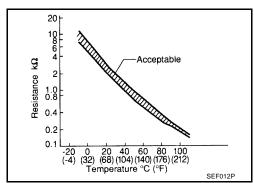
Е

5. CHECK INTERMITTENT INCIDENT

Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END


Component Inspection INTAKE AIR TEMPERATURE SENSOR


UBS00B4R

1. Check resistance between intake air temperature sensor terminals 3 and 5 under the following conditions.

Intake air temperature °C (°F)	Resistance kΩ
25 (77)	1.9 - 2.1

2. If NG, replace mass air flow sensor (with intake air temperature sensor).

DTC P0117, P0118 ECT SENSOR

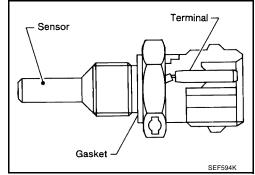
PFP:22630

Component Description

UBS00B4S

Α

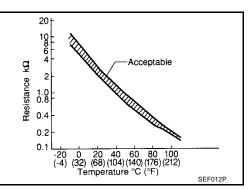
EC


D

Е

Н

M


The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 73 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may damage the ECM's transistor. Use ground other than ECM, such as body ground.

On Board Diagnosis Logic

UBS00B4T

These self-diagnoses have the one trip detection logic.

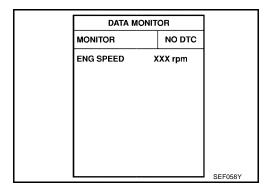
DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P0117 0117	Engine coolant temperature sen- sor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors
P0118 0118	Engine coolant temperature sen- sor circuit high input	An excessively high voltage from the sensor is sent to ECM.	(The sensor circuit is open or shorted.) Engine coolant temperature sensor

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode	
	Engine coolant temperature will be determined by E or START. CONSULT-II displays the engine coolant temperature	CM based on the time after turning ignition switch ON re decided by ECM.
	Condition	Engine coolant temperature decided (CONSULT-II display)
Engine coolant tempera-	Just as ignition switch is turned ON or Start	40°C (104°F)
ture sensor circuit	More than approx. 4 minutes after ignition ON or Start	80°C (176°F)
	Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)
	When the fail-safe system for engine coolant tempe while the engine is running.	rature sensor is activated, the cooling fan operates

DTC Confirmation Procedure


UBS00B4U

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- 4. If DTC is detected, go to EC-182, "Diagnostic Procedure".

WITH GST

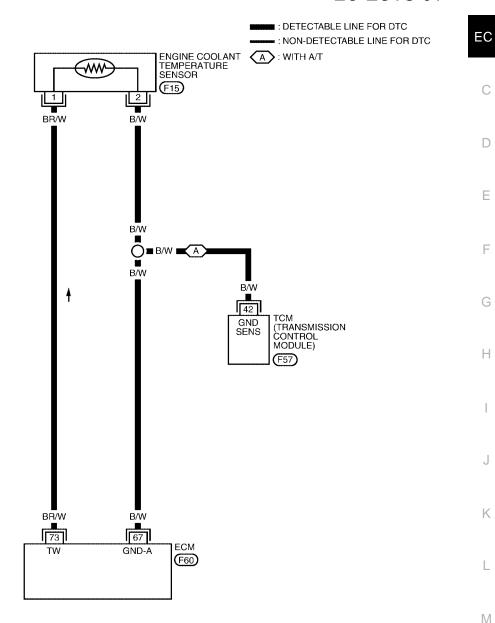
Follow the procedure "With CONSULT-II" above.

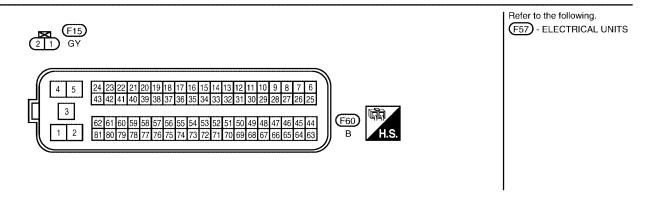
[QG18DE]

Α

C

D

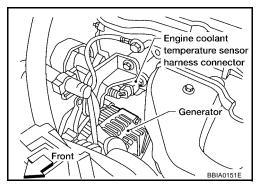

Е


Н

M

Wiring Diagram

EC-ECTS-01



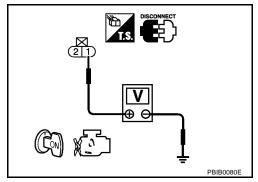
BBWA0677E

Diagnostic Procedure

1. CHECK ETC SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect engine coolant temperature (ECT) sensor harness connector.
- 3. Turn ignition switch ON.

4. Check voltage between ECT terminal 1 and ground with CON-SULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 2.

NG

>> Repair open circuit or short to ground or short to power in harness or connectors.

2. CHECK ETC SENSOR GROUND CIRCUIT FOR OPEN AND SHORRT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector.
- 4. Check harness continuity between ECT sensor terminal 2 and ECM terminal 67, TCM terminal 42. Refer to wiring diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between ECT sensor and ECM
- Harness for open or short between ECT sensor and TCM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-183, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace ECT sensor.

EC-182

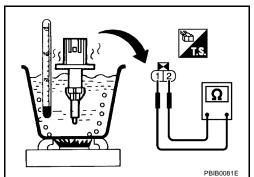
EC

D

Е

Н

UBS00B4X


5. CHECK INTERMITTENT INCIDENT

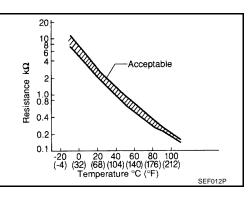
Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection ENGINE COOLANT TEMPERATURE SENSOR

1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

<Reference data>


Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 73 (Engine coolant temperature sensor) and ground.

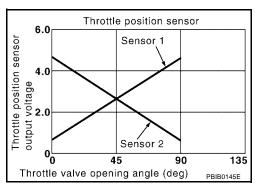
2. If NG, replace engine coolant temperature sensor.

Removal and Installation ENGINE COOLANT TEMPERATURE SENSOR

Refer to EM-13, "OUTER COMPONENT PARTS".

UBS00B4Y

DTC P0122, P0123 TP SENSOR


PFP:16119

UBS00B4Z

Component Description

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

UBS00B50

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL SEN1	Ignition switch: ON	Accelerator pedal: Fully released	More than 0.36V
THRTL SEN2*	(Engine stopped)Shift lever: D (A/T), 1st (M/T)	Accelerator pedal: Fully depressed	Less than 4.75V

^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

UBS00B51

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0122 0122	Throttle position sensor 2 circuit low input	An excessively low voltage from the TP sensor 2 is sent to ECM.	(The TP sensor 2 circuit is open or
P0123 0123	Throttle position sensor 2 circuit high input	An excessively high voltage from the TP sensor 2 is sent to ECM.	shorted.)Electric throttle control actuator (TP sensor 2)

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

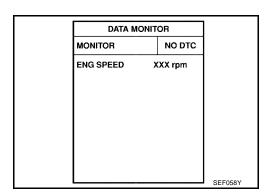
DTC P0122, P0123 TP SENSOR

[QG18DE]

DTC Confirmation Procedure

UBS00B52

NOTE


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-187, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

С

D

Е

C

Н

/

L

Wiring Diagram EC-TPS2-01 ELECTRIC THROTTLE CONTROL ACTUATOR (THROTTLE POSITION SENSOR) SENSOR 1 SENSOR 2 : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC (F58) 5 2 4 16 F26 69 47 66 ECM GND-A3 (F60)

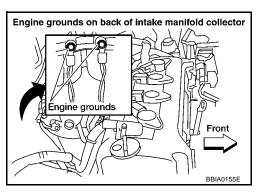
BBWA0678E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

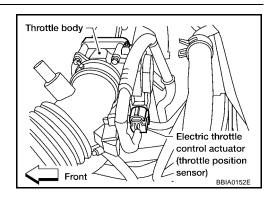
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
47	В	Throttle position sensor power supply	[Ignition switch: ON]	Approximately 5V	
50	w	Throttle position sensor 1	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully released 	More than 0.36V	
30	vv Inrottle position sensor 1	VV	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully depressed 	Less than 4.75V	
66	R	Throttle position sensor ground	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V	
60	6	Throttle position concer 2	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully released 	Less than 4.75V	
69	9 G Throttle position sensor 2	G	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully depressed 	More than 0.36V	


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

Turn ignition switch OFF. 1.

Loosen and retighten engine ground screws.

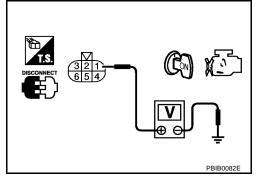

>> GO TO 2.

UBS00B54

2. CHECK THROTTLE POSITION SENSOR 2 POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.

 Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repa

>> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK THROTTLE POSITION SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 66 and electric throttle control actuator terminal 5. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK THROTTLE POSITION SENSOR 2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 69 and electric throttle control actuator terminal 2. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK THROTTLE POSITION SENSOR

Refer to EC-189, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

EC

D

Е

Н

K

M

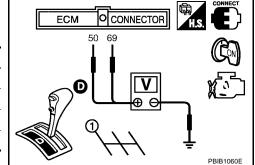
LIBSOOR55

6. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-47, "Throttle Valve Closed Position Learning".
- Perform <u>EC-47</u>, "Idle Air Volume Learning".

>> INSPECTION END

7. CHECK INTERMITTENT INCIDENT


Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection THROTTLE POSITION SENSOR

- 1. Reconnect all harness connectors disconnected.
- 2. Perform EC-47, "Throttle Valve Closed Position Learning".
- 3. Turn ignition switch ON.
- Set selector lever to D position (A/T models) or 1st position (M/T models).
- Check voltage between ECM terminals 50 (TP sensor 1 signal),
 (TP sensor 2 signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
69	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform EC-47, "Throttle Valve Closed Position Learning".
- 8. Perform <u>EC-47, "Idle Air Volume Learning"</u>.

Remove and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

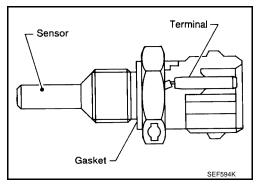
Refer to EM-13, "Removal and Installation".

JBS00B56

EC-189

DTC P0125 ECT SENSOR

PFP:22630


UBS00B57

Component Description

NOTE:

If DTC P0125 is displayed with P0117, P0118, first perform trouble diagnosis for <u>EC-179</u>, "<u>DTC P0117</u>, <u>P0118 ECT SENSOR"</u>.

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 73 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may damage the ECM's transistor. Use ground other than ECM, such as body ground.

On Board Diagnosis Logic

UBS00B58

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0125 0125	Insufficient engine cool- ant temperature for closed loop fuel control	 Voltage sent to ECM from the sensor is not practical, even when some time has passed after starting the engine. Engine coolant temperature is insufficient for closed loop fuel control. 	 Harness or connectors (High resistance in the circuit) Engine coolant temperature sensor Thermostat

DTC Confirmation Procedure


CAUTION:

Be careful not to overheat engine.

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(III) WITH CONSULT-II

- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Check that "COOLAN TEMP/S" is above 10°C (50°F). If it is above 10°C (50°F), the test result will be OK. If it is below 10°C (50°F), go to following step.
- 4. Start engine and run it for 65 minutes at idle speed. If "COOLAN TEMP/S" increases to more than 10°C (50°F) within 65 minutes, stop engine because the test result will be OK.
- 5. If DTC is detected, go to EC-191, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

1. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-191, "Component Inspection".

OK or NG

OK >> GO TO 2.

NG >> Replace engine coolant temperature sensor.

2. CHECK THERMOSTAT OPERATION

When the engine is cooled [lower than 75°C (167°F)], grasp lower radiator hose and confirm the engine coolant does not flow.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace thermostat. Refer to CO-12, "THERMOSTAT AND THERMOSTAT HOUSING".

3. CHECK INTERMITTENT INCIDENT

Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection ENGINE COOLANT TEMPERATURE SENSOR

Check resistance as shown in the figure.

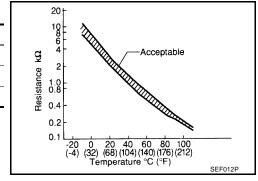
 $\overline{\Omega}$

EC

Α

Е

UBS00B5A


Н

UBS00B5B

<Reference data>

Temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.0
90 (194)	0.236 - 0.260

If NG, replace engine coolant temperature sensor.

UBS00B5C

Removal and Installation ENGINE COOLANT TEMPERATURE SENSOR

Refer to EM-13, "OUTER COMPONENT PARTS" .

DTC P0127 IAT SENSOR

PFP:22630

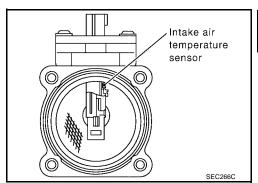
Component Description

UBS00B5D

Α

EC

Е


Н

K

M

The intake air temperature sensor is built into mass air flow sensor. The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance $k\Omega$
-10 (14)	4.43	7.9 - 9.3
25 (77)	3.32	1.9 - 2.1
80 (176)	1.23	0.31 - 0.37

^{*:} These data are reference values and are measured between ECM terminal 34 (Intake air temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0127 0127	Intake air temperature too high	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signal from engine coolant temperature sensor.	Harness or connectors (The sensor circuit is open or shorted)Intake air temperature sensor

DTC Confirmation Procedure

UBS00B5F

UBS00B5E

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

EC-193

(II) WITH CONSULT-II

- Wait until engine coolant temperature is less than 90°C (194°F)
- a. Turn ignition switch ON.
- b. Select "DATA MONITOR" mode with CONSULT-II.
- c. Check the engine coolant temperature.
- d. If the engine coolant temperature is not less than 90°C (194°F), turn ignition switch OFF and cool down engine.
 - Perform the following steps before engine coolant temperature is above 90°C (194°F).
- 2. Turn ignition switch ON.
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- 4. Start engine.
- 5. Hold vehicle speed at more than 70 km/h (43 MPH) for 100 consecutive seconds.
- 6. If 1st trip DTC is detected, go to EC-194, "Diagnostic Procedure".

WITH GST

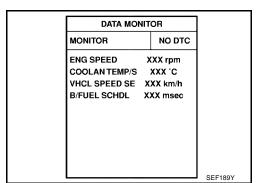
Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

1. CHECK INTAKE AIR TEMPERATURE SENSOR

Refer to EC-195, "Component Inspection".

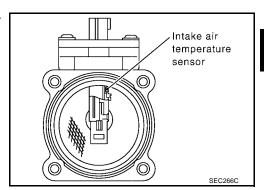
OK or NG


OK >> GO TO 2.

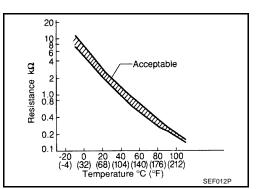
NG >> Replace mass air flow sensor (with intake air temperature sensor).

2. CHECK INTERMITTENT INCIDENT

Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .


>> INSPECTION END

Component Inspection INTAKE AIR TEMPERATURE SENSOR


UBS00B5H

1. Check resistance between intake air temperature sensor terminals 3 and 5 under the following conditions.

Intake air temperature °C (°F)	Resistance k Ω
25 (77)	1.9 - 2.1

2. If NG, replace mass air flow sensor (with intake air temperature sensor).

EC

Α

С

D

Е

F

G

Н

ı

[QG18DE]

DTC P0128 THERMOSTAT FUNCTION

PFP:21200

On Board Diagnosis Logic

UBS00B5I

Engine coolant temperature has not risen enough to open the thermostat even though the engine has run long enough.

This is due to a leak in the seal or the thermostat stuck open.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0128 0128	Thermostat function	The engine coolant temperature does not reach to specified temperature even though the engine has run long enough.	 Thermostat Leakage from sealing portion of thermostat Engine coolant temperature sensor

DTC Confirmation Procedure

UBS00B5J

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- For best results, perform at ambient temperature of −10°C (14°F) or higher.
- For best results, perform at engine coolant temperature of −10°C (14°F) to 68°C (154°F).

(II) WITH CONSULT-II

- 1. Replace thermostat with new one. Refer to <u>CO-12</u>, "<u>THERMOSTAT AND THERMOSTAT HOUSING</u>". Use only a genuine NISSAN thermostat as a replacement. If an incorrect thermostat is used, the MIL may come on.
- 2. Turn ignition switch ON.
- 3. Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- 4. Check that the "COOLAN TEMP/S" is above 68°C (154°F).
 If it is below 68°C (154°F), go to following step.
 If it is above 68°C (154°F), cool down the engine to less than 60°C (140°F), then retry from step 1.
- 5. Drive vehicle for 10 consecutive minutes under the following conditions.

VHCL SPEED SE	80 - 120 km/h (50 - 75 MPH)

If 1st trip DTC is detected, go to EC-196, "Diagnostic Procedure".

WITH GST

1. Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

UBS00B5K

1. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-197, "Component Inspection".

OK or NG

OK >> INSPECTION END

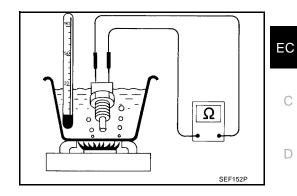
NG >> Replace engine coolant temperature sensor.

DTC P0128 THERMOSTAT FUNCTION

[QG18DE]

UBS00B5L

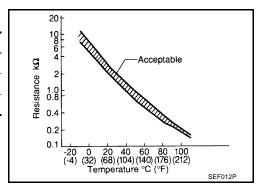
Α


C

 D

Е

Component Inspection ENGINE COOLANT TEMPERATURE SENSOR


Check resistance as shown in the figure.

<Reference data>

Temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.0
90 (194)	0.236 - 0.260

If NG, replace engine coolant temperature sensor.

UBS00B5M

Removal and Installation ENGINE COOLANT TEMPERATURE SENSOR

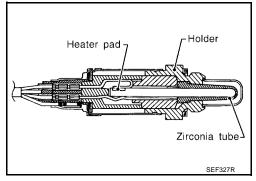
Refer to CO-12, "THERMOSTAT AND THERMOSTAT HOUSING".

Н

DTC P0138 HO2S2

PFP:226A0

Component Description


UBS00B5N

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas.

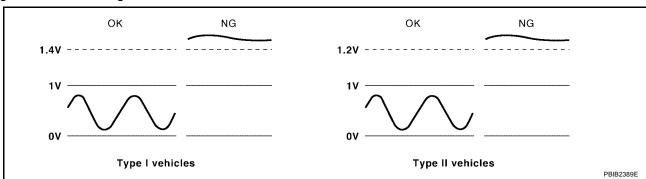
Even if switching characteristics of the air fuel ratio (A/F) sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

UBS00B5O


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1)	Engine: After warming up		0 - 0.3V ←→ 0.6 - 1.0V
HO2S2 MNTR (B1)	 Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	Revving engine from idle to 3,000 rpm quickly	$LEAN \longleftrightarrow RICH$

On Board Diagnosis Logic

UBS00B5P

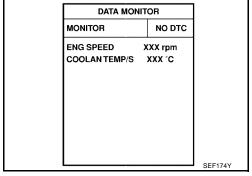
The heated oxygen sensor 2 has a much longer switching time between rich and lean than the air fuel ratio (A/F) sensor 1. The oxygen storage capacity before the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the voltage is too high during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0138 0138 (Bank 1)	Heated oxygen sensor 2 circuit high voltage	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)Heated oxygen sensor 2

DTC Confirmation Procedure

IBS00B5Q

CAUTION:


Always drive vehicle at a safe speed.

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II

- 1. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 2 minutes.
- 6. If 1st trip DTC is detected, go to <u>EC-201, "Diagnostic Procedure"</u>

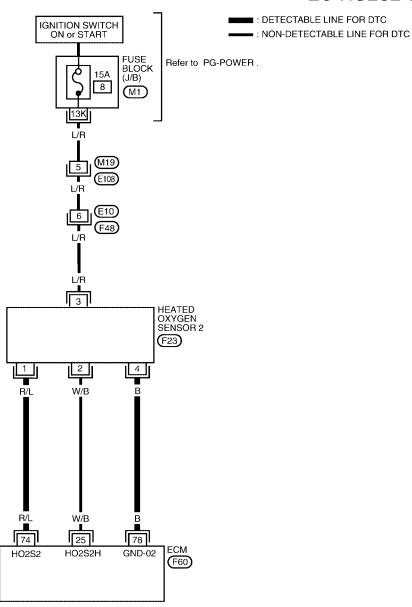
WITH GST

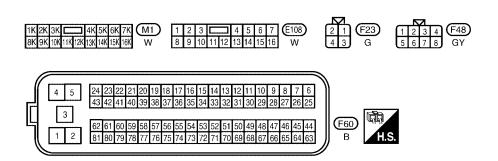
- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 2 minutes.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 7. Let engine idle for 2 minutes.
- 8. Select MODE 3 with GST.
- 9. If NG, go to EC-201, "Diagnostic Procedure".
- When using GST, DTC Confirmation Procedure should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

EC

Α

Е


Н


K

Wiring Diagram

UBS00B5R

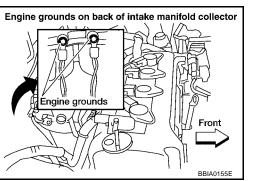
EC-HO2S2-01

BBWA0727E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
74	R/L	Heated oxygen sensor 2	 [Engine is running] Warm-up condition Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	0 - Approximately 1.0V
78	В	Heated oxygen sensor 2 ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

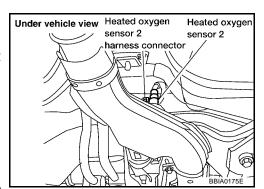
- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 2 harness connector.
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between ECM terminal 78 and HO2S2 terminal 4.

Refer to Wiring Diagram.


Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

Α

EC

D

Е

UBS00B5S

J

L

$3.\,$ check ho2s2 input signal circuit for open and short

 Check harness continuity between ECM terminal 74 and HO2S2 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

2. Check harness continuity between ECM terminal 74 or HO2S2 terminal 1 and ground. Refer to Wiring Diagram.

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK HARNESS CONNECTOR

Check HO2S2 harness connector for water.

Water should not exist.

OK or NG

OK >> GO TO 5.

NG >> Repair or replace harness connector.

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-202, "Component Inspection".

OK or NG

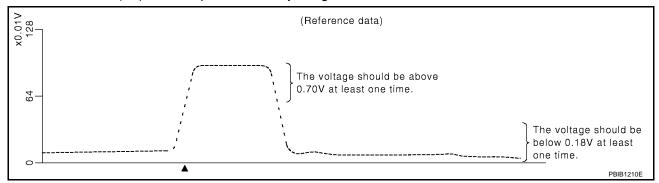
OK >> GO TO 6.

NG >> Replace heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection HEATED OXYGEN SENSOR 2

UBS00B5T

- (P) With CONSULT-II
- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.

	ACTIVE TES	ST ST	
FU	JEL INJECTION	25 %	
	MONITOR		
	ENG SPEED	XXX rpm	
	A/F SEN1 (B1)	xxx v	
	HO2S2 (B1)	xxx v	
<u></u>			PBIB1782E

6. Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)" should be above 0.70V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)" should be below 0.18V at least once when the "FUEL INJECTION" is -25%.

7. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

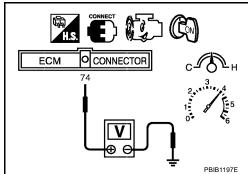
- 1. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed at between 3,500 to 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- Set voltmeter probes between ECM terminal 74 (HO2S2 signal) and engine ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.

(Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.70V at least once during this procedure.

If the voltage is above 0.70V at step 6, step 7 is not necessary.

7. Keep vehicle idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF (A/T), 4th gear position (M/T).

The voltage should be below 0.18V at least once during this procedure.


8. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

Refer to EX-3, "EXHAUST SYSTEM".

EC

Α

П

Е

G

Н

J

K

L

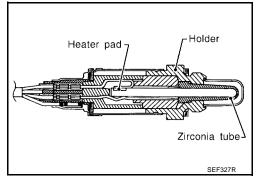
M

UBS00B5U

DTC P0139 HO2S2

PFP:226A0

Component Description


UBS00B5V

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas.

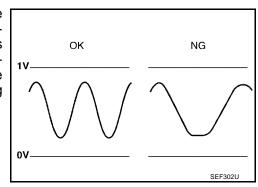
Even if switching characteristics of the air fuel ratio (A/F) sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

UBS00B5W


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1)	Engine: After warming up		0 - 0.3V ←→ 0.6 - 1.0V
HO2S2 MNTR (B1)	 Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	Revving engine from idle to 3,000 rpm quickly	$LEAN \longleftrightarrow RICH$

On Board Diagnosis Logic

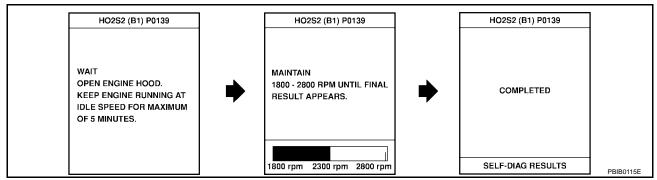
UBS00B5X

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the air fuel ratio (A/F) sensor 1. The oxygen storage capacity before the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the switching response of the sensor's voltage is faster than specified during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0139 0139	Heated oxygen sensor 2 circuit slow response	It takes more time for the sensor to respond between rich and lean than the specified time.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 Fuel pressure Fuel injectors Intake air leaks

DTC Confirmation Procedure

RS00B5Y


NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II

For the best results, perform "DTC WORK SUPPORT" at a temperature of 0 to 30°C (32 to 86°F)

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.
- 6. Make sure that "COOLANTEMP/S" indications more than 70°C (158°F).
 - If not, warm up engine and go to next step when "COOL-ANTEMP/S" indication reaches to 70°C (158°F).
- 7. Select "HO2S2 (B1) P0139" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 8. Start engine and following the instruction of CONSULT-II.

- Make sure that OK is displayed after touching "SELF-DIAG RESULTS".
 If NG is displayed, refer to <u>EC-208</u>, "<u>Diagnostic Procedure</u>".
 If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- a. Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- b. Return to step 1.

Overall Function Check

UBS00B5Z

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 74 (HO2S2 signal) and engine ground.

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

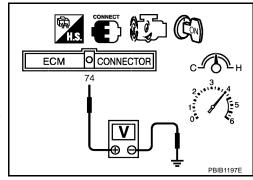
COOLAN TEMP/S XXX °C

С

Α

EC

Е


F

SEF174Y

Н

5*Z*

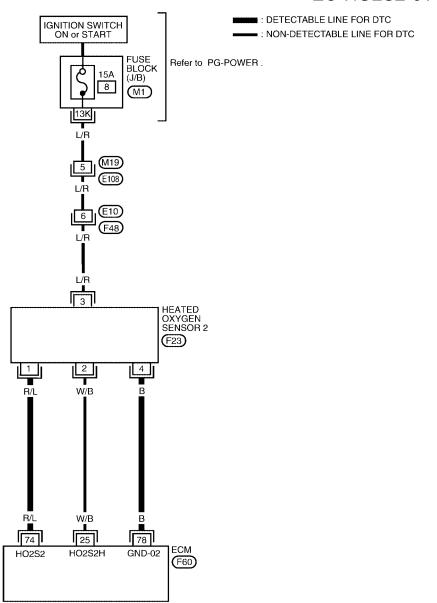
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) A change of voltage should be more than 0.06V for 1 second during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- 7. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF (A/T), 4th gear position (M/T).
 A change of voltage should be more than 0.06V for 1 second during this procedure.
- 8. If NG, go to <u>EC-208</u>, "<u>Diagnostic Procedure</u>".

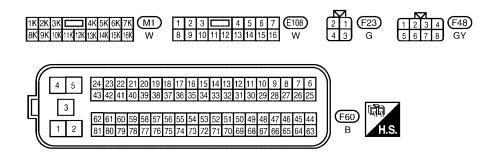
Wiring Diagram

Α

EC

C


D


Е

Н

M

EC-HO2S2-01

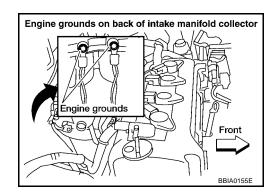
BBWA0727E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

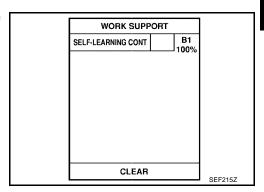
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
74	R/L	Heated oxygen sensor 2	 [Engine is running] Warm-up condition Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	0 - Approximately 1.0V
78	В	Heated oxygen sensor 2 ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V


Diagnostic Procedure

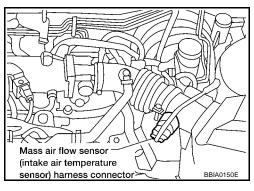
1. RETIGHTEN GROUND SCREWS

UBS00B61

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.


>> GO TO 2.

2. CLEAR THE SELF-LEARNING DATA


(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure that DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-64, "HOW TO ERASE</u> EMISSION-RELATED DIAGNOSTIC INFORMATION".
- 7. Make sure that DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Yes or No

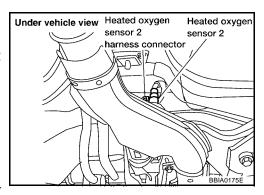
Yes >> Perform trouble diagnosis for DTC P0171 or P0172. Refer to <u>EC-212, "DTC P0171 FUEL INJEC-TION SYSTEM FUNCTION"</u> or <u>EC-219, "DTC P0172 FUEL INJECTION SYSTEM FUNCTION"</u>.

No >> GO TO 3.

$3.\,$ check ho2s2 ground circuit for open and short

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 2 harness connector.
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between ECM terminal 78 and HO2S2 terminal 4.

Refer to Wiring Diagram.


Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

Е

G

Н

J

L

4. CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 74 and HO2S2 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

2. Check harness continuity between ECM terminal 74 or HO2S2 terminal 1 and ground. Refer to Wiring Diagram.

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-210, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

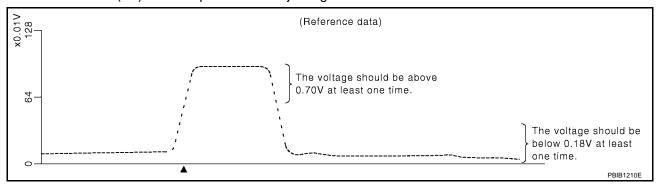
>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2

UBS00B62

(I) With CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.


ACTIVE TES	ST	
FUEL INJECTION	25 %	
MONITOR		
ENG SPEED	XXX rpm	
A/F SEN1 (B1)	xxx v	
HO2S2 (B1)	xxx v	
		PBIB1782E

Α

EC

Е

Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)" should be above 0.70V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)" should be below 0.18V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- Set voltmeter probes between ECM terminal 74 (HO2S2 signal) and engine ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.

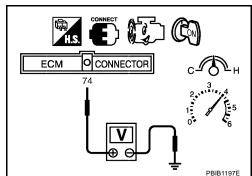
(Depress and release accelerator pedal as soon as possible.)

The voltage should be above 0.70V at least once during this procedure.

If the voltage is above 0.70V at step 6, step 7 is not necessary.

7. Keep vehicle idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF (A/T), 4th gear position (M/T).

The voltage should be below 0.18V at least once during this procedure.


8. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

Refer to EX-3, "EXHAUST SYSTEM".

UBS00B63

DTC P0171 FUEL INJECTION SYSTEM FUNCTION

[QG18DE]

DTC P0171 FUEL INJECTION SYSTEM FUNCTION

PFP:16600

On Board Diagnosis Logic

UBS00B64

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the air fuel ratio (A/F) sensor 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios.

In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

	Sensor		Input Signal to ECM	ECM function	Actuator
Air fuel ratio (A/F) sensor 1			Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injec- tion control	Injectors
Trouble DTC No. diagnosis name			DTC detecting condition		Possible Cause
P0171 0171	Fuel injection system too learn	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too lean.) 		InjectorsExhaustIncorrectLack of fMass air	atio (A/F) sensor 1 gas leaks t fuel pressure

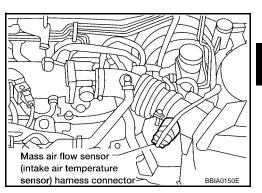
DTC Confirmation Procedure

UBS00B65

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II


- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-II.
- 4. Clear the self-learning control coefficient by touching "CLEAR".
- 5. Select "DATA MONITOR" mode with CONSULT-II.
- Start engine again and let it idle for at least 10 minutes.
 The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to <u>EC-215</u>, "<u>Diagnostic Procedure"</u>.
- 7. If it is difficult to start engine at step 6, the fuel injection system has a malfunction.
- Crank engine while depressing accelerator pedal. If engine starts, go to <u>EC-215, "Diagnostic Procedure"</u>.
 If engine does not start, check exhaust gas and intake air leak visually.

DTC P0171 FUEL INJECTION SYSTEM FUNCTION

[QG18DE]

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Select MODE 3 with GST. Make sure DTC P0102 is detected.
- 6. Select MODE 4 with GST and erase the DTC P0102.
- 7. Start engine again and run it for at least 10 minutes at idle speed.
- 8. Select MODE 7 with GST. The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to <u>EC-215, "Diagnostic Procedure".</u>
- 9. If it is difficult to start engine at step 7, the fuel injection system has a malfunction.
- 10. Crank engine while depressing accelerator pedal. If engine starts, go to <u>EC-215, "Diagnostic Procedure"</u>. If engine does not start, check exhaust gas and intake air leak visually.

EC

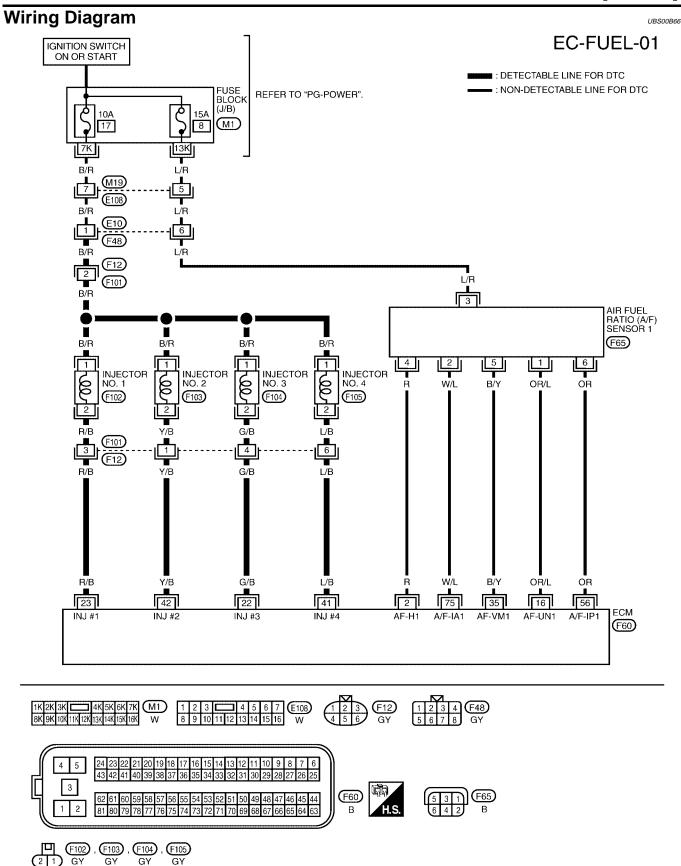
Α

С

D

Е

F


J

Н

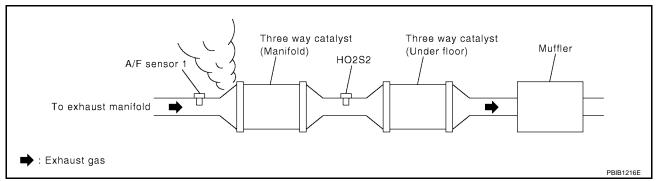
J

<

L

BBWA0680E

DTC P0171 FUEL INJECTION SYSTEM FUNCTION


[QG18DE]

Diagnostic Procedure

1. CHECK EXHAUST GAS LEAK

UBS00B67

- Start engine and run it at idle.
- Listen for an exhaust gas leak before three way catalyst (manifold). 2.

OK or NG

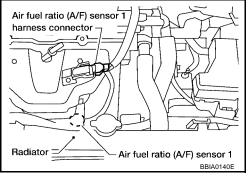
OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK FOR INTAKE AIR LEAK AND PCV HOSE

- Listen for an intake air leak after the mass air flow sensor.
- Check PCV hose connection.

OK or NG


OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect A/F sensor 1 harness connector.
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminals and A/F sensor 1 terminals as follows. Refer to Wiring Diagram.

ECM terminal	A/F sensor 1
16	1
35	5
56	6
75	2

Continuity should exist.

Check harness continuity between ECM terminals 16, 35, 56, 75 and ground, or A/F sensor 1 terminals 1, 2, 5, 6 and ground. Refer to Wiring Diagram.

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors. EC

Α

D

Е

F

Н

[QG18DE]

4. CHECK FUEL PRESSURE

- Release fuel pressure to zero.
 Refer to EC-49, "FUEL PRESSURE RELEASE".
- 2. Install fuel pressure gauge and check fuel pressure. Refer to EC-51, "FUEL PRESSURE CHECK".

```
At idling: 350 kPa (3.57 kg/cm<sup>2</sup>, 51 psi)
```

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Fuel pump and circuit. Refer to <u>EC-585</u>.
- Fuel pressure regulator
- Fuel lines.
- Fuel filter for clogging

>> Repair or replace.

6. CHECK MASS AIR FLOW SENSOR

With CONSULT-II

- 1. Install all removed parts.
- 2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II.

at idling: 1.4 - 4.0 g·m/sec at 2,500 rpm: 5.0 - 10.0 g·m/sec

With GST

- 1. Install all removed parts.
- 2. Check mass air flow sensor signal in MODE 1 with GST.

at idling: 1.4 - 4.0 g·m/sec at 2,500 rpm: 5.0 - 10.0 g·m/sec

OK or NG

NG

OK >> GO TO 7.

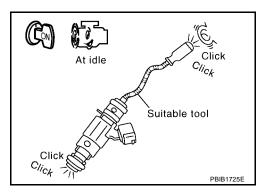
>> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-160, "DTC P0101 MAF SENSOR".

DTC P0171 FUEL INJECTION SYSTEM FUNCTION

[QG18DE]

7. CHECK FUNCTION OF INJECTORS

(II) With CONSULT-II


- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Make sure that each circuit produces a momentary engine speed drop.

ACTIVE TES	ST	
POWER BALANCE		
MONITOR	}	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		PBIB0133E

Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound.

Clicking noise should be heard.

OK or NG

OK >> GO TO 8.

NG \rightarrow Perform trouble diagnosis for <u>EC-578</u>, "INJECTOR".

8. REMOVE INJECTOR

- 1. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 2. Turn ignition switch OFF.
- 3. Remove injector with fuel tube assembly. Refer to <u>EM-19, "FUEL INJECTOR AND FUEL TUBE"</u>. Keep fuel hose and all injectors connected to injector gallery. The injector harness connectors should remain connected.

>> GO TO 9.

EC

0

D

Е

.

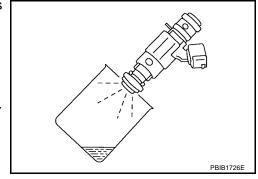
G

Н

Κ

9. CHECK INJECTOR

- 1. Disconnect all ignition coil harness connectors.
- 2. Place pans or saucers under each injector.
- 3. Crank engine for about 3 seconds. Make sure that fuel sprays out from injectors.


Fuel should be sprayed evenly for each cylinder.

OK or NG

OK >> GO TO 10.

NG

>> Replace injectors from which fuel does not spray out. Always replace O-ring with new one.

10. CHECK INTERMITTENT INCIDENT

Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

DTC P0172 FUEL INJECTION SYSTEM FUNCTION

[QG18DE]

DTC P0172 FUEL INJECTION SYSTEM FUNCTION

PFP:16600

On Board Diagnosis Logic

UBS00B68

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the air fuel ratio (A/F) sensor 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios.

EC

D

Е

Α

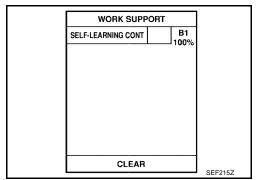
In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

Sensor	Input Signal to ECM	ECM function	Actuator
Air fuel ratio (A/F) sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injec- tion control	Injectors

DTC No.	Trouble diag- nosis name	DTC detecting condition	Possible Cause
P0172 0172	Fuel injection system too rich	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too rich.) 	 Air fuel ratio (A/F) sensor 1 Injectors Exhaust gas leaks Incorrect fuel pressure Mass air flow sensor

DTC Confirmation Procedure

UBS00B69

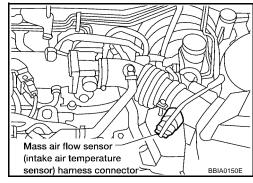

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II

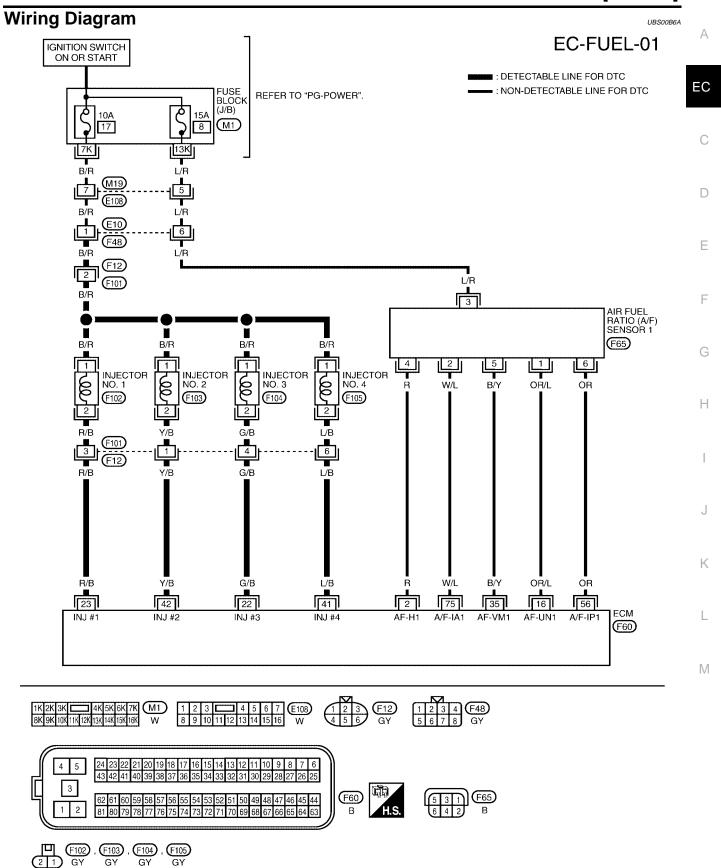
Н

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-II.
- 4. Clear the self-learning control coefficient by touching "CLEAR" or "START".
- Select "DATA MONITOR" mode with CONSULT-II.



- Start engine again and let it idle for at least 10 minutes.
 The 1st trip DTC P0172 should be detected at this stage, if a malfunction exists. If so, go to <u>EC-222</u>, "<u>Diagnostic Procedure</u>".
- 7. If it is difficult to start engine at step 6, the fuel injection system has a malfunction.
- 8. Crank engine while depressing accelerator pedal. If engine starts, go to <u>EC-222, "Diagnostic Procedure"</u>. If engine does not start, remove ignition plugs and check for fouling, etc.

WITH GST

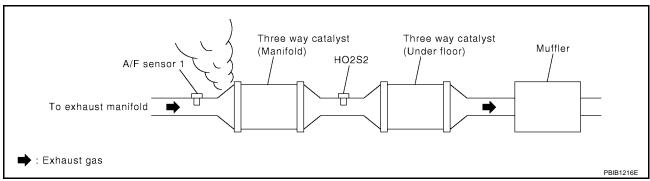

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Select MODE 3 with GST. Make sure DTC P0102 is detected.
- 6. Select MODE 4 with GST and erase the DTC P0102.
- 7. Start engine again and run it for at least 10 minutes at idle speed.
- 8. Select MODE 7 with GST. The 1st trip DTC P0172 should be detected at this stage, if a malfunction exists. If so, go to EC-222, "Diagnostic Procedure" .
- 9. If it is difficult to start engine at step 7, the fuel injection system has a malfunction.
- 10. Crank engine while depressing accelerator pedal.

 If engine starts, go to EC-222, "Diagnostic Procedure". If engine does not start, remove ignition plugs and check for fouling, etc.

DTC P0172 FUEL INJECTION SYSTEM FUNCTION

[QG18DE]

BBWA0680E


UBS00B6B

Diagnostic Procedure

1. CHECK FOR EXHAUST GAS LEAK

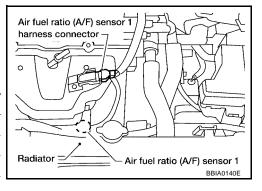
1. Start engine and run it at idle.

2. Listen for an exhaust gas leak before three way catalyst (manifold).

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.


2. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Turn ignition switch OFF.

2. Disconnect A/F sensor 1 harness connector and ECM harness connector.

Check harness continuity between ECM terminals and A/F sensor 1 terminals as follows.
 Refer to Wiring Diagram.

ECM terminal	A/F sensor 1 terminal
16	1
35	5
56	6
75	2

Continuity should exist.

Check harness continuity between ECM terminals 16, 35, 56, 75 and ground, or A/F sensor 1 terminals 1, 2, 5, 6 and ground.
 Refer to Wiring Diagram.

Continuity should not exist.

Also check harness for short to power.

OK or NG

OK >> GO TO 3

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK FUEL PRESSURE

Release fuel pressure to zero.
 Refer to <u>EC-49</u>, "<u>FUEL PRESSURE RELEASE</u>".

2. Install fuel pressure gauge and check fuel pressure.

At idling: Approximately 350 kPa (3.57 kg/cm², 51 psi)

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

DTC P0172 FUEL INJECTION SYSTEM FUNCTION

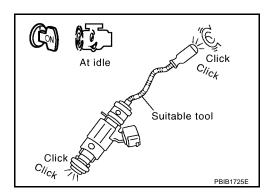
[QG18DE]

M

4. DETECT MALFUNCTIONING PART Check the following. Fuel pump circuit (Refer to EC-585.) EC OK or NG OK >> Replace "fuel level sensor unit and fuel pump". NG >> Repair or replace. 5. CHECK MASS AIR FLOW SENSOR With CONSULT-II D 1. Install all removed parts. 2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II. Е at idling : 1.4 - 4.0 g·m/sec at 2,500 rpm : 5.0 - 10.0 g-m/sec With GST 1. Install all removed parts. 2. Check mass air flow sensor signal in MODE 1 with GST. at idling : 1.4 - 4.0 g·m/sec at 2,500 rpm : 5.0 - 10.0 g-m/sec Н OK or NG OK >> GO TO 6. NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-160, "DTC P0101 MAF SENSOR".

6. CHECK FUNCTION OF INJECTORS

(II) With CONSULT-II


- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Make sure that each circuit produces a momentary engine speed drop.

ACTIVE TES	ST T	
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		PBIB0133E

Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound.

Clicking noise should be heard.

OK or NG

OK >> GO TO 7.

NG >> Perform trouble diagnosis for INJECTOR, <u>EC-578</u>, "INJECTOR".

7. REMOVE INJECTOR

- 1. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 2. Turn ignition switch OFF.
- 3. Remove injector assembly. Refer to <u>EM-19</u>, "<u>FUEL INJECTOR AND FUEL TUBE</u>". Keep fuel hose and all injectors connected to injector gallery.

>> GO TO 8.

8. CHECK INJECTOR

- 1. Disconnect injector harness connectors.
- 2. Disconnect all ignition coil harness connectors.
- 3. Prepare pans or saucers under each injectors.
- Crank engine for about 3 seconds.
 Make sure fuel does not drip from injector.

OK or NG

OK (Does not drip)>>GO TO 9.

NG (Drips)>>Replace the injectors from which fuel is dripping. Always replace O-ring with new one.

DTC P0172 FUEL INJECTION SYSTEM FUNCTION

[QG18DE]

9. CHECK INTERMITTENT INCIDENT

Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

EC

D

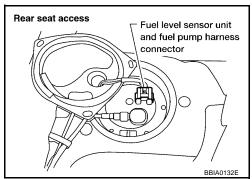
Е

F

G

Н

L


DTC P0181 FTT SENSOR

PFP:22630

Component Description

UBS00B6C

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Fluid temperature °C (°F)	Voltage* V	Resistance $k\Omega$
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} These data are reference values and are measured between ECM terminal 107 (Fuel tank temperature sensor) and ground.

Acceptable Resistance k Ω 0.4 0.2 0 20 40 60 80 100 (32) (68) (104) (140) (176) (212) Température °C (°F) SEF012P

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may damage the ECM's transistor. Use ground other than ECM, such as body ground.

On Board Diagnosis Logic

UBS00B6D

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0181 0181	Fuel tank temperature sensor circuit range/ performance	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signals from engine coolant temperature sensor and intake air temperature sensor.	 Harness or connectors (The sensor circuit is open or shorted) Fuel tank temperature sensor

DTC Confirmation Procedure

LIBSOOR6E

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 10 seconds. If 1st trip DTC is detected, go to EC-229, "Diagnostic Procedure"

If the result is OK, go to following step.

- 4. Check "COOLAN TEMP/S" signal. If the signal is less than 50°C (122°F), the result will be OK. If the signal is above 50°C (122°F), go to the following step.
- 5. Cool engine down until "COOLAN TEMP/S" signal is less than 50°C (122°F).
- Wait at least 10 seconds.
- If 1st trip DTC is detected, go to EC-229, "Diagnostic Procedure"

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm COOLAN TEMP/S XXX °C SEF174Y

DTC P0181 FTT SENSOR

[QG18DE]

WITH GST

Follow the procedure "With CONSULT-II" above.

EC

Α

С

D

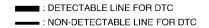
Е

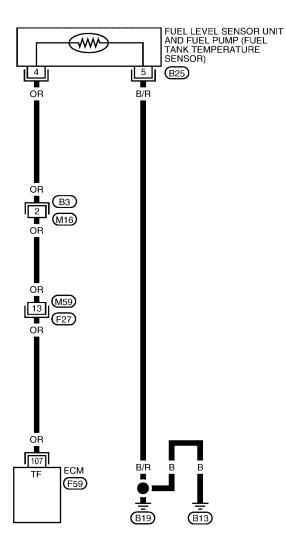
F

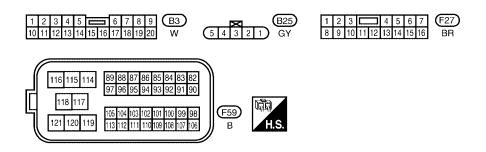
G

Н

J

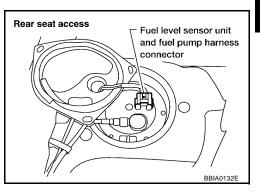

Κ


L


Wiring Diagram

UBS00B6F

EC-FTTS-01

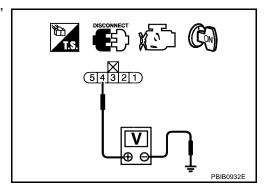

BBWA0285E

[QG18DE]

Diagnostic Procedure

1. CHECK FUEL TANK TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- 2. Disconnect "fuel level sensor unit and fuel pump" harness connector.
- 3. Turn ignition switch ON.



Check voltage between "fuel level sensor unit and fuel pump" terminal 4 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness connectors B3, M16
- Harness for open or short between ECM and "fuel level sensor unit and fuel pump"

>> Repair harness or connector.

$3.\,$ check fuel tank temperature sensor ground circuit for open and short

- Turn ignition switch OFF.
- Check harness continuity between "fuel level sensor unit and fuel pump" terminal 5 and body ground. 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

>> Repair open circuit or short to power in harness or connectors. NG

4. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to, EC-230, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace fuel level sensor unit.

EC-229

EC

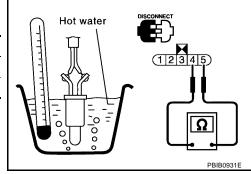
Α

Е

Н

5. CHECK INTERMITTENT INCIDENT

Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection FUEL TANK TEMPERATURE SENSOR

UBS00B6H

Check resistance by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance kΩ
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

Removal and Installation FUEL TANK TEMPERATURE SENSOR

UBS00B6I

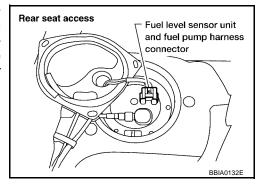
Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY" .

DTC P0182, P0183 FTT SENSOR

PFP:22630

Component Description

UBS00B6J


Α

EC

Е

Н

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Fluid temperature °C (°F)	Voltage* V	Resistance $k\Omega$
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} These data are reference values and are measured between ECM terminal 107 (Fuel tank temperature sensor) and ground.

20 | Acceptable |

CALITION

Do not use ECM ground terminals when measuring input/output voltage. Doing so may damage the ECM's transistor. Use ground other than ECM, such as body ground.

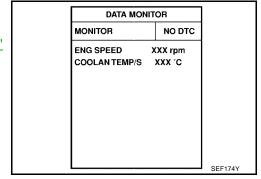
On Board Diagnosis Logic

UBS00B6K

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0182 0182	Fuel tank temperature sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0183 0183	Fuel tank temperature sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Fuel tank temperature sensor

DTC Confirmation Procedure

UBS00B6L

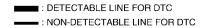

M

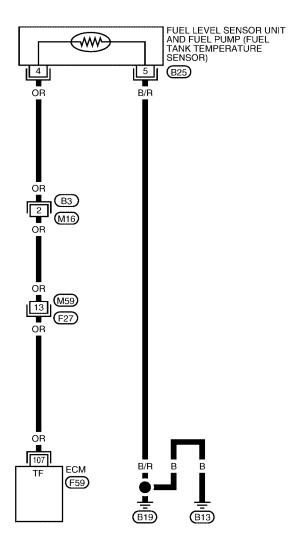
NOTE:

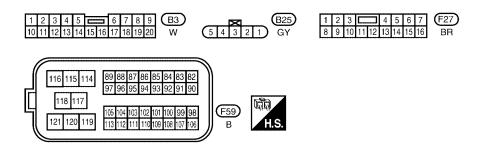
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II

- Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 5 seconds.
- If 1st trip DTC is detected, go to <u>EC-233</u>, "<u>Diagnostic Procedure</u>"


WITH GST

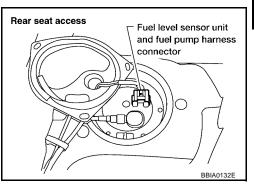

Follow the procedure "With CONSULT-II" above.


Wiring Diagram

UBS00B6M

EC-FTTS-01

BBWA0285E

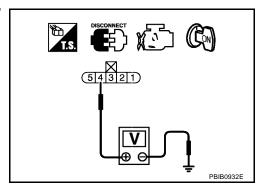

[QG18DE]

Diagnostic Procedure

1. CHECK FUEL TANK TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

1. Turn ignition switch OFF.

- 2. Disconnect "fuel level sensor unit and fuel pump" harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between "fuel level sensor unit and fuel pump" terminal 4 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness connectors B3, M16
- Harness for open or short between ECM and "fuel level sensor unit and fuel pump"

>> Repair harness or connector.

3. CHECK FUEL TANK TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

1. Turn ignition switch OFF.

Check harness continuity between "fuel level sensor unit and fuel pump" terminal 5 and body ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to power in harness or connectors.

4. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to, EC-234, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace "fuel level sensor unit and fuel pump".

EC

Α

0

D

Е

F

G

Н

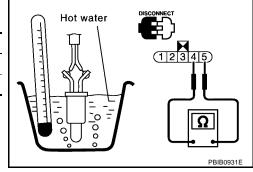
L

IV.

5. CHECK INTERMITTENT INCIDENT

Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection FUEL TANK TEMPERATURE SENSOR

UBS00B6O

Check resistance by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance kΩ
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

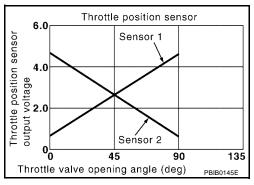
If NG, replace fuel level sensor unit and fuel pump.

Removal and Installation FUEL TANK TEMPERATURE SENSOR

UBS00B6P

Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY" .

DTC P0222, P0223 TP SENSOR


PFP:16119

Component Description

UBS00B6Q

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

UBS00B6R

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL SEN1	Ignition switch: ON	Accelerator pedal: Fully released	More than 0.36V
THRTL SEN1* (Engine stopped) • Shift lever: D (A/T), 1st (M/T)	Accelerator pedal: Fully depressed	Less than 4.75V	

^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

UBS00B6S

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0222 0222	Throttle position sensor 1 circuit low input	An excessively low voltage from the TP sensor 1 is sent to ECM.	Harness or connectors (The TP sensor 1 circuit is open or shorted.) Electric throttle control actuator (TP sensor 1)	
P0223 0223	Throttle position sensor 1 circuit high input	An excessively high voltage from the TP sensor 1 is sent to ECM.		

FAIL-SAFE MODE

M

When the malfunction is detected, ECM enters fail-safe mode an the MIL lights up.

Engine operation condition in fail-safe mode

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

EC

Α

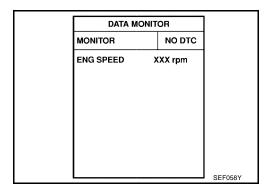
Е

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

DTC Confirmation Procedure

LIBSOORET

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-238, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram Α EC-TPS1-01 ELECTRIC THROTTLE CONTROL ACTUATOR (THROTTLE POSITION SENSOR) SENSOR 1 SENSOR 2 ■: DETECTABLE LINE FOR DTC EC : NON-DETECTABLE LINE FOR DTC (F58) C 4 5 2 D Е Н 47 69 66 ECM GND-A (F60) M54) M

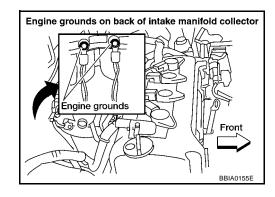
BBWA0682E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

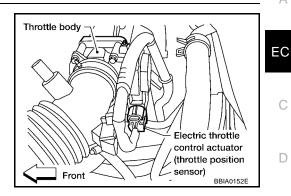
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
47	В	Throttle position sensor power supply	[Ignition switch: ON]	Approximately 5V
50	w	Throttle position sensor 1	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully released 	More than 0.36V
30	VV		 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully depressed 	Less than 4.75V
66	R	Throttle position sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
69	G	Throttle position sensor 2	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully released [Ignition switch: ON] 	Less than 4.75V
			 Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully depressed 	More than 0.36V


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

UBS00B6V

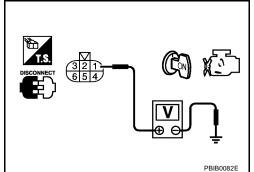

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK THROTTLE POSITION SENSOR 1 POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.

Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG

>> Repair open circuit or short to ground or short to power in harness or connectors.

$3.\,$ check throttle position sensor 1 ground circuit for open and short

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 66 and electric throttle control actuator terminal 5. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

$4.\,$ check throttle position sensor 1 input signal circuit for open and short

- Disconnect ECM harness connector. 1.
- Check harness continuity between ECM terminal 50 and electric throttle control actuator terminal 4. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK THROTTLE POSITION SENSOR

Refer to EC-240, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> GO TO 6. D

Α

Е

M

EC-239

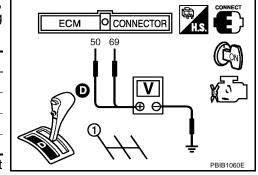
6. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- Replace the electric throttle control actuator.
- 2. Perform EC-47, "Throttle Valve Closed Position Learning".
- 3. Perform EC-47, "Idle Air Volume Learning".

>> INSPECTION END

7. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection THROTTLE POSITION SENSOR

UBS00B6W

- 1. Reconnect all harness connectors disconnected.
- 2. Perform EC-47, "Throttle Valve Closed Position Learning".
- 3. Turn ignition switch ON.
- 4. Set selector lever to D position (A/T models) or 1st position (M/T models).
- Check voltage between ECM terminals 50 (TP sensor 1 signal),
 (TP sensor 2 signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
69	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- 6. If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform EC-47, "Throttle Valve Closed Position Learning".
- 8. Perform EC-47, "Idle Air Volume Learning".

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

UBS00B6X

Refer to EM-13, "OUTER COMPONENT PARTS".

[QG18DE]

DTC P0300 - P0304 NO. 4 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MIS-**FIRE**

On Board Diagnosis Logic

UBS00B6Y

EC

D

Н

When a misfire occurs, engine speed will fluctuate. If the engine speed fluctuates enough to cause the crankshaft position (CKP) sensor (POS) signal to vary, ECM can determine that a misfire is occurring.

Sensor	Input Signal to ECM	ECM function	
Crankshaft position sensor (POS)	Engine speed	On board diagnosis of misfire	

The misfire detection logic consists of the following two conditions.

One Trip Detection Logic (Three Way Catalyst Damage)

On the first trip that a misfire condition occurs that can damage the three way catalyst (TWC) due to overheating, the MIL will blink.

When a misfire condition occurs, the ECM monitors the CKP sensor signal every 200 engine revolutions for a change.

When the misfire condition decreases to a level that will not damage the TWC, the MIL will turn off. If another misfire condition occurs that can damage the TWC on a second trip, the MIL will blink.

When the misfire condition decreases to a level that will not damage the TWC, the MIL will remain on. If another misfire condition occurs that can damage the TWC, the MIL will begin to blink again.

Two Trip Detection Logic (Exhaust quality deterioration)

For misfire conditions that will not damage the TWC (but will affect vehicle emissions), the MIL will only light when the misfire is detected on a second trip. During this condition, the ECM monitors the CKP sensor signal every 1,000 engine revolutions.

A misfire malfunction can be detected on any one cylinder or on multiple cylinders.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0300 0300	Multiple cylinder misfire detected	Multiple cylinder misfire.	Improper spark plug Insufficient compression	
P0301 0301	No.1 cylinder misfire detected	No. 1 cylinder misfires.	Incorrect fuel pressure The injector circuit is open or shorted	
P0302 0302	No. 2 cylinder misfire detected	No. 2 cylinder misfires.	Injectors Intake air leak	
P0303 0303	No. 3 cylinder misfire detected	No. 3 cylinder misfires.	The ignition signal circuit is open or shorted	
P0304 0304	No. 4 cylinder misfire detected	No. 4 cylinder misfires.	 Lack of fuel Signal plate Air fuel ratio (A/F) sensor 1 Incorrect PCV hose connection 	

[QG18DE]

DATA MONITOR

COOLAN TEMP/S XXX °C VHCL SPEED SE XXX km/h

B/FUEL SCHDL XXX msec

NO DTC

XXX rpm

MONITOR

ENG SPEED

DTC Confirmation Procedure

UBS00B6Z

CAUTION:

Always drive vehicle in safe manner according to traffic conditions and obey all traffic laws when driving.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON, and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 4. Restart engine and let it idle for about 15 minutes.
- If 1st trip DTC is detected, go to <u>EC-242, "Diagnostic Procedure"</u>

NOTE:

If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for a certain time. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data $\pm400~\text{rpm}$	
Vehicle speed	Vehicle speed in the freeze frame data ± 10 km/h (5 MPH)	
Engine coolant temperature	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).	
(T) condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).	

The time to driving varies according to the engine speed in the freeze frame data.

Time
Approximately 10 minutes
Approximately 5 minutes
Approximately 3.5 minutes

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

UBS00B70

1. CHECK FOR INTAKE AIR LEAK

- 1. Start engine and run it at idle speed.
- 2. Listen for the sound of the intake air leak.
- 3. Check PCV hose connection.

OK or NG

OK >> GO TO 2.

NG >> Discover air leak location and repair.

[QG18DE]

2. CHECK FOR EXHAUST SYSTEM CLOGGING

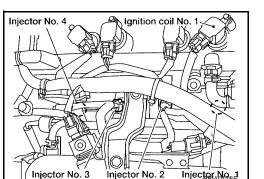
Stop engine and visually check exhaust tube, three way catalyst (manifold) and muffler for dents.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace it.

3. PERFORM POWER BALANCE TEST


(II) With CONSULT-II

- 1. Perform "POWER BALANCE" in "ACTIVE TEST" mode.
- 2. Is there any cylinder which does not produce a momentary engine speed drop?

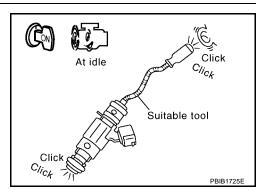
ACTIVE TES	T
POWER BALANCE	
MONITOR	
ENG SPEED	XXX rpm
MAS A/F SE-B1	xxx v
	1
	1
	<u> </u>
	<u> </u>

Without CONSULT-II

When disconnecting each injector harness connector one at a time, is there any cylinder which does not produce a momentary engine speed drop?

Yes or No

Yes >> GO TO 4.


No >> GO TO 7.

4. CHECK INJECTOR

Does each injector make an operating sound at idle? Yes or No

Yes >> GO TO 5.

No >> Check injector(s) and circuit(s). Refer to <u>EC-578</u>.

EC

Е

D

Н

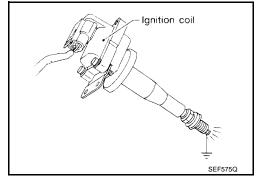
ı

K

L

[QG18DE]

5. CHECK IGNITION SPARK


- 1. Remove ignition coil assembly from rocker cover.
- 2. Remove spark plug from ignition coil assembly.
- 3. Connect a known-good spark plug to ignition coil.
- 4. Place and of spark plug against a suitable ground crank engine.
- 5. Check for spark.

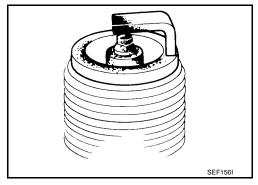
OK or NG

OK >> GO TO 6.

NG

>> Check ignition coil, power transistor and their circuits. Refer to EC-566, "IGNITION SIGNAL".

6. CHECK SPARK PLUGS


Check the spark plugs and check for fouling, etc.

OK or NG

OK >> GO TO 7.

NG

>> Repair or replace spark plug (s) with standard type one (s). For spark plug type ignition coil. Refer to <u>EM-13</u>.

7. CHECK COMPRESSION PRESSURE

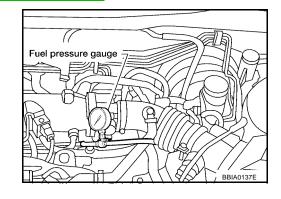
Check compression pressure. Refer to $\underline{\sf EM-52}$, "CHECKING COMPRESSION PRESSURE" .

OK or NG

OK >> GO TO 8.

NG >> Check pistons, piston rings, valves, valve seats and cylinder head gaskets.

8. CHECK FUEL PRESSURE


- 1. Install all removed parts.
- 2. Release fuel pressure to zero. Refer to EC-49, "FUEL PRESSURE RELEASE".
- 3. Install fuel pressure gauge and check fuel pressure.

At idle: Approx. 350 kPa (3.57 kg/cm², 51 psi)

OK or NG

OK >> GO TO 10.

NG >> GO TO 9.

[QG18DE]

9. DETECT MALFUNCTIONING PART

Check the following.

- Fuel pump and circuit (Refer to EC-585, "FUEL PUMP".)
- Fuel pressure regulator
- **Fuel lines**
- Fuel filter for clogging

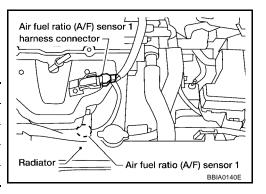
>> Repair or replace.

10. CHECK IGNITION TIMING

Perform EC-81, "Basic Inspection".

Items		Specifications
Target idle speed	A/T	800 ± 50 rpm (in P or N position)
rarget fule speed	M/T	650 ± 50 rpm
Ignition timing	A/T	18 ± 5°BTDC (in P or N position)
igilition timing	M/T	7 ± 5°BTDC

OK or NG


OK >> GO TO 11.

NG >> Follow the EC-81, "Basic Inspection".

11. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- Turn ignition switch OFF.
- Disconnect ECM harness connector and A/F sensor 1 harness 2. connector.
- 3. Check harness continuity between the following terminals. Refer to EC-453, "Wiring Diagram"

ECM terminal	A/F sensor 1 terminal
16	1
35	5
56	6
75	2

Continuity should exist.

4. Check harness continuity between ECM terminals 16, 35, 56, 75 or A/F sensor 1 terminals 1, 2, 5, 6 and ground. Refer to Wiring Diagram.

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

>> GO TO 12. OK

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

12. CHECK A/F SENSOR 1 HEATER

Refer to EC-356, "Component Inspection".

OK or NG

OK >> GO TO 13.

NG >> Replace A/F sensor 1.

EC-245

EC

D

Е

Н

[QG18DE]

13. CHECK MASS AIR FLOW SENSOR

(II) With CONSULT-II

Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II.

at idling: 1.4 - 4.0 g·m/sec at 2,500 rpm: 5.0 - 10.0 g·m/sec

With GST

Check mass air flow sensor signal in MODE 1 with GST.

at idling: 1.4 - 4.0 g·m/sec at 2,500 rpm: 5.0 - 10.0 g·m/sec

OK or NG

OK >> GO TO 15. NG >> GO TO 14.

14. CHECK CONNECTORS

Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds.

Refer to EC-160, "DTC P0101 MAF SENSOR".

OK or NG

OK >> GO TO 15.

NG >> Repair or replace it.

15. CHECK SYMPTOM MATRIX CHART

Check items on the rough idle symptom in EC-86, "Symptom Matrix Chart" .

OK or NG

OK >> GO TO 16.

NG >> Repair or replace.

16. ERASE THE 1ST TRIP DTC

Some tests may cause a 1st trip DTC to be set.

Erase the 1st trip DTC from the ECM memory after performing the tests. Refer to <u>EC-64, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>

>> GO TO 17.

17. CHECK INTERMITTENT INCIDENT

Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

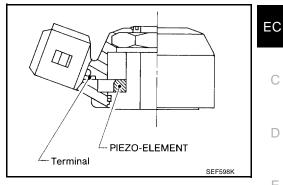
[QG18DE]

DTC P0327, P0328 KS

PFP:22060

Component Description

UBS00B71


Α

D

Е

M

The knock sensor is attached to the cylinder block. It senses engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM.

On Board Diagnosis Logic

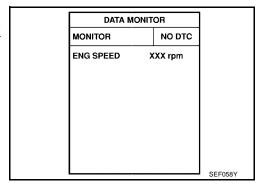
UBS00B72

The MIL will not light up for these diagnoses.

DTC No.	Trouble Diagnosis Name	DTC Detected Condition	Possible Cause	
P0327 0327	Knock sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)	
P0328 0328	Knock sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Knock sensor	

DTC Confirmation Procedure

UBS00B73

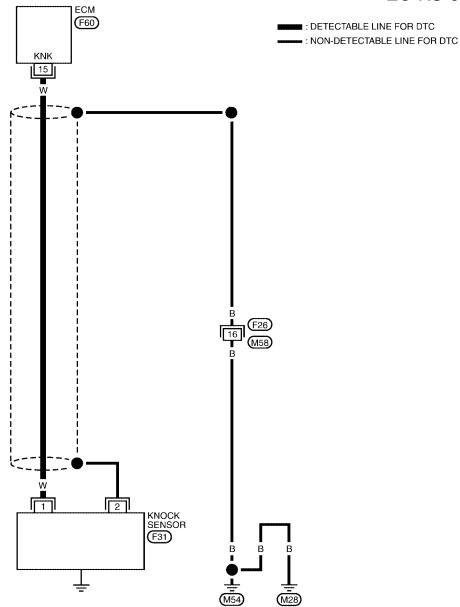

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

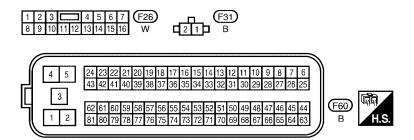
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(II) WITH CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II. 1.
- Start engine and run it for at least 5 seconds at idle speed.
- If 1st trip DTC is detected, go to EC-249, "Diagnostic Procedure"




WITH GST

Follow the procedure "With CONSULT-II" above.

Wiring Diagram

EC-KS-01

BBWA0683E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
15	W	Knock sensor	[Engine is running] ● Idle speed	Approximately 2.5V

Diagnostic Procedure

UBS00B75

Α

EC

D

Е

1. CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-I

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check resistance between ECM terminal 15 and engine ground. Refer to Wiring Diagram.

NOTE:

It is necessary to use an ohmmeter which can measure more than 10 M Ω .

Resistance: Approximately 530 - 590k Ω [at 20°C (68°F)]

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 2.

2. CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-II

- Disconnect ECM harness connector and knock sensor harness connector.
- Check harness continuity between knock sensor terminal 1 and ECM terminal 15.
 Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

Under vehicle view Knock sensor Oil pressure switch PBIB0708E

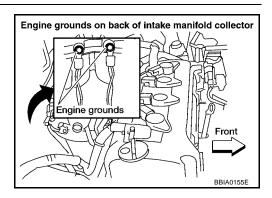
3. CHECK KNOCK SENSOR

Refer to EC-250, "Component Inspection".

OK or NG

OK >> GO TO 4.

NG >> Replace knock sensor.


Н

M

EC-249

4. RETIGHTEN GROUND SCREWS

Loosen and retighten engine ground screws.

>> GO TO 5.

5. CHECK KNOCK SENSOR SHIELD CIRCUIT FOR OPEN AND SHORT

- Disconnect knock sensor harness connector.
- Check harness continuity between knock sensor terminal 2 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F26, M58
- Harness for open or short between knock sensor and ground
 - >> Repair open circuit or short to power in harness connectors

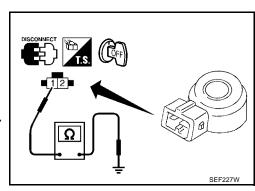
7. CHECK INTERMITTENT INCIDENT

Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

Component Inspection KNOCK SENSOR

UBS00B76


Use an ohmmeter which can measure more than 10 M Ω .

- 1. Disconnect knock sensor harness connector.
- 2. Check resistance between terminal 1 and ground.

Resistance: 530 - 590 k Ω [at 20°C (68°F)]

CAUTION:

Discard any knock sensors that have been dropped or physically damaged. Use only new ones.

DTC P0327, P0328 KS

[QG18DE]

Removal and Installation KNOCK SENSOR

UBS00B77

Refer to EM-66, "CYLINDER BLOCK".

Α

EC

С

D

Е

F

G

Н

ı

J

Κ

L

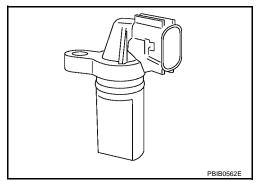
DTC P0335 CKP SENSOR (POS)

PFP:23731

UBS00B78

Component Description

The crankshaft position sensor (POS) is located on the cylinder block rear housing facing the gear teeth (cogs) of the signal plate at the end of the crankshaft. It detects the fluctuation of the engine revolution.


The sensor consists of a permanent magnet and Hall IC.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

CONSULT-II Reference Value in Data Monitor Mode

UBS00B79

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
ENG SPEED	Tachometer: Connect	Almost the same speed as the
	Run engine and compare CONSULT-II value with the tachometer indication.	n. tachometer indication.

On Board Diagnosis Logic

UBS00B7A

Specification data are reference values.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0335 0335	Crankshaft position sensor (POS) circuit	 The crankshaft position sensor (POS) signal is not detected by the ECM during the first few seconds of engine cranking. The proper pulse signal from the crankshaft position sensor (POS) is not sent to ECM while the engine is running. The crankshaft position sensor (POS) signal is not in the normal pattern during engine running. 	 Harness or connectors (The sensor circuit is open or shorted) Crankshaft position sensor (POS) Signal plate

DTC Confirmation Procedure

UBS00B7B

NOIE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V with ignition switch ON.

(II) WITH CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.
- 3. If 1st trip DTC is detected, go to EC-255, "Diagnostic Procedure"

If 1st trip DTC is not detected, go to next step.

- Maintaining engine speed at more than 800 rpm for at least 5 seconds.
- If 1st trip DTC is detected, go to <u>EC-255</u>, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

•

DTC P0335 CKP SENSOR (POS)

[QG18DE]

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

С

D

Е

F

G

Н

Κ

L

Wiring Diagram UBS00B7C EC-POS-01 BATTERY ■: DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC FUSE AND FUSIBLE LINK BOX REFER TO "PG-POWER". 36 (E24) CRANKSHAFT POSITION SENSOR (POS) (F52) R/G ECM RELAY (F29) ∎ R/G R/G R/G W/G R/G 119 13 ECM SSOFF (F59), (F60) (M54) M28 116 115 114 118 117

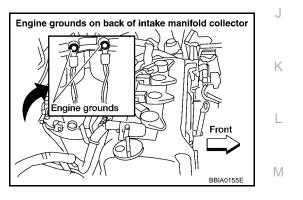
BBWA0684E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
40	13 Y	Crankshaft position sensor	[Engine is running] • Warm-up condition • Idle speed	Approximately 3.0V★ SV/Div 1 ms/Div T PBIB0527E
13	T	(POS)	[Engine is running] ● Engine speed is 2,000 rpm.	Approximately 3.0V★ 20 5.0 V/Div 1 ms/Div PBIB0528E


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

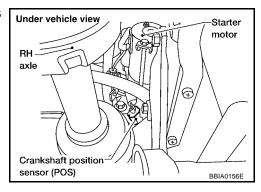
>> GO TO 2.

EC

Α

D

Е

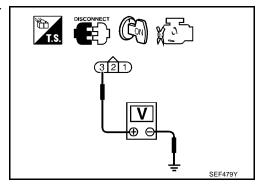

1

-

UBS00B7D

$2.\,$ check ckp sensor (pos) power supply circuit

- Disconnect crankshaft position (CKP) sensor (POS) harness connector.
- 2. Turn ignition switch ON.


3. Check voltage between CKP sensor (POS) harness connector terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between crankshaft position sensor (POS) and ECM
- Harness for open or short between crankshaft position sensor (POS) and ECM relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK CKP SENSOR (POS) GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Check harness continuity between CKP sensor (POS) terminal 1 and engine ground. Refer to the wiring diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F26, M58
- Harness for open or short between crankshaft position sensor (POS) and ground
 - >> Repair open circuit or short to power in harness or connectors.

6. CHECK CKP SENSOR (POS) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 13 and CKP sensor (POS) terminal 2. Refer to Wiring Diagram.

EC

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

/. CHECK CRANKSHAFT POSITION SENSOR (POS)

Refer to EC-257, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace crankshaft position sensor (POS).

8. CHECK GEAR TOOTH

Visually check for chipping signal plate gear tooth.

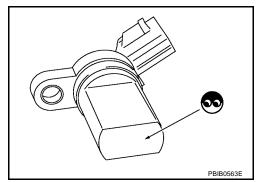
OK or NG

OK >> GO TO 9.

NG >> Replace the signal plate.

9. CHECK INTERMITTENT INCIDENT

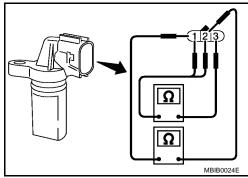
Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


UBS00B7E

>> INSPECTION END

Component Inspection CRANKSHAFT POSITION SENSOR (POS)

Disconnect crankshaft position sensor (POS) harness connector.


- Loosen the fixing bolt of the sensor.
- Remove the sensor.
- 4. Visually check the sensor for chipping.

Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
3 (+) - 1 (–)	
3 (+) - 2 (–)	Except 0 or ∞
2 (+) - 1 (–)	

If NG, replace crankshaft position sensor (POS).

Н

DTC P0335 CKP SENSOR (POS)

[QG18DE]

Removal and Installation CRANKSHAFT POSITION SENSOR (POS)

UBS00B7F

Refer to EM-66, "CYLINDER BLOCK".

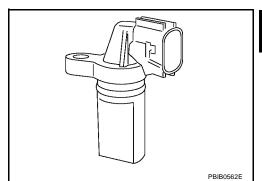
PFP:23731

UBS00B7G

DTC P0340 CMP SENSOR (PHASE)

Component Description

The camshaft position sensor (PHASE) senses the retraction of intake valve camshaft to identify a particular cylinder. The camshaft position sensor (PHASE) senses the piston position.


When the crankshaft position sensor (POS) system becomes inoperative, the camshaft position sensor (PHASE) provides various controls of engine parts instead, utilizing timing of cylinder identification signals.

The sensor consists of a permanent magnet and Hall IC.

When engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
		The cylinder No. signal is not sent to ECM for the first few seconds during engine cranking.	 Harness or connectors (The sensor circuit is open or shorted) Camshaft position sensor (PHASE)

cranking. P0340 Camshaft position sen- The cylinder No. signal is not sent to ECM 0340 sor (PHASE) circuit during engine running.

• The cylinder No. signal is not in the normal pattern during engine running.

Dead (Weak) battery

Camshaft (Intake)

• Starter motor (Refer to SC-9.)

• Starting system circuit (Refer to SC-9.)

DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V with ignition switch ON.

(III) WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.
- If 1st trip DTC is detected, go to EC-261, "Diagnostic Procedure"

If 1st trip DTC is not detected, go to next step.

- Maintaining engine speed at more than 800 rpm for at least 5
- If 1st trip DTC is detected, go to EC-261, "Diagnostic Procedure"

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm

WITH GST

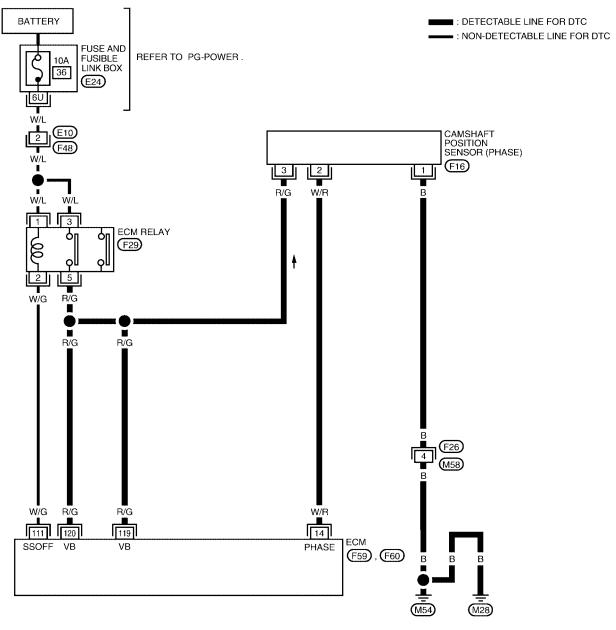
Follow the procedure "WITH CONSULT-II" above.

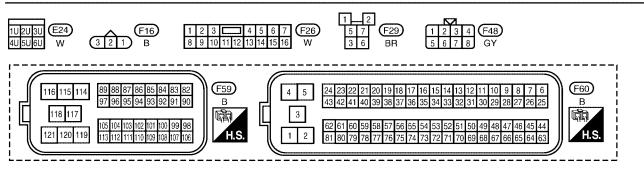
EC-259

EC

Α

Е


UBS00B7H


Н

UBSOORTI

Wiring Diagram

EC-PHASE-01

BBWA0685E

DTC P0340 CMP SENSOR (PHASE)

[QG18DE]

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
44	W/D Camshaft position	Camshaft position sensor	[Engine is running]Warm-up conditionIdle speed	1.0 - 4.0V★ 1.0 - 4.0V★
14	W/R	(PHASE)	[Engine is running] ● Engine speed is 2,000 rpm.	1.0 - 4.0V★ 1.0 - 4.0V★ 20 ms/Div 1.0
				PBIB0526E

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

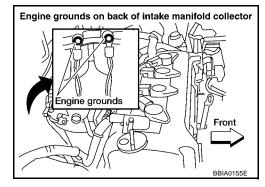
1. CHECK STARTING SYSTEM

Turn ignition switch to START position.

Does the engine turn over?

Does the starter motor operate?

Yes or No


Yes >> GO TO 2.

No >> Check starting system. (Refer to <u>SC-9, "STARTING SYSTEM"</u>.)

2. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 3.

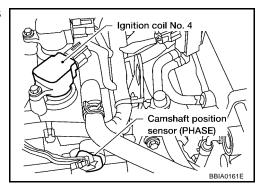
EC

Α

C

Е

D

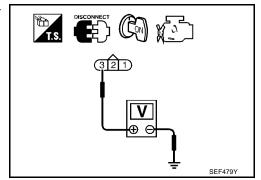

F

H

UBS00B7K

$3.\,$ check cmp sensor (phase) power supply circuit

- Disconnect camshaft position (CMP) sensor (PHASE) harness connector.
- 2. Turn ignition switch ON.


Check voltage between camshaft position sensor (PHASE) terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between camshaft position sensor (PHASE) and ECM
- Harness for open or short between camshaft position sensor (PHASE) and ECM relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK CMP SENSOR (PHASE) GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Check harness continuity between camshaft position sensor (PHASE) terminal 1 and engine ground. Refer to the wiring diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F26, M58
- Harness for open or short between camshaft position sensor (PHASE) and ground
 - >> Repair open circuit or short to power in harness or connectors.

DTC P0340 CMP SENSOR (PHASE)

[QG18DE]

$7.\,$ CHECK CMP SENSOR (PHASE) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between CMP sensor (PHASE) terminal 2 and ECM terminal 14. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK CAMSHAFT POSITION SENSOR (PHASE)

Refer to EC-264, "Component Inspection".

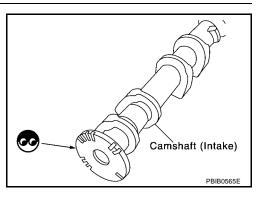
OK or NG

OK >> GO TO 9.

NG >> Replace camshaft position sensor (PHASE).

9. CHECK CAMSHAFT (INTAKE)

Check the following.


- Accumulation of debris to the signal plate of camshaft rear end
- Chipping signal plate of camshaft rear end

OK or NG

>> GO TO 10. OK

NG

>> Remove debris and clean the signal plate of camshaft rear end or replace camshaft.

10. CHECK INTERMITTENT INCIDENT

Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

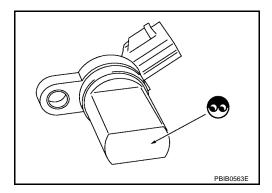
M

EC-263

EC

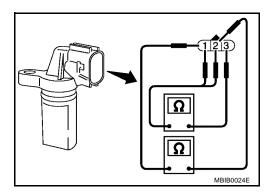
D

Е


Н

[QG18DE]

Component Inspection CAMSHAFT POSITION SENSOR (PHASE)


UBS00B7L

- 1. Loosen the fixing bolt of the sensor.
- 2. Disconnect camshaft position sensor (PHASE) harness connector.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.

5. Check resistance as shown in the figure.

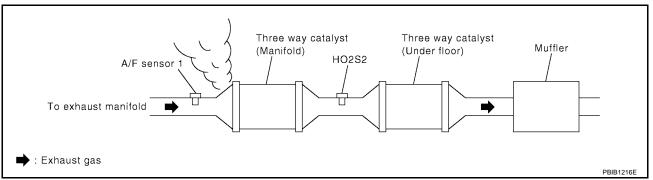
Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
3 (+) - 1 (-)	
3 (+) - 2 (-)	Except 0 or ∞
2 (+) - 1 (-)	

UBS00B7M

Removal and Installation CAMSHAFT POSITION SENSOR (PHASE)

Refer to EM-39, "TIMING CHAIN" .

[QG18DE]


DTC P0420 THREE WAY CATALYST FUNCTION

PFP:20905

On Board Diagnosis Logic

UBS00B7N

The ECM monitors the switching frequency ratio of air fuel ratio (A/F) sensor 1 and heated oxygen sensor 2.

A three way catalyst (manifold) with high oxygen storage capacity will indicate a low switching frequency of heated oxygen sensor 2. As oxygen storage capacity decreases, the heated oxygen sensor 2 switching frequency will increase.

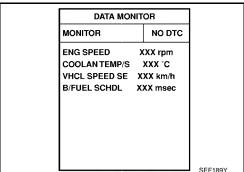
When the frequency ratio of air fuel ratio (A/F) sensor 1 and heated oxygen sensor 2 approaches a specified limit value, the three way catalyst (manifold) malfunction is diagnosed.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	G
P0420 0420	Catalyst system effi- ciency below threshold	 Three way catalyst (manifold) does not operate properly. Three way catalyst (manifold) does not have enough oxygen storage capacity. 	 Three way catalyst (manifold) Exhaust tube Intake air leaks Fuel injectors Fuel injector leaks Spark plug Improper ignition timing 	H

DTC Confirmation Procedure

UBS00B7O

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

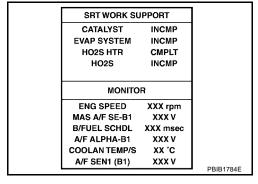
(II) WITH CONSULT-II

TESTING CONDITION:

Do not hold engine speed for more than the specified minutes below.

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.
- Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).
- Open engine hood.

EC

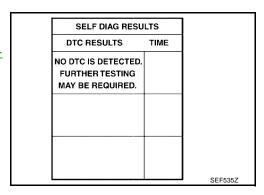

Α

Е

DTC P0420 THREE WAY CATALYST FUNCTION

[QG18DE]

- Select "DTC & SRT CONFIRMATION" then "SRT WORK SUP-PORT" mode with CONSULT-II.
- Rev engine up to 2,500 to 3,500 rpm and hold it for 3 consecutive minutes, then release the accelerator pedal completely.
 If "INCMP" of "CATALYST" changed to "CMPLT", GO TO STEP 12.
- 10. Wait 5 seconds at idle.


11. Rev engine up to 2,000 to 3,000 rpm and maintain it until "IMCMP" of "CATALYST" changes to "CMPLT" (it will take approximately 5 minutes).

If not "CMPLT", stop engine and cool it down to less than 70°C (158°F) and then retest step 1.

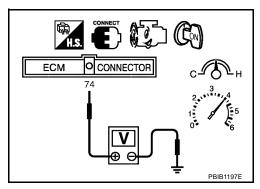
		ı
SRT WORK SUPPORT		
CATALYST	CMPLT	
EVAP SYSTEM	INCMP	
HO2S HTR	CMPLT	
HO2S	INCMP	
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
B/FUEL SCHDL	XXX msec	
A/F ALPHA-B1	XXX V	
COOLAN TEMP/S	XX °C	
A/F SEN1 (B1)	XXX V	
		PBIB1785E

- 12. Select "SELF-DIAG RESULTS" mode with CONSULT-II.
- 13. Confirm that the 1st trip DTC is not detected.

 If the 1st trip DTC is detected, go to EC-267, "Diagnostic Procedure".

Overall Function Check

UBS00B7P


Use this procedure to check the overall function of the three way catalyst (manifold). During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 1 minute.
- 5. Open engine hood.
- 6. Set voltmeter probe between ECM terminal 74 and ground.
- 7. Keep engine speed at 2,500 rpm constant under no load.
- 8. Make sure that the voltage does not vary for more than 5 seconds.

If the voltage fluctuation cycle takes less than 5 seconds, go to EC-267, "Diagnostic Procedure".

• 1 cycle: 0.6 - 1.0 V \rightarrow 0 - 0.3 V \rightarrow 0.6 - 1.0 V

DTC P0420 THREE WAY CATALYST FUNCTION

[QG18DE]

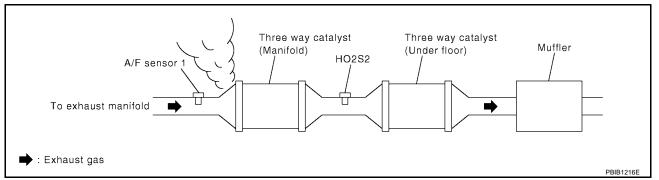
UBS00B7Q

Diagnostic Procedure

1. CHECK EXHAUST SYSTEM

Visually check exhaust tubes and muffler for dent.

OK or NG


OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK EXHAUST GAS LEAK

1. Start engine and run it at idle.

2. Listen for an exhaust gas leak before the three way catalyst (manifold).

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

4. CHECK IGNITION TIMING

Check for ignition timing. Refer to EC-81, "Basic Inspection" .

Items	Specifications		
Target idle speed	A/T	800 ± 50 rpm (in P or N position)	
raiget luie speeu	M/T	650 ± 50 rpm	
Ignition timing	A/T	18 ± 5°BTDC (in P or N position)	
igilition timing	M/T	7 ± 5°BTDC	

OK or NG

OK >> GO TO 5.

NG >> Follow the EC-81, "Basic Inspection".

EC

Α

C

D

Е

F

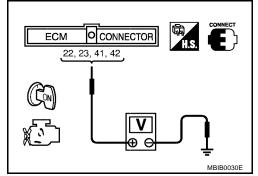
G

Н

J

K

5. CHECK INJECTORS


- 1. Refer to Wiring Diagram for Injectors, EC-579.
- 2. Stop engine and then turn ignition switch ON.
- 3. Check voltage between ECM terminals 22, 23, 41, 42 and ground with CONSULT-II or tester.

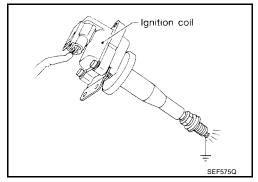
Battery voltage should exist.

OK or NG

OK >> GO TO 6.

NG >> Perform Diagnostic Procedure INJECTOR, <u>EC-579</u>.

6. CHECK IGNITION SPARK


- 1. Turn ignition switch OFF.
- 2. Disconnect ignition coil assembly from rocker cover.
- 3. Disconnect all injector harness connectors.
- 4. Connect a known-good spark plug to the ignition coil assembly.
- 5. Place end of spark plug against a suitable ground and crank engine.
- 6. Check for spark.

OK or NG

OK >> GO TO 7.

NG

>> Check ignition coil with power transistor and their circuit.Refer to <u>EC-566, "IGNITION SIGNAL"</u>.

7. CHECK INJECTOR

- 1. Turn ignition switch OFF.
- Remove injector assembly. Refer to <u>EM-19</u>, "<u>FUEL INJECTOR AND FUEL TUBE</u>".
 Keep fuel hose and all injectors connected to injector gallery.
- 3. Reconnect all injector harness connectors.
- 4. Disconnect all ignition coil harness connectors.
- Turn ignition switch ON. Make sure fuel does not drip from injector.

OK or NG

OK (Does not drip)>>GO TO 8.

NG (Drips)>>Replace the injector(s) from which fuel is dripping.

8. CHECK INTERMITTENT INCIDENT

Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

Trouble is fixed>>INSPECTION END

Trouble is not fixed>>Replace three way catalyst (manifold).

[QG18DE]

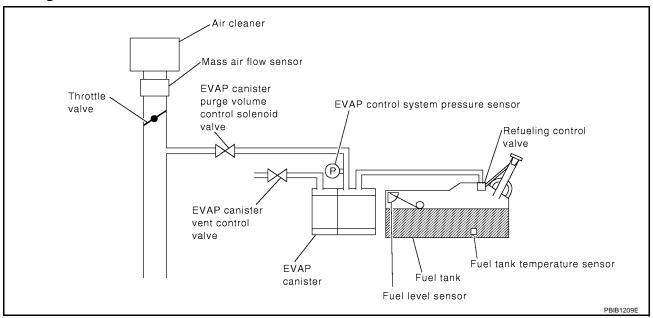
DTC P0441 EVAP CONTROL SYSTEM

PFP:14950

System Description

UBS00B7R

Α


EC

Е

Н

NOTE:

If DTC P0441 is displayed with other DTC such as P2122, P2123 P2127, P2128, P2138, first perform trouble diagnosis for other DTC.

In this evaporative emission (EVAP) control system, purge flow occurs during non-closed throttle conditions. Purge volume is related to air intake volume. Under normal purge conditions (non-closed throttle), the EVAP canister purge volume control solenoid valve is open to admit purge flow. Purge flow exposes the EVAP control system pressure sensor to intake manifold vacuum.

On Board Diagnosis Logic

UBS00B7S

Under normal conditions (non-closed throttle), sensor output voltage indicates if pressure drop and purge flow are adequate. If not, a malfunction is determined.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
			EVAP canister purge volume control solenoid valve stuck closed
			EVAP control system pressure sensor and the circuit
P0441 0441	EVAP control system incorrect purge flow		Loose, disconnected or improper con- nection of rubber tube
			Blocked rubber tube
			Cracked EVAP canister
			EVAP canister purge volume control solenoid valve circuit
			Accelerator pedal position sensor
			Blocked purge port
			EVAP canister vent control valve

EC-269

DTC Confirmation Procedure

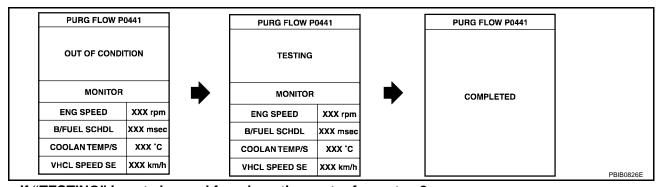
IRSOOR7T

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


TESTING CONDITION:

Always perform test at a temperature of 0°C (32°F) or more.

(II) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and let it idle for at least 70 seconds.
- Select "PURG FLOW P0441" of "EVAPORATIVE SYSTEM" in "DTC CONFIRMATION" mode with CON-SULT-II.
- 5. Touch "START". If "COMPLETED" is displayed, go to step 7.
- 6. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 35 seconds.)

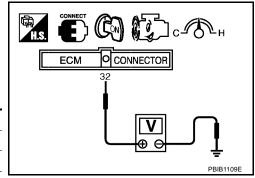
Selector lever	Suitable position
Vehicle speed	32 - 120 km/h (20 - 75 MPH)
ENG SPEED	500 - 3,800 rpm
B/FUEL SCHDL	1.0 - 8.2 msec
Engine coolant temperature	More than 0°C (32°F)

If "TESTING" is not changed for a long time, retry from step 2.

7. Make sure that OK is displayed after touching "SELF-DIAG RESULTS". If NG is displayed, refer to EC-271, "Diagnostic Procedure".

Overall Function Check

UBS00B7U


Use this procedure to check the overall monitoring function of the EVAP control system purge flow monitoring. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Lift up drive wheels.
- 2. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF, wait at least 10 seconds.
- Start engine and wait at least 70 seconds.

- 5. Set voltmeter probes to ECM terminals 32 (EVAP control system pressure sensor signal) and ground.
- Check EVAP control system pressure sensor value at idle speed and note it.
- Establish and maintain the following conditions for at least 1 minute.

Air conditioner switch	ON
Headlamp switch	ON
Rear window defogger switch	ON
Engine speed	Approx. 3,000 rpm
Gear position	Any position other than P, N or R

- Verify that EVAP control system pressure sensor value stays 0.1V less than the value at idle speed (measured at step 6) for at least 1 second.
- 9. If NG, go to EC-271, "Diagnostic Procedure".

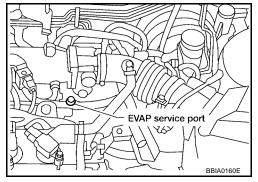
Diagnostic Procedure

1. CHECK EVAP CANISTER

- 1. Turn ignition switch OFF.
- 2. Check EVAP canister for cracks.

OK or NG

OK (With CONSULT-II) >>GO TO 2.


OK (Without CONSULT-II) >>GO TO 3.

NG >> Replace EVAP canister.

2. CHECK PURGE FLOW

With CONSULT-II

- Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge.
- 2. Start engine and let it idle.
- Select "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.
- 4. Rev engine up to 2,000 rpm.

5. Touch "Qd" and "Qu" on CONSULT-II screen to adjust "PURG VOL CONT/V" opening and check vacuum existence.

PURG VOL CONT/V	VACUUM
100%	Should exist.
0%	should not exist.

OK or NG

OK >> GO TO 7.

NG >> GO TO 4.

ACTIVE TEST		
PURG VOL CONT/V XXX %		
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
		PBIB1786E

Α

EC

С

D

Е

Н

3. CHECK PURGE FLOW

☒ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum gauge indication when revving engine up to 2,000 rpm.

Vacuum should exist.

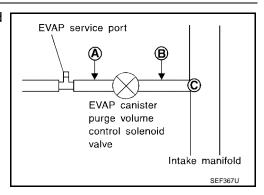
6. Release the accelerator pedal fully and let idle.

Vacuum should not exist.

OK or NG

OK >> GO TO 7. NG >> GO TO 4.

4. CHECK EVAP PURGE LINE

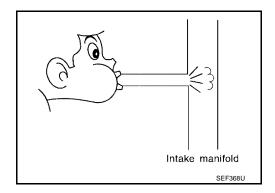

- 1. Turn ignition switch OFF.
- 2. Check EVAP purge line for improper connection or disconnection. Refer to EC-623, "EVAPORATIVE EMISSION LINE DRAWING".

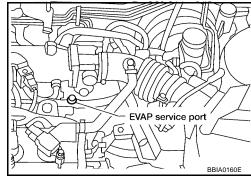
OK or NG

OK >> GO TO 5. NG >> Repair it.

5. CHECK EVAP PURGE HOSE AND PURGE PORT

- Disconnect purge hoses connected to EVAP service port A and EVAP canister purge volume control solenoid valve B.
- 2. Blow air into each hose and EVAP purge port C.




3. Check that air flows freely.

OK or NG

OK (With CONSULT-II)>>GO TO 6. OK (Without CONSULT-II)>>GO TO 7.

NG >> Repair or clean hoses and/or purge port.

6. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(III) With CONSULT-II

- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

ACTIVE TEST		
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
		PBIB1786E

7. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

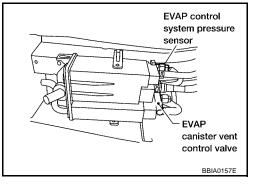
Refer to EC-289, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace EVAP canister purge volume control solenoid valve.

8. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR


- Disconnect EVAP control system pressure sensor harness connector.
- 2. Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 9.

NG >> Replace EVAP control system pressure sensor.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION

Refer to DTC Confirmation Procedure for DTC P0452, EC-300 P0453, EC-306.

OK or NG

OK >> GO TO 10.

NG >> Replace EVAP control system pressure sensor.

10. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 11.

NG >> Clean the rubber tube using an air blower.

11. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-508, "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> Replace EVAP canister vent control valve.

EC-273

EC

Е

Н

DTC P0441 EVAP CONTROL SYSTEM

[QG18DE]

12. CHECK EVAP PURGE LINE

Inspect EVAP purge line (pipe and rubber tube). Check for evidence of leaks. Refer to EC-623, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 13. NG >> Replace it.

13. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 14.

14. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0442 EVAP CONTROL SYSTEM

PFP:14950

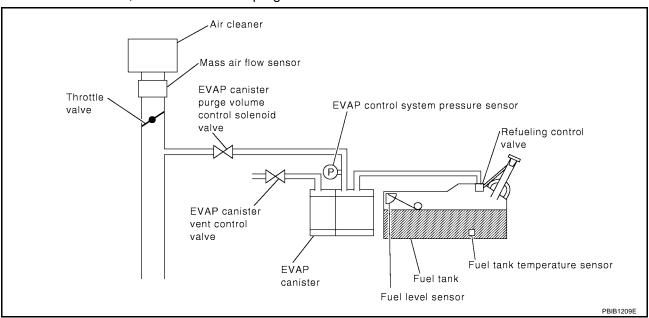
On Board Diagnosis Logic

UBS00B7W

Α

EC

C


Е

Н

This diagnosis detects leaks in the EVAP purge line using engine intake manifold vacuum.

If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge volume control solenoid valve, under the following "Vacuum test" conditions. The EVAP canister vent control valve is closed to shut the EVAP purge line off. The EVAP canister purge vol-

The EVAP canister vent control valve is closed to shut the EVAP purge line off. The EVAP canister purge volume control solenoid valve will then be opened to depressurize the EVAP purge line using intake manifold vacuum. After this occurs, the EVAP canister purge volume control solenoid valve will be closed.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
			Incorrect fuel tank vacuum relief valve
			Incorrect fuel filler cap used
			Fuel filler cap remains open or fails to close.
			Foreign matter caught in fuel filler cap.
			Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.
		EVAP control system mall leak detected control system does not operate properly.	EVAP canister or fuel tank leaks
			EVAP purge line (pipe and rubber tube) leaks
P0442	EVAP control system		EVAP purge line rubber tube bent
0442			Loose or disconnected rubber tube
	(nogative pressure)		EVAP canister vent control valve and the circuit
			EVAP canister purge volume control solenoid valve and the circuit
			Fuel tank temperature sensor
			O-ring of EVAP canister vent control valve is missing or damaged
			EVAP canister is saturated with water
			EVAP control system pressure sensor
			Fuel level sensor and the circuit
			Refueling EVAP vapor cut valve
			ORVR system leaks

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

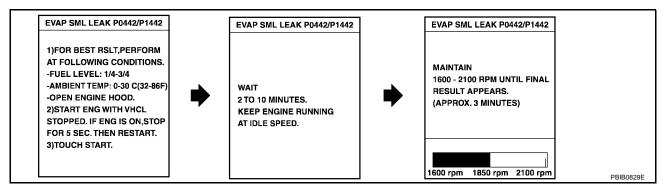
UBS00B7X

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 and 3/4 full, and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).
- Open engine hood before conducting following procedure.

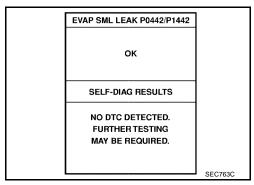

WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 4. Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 60°C (32 - 140°F)

 Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.


NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to <u>EC-81, "Basic Inspection"</u>.

Make sure that OK is displayed.
 If NG is displayed, refer to <u>EC-277</u>, "<u>Diagnostic Procedure</u>".

NOTE:

Make sure that EVAP hoses are connected to the EVAP canister purge volume control solenoid valve properly.

WITH GST

NOTE:

Be sure to read the explanation of Driving Pattern on <u>EC-62</u> before driving vehicle.

Start engine.

DTC P0442 EVAP CONTROL SYSTEM

[QG18DE]

Α

EC

D

Е

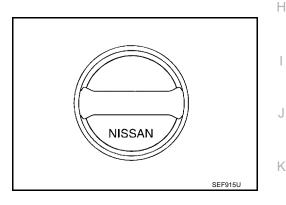
F

M

UBS00B7Y

- 2. Drive vehicle according to EC-62, "Driving Pattern".
- 3. Stop vehicle.
- 4. Select MODE 1 with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Start engine.
 - It is not necessary to cool engine down before driving.
- 7. Drive vehicle again according to <a>EC-62, "Driving Pattern".
- 8. Stop vehicle.
- 9. Select MODE 3 with GST.
- If P0442 is displayed on the screen, go to EC-277, "Diagnostic Procedure".
- If P0441 is displayed on the screen, go to Diagnostic Procedure for DTC P0441, EC-271.
- If P0441 and P0442 are not displayed on the screen, go to the following step.
- 10. Select MODE 1 with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6.

Diagnostic Procedure


1. CHECK FUEL FILLER CAP DESIGN

- 1. Turn ignition switch OFF.
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

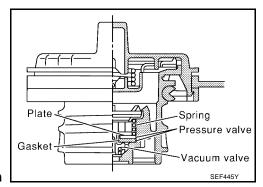
OK >> GO TO 5.

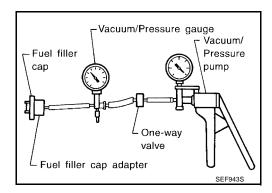
NG >> GO TO 4.

4. CHECK FUEL TANK VACUUM RELIEF VALVE

- 1. Wipe clean valve housing.
- 2. Check valve opening pressure and vacuum.

Pressure:


15.3 - 20.0 kPa (0.156 - 0.204 kg/cm² , 2.22 - 2.90 psi)


Vacuum:

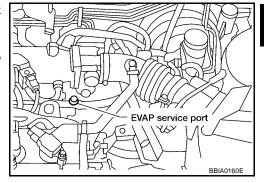
-6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm² , -0.87 to -0.48 psi)

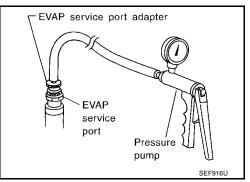
CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

OK or NG

OK >> GO TO 5.


NG >> Replace fuel filler cap with a genuine one.


5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely.

For the location of EVAP service port, refer to EC-623, "EVAPORA-TIVE EMISSION LINE DRAWING".

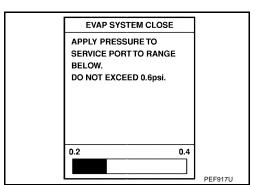
Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

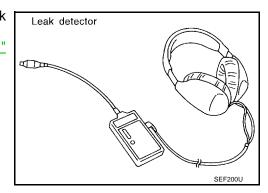
Models with CONSULT-II>>GO TO 6. Models without CONSULT-II>>GO TO 7.

6. CHECK FOR EVAP LEAK

With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.


NOTE:


- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-623, "EVAPORATIVE EMISSION LINE DRAWING"

OK or NG

>> GO TO 8. OK

NG >> Repair or replace.

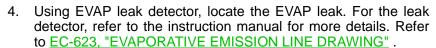
EC

Е

D

Н

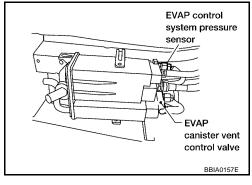
K

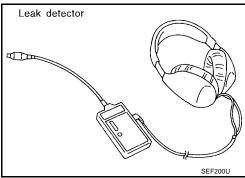

7. CHECK FOR EVAP LEAK

☒ Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:


- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.



OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

8. CHECK EVAP CANISTER VENT CONTROL VALVE

Check the following.

- EVAP canister vent control valve is installed properly. Refer to EC-626, "Removal and Installation".
- EVAP canister vent control valve.
 Refer to <u>EC-296</u>, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Repair or replace EVAP canister vent control valve and O-ring.

9. CHECK IF EVAP CANISTER SATURATED WITH WATER


- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- 2. Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 10.

No (With CONSULT-II)>>GO TO 12.

No (Without CONSULT-II)>>GO TO 13.

DTC P0442 EVAP CONTROL SYSTEM

[QG18DE]

10. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 1.9 kg (4.2 lb).

OK or NG

OK (With CONSULT-II)>>GO TO 12. OK (Without CONSULT-II)>>GO TO 13. >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose connected to EVAP canister for clogging or poor connection

>> Repair hose or replace EVAP canister.

12. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

With CONSULT-II

- Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

>> GO TO 15. OK NG >> GO TO 14.

ACTIVE TEST		
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
		PBIB1786E

13. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 16. NG >> GO TO 14. EC

Е

Н

14. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-623, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 15.

NG >> Repair or reconnect the hose.

15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-289, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace EVAP canister purge volume control solenoid valve.

16. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-230, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace fuel level sensor unit.

17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-305, "Component Inspection".

OK or NG

OK >> GO TO 18.

NG >> Replace EVAP control system pressure sensor.

18. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to EC-622, "EVAPORATIVE EMISSION SYSTEM".

OK or NG

OK >> GO TO 19.

NG >> Repair or reconnect the hose.

19. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 20.

20. CHECK EVAP/ORVR LINE

Check EVAP/ORVR line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to <u>EC-627</u>, "ON BOARD REFUELING VAPOR RECOVERY (ORVR)".

OK or NG

OK >> GO TO 21.

NG >> Repair or replace hoses and tubes.

21. CHECK SIGNAL LINE AND RECIRCULATION LINE

Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 22.

NG >> Repair or replace hoses, tubes or filler neck tube.

DTC P0442 EVAP CONTROL SYSTEM

[QG18DE]

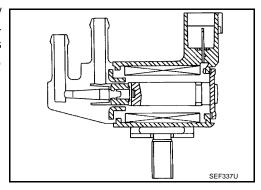
22. CHECK REFUELING EVAP VAPOR CUT VALVE	
Refer to EC-630, "Component Inspection".	A
OK or NG OK >> GO TO 23. NG >> Replace refueling EVAP vapor cut valve with fuel tank.	EC
23. CHECK FUEL LEVEL SENSOR	С
Refer to DI-25, "FUEL LEVEL SENSOR UNIT CHECK".	
OK or NG OK >> GO TO 24. NG >> Replace fuel level sensor unit.	D
24. CHECK INTERMITTENT INCIDENT	Е
Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	
>> INSPECTION END	F
	G
	Н
	ı
	1
	J
	K
	L
	M

[QG18DE]

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Description SYSTEM DESCRIPTION

UBS00B7Z


Sensor	Input Signal to ECM	ECM function	Actuator	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*2			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature		EVAP canister purge volume control solenoid valve	
Battery	Battery voltage*2	EVAP canister		
Throttle position sensor	Throttle position	purge flow control		
Accelerator pedal position sensor	Accelerator pedal position			
Air fuel ratio (A/F) sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)			
Vehicle speed signal*1	Vehicle speed			

^{*1:} This signal is sent to the ECM through CAN communication line.

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/ OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

CONSULT-II Reference Value in Data Monitor Mode

UBS00B80

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle (Vehicle stopped)	0%
PURG VOL C/V	Air conditioner switch OFF		
	 Shift lever: N (A/T), Neutral (M/T) 	2,000 rpm	_
	No-load		

^{*2:} The ECM determines the start signal status by the signal of engine speed and battery voltage.

[QG18DE]

On Board Diagnosis Logic

UBS00B81

Α

EC

D

Е

Н

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0444 0444	EVAP canister purge volume control solenoid valve circuit open	An excessively low voltage signal is sent to ECM through the valve	Harness or connectors (The solenoid valve circuit is open or shorted.) EVAP canister purge volume control solenoid valve
P0445 0445	EVAP canister purge volume control solenoid valve circuit shorted	An excessively high voltage signal is sent to ECM through the valve	Harness or connectors (The solenoid valve circuit is shorted.) EVAP canister purge volume control solenoid valve

DTC Confirmation Procedure

IRSOOR82

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

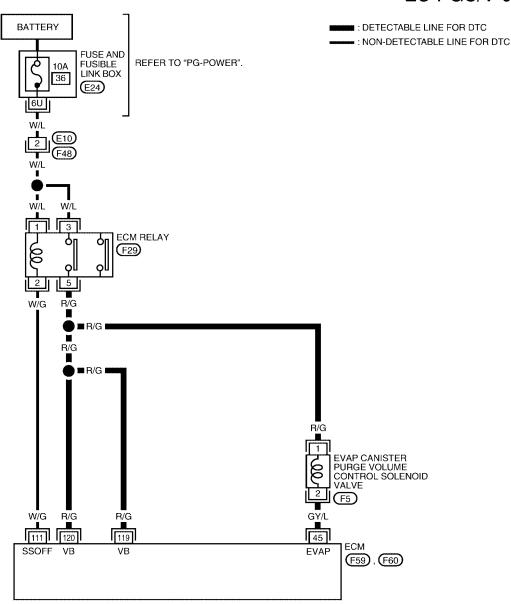
Before performing the following procedure, confirm battery voltage is more than 11V at idle.

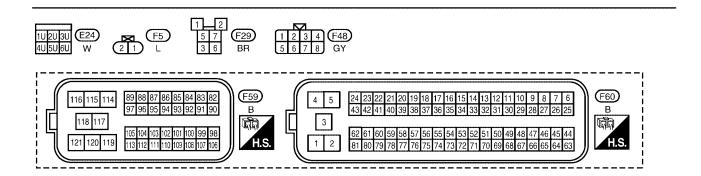
(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 13 seconds.
- 4. If 1st trip DTC is detected, go to EC-288, "Diagnostic Procedure"

DATA M	DATA MONITOR	
MONITOR	MONITOR NO DTC	
ENG SPEED	XXX rpm	

WITH GST


Follow the procedure "WITH CONSULT-II" above.


[QG18DE]

Wiring Diagram

UBS00B83

EC-PGC/V-01

BBWA0686E

[QG18DE]

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
45	GY/L	EVAP canister purge vol-	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)*
	ume control solenoid valve	 [Engine is running] Engine speed is about 2,000 rpm (More than 100 seconds after starting engine). 	Approximately 10V★	
111	W/G	G ECM relay (Self shut-off)	[Engine is running][Ignition switch: OFF]● For a few seconds after turning ignition switch OFF	0 - 1.0V
			[Ignition switch: OFF]A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

EC

Α

C

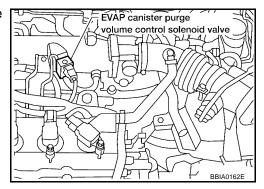
 D

Е

F

Н

K

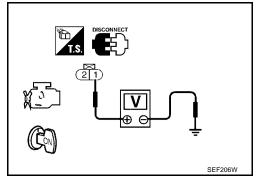

[QG18DE]

Diagnostic Procedure

LIBSOOB84

1. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIR-CUIT

- 1. Turn ignition switch OFF.
- Disconnect EVAP canister purge volume control solenoid valve harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM relay.
 - >> Repair harness or connectors.

3. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIR-CUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 45 and EVAP canister purge volume control solenoid valve terminal 2.

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK (With CONSULT-II)>>GO TO 4.

OK (Without CONSULT-II)>>GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

[QG18DE]

4. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(II) With CONSULT-II

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

		•
ACTIVE TES	T	
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
		PBIB1786E

5. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-289, "Component Inspection".

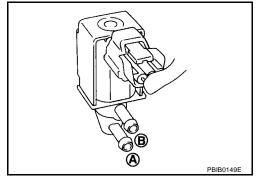
OK or NG

OK >> GO TO 6.

NG >> Replace EVAP canister purge volume control solenoid valve.

6. CHECK INTERMITTENT INCIDENT

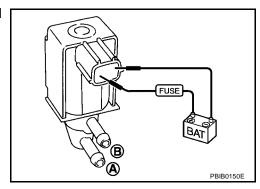
Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

With CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.


Condition (PURG VOL CONT/V value)	Air passage continuity between A and B
100%	Yes
0%	No

⋈ Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

EC

D

Е

G

Н

UBS00B85

1 \

L

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

[QG18DE]

Removal and Installation
EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EM-13, "OUTER COMPONENT PARTS".

UBS00B86

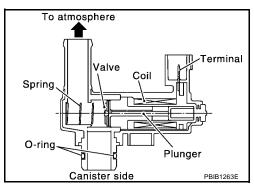
DTC P0447 EVAP CANISTER VENT CONTROL VALVE

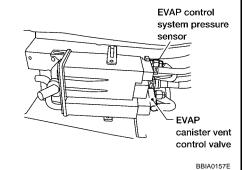
[QG18DE]

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

PFP:14935

UBS00B87


Component Description


The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System" diagnoses.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

On Board Diagnosis Logic

Possible cause · Harness or connectors

P0447 EVAP canister vent con-An improper voltage signal is sent to ECM (The valve circuit is open or shorted.) 0447 trol valve circuit open through EVAP canister vent control valve. EVAP canister vent control valve

DTC detecting condition

DTC Confirmation Procedure

Trouble diagnosis name

UBS00B8A

M

DTC No.

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

WITH CONSULT-II

Turn ignition switch ON.

Е

Α

EC

Н

UBS00B89

LIBSOOBAR

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

[QG18DE]

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait at least 8 seconds.
- 4. If 1st trip DTC is detected, go to EC-294, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

[QG18DE] **Wiring Diagram** Α EC-VENT/V-01 : DETECTABLE LINE FOR DTC EC : NON-DETECTABLE LINE FOR DTC **BATTERY** FUSE AND FUSIBLE LINK BOX C Refer to "PG-POWER". 10A (E22), (E24) 60 36 34 38 D R/B **E10** 3 Е (F48) W/L R/B F W/L W/L R/B 3 6 G/W ECM RELAY (F29) M59 G/W M14 B1 5 Н R/G W/G G/W G/W EVAP CANISTER VENT CONTROL VALVE (B35) B3 15 M16 L/Y M59 5 F27 L/Y K W/G R/G R/G 111 119 117 120 ECM SSOFF VΒ (F59) M E24 | W | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 BR BR 1U 2U 3U 1S (E22) (F29) W 4U 5U 6U 116 115 114

BBWA0687E

(F59)

118 117

121 120 119

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

[QG18DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
111	W/G	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
		(con shat on)	[Ignition switch: OFF]A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
117	L/Y	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS00B8C

1. INSPECTION START

1. Do you have CONSULT-II?

Yes or No

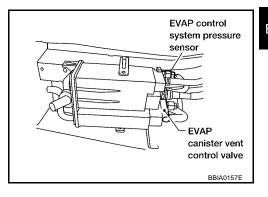
Yes >> GO TO 2. No >> GO TO 3.

2. CHECK EVAP CANISTER VENT CONTROL VALVE CIRCUIT

(III) With CONSULT-II

- 1. Turn ignition switch OFF and then turn ON.
- 2. Select "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Touch "ON/OFF" on CONSULT-II screen.
- 4. Check for operating sound of the valve. Clicking noise should be heard.

OK or NG

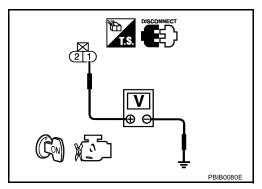

OK >> GO TO 7. NG >> GO TO 3.

ACTIVE TEST		
VENT CONTROL/V	OFF	
MONITOF	}	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
	1	PBIB1787E

[QG18DE]

3. CHECK EVAP CANISTER VENT CONTROL VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect EVAP canister vent control valve harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between EVAP canister vent control valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F27, M59
- Harness connectors B1, M14
- Harness for open or short between EVAP canister vent control valve and ECM relay

>> Repair harness or connectors.

5. CHECK EVAP CANISTER VENT CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 117 and EVAP canister vent control valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6. EC

Α

С

D

Е

Г

G

Н

_

[QG18DE]

UBS00B8D

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B3, M16
- Harness connectors M59, F27
- Harness for open or short between EVAP canister vent control valve and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 8.

NG >> Clean the rubber tube using an air blower.

8. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-296, "Component Inspection".

OK or NG

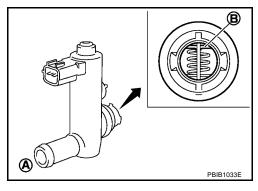
OK >> GO TO 9.

NG >> Replace EVAP canister vent control valve.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection EVAP CANISTER VENT CONTROL VALVE

(P) With CONSULT-II

- 1. Remove EVAP canister vent control valve from EVAP canister.
- 2. Check portion **B** of EVAP canister vent control valve for being rusted.

If NG, replace EVAP canister vent control valve. If OK, go to next step.

- 3. Reconnect harness connectors disconnected.
- 4. Turn ignition switch ON.

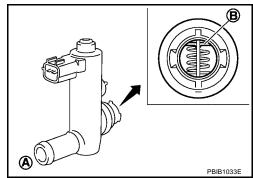
DTC P0447 EVAP CANISTER VENT CONTROL VALVE

[QG18DE]

PBIB1787E

- Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 6. Check air passage continuity and operation delay time. Make sure new O-ring is installed properly.

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes


Operation takes less than 1 second.

If NG, replace EVAP canister vent control valve. If OK, go to next step.

- 7. Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower.
- 8. Perform step 6 again.

⋈ Without CONSULT-II

- Remove EVAP canister vent control valve from EVAP canister.
- Check portion B of EVAP canister vent control valve for being rusted.

ACTIVE TEST

MONITOR **ENG SPEED**

OFF

XXX rpm

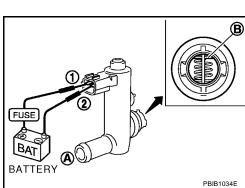
XXX %

VENT CONTROL/V

A/F ALPHA-B1

3. Check air passage continuity and operation delay time under the following conditions.

Make sure new O-ring is installed properly.


Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

Operation takes less than 1 second.

If NG, replace EVAP canister vent control valve.

If OK, go to next step.

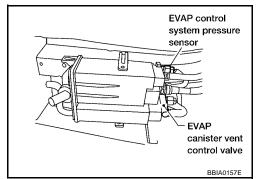
- 4. Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower.
- 5. Perform step 3 again.

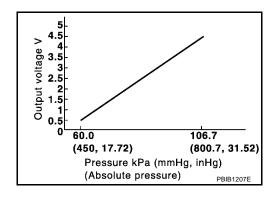
Α

EC

Е

D


Н


PFP:22365

UBS00ISB

Component Description

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

CONSULT-II Reference Value in Data Monitor Mode

UBS00ISC

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 1.8 - 4.8V

On Board Diagnosis Logic

UBS00ISD

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0451 0451	EVAP control system pressure sensor performance	ECM detects a sloshing signal from the EVAP control system pressure sensor	Harness or connectors EVAP control system pressure sensor

DTC Confirmation Procedure

UBS00ISE

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(III) WITH CONSULT-II

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait at least 40 seconds.

NOTE

Do not depress accelerator pedal even slightly.

If 1st trip DTC is detected, go to EC-299, "Diagnostic Procedure"

DATA MONITOR

MONITOR

NO DTC

ENG SPEED XXX rpm

COOLAN TEMP/S XXX 'C

FUEL T/TMP SE XXX 'C

[QG18DE]

UBS00ISF

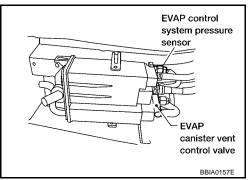
WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

1. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR FOR WATER

1. Disconnect EVAP control system pressure sensor harness connector.


2. Check sensor harness connector for water.

Water should not exist.

OK or NG

OK >> GO TO 2.

NG >> Repair or replace harness connector.

2. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-299, "Component Inspection".

OK or NG

OK >> GO TO 3.

>> Replace EVAP control system pressure sensor. NG

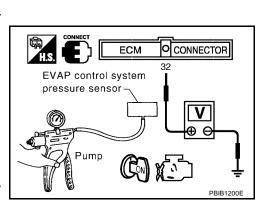
3. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". For wiring diagram, refer to EC-302.

>> INSPECTION END

Component Inspection EVAP CONTROL SYSTEM PRESSURE SENSOR

1. Remove EVAP control system pressure sensor with its harness connector connected from EVAP canister. Do not reuse the O-ring, replace it with a new one.


Install a vacuum pump to EVAP control system pressure sensor.

Turn ignition switch ON and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- If NG, replace EVAP control system pressure sensor.

Е

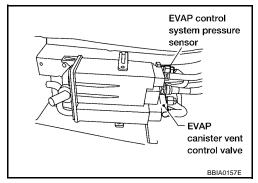
Α

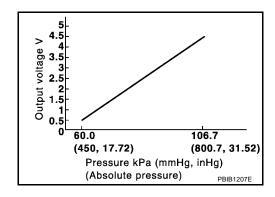
EC

Н

UBS00ISG

[QG18DE]


DTC P0452 EVAP CONTROL SYSTEM PRESSURE SENSOR


PFP:25085

UBS00B8E

Component Description

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

CONSULT-II Reference Value in Data Monitor Mode

UBS00B8F

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	• Ignition switch: ON	Approx. 1.8 - 4.8V

On Board Diagnosis Logic

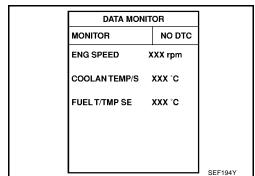
UBS00B8G

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0452 0452	EVAP control system pressure sensor low input	An excessively low voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor

[QG18DE]

DTC Confirmation Procedure

UBS00B8H


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 0°C (32°F) or more.

(II) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II. 4.
- Make sure that "FUEL T/TEMP SE" is more than 0°C (32°F). 5.
- Start engine and wait at least 20 seconds.
- If 1st trip DTC is detected, go to EC-303, "Diagnostic Procedure" 7.

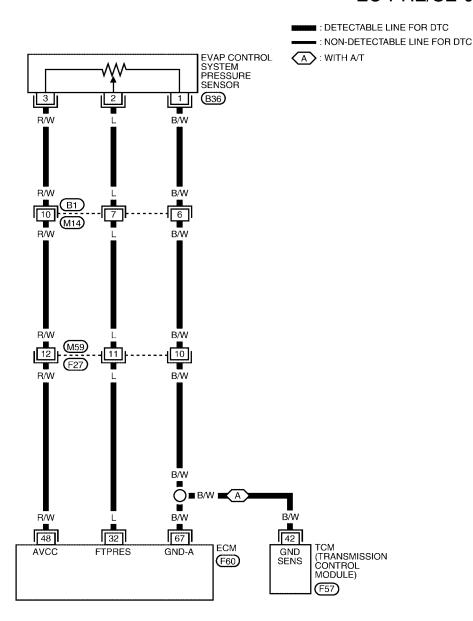
WITH GST

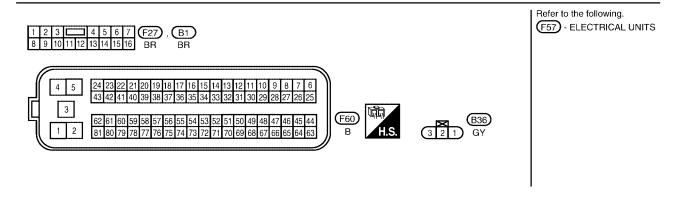
- Start engine and warm it up to normal operating temperature.
- Check that voltage between ECM terminal 107 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and wait at least 20 seconds.
- 5. Select MODE 7 with GST.
- 6. If 1st trip DTC is detected, go to EC-303, "Diagnostic Procedure"

CONNECTOR **ECM** 107 PBIB1110E EC

Α

Е


Н


K

Wiring Diagram

UBS00B8I

EC-PRE/SE-01

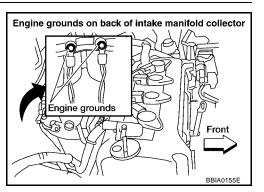
BBWA0688E

[QG18DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
32	L	EVAP control system pressure sensor	[Ignition switch: ON]	Approximately 1.8 - 4.8V
48	R/W	Sensors' power supply	[Ignition switch: ON]	Approximately 5V
67	B/W	Sensors' ground (MAF sensor / IAT sensor / PSP sensor / ASCD steering switch / EVAP control system pressure sensor / Refrigerant pressure sensor / Swirl control valve position sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

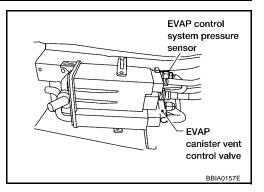
Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK CONNECTOR


- Disconnect EVAP control system pressure sensor harness connector.
- 2. Check sensor harness connector for water.

Water should not exist.

OK or NG

OK >> GO TO 3. NG >> Repair or

>> Repair or replace harness connector.

Α

ΞC

D

Е

UBS00B8J

G

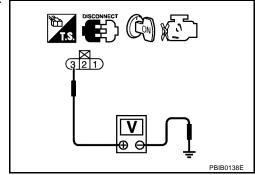
Н

-

K

L

[QG18DE]


3. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch ON.
- 2. Check voltage between EVAP control system pressure sensor terminal 3 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B1, M14
- Harness connectors M59, F27
- Harness for open or short between EVAP control system pressure sensor and ECM

>> Repair harness or connectors.

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector.
- 4. Check harness continuity between EVAP control system pressure sensor terminal 1 and ECM terminal 67, TCM terminal 42.

Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B1, M14
- Harness connectors M59, F27
- Harness for open or short between EVAP control system pressure sensor and TCM
- Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

[QG18DE]

7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND **SHORT**

1. Check harness continuity between ECM terminal 32 and EVAP control system pressure sensor terminal

Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B1, M14
- Harness connectors M59, F27
- Harness for open or short between ECM and EVAP control system pressure sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-305, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace EVAP control system pressure sensor.

10. CHECK INTERMITTENT INCIDENT

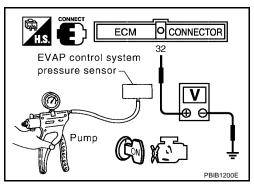
Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection EVAP CONTROL SYSTEM PRESSURE SENSOR

Remove EVAP control system pressure sensor with its harness connector connected.

Remove EVAP control system pressure sensor from EVAP canister.


Do not reuse the O-ring, replace it with a new one.

- Install a vacuum pump to EVAP control system pressure sensor.
- Turn ignition switch ON and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- If NG, replace EVAP control system pressure sensor.

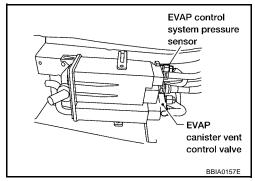
EC

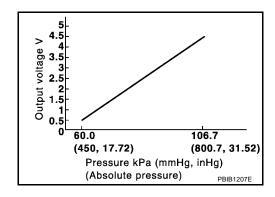
Α

K

UBS00B8K

[QG18DE]


DTC P0453 EVAP CONTROL SYSTEM PRESSURE SENSOR


PFP:25085

UBS00B8L

Component Description

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

CONSULT-II Reference Value in Data Monitor Mode

UBS00B8M

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES • Ignition switch: ON		Approx. 1.8 - 4.8V

On Board Diagnosis Logic

UBS00B8N

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0453 0453	EVAP control system pressure sensor high input	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor EVAP canister vent control valve EVAP canister Rubber hose to EVAP canister vent control valve EVAP canister purge volume control solenoid valve

[QG18DE]

DTC Confirmation Procedure

UBS00B8O

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 0°C (32°F) or more.

(II) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- 5. Make sure that "FUEL T/TEMP SE" is more than 0°C (32°F).
- 6. Start engine and wait at least 20 seconds.
- 7. If 1st trip DTC is detected, go to EC-309, "Diagnostic Procedure"

DATA MONITOR

MONITOR

NO DTC

ENG SPEED XXX rpm

COOLAN TEMP/S XXX °C

FUEL T/TMP SE XXX °C

SEF194Y

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check that voltage between ECM terminal 107 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and wait at least 20 seconds.
- 5. Select MODE 7 with GST.
- 6. If 1st trip DTC is detected, go to EC-309, "Diagnostic Procedure"

ECM OCONNECTOR

107

PBIB1110E

EC

Α

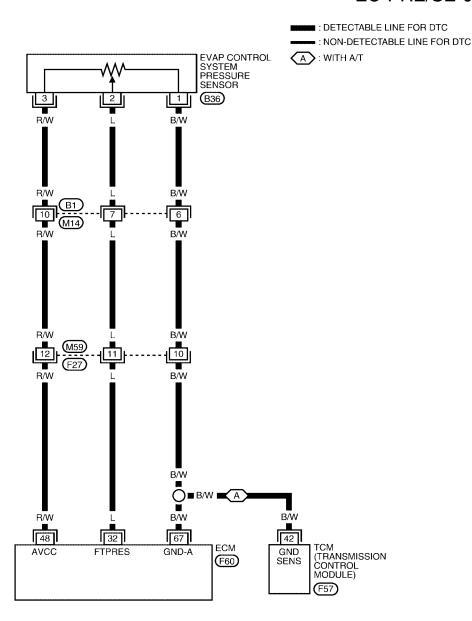
Е

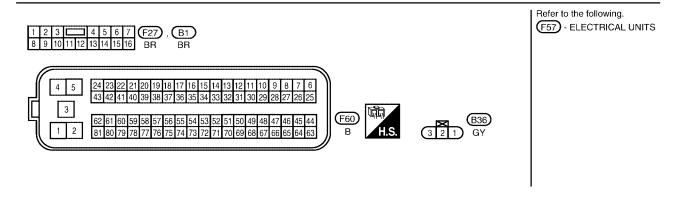
F

G

Н

ı


Κ


L

Wiring Diagram

UBS00B8P

EC-PRE/SE-01

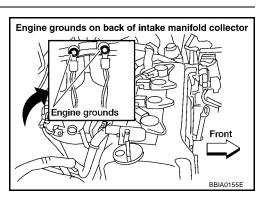
BBWA0688E

[QG18DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
32	L	EVAP control system pressure sensor	[Ignition switch: ON]	Approximately 1.8 - 4.8V
48	R/W	Sensors' power supply	[Ignition switch: ON]	Approximately 5V
67	B/W	Sensors' ground (MAF sensor / IAT sensor / PSP sensor / ASCD steer- ing switch / EVAP control system pressure sensor / Refrigerant pressure sen- sor / Swirl control valve position sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

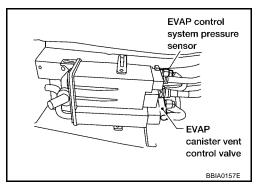
Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK CONNECTOR


- Disconnect EVAP control system pressure sensor harness connector.
- Check sensor harness connector for water.

Water should not exist.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness connector.

Α

EC

D

Е

_

G

.

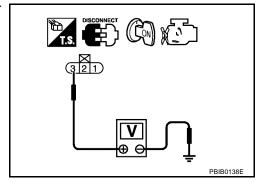
,

.

M

. . .

[QG18DE]


3. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch ON.
- 2. Check voltage between EVAP control system pressure sensor terminal 3 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B1, M14
- Harness connectors M59, F27
- Harness for open or short between EVAP control system pressure sensor and ECM

>> Repair harness or connectors.

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector.
- 4. Check harness continuity between EVAP control system pressure sensor terminal 1 and ECM terminal 67, TCM terminal 42.

Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B1, M14
- Harness connectors M58, F26
- Harness for open or short between EVAP control system pressure sensor and TCM
- Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

[QG18DE]

Α

EC

D

M

7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal 32 and EVAP control system pressure sensor terminal 2.

Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B1, M14
- Harness connectors M58, F26
- Harness for open or short between ECM and EVAP control system pressure sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 10.

NG >> Clean the rubber tube using an air blower.

10. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-296, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> Replace EVAP canister vent control valve.

11. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-312, "Component Inspection".

OK or NG

OK >> GO TO 12.

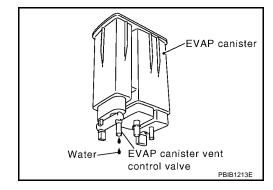
NG >> Replace EVAP control system pressure sensor.

12. CHECK RUBBER TUBE

Check obstructed rubber tube connected to EVAP canister vent control valve.

OK or NG

OK >> GO TO 13.


NG >> Clean rubber tube using an air blower, repair or replace rubber tube.

13. CHECK IF EVAP CANISTER SATURATED WITH WATER

- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- Check if water will drain from the EVAP canister.

Yes or No

Yes >> GO TO 14. No >> GO TO 16.

14. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 1.9 kg (4.2 lb).

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

15. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose connected to EVAP canister for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

16. CHECK INTERMITTENT INCIDENT

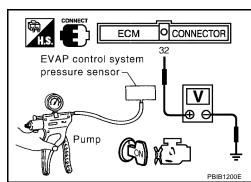
Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection EVAP CONTROL PRESSURE SENSOR

UBS00B8R

- 1. Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove EVAP control system pressure sensor from EVAP canister.


Do not reuse the O-ring, replace it with a new one.

- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch ON and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V	
Not applied	1.8 - 4.8	
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value	

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).

[QG18DE]

5. If NG, replace EVAP control system pressure sensor.

Α

EC

С

D

Е

F

G

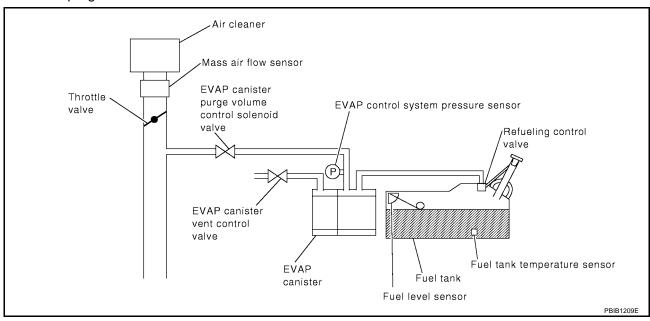
Н

1

J

Κ

L


DTC P0455 EVAP CONTROL SYSTEM

PFP:14950

On Board Diagnosis Logic

UBS00B8S

This diagnosis detects a very large leak (fuel filler cap fell off etc.) in EVAP system between the fuel tank and EVAP canister purge volume control solenoid valve.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0455 0455	EVAP control system gross leak detected	EVAP control system has a very large leak such as fuel filler cap fell off, EVAP control system does not operate properly.	 Fuel filler cap remains open or fails to close. Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent. Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged. EVAP control system pressure sensor Refueling EVAP vapor cut valve ORVR system leaks

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

[QG18DE]

DTC Confirmation Procedure

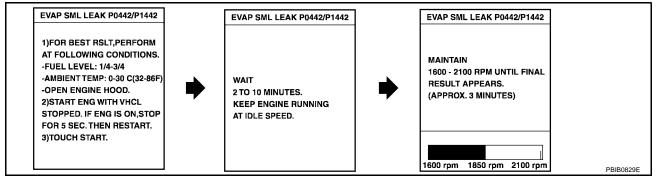
CAUTION:

Never remove fuel filler cap during the DTC Confirmation Procedure.

- Make sure that EVAP hose are connected to EVAP canister purge volume control solenoid valve properly.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full, and vehicle is placed on flat level surface.
- Open engine hood before conducting the following procedure.

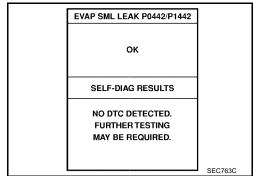

(III) WITH CONSULT-II

- 1. Tighten fuel filler cap securely until ratcheting sound is heard.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 60°C (32 - 140°F)

Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.


NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to EC-81. "Basic Inspection".

7. Make sure that OK is displayed.

If NG is displayed, select "SELF-DIAG RESULTS" mode with CONSULT-II and make sure that "EVAP GROSS LEAK [P0455]" is displayed. If it is displayed, refer to EC-316, "Diagnostic Procedure".

If P0442 is displayed, perform Diagnostic Procedure for DTC P0442, EC-277.

WITH GST

NOTE:

Be sure to read the explanation of Driving Pattern on <u>EC-62</u> before driving vehicle.

EC-315

EC

Α

D

Е

Н

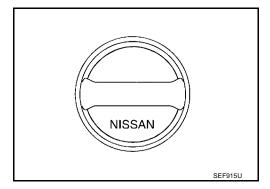
- 1. Start engine.
- 2. Drive vehicle according to EC-62, "Driving Pattern".
- 3. Stop vehicle.
- 4. Select MODE 1 with GST.
 - If SRT of EVAP system is not set yet, go to the following step.
 - If SRT of EVAP system is set, the result will be OK.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Start engine.

It is not necessary to cool engine down before driving.

- 7. Drive vehicle again according to EC-62, "Driving Pattern".
- 8. Stop vehicle.
- 9. Select MODE 3 with GST.
 - If P0455 is displayed on the screen, go to EC-316, "Diagnostic Procedure".
 - If P0442 is displayed on the screen, go to Diagnostic Procedure, for DTC P0442, EC-277.
 - If P0441 is displayed on the screen, go to Diagnostic Procedure for DTC P0441, EC-271.
 - If P0441, P0442 and P0455 are not displayed on the screen, go to the following step.
- 10. Select MODE 1 with GST.
 - If SRT of EVAP system is set, the result will be OK.
 - If SRT of EVAP system is not set, go to step 6.

Diagnostic Procedure

1. CHECK FUEL FILLER CAP DESIGN


UBS00B8U

- 1. Turn ignition switch OFF.
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

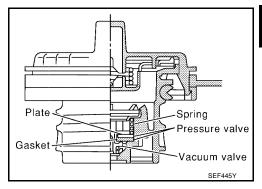
OK >> GO TO 5.

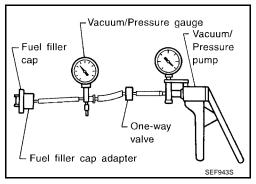
NG >> GO TO 4.

4. CHECK FUEL TANK VACUUM RELIEF VALVE

- 1. Wipe clean valve housing.
- 2. Check valve opening pressure and vacuum.

Pressure: 15.3 - 20.0 kPa


(0.156 - 0.204 kg/cm², 2.22 - 2.90 psi)


Vacuum: −6.0 to −3.3 kPa

 $(-0.061 \text{ to } -0.034 \text{ kg/cm}^2, -0.87 \text{ to } -0.48 \text{ psi})$

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

OK or NG

OK >> GO TO 5.

NG >> Replace fuel filler cap with a genuine one.

5. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks, improper connection or disconnection.

Refer to EC-622, "EVAPORATIVE EMISSION SYSTEM".

OK or NG

OK >> GO TO 6.

NG >> Repair or reconnect the hose.

6. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 7.

7. CHECK EVAP CANISTER VENT CONTROL VALVE

Check the following.

- EVAP canister vent control is installed properly.
 Refer to <u>EC-626</u>, "Removal and Installation"
- EVAP canister vent control valve.
 Refer to <u>EC-296</u>, "Component Inspection"

OK or NG

OK >> GO TO 8.

NG >> Repair or replace EVAP canister vent control valve and O-ring.

EC

Α

C

С

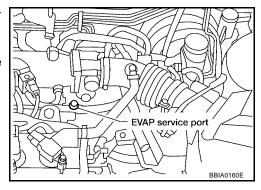
D

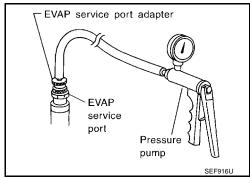
Е

F

Н

J


K


8. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely.

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

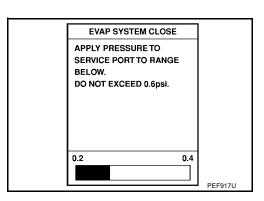
Models with CONSULT-II>>GO TO 9.
Models without CONSULT-II>>GO TO 10.

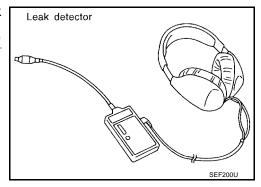
9. CHECK FOR EVAP LEAK

With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

NOTE:


- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details.


 Refer to EC-623, "EVAPORATIVE EMISSION LINE DRAWING"

OK or NG

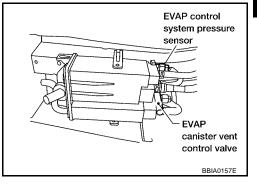
OK >> GO TO 11.

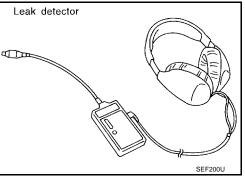
NG >> Repair or replace.

10. CHECK FOR EVAP LEAK

Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


NOTE:


- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-623, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 12.

NG >> Repair or replace.

11. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 14. NG >> GO TO 13.

ACTIVE TEST		
PURG VOL CONT/V	XXX %	
MONITOR	₹	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
		PBIB1786E

EC

С

D

Е

F

G

Н

Κ

L

12. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 15. NG >> GO TO 13.

13. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to <u>EC-623, "EVAPORATIVE EMISSION LINE DRAWING"</u>.

OK or NG

OK (With CONSULT-II) >>GO TO 14.

OK (Without CONSULT-II) >>GO TO 15.

NG >> Repair or reconnect the hose.

14. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(III) With CONSULT-II

- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

ACTIVE TES		
PURG VOL CONT/V	XXX %	
MONITOR	l	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
		PBIB1786E
		FBIB1700E

15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-289, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace EVAP canister purge volume control solenoid valve.

16. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-230, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace fuel level sensor unit.

DTC P0455 EVAP CONTROL SYSTEM

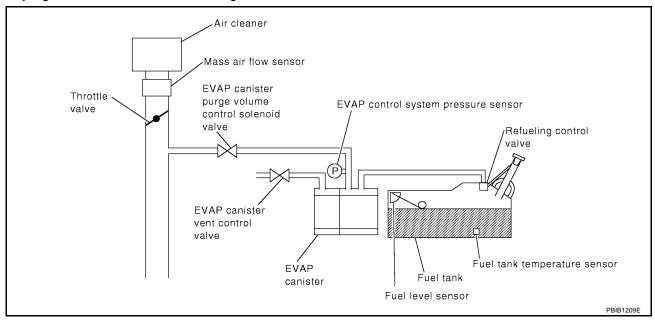
[QG18DE]

[40.002]	
17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR	
Refer to EC-305, "Component Inspection".	
OK or NG OK >> GO TO 18.	E
NG >> Replace EVAP control system pressure sensor.	
18. check evap/orvr vapor line	(
Check refueling EVAP/ORVR line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to EC-627 , "ON BOARD REFUELING VAPOR RECOVERY (ORVR)"	
OK or NG OK >> GO TO 19. >> Repair or replace hoses and tubes.	E
19. CHECK SIGNAL LINE AND RECIRCULATION LINE	
Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.	F
OK or NG OK >> GO TO 20. >> Repair or replace hoses, tubes or filler neck tube.	(
20. CHECK REFUELING EVAP VAPOR CUT VALVE	-
Refer to EC-630, "Component Inspection" . OK or NG	
OK >> GO TO 21. >> Replace refueling EVAP vapor cut valve with fuel tank.	
21. CHECK INTERMITTENT INCIDENT	•
Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	
>> INSPECTION END	ŀ
>> INSPECTION END	ı

DTC P0456 EVAP CONTROL SYSTEM

PFP:14950

On Board Diagnosis Logic


UBS00B8V

This diagnosis detects very small leaks in the EVAP line between fuel tank and EVAP canister purge volume control solenoid valve, using the intake manifold vacuum in the same way as conventional EVAP small leak diagnosis.

If ECM judges a leak which corresponds to a very small leak, the very small leak P0456 will be detected.

If ECM judges a leak equivalent to a small leak, EVAP small leak P0442 will be detected.

If ECM judges there are no leaks, the diagnosis will be OK.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
	· ·	<u> </u>	Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close.
			 Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve.
P0456 0456	Evaporative emission control system very small leak (negative pressure check)	 EVAP system has a very small leak. EVAP system does not operate properly. 	 EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged EVAP canister is saturated with water EVAP control system pressure sensor Refueling EVAP vapor cut valve ORVR system leaks Fuel level sensor and the circuit Foreign matter caught in EVAP canister purge volume control solenoid valve

[QG18DE]

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

UBS00B8W

NOTE:

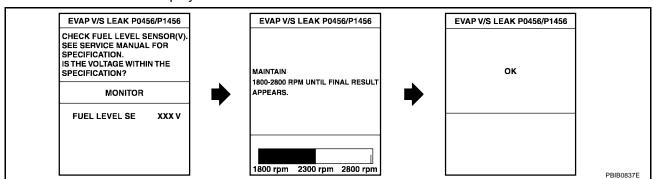
- If DTC P0456 is displayed with P0442, perform first trouble diagnosis for DTC P0456.
- After repair, make sure that the hoses and clips are installed properly.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- If any of following conditions are met just before the DTC confirmation procedure, leave the vehicle for more than 1 hour.
- Fuel filler cap is removed.
- Refilled or drained the fuel.
- EVAP component parts is/are removed.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(II) WITH CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Make sure the following conditions are met.


FUEL LEVEL SE: 0.25 - 1.4V

COOLAN TEMP/S: 0 - 32°C (32 - 90°F) **FUEL T/TMP SE: 0 - 35°C (32 - 95°F)** INT A/TEMP SE: More than 0°C (32°F)

If NG, turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle) or refilling/draining fuel until the output voltage condition of the "FUEL LEVEL SE" meets within the range above and leave the vehicle for more than 1 hour. Then start from step 1).

- 3. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON. 4.
- 5. Select "EVAP V/S LEAK P0456/P1456" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

Make sure that OK is displayed.

If NG is displayed, refer to EC-325, "Diagnostic Procedure".

- If the engine speed cannot be maintained within the range displayed on CONSULT-II screen, go to EC-81, "Basic Inspection".
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

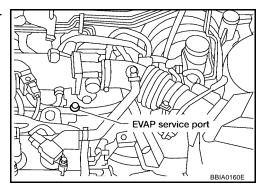
EC

Е

Н

K

Overall Function Check


WITH GST

UBS00B8X

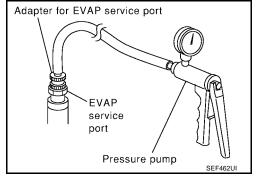
Use this procedure to check the overall function of the EVAP very small leak function. During this check, a DTC might not be confirmed.

CAUTION:

- Never use compressed air, doing so may damage the EVAP system.
- Do not start engine.
- Do not exceeded 4.12 kPa (0.042 kg/cm², 0.6 psi).
- Attach the EVAP service port adapter securely to the EVAP service port.

- 2. Set the pressure pump and a hose.
- 3. Also set a vacuum gauge via 3-way connector and a hose.
- 4. Turn ignition switch ON.
- 5. Connect GST and select MODE 8.
- 6. Using MODE 8 control the EVAP canister vent control valve (close).
- 7. Apply pressure and make sure the following conditions are satisfied.

Pressure to be applied: 2.7 kPa (20 mmHg, 0.79 inHg) Time to be waited after the pressure drawn in to the EVAP system and the pressure to be dropped: 60 seconds and


the pressure should not be dropped more than 0.4 kPa (3 mmHg, 0.12 inHg).

If NG, go to EC-325, "Diagnostic Procedure". If OK, go to next step.

- 8. Disconnect GST.
- 9. Start engine and warm it up to normal operating temperature.
- 10. Turn ignition switch OFF and wait at least 10 seconds.
- 11. Restart engine and let it idle for 90 seconds.
- 12. Keep engine speed at 2,000 rpm for 30 seconds.
- 13. Turn ignition switch OFF.

NOTE:

For more information, refer to GST instruction manual.

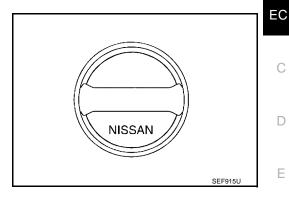
DTC P0456 EVAP CONTROL SYSTEM

[QG18DE]

Α

Diagnostic Procedure

1. CHECK FUEL FILLER CAP DESIGN


1. Turn ignition switch OFF.

2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

4. CHECK FUEL TANK VACUUM RELIEF VALVE

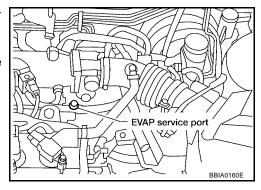
Refer to EC-625, "FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FILLER CAP)".

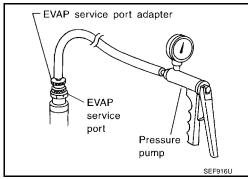
OK or NG

OK >> GO TO 5.

NG >> Replace fuel filler cap with a genuine one.

Н


M

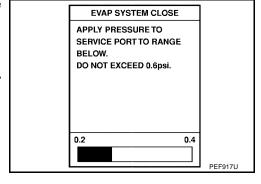

5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely.

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

Models with CONSULT-II>>GO TO 6.
Models without CONSULT-II>>GO TO 7.

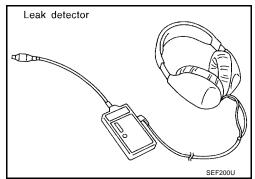

6. CHECK FOR EVAP LEAK

(II) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

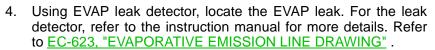


 Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to <u>EC-623</u>, "<u>EVAPORATIVE EMISSION LINE DRAWING</u>"

OK or NG

OK >> GO TO 8.

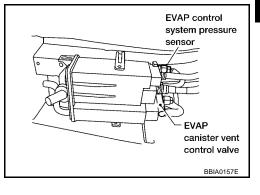
NG >> Repair or replace.

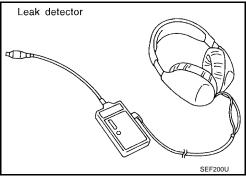

7. CHECK FOR EVAP LEAK

W Without CONSULT-II

- Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:


- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.



OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

8. CHECK EVAP CANISTER VENT CONTROL VALVE

Check the following.

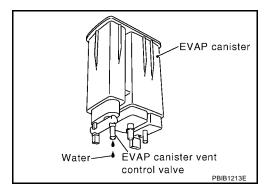
- EVAP canister vent control valve is installed properly. Refer to <u>EC-626</u>, "Removal and Installation"
- EVAP canister vent control valve. Refer to EC-296, "Component Inspection"

OK or NG

OK >> GO TO 9.

NG >> Repair or replace EVAP canister vent control valve and O-ring.

9. CHECK IF EVAP CANISTER SATURATED WITH WATER


- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- 2. Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 10.

No (With CONSULT-II)>>GO TO 12.

No (Without CONSULT-II)>>GO TO 13.

EC

D

Е

F

G

Н

k

L

V

10. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 1.9 kg (4.2 lb).

OK or NG

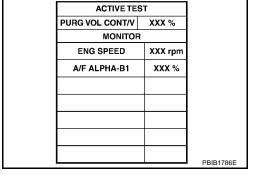
OK (With CONSULT-II)>>GO TO 12. OK (Without CONSULT-II)>>GO TO 13. NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection

>> Repair hose or replace EVAP canister.


12. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 15. NG >> GO TO 14.

13. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 16. NG >> GO TO 14.

14. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to $\underline{\text{EC-623}}$, "EVAPORATIVE EMISSION LINE $\underline{\text{DRAWING"}}$.

OK or NG

OK >> GO TO 15.

NG >> Repair or reconnect the hose.

EC

Е

M

15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-289, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace EVAP canister purge volume control solenoid valve.

16. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-230, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace fuel level sensor unit.

17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-305, "Component Inspection".

OK or NG

OK >> GO TO 18.

NG >> Replace EVAP control system pressure sensor.

18. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to EC-623, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 19.

NG >> Repair or reconnect the hose.

19. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 20.

20. check evap/orvr line

Check EVAP/ORVR line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to <u>EC-627</u>, "ON BOARD REFUELING VAPOR RECOVERY (ORVR)".

OK or NG

OK >> GO TO 22.

NG >> Repair or replace hoses and tubes.

21. check signal line and recirculation line

Check signal line recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 22.

NG >> Repair or replace hose, tube or filler neck tube.

22. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-630, "Component Inspection".

OK or NG

OK >> GO TO 23.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

DTC P0456 EVAP CONTROL SYSTEM

[QG18DE]

23. CHECK FUEL LEVEL SENSOR

Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY" .

OK or NG

OK >> GO TO 24.

NG >> Replace fuel level sensor unit.

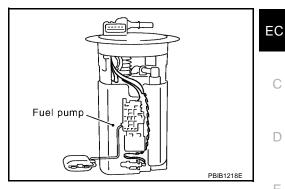
24. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

DTC P0460 FUEL LEVEL SENSOR

PFP:25060


Component Description

UBS00B8Z

Α

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the "unified meter and A/C amp". The "unified meter and A/C amp" sends the fuel level sensor signal to the ECM through CAN communication line.

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnostic Logic

LIBSOOB90

Е

NOTE:

If DTC P0460 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-148, "DTC U1000, U1001 CAN COMMUNICATION LINE".

When the vehicle is parked, naturally the fuel level in the fuel tank is stable. It means that output signal of the fuel level sensor does not change. If ECM senses sloshing signal from the sensor, fuel level sensor malfunction is detected.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
		Even though the vehicle is parked, a signal	Harness or connectors (The CAN communication line is open or shorted)	Н
P0460 0460	Fuel level sensor circuit noise	being varied is sent from the fuel level sensor to ECM.	Harness or connectors (The sensor circuit is open or shorted)	
			 Unified meter and A/C amp. 	
			Fuel level sensor	

DTC Confirmation Procedure

UBS00B91

M

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and wait maximum of 2 consecutive minutes.
- If 1st trip DTC is detected, go to EC-332, "Diagnostic Procedure"

DATA MON	IITOR
MONITOR	NO DTO
FUEL T/TMP SE	XXX °C
FUEL LEVEL SE	XXX V

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC-331

DTC P0460 FUEL LEVEL SENSOR

[QG18DE]

Diagnostic Procedure

1. CHECK DTC WITH UNIFIED METER AND A/C AMP.

UBS00B92

Refer to FL-3 OK or NG

OK >> GO TO 2. NG >> GO TO <u>DI-15</u>.

2. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

Removal and Installation FUEL LEVEL SENSOR

UBS00B93

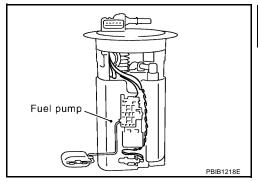
Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

DTC P0461 FUEL LEVEL SENSOR

PFP:25060

Component Description

UBS00B94


Α

EC

Е

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the "unified meter and A/C amp". The "unified meter and A/C amp" sends the fuel level sensor signal to the ECM through CAN communication line.

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnostic Logic

UBS00B95

NOTE:

If DTC P0461 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-148, "DTC U1000, U1001 CAN COMMUNICATION LINE".

Driving long distances naturally affect fuel gauge level.

This diagnosis detects the fuel gauge malfunction of the gauge not moving even after a long distance has been driven.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0461 0461	Fuel level sensor circuit range/performance	The output signal of the fuel level sensor does not change within the specified range even though the vehicle has been driven a long distance.	 Harness or connectors (The CAN communication line is open or shorted) Harness or connectors (The sensor circuit is open or shorted) Unified meter and A/C amp. Fuel level sensor 	H

Overall Function Check

UBS00B96

Use this procedure to check the overall function of the fuel level sensor function. During this check, a 1st trip DTC might not be confirmed.

WARNING:

When performing following procedure, be sure to observe the handling of the fuel. Refer to <u>FL-2</u>, "FUEL SYSTEM".

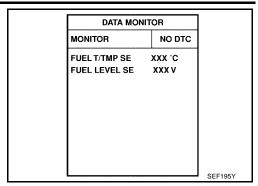
TESTING CONDITION:

Before starting overall function check, preparation of draining fuel and refilling fuel is required.

WITH CONSULT-II

M

NOTE:


Start from step 11, if it is possible to confirm that the fuel cannot be drained by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

- 1. Prepare a fuel container and a spare hose.
- 2. Release fuel pressure from fuel line, refer to EC-49, "FUEL PRESSURE RELEASE".
- 3. Remove the fuel feed hose on the fuel level sensor unit.
- 4. Connect a spare fuel hose where the fuel feed hose was removed.
- Turn ignition switch OFF and wait at least 10 seconds then turn ON.

DTC P0461 FUEL LEVEL SENSOR

[QG18DE]

- Select "FUEL LEVEL SE" in "DATA MONITOR" mode with CON-SULT-II.
- 7. Check "FUEL LEVEL SE" output voltage and note it.
- 8. Select "FUEL PUMP" in "ACTIVE TEST" mode with CONSULT-II.
- 9. Touch "ON" and drain fuel approximately 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) and stop it.
- 10. Fill fuel into the fuel tank for 30 ℓ (7-7/8 US gal, 6-5/8 lmp gal).
- 11. Check "FUEL LEVEL SE" output voltage and note it.
- Check "FUEL LEVEL SE" output voltage and confirm whether the voltage changes more than 0.03V during step 7 to 11.
 If NG, go to <u>EC-334, "Diagnostic Procedure"</u>.

WITH GST

NOTE:

Start from step 8, if it is possible to confirm that the fuel cannot be drained by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

- 1. Prepare a fuel container and a spare hose.
- 2. Release fuel pressure from fuel line, refer to <a>EC-49, "FUEL PRESSURE RELEASE".
- 3. Remove the fuel feed hose on the fuel level sensor unit.
- 4. Connect a spare fuel hose where the fuel feed hose was removed.
- 5. Turn ignition switch ON.
- 6. Drain fuel by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) from the fuel tank using proper equipment.
- 7. Confirm that the fuel gauge indication varies.
- 8. Fill fuel into the fuel tank for 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- 9. Confirm that the fuel gauge indication varies.
- 10. If NG, go to EC-334, "Diagnostic Procedure".

Diagnostic Procedure

UBS00B97

1. CHECK DTC WITH UNIFIED METER AND A/C AMP.

Refer to FL-3

OK or NG

OK >> GO TO 2. NG >> GO TO <u>DI-15</u>.

2. check intermittent incident

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

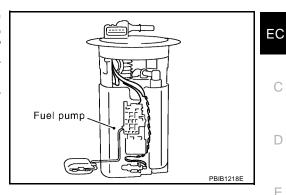
Removal and Installation FUEL LEVEL SENSOR

UBS00B98

Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

DTC P0462, P0463 FUEL LEVEL SENSOR

Component Description


PFP:25060

UBS00B99

Α

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the "unified meter and A/C amp". The "unified meter and A/C amp" sends the fuel level sensor signal to the ECM through CAN commu-

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnostic Logic

LIBSOOR9A

Е

NOTE:

If DTC P0462 or P0463 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-148, "DTC U1000, U1001 CAN COMMUNICATION LINE".

This diagnosis indicates the former, to detect open or short circuit malfunction.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0462 0462	Fuel level sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The CAN communication line is open communication.)	
P0463 0463	Fuel level sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	 shorted) Harness or connectors (The sensor circuit is open or shorted) Unified meter and A/C amp. Fuel level sensor 	

DTC Confirmation Procedure

UBS00B9B

M

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at ignition switch ON.

(III) WITH CONSULT-II

- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II. 2
- Wait at least 5 seconds.
- If 1st trip DTC is detected, go to EC-336, "Diagnostic Procedure"

DATA MONITOR		
MONITOR	NO DTC	
FUEL T/TMP SE	XXX °C	
FUEL LEVEL SE	xxx v	
		SEF195

WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P0462, P0463 FUEL LEVEL SENSOR

[QG18DE]

UBS00B9C

Diagnostic Procedure

1. CHECK DTC WITH UNIFIED METER AND A/C AMP.

Refer to FL-3 OK or NG

OK >> GO TO 2. NG >> GO TO <u>DI-15</u>.

2. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

Removal and Installation FUEL LEVEL SENSOR

UBS00B9D

Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

DTC P0500 VSS

Component Description

UBS00B9E

Α

EC

Е

Н

M

NOTE:

If DTC P0500 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-148, "DTC U1000, U1001 CAN COMMUNICATION LINE".

The vehicle speed sensor is installed in the transaxle. It contains a pulse generator which provides a vehicle speed signal to the "unified meter and A/C amp." The "unified meter and A/C amp." then sends a signal to the ECM through CAN communication line.

On Board Diagnosis Logic

UBS00B9F

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
	Vehicle speed sensor	The almost 0 km/h (0 MPH) signal from vehicle speed sensor is sent to ECM even when vehicle is being driven.	Harness or connectors (The CAN communication line is open or shorted)
P0500 0500			 Harness or connectors (The vehicle speed signal circuit is open or shorted)
			Vehicle speed sensor
			 unified meter and A/C amp.

DTC Confirmation Procedure

UBS00B9G

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Steps 1 and 2 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(WITH CONSULT-II

- 1. Start engine.
- Read "VHCL SPEED SE" in "DATA MONITOR" mode with CONSULT-II. The vehicle speed on CONSULT-II should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.

If NG, go to EC-338, "Diagnostic Procedure".

- If OK, go to following step.
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- Warm engine up to normal operating temperature.
- Maintain the following conditions for at least 50 consecutive seconds.

ENG SPEED	1,800 - 6,000 rpm (A/T) 2,200 - 6,000 rpm (M/T)
B/FUEL SCHDL	More then 4.8 msec
Selector lever	Except P or N position
PW/ST SIGNAL	OFF

If 1st trip DTC is detected, go to <u>EC-338, "Diagnostic Procedure"</u>

DATA MONITOR MONITOR NO DTC ENG SPEED XXXX rpm COOLAN TEMP/S XXX °C B/FUEL SCHDL XXX msec PW/ST SIGNAL OFF VHCL SPEED SE XXX km/h

Overall Function Check

UBS00B9F

Use this procedure to check the overall function of the vehicle speed signal circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Lift up drive wheels.
- Start engine.

- Read vehicle speed sensor signal in MODE 1 with GST.
 The vehicle speed sensor on GST should be able to exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.
- 4. If NG, go to EC-338, "Diagnostic Procedure".

Diagnostic Procedure

UBS00B9I

1. CHECK VEHICLE SPEED SENSOR CIRCUIT

Refer to DI-3, "METERS AND GAUGES".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK DTC WITH UNIFIED METER AND A/C AMP.

Refer to DI-6, "Combination Meter".

>> INSPECTION END

DTC P0506 ISC SYSTEM

PFP:23781

Description

NOTE:

If DTC P0506 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner, power steering and cooling fan operation, etc.).

On Board Diagnosis Logic

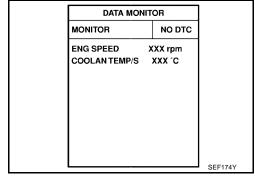
UBS00B9K

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0506 0506	Idle speed control system RPM lower than expected	The idle speed is less than the target idle speed by 100 rpm or more.	Electric throttle control actuator Intake air leak

DTC Confirmation Procedure

UBS00B9L

NOTE:


- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform Idle Air Volume Learning, <u>EC-47</u>, before conducting DTC Confirmation Procedure. For the target idle speed, refer to <u>EC-637</u>, "<u>SER-VICE DATA AND SPECIFICATIONS (SDS)</u>".

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above –10°C (14°F).

(II) WITH CONSULT-II

- 1. Open engine hood.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON again and select "DATA MONITOR" mode with CONSULT-II.
- 5. Start engine and run it for at least 1 minute at idle speed.
- 6. If 1st trip DTC is detected, go to EC-340.

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

D

Е

M

OB9K

EC-339

DTC P0506 ISC SYSTEM

[QG18DE]

Diagnostic Procedure

1. CHECK INTAKE AIR LEAK

1. Start engine and let it idle.

2. Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 2.

NG >> Discover air leak location and repair.

2. REPLACE ECM

- 1. Stop engine.
- 2. Replace ECM.
- 3. Perform EC-47, "Accelerator Pedal Released Position Learning" .
- 4. Perform EC-47, "Throttle Valve Closed Position Learning" .
- 5. Perform EC-47, "Idle Air Volume Learning".

>> INSPECTION END

DTC P0507 ISC SYSTEM

PFP:23781

Description

UBS00B9N

NOTE:

If DTC P0507 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner, power steering and cooling fan operation, etc.).

On Board Diagnosis Logic

UBS00B9O

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0507 0507	Idle speed control sys- tem RPM higher than expected	The idle speed is more than the target idle speed by 200 rpm or more.	Electric throttle control actuator
			Intake air leak
			PCV system

DTC Confirmation Procedure

UBS00B9P

- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform "Idle Air Volume Learning", EC-47, before conducting DTC Confirmation Procedure. For the target idle speed, refer to EC-637, "SER-VICE DATA AND SPECIFICATIONS (SDS)".

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above -10°C (14°F).

(II) WITH CONSULT-II

- 1. Open engine hood.
- 2. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON again and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 1 minute at idle speed.
- If 1st trip DTC is detected, go to EC-342, "Diagnostic Procedure"

DATA MONITOR MONITOR NO DTC ENG SPEED Mar XXX COOLAN TEMP/S XXX °C SEF174Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

D

Е

K

M

EC-341

DTC P0507 ISC SYSTEM

[QG18DE]

Diagnostic Procedure

1. CHECK PCV HOSE CONNECTION

Confirm that PCV hose is connected correctly.

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK INTAKE AIR LEAK

- 1. Start engine and let it idle.
- 2. Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 3.

NG >> Discover air leak location and repair.

3. REPLACE ECM

- 1. Stop engine.
- 2. Replace ECM.
- 3. Perform EC-47, "Accelerator Pedal Released Position Learning" .
- 4. Perform EC-47, "Throttle Valve Closed Position Learning".
- 5. Perform EC-47, "Idle Air Volume Learning".

>> INSPECTION END

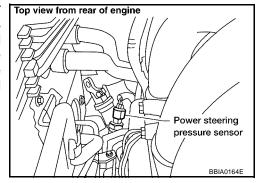
DTC P0550 PSP SENSOR

PFP:49763

Component Description

UBS00B9R

Α


EC

D

Е

Н

Power steering pressure (PSP) sensor is installed to the power steering high-pressure tube and detects a power steering load. This sensor is a potentiometer which transforms the power steering load into output voltage, and emits the voltage signal to the ECM. The ECM controls the electric throttle control actuator and adjusts the throttle valve opening angle to increase the engine speed and adjusts the idle speed for the increased load.

CONSULT-II Reference Value in Data Monitor Mode

LIBS00B9S

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
PW/ST SIGNAL	Engine: After warming up, idle the engine	Steering wheel is in neutral position. (Forward direction)	OFF
	and origine	Steering wheel is turned.	ON

On Board Diagnosis Logic

UBS00B9T

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0550 0550	Power steering pressure sensor circuit	An excessively low or high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Power steering pressure sensor

DTC Confirmation Procedure

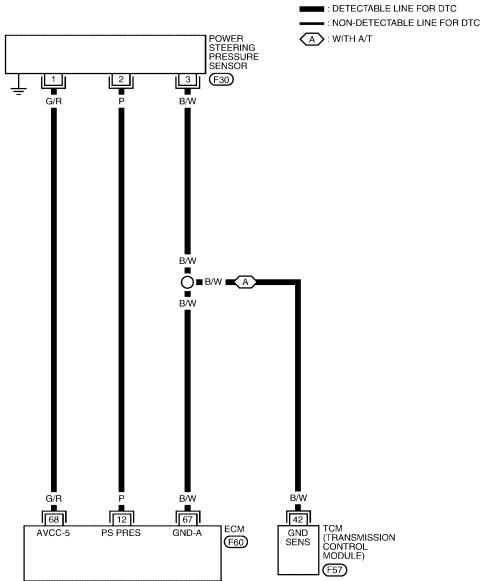
LIRSONRALI

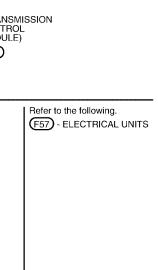
NOTE:

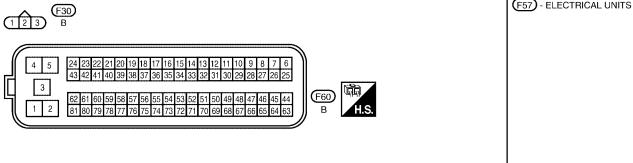
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-345, "Diagnostic Procedure".


M


WITH GST


Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram

EC-PS/SEN-01

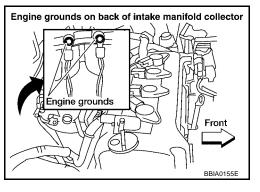
BBWA0689E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

			<u> </u>	
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
12 P	D	Power steering pressure	[Engine is running]Steering wheel is being turned.	0.5 - 4.0V
	Γ	sensor	[Engine is running]Steering wheel is not being turned.	0.4 - 0.8V
67	B/W	Sensors' ground (MAF sensor / IAT sensor / PSP sensor / ASCD steer- ing switch / EVAP control system pressure sensor / Refrigerant pressure sen- sor / Swirl control valve position sensor)	[Engine is running] ● Idle speed	Approximately 0V
68	G/R	Power steering pressure sensor power supply	[Ignition switch: ON]	Approximately 5V


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

1. Turn ignition switch OFF.

2. Loosen and retighten engine ground screws.

>> GO TO 2.

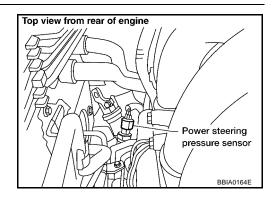
Α

EC

D

Е

G


800B9W

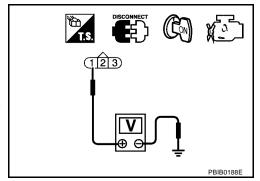
-

M

2. CHECK PSP SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect PSP sensor harness connector.
- 2. Turn ignition switch ON.

Check voltage between PSP sensor terminal 1 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 4.

NG :

>> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK PSP SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector.
- 4. Check harness continuity between PSP sensor terminal 3 and ECM terminal 67, TCM terminal 42.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between power steering pressure sensor and ECM
- Harness for open or short between power steering pressure sensor and TCM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK PSP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal 12 and PSP sensor terminal 2.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0550 PSP SENSOR

[QG18DE]

6. CHECK PSP SENSOR

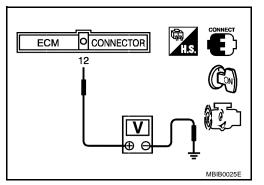
Refer to EC-347, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace PSP sensor.

7. CHECK INTERMITTENT INCIDENT


Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection POWER STEERING PRESSURE SENSOR

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine and let it idle.
- Check voltage between ECM terminal 12 and ground under the following conditions.

Condition	Voltage
Steering wheel is being turned fully.	0.5 - 4.0V
Steering wheel is not being turned.	0.4 - 0.8V

EC

 D

Е

UBS00B9X

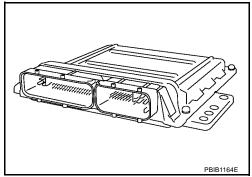
_

G

Н

<

L


M

DTC P0605 ECM PFP:23710

Component Description

UBS00B9Y

The ECM consists of a microcomputer and connectors for signal input and output and for power supply. The ECM controls the engine.

On Board Diagnosis Logic

UBS00B9Z

This self-diagnosis has one or two trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible	cause
		A)	ECM calculation function is malfunctioning.		
P0605 0605	Engine control module	B)	ECM EEP-ROM system is malfunctioning.	• ECM	
		C)	ECM self shut-off function is malfunctioning.		

FAIL-SAFE MODE

ECM enters in fail-safe mode when the malfunction A is detected.

Detected items	Engine operation condition in fail-safe mode	
Malfunction A	 ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring. ECM deactivates ASCD operation. 	

DTC Confirmation Procedure

UBS00BA0

Perform PROCEDURE FOR MALFUNCTION A first. If the 1st trip DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B. If there is no problem on PROCEDURE FOR MALFUNCTION B, perform PROCEDURE FOR MALFUNCTION C.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- If 1st trip DTC is detected, go to <u>EC-349, "Diagnostic Procedure"</u>

NO DTC	
XXX rpm	
I	
	SEF

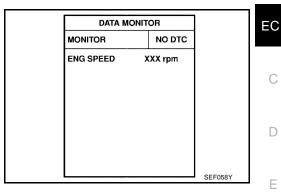
With GST

Follow the procedure "With CONSULT-II" above.

Α

Е

K

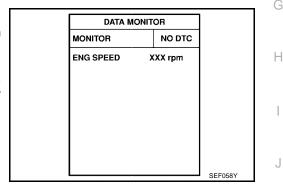

M

UBS00BA1

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II

- Turn ignition switch ON and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- If 1st trip DTC is detected, go to EC-349, "Diagnostic Procedure"


With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION C

(P) With CONSULT-II

- 1. Turn ignition switch ON and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- 4. Repeat step 3 for 32 times.
- If 1st trip DTC is detected, go to EC-349, "Diagnostic Procedure"

₩ith GST

Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure

1. INSPECTION START

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "SELF DIAG RESULTS" mode with CONSULT-II.
- 3. Touch "ERASE".
- 4. Perform DTC Confirmation Procedure.

See <u>EC-348</u>.

5. Is the 1st trip DTC P0605 displayed again?

With GST

- 1. Turn ignition switch ON.
- Select MODE 4 with GST.
- 3. Touch "ERASE".
- Perform DTC Confirmation Procedure.

See EC-348.

5. Is the 1st trip DTC P0605 displayed again?

Yes or No

Yes >> GO TO 2.

No >> INSPECTION END

2. REPLACE ECM

- 1. Replace ECM.
- 2. Perform EC-47, "Accelerator Pedal Released Position Learning" .
- 3. Perform EC-47, "Throttle Valve Closed Position Learning" .
- 4. Perform EC-47, "Idle Air Volume Learning".

>> INSPECTION END

DTC P1031, P1032 A/F SENSOR 1 HEATER

PFP:22693

Description SYSTEM DESCRIPTION

UBS00BA2

Α

EC

Е

Sensor	Input Signal to ECM	ECM function	Actuator
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed	Air fuel ratio (A/F) sensor 1 heater	Air fuel ratio (A/F) sensor 1 heater
Mass air flow sensor	Amount of intake air	control	TICALCI

The ECM performs ON/OFF duty control of the A/F sensor 1 heater corresponding to the engine operating condition to keep the temperature of A/F sensor 1 element at the specified range.

CONSULT-II Reference Value in Data Monitor Mode

IRSOORA3

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
A/F S1 HTR (B1)	Engine: After warming up, idle the engine	0 - 100%

On Board Diagnosis Logic

UBS00BA4

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1031 1031 (Bank 1)	Air fuel ratio (A/F) sensor 1 heater control circuit low	The current amperage in the heated air fuel ratio (A/F) sensor 1 heater circuit is out of the normal range. (An excessively low voltage signal is sent to ECM through the heated air fuel ratio (A/F) sensor 1 heater.)	 Harness or connectors (The heated A/F sensor 1 heater circuit is open or shorted.) A/F sensor 1 heater
P1032 1032 (Bank 1)	Air fuel ratio (A/F) sensor 1 heater control circuit high	The current amperage in the heated air fuel ratio (A/F) sensor 1 heater circuit is out of the normal range. (An excessively high voltage signal is sent to ECM through the heated air fuel ratio (A/F) sensor 1	 Harness or connectors (The heated A/F sensor 1 heater circuit is shorted.) A/F sensor 1 heater

DTC Confirmation Procedure

UBS00BA5

M

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

WITH CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and run it for at least 10 seconds at idle speed.
- 3. If 1st trip DTC is detected, go to EC-354, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXXX rpm

SEF058Y

WITH GST

- 1. Start engine and run it for at least 10 seconds at idle speed.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and run it for at least 10 seconds at idle speed.
- 4. Select MODE 3 with GST.

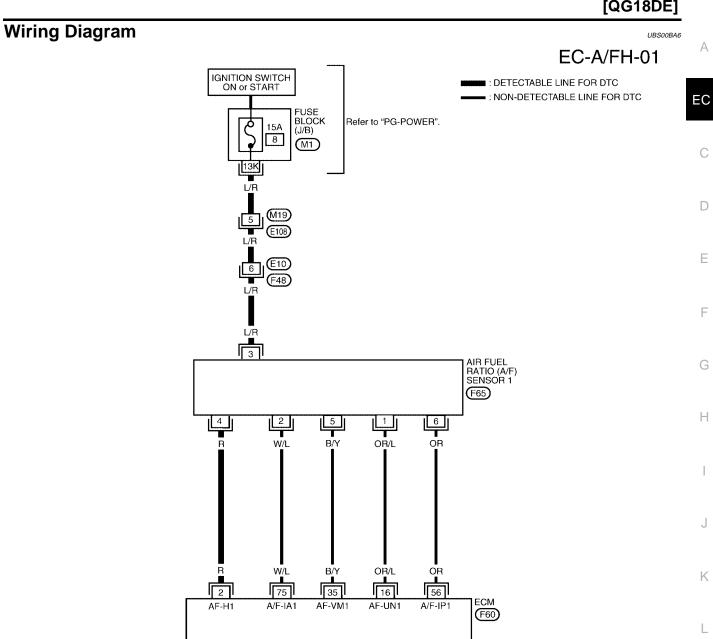
DTC P1031, P1032 A/F SENSOR 1 HEATER

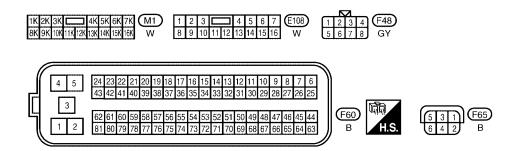
[QG18DE]

- 5. If DTC is detected, go to EC-354, "Diagnostic Procedure".
- When using GST, DTC Confirmation Procedure should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

Α

C


D


Е

Н

K

M

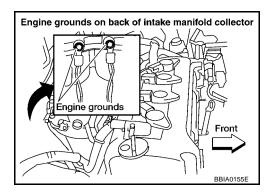
BBWA0690E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

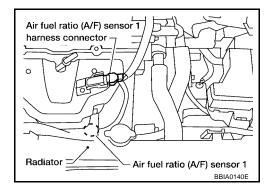
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	R	A/F sensor 1 heater	[Engine is running]Warm-up conditionIdle speed	Approximately 5V★ □ 10.0V/Div 10 ms/Div T PBIB1584E


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

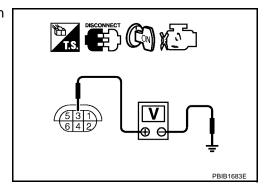
Diagnostic Procedure


UBS00BA7

1. CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

- 3. Disconnect air fuel ratio (A/F) sensor 1 harness connector.
- 4. Turn ignition switch ON.



5. Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

DTC P1031, P1032 A/F SENSOR 1 HEATER

[QG18DE]

 \mathbb{N}

[40.02-]	
2. DETECT MALFUNCTIONING PART	Δ
Check the following.	,
Harness connectors M19, E108	
Harness connectors E10, F48	EC
Fuse block (J/B) connector M1 45.4 for a second seco	
 15A fuse Harness for open or short between A/F sensor 1 and fuse 	C
>> Repair or replace harness or connectors.	D
3. CHECK A/F SENSOR 1 HEATER OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	
Turn ignition switch OFF.	Е
Disconnect ECM harness connector.	
3. Check harness continuity between ECM terminal 2 and A/F sensor 1 terminal 4. Refer to Wiring Diagram.	F
Continuity should exist.	
4. Also check harness for short to power.	
OK or NG	G
OK >> GO TO 4. NG >> Repair open circuit or short to ground or short to power in harness or connectors.	
4. CHECK A/F SENSOR 1 HEATER	Н
Refer to EC-356, "Component Inspection" .	I
OK or NG	
OK >> GO TO 5. NG >> Replace A/F sensor 1.	
5. CHECK INTERMITTENT INCIDENT	J
Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .	K
OK or NG	
OK >> Replace A/F sensor 1. NG >> Repair or replace.	

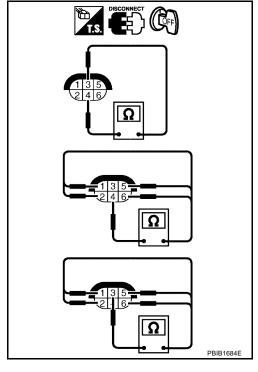
EC-355

Component Inspection AIR FUEL RATIO (A/F) SENSOR 1 HEATER

UBS00BA8

Check resistance between terminals 3 and 4.

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)


Check continuity between terminals 3 and 1, 2, 5, 6, terminals 4 and 1, 2, 5, 6.

Continuity should not exist.

If NG, replace the A/F sensor 1.

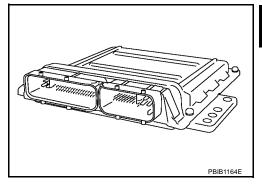
CAUTION:

- Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new A/F sensor, clean exhaust system threads using Heated Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation AIR FUEL RATIO SENSOR HEATER

Refer to EM-13, "Removal and Installation".

UBS00BA9


DTC P1065 ECM POWER SUPPLY

PFP:23710

Component Description

UBS00BAA

Battery voltage is supplied to the ECM even when the ignition switch is turned OFF for the ECM memory function of the DTC memory, the air-fuel ratio feedback compensation value memory, the idle air volume learning value memory, etc.

On Board Diagnosis Logic

UBSOOBAB

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1065 1065	ECM power supply circuit	ECM back-up RAM system does not function properly.	 Harness or connectors [ECM power supply (back-up) circuit is open or shorted.] ECM

DTC Confirmation Procedure

UBS00BAC

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- 5. Repeat steps 3 and 4 four times.
- 6. If 1st trip DTC is detected, go to EC-359, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

D

Е

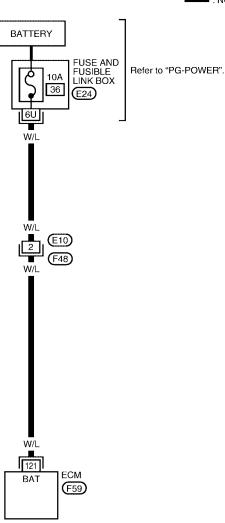
...

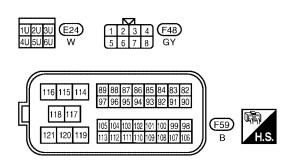
Н

J

K

L


M


Wiring Diagram

UBS00BAD

EC-ECM/PW-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

BBWA0691E

DTC P1065 ECM POWER SUPPLY

[QG18DE]

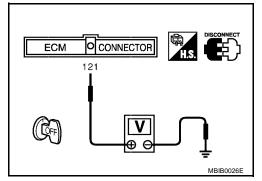
Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
121	W/L	Power supply for ECM (Buck-up)	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure


1. CHECK ECM POWER SUPPLY

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check voltage between ECM terminal 121 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10, F48
- 10A fuse
- Harness for open or short between ECM and battery
 - >> Repair or replace harness or connectors.

3. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit short to ground or short to power in harness or connectors.

EC

Α

0

UBS00BAE

F

Е

G

Н

Κ

L

M

4. PERFORM DTC CONFIRMATION PROCEDURE

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "SELF DIAG RESULTS" mode with CONSULT-II.
- 3. Touch "ERASE".
- 4. Perform DTC Confirmation Procedure.

See <u>EC-357</u>.

5. Is the 1st trip DTC P1065 displayed again?

With GST

- 1. Turn ignition switch ON.
- 2. Select MODE 4 with GST.
- 3. Touch "ERASE".
- 4. Perform DTC Confirmation Procedure.

See EC-357.

5. Is the 1st trip DTC P1065 displayed again?

Yes or No

Yes >> GO TO 5.

No >> INSPECTION END

5. REPLACE ECM

- 1. Replace ECM.
- 2. Perform EC-47, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-47, "Throttle Valve Closed Position Learning".
- 4. Perform EC-47, "Idle Air Volume Learning".

>> INSPECTION END

DTC P1102 MAF SENSOR

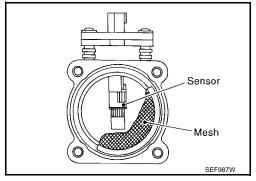
PFP:22680

Component Description

UBS00BAF

Α

EC


D

Е

Н

M

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the greater the heat loss. Therefore, the ECM must supply more electric current to maintain the temperature of the hot film as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

UBS00BAG

Specification data are reference values.

MONITOR ITEM	CONDIT	ION	SPECIFICATION
MAS A/F SE-B1	Engine: After warming up	Idle	1.0 - 1.7V
	 Air conditioner switch: OFF Shift lever: N (A/T), Neutral (M/T) No-load 	2,500 rpm	1.5 - 2.4V
CAL/LD VALUE	Engine: After warming up	Idle	20.0 - 35.5%
	 Air conditioner switch: OFF Shift lever: N (A/T), Neutral (M/T) No-load 	2,500 rpm	12.0 - 30.0%
	Engine: After warming up	Idle	1.4 - 4.0 g·m/s
MASS AIRFLOW	 Air conditioner switch: OFF Shift lever: N (A/T), Neutral (M/T) No-load 	2,500 rpm	5.0 - 10.0 g⋅m/s

On Board Diagnosis Logic

JBS00BAI

This self-diagnosis has the one trip detection logic.

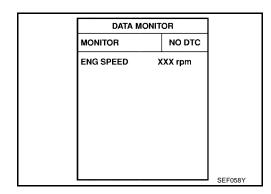
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1102 1102	Mass air flow sensor circuit range/performance problem	A voltage from the sensor is constantly approx.1.0V when engine is running.	 Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

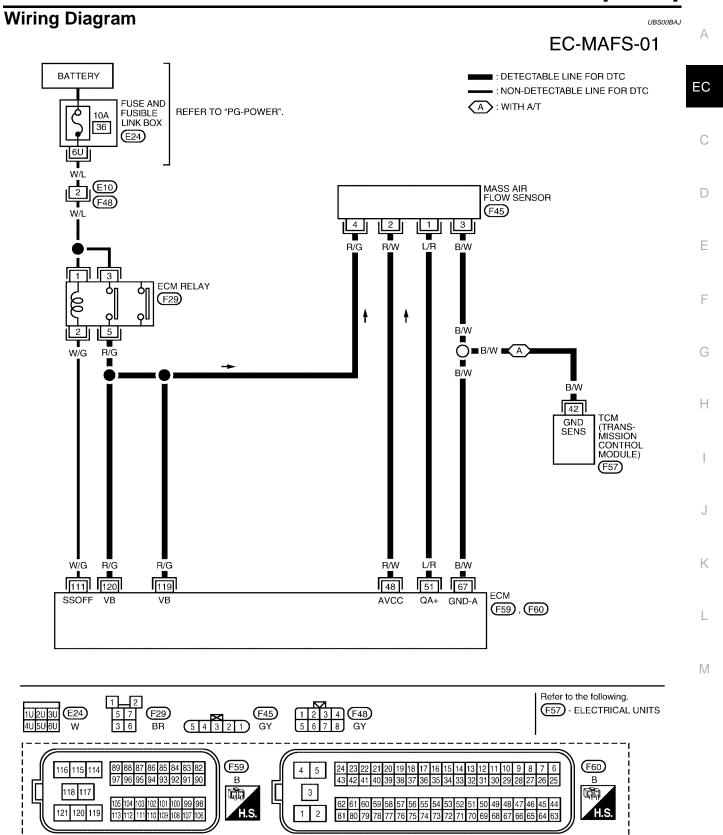
Detected items	Engine operating condition in fail-safe mode
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.

DTC Confirmation Procedure


UBS00BAI

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait at least 5 seconds.
- 4. If DTC is detected, go to EC-364, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

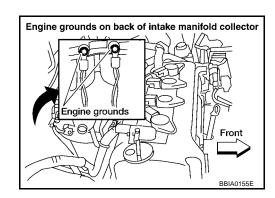
BBWA0675E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

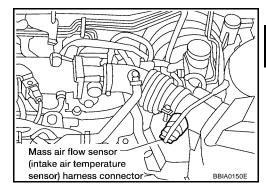
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
48	R/W	Sensors' power supply	[Ignition switch: ON]	Approximately 5V
51	L/R	Mass air flow sensor	[Engine is running] • Warm-up condition • Idle speed	1.0 - 1.7V
31	L/K	IVIASS AII IIUW SCIISUI	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm.	1.5 - 2.4V
67	B/W	Sensors' ground (MAF sensor / IAT sensor / PSP sensor / ASCD steer- ing switch / EVAP control system pressure sensor / Refrigerant pressure sen- sor / Swirl control valve position sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
111	W/G	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF [Ignition switch: OFF]	0 - 1.0V BATTERY VOLTAGE
			 A few seconds passed after turning ignition switch OFF 	(11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

UBS00BAK


- Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK MASS AIR FLOW (MAF) SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect MAF sensor harness connector.
- 2. Turn ignition switch ON.

3. Check voltage between MAF sensor terminals 2, 4 and ground with CONSULT-II or tester.

Terminal	Voltage	
2	Approximately 5V	
4	Battery voltage	

PBIB0076E

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between ECM relay and mass air flow sensor
- Harness for open or short between mass air flow sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector.
- 4. Check harness continuity between MAF sensor terminal 3 and ECM terminal 67, TCM terminal 42.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

>> GO TO 5. NG

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between mass air flow sensor and ECM.
- Harness for open or short between mass air flow sensor and TCM.
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

D

K

6. CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between MAF sensor terminal 1 and ECM terminal 51. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK MASS AIR FLOW SENSOR

Refer to EC-367, "Component Inspection".

OK or NG

OK >> GO TO 8.

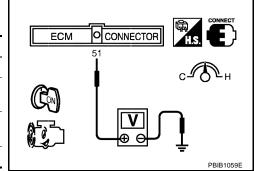
NG >> Replace mass air flow sensor.

8. CHECK INTERMITTENT INCIDENT

Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P1102 MAF SENSOR


[QG18DE]

Component Inspection MASS AIR FLOW SENSOR

JBS00BAL

- 1. Turn ignition switch ON.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 51 (Mass air flow sensor signal) and ground.

Conditions	Voltage V
Ignition switch: ON (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.0 - 1.7
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.5 - 2.4
Idle to about 4,000 rpm*	1.0 - 1.7 to Approx. 4.0

^{*:} Check for linear voltage rise in response to increases to about 4,000 rpm in engine speed.

- 4. If the voltage is out of specification, proceed the following.
 - Turn ignition switch OFF.
 - Disconnect mass air flow sensor harness connector and reconnect it again.
 - Perform steps 2 and 3 again.
- 5. If NG, remove mass air flow sensor from air duct. Check hot film for damage or dust.
- 6. If NG, clean or replace mass air flow sensor.

EC

Α

С

D

Е

F

G

Н

ı

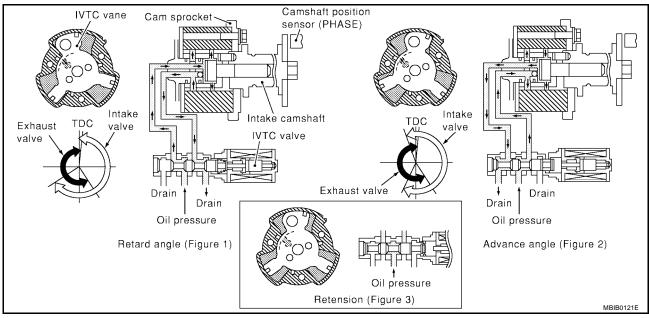
J

<

_

M

DTC P1111 IVT CONTROL SOLENOID VALVE


PFP:23796

UBS00BAM

Description SYSTEM DESCRIPTION

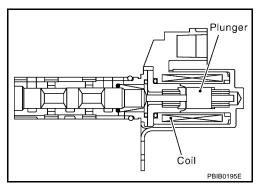
Sensor	Input Signal to ECM	ECM Function	Actuator	
Crankshaft position sensor (POS)	- Engine speed	Intake valve		
Camshaft position sensor (PHASE)	- Engine speed		Intake valve timing control	
Engine coolant temperature sensor	Engine coolant temperature	timing control	solenoid valve	
Vehicle speed signal *	Vehicle speed			

^{*:} This signal is sent to the ECM through CAN communication line.

This mechanism hydraulically controls cam phases continuously with the fixed operating angle of the intake valve.

The ECM receives signals such as crankshaft position, camshaft position, engine speed, and engine coolant temperature. Then, the ECM sends ON/OFF pulse duty signals to the intake valve timing control solenoid valve depending on driving status. This makes it possible to control the shut/open timing of the intake valve to increase engine torque in low/mid speed range and output in high-speed range.

COMPONENT DESCRIPTION


Intake valve timing control solenoid valve is activated by ON/OFF pulse duty (ratio) signals from the ECM.

The intake valve timing control solenoid valve changes the oil amount and direction of flow through intake valve timing control unit or stops oil flow.

The longer pulse width advances valve angle.

The shorter pulse width retards valve angle.

When ON and OFF pulse widths become equal, the solenoid valve stops oil pressure flow to fix the intake valve angle at the control position.

DTC P1111 IVT CONTROL SOLENOID VALVE

[QG18DE]

CONSULT-II Reference Value in Data Monitor Mode

UBS00BAN

Specification data are reference values.

MONITOR ITEM	COND	SPECIFICATION	
	Engine: After warming up	Idle	0% - 2%
INT/V SOL (B1)	 Shift lever: N (A/T), Neutral (M/T) Air conditioner switch: OFF No-load 	When revving engine up to 2,000 rpm quickly	Approx. 0% - 80%

EC

D

Е

Н

Α

On Board Diagnosis Logic

UBS00BAO

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1111 1111	Intake valve timing control solenoid valve circuit	An improper voltage is sent to the ECM through intake valve timing control solenoid valve.	 Harness or connectors (Solenoid valve circuit is open or shorted.) Intake valve timing control solenoid valve

DTC Confirmation Procedure

URSOORAP

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

1. Turn ignition switch ON.

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-371, "Diagnostic Procedure"

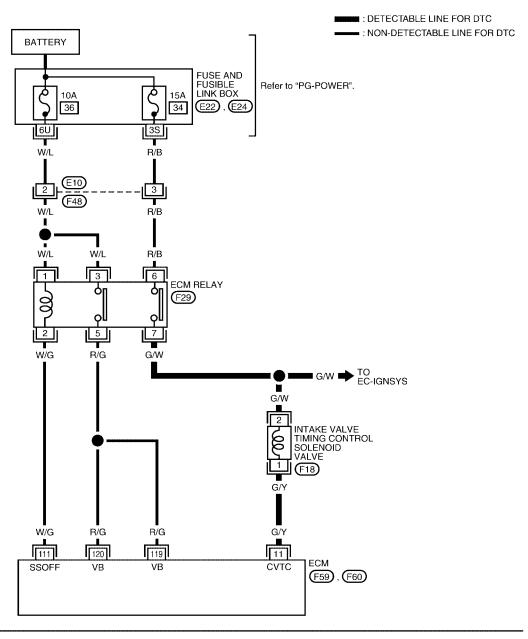
DATA MONITOR

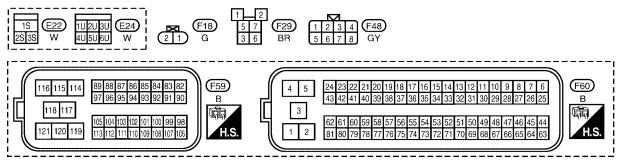
MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

WITH GST


Following the procedure "WITH CONSULT-II" above.


M

Wiring Diagram

UBS00BAQ

EC-IVC-01

BBWA0692E

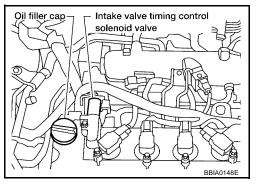
DTC P1111 IVT CONTROL SOLENOID VALVE

[QG18DE]

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running]Warm-up conditionIdle speed	BATTERY VOLTAGE (11 - 14V)
11	G/Y	Intake valve timing control solenoid valve	[Engine is running]Warm-up conditionWhen revving engine up to 2,500 rpm quickly	7 - 10V★
				≥ 10.0 V/Div PBIB179

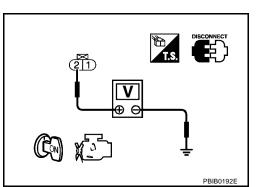
★: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. CHECK IVT CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect intake valve timing control solenoid valve harness connector.
- Turn ignition switch ON.

4. Check voltage between intake valve timing control solenoid valve terminal 2 and ground with CONSULT-II or tester.


Voltage: Battery voltage

OK or NG

OK >> GO TO 2.

NG

>> Repair open circuit or short to ground or short to power in harness or connectors.

EC

Α

D

Е

LIBSOOBAR

M

[QG18DE]

$\overline{2}$. CHECK IVT CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 11 and intake valve timing control solenoid valve terminal 1. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Refer to EC-372, "Component Inspection".

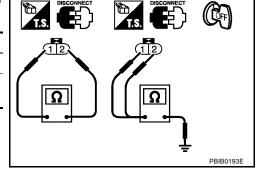
OK or NG

OK >> GO TO 4.

NG >> Replace intake valve timing control solenoid valve.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .


>> INSPECTION END

Component Inspection INTAKE VALVE TIMING CONTROL SOLENOID VALVE

UBS00BAS

- 1. Disconnect intake valve timing control solenoid valve harness connector.
- Check resistance between intake valve timing control solenoid valve terminals 1 and 2 under the following conditions.

Terminals	Resistance
1 and 2	Approximately 8Ω at 20°C (68°F)
1 or 2 and ground	${}^{\infty}\Omega$ (Continuity should not exist)

Removal and Installation
INTAKE VALVE TIMING CONTROL SOLENOID VALVE

UBS00BAT

Refer to EM-39, "TIMING CHAIN".

DTC P1121 ELECTRIC THROTTLE CONTROL ACTUATOR

[QG18DE]

DTC P1121 ELECTRIC THROTTLE CONTROL ACTUATOR

PFP:16119

Component Description

UBS00BAU

Α

EC

Е

Н

M

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The throttle position sensor detects the throttle valve position, and the opening and closing speed of the throttle valve and feeds the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

UBS00BAV

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
		A)	Electric throttle control actuator does not function properly due to the return spring malfunction.	
P1121 1121	Electric throttle control actuator	B)	Throttle valve opening angle in fail-safe mode is not in specified range.	Electric throttle control actuator
		C)	ECM detects the throttle valve is stuck open. This self-diagnosis has the one trip detection logic.	

FAIL-SAFE MODE

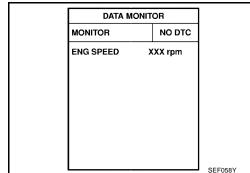
When the malfunction A or B is detected in the two consecutive trip, the ECM enters fail-safe mode and the MIL lights up.

When the malfunction C is detected even in the 1st trip, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode		
Malfunction A	The ECM controls the electric throttle control actuator by regulating the throttle opening around the idle position. The engine speed will not rise more than 2,000 rpm.		
Malfunction B	ECM controls the electric throttle control actuator by regulating the throttle opening to 20 degrees or less.		
Malfunction C	While the vehicle is driving, it slows down gradually by fuel cut. After the vehicle stops, the engine stalls. The engine can restart in N or P position, and engine speed will not exceed 1,000 rpm or more.		

DTC Confirmation Procedure

UBS00BAW


NOTE:

- Perform PROCEDURE FOR MALFUNCTION A AND B first. If the 1st trip DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION C.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

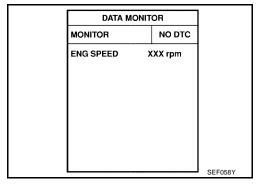
PROCEDURE FOR MALFUNCTION A AND B

(P) With CONSULT-II

- 1. Turn ignition switch ON and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Shift selector lever to D position (A/T), 1st position (M/T) and wait at least 2 seconds.
- Turn ignition switch OFF, wait at least 10 seconds, and then turn ON
- If 1st trip DTC is detected, go to <u>EC-374, "Diagnostic Procedure"</u>

With GST

Follow the procedure "With CONSULT-II" above.


DTC P1121 ELECTRIC THROTTLE CONTROL ACTUATOR

[QG18DE]

PROCEDURE FOR MALFUNCTION C

(P) With CONSULT-II

- 1. Turn ignition switch ON and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Shift selector lever to D position (A/T), 1st position (M/T) and wait at least 2 seconds.
- 4. Shift selector lever to N or P position.
- 5. Start engine and let it idle for 3 seconds.
- 6. If DTC is detected, go to EC-374, "Diagnostic Procedure".

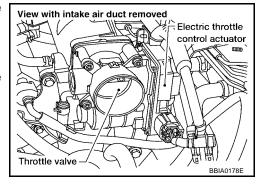
With GST

Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure

UBS00BAX

1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY


- 1. Remove the intake air duct.
- 2. Check if a foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG

>> Remove the foreign matter and clean the electric throttle control actuator inside.

2. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- Replace the electric throttle control actuator.
- 2. Perform EC-47, "Throttle Valve Closed Position Learning".
- 3. Perform EC-47, "Idle Air Volume Learning".

>> INSPECTION END

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

[QG18DE]

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

PFP:16119

Description

UBS00BAY

NOTE:

If DTC P1122 is displayed with DTC P1121 or 1126, first perform the trouble diagnosis for DTC P1121 or P1126. Refer to $\frac{EC-373}{C}$ or $\frac{EC-382}{C}$.

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feedback to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

UBS00BAZ

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1122 1122	Electric throttle control performance problem	Electric throttle control function does not operate properly.	 Harness or connectors (Throttle control motor circuit is open or shorted) Electric throttle control actuator

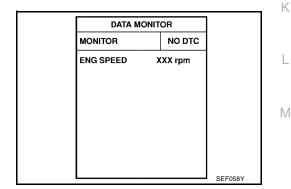
FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure


IBSOOBBO

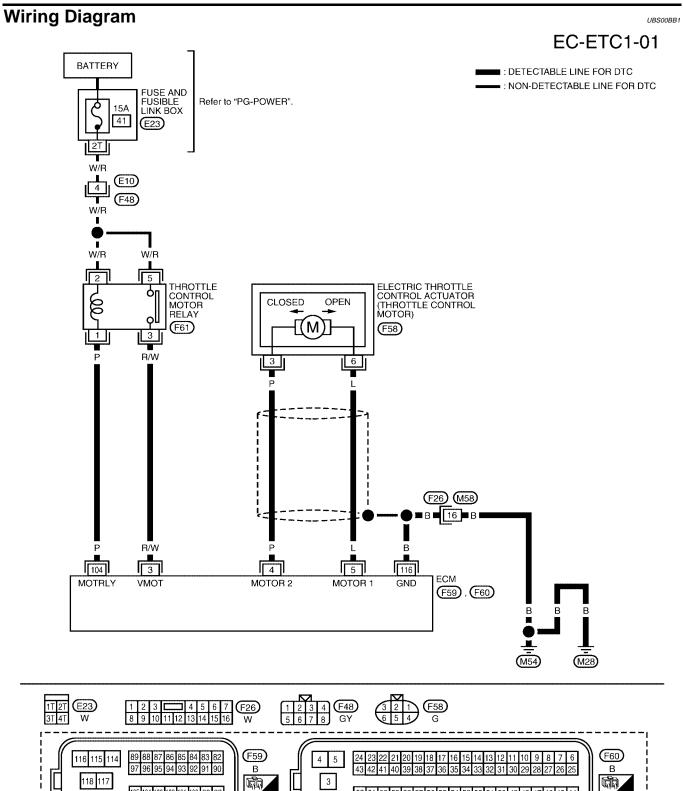
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON and wait at least 2 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and let it idle for 5 seconds.
- If DTC is detected, go to <u>EC-377</u>, "<u>Diagnostic Procedure</u>".

WITH GST


Follow the procedure "WITH CONSULT-II" above.

EC

Е

Α

EC-375

BBWA0693E

3

121 120 119

(F61)

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

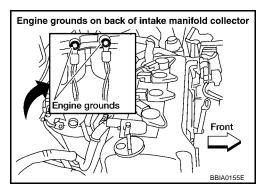
[QG18DE]

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	С
3	R/W	Throttle control motor power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	
4	Р	Throttle control motor (Close)	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal is releasing 	0 - 14V★	D E
-				0 - 14V★	F
5	L	Throttle control motor (Open)	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal is depressing 		G
				>> 10.0 V/Div 200 us/Div T PBIB0533E	
104	Р	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)	I
			[Ignition switch: ON]	0 - 1.0V	
116	В	ECM ground	[Engine is running] • Idle speed	Engine ground	J


★: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

- Turn ignition switch OFF 1.
- Loosen and retighten engine ground screws.

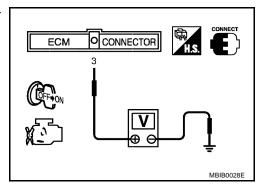
>> GO TO 2.

EC

Α

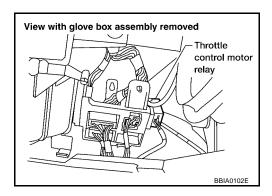
UBS00BB2

M


2. check throttle control motor relay signal circuit

Check voltage between ECM terminal 3 and ground under the following conditions with CONSULT-II or tester.

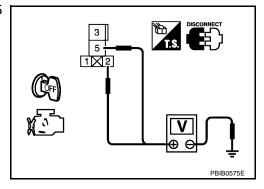
Ignition switch	Voltage
OFF	Approximately 0V
ON	Battery voltage (11 - 14V)


OK or NG

OK >> GO TO 8. NG >> GO TO 3.

3. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect throttle control motor relay.



3. Check voltage between throttle control motor relay terminals 2, 5 and ground.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10, F48
- 15A fuse
- Harness for open or short between throttle control motor relay and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

[QG18DE]

5. CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 3 and throttle control motor relay terminal 3. Refer to Wiring Diagram.

EC

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

D

6. CHECK THROTTLE CONTROL MOTOR RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal 104 and throttle control motor relay terminal 1. Refer to Wiring Diagram.

Е

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

G

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

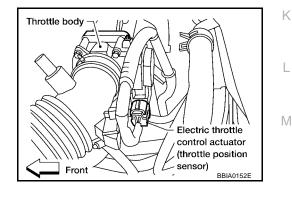
 $8.\,$ check throttle control motor output signal circuit for open or short

ш

7. CHECK THROTTLE CONTROL MOTOR RELAY

Refer to EC-380, "Component Inspection" .

OK or NG


OK >> GO TO 11.

NG >> Replace throttle control motor relay.

J

- Turn ignition switch OFF.
- 2. Disconnect electric throttle control actuator harness connector.
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

Electric throttle control actuator terminal	ECM terminal	Continuity
2	4	Should exist
3	5	Should not exist
6	4	Should not exist
	5	Should exist

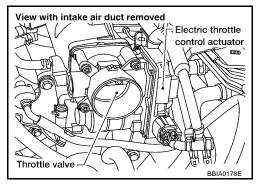
5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY


- Remove the intake air duct.
- 2. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 10.

NG

>> Remove the foreign matter and clean the electric throttle control actuator inside.

10. CHECK THROTTLE CONTROL MOTOR

Refer to EC-380, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> GO TO 12.

11. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

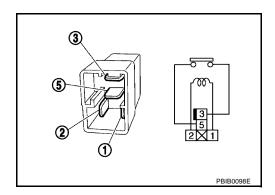
OK >> GO TO 12.

NG >> Repair or replace harness or connectors.

12. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-47, "Throttle Valve Closed Position Learning".
- Perform EC-47, "Idle Air Volume Learning".

>> INSPECTION END


Component Inspection THROTTLE CONTROL MOTOR RELAY

1. Apply 12V direct current between relay terminals 1 and 2.

2. Check continuity between relay terminals 3 and 5.

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

If NG, replace throttle control motor relay.

UBS00BB3

THROTTLE CONTROL MOTOR

Disconnect electric throttle control actuator harness connector.

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

[QG18DE]

Α

EC

C

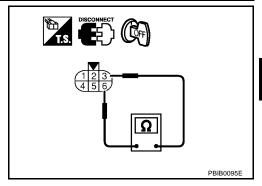
D

Е

F

Н

K


L

M

Check resistance between terminals 3 and 6.

Resistance: Approximately 1 - 15 Ω [at 25 °C (77°F)]

- 3. If NG, replace electric throttle control actuator and go to next step.
- 4. Perform EC-47, "Throttle Valve Closed Position Learning".
- 5. Perform EC-47, "Idle Air Volume Learning".

UBS00BB4

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-13, "OUTER COMPONENT PARTS".

EC-381

DTC P1124, P1126 THROTTLE CONTROL MOTOR RELAY

[QG18DE]

DTC P1124, P1126 THROTTLE CONTROL MOTOR RELAY

PFP:16119

Component Description

URSOORB5

Power supply for the throttle control motor is provided to the ECM via throttle control motor relay. The throttle control motor relay is ON/OFF controlled by the ECM. When the ignition switch is turned ON, the ECM sends an ON signal to throttle control motor relay and battery voltage is provided to the ECM. When the ignition switch is turned OFF, the ECM sends an OFF signal to throttle control motor relay and battery voltage is not provided to the ECM.

CONSULT-II Reference Value in Data Monitor Mode

UBS00BB6

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
THRTL RELAY • Ignition switch: ON		ON

On Board Diagnosis Logic

UBS00BB7

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1124 1124	Throttle control motor relay circuit short	ECM detects the throttle control motor relay is stuck ON.	 Harness or connectors (Throttle control motor relay circuit is shorted) Throttle control motor relay
P1126 1126	Throttle control motor relay circuit open	ECM detects a voltage of power source for throttle control motor is excessively low.	 Harness or connectors (Throttle control motor relay circuit is open) Throttle control motor relay

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

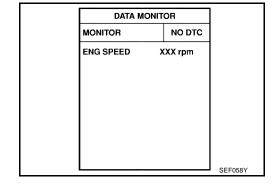
ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

UBS00BB8

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


PROCEDURE FOR DTC P1124

TESTING CONDITION:

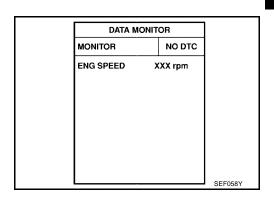
Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(With CONSULT-II

- 1. Turn ignition switch ON and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. If DTC is detected, go to EC-385, "Diagnostic Procedure".

DTC P1124, P1126 THROTTLE CONTROL MOTOR RELAY

[QG18DE]


With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR DTC P1126

(F) With CONSULT-II

- 1. Turn ignition switch ON and wait at least 2 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 5 seconds.
- 4. If DTC is detected, go to EC-385, "Diagnostic Procedure".

With GST

Follow the procedure "With CONSULT-II" above.

EC

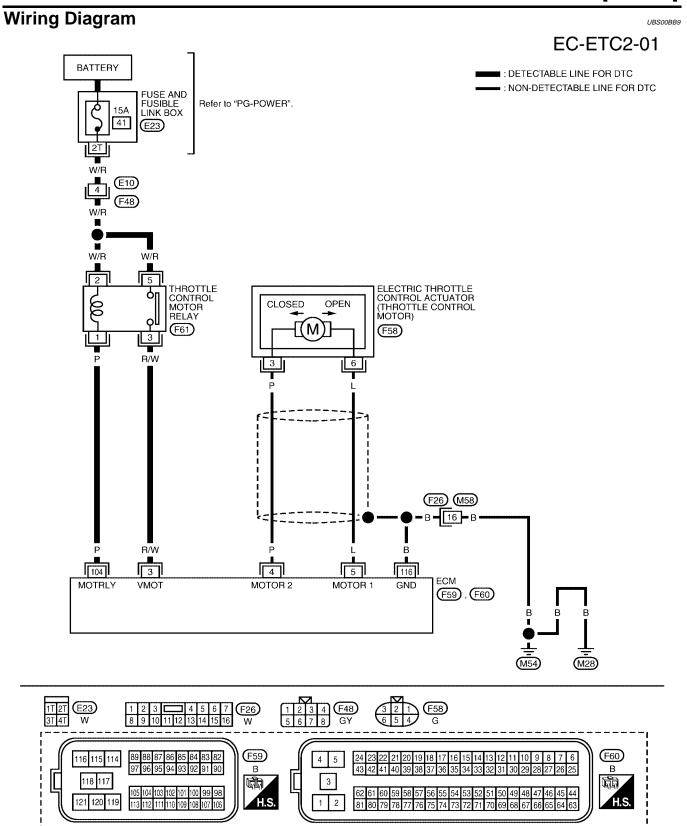
Α

C.

D

Е

F


G

Н

<

ı

M

BBWA0694E

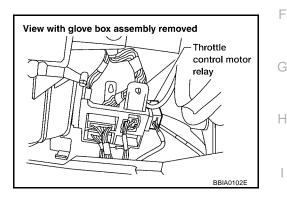
F61

DTC P1124, P1126 THROTTLE CONTROL MOTOR RELAY

[QG18DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

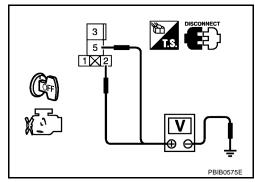

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
3	R/W	Throttle control motor power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
104 P	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)	
		·	[Ignition switch: ON]	0 - 1.0V

Diagnostic Procedure

1. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect throttle control motor relay harness connector.



3. Check voltage between throttle control motor relay terminal 2, 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10, F48
- Fuse and fusible link connector E23
- 15A fuse
- Harness for open or short between throttle control motor relay and battery
 - >> Repair or replace harness or connectors.

EC

D

Е

Α

UBS00BBA

M

[QG18DE]

3. CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check continuity between ECM terminal 3 and throttle control motor relay terminal 3. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK THROTTLE CONTROL MOTOR RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check continuity between ECM terminal 104 and throttle control motor relay terminal 1. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK THROTTLE CONTROL MOTOR RELAY

Refer to EC-386, "Component Inspection".

OK or NG

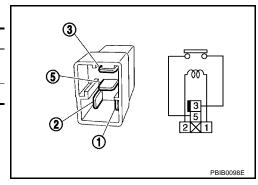
OK >> GO TO 6.

NG >> Replace throttle control motor relay.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection THROTTLE CONTROL MOTOR RELAY

UBS00BBB

- 1. Apply 12V direct current between relay terminals 1 and 2.
- 2. Check continuity between relay terminals 3 and 5.

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

3. If NG, replace throttle control motor relay.

DTC P1128 THROTTLE CONTROL MOTOR

[QG18DE]

DTC P1128 THROTTLE CONTROL MOTOR

PFP:16119

Component Description

UBS00BBC

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feedback to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

EC

Α

On Board Diagnosis Logic

UBS00BBD

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1128 1128	Throttle control motor circuit short	ECM detects short in both circuits between ECM and throttle control motor.	 Harness or connectors (Throttle control motor circuit is shorted.) Electric throttle control actuator (Throttle control motor)

ed.)

FAIL-SAFE MODE

F

Н

M

Е

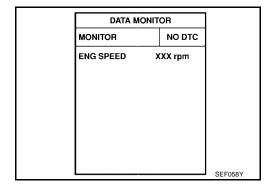
When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

<u>n</u> G

Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure


UBS00BBE

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II

- 1. Turn ignition switch ON and wait at least 2 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 5 seconds.
- 4. If DTC is detected, go to EC-389, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram EC-ETC3-01 BATTERY : DETECTABLE LINE FOR DTC ■ : NON-DETECTABLE LINE FOR DTC FUSE AND FUSIBLE LINK BOX Refer to PG-POWER. 41 (E23) W/R **E10** (F48) W/R W/R W/R 5 2 THROTTLE CONTROL MOTOR RELAY ELECTRIC THROTTLE CONTROL ACTUATOR (THROTTLE CONTROL MOTOR) OPEN CLOSED (F61) {(м (F58) 3 R/W F26 M58 16 **B** R/W В 5 116 3 104 4 MOTRLY MOTOR 2 MOTOR 1 GND (F59), (F60) M54 M28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 W 1T 2T E23 1 2 3 4 5 6 7 8 F48 3T 4T 116 115 114 5 В В 118 117 爾 3 121 120 119

BBWA0695E

2

(F61)

DTC P1128 THROTTLE CONTROL MOTOR

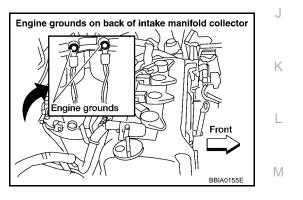
[QG18DE]

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
4	Ф	Throttle control motor (Close)	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal is releasing 	0 - 14V★
5	L	Throttle control motor (Open)	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal is depressing 	0 - 14V★


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

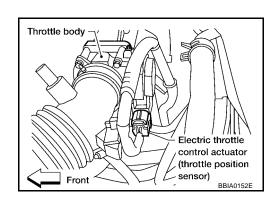
- Turn ignition switch OFF.
- Loosen and retighten engine ground screws.

>> GO TO 2.

EC

Α

Е


D

UBS00BBG

$2.\,$ check throttle control motor output signal circuit for open or short

- 1. Turn ignition switch OFF.
- 2. Disconnect electric throttle control actuator harness connector.
- Disconnect ECM harness connector.
- 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

Electric throttle control actuator terminal	ECM terminal	Continuity
3	4	Should exist
	5	Should not exist
6	4	Should not exist
	5	Should exist

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK THROTTLE CONTROL MOTOR

Refer to EC-390, "Component Inspection".

OK or NG

OK >> GO TO 4. NG >> GO TO 5.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

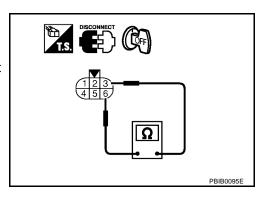
OK >> GO TO 5.

NG >> Repair or replace harness or connectors.

5. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-47, "Throttle Valve Closed Position Learning" .
- 3. Perform EC-47, "Idle Air Volume Learning".

>> INSPECTION END


Component Inspection THROTTLE CONTROL MOTOR

UBS00BBH

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Check resistance between terminals 3 and 6.

Resistance: Approximately 1 - 15 Ω [at 25 °C (77°F)]

- 3. If NG, replace electric throttle control actuator and go to next step.
- 4. Perform EC-47, "Throttle Valve Closed Position Learning".
- 5. Perform EC-47, "Idle Air Volume Learning".

DTC P1128 THROTTLE CONTROL MOTOR

[QG18DE]

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

UBS00BBI

Α

Refer to EM-13, "OUTER COMPONENT PARTS".

EC

С

D

Е

F

G

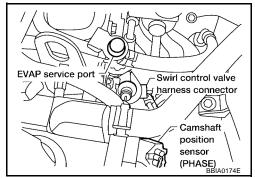
Н

K

L

M

DTC P1132 SWIRL CONTROL VALVE


PFP:00000

UBS00BBJ

Component Description

Swirl control valve consists of actuator and valve. The valve is installed in the intake manifold, and the actuator is connected to the rear end of the valve shaft.

The swirl control valve uses a step motor which has four winding phases. It operates according to the output pulse signal of the ECM. Two windings are turned ON and OFF in sequence. Each time an ON pulse is issued, the valve opens or closes. When no change in the control position is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

CONSULT-II Reference Value in Data Monitor Mode

UBS00BBK

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
SWL C/V (B1)	Engine: Idle the engine	Engine coolant temperature is below 44°C (111°F)	0 - 5 step
		Engine coolant temperature is above 45°C (113°F)	115 - 120 step
SWL/C POSI SE	Engine: Idle the engine	Engine coolant temperature is below 44°C (111°F)	Approx. 0 deg.
		Engine coolant temperature is above 45°C (113°F)	Approx. 80 deg.

On Board Diagnosis Logic

UBS00BBL

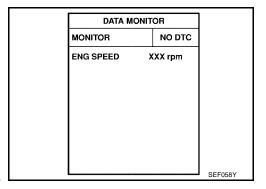
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1132 1132	Swirl control valve circuit	An improper voltage signal is sent to ECM.	 Harness or connectors (The swirl control valve circuit is open or shorted.) Swirl control valve control solenoid valve

DTC Confirmation Procedure

UBS00BBM

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


(I) WITH CONSULT-II

- 1. Turn ignition switch ON and wait at least 2 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 10 seconds.
- 4. Turn ignition switch OFF and wait at least 10 seconds.
- 5. Turn ignition switch ON and wait at least 2 seconds.
- 6. Start engine and let it idle for at least 10 seconds.
- Maintain engine speed at about 2,000 rpm for at least 10 seconds.
- Turn ignition switch OFF, wait at least 10 seconds and then turn ON.

If 1st trip DTC is detected, go to EC-395, "Diagnostic Procedure"

If 1st trip DTC is not detected, go to next step.

9. Perform step 5 through 8 three times.

DTC P1132 SWIRL CONTROL VALVE

[QG18DE]

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

С

 D

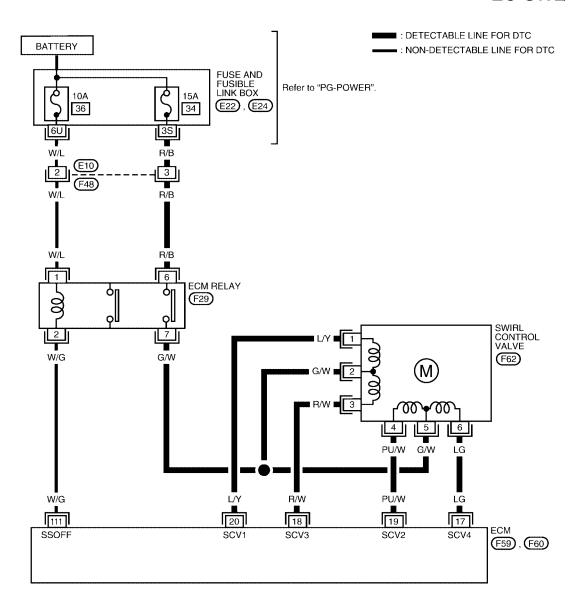
Е

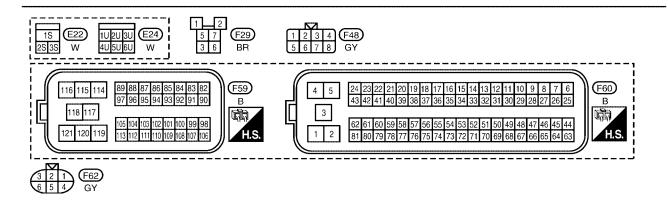
F

G

Н

Κ


L


 \mathbb{N}

Wiring Diagram

UBS00BBN

EC-SWL/V-01

BBWA0696E

DTC P1132 SWIRL CONTROL VALVE

[QG18DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

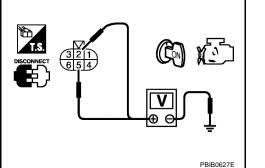
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
17 18 19 20	LG R/W PU/W L/Y	Swirl control valve	[Engine is running] • Idle speed	0.1 - 14V

Diagnostic Procedure

1. CHECK SWIRL CONTROL VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect swirl control valve harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between swirl control valve terminals 2, 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between swirl control valve and ECM relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

Α

UBS00BBO D

Е

Н

3. CHECK SWIRL CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminals and swirl control valve terminals as follows.Refer to Wiring Diagram.

ECM terminal	Swirl volume control valve	
17	6	
18	3	
19	4	
20	1	

Continuity should exist.

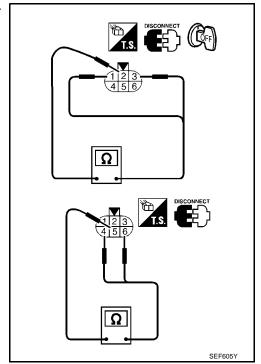
4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK SWIRL CONTROL VALVE


Check resistance between swirl control valve terminal 2 and terminals 1, 3, terminal 5 and terminals 4, 6.

Resistance: $20.5 - 23.5\Omega$ [At 20° C (68°F)]

OK or NG

OK >> GO TO 5.

NG >> Replace intake manifold assembly.

5. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Removal and Installation SWIRL CONTROL VALVE

Refer to EM-13, "Removal and Installation".

UBS00BBP

DTC P1137 SWIRL CONTROL VALVE CONTROL POSITION SENSOR [QG18DE]

DTC P1137 SWIRL CONTROL VALVE CONTROL POSITION SENSOR

PFP:23731

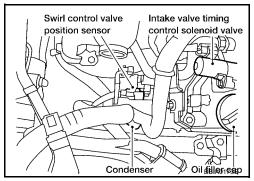
UBS00BBQ

Α

EC

C

D


Е

Н

Component Description

Swirl control valve position sensor is installed on the intake manifold. The sensor is connected to the front end of the valve shaft of the swirl control valve.

The sensor responds to the valve shaft movement. This sensor is a kind of potentiometer which transforms the swirl control valve position into output voltage, and emits the voltage signal to the ECM.

CONSULT-II Reference Value in Data Monitor Mode

UBS00BBR

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
0)4/1 0/1/(D4)	a Engine anady Idla	Engine coolant temperature is below 44°C (111°F).	0 - 5 step
SWL C/V (B1)	• Engine speed: Idle Engine coolant temperature is above 45°C (113°F). 115 - 120 step		115 - 120 step
SWL/C POSI SE	 Engine speed: Idle Engine coolant temperature is below 44°C (111°F). 		Approximately 0 deg
3WL/C F03I 3E	Engine speed: Idle Engine coolant temperature is about 1.5 about 1.	Engine speed: Idle Engine coolant temperature is above 45°C (113°F).	

On Board Diagnosis Logic

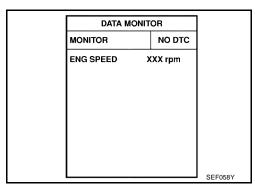
UBS00BBS

DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1137 1137	Swirl control valve control position sensor circuit	An excessively low or high voltage from the sensor is sent to ECM.	Harness or connectors (Swirl control valve position sensor circuit is open or shorted.) Swirl control valve position sensor Harness or connectors (Swirl control valve circuit is open or shorted.) Swirl control valve

DTC P1137 SWIRL CONTROL VALVE CONTROL POSITION SENSOR [QG18DE]

DTC Confirmation Procedure

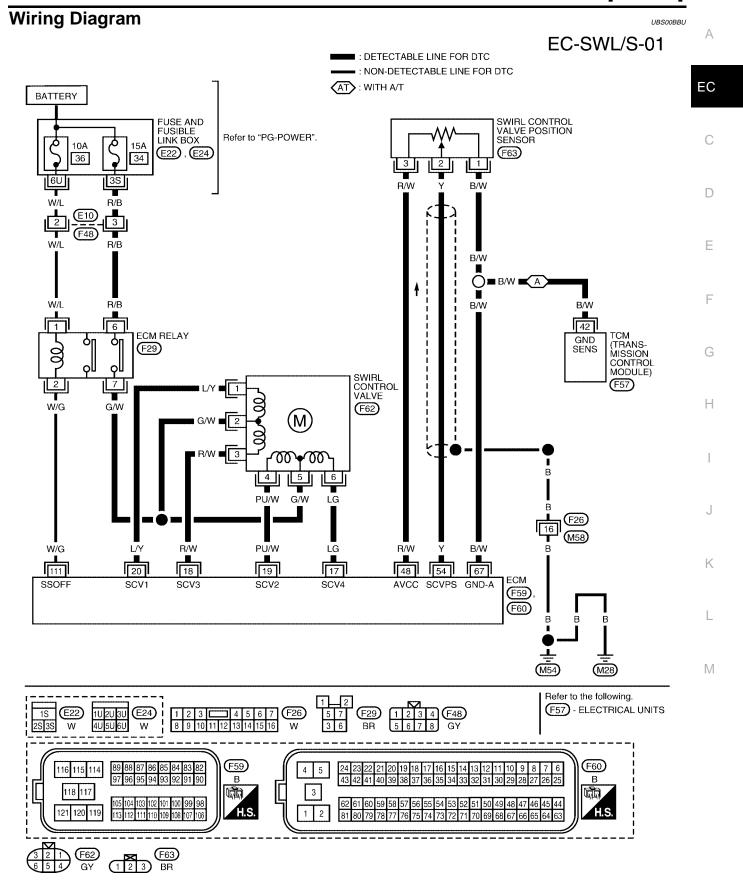
UBS00BBT


NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(I) WITH CONSULT-II

- Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II and wait at least 5 seconds.


If 1st trip DTC is detected, go to EC-401, "Diagnostic Procedure"

WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P1137 SWIRL CONTROL VALVE CONTROL POSITION SENSOR [QG18DE]

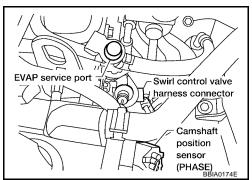
BBWA0697E

DTC P1137 SWIRL CONTROL VALVE CONTROL POSITION SENSOR [QG18DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
17 18 19 20	LG R/W PU/W L/Y	Swirl control valve	[Engine is running] • Idle speed	0.1 - 14V
48	R/W	Sensors' power supply	[Ignition switch: ON]	Approximately 5V
			 [Engine is running] Idle speed Engine coolant temperature is below 44°C (111°F). 	Approximately 5V
54	54 Y	Swirl control valve position sensor	 [Engine is running] Warm-up condition Idle speed Engine coolant temperature is above 45°C (113°F). 	0 - 1.0V
67	B/W	Sensors' ground (MAF sensor / IAT sensor / PSP sensor / ASCD steering switch / EVAP control system pressure sensor / Refrigerant pressure sensor / Swirl control valve position sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
111	W/G	ECM relay (Self shut-off)	[Engine is running][Ignition switch: OFF]For a few seconds after turning ignition switch OFF	0 - 1.0V
		Low rolly (con sharen)	[Ignition switch: OFF]A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)

DTC P1137 SWIRL CONTROL VALVE CONTROL POSITION SENSOR [QG18DE]

Diagnostic Procedure

1. CHECK SWIRL CONTROL VALVE POWER SUPPLY CIRCUIT

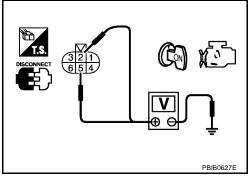
- 1. Turn ignition switch OFF.
- 2. Disconnect swirl control valve harness connector.
- Turn ignition switch ON.

UBS00BBV

Α

EC

D


Е

Check voltage between swirl control valve terminals 2, 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between swirl control valve and ECM relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK SWIRL CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminals and swirl control valve terminals as follows. Refer to Wiring Diagram.

ECM terminal	Swirl volume control valve
17	6
18	3
19	4
20	1

Continuity should exist.

4. Also check harness for short to ground and short to power.

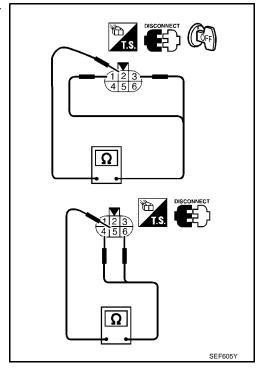
OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

DTC P1137 SWIRL CONTROL VALVE CONTROL POSITION SENSOR [QG18DE]

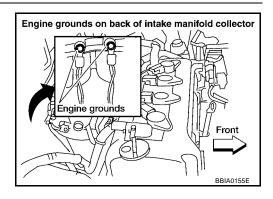
4. CHECK SWIRL CONTROL VALVE


Check resistance between swirl control valve terminal 2 and terminals 1, 3, terminal 5 and terminals 4, 6.

Resistance: 20.5 - 23.5 Ω [at 20°C (68°F)]

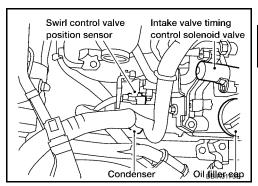
OK or NG

OK >> GO TO 5.


NG >> Replace intake manifold collector assembly.

5. RETIGHTEN GROUND SCREWS

Loosen and retighten engine ground screws.


>> GO TO 6.

DTC P1137 SWIRL CONTROL VALVE CONTROL POSITION SENSOR [QG18DE]

6. CHECK SWIRL CONTROL VALVE POSITION SENSOR POWER SUPPLY CIRCUIT

- Disconnect swirl control valve position sensor harness connec-
- Turn ignition switch ON.

Α

EC

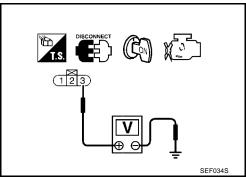
D

Е

K

M

3. Check voltage between swirl control valve position sensor terminal 3 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 7.

NG

>> Repair open circuit or short to ground or short to power in harness connectors.

$7.\,$ CHECK SWIRL CONTROL VALVE POSITION SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Disconnect TCM harness connector.
- 4. Check harness continuity between swirl control valve position sensor terminal 1 and ECM terminal 67, TCM terminal 42.

Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between swirl control valve position sensor and TCM
- Harness for open or short between swirl control valve position sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC-403

DTC P1137 SWIRL CONTROL VALVE CONTROL POSITION SENSOR [QG18DE]

9. CHECK SWIRL CONTROL VALVE POSITION SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal 54 and swirl control valve position sensor terminal 2. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK (With CONSULT-II)>>GO TO 10.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

10. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> Replace intake manifold assembly.

NG >> Repair or replace.

Removal and Installation SWIRL CONTROL VALVE CONTROL POSITION SENSOR

Refer to EM-13, "Removal and Installation".

UBS00BBW

DTC P1138 SWIRL CONTROL VALVE

[QG18DE]

DTC P1138 SWIRL CONTROL VALVE

PFP:00000

Description SYSTEM DESCRIPTION

UBS00BBX

Sensor	Input Signal to ECM	ECM func- tion	Actuator	=
Throttle position sensor	Throttle position			
Battery	Battery voltage*			
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*	Swirl con- trol valve	Swirl control valve	
Mass air flow sensor	Amount of intake air	control		
Engine coolant temperature sensor	Engine coolant temperature			
Swirl control valve position sensor	Swirl control valve position			

^{*:} The ECM determines the start signal status by the signal of engine speed and battery voltage.

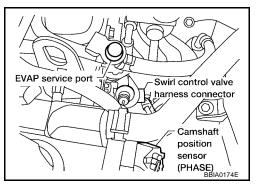
Swirl control valve has a valve portion in the intake passage of each cylinder.

While idling and during low engine coolant temperature, the swirl control valve closes, Thus the velocity of the air in the intake passage increases, promoting the vaporization of the fuel and producing a swirl in the combustion chamber.

Because of this operation, this system tends to increase the burning speed of the gas mixture, improve fuel consumption, and increase the stability in running conditions.

Also, except when idling and during low engine coolant temperature, this system opens the swirl control valve. In this condition, this system tends to increase power by improving intake efficiency via reduction of intake flow resistance, intake flow.

The swirl control valve is operated by the ECM.


Throttle position sensor (Idle position)	Engine coolant tempera- ture	Swirl control valve
OFF	_	Open
ON	Above 45°C (113°F)	Open
ON	Below 44°C (111°F)	Close

COMPONENT DESCRIPTION

Swirl Control Valve

Swirl control valve consists of actuator and valve. The valve is installed in the intake manifold, and the actuator is connected to the rear end of the valve shaft.

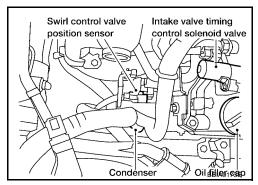
The swirl control valve uses a step motor which has four winding phases. It operates according to the output pulse signal of the ECM. Two windings are turned ON and OFF in sequence. Each time an ON pulse is issued, the valve opens or closes. When no change in the control position is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

D

Е

Н

K


M

IVI

Swirl Control Valve Position Sensor

Swirl control valve position sensor is installed on the intake manifold. The sensor is connected to the front end of the valve shaft of the swirl control valve.

The sensor responds to the valve shaft movement. This sensor is a kind of potentiometer which transforms the swirl control valve position into output voltage, and emits the voltage signal to the ECM.

CONSULT-II Reference Value in Data Monitor Mode

UBS00BBY

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
SWL C/V (B1)	Engine speed: Idle	Engine coolant temperature is below 44°C (111°F).	0 - 5 step
3WL C/V (B1)	• Engine speed, idle	Engine coolant temperature is above 45°C (113°F).	115 - 120 step

On Board Diagnosis Logic

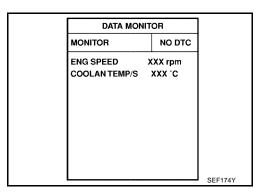
UBS00BBZ

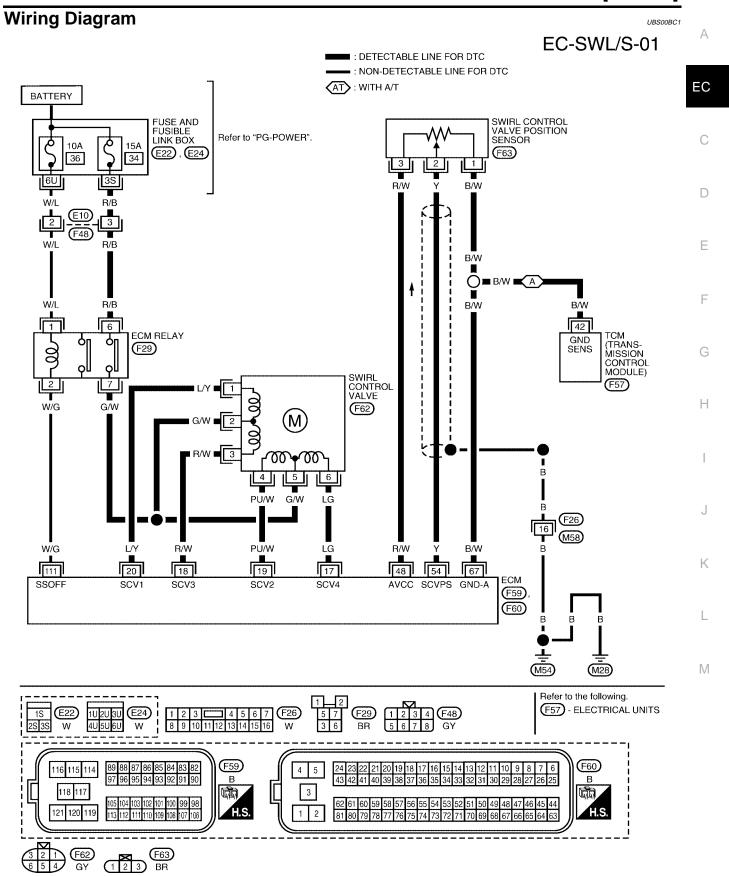
DTC No.	Trouble diagnosis name	DTC Detecting Condition	Possible Cause
P1138 1138	Swirl control valve control system performance	The target opening angle of swirl control valve controlled by ECM and the input signal from swirl control valve position sensor is not in the normal rang.	 Harness or connectors (Swirl control valve position sensor circuit is open or shorted.) Swirl control valve position sensor Harness or connectors (Swirl control valve circuit is open or shorted.) Swirl control valve

DTC Confirmation Procedure

UBS00BC0

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


With CONSULT-II

- 1. Turn ignition switch ON and wait at least 2 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 10 seconds.
- 4. Turn ignition switch OFF and wait at least 10 seconds.
- 5. Turn ignition switch ON and wait at least 2 seconds.
- 6. Start engine and let it idle for at least 10 seconds.
- 7. Maintain engine speed at about 2,000 rpm for at least 10 seconds.
- Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
 If 1st trip DTC is detected, go to <u>EC-409</u>, "<u>Diagnostic Procedure</u>".
 If 1st trip DTC is not detected, go to next step.
- 9. Perform step 5 through 8 three times.

With GST

Follow the procedure "With CONSULT-II" above.

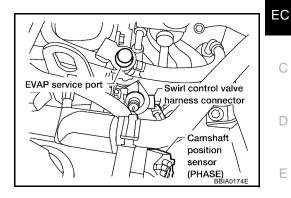
BBWA0697E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMINAL	WIRE			
NO.	COLOR	ITEM	CONDITION	DATA (DC Voltage)
17 18 19 20	LG R/W PU/W L/Y	Swirl control valve	[Engine is running] • Idle speed	0.1 - 14V
48	R/W	Sensors' power supply	[Ignition switch: ON]	Approximately 5V
		 [Engine is running] Idle speed Engine coolant temperature is below 44°C (111°F). 	Approximately 5V	
54 Y	Υ	Swirl control valve position sensor	 [Engine is running] Warm-up condition Idle speed Engine coolant temperature is above 45°C (113°F). 	0 - 1.0V
67	B/W	Sensors' ground (MAF sensor / IAT sensor / PSP sensor / ASCD steering switch / EVAP control system pressure sensor / Refrigerant pressure sensor / Swirl control valve position sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
111	W/G ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] ● For a few seconds after turning ignition switch OFF	0 - 1.0V	
		[Ignition switch: OFF] ● A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	

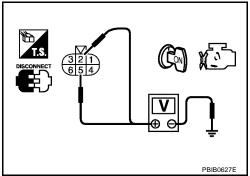

[QG18DE]

Diagnostic Procedure

1. CHECK SWIRL CONTROL VALVE POWER SUPPLY CIRCUIT

Α

- 1. Turn ignition switch OFF.
- 2. Disconnect swirl control valve harness connector.
- Turn ignition switch ON.



Check voltage between swirl control valve terminals 2, 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between swirl control valve and ECM relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK SWIRL CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminals and swirl control valve terminals as follows. Refer to Wiring Diagram.

ECM terminal	Swirl volume control valve
17	6
18	3
19	4
20	1

Continuity should exist.

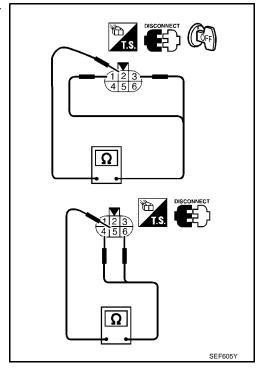
4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

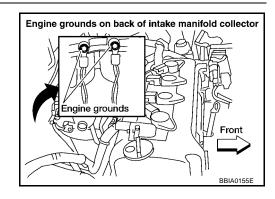
4. CHECK SWIRL CONTROL VALVE


Check resistance between swirl control valve terminal 2 and terminals 1, 3, terminal 5 and terminals 4, 6.

Resistance: 20.5 - 23.5 Ω [At 20°C (68°F)]

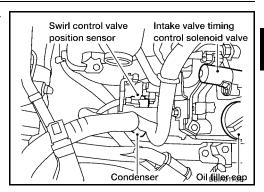
OK or NG

OK >> GO TO 5.


NG >> Replace intake manifold collector assembly.

5. RETIGHTEN GROUND SCREWS

Loosen and retighten engine ground screws.

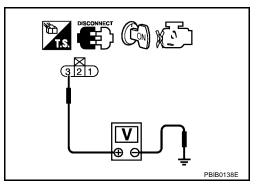

>> GO TO 6.

[QG18DE]

6. CHECK SWIRL CONTROL VALVE POSITION SENSOR POWER SUPPLY CIRCUIT

- Disconnect swirl control valve position sensor harness connector.
- 2. Turn ignition switch ON.

3. Check voltage between swirl control valve position sensor terminal 3 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 7.

NG >> Repair op

>> Repair open circuit or short to ground or short to power in harness connectors.

$7.\,$ CHECK SWIRL CONTROL VALVE POSITION SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Disconnect TCM harness connector.
- Check harness continuity between swirl control valve position sensor terminal 1 and ECM terminal 67, TCM terminal 42.

Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between swirl control valve position sensor and TCM
- Harness for open or short between swirl control valve position sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

Α

D

Е

F

G

Н

K

UBS00BC3

9. CHECK SWIRL CONTROL VALVE POSITION SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 54 and swirl control valve position sensor terminal 2. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK (With CONSULT-II)>>GO TO 10.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

10. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> Replace intake manifold assembly.

Refer to EM-13, "Removal and Installation".

NG >> Repair or replace.

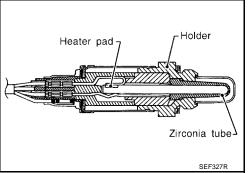
Removal and Installation SWIRL CONTROL VALVE

IRL CONTROL VALVE

DTC P1146 HO2S2

PFP:226A0

UBS00BC4


Component Description

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the air fuel ratio (A/F) sensor 1 are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

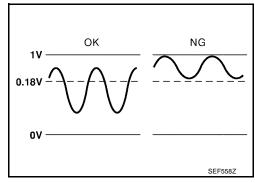
This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1)	Engine: After warming up		0 - 0.3V ←→ 0.6 - 1.0V
HO2S2 MNTR (B1)	Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	Revving engine from idle to 3,000 rpm quickly	$LEAN \longleftrightarrow RICH$


On Board Diagnosis Logic

UBS00BC6

Н

M

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the air fuel ratio (A/F) sensor 1. The oxygen storage capacity of the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the minimum voltage of sensor is sufficiently low during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1146 1146	Heated oxygen sensor 2 minimum voltage monitoring	The minimum voltage from the sensor is not reached to the specified voltage.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 Fuel pressure Fuel injectors

EC

Α

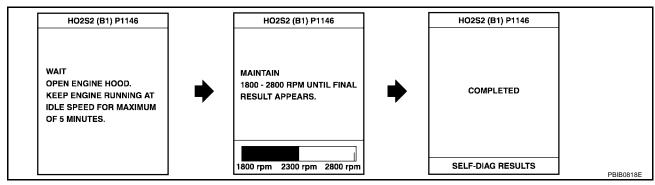
Е

LIBSOOBC5

DTC Confirmation Procedure

UBSOORCE

NOTE:


If DTC confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(WITH CONSULT-II

TESTING CONDITION:

For the best results, perform "DTC WORK SUPPORT" at a temperature of 0 to 30°C (32 to 86°F).

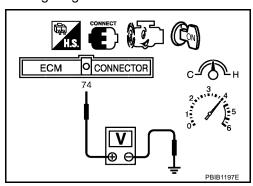
- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Select "HO2S2 (B1) P1146" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II and follow the instruction of CONSULT-II.

- 6. Make sure that OK is displayed after touching "SELF-DIAG RESULTS".
 - If NG is displayed, refer to EC-416, "Diagnostic Procedure".
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- b. Turn ignition switch ON and select "COOLANTEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- c. Start engine and warm it up while monitoring "COOLANEMP/S" indication on CONSULT-II.
- d. When "COOLANTEMP/S" indication reaches to 70°C (158°F), go to step 3.

Overall Function Check

UBS00BC8

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a DTC might not be confirmed.


WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle 1 minute.
- 5. Set voltmeter probes between ECM terminal 74 (HO2S2 signal) and engine ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be below 0.18V at least once during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- 7. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF (A/T), 4th gear position (M/T).

 The voltage should be below 0.18V at least once during this

The voltage should be below 0.18V at least once during this procedure.

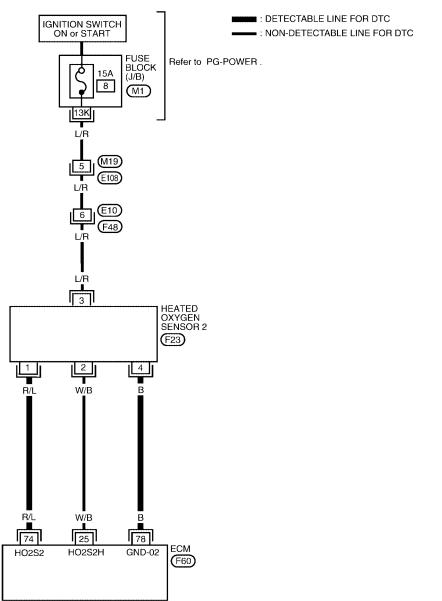
8. If NG, go to EC-416, "Diagnostic Procedure".

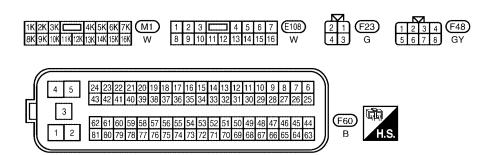
Wiring Diagram

Α

EC

C


D


Е

Н

M

EC-HO2S2-01

BBWA0727E

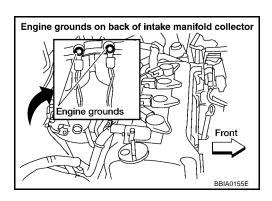
UBS00BCA

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
74	R/L	Heated oxygen sensor 2	 [Engine is running] Warm-up condition Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	0 - Approximately 1.0V
78	В	Heated oxygen sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

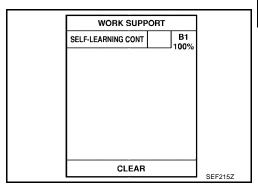

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

Turn ignition switch OFF.

2. Loosen and retighten engine ground screws.

>> GO TO 2.



2. CLEAR THE SELF-LEARNING DATA

(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure that DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-64, "HOW TO ERASE</u> EMISSION-RELATED DIAGNOSTIC INFORMATION".
- 7. Make sure that DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 detected?

Is it difficult to start engine?

Yes or No

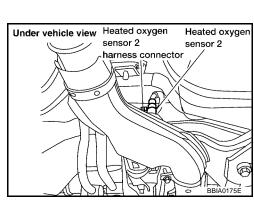
Yes >> Perform trouble diagnosis for DTC P0172. Refer to EC-219.

No >> GO TO 3.

3. CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 2 harness connector.
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between ECM terminal 78 and HO2S2 terminal 4.

Refer to Wiring Diagram.


Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

Mass air flow sensor (intake air temperature sensor) harness connector BBIA0150E

EC

П

Е

Н

4. CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 74 and HO2S2 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

2. Check harness continuity between ECM terminal 74 or HO2S2 terminal 1 and ground. Refer to Wiring Diagram.

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-418, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-140. "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

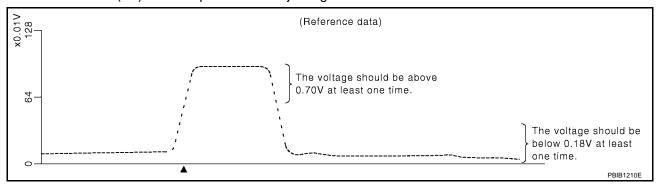
>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2

UBS00BCB

(P) With CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.


	ACTIVE TES		
	FUEL INJECTION	25 %	
	MONITOR		
	ENG SPEED	XXX rpm	
	A/F SEN1 (B1)	xxx v	
	HO2S2 (B1)	xxx v	
	-		
ľ			
ľ			
L			PBIB1782E

Α

EC

Е

Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)" should be above 0.70V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)" should be below 0.18V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- Set voltmeter probes between ECM terminal 74 (HO2S2 signal) and engine ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.

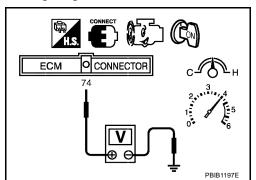
(Depress and release accelerator pedal as soon as possible.)

The voltage should be above 0.70V at least once during this procedure.

If the voltage is above 0.70V at step 6, step 7 is not necessary.

7. Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF (A/T), 4th gear position.

The voltage should be below 0.18V at least once during this procedure.


8. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

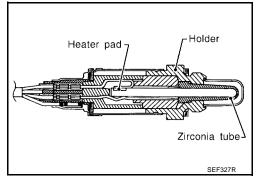
Refer to EX-3, "EXHAUST SYSTEM".

UBS00BCC

DTC P1147 HO2S2

PFP:226A0

Component Description


UBS00BCD

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas.

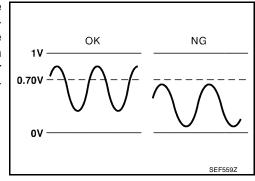
Even if switching characteristics of the air fuel ratio (A/F) sensor 1 are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

UBS00BCF


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1)	Engine: After warming up		0 - 0.3V ←→ 0.6 - 1.0V
HO2S2 MNTR (B1)	 Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	Revving engine from idle to 3,000 rpm quickly	$LEAN \longleftrightarrow RICH$

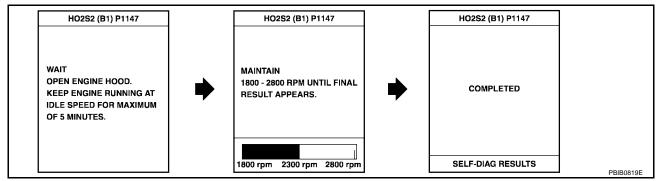
On Board Diagnosis Logic

UBS00BCF

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the air fuel ratio (A/F) sensor 1. The oxygen storage capacity of the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the maximum voltage of the sensor is sufficiently high during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1147 1147	Heated oxygen sensor 2 maximum voltage monitoring	The maximum voltage from the sensor is not reached to the specified voltage.	 Harness or connectors (The sensor circuit open or shorted.) Heated oxygen sensor 2 Fuel pressure Injectors Intake air leaks

DTC Confirmation Procedure


If DTC confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

TESTING CONDITION:

For the best results, perform "DTC WORK SUPPORT" at a temperature of 0 to 30°C (32 to 86°F).

- Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 1 minute.
- Select "HO2S2 (B1) P1147" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II and follow the instruction of CONSULT-II.

6. Make sure that OK is displayed after touching "SELF-DIAG RESULTS".

If NG is displayed, refer to EC-423.

If "CAN NOT BE DIAGNOSED" is displayed, perform the following.

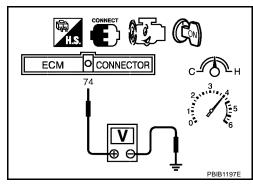
- Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- Turn ignition switch ON and select "COOLANTEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up while monitoring "COOLANEMP/S" indication on CONSULT-II.
- When "COOLANTEMP/S" indication reaches to 70°C (158°F), go to step 3.

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle 1 minute.
- Set voltmeter probes between ECM terminal 74 (HO2S2 signal) and engine ground. 5.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.


(Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.70V at least once during this procedure.

If the voltage can be confirmed in step 6, step 7 is not necessary.

7. Keep vehicle idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF (A/T), 4th gear position (M/T).

The voltage should be above 0.70V at least once during this procedure.

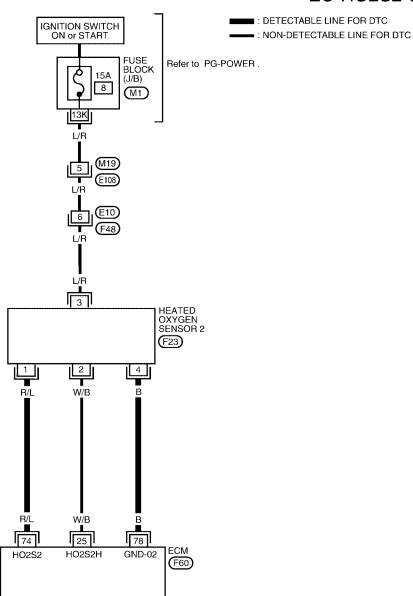
8. If NG, go to EC-423, "Diagnostic Procedure".

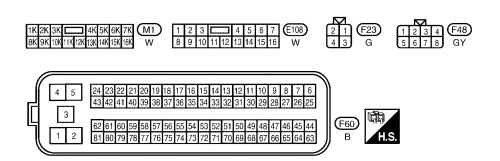
EC

Α

D

Е


Н


K

Wiring Diagram

UBS00BCI

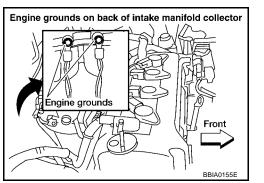
EC-HO2S2-01

BBWA0727E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
			[Engine is running] • Warm-up condition		С
74	R/L	Heated oxygen sensor 2	 Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. 	0 - Approximately 1.0V	D
			 Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 		Е
78	В	Heated oxygen sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	F

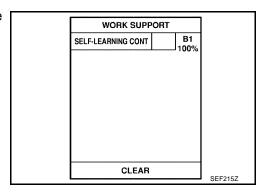
Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch OFF.
- Loosen and retighten engine ground screws.

>> GO TO 2.

Α


UBS00BCJ

2. clear the self-learning data

(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected?

Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure that DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-64, "HOW TO ERASE</u> EMISSION-RELATED DIAGNOSTIC INFORMATION".
- 7. Make sure that DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected?

Is it difficult to start engine?

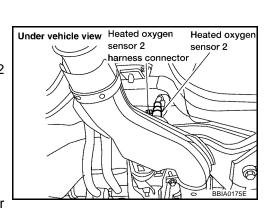
Yes >> Perform trouble diagnosis for DTC P0171. Refer to <u>EC-212</u>.

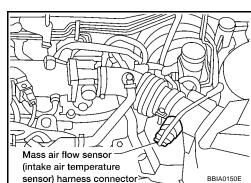
No >> GO TO 3.

3. CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 2 harness connector.
- Disconnect ECM harness connector.
- 4. Check harness continuity between ECM terminal 78 and HO2S2 terminal 4.

Refer to Wiring Diagram.


Continuity should exist.


5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

$4.\,$ CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal 74 and HO2S2 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

Check harness continuity between ECM terminal 74 or HO2S2 terminal 1 and ground. Refer to Wiring Diagram.

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-425, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

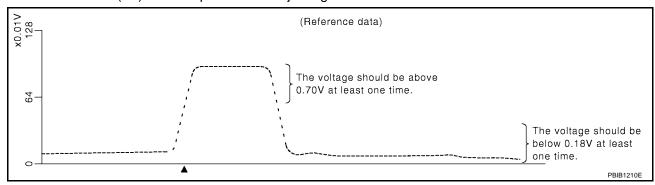
Component Inspection HEATED OXYGEN SENSOR 2

(P) With CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle 1 minute.
- 5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.

ACTIVE TES	ACTIVE TEST		
FUEL INJECTION	25 %		
MONITOR	ł		
ENG SPEED	XXX rpm		
A/F SEN1 (B1)	xxx v		
HO2S2 (B1)	xxx v		
		PBIB1782E	

EC


С

D

Е

UBS00BCK

6. Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)" should be above 0.70V at least once when the "FUEL INJECTION" is +25%.

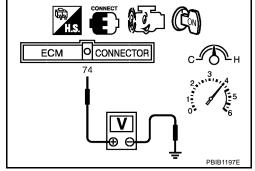
"HO2S2 (B1)" should be below 0.18V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- Set voltmeter probes between ECM terminal 74 (HO2S2 signal) and engine ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.)


 The voltage should be above 0.70V at least once during this
 - If the voltage is above 0.70V at step 6, step 7 is not necessary.
- 7. Keep vehicle idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF (A/T), 4th position (M/T).
 - The voltage should be below 0.18V at least once during this procedure.
- 8. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

Refer to EX-3, "EXHAUST SYSTEM".

UBS00BCL

DTC P1148 CLOSED LOOP CONTROL

[QG18DE]

DTC P1148 CLOSED LOOP CONTROL

PFP:22690

On Board Diagnosis Logic

UBS00BCM

This self-diagnosis has the one trip detection logic.

				EC
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	EC
P1148 1148	Closed loop control function	The closed loop control function for bank 1 does not operate even when vehicle is driving in the specified condition.	 The air fuel ratio (A/F) sensor 1 circuit is open or shorted. Air fuel ratio (A/F) sensor 1 Air fuel ratio (A/F) sensor 1 heater 	С

DTC P1148 is displayed with another DTC for air fuel ratio (A/F) sensor 1. Perform the trouble diagnosis for the corresponding DTC.

Α

D

Е

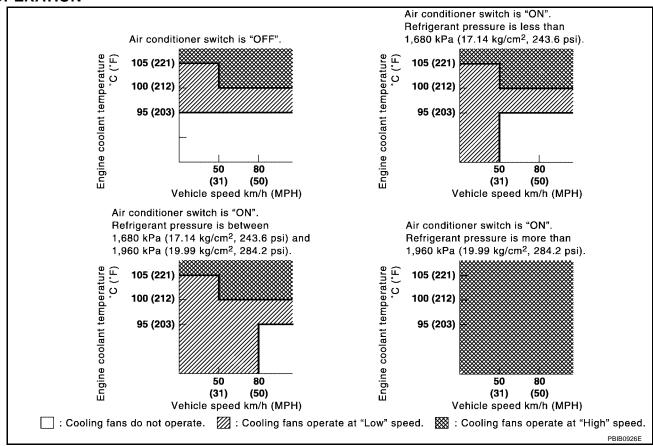
F

Н

DTC P1217 ENGINE OVER TEMPERATURE

PFP:00000

UBS00BCN


System Description COOLING FAN CONTROL

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*1		
Vehicle speed signal*2	Vehicle speed		Cooling fan relay(s)
Engine coolant temperature sensor	Engine coolant temperature	Cooling fan control	
Air conditioner switch	Air conditioner ON signal	lan control	
Battery	Battery voltage*1		
Refrigerant pressure sensor	Refrigerant pressure		

^{*1:} ECM determines the start signal status by the signals of engine speed and battery voltage.

The ECM controls the cooling fan corresponding to the vehicle speed, engine coolant temperature, refrigerant pressure, and air conditioner ON signal. The control system has 3-step control [HIGH/LOW/OFF].

OPERATION

CONSULT-II Reference Value in Data Monitor Mode

UBS00BCO

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION	
		A/C switch: OFF	OFF
AIR COND SIG	Engine: After warming up, idle the engine	A/C switch: ON (Compressor operates)	ON

^{*2:} This signal is sent to the ECM through CAN communication line.

DTC P1217 ENGINE OVER TEMPERATURE

[QG18DE]

MONITOR ITEM	CONDITION		SPECIFICATION
COOLING FAN		Engine coolant temperature is 94°C (201°F) or less	OFF
	 After warming up engine, idle the engine. Air conditioner switch: OFF 	Engine coolant temperature is between 95°C (203°F) and 104°C (219°F)	LOW
		Engine coolant temperature is 105°C (221°F) or more	HIGH

On Board Diagnosis Logic

UBS00BCP

If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will

When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diag- nosis name	DTC detecting condition	Possible Cause
P1217 1217	Engine over temperature (Overheat)	 Cooling fan does not operate properly (Overheat). Cooling fan system does not operate properly (Overheat). Engine coolant was not added to the system using the proper filling method. Engine coolant level is not within the specified range. 	 Harness or connectors (The cooling fan circuit is open or shorted.) Cooling fan Radiator hose Radiator Radiator cap Water pump Thermostat For more information, refer to EC-439, "Main 12 Causes of Overheating"

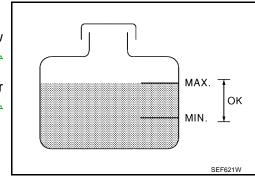
CAUTION:

When a malfunction is indicated, be sure to replace the coolant. Refer to MA-16, "Changing Engine Coolant" . Also, replace the engine oil. Refer to MA-20, "Changing Engine Oil" .

- Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Be sure to use coolant with the proper mixture ratio. Refer to MA-14, "Anti-freeze Coolant Mixture Ratio".
- 2. After refilling coolant, run engine to ensure that no water-flow noise is emitted.

Overall Function Check

Use this procedure to check the overall function of the cooling fan. During this check, a DTC might not be confirmed.

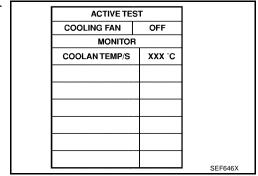

WARNING:

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator.

Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

WITH CONSULT-II

- Check the coolant level in the reservoir tank and radiator. Allow engine to cool before checking coolant level. If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to EC-432. "Diagnostic Procedure".
- 2. Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to EC-432, "Diagnostic Procedure".
- 3. Turn ignition switch ON.


Α

Е

Н

EC

- Perform "COOLING FAN" in "ACTIVE TEST" mode with CON-SULT-II.
- If the results are NG, go to <u>EC-432</u>, "<u>Diagnostic Procedure</u>".

WITH GST

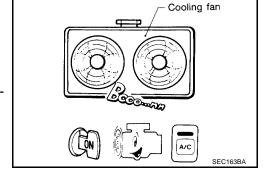
1. Check the coolant level in the reservoir tank and radiator.

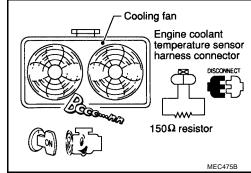
Allow engine to cool before checking coolant level.

If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to $\underline{\text{EC-432}}$, "Diagnostic Procedure".

- 2. Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to EC-432, "Diagnostic Procedure".
- 3. Start engine.

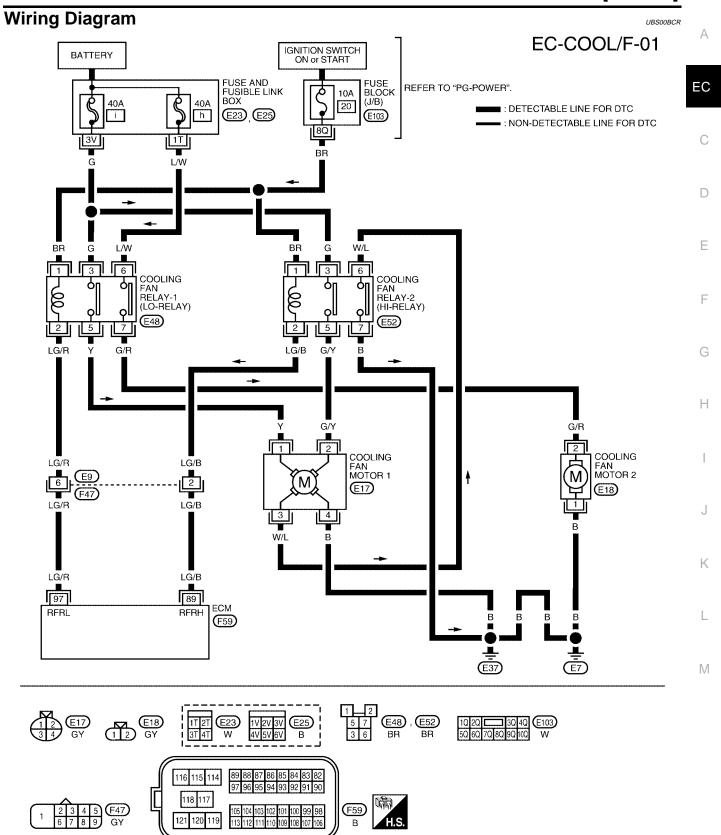
Be careful not to overheat engine.


- 4. Set temperature control lever to full cold position.
- Turn air conditioner switch ON.
- Turn blower fan switch ON.
- Run engine at idle for a few minutes with air conditioner operating.


Be careful not to overheat engine.

- Make sure that cooling fan operates at low speed.
 If NG, go to EC-432, "Diagnostic Procedure"
 If OK, go to the following step.
- 9. Turn ignition switch OFF.
- 10. Turn air conditioner switch and blower fan switch OFF.
- 11. Disconnect engine coolant temperature sensor harness connector.
- 12. Connect 150 Ω resistor to engine coolant temperature sensor harness connector.
- 13. Restart engine and make sure that cooling fan operates at higher speed than low speed.

Be careful not to overheat engine.


14. If NG, go to EC-432, "Diagnostic Procedure".

DTC P1217 ENGINE OVER TEMPERATURE

[QG18DE]

BBWA0698E

UBS00BCS

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

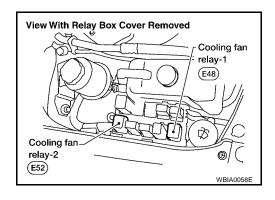
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
89 LG/B	Cooling fan relay-2	[Engine is running]● Cooling fan is not operating	BATTERY VOLTAGE (11-14V)	
	20/2	(High)	[Engine is running]Cooling fan is high speed operating	0 - 1.0V
97	LC/D	LG/R Cooling fan relay-1	[Ignition switch: ON] • Cooling fan is not operating	BATTERY VOLTAGE (11-14V)
	LO/K	(Low)	[Ignition switch: ON] • Cooling fan is operating	0 - 1.0V

Diagnostic Procedure

1. INSPECTION START

Do you have CONSULT-II?

Yes or No


Yes >> GO TO 2.

>> GO TO 4. No

2. CHECK COOLING FAN LOW SPEED OPERATION

With CONSULT-II

- Disconnect cooling fan relay-2.
- Turn ignition switch ON.

- Perform "COOLING FAN" in "ACTIVE TEST" mode with CON-SULT-II.
- 4. Make sure that cooling fans-1 and -2 operate at low speed.

OK or NG

OK >> GO TO 3.

NG >> Check cooling fan low speed control circuit. (Go to PRO-CEDURE A, <u>EC-436</u>.)

ACTIVE TEST		
COOLING FAN	OFF	
MONITOR		
COOLAN TEMP/S	XXX 'C	
		SEF646X

[QG18DE]

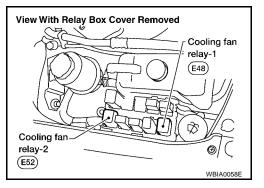
3. CHECK COOLING FAN HIGH SPEED OPERATION

(III) With CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Reconnect cooling fan relay-2.
- 3. Turn ignition switch ON.
- 4. Perform "COOLING FAN" in "ACTIVE TEST" mode with CONSULT-II.
- 5. Make sure that cooling fan-1 operates at high speed.

OK or NG

OK >> GO TO 6.

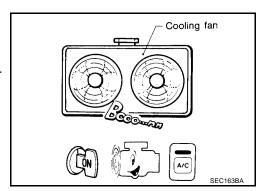

NG >> Check cooling fan high speed control circuit. (Go to PROCEDURE B, <u>EC-438</u>.)

		1
ACTIVE TES	Т	
COOLING FAN	OFF	
MONITOR		
COOLAN TEMP/S	XXX C	
		SEF646X

4. CHECK COOLING FAN LOW SPEED OPERATION

Without CONSULT-II

- 1. Disconnect cooling fan relays-2.
- 2. Start engine and let it idle.
- 3. Set temperature lever at full cold position.
- 4. Turn air conditioner switch ON.
- 5. Turn blower fan switch ON.



6. Make sure that cooling fans-1 and -2 operate at low speed.

OK or NG

OK >> GO TO 5.

NG >> Check cooling fan low speed control circuit. (Go to PRO-CEDURE A, <u>EC-436</u>.)

EC

D

Е

G

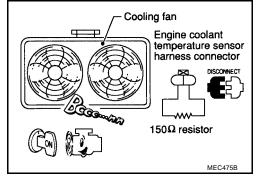
Н

-

K

5. CHECK COOLING FAN HIGH SPEED OPERATION

Without CONSULT-II


- 1. Turn ignition switch OFF.
- 2. Reconnect cooling fan relay-2.
- 3. Turn air conditioner switch and blower fan switch OFF.
- 4. Disconnect engine coolant temperature sensor harness connector.
- 5. Connect 150Ω resistor to engine coolant temperature sensor harness connector.
- 6. Restart engine and make sure that cooling fan-1 operates at high speed.

OK or NG

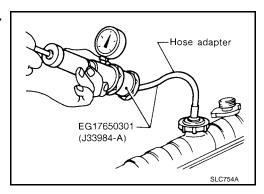
OK >> GO TO 6.

NG >> Check

>> Check cooling fan high speed control circuit. (Go to PROCEDURE B, $\underline{\text{EC-438}}$.)

6. CHECK COOLING SYSTEM FOR LEAK

Apply pressure to the cooling system with a tester, and check if the pressure drops.


Testing pressure: 157 kPa (1.6 kg/cm², 23 psi)

CAUTION:

Higher than the specified pressure may cause radiator damage. Pressure should not drop.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following for leak.

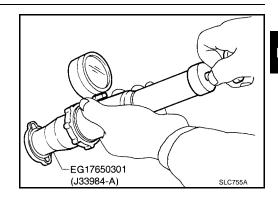
- Hose
- Radiator
- Water pump (Refer to <u>CO-10, "WATER PUMP"</u> .)

>> Repair or replace.

[QG18DE]

8. CHECK RADIATOR CAP

Apply pressure to cap with a tester.


Radiator cap relief pressure:

59 - 98 kPa (0.6 - 1.0 kg/cm², 9 - 14 psi)

OK or NG

OK >> GO TO 9.

NG >> Replace radiator cap.

9. CHECK THERMOSTAT

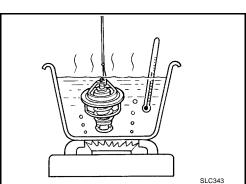
- Check valve seating condition at normal room temperatures. It should seat tightly.
- 2. Check valve opening temperature and valve lift.

Valve opening temperature:

76.5°C (170°F) [standard]

Valve lift:

More than 9 mm/90°C (0.35 in/194°F)


3. Check if valve is closed at 5°C (9°F) below valve opening tem-

For details, refer to CO-12, "THERMOSTAT AND THERMOSTAT HOUSING".

OK >> GO TO 10.

NG >> Replace thermostat.

10. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-440, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> Replace engine coolant temperature sensor.

11. CHECK MAIN 12 CAUSES

If the cause cannot be isolated, go to EC-439, "Main 12 Causes of Overheating".

>> INSPECTION END

EC

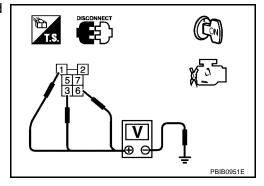
Α

D

Е

Н

PROCEDURE A


1. CHECK COOLING FAN POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect cooling fan relay-1.
- 3. Turn ignition switch ON.
- 4. Check voltage between cooling fan relay-1 terminals 1, 3, 6 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Fuse and fusible link box connectors E23, E25
- Fuse block (J/B) connector E103
- 10A fuse
- 40A fusible links
- Harness for open or short between cooling fan relay-1 and fuse
- Harness for open or short between cooling fan relay-1 and battery
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK COOLING FAN MOTOR CIRCUIT FOR OPEN AND SHORT

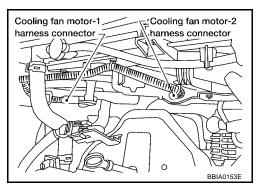
- Turn ignition switch OFF.
- 2. Disconnect cooling fan motor-1 harness connector and cooling fan motor-2 harness connector.
- 3. Check harness continuity between cooling fan relay-1 terminal 5 and cooling fan motor-1 terminal 1, cooling fan motor-1 terminal 4 and ground.

Refer to Wiring Diagram.

Continuity should exist.

- 4. Also check harness for short to ground and short to power.
- 5. Check harness continuity between cooling fan relay-1 terminal 7 and cooling fan motor-2 terminal 2, cooling fan motor-2 terminal 1 and ground.

Refer to Wiring Diagram.


Continuity should exist.

6. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

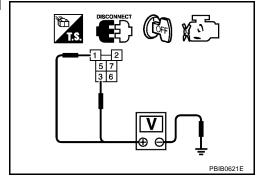
NG >> Repair open circuit or short to ground or short to power in harness or connectors.

[QG18DE]

 \mathbb{N}

4.	CHECK COOLING FAN RELAY-1 OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	Δ
1.	Disconnect ECM harness connector.	
2.	Check harness continuity between ECM terminal 97 and cooling fan relay-1 terminal 2. Refer to Wiring Diagram.	EC
	Continuity should exist.	
	Also check harness for short to ground and short to power. or NG	С
OI No		D
5.	DETECT MALFUNCTIONING PART	
Che	eck the following. Harness connectors E9, F47	E
•	Harness for open or short between cooling fan relay-1 and ECM	F
	>> Repair open circuit or short to ground or short to power in harness or connectors.	
6.	CHECK COOLING FAN RELAY-1	G
	fer to EC-440, "Component Inspection".	
	<u>or NG</u> K >> GO TO 7.	Н
OI No		
7.	CHECK COOLING FAN MOTORS	I
	fer to EC-440, "Component Inspection".	J
OK OI	or NG K >> GO TO 8.	
N		K
8.	CHECK INTERMITTENT INCIDENT	
Per	form EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .	L
	>> INSPECTION END	

PROCEDURE B


1. CHECK COOLING FAN POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect cooling fan relay-2.
- 3. Turn ignition switch ON.
- 4. Check voltage between cooling fan relay-2 terminals 1, 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Fuse and fusible link box connectors E23, E25
- Fuse block (J/B) connector E103
- Harness for open or short between cooling fan relay-2 and fuse
- Harness for open or short between cooling fan relay-2 and battery
 - >> Repair harness or connectors.

3. CHECK COOLING FAN MOTOR CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect cooling fan motor-1 harness connector.
- Check harness continuity between cooling fan relay-2 terminal 5 and cooling fan motor-1 terminal 2, cooling fan relay-2 terminal 6 and cooling fan motor-1 terminal 3, cooling fan relay-2 terminal 7 and ground.
 Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK COOLING FAN RELAY-2 OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 89 and cooling fan relay-2 terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> GO TO 5.

[QG18DE]

EC

D

Е

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E9, F47
- Harness for open or short between cooling fan relay-2 and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK COOLING FAN RELAY-2

Refer to EC-440, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace cooling fan relays.

7. CHECK COOLING FAN MOTORS

Refer to EC-440, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace cooling fan motors.

8. CHECK INTERMITTENT INCIDENT

Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Main 12 Causes of Overheating

UBS00BCT

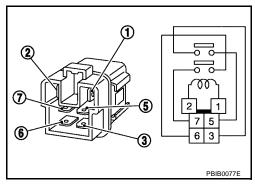
Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	Blocked radiator	Visual	No blocking	_
		 Blocked condenser 			
		 Blocked radiator grille 			
		 Blocked bumper 			
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See <u>MA-13, "RECOM-</u> <u>MENDED FLUIDS AND</u> <u>LUBRICANTS"</u> .
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See MA-16, "Changing Engine Coolant" .
	4	Radiator cap	Pressure tester	59 - 98 kPa (0.6 - 1.0 kg/ cm ² , 9 - 14 psi) (Limit)	SeeCO-8, "System Check" .
ON*2	5	Coolant leaks	Visual	No leaks	See <u>CO-8, "System</u> <u>Check"</u> .
ON* ²	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	See <u>CO-12</u> , "THERMO- <u>STAT AND THERMO-</u> <u>STAT HOUSING"</u> and <u>CO-14</u> , "RADIATOR".
ON* ¹	7	Cooling fan	CONSULT-II	Operating	See trouble diagnosis for DTC P1217 (EC-428).
OFF	8	Combustion gas leak	Color checker chemical tester 4 Gas analyzer	Negative	_

[QG18DE]

UBS00BCU

Engine	Step	Inspection item	Equipment	Standard	Reference page
ON* ³	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driv- ing and idling	See MA-16, "Changing Engine Coolant".
OFF* ⁴	10	Coolant return from reservoir tank to radia- tor	Visual	Should be initial level in reservoir tank	See MA-16, "ENGINE MAINTENANCE (QG18DE ENGINE)".
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	See EM-58, "Inspection after Disassembly".
	12	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	See EM-68, "Inspection".

^{*1:} Turn the ignition switch ON.


For more information, refer to CO-5, "OVERHEATING CAUSE ANALYSIS" .

Component Inspection COOLING FAN RELAYS-1 AND -2

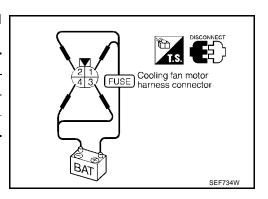
Check continuity between terminals 3 and 5, 6 and 7.

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

If NG, replace relay.

COOLING FAN MOTOR-1

- Disconnect cooling fan motor harness connectors.
- 2. Supply cooling fan motor terminals with battery voltage and check operation.


	Spood	Tern	ninals
	Speed	(+)	(-)
Cooling fan motor	Low	1	4
Cooling lan motor	High	1, 2	3, 4

Cooling fan motor should operate.

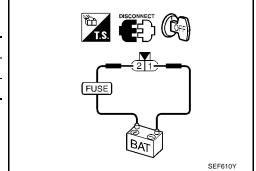
If NG, replace cooling fan motor.

1. Disconnect cooling fan motor harness connectors.

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (56 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.


[QG18DE]

2. Supply cooling fan motor terminals with battery voltage and check operation.

	Terminals		
	(+)	(–)	
Cooling fan motor	2	1	

Cooling fan motor should operate.

If NG, replace cooling fan motor.

Α

EC

С

D

Е

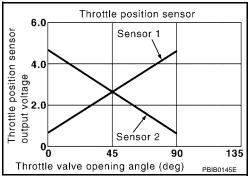
F

Н

K

L

DTC P1225 TP SENSOR


PFP:16119

UBS00BCV

Component Description

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to

the throttle valve movement. The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving conditions.

On Board Diagnosis Logic

UBS00BCW

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1225 1225	Closed throttle position learning performance problem	Closed throttle position learning value is excessively low.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure

UBS00BCX

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Turn ignition switch OFF, wait at least 10 seconds.
- 4. Turn ignition switch ON.
- If 1st trip DTC is detected, go to <u>EC-443, "Diagnostic Procedure"</u>

DATA MONITOR

MONITOR

NO DTC

ENG SPEED XXX rpm

SEF058Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P1225 TP SENSOR

[QG18DE]

Diagnostic Procedure

UBS00BCY

Α

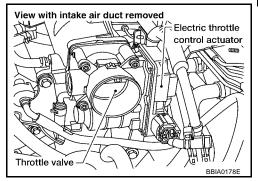
EC

D

Е

F

1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY


- 1. Turn ignition switch OFF.
- 2. Remove the intake air duct.
- 3. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG >> Remov

>> Remove the foreign matter and clean the electric throttle control actuator inside.

$2. \ \mathsf{REPLACE} \ \mathsf{ELECTRIC} \ \mathsf{THROTTLE} \ \mathsf{CONTROL} \ \mathsf{ACTUATOR}$

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-47, "Throttle Valve Closed Position Learning".
- 3. Perform EC-47, "Idle Air Volume Learning".

>> INSPECTION END

Н

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-13, "OUTER COMPONENT PARTS".

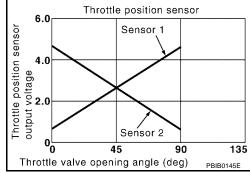
UBS00BCZ

J

K

L

DTC P1226 TP SENSOR


PFP:16119

Component Description

UBS00BD0

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition

On Board Diagnosis Logic

UBS00BD1

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1226 1226	Closed throttle position learning performance problem	Closed throttle position learning is not performed successfully, repeatedly.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure

UBS00BD2

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Turn ignition switch OFF, wait at least 10 seconds.
- 4. Turn ignition switch ON.
- 5. Repeat steps 3 and 4, 32 times.
- 6. If 1st trip DTC is detected, go to EC-445, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

WITH GST

Follow the procedure "With CONSULT-II" above.

DTC P1226 TP SENSOR

[QG18DE]

Diagnostic Procedure

(DOCCDDO

Α

EC

D

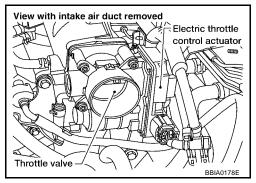
Е

F

Н

1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY

1. Turn ignition switch OFF.


- 2. Remove the intake air duct.
- 3. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG >> Remove

>> Remove the foreign matter and clean the electric throttle control actuator inside.

$2. \ \mathsf{REPLACE} \ \mathsf{ELECTRIC} \ \mathsf{THROTTLE} \ \mathsf{CONTROL} \ \mathsf{ACTUATOR}$

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-47, "Throttle Valve Closed Position Learning".
- 3. Perform EC-47, "Idle Air Volume Learning".

>> INSPECTION END

Removal and Installation
ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-13, "OUTER COMPONENT PARTS".

UBS00BD4

L

DTC P1229 SENSOR POWER SUPPLY

On Board Diagnosis Logic

PFP:16119

UBS00BD5

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1229 1229	Sensor power supply circuit short	ECM detects a voltage of power source for sensor is excessively low or high.	 Harness or connectors (The TP sensor 1 and 2 circuit is shorted.) Electric throttle control actuator (TP sensor 1 and 2)

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

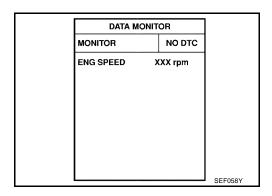
Engine operation condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

UBS00BD6

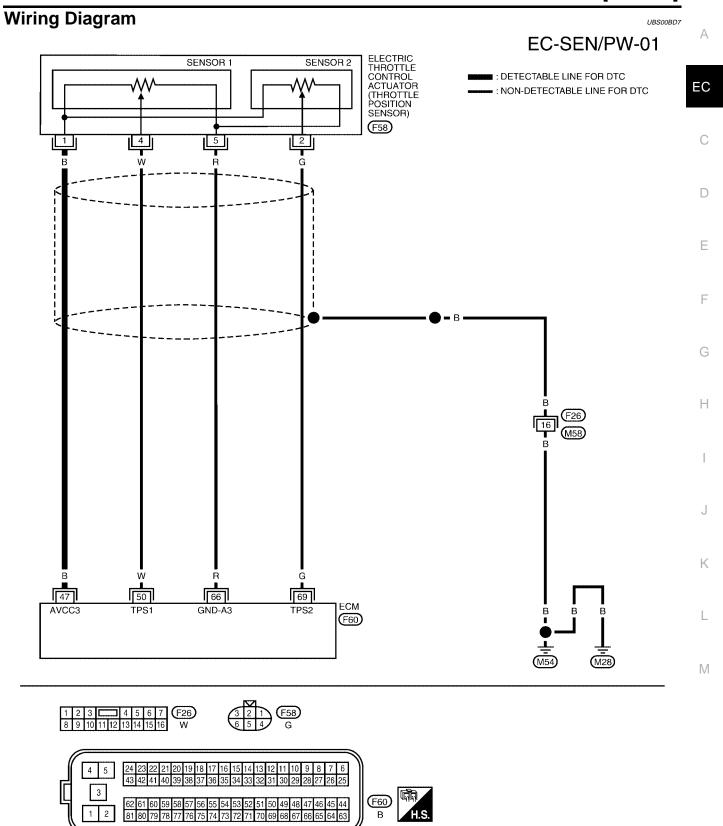
NOTE


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 8V at idle.

(P) WITH CONSULT-II


- Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-448, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

[QG18DE]

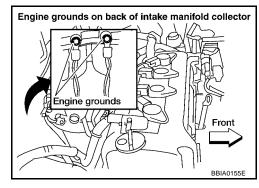
BBWA0699E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

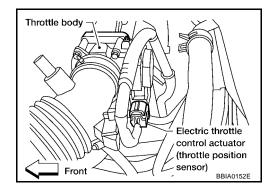
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

-	TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
_	47	В	Sensor power supply (Throttle position sensor)	[Ignition switch: ON]	Approximately 5V


Diagnostic Procedure

UBS00BD8

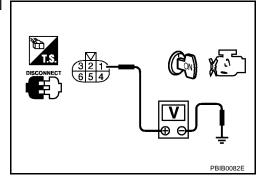
1. RETIGHTEN GROUND SCREWS


- 1. Turn ignition switch OFF.
- Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

DTC P1229 SENSOR POWER SUPPLY

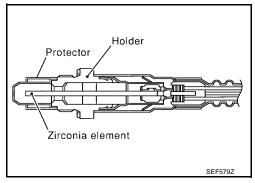
[QG18DE]

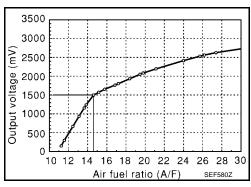
3. CHECK SENSOR POWER SUPPLY CIRCUITS FOR SHORT	_ Δ
Check the following.	_ ^
 Harness for short to power and short to ground between ECM terminal 47 and electric throttle contractuator terminal 1. ECM pin terminal. 	ol EC
OK or NG	
OK >> GO TO 4.	С
NG >> Repair short to ground or short to power in harness or connectors.	
4. CHECK THROTTLE POSITION SENSOR	D
Refer to EC-240, "Component Inspection" .	
<u>OK or NG</u> OK >> GO TO 6.	Е
NG >> GO TO 5.	
5. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR	F
Replace electric throttle control actuator.	_
2. Perform EC-47, "Throttle Valve Closed Position Learning".	G
3. Perform <u>EC-47, "Idle Air Volume Learning"</u> .	
>> INSPECTION END	Н
6. CHECK INTERMITTENT INCIDENT	
Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	_
>> INSPECTION END	J
	K
	L
	IV

DTC P1271 A/F SENSOR 1

PFP:22693

Component Description


UBS00BD9


The A/F sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement $\lambda = 1$, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air-fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-II Reference Value in Data Monitor Mode

UBS00BDA

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V

On Board Diagnosis Logic

UBS00BD

To judge the malfunction, the diagnosis checks that the A/F signal computed by ECM from the air fuel ratio (A/F) sensor 1 signal is not inordinately low.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P1271	Air fuel ratio (A/F) sensor 1 circuit no activity detected	The A/F signal computed by ECM from the	 Harness or connectors
1271		A/F sensor 1 signal is constantly approx. 0V.	(The sensor circuit is open or shorted.) Air fuel ratio (A/F) sensor 1

DTC Confirmation Procedure

UBS00BDC

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

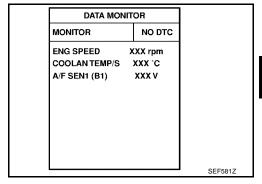
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Select "A/F SEN1 (B1)" in "DATA MONITOR" mode with CONSULT-II.

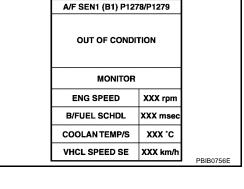

DTC P1271 A/F SENSOR 1

[QG18DE]

Check "A/F SEN1 (B1)" indication.
 If the indication is constantly approx. 0V, go to <u>EC-454, "Diagnostic Procedure"</u>.

If the indication is not constantly approx. 0V, go to next step.

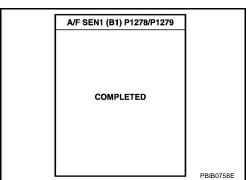
- 4. Select "A/F SEN1 (B1) P1278/P1279" of "A/F SEN1" in "DTC WORK SUPPORT" mode.
- 5. Touch "START".



6. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen.

ENG SPEED	1,000 - 3,200 rpm
Vehicle speed	More than 40 km/h (25 MPH)
B/FUEL SCHDL	1.5 - 9.0 msec
Selector lever	D position with "OD" ON (A/T)
	• 4th position (M/T)

If "TESTING" is not displayed after 20 seconds, retry from step 2.


7. Following the instructions of CONSULT-II screen, set D position with "OD" OFF (A/T) or 3rd position (M/T) and release accelerator pedal fully.

A/F SEN1 (B1) P12	78/P1279	
TESTING		
SELECT 3RD GEAR RELEASE ACCELERATOR		
MONITOR		
ENG SPEED XXX rpm		
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S XXX °C		
VHCL SPEED SE	XXX km/h	
		PBIB0757E

- 8. Make sure that "TESTING" changes to "COMPLETED". If "TESTING" changed to "OUT OF CONDITION", retry from step 6.
- Touch "BACK" and "MODE", then select "SELF-DIAG RESULT" mode.

If P1271 is displayed, go to <u>EC-454</u>, "<u>Diagnostic Procedure</u>". If another DTC is displayed, go to the corresponding "Diagnostic Procedure".

Overall Function Check

UBSOORDD

Use this procedure to check the overall function of the A/F sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in D position with "OD" OFF (A/T) or 3rd position (M/T).

EC

Α

D

Е

F

G

Н

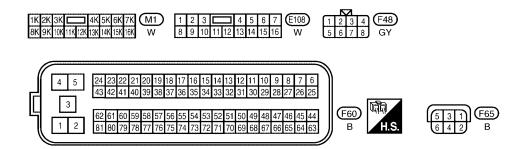
J

K

NOTE:

Keep the accelerator pedal as steady as possible during the cruising.

3. Set D position with "OD" ON (A/T) or 4th position (M/T), then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).


NOTE:

Never apply brake during releasing the accelerator pedal.

- 4. Repeat steps 2 to 3 five times.
- 5. Stop the vehicle and turn ignition switch OFF.
- 6. Wait at least 10 seconds and restart engine.
- 7. Repeat steps 2 to 3 five times.
- 8. Stop the vehicle and connect GST to the vehicle.
- 9. Make sure that no DTC is displayed.

 If the DTC is displayed, go to <u>EC-454</u>, "<u>Diagnostic Procedure</u>".

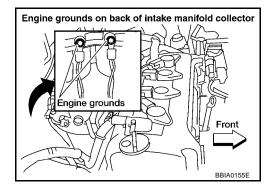
Wiring Diagram Α EC-A/F-01 IGNITION SWITCH ON or START : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC EC FUSE BLOCK (J/B) Refer to "PG-POWER". 15A 8 (M1)C 13K L/R D 5 M19 E108 L/R F48 L/R M19 Е L/R 3 AIR FUEL RATIO (A/F) SENSOR 1 (F65) Н 2 5 6 W/L OR/L W/L 75 B/Y 35 OR/L OR 56 2 ECM AF-UN1 (F60)

BBWA0700E

Specification data are reference values and are measured between each terminal and ground.

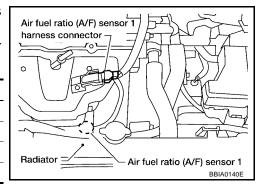
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
16	OR/L			Approximately 3.1V
35	B/Y	Λ/Γ	[Engine is running]	Approximately 2.6V
56	OR	A/F sensor 1	Warm-up condition Idle speed	2 - 3V
75	W/L		• Idio opocu	2 - 3V

Diagnostic Procedure

UBS00BDF


CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

- Disconnect ECM harness connector and A/F sensor 1 harness connector.
- 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

ECM terminal	A/F sensor 1 terminal
16	1
35	5
56	6
75	2

Continuity should exist.

5. Check harness continuity between ECM terminals 16, 35, 56, 75 or A/F sensor 1 terminals 1, 2, 5, 6 and ground. Refer to Wiring Diagram.

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK >> GO TO 2

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

2. CHECK INTERMITTENT INCIDENT

Perform <u>EC-140</u>, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> Replace A/F sensor 1.

NG >> Repair or replace.

DTC P1271 A/F SENSOR 1

[QG18DE]

Removal and Installation AIR FUEL RATIO SENSOR 1

UBS00BDG

Refer to EM-13, "Removal and Installation".

Α

EC

С

D

Е

F

G

Н

J

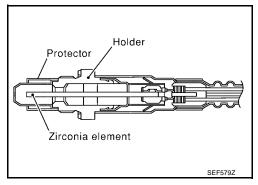
Κ

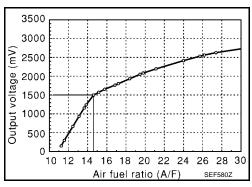
L

DTC P1272 A/F SENSOR 1

PFP:22693

Component Description


UBS00BDH


The A/F sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air-fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-II Reference Value in Data Monitor Mode

UBS00BDI

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V

On Board Diagnosis Logic

UBS00BDJ

To judge the malfunction, the diagnosis checks that the A/F signal computed by ECM from the air fuel ratio (A/F) sensor 1 signal is not inordinately high.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P1272 1272	Air fuel ratio (A/F) sensor 1 circuit no activity detected	The A/F signal computed by ECM from the A/F sensor 1 signal is constantly approx. 4.5V.	 Harness or connectors (The sensor circuit is open or shorted.) Air fuel ratio (A/F) sensor 1

DTC Confirmation Procedure

UBS00BDK

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

WITH CONSULT-II

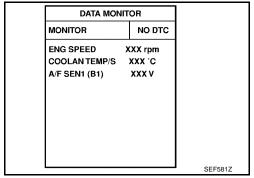
- 1. Start engine and warm it up to normal operating temperature.
- Select "A/F SEN1 (B1)" in "DATA MONITOR" mode with CONSULT-II.

DTC P1272 A/F SENSOR 1

[QG18DE]

Α

EC


D

Е

Check "A/F SEN1 (B1)" indication. If the indication is constantly approx. 4.5V, go to EC-460, "Diagnostic Procedure".

If the indication is not constantly approx. 4.5V, go to next step.

- 4. Select "A/F SEN1 (B1) P1278/P1279" of "A/F SEN1" in "DTC WORK SUPPORT" mode.
- Touch "START".

A/F SEN1 (B1) P1278/P1279

OUT OF CONDITION

MONITOR

XXX rpm

XXX mse XXX C

XXX km/h

PBIB0756E

ENG SPEED

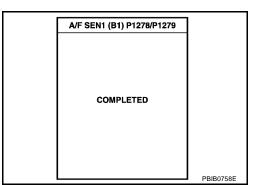
B/FUEL SCHDL

COOLAN TEMP/S

VHCL SPEED SE

6. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen.

ENG SPEED	1,000 - 3,200 rpm
Vehicle speed	More than 40 km/h (25 MPH)
B/FUEL SCHDL	1.5 - 9.0 msec
Selector lever	D position with "OD" ON (A/T)
	• 4th position (M/T)


If "TESTING" is not displayed after 20 seconds, retry from step 2.

7. Following the instructions of CONSULT-II screen, set D position with "OD" OFF (A/T) or 3rd position (M/T) and release accelerator pedal fully.

A/F SEN1 (B1) P12	78/P1279	
TESTING		
SELECT 3RD GEAR AND THEN RELEASE ACCELERATOR PEDAL OFF		
MONITOR		
ENG SPEED XXX rpm		
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S	xxx .c	
VHCL SPEED SE	XXX km/h	PBIB0757E
		FDIDU/5/E

- 8. Make sure that "TESTING" changes to "COMPLETED". If "TESTING" changed to "OUT OF CONDITION", retry from step 6.
- Touch "BACK" and "MODE", then select "SELF-DIAG RESULT" mode.

If P1272 is displayed, go to EC-460, "Diagnostic Procedure". If another DTC is displayed, go to the corresponding Diagnostic Procedure.

Overall Function Check

Use this procedure to check the overall function of the A/F sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in D position with "OD" OFF (A/T) or 3rd position (M/T).

EC-457

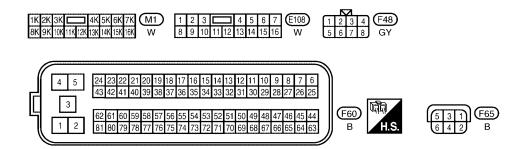
Н

K

NOTE:

Keep the accelerator pedal as steady as possible during the cruising.

3. Set D position with "OD" ON (A/T) or 4th position (M/T), then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).


NOTE:

Never apply brake during releasing the accelerator pedal.

- 4. Repeat steps 2 to 3 five times.
- 5. Stop the vehicle and turn ignition switch OFF.
- 6. Wait at least 10 seconds and restart engine.
- 7. Repeat steps 2 to 3 five times.
- 8. Stop the vehicle and connect GST to the vehicle.
- 9. Make sure that no DTC is displayed.

 If the DTC is displayed, go to <u>EC-460, "Diagnostic Procedure"</u>.

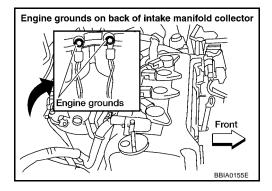
[QG18DE] **Wiring Diagram** Α EC-A/F-01 IGNITION SWITCH ON or START : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC EC FUSE BLOCK (J/B) Refer to "PG-POWER". 15A 8 (M1)C 13K D 5 M19 E108 L/R F48 L/R M19 Е L/R 3 AIR FUEL RATIO (A/F) SENSOR 1 (F65) Н 2 5 6 W/L OR/L W/L 75 B/Y 35 OR/L OR 56 2 ECM AF-UN1 (F60)

BBWA0700E

Specification data are reference values and are measured between each terminal and ground.

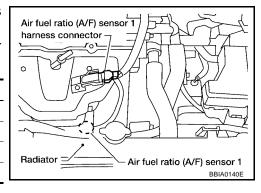
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
16	OR/L			Approximately 3.1V
35	B/Y	A/F sensor 1	[Engine is running]	Approximately 2.6V
56	OR	A/F Selisor I	Warm-up conditionIdle speed	2 - 3V
75	W/L		T late opens	2 - 3V

Diagnostic Procedure

UBS00BDN


CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

- 3. Disconnect ECM harness connector and A/F sensor 1 harness connector.
- Check harness continuity between the following terminals. Refer to Wiring Diagram.

ECM terminal	A/F sensor 1 terminal
16	1
35	5
56	6
75	2

Continuity should exist.

5. Check harness continuity between ECM terminals 16, 35, 56, 75 or A/F sensor 1 terminals 1, 2, 5, 6 and ground. Refer to Wiring Diagram.

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK >> GO TO 2

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

2. CHECK INTERMITTENT INCIDENT

Perform <u>EC-140</u>, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> Replace A/F sensor 1.

NG >> Repair or replace.

DTC P1272 A/F SENSOR 1

[QG18DE]

Removal and Installation AIR FUEL RATIO SENSOR 1

UBS00BDO

Refer to EM-13, "Removal and Installation".

EC

Α

С

D

Е

F

G

Н

J

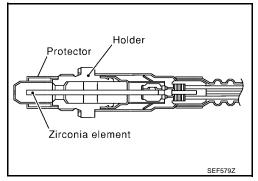
Κ

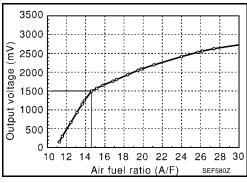
L

DTC P1273 A/F SENSOR 1

PFP:22693

Component Description


UBS00BDP


The A/F sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air-fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-II Reference Value in Data Monitor Mode

UBS00BDQ

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V

On Board Diagnosis Logic

UBS00BD

To judge the malfunction, the A/F signal computed by ECM from the air fuel ratio (A/F) sensor 1 signal is monitored not to be shifted "lean" side or "rich" side. When the A/F signal is shifting to the lean side, the malfunction will be detected.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P1273 1273	Air fuel ratio (A/F) sensor 1 lean shift monitoring	The output voltage computed by ECM from the A/F sensor 1 signal is shifted to the lean side for a specified period.	 Air fuel ratio (A/F) sensor 1 Air fuel ratio (A/F) sensor heater 1 Fuel pressure Fuel injectors Intake air leaks

DTC Confirmation Procedure

UBS00BDS

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(II) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "A/F SEN1 (B1) P1273" of "A/F SEN1" in "DTC WORK SUPPORT" mode.
- Touch "START".

DTC P1273 A/F SENSOR 1

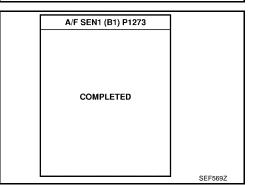
[QG18DE]

Maintain the following conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 400 to 800 seconds.)

NOTE:

Keep the accelerator pedal as steady as possible.

ENG SPEED	Below 3,200 rpm
B/FUEL SCHDL	Below 13.6 msec
Selector lever	P or N position


If "TESTING" is not displayed after 20 minutes, retry from step 2.

A/F SEN1 (B1) I	P1273
OUT OF CONDITION	
MONITOR	
ENG SPEED	XXX rpm
B/FUEL SCHDL	XXX msec
COOLAN TEMP/S	xxx c
VHCL SPEED SE	XXX km/h

A/F SEN1 (B1) P1273 TESTING MONITOR **ENG SPEED** XXX rpm **B/FUEL SCHDL** XXX mse COOLAN TEMP/S XXX C **VHCL SPEED SE** XXX km/h SEF568Z

5. Make sure that OK is displayed after touching "SELF-DIAG RESULTS".

If NG is displayed, go to EC-466, "Diagnostic Procedure".

Overall Function Check

Use this procedure to check the overall function of the A/F sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in D position with "OD" OFF (A/T) or 3rd position (M/T).

NOTE:

Keep accelerator pedal as steady as possible during the cruising.

3. Set D position with "OD" ON (A/T) or 4th position (M/T), then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

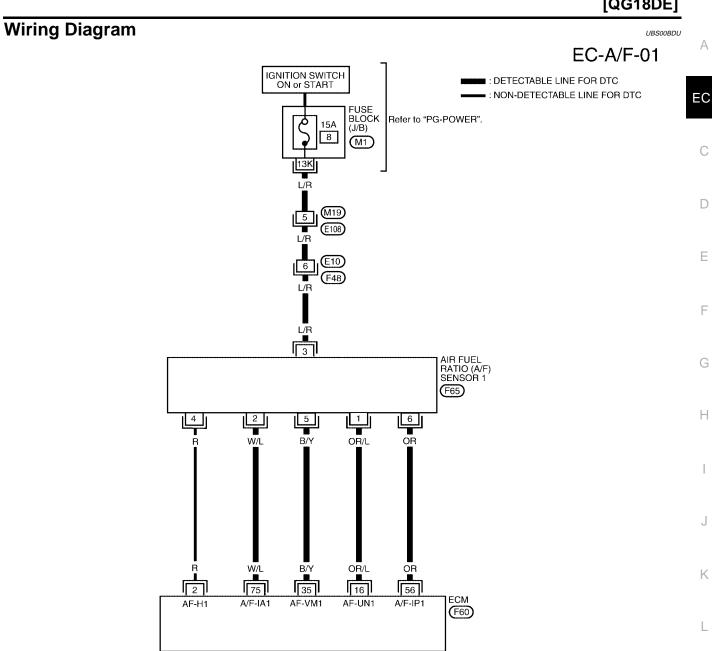
- 4. Repeat steps 2 to 3 five times.
- 5. Stop the vehicle and turn ignition switch OFF.
- 6. Wait at least 10 seconds and restart engine.
- 7. Repeat steps 2 to 3 five times.
- 8. Stop the vehicle and connect GST to the vehicle.
- 9. Make sure that no DTC is displayed.

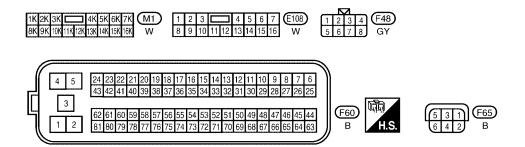
EC-463

D

Α

EC


Е


Н

DTC P1273 A/F SENSOR 1

[QG18DE]

If the DTC is displayed, go to EC-466, "Diagnostic Procedure" .

BBWA0700E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
16	OR/L			Approximately 3.1V
35	B/Y	A/F sensor 1	[Engine is running]Warm-up conditionIdle speed	Approximately 2.6V
56	OR			2 - 3V
75	W/L		Tial opera	2 - 3V

Diagnostic Procedure

UBS00BDV

1. RETIGHTEN AIR FUEL RATIO (A/F) SENSOR 1

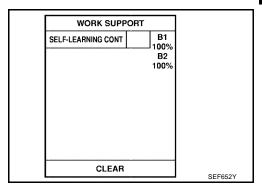
- 1. Turn ignition switch OFF.
- 2. Loosen and retighten the air fuel ratio (A/F) sensor 1.

Tightening torque: 40 - 60 N-m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)

>> GO TO 2.

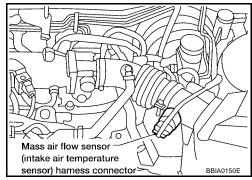
EC

Е


F

Н

2. CLEAR THE SELF-LEARNING DATA.

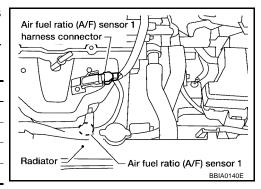

(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-64, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.
 Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

Yes or No


Yes >> Perform trouble diagnosis for DTC P0171. Refer to EC-212.

No >> GO TO 3.

3. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector and A/F sensor 1 harness connector.
- 3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

ECM terminal	A/F sensor 1 terminal
16	1
35	5
56	6
75	2

Continuity should exist.

4. Check harness continuity between ECM terminals 16, 35, 56, 75 or A/F sensor 1 terminals 1, 2, 5, 6 and ground. Refer to Wiring Diagram.

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK A/F SENSOR 1 HEATER

Refer to EC-356, "Component Inspection" .

OK or NG

OK >> GO TO 5.

NG >> Replace A/F sensor 1.

5. CHECK INTERMITTENT INCIDENT

Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> Replace A/F sensor 1.

NG >> Repair or replace.

Removal and Installation AIR FUEL RATIO SENSOR 1

Refer to EM-13, "Removal and Installation".

UBS00BDW

DTC P1274 A/F SENSOR 1

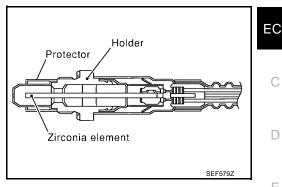
PFP:22693

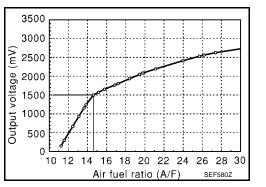
Component Description

UBS00BDX

Α

Е


Н


The A/F sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement $\lambda = 1$, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 <

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygenpump cell so that the composition of the exhaust gas in the diffusion gap remains constant at $\lambda = 1$. Therefore, the A/F sensor 1 is able to indicate air-fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-II Reference Value in Data Monitor Mode

LIBSOORDY

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V

On Board Diagnosis Logic

To judge the malfunction, the A/F signal computed by ECM from the air fuel ratio (A/F) sensor 1 signal is monitored not to be shifted to the lean side or rich side. When the A/F signal is shifting to the rich side, the malfunction will be detected.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause	-
P1274 1274	Air fuel ratio (A/F) sensor 1 rich shift monitoring	The A/F signal computed by ECM from the A/F sensor 1 signal is shifted to the rich side for a specified period.	 Air fuel ratio (A/F) sensor 1 Air fuel ratio (A/F) sensor heater 1 Fuel pressure Fuel injectors 	M

DTC Confirmation Procedure

UBSOOREO

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

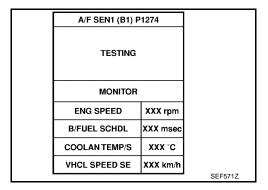
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

WITH CONSULT-II

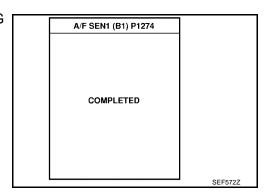
- 1. Start engine and warm it up to normal operating temperature.
- Select "A/F SEN1 (B1) P1274" of "A/F SEN1" in "DTC WORK SUPPORT" mode. 2.
- Touch "START".

 Maintain the following conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 400 to 800 seconds.)


NOTE:

Keep the accelerator pedal as steady as possible.

ENG SPEED	Below 3,200 rpm
B/FUEL SCHDL	Below 13.6 msec
Selector lever	P or N position


If "TESTING" is not displayed after 20 minutes, retry from step 2.

A/F SEN1 (B1) P1274		
OUT OF CONDITION		
MONITOR	MONITOR	
ENG SPEED XXX rpm		
B/FUEL SCHDL XXX msec		
COOLANTEMP/S XXX °C		
VHCL SPEED SE XXX km/h		
		SEF570Z

Make sure that OK is displayed after touching "SELF-DIAG RESULTS".

If NG is displayed, go to EC-473, "Diagnostic Procedure".

Overall Function Check

UBS00BE

Use this procedure to check the overall function of the A/F sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in D position with "OD" OFF (A/T) or 3rd position (M/T).

NOTE:

Keep accelerator pedal as steady as possible during the cruising.

3. Set D position with "OD" ON (A/T) or 4th position (M/T), then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

- 4. Repeat steps 2 to 3 five times.
- 5. Stop the vehicle and turn ignition switch OFF.
- 6. Wait at least 10 seconds and restart engine.
- 7. Repeat steps 2 to 3 five times.
- 8. Stop the vehicle and connect GST to the vehicle.
- Make sure that no DTC is displayed.

DTC P1274 A/F SENSOR 1

[QG18DE]

If the DTC is displayed, go to EC-473, "Diagnostic Procedure" .

Α

EC

С

D

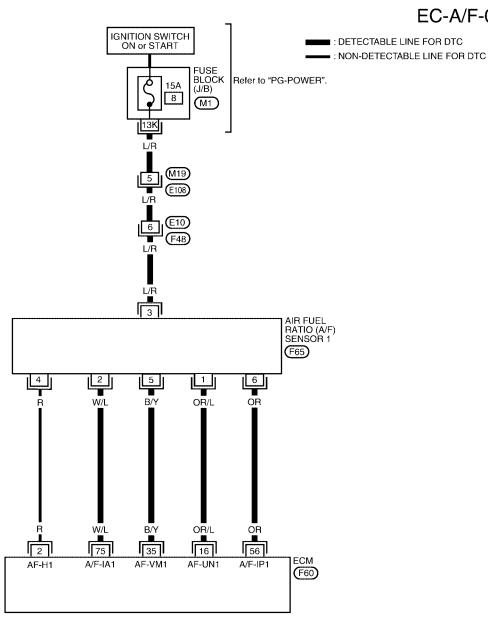
Е

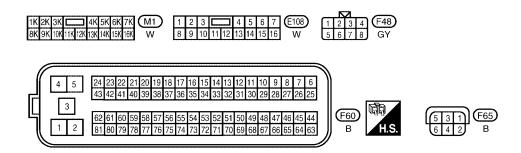
F

G

Н

1


J


Κ

L

Wiring Diagram UBS00BE2

EC-A/F-01

BBWA0700E

DTC P1274 A/F SENSOR 1

[QG18DE]

Α

EC

C

D

Е

F

Н

M

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
16	OR/L			Approximately 3.1V
35	B/Y	A/F sensor 1	[Engine is running] • Warm-up condition	Approximately 2.6V
56	OR		Idle speed	2 - 3V
75	W/L		• Idio speed	2 - 3V

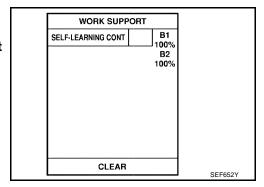
Diagnostic Procedure

UBS00BE3

1. RETIGHTEN AIR FUEL RATIO (A/F) SENSOR 1

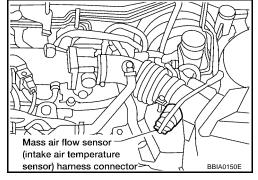
- 1. Turn ignition switch OFF.
- 2. Loosen and retighten the air fuel ratio (A/F) sensor 1.

Tightening torque: 40 - 60 N-m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)


>> GO TO 2.

EC-473

2. clear the self-learning data


(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-64, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.
 Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

Yes or No

Yes >> Perform trouble diagnosis for DTC P0172. Refer to EC-219.

No >> GO TO 3.

3. CHECK HARNESS CONNECTOR

- 1. Turn ignition switch OFF.
- 2. Disconnect A/F sensor 1 harness connector.
- 3. Check harness connector for water.

Water should not exit.

OK or NG

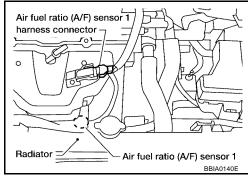
OK >> GO TO 4.

NG >> Repair or replace harness connector.

Α

EC

D


Е

Н

4. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector and A/F sensor 1 harness connector.
- 3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

ECM terminal	A/F sensor 1 terminal
16	1
35	5
56	6
75	2

Continuity should exist.

4. Check harness continuity between ECM terminals 16, 35, 56, 75 or A/F sensor 1 terminals 1, 2, 5, 6 and ground. Refer to Wiring Diagram.

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK A/F SENSOR 1 HEATER

Refer to EC-356, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace A/F sensor 1.

6. CHECK INTERMITTENT INCIDENT

Perform <u>EC-140</u>, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> Replace A/F sensor 1.

NG >> Repair or replace.

Removal and Installation AIR FUEL RATIO SENSOR 1

Refer to EM-13, "Removal and Installation".

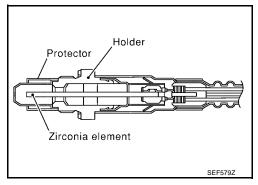
UBSOORE4

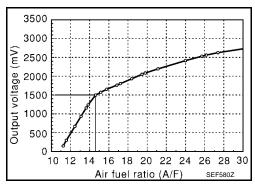
DTC P1276 A/F SENSOR 1

PFP:22693

UBS00BE5

Component Description


The A/F sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst con-


centration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air-fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-II Reference Value in Data Monitor Mode

UBS00BE6

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V

On Board Diagnosis Logic

UBS00BE7

To judge the malfunction, the diagnosis checks that the A/F signal computed by ECM from the air fuel ratio (A/F) sensor 1 signal fluctuates according to fuel feedback control.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P1276 1276	Air fuel ratio (A/F) sensor 1 circuit high voltage	The A/F signal computed by ECM from the A/F sensor 1 signal is constantly approx. 1.5V.	 Harness or connectors (The sensor circuit is open or shorted.) Air fuel ratio (A/F) sensor 1

DTC Confirmation Procedure

UBS00BE8

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "A/F SEN1 (B1)" of "DATA MONITOR" mode with CONSULT-II.
- Check "A/F SEN1 (B1)" indication.
 If the indication is constantly approx. 1.5V and does not fluctuates, go to <u>EC-480, "Diagnostic Procedure"</u>.
 If the indication fluctuates around 1.5V, go to next step.

- 4. Select "A/F SEN1 (B1) P1276" of "A/F SEN1" in "DTC WORK SUPPORT" mode.
- 5. Touch "START".

6. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen.

ENG SPEED	1,750 - 2,000 rpm (A/T) 1,750 - 2,900 rpm (M/T)
Vehicle speed	More than 65 km/h (40 MPH)
B/FUEL SCHDL	1.0 - 8.0 msec
Selector lever	D position with "OD" ON (A/T)
	• 4th position (M/T)

A/F SEN1 (B1) P1276

OUT OF CONDITION

MONITOR

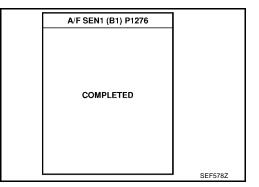
ENG SPEED XXX rpm

B/FUEL SCHDL XXX msec

COOLAN TEMP/S XXX 'C

VHCL SPEED SE XXX km/h

If "TESTING" is not displayed after 20 seconds, retry from step 2.


7. Following the instructions of CONSULT-II screen, set D position with "OD" OFF (A/T) or 3rd position (M/T) and release accelerator pedal fully.

A/F SEN1 (B1)	P1276
TESTING	
SELECT 3RD GEAR AND THEN RELEASE ACCELERATOR PEDAL OFF	
MONITOR	
ENG SPEED	XXX rpm
B/FUEL SCHDL	XXX msec
COOLAN TEMP/S	xxx °c
VHCL SPEED SE	XXX km/h

- 8. Make sure that "TESTING" changes to "COMPLETED".

 If "TESTING" changed to "OUT OF CONDITION", retry from step 6.
- Make sure that OK is displayed after touching "SELF-DIAG RESULT".

If NG is displayed, go to EC-480, "Diagnostic Procedure".

Overall Function Check

UBS00BE9

Use this procedure to check the overall function of the A/F sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in D position with "OD" OFF (A/T) or 3rd position (M/T).

NOTE:

Keep the accelerator pedal as steady as possible during the cruising.

3. Set D position with "OD" ON (A/T) or 4th position (M/T), then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

- 4. Repeat steps 2 to 3 five times.
- 5. Stop the vehicle and turn ignition switch OFF.
- 6. Wait at least 10 seconds and restart engine.

EC

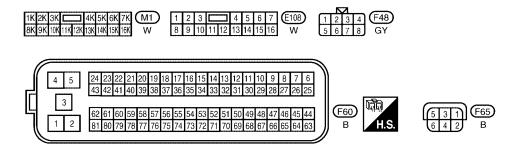
Α

D

Е

G

Н


K

DTC P1276 A/F SENSOR 1

[QG18DE]

- 7. Repeat steps 2 to 3 five times.
- 8. Stop the vehicle and connect GST to the vehicle.
- 9. Make sure that no DTC is displayed. If the DTC is displayed, go to EC-480, "Diagnostic Procedure".

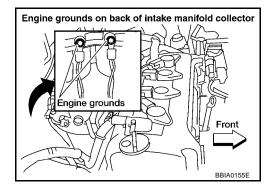
Wiring Diagram UBS00BEA Α EC-A/F-01 IGNITION SWITCH ON or START : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC EC FUSE BLOCK (J/B) Refer to "PG-POWER". 15A 8 (M1)C 13K D 5 M19 E108 L/R F48 L/R M19 Е L/R 3 AIR FUEL RATIO (A/F) SENSOR 1 (F65) Н 2 5 6 W/L OR/L W/L 75 B/Y 35 OR/L OR 56 2 ECM AF-UN1 (F60) M

BBWA0700E

Specification data are reference values and are measured between each terminal and ground.

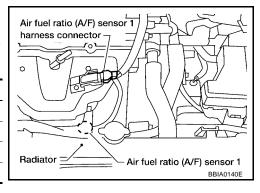
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
16	OR/L			Approximately 3.1V
35	B/Y	A/F sensor 1	[Engine is running]	Approximately 2.6V
56	OR	A/F Selisor I	Warm-up conditionIdle speed	2 - 3V
75	W/L		T late opens	2 - 3V

Diagnostic Procedure

UBS00BEB


CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

- Disconnect ECM harness connector and A/F sensor 1 harness connector.
- Check harness continuity between the following terminals. Refer to Wiring Diagram.

ECM terminal	A/F sensor 1 terminal
16	1
35	5
56	6
75	2

Continuity should exist.

5. Check harness continuity between ECM terminals 16, 35, 56, 75 or A/F sensor 1 terminals 1, 2, 5, 6 and ground. Refer to Wiring Diagram.

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK >> GO TO 2

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

2. CHECK INTERMITTENT INCIDENT

Perform <u>EC-140</u>, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> Replace A/F sensor 1.

NG >> Repair or replace.

DTC P1276 A/F SENSOR 1

[QG18DE]

Removal and Installation AIR FUEL RATIO SENSOR 1

UBS00BEC

Refer to EM-13, "Removal and Installation".

EC

Α

С

D

Е

F

G

Н

Κ

L

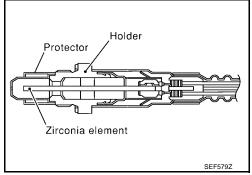
DTC P1278 A/F SENSOR 1

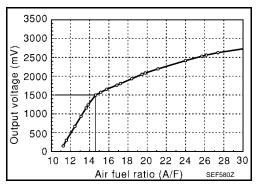
PFP:22693

UBS00BED

Component Description

The A/F sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst con-


centration cell (sensor cell) with an oxygen-pump cell, which


transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air/fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-II Reference Value in Data Monitor Mode

UBS00BEE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V

On Board Diagnosis Logic

UBS00BEF

To judge the malfunction of air fuel ratio (A/F) sensor 1, this diagnosis measures response time of the A/F signal computed by ECM from the air fuel ratio (A/F) sensor 1 signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and the air fuel ratio (A/F) sensor 1 temperature index. Judgment is based on whether the compensated time (the A/F signal cycling time index) is inordinately long or not.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P1278 1278	Air fuel ratio (A/F) sensor 1 circuit slow response	The response (from RICH to LEAN) of the A/F signal computed by ECM from A/F sensor 1 signal takes more than the specified time.	 Harness or connectors (The sensor circuit is open or shorted.) Air fuel ratio (A/F) sensor 1 Air fuel ratio (A/F) sensor heater 1 Fuel pressure Fuel injectors Intake air leaks Exhaust gas leaks PCV Mass air flow sensor

DTC Confirmation Procedure

UBS00BEG

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(I) WITH CONSULT-II

- 1. Perform <u>EC-47</u>, "Idle Air Volume Learning". Make sure that "CMPLT" is displayed on CONSULT-II screen. If "INCMP" is displayed, follow the instruction for Idle Air Volume Learning.
- 2. Select "A/F SEN1 (B1) P1278/P1279" of "A/F SEN1" in "DTC WORK SUPPORT" mode.
- 3. Touch "START".
- 4. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen.

ENG SPEED	1,750 - 2,000 rpm (A/T) 1,750 - 2,900 rpm (M/T)
Vehicle speed	More than 65 km/h (40 MPH)
B/FUEL SCHDL	1.0 - 8.0 msec
Selector lever	D position with "OD" ON (A/T)
	• 4th position (M/T)

A/F SEN1 (B1) P1278/P1279

OUT OF CONDITION

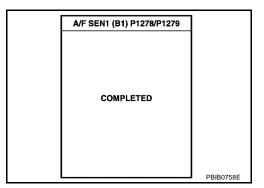
MONITOR

ENG SPEED XXX rpm

B/FUEL SCHDL XXX msec

COOLAN TEMP/S XXX 'C

VHCL SPEED SE XXX km/h


If "TESTING" is not displayed after 20 seconds, retry from step 2.

5. Following the instructions of CONSULT-II screen, set D position with "OD" OFF (A/T) or 3rd position (M/T) and release accelerator pedal fully.

A/F SEN1 (B1) P1278/P1279		
TESTING		
SELECT 3RD GEAR RELEASE ACCELERATOR		
MONITOR		
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S	xxx .c	
VHCL SPEED SE XXX km/h		

- 6. Make sure that "TESTING" changes to "COMPLETED". If "TESTING" changed to "OUT OF CONDITION", retry from step 6.
- 7. Make sure that OK is displayed after touching "SELF-DIAG RESULT".

If NG is displayed, go to EC-486, "Diagnostic Procedure".

Overall Function Check

UBS00BEH

Use this procedure to check the overall function of the A/F sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Perform <u>EC-47</u>, "Idle Air Volume Learning" . Make sure the result is OK. If NG, follow the instruction for Idle Air Volume Learning.
- 2. Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in D position with "OD" OFF (A/T) or 3rd position (M/T).

EC

Н

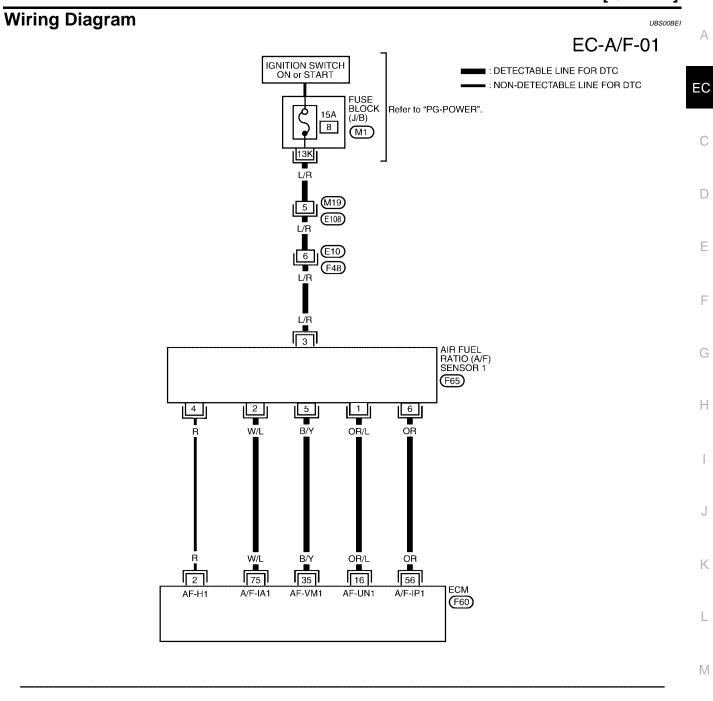
Е

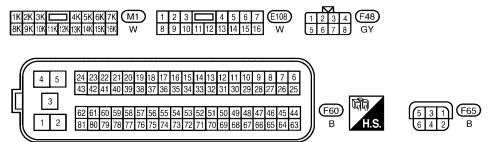
K

L

NOTE:

Keep the accelerator pedal as steady as possible during the cruising.


3. Set D position with "OD" ON (A/T) or 4th position (M/T), then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).


NOTE:

Never apply brake during releasing the accelerator pedal.

- 4. Repeat steps 2 to 3 five times.
- 5. Stop the vehicle and turn ignition switch OFF.
- 6. Wait at least 10 seconds and restart engine.
- 7. Repeat steps 2 to 3 five times.
- 8. Stop the vehicle and connect GST to the vehicle.
- 9. Make sure that no DTC is displayed.

 If the DTC is displayed, go to <u>EC-486</u>, "<u>Diagnostic Procedure</u>".

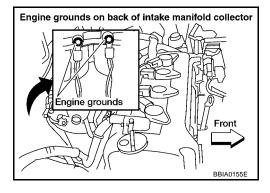
BBWA0700E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
16	OR/L			Approximately 3.1V
35	B/Y	A/F sensor 1	[Engine is running]	Approximately 2.6V
56	OR	A/F Sensor I	Warm-up conditionIdle speed	2 - 3V
75	W/L			2 - 3V


Diagnostic Procedure

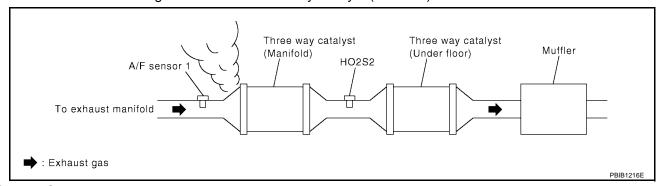
UBS00BEJ

1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. RETIGHTEN AIR FUEL RATIO (A/F) SENSOR 1


Loosen and retighten the air fuel ratio (A/F) sensor 1.

Tightening torque: 40 - 60 N-m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)

>> GO TO 3.

3. CHECK EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust gas leak before three way catalyst (manifold).

OK or NG

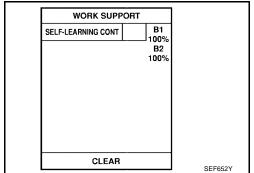
OK >> GO TO 4.

NG >> Repair or replace.

4. CHECK FOR INTAKE AIR LEAK

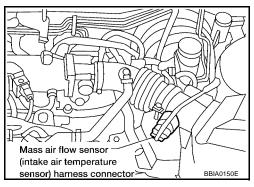
Listen for an intake air leak after the mass air flow sensor.

OK or NG


OK >> GO TO 5.

NG >> Repair or replace.

5. CLEAR THE SELF-LEARNING DATA


(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR" or "START".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-64, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Yes or No

Yes >> Perform trouble diagnosis for DTC P0171, P0172. Refer to EC-212, EC-219.

No >> GO TO 6.

EC-487

EC

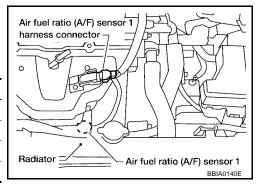
С

D

_

Е

Н


.

V

6. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector and A/F sensor 1 harness connector.
- 3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

ECM terminal	A/F sensor 1 terminal
16	1
35	5
56	5
75	2

Continuity should exist.

4. Check harness continuity between ECM terminals 16, 35, 56, 75 or A/F sensor 1 terminals 1, 2, 5, 6 and ground. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK AIR FUEL RATIO (A/F) SENSOR 1 HEATER

Refer to EC-356, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace A/F sensor 1.

8. CHECK MASS AIR FLOW SENSOR

Refer to EC-167, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace mass air flow sensor.

9. CHECK PCV VALVE

Refer to EC-633, "POSITIVE CRANKCASE VENTILATION" .

OK or NG

OK >> GO TO 10.

NG >> Repair or replace PCV valve.

10. CHECK INTERMITTENT INCIDENT

Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> Replace A/F sensor 1.

NG >> Repair or replace.

Removal and Installation AIR FUEL RATIO SENSOR 1

Refer to EM-13, "Removal and Installation".

UBS00BEK

DTC P1279 A/F SENSOR 1

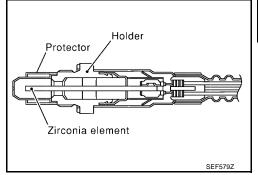
PFP:22693

Component Description

UBS00BEL

Α

EC


Е


The A/F sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air-fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-II Reference Value in Data Monitor Mode

UBS00BEM

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V

On Board Diagnosis Logic

BS00BEN

M

To judge the malfunction of air fuel ratio (A/F) sensor 1, this diagnosis measures response time of the A/F signal computed by ECM from the air fuel ratio (A/F) sensor 1 signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and the air fuel ratio (A/F) sensor 1 temperature index. Judgment is based on whether the compensated time (the A/F signal cycling time index) is inordinately long or not.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P1279 1279	Air fuel ratio (A/F) sensor 1 circuit slow response	The response (from LEAN to RICH) of the A/F signal computed by ECM from A/F sensor 1 signal takes more than the specified time.	 Harness or connectors (The sensor circuit is open or shorted.) Air fuel ratio (A/F) sensor 1 Air fuel ratio (A/F) sensor heater 1 Fuel pressure Fuel injectors Intake air leaks Exhaust gas leaks PCV Mass air flow sensor

DTC Confirmation Procedure

UBS00BEO

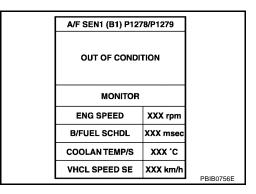
CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

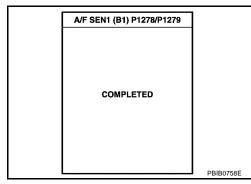

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(II) WITH CONSULT-II

- 1. Perform <u>EC-47, "Idle Air Volume Learning"</u>. Make sure that "CMPLT" is displayed on CONSULT-II screen. If "INCMP" is displayed, follow the instruction for Idle Air Volume Learning.
- 2. Select "A/F SEN1 (B1) P1278/P1279" of "A/F SEN1" in "DTC WORK SUPPORT" mode.
- 3. Touch "START".
- 4. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen.

ENG SPEED	1,500 - 3,000 rpm
Vehicle speed	70 - 120 km/h (43 - 75 MPH)
B/FUEL SCHDL	1.0 - 8.0 msec
Selector lever	D position with "OD" ON (A/T)
	• 4th position (M/T)

If "TESTING" is not displayed after 20 seconds, retry from step 2.



5. Following the instructions of CONSULT-II screen, set D position with "OD" OFF (A/T) or 3rd position (M/T) and release accelerator pedal fully.

A/F SEN1 (B1) P12	78/P1279	
TESTING		
SELECT 3RD GEAR AND THEN RELEASE ACCELERATOR PEDAL OFF		
MONITOR		
ENG SPEED XXX rpm		
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S	xxx .c	
VHCL SPEED SE	XXX km/h	DDIDOTETE
	-	PBIB0757E

- 6. Make sure that "TESTING" changes to "COMPLETED". If "TESTING" changed to "OUT OF CONDITION", retry from step 6.
- Make sure that OK is displayed after touching "SELF-DIAG RESULT".

If NG is displayed, go to EC-493, "Diagnostic Procedure".

Overall Function Check

UBS00BEP

Use this procedure to check the overall function of the A/F sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Perform <u>EC-47, "Idle Air Volume Learning"</u>. Make sure the result is OK. If NG, follow the instruction for Idle Air Volume Learning.
- 2. Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in D position with "OD" OFF (A/T) or 3rd position (M/T).

NOTE:

Keep the accelerator pedal as steady as possible during the cruising.

DTC P1279 A/F SENSOR 1

[QG18DE]

3. Set D position with "OD" ON (A/T) or 4th position (M/T), then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

- 4. Repeat steps 2 to 3 five times.
- 5. Stop the vehicle and turn ignition switch OFF.
- 6. Wait at least 10 seconds and restart engine.
- 7. Repeat steps 2 to 3 five times.
- 8. Stop the vehicle and connect GST to the vehicle.
- 9. Make sure that no DTC is displayed. If the DTC is displayed, go to EC-493, "Diagnostic Procedure".

EC

Α

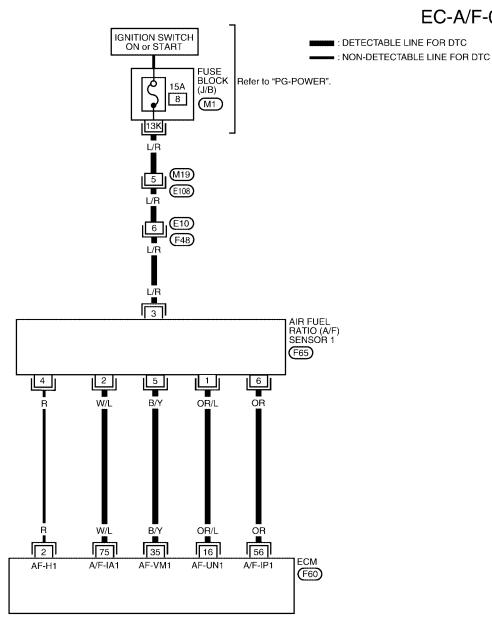
С

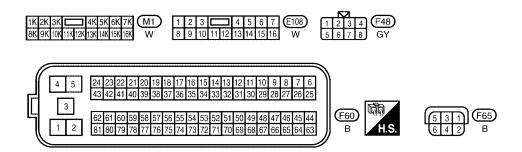
D

Е

F

G


Н


K

L

Wiring Diagram UBS00BEQ

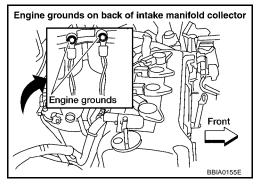
EC-A/F-01

BBWA0700E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
16	OR/L			Approximately 3.1V
35	B/Y	A/F sensor 1	[Engine is running]	Approximately 2.6V
56	OR	AVE SELISULI	Warm-up condition Idle speed	2 - 3V
75	W/L	· 	- Idio opood	2 - 3V

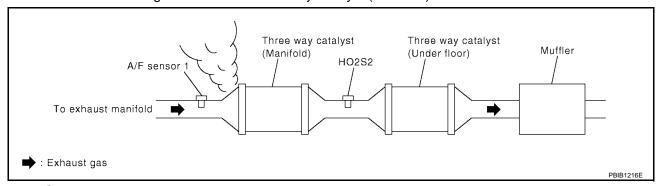
Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

- Turn ignition switch OFF.
- Loosen and retighten engine ground screws.

>> GO TO 2.

2. RETIGHTEN AIR FUEL RATIO (A/F) SENSOR 1


Loosen and retighten the air fuel ratio (A/F) sensor 1.

Tightening torque: 40 - 60 N-m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)

>> GO TO 3.

3. CHECK EXHAUST GAS LEAK

- Start engine and run it at idle.
- 2. Listen for an exhaust gas leak before three way catalyst (manifold).

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

D

Е

Α

EC

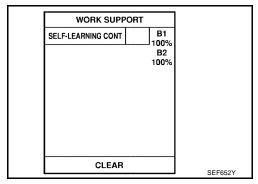
UBS00BER

Н

4. CHECK FOR INTAKE AIR LEAK

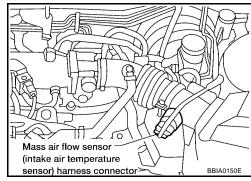
Listen for an intake air leak after the mass air flow sensor.

OK or NG


OK >> GO TO 5.

NG >> Repair or replace.

5. CLEAR THE SELF-LEARNING DATA

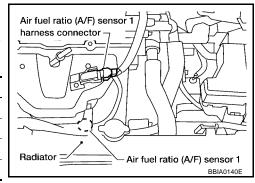

With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- Clear the self-learning control coefficient by touching "CLEAR" or "START".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-64, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Yes or No


Yes >> Perform trouble diagnosis for DTC P0171, P0172. Refer to EC-212, EC-219.

No >> GO TO 6.

6. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector and A/F sensor 1 harness connector.
- 3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

ECM terminal	A/F sensor 1 terminal
16	1
35	5
56	6
75	2

Continuity should exist.

4. Check harness continuity between ECM terminals 16, 35, 56, 75 or A/F sensor 1 terminals 1, 2, 5, 6 and ground. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK AIR FUEL RATIO (A/F) SENSOR 1 HEATER

Refer to EC-356, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace A/F sensor 1.

8. CHECK MASS AIR FLOW SENSOR

Refer to EC-167, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace mass air flow sensor.

9. CHECK PCV VALVE

Refer to EC-633, "POSITIVE CRANKCASE VENTILATION" .

OK or NG

OK >> GO TO 10.

NG >> Repair or replace PCV valve.

10. CHECK INTERMITTENT INCIDENT

Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> Replace A/F sensor 1.

NG >> Repair or replace.

Removal and Installation AIR FUEL RATIO SENSOR 1

Refer to EM-13, "Removal and Installation".

EC

Α

Е

Н

M

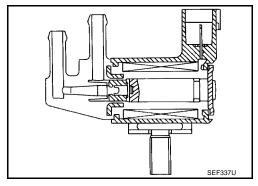
UBS00BES

DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

PFP:14920

Description SYSTEM DESCRIPTION

UBS00BET


Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*1		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Battery	Battery voltage*1	EVAP can-	
Throttle position sensor	Throttle position	ister purge flow con-	EVAP canister purge volume control solenoid valve
Accelerator pedal position sensor	Accelerator pedal position	trol	
Air fuel ratio (A/F) sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)		
Fuel tank temperature sensor	Fuel temperature in fuel tank		
Vehicle speed sensor*2	Vehicle speed		

^{*1:} ECM determines the start signal status by the signals of engine speed and battery voltage.

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/ OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

CONSULT-II Reference Value in Data Monitor Mode

UBS00BEU

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	0%
PURG VOL C/V	 Air conditioner switch: OFF Shift lever: N (A/T), Neutral (M/T) No-load 	2,000 rpm	_

^{*2:} This signal is sent to the ECM through CAN communication line.

On Board Diagnosis Logic

UBS00BEV

Α

EC

Е

F

Н

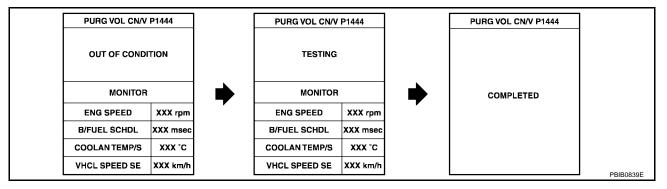
M

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P1444 1444	EVAP canister purge volume control solenoid valve	The canister purge flow is detected during the specified driving conditions, even when EVAP canister purge volume control solenoid valve is completely closed.	 EVAP control system pressure sensor EVAP canister purge volume control solenoid valve (The valve is stuck open.) EVAP canister vent control valve EVAP canister Hoses (Hoses are connected incorrectly or clogged.) 	E

DTC Confirmation Procedure

UBS00BEW

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 0°C (32°F) or more.

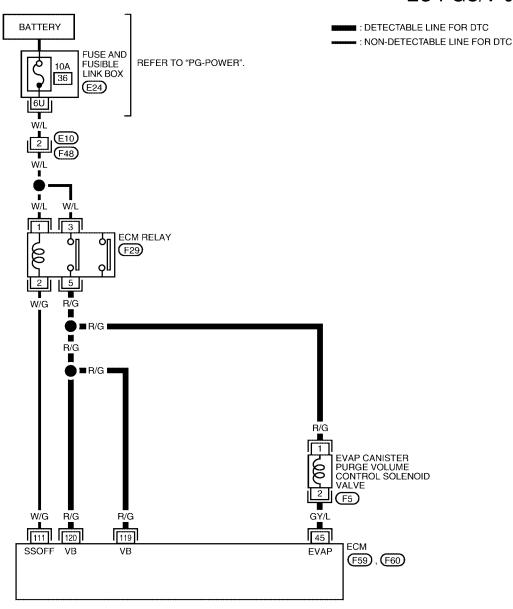
(P) WITH CONSULT-II

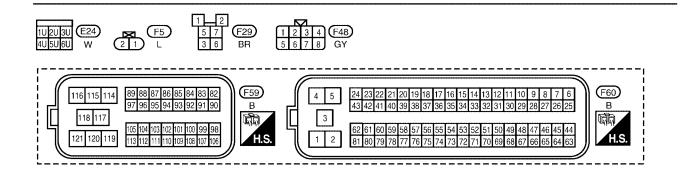
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- Select "PURG VOL CN/V P1444" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 5. Touch "START".

6. Start engine and let it idle until "TESTING" on CONSULT-II changes to "COMPLETED". (It will take approximately 10 seconds.)

If "TESTING" is not displayed after 5 minutes, retry from step 2.

7. Make sure that OK is displayed after touching "SELF-DIAG RESULTS". If NG is displayed, refer to EC-500, "Diagnostic Procedure".


WITH GST


- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and let it idle for at least 20 seconds.
- 4. Select MODE 7 with GST.
- 5. If 1st trip DTC is detected, go to EC-500, "Diagnostic Procedure".

EC-497

Wiring Diagram

EC-PGC/V-01

BBWA0686E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
45	GY/L	EVAP canister purge vol-	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)★ Description Description
		ume control solenoid valve	 [Engine is running] Engine speed is about 2,000 rpm (More than 100 seconds after starting engine) 	Approximately 10V★
111	111 W/G ECM relay (Self shut-off)		[Engine is running] [Ignition switch: OFF] ● For a few seconds after turning ignition switch OFF	0 - 1.0V
			[Ignition switch: OFF]A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

EC

Α

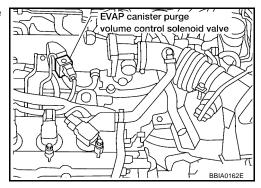
C

D

Е

F

Н

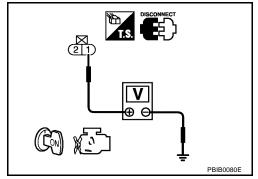

K

Diagnostic Procedure

IRSOORE

1. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIR-CUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect EVAP canister purge volume control solenoid valve harness connector.
- 3. Turn ignition switch ON.



 Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and engine ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM relay
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM
 - >> Repair harness or connectors.

3. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIR-CUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 45 and EVAP canister purge volume control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

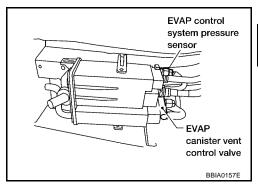
4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR


- Disconnect EVAP control system pressure sensor harness connector.
- 2. Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 5.

NG >> Replace EVAP control system pressure sensor.

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-305, "Component Inspection".

OK or NG

OK (With CONSULT-II)>>GO TO 6.

OK (Without CONSULT-II)>>GO TO 7.

NG >> Replace EVAP control system pressure sensor.

6. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

With CONSULT-II

- Turn ignition switch OFF.
- 2. Reconnect harness connectors disconnected.
- 3. Start engine.
- 4. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 8.

NG >> GO TO 7.

ACTIVE TEST		
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
		PBIB1786E

7. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-312, "Component Inspection" .

OK or NG

OK >> GO TO 8.

NG >> Replace EVAP canister purge volume control solenoid valve.

8. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 9.

NG >> Clean the rubber tube using an air blower.

EC

Α

П

Е

G

Н

J

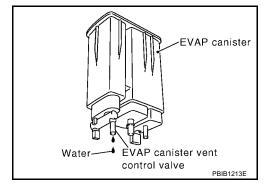
K

9. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-296, "Component Inspection".

OK or NG

OK >> GO TO 11.


NG >> Replace EVAP canister vent control valve.

10. CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

Yes or No

Yes >> GO TO 11. No >> GO TO 13.

11. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.9 kg (4.2 lb).

OK or NG

OK >> GO TO 13. NG >> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

13. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

UBS00BEZ

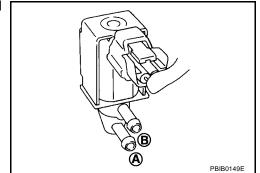
Α

EC

C

D

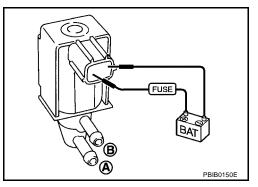
Е


Н

M

(P) With CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.


Condition (PURG VOL CONT/V value)	Air passage continuity between A and B
100%	Yes
0%	No

⊗ Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B	
12V direct current supply between terminals 1 and 2	Yes	
No supply	No	

Removal and Installation EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

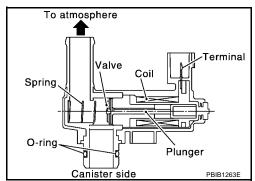
Refer to EM-13, "Removal and Installation".

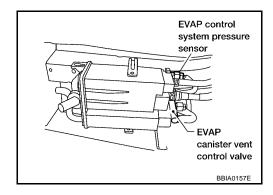
UBS00BJU

DTC P1446 EVAP CANISTER VENT CONTROL VALVE

PFP:14935

UBS00BF0


Component Description


The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System" diagnoses.

CONSULT-II Reference Value in Data Monitor Mode

UBS00BF1

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

On Board Diagnosis Logic

UBS00BF2

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
			EVAP canister vent control valve
P1446		EVAP canister vent control valve remains closed under specified driving conditions.	EVAP control system pressure sensor and the circuit
1446			Blocked rubber tube to EVAP canister vent control valve
			EVAP canister is saturated with water

DTC Confirmation Procedure

UBS00BF3

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

DTC P1446 EVAP CANISTER VENT CONTROL VALVE

[QG18DE]

DATA MONITOR

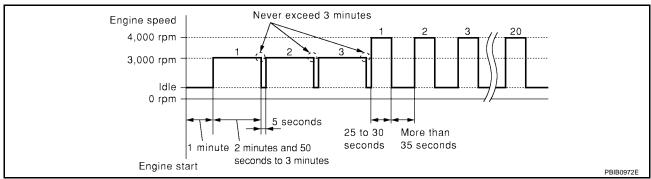
NO DTC

XXX rpm

MONITOR

ENG SPEED

(P) WITH CONSULT-II


- 1. Turn ignition switch ON and wait at least 5 seconds.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 4. Start engine and let it idle for at least 1 minute.
- 5. Repeat next procedures 3 times.
- a. Increase the engine speed up to 3,000 to 3,500 rpm and keep it for 2 minutes and 50 seconds to 3 minutes.

Never exceed 3 minutes.

- Fully released accelerator pedal and keep engine idle for about 5 seconds.
- 6. If 1st trip DTC is detected, go to EC-416, "Diagnostic Procedure"

If 1st trip DTC is not detected, go to the next step.

- 7. Repeat next procedure 20 times.
- a. Quickly increase the engine speed up to 4,000 to 4,500 rpm or more and keep it for 25 to 30 seconds.
- b. Fully released accelerator pedal and keep engine idle for at least 35 seconds.

If 1st trip DTC is detected, go to <u>EC-416, "Diagnostic Procedure"</u>.

WITH GST

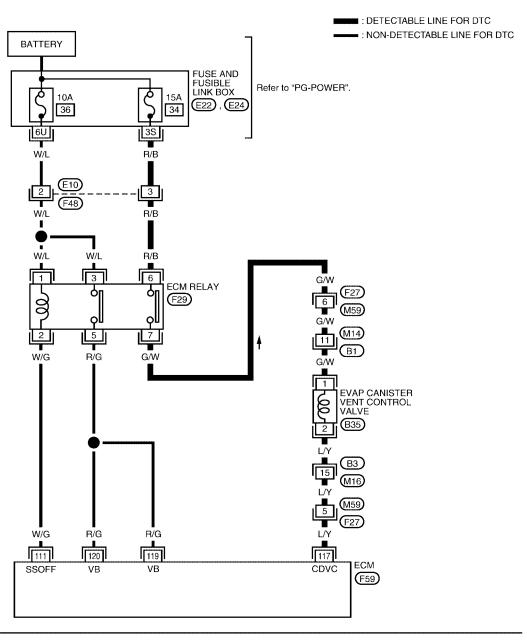
Follow the procedure "WITH CONSULT-II" above.

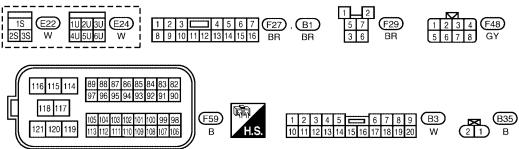
EC

Α

D

Е


SEF058Y


Н

Wiring Diagram

JBS00BF4

EC-VENT/V-01

BBWA0687E

DTC P1446 EVAP CANISTER VENT CONTROL VALVE

[QG18DE]

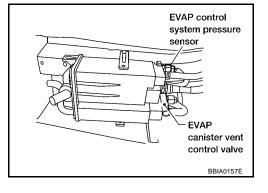
Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
111	W/G	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] ● For a few seconds after turning ignition switch OFF [Ignition switch: OFF]	0 - 1.0V
			A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
117	L/Y	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure


1. CHECK RUBBER TUBE

- Turn ignition switch OFF.
- 2. Disconnect rubber tube connected to EVAP canister vent control valve.
- 3. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 2.

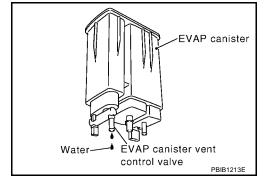
NG >> Clean rubber tube using an air blower.

2. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-418, "Component Inspection".

OK or NG

OK >> GO TO 3.


NG >> Replace EVAP canister vent control valve.

3. CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

Yes or No

Yes >> GO TO 4. No >> GO TO 6.

Α

EC

D

Е

UBS00BF5

Н

ı

K

[QG18DE]

4. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

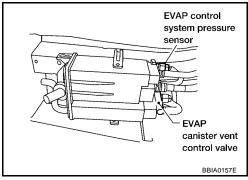
The weight should be less than 1.9 kg (4.2 lb).

OK or NG

OK >> GO TO 6.

NG >> GO TO 5.

$5.\,$ DETECT MALFUNCTIONING PART


Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

6. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- Disconnect EVAP control system pressure sensor harness connector.
- Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 7.

NG >> Replace EVAP control system pressure sensor.

7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-312, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace EVAP control system pressure sensor.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection EVAP CANISTER VENT CONTROL VALVE

(P) With CONSULT-II

Remove EVAP canister vent control valve from EVAP canister.

LIBSOORE6

DTC P1446 EVAP CANISTER VENT CONTROL VALVE

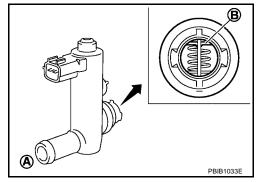
[QG18DE]

Α

EC

D

Е


Н

M

Check portion B of EVAP canister vent control valve for being rusted.

If NG, replace EVAP canister vent control valve. If OK, go to next step.

- 3. Reconnect harness connectors disconnected.
- 4. Turn ignition switch ON.

ACTIVE TEST

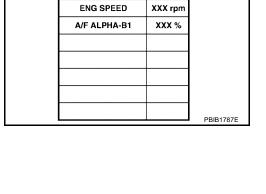
MONITOR

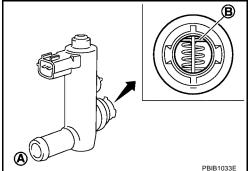
VENT CONTROL/V

- 5. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 6. Check air passage continuity and operation delay time.

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

Operation takes less than 1 second. Make sure new O-ring is installed properly.


If NG, replace EVAP canister vent control valve.


If OK, go to next step.

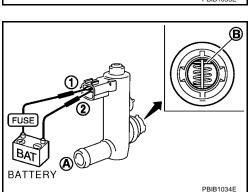
- 7. Clean the air passage (Portion **A** to **B**) of EVAP canister vent control valve using an air blower.
- 8. Perform step 5 again.

⋈ Without CONSULT-II

- 1. Remove EVAP canister vent control valve from EVAP canister.
- 2. Check portion **B** of EVAP canister vent control valve for being rusted.

3. Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes


Operation takes less than 1 second.

Make sure new O-ring is installed properly.

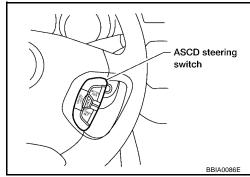
If NG, replace EVAP canister vent control valve.

If OK, go to next step.

- 4. Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower.
- Perform step 3 again.

EC-509

DTC P1564 ASCD STEERING SWITCH


PFP:25551

UBS00BF7

Component Description

ASCD steering switch has variant values of electrical resistance for each button. ECM reads voltage variation of switch, and determines which button is operated.

Refer to <u>EC-635</u>, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for the ASCD function.

CONSULT-II Reference Value in Data Monitor Mode

UBS00BF8

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
MAIN SW	Ignition switch: ON	CRUISE switch: Pressed	ON
IVIAIN SVV		CRUISE switch: Released	OFF
CANCEL SW	Ignition switch: ON	CRUISE switch: Pressed	ON
	• Igrition switch. ON	CRUISE switch: Released	OFF
RESUME/ACC SW	- Ignition quitable ON	ACCEL/RES switch: Pressed	ON
RESUME/ACC SW	Ignition switch: ON	ACCEL/RES switch: Released	OFF
SET SW	Ignition switch: ON	COAST/SET switch: Pressed	ON
SETSW		COAST/SET switch: Released	OFF

On Board Diagnosis Logic

UBS00BF9

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

If DTC P1564 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to <u>EC-348</u>.

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P1564 1564	ASCD steering switch	 An excessively high voltage signal from the ASCD steering switch is sent to ECM. ECM detects that input signal from the ASCD steering switch is out of the specified range. ECM detects that the ASCD steering switch is stuck ON. 	 Harness or connectors (The switch circuit is open or shorted.) ASCD steering switch ECM

DTC Confirmation Procedure

UBS00BFA

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 10 seconds.
- 4. Press CRUISE switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 5. Press ACCEL/RES switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 6. Press COAST/SET switch for at least 10 seconds, then release it and wait at least 10 seconds.

DTC P1564 ASCD STEERING SWITCH

[QG18DE]

- 7. Press CANCEL switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 8. If trip DTC is detected, go to EC-514, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

С

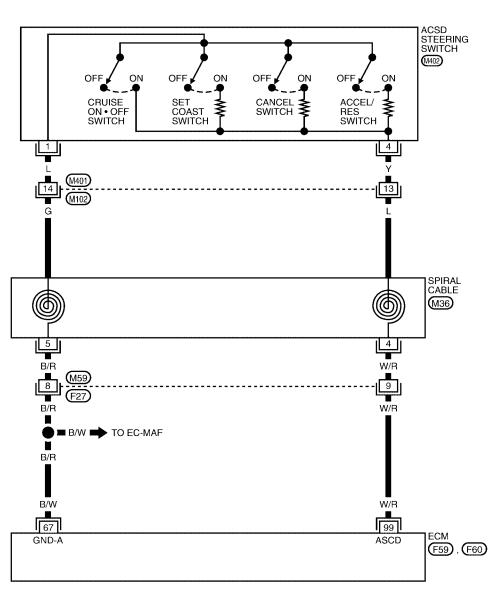
D

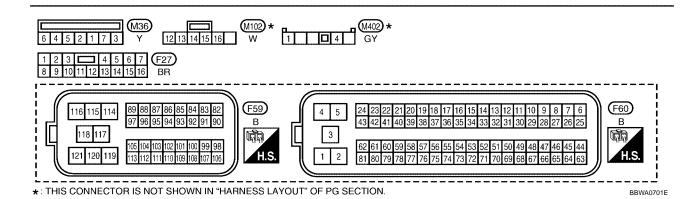
Е

F

G

Н


L


Wiring Diagram

IRSOORFE

EC-ASC/SW-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

DTC P1564 ASCD STEERING SWITCH

[QG18DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
67	B/W	Sensor ground (MAF sensor / IAT sensor / PSP sensor / ASCD steering switch / EVAP control system pressure sensor / Refrigerant pressure sensor / Swirl control valve position sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	
			[Ignition switch: ON] • ASCD steering switch: Released	Approximately 4V	
					[Ignition switch: ON] • CRUISE switch: Pressed
99	W/R	ASCD steering switch	[Ignition switch: ON] • CANCEL switch: Pressed	Approximately 1V	
			[Ignition switch: ON] • COAST/SET switch: Pressed	Approximately 2V	
			[Ignition switch: ON] • ACCEL/RESUME switch: Pressed	Approximately 3V	

Α

EC

D

С

F

Е

G H

K

L

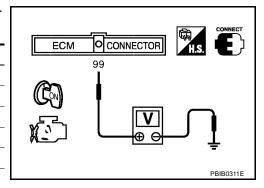
Diagnostic Procedure

1. CHECK ASCD STEERING SWITCH CIRCUIT

UBS00BFC

(II) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "MAIN SW", "RESUME/ACC SW", "SET SW" and "CANCEL SW" in "DATA MONITOR" mode with CONSULT-II.
- 3. Check each item indication under the following conditions.


Switch	Monitor item	Condition	Indication
CRUISE	MAIN SW	Pressed	ON
CINDIOL	WAIN OW	Released	OFF
COAST/SET	SET SW	Pressed	ON
COAST/SET	SET SW	Released	OFF
ACCEL/RES	RESUME/ACC SW	Pressed	ON
ACCLL/NLS	RESONE/ACC SW	Released	OFF
CANCEL	CANCEL SW		ON
CANCLL	CANCLL SW	Released	OFF

MONITOR NO DTC MAIN SW OFF CANCEL SW OFF RESUME/ACC SW OFF SET SW OFF	DATA MONITOR	
CANCEL SW OFF RESUME/ACC SW OFF	MONITOR NO E	тс
RESUME/ACC SW OFF		
SET SW OFF		
	SETSW OFF	

W Without CONSULT-II

- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminal 99 and ground with pressing each button.

Switch	Condition	Voltage [V]
CRUISE SW	Pressed	Approx. 0
CIVOIGE SW	Released	Approx. 4
COAST/SET SW	Pressed	Approx. 2
	Released	Approx. 4
ACCEL/RES SW	Pressed	Approx. 3
	Released	Approx. 4
CANCEL SW	Pressed	Approx. 1
O/MOLL OVV	Released	Approx. 4

OK or NG

OK >> GO TO 7.

NG >> GO TO 2.

$2.\,$ check ascd steering switch ground circuit for open and short

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD steering switch harness connector.
- 3. Disconnect ECM harness connector.
- Disconnect TCM harness connector.
- 5. Check harness continuity between ASCD steering switch terminal 1 and ECM terminal 67, TCM terminal 42. Refer to Wiring Diagram.

Continuity should exist.

6. Also check harness for short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M401, M102
- Harness connectors M59, F27
- Spiral cable
- Harness for open and short between ECM and ASCD steering switch
- Harness for open and short between TCM and ASCD steering switch
 - >> Repair open circuit or short to power in harness or connectors.

4. CHECK ASCD STEERING SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal 99 and ASCD steering switch terminal 4. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M401, M102
- Harness connectors M59, F27
- Spiral cable
- Harness for open and short between ECM and ASCD steering switch
 - >> Repair open circuit or short to ground or short to ground or short to power in harness or connectors.

6. CHECK ASCD STEERING SWITCH

Refer to EC-516, "Component Inspection".

OK or NG

OK >> GO TO 7.

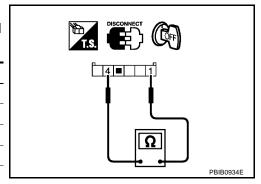
NG >> Replace ASCD steering switch. ASCD steering switch BRIA0086F

EC

Е

7. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .


>> INSPECTION END

Component Inspection ASCD STEERING SWITCH

UBS00BFD

- 1. Disconnect ASCD steering switch.
- 2. Check continuity between ASCD steering switch terminals 1 and 4 with pushing each switch.

Switch	Condition	Resistance [Ω]
CRUISE SW	Pressed	Approx. 0
CROISE SW	Released	Approx. 4,000
COAST/SET SW	Pressed	Approx. 660
COAST/SET SW	Released	Approx. 4,000
ACCEL/RES SW	Pressed	Approx. 1,480
ACCEDITES SW	Released	Approx. 4,000
CANCEL SW	Pressed	Approx. 250
CANCLL SVV	Released	Approx. 4,000

[QG18DE]

DTC P1572 ASCD BRAKE SWITCH

PFP:25320

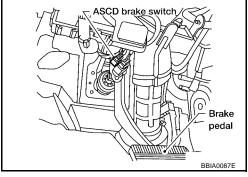
Component Description

UBS00BFE

Α

EC

C


D

Е

Н

When the brake pedal is depressed, ASCD brake switch is turned OFF and stop lamp switch is turned ON. ECM detects the state of the brake pedal by this input of two kinds (ON/OFF signal). Refer to EC-635, "AUTOMATIC SPEED CONTROL DEVICE

(ASCD)" for the ASCD function.

CONSULT-II Reference Value in Data Monitor Mode

UBSOOREE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW1	Ignition switch: ON	Brake pedal: Fully released (A/T) Clutch pedal and brake pedal: Fully released (M/T)	ON
(ASCD brake switch)	• Igrillion Switch. ON	Brake pedal: Slightly depressed (A/T) Clutch pedal and/or brake pedal: Slightly depressed (M/T)	OFF
BRAKE SW2	Ignition switch: ON	Brake pedal: Fully released	OFF
(Stop lamp switch)	• ignition switch. ON	Brake pedal: Slightly depressed	ON

On Board Diagnosis Logic

UBS00BFG

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

If DTC P1572 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to **EC-348**

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause	k
P1572 1572	ASCD brake switch	When the vehicle speed is above 30 km/h (19 MPH), ON signals from the stop lamp switch and the ASCD brake switch are sent to the ECM at the same time.	Harness or connectors (The stop lamp switch circuit is open or shorted.) Harness or connectors (The ASCD brake switch circuit is open or shorted.) Harness or connectors (The ASCD clutch switch circuit is open or shorted.) Stop lamp switch	K L
			 ASCD brake switch ASCD clutch switch Incorrect stop lamp switch installation Incorrect ASCD brake switch installation Incorrect ASCD clutch switch installation ECM 	

EC-517

DTC Confirmation Procedure

UBS00BFH

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Steps 3 and 4 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(P) WITH CONSULT-II

- 1. Start engine.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Drive the vehicle for at least 5 consecutive seconds under the following condition.

VHCL SPEED SE	More than 30 km/h (19 MPH)
Selector lever	Suitable position

If trip DTC is detected, go to EC-521, "Diagnostic Procedure".

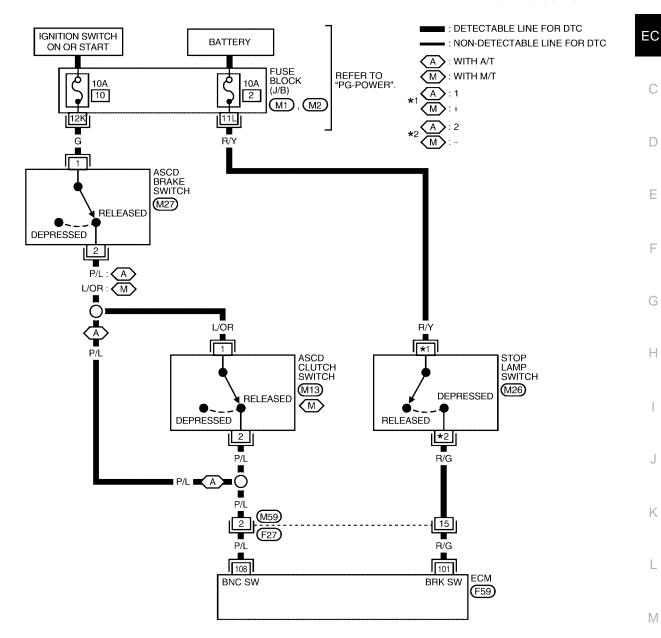
If trip DTC is not detected, go to the following step.

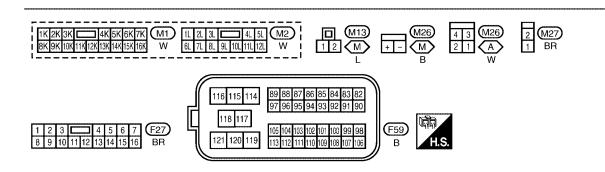
4. Drive the vehicle for at least 5 consecutive seconds under the following condition.

VHCL SPEED SE	More than 30 km/h (19 MPH)
Selector lever	Suitable position
Driving location	Depress the brake pedal for more than five seconds so as not to come off from the above-mentioned condition.

5. If trip DTC is detected, go to EC-521, "Diagnostic Procedure".

WITH GST


Follow the procedure "WITH CONSULT-II" above.


Wiring Diagram

Α

EC-ASC/BS-01

BBWA0702E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101 R/G Stop lamp switch		Stop Jamp switch	[Ignition switch: OFF] • Brake pedal fully released	Approximately 0V
101	101 R/G Stop lamp switch		[Ignition switch: OFF] • Brake pedal depressed	BATTERY VOLTAGE (11 - 14V)
ACCD basic switch		ASCD brake switch	 [Ignition switch: ON] Brake pedal is fully released (A/T) Clutch pedal and brake pedal are fully released (M/T) 	BATTERY VOLTAGE (11 - 14V)
106	108 P/L ASCD brake switch	 [Ignition switch: ON] Brake pedal is depressed (A/T) Clutch pedal and/or brake pedal is slightly depressed (M/T) 	Approximately 0V	

DTC P1572 ASCD BRAKE SWITCH

ON

[QG18DE]

Diagnostic Procedure

1. CHECK OVERALL FUNCTION-I

(II) With CONSULT-II

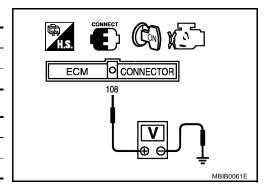
- 1. Turn ignition switch ON.
- 2. Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-II.
- 3. Check "BRAKE SW1" indication under the following conditions.

A/T models

CONDITION	INDICATION
When brake pedal is depress	OFF
When brake pedal is fully released	ON
M/T models	
CONDITION	INDICATION

DATA MO	NITOR	
MONITOR	NO DTC	
BRAKE SW1	OFF	

(X) Without CONSULT-II


1. Turn ignition switch ON.

When clutch pedal and brake pedal are fully released

2. Check voltage between ECM terminal 108 and ground under the following conditions.

A/T models

CONDITION	VOLTAGE
When brake pedal is depress	Approximately 0V
When brake pedal is fully released	Battery voltage
M/T models	
CONDITION	VOLTAGE
When clutch pedal and/or brake pedal is depressed	Approximately 0V
When clutch pedal and brake pedal are fully released	Battery voltage

OK or NG

OK >> GO TO 2.

NG (M/T models) >>GO TO 3.

NG (A/T models) >>GO TO 4.

EC

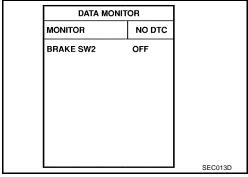
Α

Е

D

Н

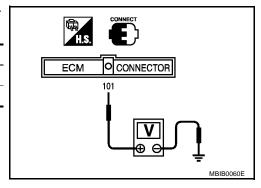
-


K

2. CHECK OVERALL FUNCTION-II

(P) With CONSULT-II

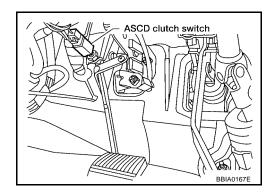
Check "BRAKE SW2" indication in "DATA MONITOR" mode.


CONDITION	INDICATION
When brake pedal is released	OFF
When brake pedal is depressed	ON

W Without CONSULT-II

Check voltage between ECM terminal 101 and ground under the following conditions.

CONDITION	VOLTAGE
When brake pedal is released	Approximately 0V
When brake pedal is depressed	Battery voltage

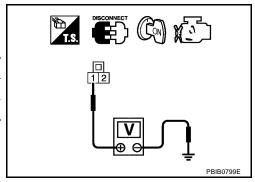


OK or NG

OK >> GO TO 18. NG >> GO TO 13.

3. CHECK ASCD CLUTCH SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD clutch switch harness connector.
- 3. Turn ignition switch ON.



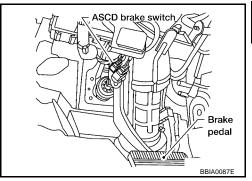
4. Check voltage between ASCD clutch switch terminal 1 and ground under the following conditions with CONSULT-II or tester.

CONDITION	VOLTAGE
When brake pedal is released	Battery voltage
When brake pedal is depressed	Approx. 0V

OK or NG

OK >> GO TO 10. NG >> GO TO 4.

EC

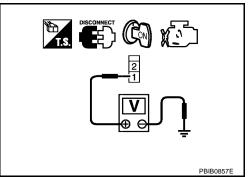

D

Е

Н

4. CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK (M/T models)>>GO TO 6. OK (A/T models)>>GO TO 7. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector M1
- 10A fuse
- Harness for open or short between ASCD brake switch and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Check harness continuity between ASCD brake switch terminal 2 and ASCD clutch switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

Brake pedal

BBIA0087E

DISCONNECT

CON SCIENCES

EC-523

$7.\,$ CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 108 and ASCD brake switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground or short to power.

OK or NG

```
OK >> GO TO 9.
NG >> GO TO 8.
```

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness for open or short between ECM and ASCD brake switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK ASCD BRAKE SWITCH

Refer to EC-526, "Component Inspection".

OK or NG

```
OK >> GO TO 18.
```

NG >> Replace ASCD brake switch.

10. CHECK ASCD CLUTCH SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 108 and ASCD clutch switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground or short to power.

OK or NG

```
OK >> GO TO 12.
NG >> GO TO 11.
```

11. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness for open or short between ECM and ASCD clutch switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

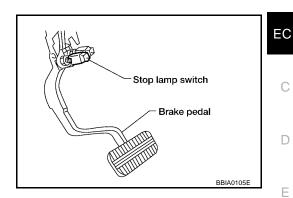
12. CHECK ASCD CLUTCH SWITCH

Refer to EC-526, "Component Inspection".

OK or NG

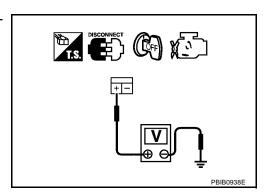
```
OK >> GO TO 18.
```

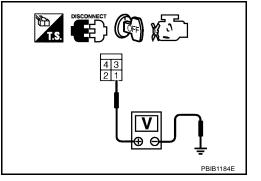
NG >> Replace ASCD clutch switch.


Α

Н

M


13. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT


- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch harness connector.

3. Check voltage between stop lamp switch terminal + (M/T models) or 1 (A/T models) and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 15. NG >> GO TO 14.

14. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector M2
- 10A fuse
- Harness for open or short between stop lamp switch and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

15. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 101 and stop lamp switch terminal (M/T models) or 2 (A/T models).

Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 17. NG >> GO TO 16.

16. detect malfunctioning part

Check the following.

- Harness connectors M59, F27
- Harness for open or short between ECM and stop lamp switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

17. CHECK STOP LAMP SWITCH

Refer to EC-526, "Component Inspection".

OK or NG

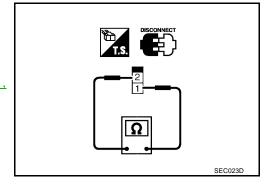
OK >> GO TO 18.

NG >> Replace stop lamp switch.

18. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection ASCD BRAKE SWITCH

UBS00BFK

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch harness connector.
- 3. Check harness continuity between ASCD brake switch terminals 1 and 2 under the following conditions.

Condition	Continuity
When brake pedal is fully released.	Should exist.
When brake pedal is depressed.	Should not exist.

If NG, adjust ASCD brake switch installation, refer to <u>BR-11, "BRAKE PEDAL AND BRACKET"</u>, and perform step 3 again.

ASCD CLUTCH SWITCH (FOR M/T MODELS)

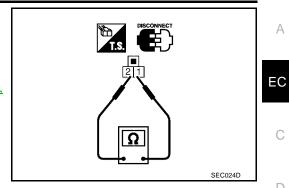
- Turn ignition switch OFF.
- 2. Disconnect ASCD clutch switch harness connector.
- 3. Check harness continuity between ASCD clutch switch terminals 1 and 2 under the following conditions.

DTC P1572 ASCD BRAKE SWITCH

[QG18DE]

Α

C

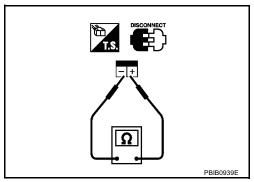

D

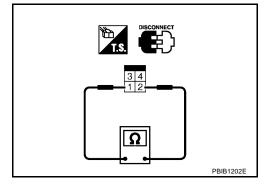
Е

Н

Condition	Continuity
When clutch pedal is fully released.	Should exist.
When clutch pedal is depressed.	Should not exist.

If NG, adjust ASCD clutch switch installation, refer to CL-6. "CLUTCH SYSTEM", and perform step 3 again.




STOP LAMP SWITCH

- 1. Turn ignition switch OFF.
- Disconnect stop lamp switch harness connector.
- Check harness continuity between stop lamp switch terminals 1 and 2 (A/T models), + and (M/T models) 3. under the following conditions.

Condition	Continuity
When brake pedal is fully released.	Should not exist.
When brake pedal is depressed.	Should exist.

If NG, adjust stop lamp switch installation, refer to BR-11, "BRAKE PEDAL AND BRACKET", and perform step 3 again.

[QG18DE]

DTC P1574 ASCD VEHICLE SPEED SENSOR

PFP:31036

Component Description

UBSOORFI

The ECM receives two vehicle speed sensor signals via CAN communication line. One is sent from "unified meter and A/C amp.", and the other is from TCM (Transmission control module). The ECM uses these signals for ASCD control. Refer to EC-635, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for ASCD functions.

On Board Diagnosis Logic

IRSOOREN

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

- If DTC P1574 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-148, "DTC U1000, U1001 CAN COMMUNICATION LINE".
- If DTC P1574 is displayed with DTC P0500, first perform the trouble diagnosis for DTC P0500.
 Refer to <u>EC-337</u>, "<u>DTC P0500 VSS</u>"
- If DTC P1574 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605.
 Refer to <u>EC-348</u>, "<u>DTC P0605 ECM"</u>

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P1574 1574	ASCD vehicle speed sensor	ECM detects a difference between two vehicle speed signals is out of the specified range.	 Harness or connectors (The CAN communication line is open or shorted.) Unified meter and A/C amp. Vehicle speed sensor TCM ECM

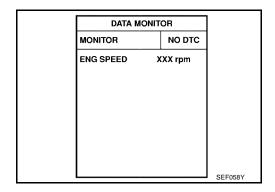
DTC Confirmation Procedure

UBS00BFN

CAUTION:

Always drive vehicle at a safe speed.

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Step 3 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(II) WITH CONSULT-II

- 1. Start engine.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Drive the vehicle at more than 30 km/h (19 MPH).
- If DTC is detected, go to <u>EC-529</u>, "<u>Diagnostic Procedure</u>".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P1574 ASCD VEHICLE SPEED SENSOR

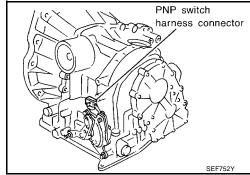
[QG18DE]

 \mathbb{N}

	[GG19DE]
Diagnostic Procedure 1. CHECK DTC WITH TCM	UBS00BFO A
Check DTC with TCM. Refer to AT-38, "ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION"	EC
OK or NG OK >> GO TO 2. NG >> Perform trouble shooting relevant to DTC indicated.	
2. CHECK DTC WITH "UNIFIED METER AND A/C AMP."	С
Refer to DI-15, "SELF-DIAGNOSIS FUNCTION" .	D
>> INSPECTION END	
	E
	F
	G
	Н
	I
	J
	К
	L

DTC P1706 PNP SWITCH

PFP:32006


UBS00BFP

Component Description

When the gear position is P or N (A/T models), Neutral (M/T models), park/neutral position (PNP) switch is ON.

ECM detects the park/neutral position when continuity with ground exists.

For A/T models, the park/neutral position (PNP) switch assembly also indicates a transmission range switch to detect selector lever position.

CONSULT-II Reference Value in Data Monitor Mode

UBSOOBFO

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
P/N POSI SW	Ignition switch: ON	Shift lever: P or N (A/T), Neutral (M/T)	ON
17141 031 300		Except above	OFF

On Board Diagnosis Logic

UBS00BFR

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1706 1706	Park/neutral position switch	The signal of the park/neutral position (PNP) switch is not changed in the process of engine starting and driving.	 Harness or connectors [The park/neutral position (PNP) switch circuit is open or shorted.] Park/neutral position (PNP) switch

DTC Confirmation Procedure

UBS00BFS

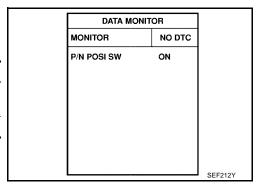
CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II


- 1. Turn ignition switch ON.
- Select "P/N POSI SW" in "DATA MONITOR" mode with CON-SULT-II. Then check the "P/N POSI SW" signal under the following conditions.

Position (Selector lever)	Known-good signal
N and P position (A/T models) Neutral position (M/T models)	ON
Except the above position	OFF

If NG, go to EC-533, "Diagnostic Procedure".

If OK, go to following step.

- Select "DATA MONITOR" mode with CONSULT-II.
- 4. Start engine and warm it up to normal operating temperature.

DTC P1706 PNP SWITCH

[QG18DE]

5. Maintain the following conditions for at least 50 consecutive seconds.

ENG SPEED	1,550 - 6,375 rpm (A/T) 1,850 - 6,375 rpm (M/T)
B/FUEL SCHDL	3.0 - 31.8 msec (A/T) 2.8 - 31.8 msec (M/T)
VHCL SPEED SE	More than 64 km/h (40 MPH)
Selector lever	Suitable position

6. If 1st trip DTC is detected, go to <u>EC-533, "Diagnostic Procedure"</u>

DATA N	MONITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm
COOLANTEME	P/S XXX°C
VHCL SPEED S	SE XXX km/h
P/N POSI SW	OFF
B/FUEL SCHDL	L XXX msec

Overall Function Check

BS00BFT

Use this procedure to check the overall function of the park/neutral position switch circuit. During this check, a 1st trip DTC might not be confirmed.

WITHOUT CONSULT-II

- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminal 102 (PNP switch signal) and ground under the following conditions.

Condition (Gear position)	Voltage (V) (Known-good data)
P and N position (A/T models) Neutral position (M/T models)	Approx. 0
Except the above position	A/T models: Battery voltage M/T models: Approximately 5V

3. If NG, go to EC-533, "Diagnostic Procedure".

Α

EC

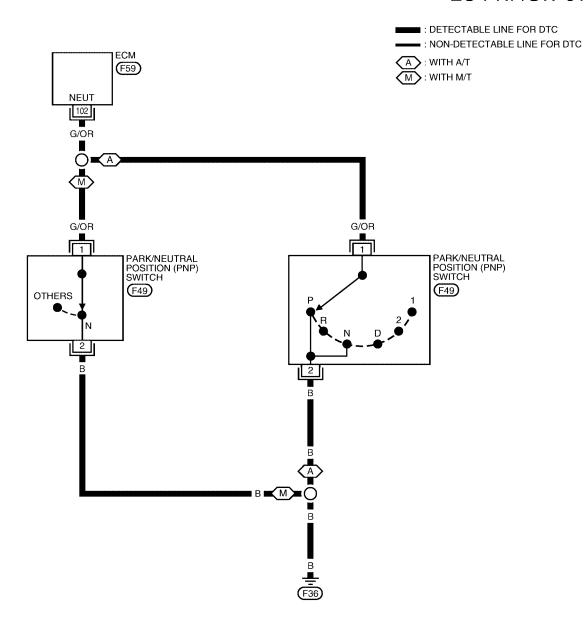
C

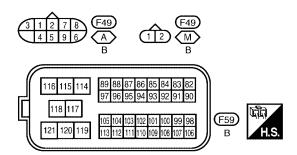
D

Н

F

J


K


ı

Wiring Diagram

IIRSOORFI

EC-PNP/SW-01

BBWA0304E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
102 G/OR		PNP switch	[Ignition switch: ON] • Shift lever: P or N (A/T), Neutral (M/T).	Approximately 0V
	G/OR		[Ignition switch: ON] • Except the above gear position	A/T models BATTERY VOLTAGE (11 - 14V) M/T models Approximately 5V

Diagnostic Procedure

CHECK PNP SWITCH GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect PNP switch harness connector.
- Check harness continuity between PNP switch terminal 2 and ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 2.

NG >> Repair open circuit or short to power in harness or connectors.

2. CHECK INPUT SIGNAL CIRCUIT

- Disconnect ECM harness connector. 1.
- Check harness continuity between ECM terminal 102 and PNP switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK PNP SWITCH

Refer to AT-115, "DTC P0705 PARK/NEUTRAL POSITION (PNP) SWITCH" (A/T models) or MT-12, "POSI-TION SWITCH" (M/T models).

OK or NG

OK >> GO TO 4.

NG >> Replace PNP switch.

4. CHECK INTERMITTENT INCIDENT

Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

EC

D

Α

UBS00BFV

Н

[QG18DE]

DTC P1805 BRAKE SWITCH

PFP:25320

Description

UBS00BFW

Brake switch signal is applied to the ECM through the stop lamp switch when the brake pedal is depressed. This signal is used mainly to decrease the engine speed when the vehicle is driving.

CONSULT-II Reference Value in Data Monitor Mode

UBS00BFX

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW	Ignition switch: ON	Brake pedal: Fully released	OFF
DIVARLE OW	• Igrition switch. Oil	Brake pedal: Slightly depressed	ON

On Board Diagnosis Logic

UBS00BFY

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1805 1805	Brake switch	A brake switch signal is not sent to ECM for an extremely long time while the vehicle is driving.	Harness or connectors (Stop lamp switch circuit is open or shorted.)Stop lamp switch

FALI-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode.

Engine operating condition in fail-safe mode		
ECM controls the electric throttle control actuator by regulating the throttle opening to a small range. Therefore, acceleration will be poor.		
Vehicle condition Driving condition		
When engine is idling Normal		
When accelerating Poor acceleration		

DTC Confirmation Procedure

UBS00BFZ

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Fully depress the brake pedal for at least 5 seconds.
- 3. Erase the DTC with CONSULT-II.
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- 5. If 1st trip DTC is detected, go to EC-536, "Diagnostic Procedure"

DATA MONITOR

MONITOR

NO DTC

ENG SPEED XXX rpm

SEF058Y

WITH GST

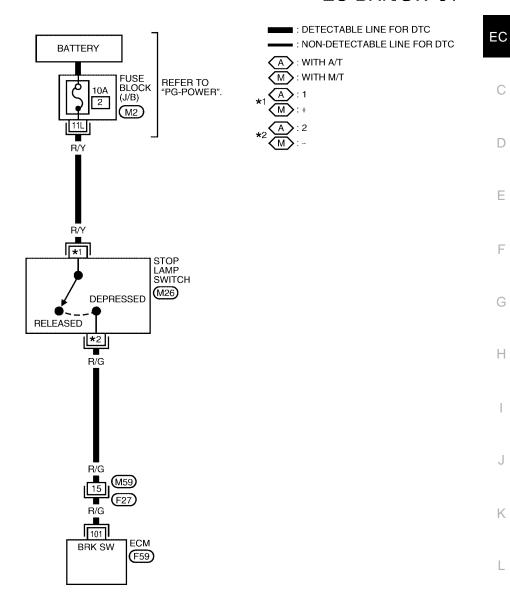
Follow the procedure "WITH CONSULT-II" above.

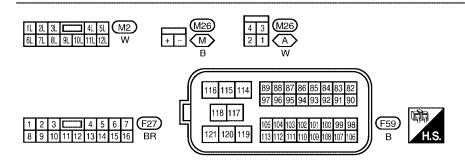
Wiring Diagram

Α

C

D


Е


Н

K

M

EC-BRK/SW-01

BBWA0703E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

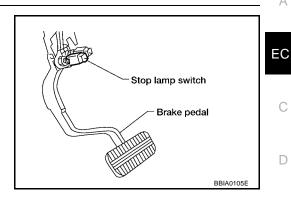
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101	R/G	Stop lamp switch	[Ignition switch: OFF] • Brake pedal fully released	Approximately 0V
			[Ignition switch: OFF] • Brake pedal depressed	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS00BG1

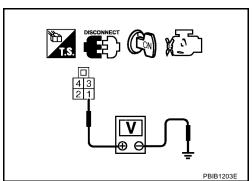
1. CHECK STOP LAMP SWITCH CIRCUIT

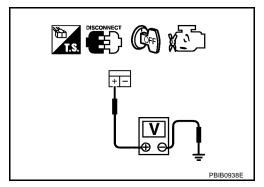
- Turn ignition switch OFF.
- 2. Check the stop lamp when depressing and releasing the brake pedal.


Brake pedal	Stop lamp	
Fully released	Not illuminated	
Depressed	Illuminated	

OK or NG

OK >> GO TO 4. NG >> GO TO 2.


2. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT


Disconnect stop lamp switch harness connector.

2. Check voltage between stop lamp switch terminal 1 (A/T models), + (M/T models) and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- 10A fuse
- Fuse block (J/B) connector M2
- Harness for open and short between stop lamp switch and battery
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

Α

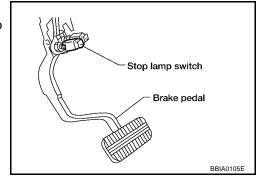
Е

D

Н

K

$4.\,$ check stop lamp switch input signal circuit for open and short


- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect stop lamp switch harness connector.
- Check harness continuity between ECM terminal 101 and stop lamp switch terminal 2 (A/T models), – (M/T models). Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness for open or short between ECM and stop lamp switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK STOP LAMP SWITCH

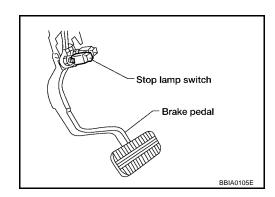
Refer to EC-538, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace stop lamp switch.

7. CHECK INTERMITTENT INCIDENT

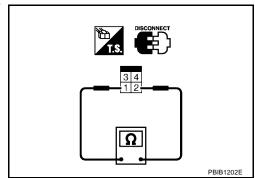

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

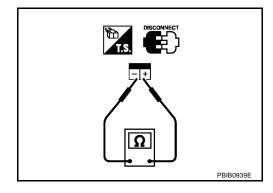
>> INSPECTION END

Component Inspection STOP LAMP SWITCH

1. Disconnect stop lamp switch harness connector.

UBS00BG2


DTC P1805 BRAKE SWITCH


[QG18DE]

2. Check continuity between stop lamp switch terminals 1 and 2 (A/ T models), + and - (M/T models) under the following conditions.

Conditions	Continuity	
Brake pedal fully released	Should not exist.	
Brake pedal depressed	Should exist.	

If NG, adjust brake pedal installation, refer to <u>BR-11, "BRAKE PEDAL AND BRACKET"</u>, and perform step 2 again.

Α

EC

D

С

Е

F

G

Н

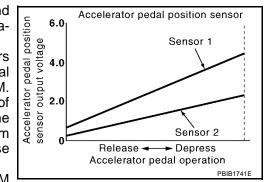
J

Κ

L

DTC P2122, P2123 APP SENSOR

PFP:18002


UBS00BG3

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelera-

tor position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

UBS00BG4

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN1	Ignition switch: ON	Accelerator pedal: Fully released	0.65 - 0.87V
ACCEL SENT	(Engine stopped)	Accelerator pedal: Fully depressed	More than 4.3V
ACCEL SEN2*	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	0.56 - 0.96V
ACCEL SENZ		Accelerator pedal: Fully depressed	More than 4.0V
CLSD THL POS	Ignition switch: ON	Accelerator pedal: Fully released	ON
OLOD THE FOO	(Engine stopped)	Accelerator pedal: Slightly depressed	OFF

^{*:} Accelerator pedal sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

UBS00BG5

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P2122 2122	Accelerator pedal position sensor 1 circuit low input	An excessively low voltage from the APP sensor 1 is sent to ECM.	Harness or connectors (The APP sensor 1 circuit is open or	
P2123 2123	Accelerator pedal position sensor 1 circuit high input	An excessively high voltage from the APP sensor 1 is sent to ECM.	shorted.) • Accelerator pedal position sensor (Accelerator pedal position sensor 1)	

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

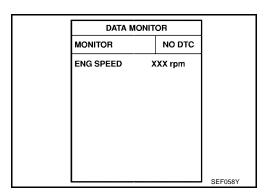
DTC P2122, P2123 APP SENSOR

[QG18DE]

DTC Confirmation Procedure

UBS00BG6

NOTE


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-543, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

С

D

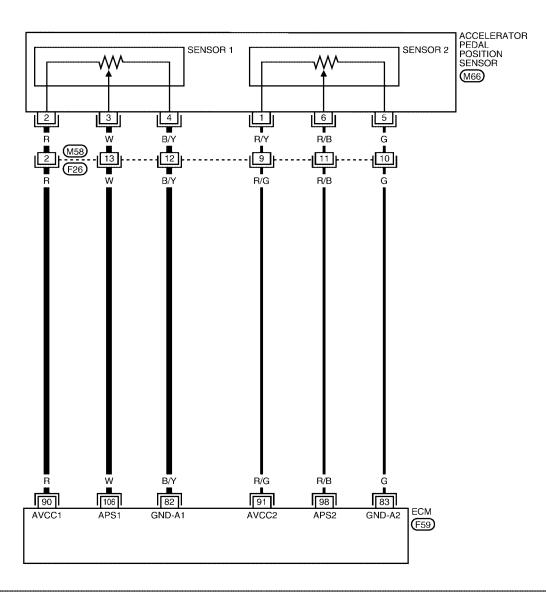
Е

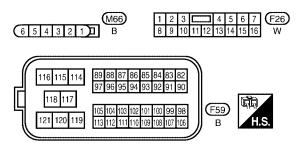
G

Н

/

ı


M


Wiring Diagram

JBS00BG

EC-APPS1-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

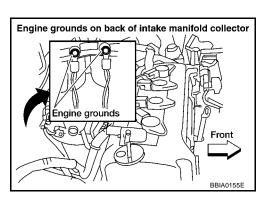
BBWA0704E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
82	B/Y	Accelerator pedal position sensor 1 ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
83	G	Accelerator pedal position sensor 2 ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
90	R	Accelerator pedal position sensor 1 power supply	[Ignition switch: ON]	Approximately 5V
91	R/G	Accelerator pedal position sensor 2 power supply	[Ignition switch: ON]	Approximately 5V
98 R/I	[Ignition switch: ON] • Engine stopped • Shift lever: D (A/T), 1st (M/T) • Accelerator pedal position	Engine stoppedShift lever: D (A/T), 1st (M/T)	0.28 - 0.48V	
	K/B	sensor 2	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully depressed 	More than 2.0V
106 V	N	Accelerator pedal position	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully released 	0.65 - 0.87V
	W	sensor 1	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully depressed 	More than 4.3V


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

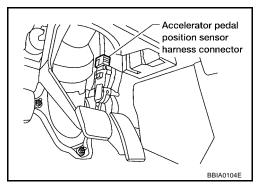
Turn ignition switch OFF. 1.

2. Loosen and retighten engine ground screws.

>> GO TO 2.

Α

EC

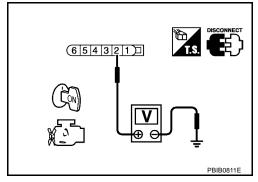

Е

D

Н

$2.\,$ check app sensor 1 power supply circuit

- Disconnect accelerator pedal position (APP) sensor harness connector.
- 2. Turn ignition switch ON.



Check voltage between APP sensor terminal 2 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M58, F26
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK APP SENSOR 1 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 82 and APP sensor terminal 4. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M58, F26
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

D

Е

Н

M

UBS00BG9

6. CHECK APP SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal 106 and APP sensor terminal 3. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M58, F26
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK APP SENSOR

Refer to EC-545, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace accelerator pedal assembly.

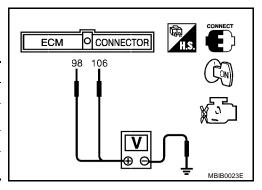
9. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection ACCELERATOR PEDAL POSITION SENSOR

Reconnect all harness connectors disconnected.


- 2. Turn ignition switch ON.
- 3. Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
106	Fully released	0.65 - 0.87V
(Accelerator pedal position sensor 1)	Fully depressed	More than 4.3V
98	Fully released	0.28 - 0.48V
(Accelerator pedal position sensor 2)	Fully depressed	More than 2.0V

- 4. If NG, replace accelerator pedal assembly and go to the next step.
- 5. Perform EC-47, "Accelerator Pedal Released Position Learning".
- 6. Perform EC-47, "Throttle Valve Closed Position Learning".
- Perform EC-47, "Idle Air Volume Learning".

Removal and Installation ACCELERATOR PEDAL

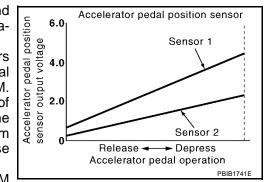
Refer to ACC-2, "ACCELERATOR CONTROL SYSTEM".

UBS00BGA

EC-545

DTC P2127, P2128 APP SENSOR

PFP:18002


UBS00BGB

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelera-

tor position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

UBS00BGC

Specification data are reference values.

MONITOR ITEM	С	ONDITION	SPECIFICATION
ACCEL SEN1	Ignition switch: ON	Accelerator pedal: Fully released	0.65 - 0.87V
ACCEL SENT	(Engine stopped)	Accelerator pedal: Fully depressed More than 4.3V	More than 4.3V
ACCEL SEN2*	 Ignition switch: ON (Engine stopped) Accelerator pedal: Fully released Accelerator pedal: Fully depresse 	Accelerator pedal: Fully released	0.56 - 0.96V
ACCEL SENZ		Accelerator pedal: Fully depressed	More than 4.0V
CLSD THL POS	Ignition switch: ON	Accelerator pedal: Fully released	ON
CLOD THE POS	(Engine stopped)	Accelerator pedal: Slightly depressed	OFF

^{*:} Accelerator pedal sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

UBS00BGD

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1227 1227	Accelerator pedal position sensor 2 circuit low input	An excessively low voltage from the APP sensor 2 is sent to ECM.	Harness or connectors (The APP sensor 2 circuit is open or shorted.)
P1228 1228	Accelerator pedal position sensor 2 circuit high input	An excessively high voltage from the APP sensor 2 is sent to ECM.	,

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

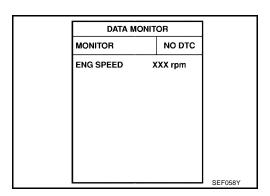
So, the acceleration will be poor.

[QG18DE]

DTC Confirmation Procedure

UBS00BGE

NOTE


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-549, "Diagnostic Procedure".

WITH GST

Follow the procedure "With CONSULT-II" above.

EC

Α

С

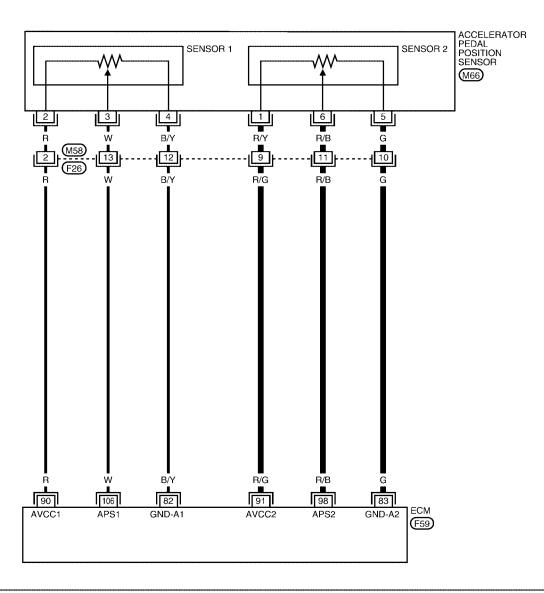
D

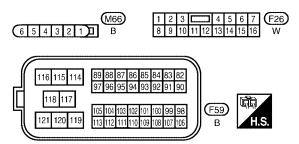
Е

Н

1

ı


M


Wiring Diagram

UBS00BGF

EC-APPS2-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

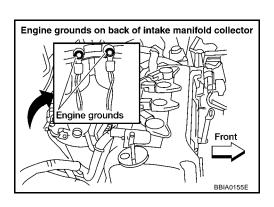
BBWA0705E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
82	B/Y	Accelerator pedal position sensor 1 ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
83	G	Accelerator pedal position sensor 2 ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
90	R	Accelerator pedal position sensor 1 power supply	[Ignition switch: ON]	Approximately 5V
91	R/G	Accelerator pedal position sensor 2 power supply	[Ignition switch: ON]	Approximately 5V
98 R/B	D/D	Accelerator pedal position	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully released 	0.28 - 0.48V
	ΝĐ	sensor 2	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully depressed 	More than 2.0V
106 W	Accelerator pedal position	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully released 	0.65 - 0.87V	
	VV	sensor 1	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully depressed 	More than 4.3V


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

Turn ignition switch OFF. 1.

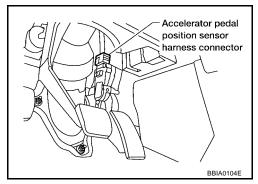
2. Loosen and retighten engine ground screws.

>> GO TO 2.

Α

EC

D

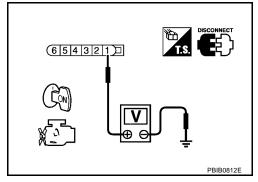

Е

Н

UBS00BGG

2. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT

- Disconnect accelerator pedal position (APP) sensor harness connector.
- 2. Turn ignition switch ON.



Check voltage between APP sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M58, F26
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK APP SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Check harness continuity between ECM terminal 83 APP sensor terminal 5. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

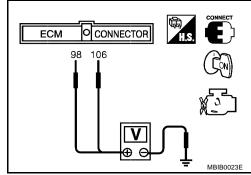
5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M58, F26
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

DTC P2127, P2128 APP SENSOR

[QG18DE]


6.	CHECK APP SENSOR 2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	А
1.	Check harness continuity between ECM terminal 98 and APP sensor terminal 6. Refer to Wiring Diagram.	
	Continuity should exist.	EC
	Also check harness for short to ground and short to power. Sor NG K >> GO TO 8. G >> GO TO 7.	С
7.	DETECT MALFUNCTIONING PART	D
Cho	eck the following. Harness connectors M58, F26 Harness for open or short between ECM and accelerator pedal position sensor	E
	>> Repair open circuit or short to ground or short to power in harness or connectors.	F
8.	CHECK APP SENSOR	G
	fer to EC-552, "Component Inspection".	
	K or NG K >> GO TO 9. G >> Replace accelerator pedal assembly.	Н
9.	CHECK INTERMITTENT INCIDENT	
Re	fer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	
	>> INSPECTION END	J
		К
		L
		M

Component Inspection
ACCELERATOR PEDAL POSITION SENSOR

UBS00BGH

- Reconnect all harness connectors disconnected.
- 2. Turn ignition switch ON.
- 3. Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
106	Fully released	0.65 - 0.87V
(Accelerator pedal position sensor 1)	Fully depressed	More than 4.3V
98	Fully released	0.28 - 0.48V
(Accelerator pedal position sensor 2)	Fully depressed	More than 2.0V

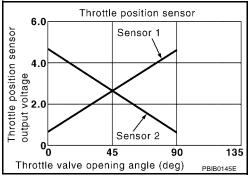
- 4. If NG, replace accelerator pedal assembly.
- 5. Perform EC-47, "Accelerator Pedal Released Position Learning" .
- 6. Perform EC-47, "Accelerator Pedal Released Position Learning".
- 7. Perform EC-47, "Idle Air Volume Learning".

Removal and Installation ACCELERATOR PEDAL

UBS00BGI

Refer to ACC-2, "ACCELERATOR CONTROL SYSTEM" .

DTC P2135 TP SENSOR


PFP:16119

Component Description

UBS00BGJ

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

UBS00BGK

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	
THRTL SEN1	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	More than 0.36V	
THRTL SEN2*	• Shift lever: D (A/T), 1st (M/T)	Accelerator pedal: Fully depressed	Less than 4.75V	

^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

UBS00BGL

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2135 2135	Throttle position sensor circuit range/performance problem	Rationally incorrect voltage is sent to ECM compared with the signals from TP sensor 1 and TP sensor 2.	 Harness or connector (The TP sensor 1 and 2 circuit is open or shorted.) Electric throttle control actuator (TP sensor 1 and 2)

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

EC

Α

Е

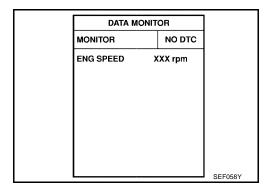
Н

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

DTC Confirmation Procedure

UBS00BGM

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-556, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram Α EC-TPS3-01 ELECTRIC THROTTLE CONTROL ACTUATOR (THROTTLE POSITION SENSOR) SENSOR 1 SENSOR 2 ■: DETECTABLE LINE FOR DTC EC : NON-DETECTABLE LINE FOR DTC (F58) C 4 2 5 D Е Н 69 47 66 ECM GND-A3 (F60) M54 M 1 2 3 4 5 6 7 F26 8 9 10 11 12 13 14 15 16 W (F60)

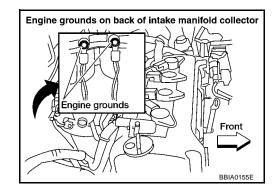
BBWA0706E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

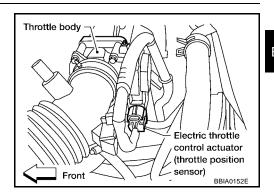
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
47	В	Throttle position sensor power supply	[Ignition switch: ON]	Approximately 5V
50	w	Throttle position concer 1	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully released 	More than 0.36V
50	VV	Throttle position sensor 1	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully depressed 	Less than 4.75V
66	R	Throttle position sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
69	G	Throttle position sensor 2	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully released [Ignition switch: ON] Engine stopped 	Less than 4.75V More than 0.36V
			Shift lever: D (A/T), 1st (M/T)Accelerator pedal fully depressed	Word dian 0.50v


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

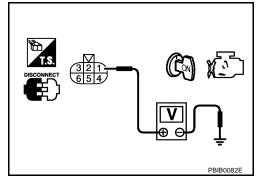
UBS00BGO


- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.


 Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK THROTTLE POSITION SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 66 and electric throttle control actuator terminal 5 and ECM terminal 66.
 Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

$f 4.\,$ check throttle position sensor input signal circuit for open and short

 Check harness continuity between ECM terminal 50 and electric throttle control actuator terminal 4, ECM terminal 69 and electric throttle control actuator terminal 2. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK THROTTLE POSITION SENSOR

Refer to EC-558, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

EC-557

EC

Α

С

D

Е

F

G

Н

J

K

M

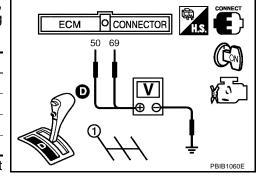
6. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-47, "Throttle Valve Closed Position Learning".
- 3. Perform EC-47, "Idle Air Volume Learning".

>> INSPECTION END

7. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection THROTTLE POSITION SENSOR

UBS00BGP

- Reconnect all harness connectors disconnected.
- 2. Perform EC-47, "Throttle Valve Closed Position Learning".
- 3. Turn ignition switch ON.
- 4. Set selector lever to D position (A/T models) or 1st position (M/T models).
- Check voltage between ECM terminals 50 (TP sensor 1 signal),
 (TP sensor 2 signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	sensor 1) Fully depressed	Less than 4.75V
69	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform EC-47, "Throttle Valve Closed Position Learning".
- 8. Perform <u>EC-47</u>, "Idle Air Volume Learning".

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

UBS00BGQ

Refer to EM-13, "Removal and Installation".

[QG18DE]

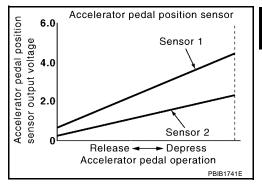
DTC P2138 APP SENSOR

PFP:18002

Component Description

UBS00BGR

Α


EC

Е

Н

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM

receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

UBS00BGS

Specification data are reference values.

MONITOR ITEM	MONITOR ITEM CONDITION		SPECIFICATION
ACCEL SEN1	Ignition switch: ON	Accelerator pedal: Fully released	0.65 - 0.87V
ACCEL SENT	(Engine stopped)	Accelerator pedal: Fully depressed	More than 4.3V
ACCEL SEN2*	Ignition switch: ON	Accelerator pedal: Fully released	0.56 - 0.96V
ACCEL SENZ	(Engine stopped)	Accelerator pedal: Fully depressed More than 4.0V	More than 4.0V
CLSD THL POS	Ignition switch: ON	Accelerator pedal: Fully released	ON
CLOD THE POS	(Engine stopped)	Accelerator pedal: Slightly depressed	OFF

^{*:} Accelerator pedal sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

UBS00BGT

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2138 2138	Accelerator pedal position sensor circuit range/performance problem	Rationally incorrect voltage is sent to ECM compared with the signals from APP sensor 1 and APP sensor 2.	 Harness or connector (The APP sensor 1 and 2 circuit is open or shorted.) Accelerator pedal position sensor 1 and 2

FAIL-SAFE MODE

M

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

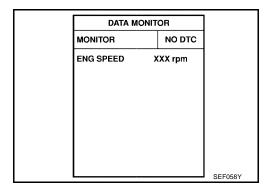
The ECM regulates the opening speed of throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

UBS00BGU

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-562, "Diagnostic Procedure".

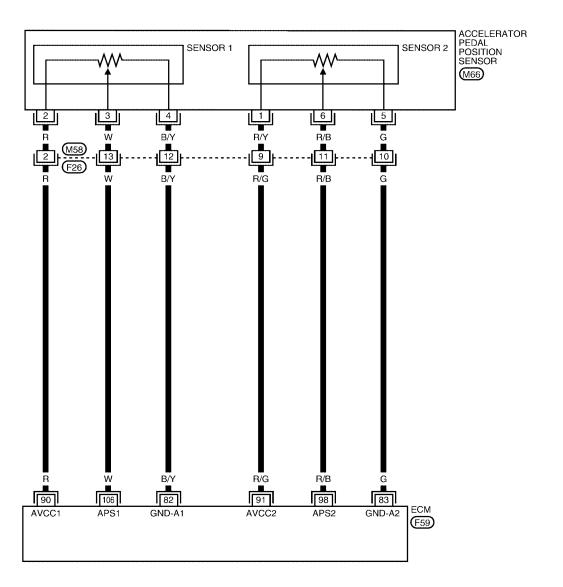
WITH GST

Follow the procedure "WITH CONSULT-II" above.

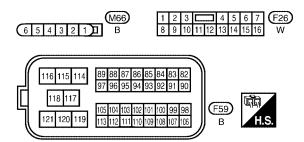
Wiring Diagram

DOGGDO!

EC-APPS3-01


: DETECTABLE LINE FOR DTC

: NON-DETECTABLE LINE FOR DTC


EC

C

Α

D E F G H I M

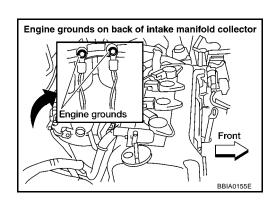
BBWA0707E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

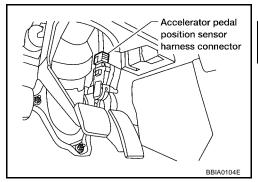
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
82	B/Y	Accelerator pedal position sensor 1ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
83	G	Accelerator pedal position sensor 2 ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
90	R	Accelerator pedal position sensor 1 power supply	[Ignition switch: ON]	Approximately 5V
91	R/G	Accelerator pedal position sensor 2 power supply	[Ignition switch: ON] Approximately 5V	
	R/B	Accelerator pedal position	 [Ignition switch: ON] ● Engine stopped ● Shift lever: D (A/T), 1st (M/T) ● Accelerator pedal fully released 	0.28 - 0.48V
98	K/B	sensor 2	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully depressed 	More than 2.0V
106	W	Accelerator pedal position	 [Ignition switch: ON] ● Engine stopped ● Shift lever: D (A/T), 1st (M/T) ● Accelerator pedal fully released 	0.65 - 0.87V
100	sens	sensor 1	 [Ignition switch: ON] ● Engine stopped ● Shift lever: D (A/T), 1st (M/T) ● Accelerator pedal fully depressed 	More than 4.3V


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

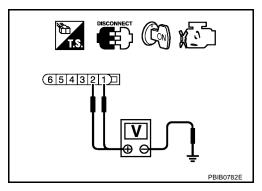
Turn ignition switch OFF.


2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK APP SENSOR POWER SUPPLY CIRCUIT

- Disconnect accelerator pedal position (APP) sensor harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between APP sensor terminals 1, 2 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M58, F26
- Harness for open or short between ECM and accelerator pedal position sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK APP SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 82 and APP sensor terminal 4, ECM terminal 83 and APP sensor terminal 5.
 Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M58, F26
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

Α

D

Е

F

G

Н

M

K

6. CHECK APP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 106 and APP sensor terminal 3, ECM terminal 98 and APP sensor terminal 6.
 Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M58, F26
- Harness for open or short between ECM and accelerator pedal position sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK APP SENSOR

Refer to EC-565, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace the accelerator pedal position sensor.

9. CHECK INTERMITTENT INCIDENT

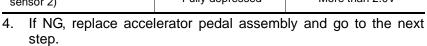
Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P2138 APP SENSOR

[QG18DE]

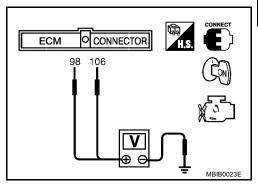
UBS00BGX


Component Inspection ACCELERATOR PEDAL POSITION SENSOR

Reconnect all harness connectors disconnected.

- 2. Turn ignition switch ON.
- 3. Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
106	Fully released	0.65 - 0.87V
(Accelerator pedal position sensor 1)	Fully depressed	More than 4.3V
98	Fully released	0.28 - 0.48V
(Accelerator pedal position sensor 2)	Fully depressed	More than 2.0V



- 5. Perform EC-47, "Accelerator Pedal Released Position Learning".
- 6. Perform EC-47, "Throttle Valve Closed Position Learning".
- Perform EC-47, "Idle Air Volume Learning". 7.

Removal and Installation **ACCELERATOR PEDAL**

Refer to ACC-2, "ACCELERATOR CONTROL SYSTEM".

EC

Α

C

D

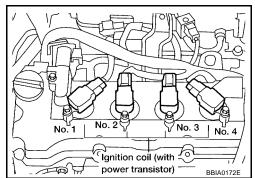
Е

F

UBS00BGY

Н

K


M

IGNITION SIGNAL PFP:22448

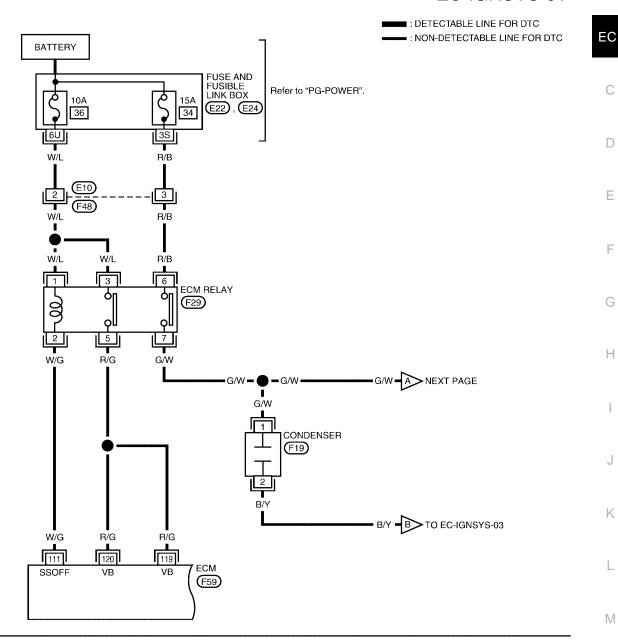
Component Description IGNITION COIL & POWER TRANSISTOR

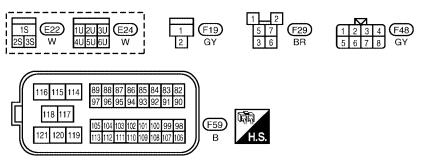
UBS00BGZ

The ignition signal from the ECM is sent to and amplified by the power transistor. The power transistor turns ON and OFF the ignition coil primary circuit. This ON-OFF operation induces the proper high voltage in the coil secondary circuit.

Wiring Diagram

Α


C


D

Е

Н

EC-IGNSYS-01

BBWA0708E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
111	W/G	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] ● For a few seconds after turning ignition switch OFF	0 - 1.0V
			[Ignition switch: OFF]◆ A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Α

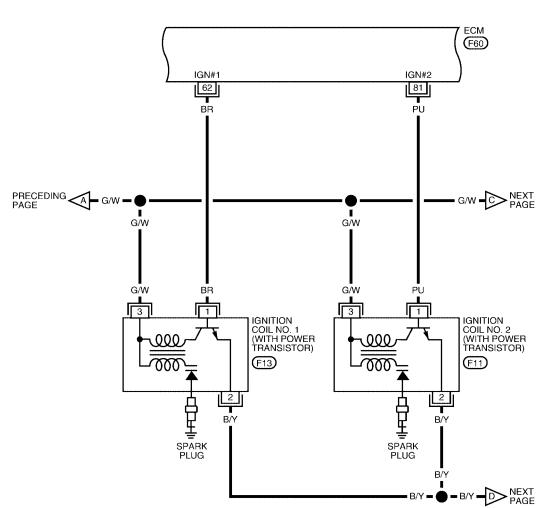
EC

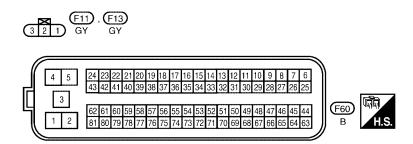
C

D

Е

F


Н


K

M

EC-IGNSYS-02

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

BBWA0709E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
62 B	BR	[Engine is running] • Warm-up condition • Idle speed Ignition signal No. 1	0 - 0.1V★	
81	PU	Ignition signal No. 2	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - 0.2V★

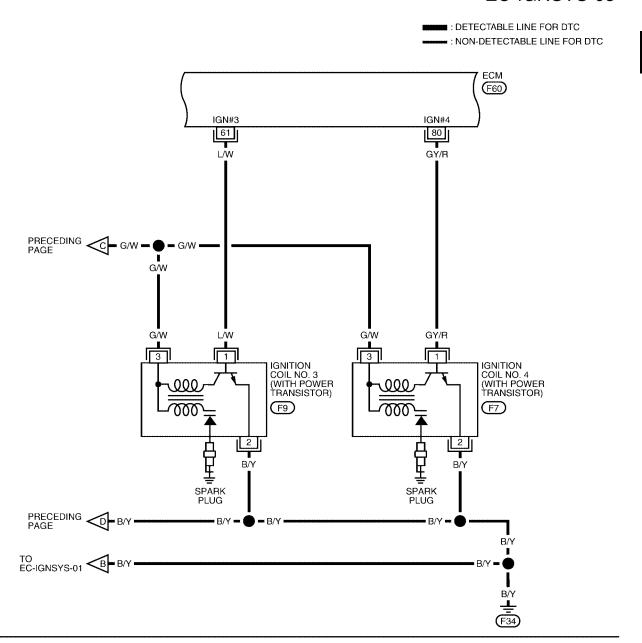
^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

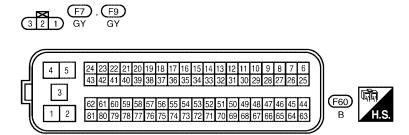
Α

EC

C

D


Е


Н

K

M

EC-IGNSYS-03

BBWA0710E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
61	L/W	Ignition signal No. 3	[Engine is running]Warm-up conditionIdle speed	0 - 0.1V★	
80	GY/R	Ignition signal No. 4	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - 0.2V★	

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

UBS00BH1

1. CHECK ENGINE START

Turn ignition switch OFF, and restart engine.

Is engine running?

Yes or No

Yes (With CONSULT-II) >>GO TO 2. Yes (Without CONSULT-II) >>GO TO 3. No >> GO TO 4.

2. CHECK OVERALL FUNCTION

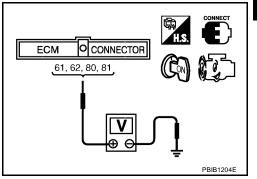
(II) With CONSULT-II

- 1. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 2. Make sure that each circuit produces a momentary engine speed drop.

OK or NG

OK >> **INSPECTION END** NG >> GO TO 10.

		•
ACTIVE TES		
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
L		PBIB0133E


3. CHECK OVERALL FUNCTION

⋈ Without CONSULT-II

- 1. Let engine idle.
- 2. Read the voltage signal between ECM terminals 61, 62, 80, 81 and ground with an oscilloscope.
- 3. Verify that the oscilloscope screen shows the signal wave as shown below.

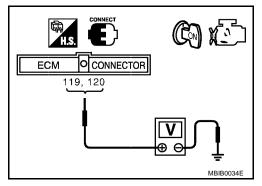
PBIB0521E

OK or NG

OK >> INSPECTION END

NG >> GO TO 10.

4. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-I

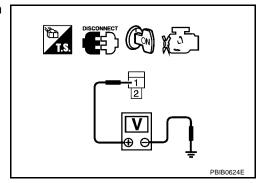

- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminals 119, 120 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5.

NG >> Go to EC-141, "POWER SUPPLY CIRCUIT FOR ECM"


5. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect condenser harness connector.
- 3. Turn ignition switch ON.
- 4. Check voltage between condenser terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10. NG >> GO TO 6.

EC

_

D

Е

C

G

Н

K

L

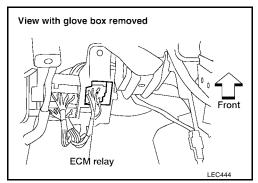
M

1\

6. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-III

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM relay.
- Check harness continuity between ECM relay terminal 7 and condenser terminal 1. Refer to Wiring Diagram.

Continuity should exist.

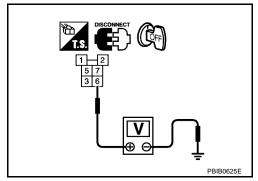

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair

>> Repair open circuit or short to ground or short to power in harness or connectors.


7. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-IV

Check voltage between ECM relay terminal 6 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10, F48
- 15A fuse
- Harness for open or short between ECM relay and battery
 - >> Repair or replace harness or connectors.

9. CHECK ECM RELAY

Refer to EC-576, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace ECM relay.

10. CHECK CONDENSER GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect condenser harness connector.
- 3. Check harness continuity between condenser terminal 2 and ground. Refer to Wiring diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 11.

NG >> Repair open circuit or short to power in harness or connector.

EC

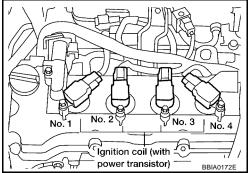
D

Е

Н

11. CHECK CONDENSER

Refer to EC-576, "Component Inspection".

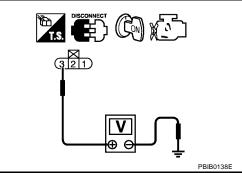

OK or NG

OK >> GO TO 12.

NG >> Replace condenser.

12. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-V

- Turn ignition switch OFF. 1.
- 2. Reconnect all harness connectors disconnected.
- Disconnect ignition coil harness connector.
- Turn ignition switch ON.



Check voltage between ignition coil terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 14. NG >> GO TO 13.

13. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between ignition coil and ECM relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

14. CHECK IGNITION COIL GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Check harness continuity between ignition coil terminal 2 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 15.

NG >> Repair open circuit or short to power in harness or connectors.

M

15. CHECK IGNITION COIL OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminals 61, 62, 80, 81 and ignition coil terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 16.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

16. CHECK IGNITION COIL WITH POWER TRANSISTOR

Refer to EC-576, "Component Inspection".

OK or NG

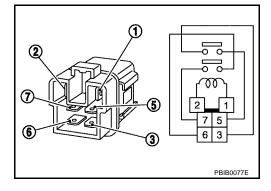
OK >> GO TO 17.

NG >> Replace ignition coil with power transistor.

17. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

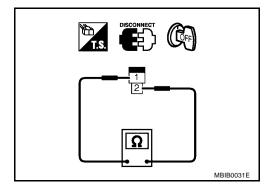
>> INSPECTION END


Component Inspection ECM RELAY

UBS00BH2

- 1. Apply 12V direct current between ECM relay terminals 1 and 2.
- 2. Check continuity between relay terminals 3 and 5, 6 and 7.

Condition	Continuity
12V direct current supply between terminals 1 and 2	Yes
OFF	No

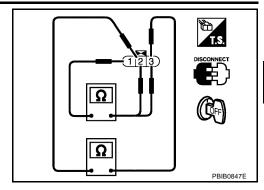

If NG, replace ECM relay.

CONDENSER

- 1. Turn ignition switch OFF.
- 2. Disconnect condenser harness connector.
- 3. Check resistance between condenser terminals 1 and 2.

Resistance: Above 1 M Ω at 25°C (77°F)

IGNITION COIL WITH POWER TRANSISTOR


- 1. Turn ignition switch OFF.
- 2. Disconnect ignition coil harness connector.

IGNITION SIGNAL

[QG18DE]

3. Check resistance between ignition coil terminals as follows.

Terminal No.	Resistance Ω [at 25°C (77°F)]
1 and 2	Except 0 or ∞
1 and 3	Event 0
2 and 3	Except 0

Removal and Installation IGNITION COIL WITH POWER TRANSISTOR

Refer to EM-13, "Removal and Installation".

UBS00BH3

F

Е

Α

EC

С

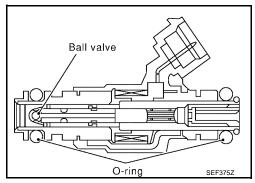
D

G

Н

Κ

L


M

INJECTOR PFP:16600

Component Description

UBS00BH4

The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the injector circuit, the coil in the injector is energized. The energized coil pulls the needle valve back and allows fuel to flow through the injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.

CONSULT-II Reference Value in Data Monitor Mode

UBS00BH5

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up Air conditioner switch: OFF	Idle	2.4 - 3.2 msec
INJ PULSE-B1	 Shift lever: N (A/T), Neutral (M/T) No-load 	2,000 rpm	1.9 - 3.2 msec
	Engine: After warming up	Idle	1.0 - 1.6 msec
B/FUEL SCHDL	 Air conditioner switch: OFF Shift lever: N (A/T), Neutral (M/T) No-load 	2,000 rpm	0.7 - 1.3 msec

BBWA0711E

F102 , F103 , F104 , F105 GY

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
22 23	G/B R/B	Injector No. 3 Injector No. 1 Injector No. 4 Injector No. 2	[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)★ → 10.0 V/Div 50 ms/Div T
41 42	L/B Y/B		[Engine is running]Warm-up conditionEngine speed is 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ 22 10.0 V/Div 50 ms/Div T PBIB0530E

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

UBS00BH7

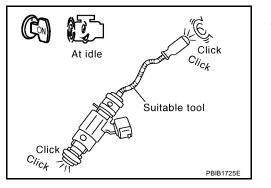
1. INSPECTION START

Turn ignition switch to START. Is any cylinder ignited?

Yes or No

Yes >> GO TO 2. No >> GO TO 3.

$\overline{2}$. CHECK OVERALL FUNCTION


(II) With CONSULT-II

- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Make sure that each circuit produces a momentary engine speed drop.

ACTIVE TES	ST	
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		PBIB0133E

Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound. Clicking noise should be heard.

OK or NG

OK >> INSPECTION END

NG >> GO TO 3. EC

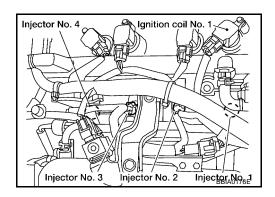
Α

D

C

Е

F

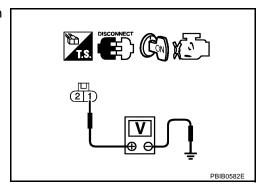

Н

K

M

3. CHECK POWER SUPPLY CIRCUIT

- 1. Stop engine.
- 2. Disconnect injector harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between injector terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M19, E108
- Harness connectors E10, F48
- Harness connectors F12, F101
- Fuse block (J/B) connector M1
- 10A fuse
- Harness for open or short between injector and fuse

>> Repair harness or connectors.

5. CHECK INJECTOR OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between injector harness connector terminal 2 and ECM terminals 22, 23, 41, 42.

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

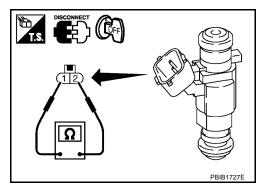
OK or NG

OK >> GO TO 7. NG >> GO TO 6.

INJECTOR

[QG18DE]

 \mathbb{M}


6. DETECT MALFUNCTIONING PART	A
Check the following.	
Harness connectors F12, F101	EC
Harness for open or short between injector and ECM	LO
>> Repair open circuit or short to ground or short to power in harness or connectors.	C
7. CHECK INJECTOR	
Refer to EC-584, "Component Inspection".	D
OK or NG	
OK >> GO TO 8. NG >> Replace injector.	Е
8. CHECK INTERMITTENT INCIDENT	
Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .	F
>> INSPECTION END	
	G
	Н
	J
	12
	K
	L

Component Inspection INJECTOR

UBS00BH8

- 1. Disconnect injector harness connector.
- 2. Check resistance between terminals as shown in the figure.

Resistance: 13.5 - 17.5 Ω [at 20°C (68°F)]

UBS00BH9

Removal and Installation INJECTOR

Refer to EM-19, "Removal and Installation".

[QG18DE]

FUEL PUMP

System Description SYSTEM DESCRIPTION

PFP:17042

UBS00BHA

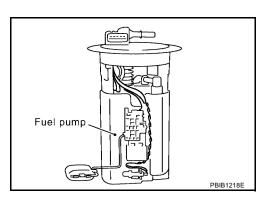
EC

D

F

Н

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	on sensor (PHASE) Engine speed* Fuel pump		Fuel pump relay
Battery	Battery voltage*	control	


^{*:} ECM determines the start signal status by the signals of engine speed and battery voltage.

The ECM activates the fuel pump for 1 second after the ignition switch is turned on to improve engine startability. If the ECM receives a engine speed signal from the camshaft position sensor (PHASE), it knows that the engine is rotating, and causes the pump to operate. If the engine speed signal is not received when the ignition switch is ON, the engine stalls. The ECM stops pump operation and prevents battery discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

Condition	Fuel pump operation
Ignition switch is turned to ON.	Operates for 1 second
Engine running and cranking	Operates
When engine is stopped	Stops in 1 second
Except as shown above	Stops

COMPONENT DESCRIPTION

A turbine type design fuel pump is used in the fuel tank.

CONSULT-II Reference Value in Data Monitor Mode

MONITOR ITEM

CONDITION

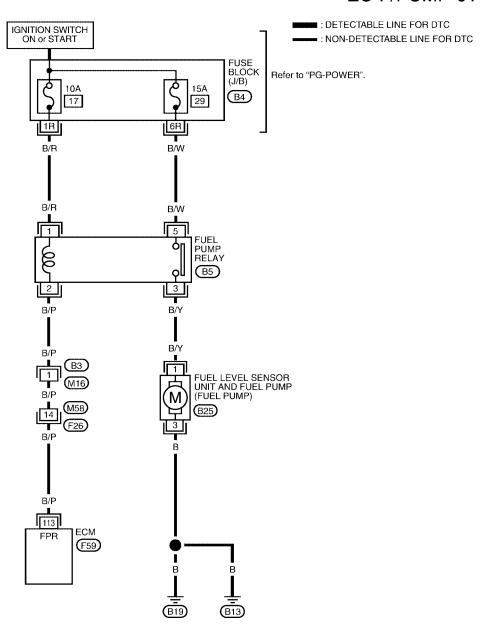
SPECIFICATION

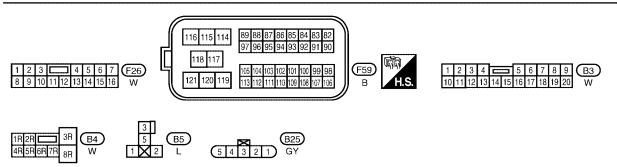
Ignition switch is turned to ON (Operates for 1 second)

Engine running and cranking

When engine is stopped (Stops in 1 second)

Except as shown above


OFF


EC-585

Wiring Diagram

UBSOOBHO

EC-F/PUMP-01

BBWA0314E

Specification data are reference values and are measured between each terminal and ground.

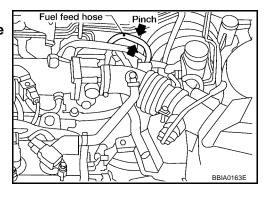
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
113	B/P	Fuel pump relay	 [Ignition switch: ON] For 1 second after turning ignition switch ON. [Engine is running] 	0 - 1.0V
			[Ignition switch: ON] • More than 1 second after turning ignition switch ON.	BATTERY VOLTAGE (11 - 14V)

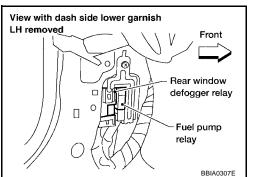
Diagnostic Procedure

1. CHECK OVERALL FUNCTION


1. Turn ignition switch ON.

Pinch fuel feed hose with fingers. Fuel pressure pulsation should be felt on the fuel feed hose for 1 seconds after ignition switch is turned ON.

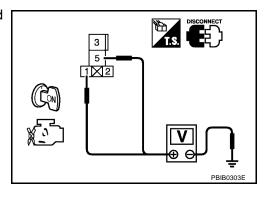
OK or NG


OK >> INSPECTION END

NG >> GO TO 2.

2. CHECK FUEL PUMP POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF.
- 2. Disconnect fuel pump relay.
- Turn ignition switch ON.



4. Check voltage between fuel pump relay terminals 1, 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

Α

EC

Е

D

UBS00BHD

Н

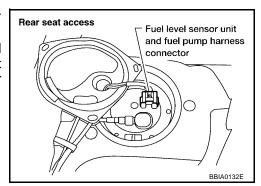
K

3. detect malfunctioning part

Check the following.

- 10A fuse
- 15A fuse
- Fuse block (J/B) connector B4
- Harness for open or short between fuse and fuel pump relay
 - >> Repair harness or connectors.

4. CHECK POWER GROUND CIRCUIT AND GROUND CIRCUIT FOR OPEN AND SHORT


- 1. Turn ignition switch OFF.
- 2. Disconnect "fuel level sensor unit and fuel pump" harness connector.
- Check harness continuity between "fuel level sensor unit and fuel pump" terminal 3 and body ground, "fuel level sensor unit and fuel pump" terminal 1 and fuel pump relay terminal 3. Refer to wiring diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between and "fuel level sensor unit and fuel pump" and body ground
- Harness for open or short between and "fuel level sensor unit and fuel pump" and fuel pump relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK FUEL PUMP RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 113 and fuel pump relay connector terminal 2. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

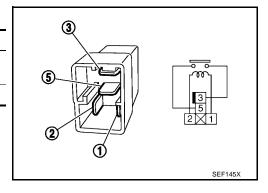
Check the following.

- Harness connectors B3, M16
- Harness connector M58, F26
- Harness for open or short between ECM and fuel pump relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

FUEL PUMP

[QG18DE]

8. CHECK FUEL PUMP RELAY	
-	A
Refer to EC-590, "Component Inspection".	
OK or NG OK >> GO TO 9.	EC
NG >> Replace fuel pump relay.	
9. CHECK FUEL PUMP	С
Refer to EC-590, "Component Inspection" .	
OK or NG	D
OK >> GO TO 10. NG >> Replace "fuel level sensor unit and fuel pump".	
10. CHECK INTERMITTENT INCIDENT	Е
Perform EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .	
>> INSPECTION END	F
	G
	Н
	I
	J
	K
	1
	_
	2.4
	M

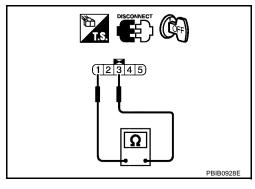

Component Inspection FUEL PUMP RELAY

UBS00BHE

Check continuity between terminals 3 and 5.

Condition	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

If NG, replace relay.



FUEL PUMP

- 1. Disconnect "fuel level sensor unit and fuel pump" harness connector.
- 2. Check resistance between "fuel level sensor unit and fuel pump" terminals 1 and 3.

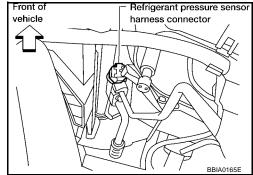
Resistance: $0.2 - 5.0\Omega$ [at 25°C (77°F)]

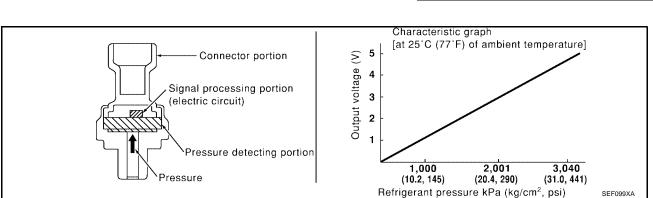
If NG, replace "fuel level sensor unit and fuel pump".

Removal and Installation FUEL PUMP

UBS00BHF

Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".


REFRIGERANT PRESSURE SENSOR


PFP:92136

Description

UBS00BHG

The refrigerant pressure sensor is installed at the liquid tank of the Front of air conditioner system. The sensor uses an electrostatic volume pressure transducer to convert refrigerant pressure to voltage. The voltage signal is sent to ECM, and ECM controls cooling fan system.

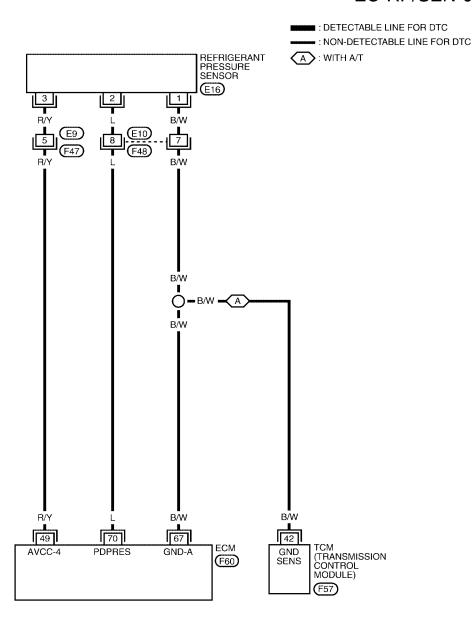
EC

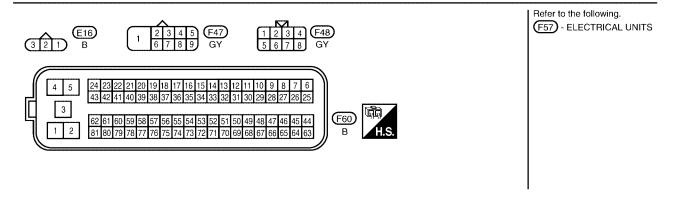
Α

C

D

Е


Н


M

Wiring Diagram

UBS00BHH

EC-RP/SEN-01

BBWA0712E

REFRIGERANT PRESSURE SENSOR

[QG18DE]

Α

UBS00BHI

Specification data are reference values and are measured between each terminal and ground.

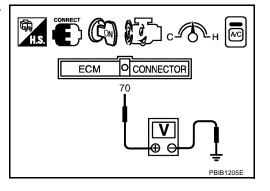
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
49	R/Y	Refrigerant pressure sensor power supply	[Ignition switch: ON]	Approximately 5V	С
67	B/W	Sensor ground (MAF sensor / IAT sensor / PSP sensor / ASCD steering switch / EVAP control system pressure sensor / Refriger- ant pressure sensor / Swirl control valve position sen- sor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	D E
70	L	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower switch are ON (Compressor operates.) 	1.0 - 4.0V	F

Diagnostic Procedure

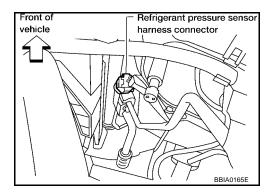
1. CHECK REFRIGERANT PRESSURE SENSOR OVERALL FUNCTION


- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn A/C switch and blower switch ON.
- 3. Check voltage between ECM terminal 70 and ground with CON-SULT-II or tester.

Voltage: 1.0 - 4.0V

OK or NG

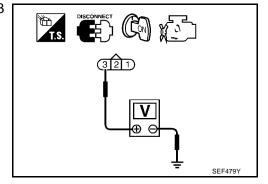
OK >> INSPECTION END


NG >> GO TO 2.

M

2. CHECK REFRIGERANT PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn A/C switch and blower switch OFF.
- 2. Stop engine.
- 3. Disconnect refrigerant pressure sensor harness connector.
- 4. Turn ignition switch ON.



5. Check voltage between refrigerant pressure sensor terminal 3 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E9, F47
- Harness for open or short between ECM and refrigerant pressure sensor
 - >> Repair harness or connectors.

4. CHECK REFRIGERANT PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector.
- 4. Check harness continuity between refrigerant pressure sensor terminal 1 and ECM terminal 67, TCM terminal 42.

Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

REFRIGERANT PRESSURE SENSOR

[QG18DE]

5. DETECT MALFUNCTIONING PART	Δ
Check the following. • Harness connectors E10, F48	
 Harness for open or short between TCM and refrigerant pressure sensor 	EC
Harness for open or short between ECM and refrigerant pressure sensor	
>> Repair open circuit or short to ground or short to power in harness or connectors.	С
6. CHECK REFRIGERANT PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHOR	T
Check harness continuity between ECM terminal 70 and refrigerant pressure sensor terminal 2. Refer to Wiring Diagram.	D
Continuity should exist.	Е
2. Also check harness for short to ground and short to power.	
OK or NG	F
OK >> GO TO 8. NG >> GO TO 7.	
7. DETECT MALFUNCTIONING PART	G
Check the following.	
Harness connectors E10, F48	Н
Harness for open or short between ECM and refrigerant pressure sensor	
>> Repair open circuit or short to ground or short to power in harness or connectors.	I
8. CHECK REFRIGERANT PRESSURE SENSOR	
Refer to MTC-15, "Refrigerant Pressure Sensor" .	J
OK or NG	
OK >> GO TO 9. NG >> Replace refrigerant pressure sensor.	K
9. CHECK INTERMITTENT INCIDENT	L
Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	
>> INSPECTION END	M
Removal and Installation REFRIGERANT PRESSURE SENSOR	UBS00BHJ

Refer to MTC-15, "REFRIGERATION SYSTEM" .

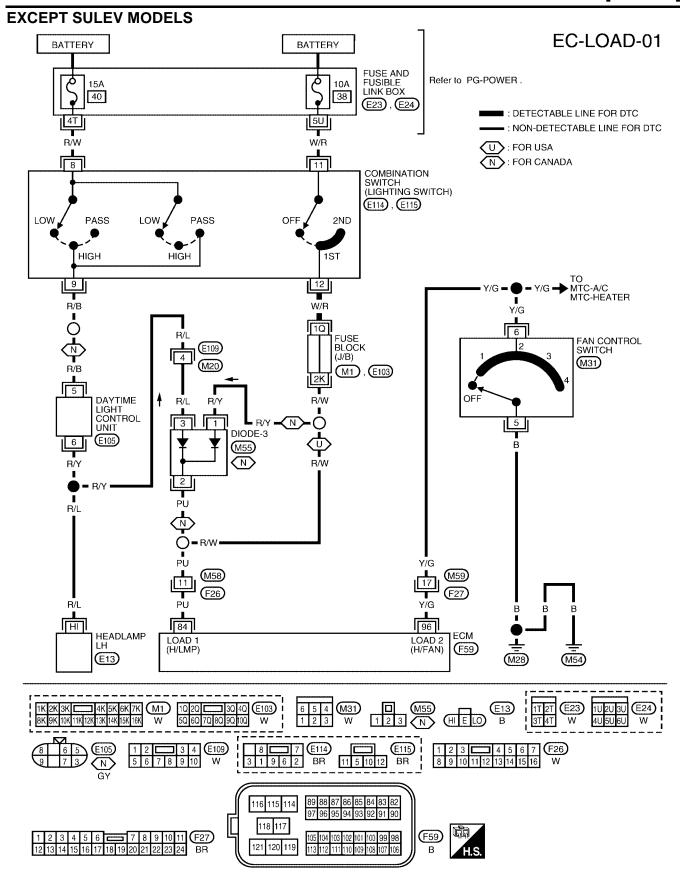
ELECTRICAL LOAD SIGNAL

[QG18DE]

ELECTRICAL LOAD SIGNAL

PFP:25350

CONSULT-II Reference Value in Data Monitor Mode


UBS00BJC

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
LOAD SIGNAL	Ignition switch: ON	Rear window defogger switch is ON and/or lighting switch is in 2nd and/or heater fan switch is ON.	ON
LOAD SIGNAL	• Igrittori switch. ON	Rear window defogger switch is OFF and lighting switch is OFF and heater fan switch is OFF.	OFF

Wiring Diagram UBS00BJD SULEV MODELS Α EC-LOAD-01 BATTERY EC FUSE AND FUSIBLE LINK BOX : DETECTABLE LINE FOR DTC Refer to PG-POWER. 10A ■ : NON-DETECTABLE LINE FOR DTC 38 (E24) C B/R D COMBINATION SWITCH (LIGHTING SWITCH) **(**E115**)** OFF 2ND Е 1ST 12 TO MTC-A/C MTC-HEATER W/R Y/G 1Q FUSE BLOCK (J/B) 6 FAN CONTROL SWITCH 2 M1 , E103 (M31) R/W Н OFF R/W Y/G K (F27) PU Y/G 96 84 LOAD 1 (H/LMP) LOAD 2 (F59) (H/FAN) M (M28) (M54) 1Q 2Q 3Q 4Q E103 5Q 6Q 7Q 8Q 9Q 10Q W M_1 (M31) W E115 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 11 5 10 12 BR 116 115 114 118 117 (F59) 121 120 119

BBWA0713E

BBWA0717E

ELECTRICAL LOAD SIGNAL

[QG18DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
84	PU	Electrical load signal	[Ignition switch: ON] • Lighting switch: 2ND position	BATTERY VOLTAGE (11 - 14V)
(Headlamp signal)	[Ignition switch: ON] • Lighting switch: OFF	Approximately 0V		
96	Y/G	Electrical load signal	[Engine is running] • Heater fan switch: ON	Approximately 0V
(Heater fan signal)	[Engine is running] • Heater fan switch: OFF	Approximately 5V		

EC

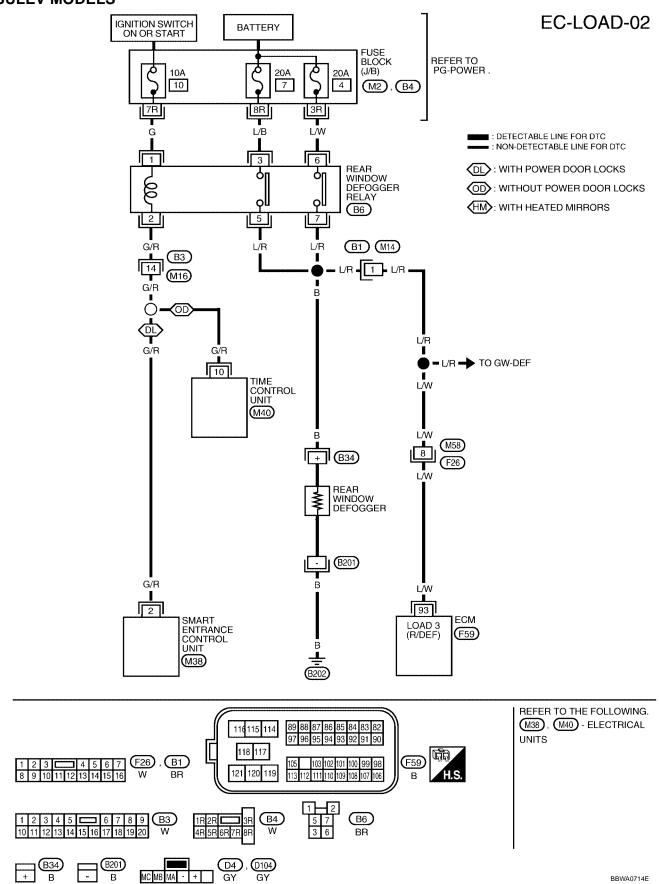
Α

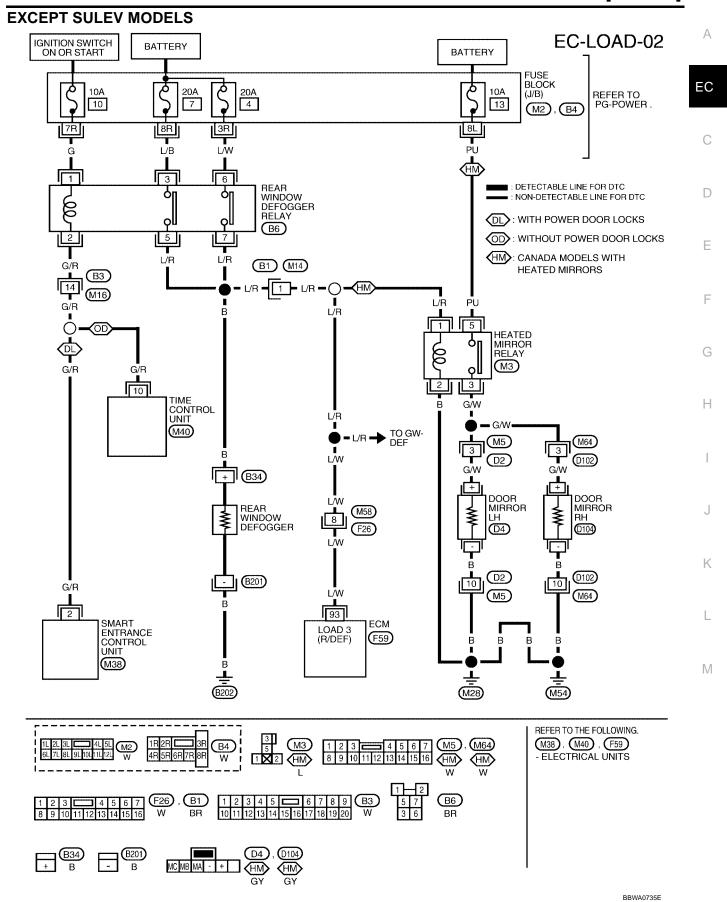
D

С

Е

F


Н


ı

i

M

SULEV MODELS

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
93	L/W	Electrical load signal (Rear window defogger	[Ignition switch: ON] • Rear window defogger switch: ON	BATTERY VOLTAGE (11 - 14V)
signal)	,	[Ignition switch: ON] • Rear window defogger switch: OFF	Approximately 0V	

Diagnostic Procedure

UBSOOBJE

1. INSPECTION START

Do you have CONSULT-II?

Yes or No

Yes >> GO TO 2. No >> GO TO 3.

2. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-I

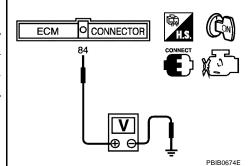
(II) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Check "LOAD SIGNAL" in "DATA MONITOR" mode with CON-SULT-II under the following conditions.

Condition	LOAD SIGNAL
Lighting switch ON at 2nd position	ON
Lighting switch OFF	OFF

DATA MONITOR
MONITORING NO DTC
LOAD SIGNAL ON

OK or NG


OK >> GO TO 4. NG >> GO TO 8.

3. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-I

Without CONSULT-II

- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminal 84 and ground under the following conditions.

Condition	Voltage
Lighting switch ON at 2nd position	BATTERY VOLTAGE
Lighting switch OFF	0V

OK or NG

OK >> GO TO 5. NG >> GO TO 8.

Α

EC

D

Е

Н

K

M

4. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-II

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Check "LOAD SIGNAL" in "DATA MONITOR" mode with CON-SULT-II under the following conditions.

Condition	LOAD SIGNAL
FAN control switch ON in any position	ON
FAN control switch OFF	OFF

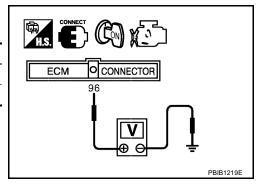
DATA MONITOR MONITORING NO DTC LOAD SIGNAL ON PBIB0103E

OK or NG

>> GO TO 6. OK NG >> GO TO 13.

5. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-II

⋈ Without CONSULT-II


- 1. Turn ignition switch ON.
- Check voltage between ECM terminal 96 and ground under the following conditions.

Condition	Voltage
FAN control switch ON in any position	Approximately 0V
FAN control switch OFF	Approximately 5V

OK or NG

OK >> GO TO 7. NG >> GO TO 13.

6. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-III

(II) With CONSULT-II

- 1. Turn ignition switch ON.
- Check "LOAD SIGNAL" in "DATA MONITOR" mode with CON-SULT-II under the following conditions.

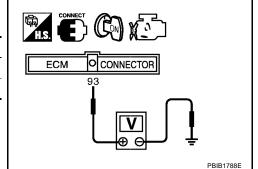
Condition	LOAD SIGNAL
Rear window defogger switch ON	ON
Rear window defogger switch OFF	OFF

DATA MONITOR MONITORING NO DTC LOAD SIGNAL ON PBIB0103E

OK or NG

OK >> INSPECTION END.

NG >> GO TO 16.


EC-603

$7.\,$ CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-III

W Without CONSULT-II

- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminal 93 and ground under the following conditions.

Condition	Voltage
Rear window defogger switch ON	BATTERY VOLTAGE
Rear window defogger switch OFF	Approximately 0V

OK or NG

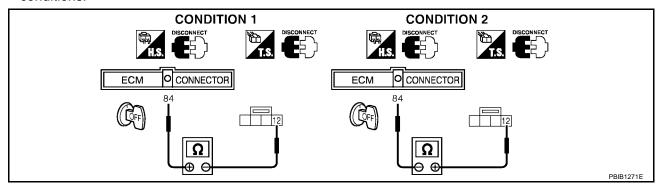
OK >> INSPECTION END.

NG >> GO TO 16.

8. CHECK HEADLAMP FUNCTION

- Start engine.
- 2. Turn the lighting switch ON at 2nd position.
- 3. Check that headlamps are illuminated.

OK or NG


OK (Models for USA)>>GO TO 9.

OK (Models for Canada)>>GO TO 11.

NG >> Refer to LT-6, "HEADLAMP (FOR USA)" or LT-10, "HEADLAMP (FOR CANADA) — DAYTIME LIGHT SYSTEM —".

9. CHECK HEADLAMP INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Stop engine.
- 2. Disconnect ECM harness connector.
- 3. Disconnect lighting switch harness connectors.
- Check harness continuity between ECM terminal 84 and lighting switch terminal 12 under the following conditions.

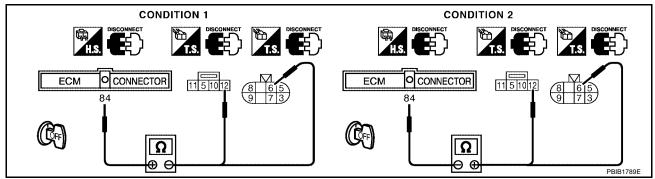
Condition	Continuity
1	Should exist
2	Should not exist

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 19.

NG >> GO TO 10.


10. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) M1, E103
- Harness connectors M58, F26 (Except SULEV models)
- Harness connectors M59, F27 (SULEV models)
- Harness for open and short between ECM and lighting switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

11. CHECK HEADLAMP INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Stop engine.
- 2. Disconnect ECM harness connector.
- Disconnect lighting switch harness connector E115.
 Disconnect daytime light control unit harness connector.
- Check harness continuity between ECM terminal 84 and lighting switch terminal 12, daytime light control
 unit terminal 6 under the following conditions.

Condition	Continuity
1	Should exist
2	Should not exist

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 19. NG >> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E109, M20
- Harness connectors M58, F26
- Fuse block (J/B) M1, E103
- Diode-3 M55
- Harness for open and short between ECM and lighting switch
- Harness for open and short between ECM and daytime light control unit
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

D

Е

Н

<

M

13. CHECK HEATER FAN SWITCH FUNCTION

- 1. Start engine.
- 2. Turn the heater fan switch ON in any position.
- 3. Check that heater fan turns properly.

OK or NG

OK >> GO TO 14.

NG >> Refer to MTC-19, "TROUBLE DIAGNOSIS"

14. CHECK HEATER FAN INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Stop engine.
- 2. Disconnect ECM harness connector.
- 3. Disconnect fan control switch harness connector.
- 4. Check harness continuity between ECM terminal 96 and fan control switch terminal 6.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 19. NG >> GO TO 15.

15. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness for open and short between ECM and fan control switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

16. CHECK REAR WINDOW DEFOGGER FUNCTION

- 1. Start engine.
- 2. Turn ON the rear window defogger switch.
- 3. Check the rear windshield. Is the rear windshield heated up?

Yes or No

Yes >> GO TO 17.

No >> Refer to GW-17, "REAR WINDOW DEFOGGER"

17. CHECK REAR WINDOW DEFOGGER INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Stop engine.
- 2. Disconnect ECM harness connector.
- 3. Disconnect rear window defogger relay.
- 4. Check harness continuity between ECM terminal 93 and rear window defogger relay terminals 5, 7.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 19.

NG >> GO TO 18.

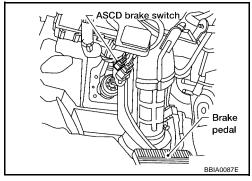
ELECTRICAL LOAD SIGNAL

[QG18DE]

 \mathbb{N}

18. DETECT MALFUNCTIONING PART	А
 Check the following. Harness connectors B1, M14 Harness connectors M58, F26 Harness for open and short between ECM and rear window defogger relay. 	EC
>> Repair open circuit or short to ground or short to power in harness or connectors.	С
19. CHECK INTERMITTENT INCIDENT	D
Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .	
>> INSPECTION END	Е
	F
	G
	Н
	I
	J
	K
	L

ASCD BRAKE SWITCH


Component Description

PFP:25320

UBS00BHN

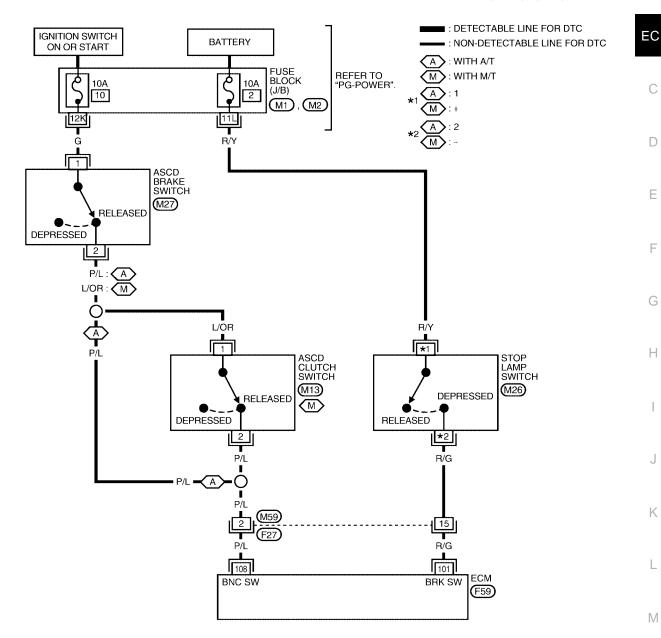
When the brake pedal is depressed, ASCD brake switch is turned OFF and stop lamp switch is turned ON. ECM detects the state of the brake pedal by this input of two kinds (ON/OFF signal)

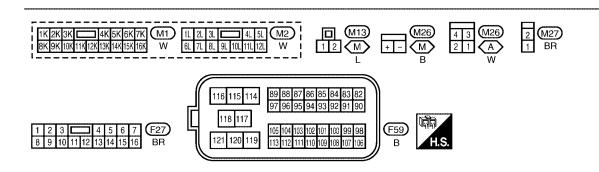
Refer to <u>EC-635</u>, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for the ASCD function.

CONSULT-II Reference Value in Data Monitor Mode

UBS00BHO

Specification data are reference values.


MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW1 (ASCD brake switch)	Ignition switch: ON	Brake pedal: Fully released (A/T) Clutch pedal and brake pedal: Fully released (M/T)	ON
		Brake pedal: Slightly depressed (A/T) Clutch pedal and/or brake pedal: Slightly depressed (M/T)	OFF
BRAKE SW2 (Stop lamp switch)	Ignition switch: ON	Brake pedal: Fully released	OFF
		Brake pedal: Slightly depressed	ON


Wiring Diagram

_ _ . . . _ . . _

Α

EC-ASCBOF-01

BBWA0316E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101 R/G	Stop lamp switch	[Ignition switch: OFF]	Approximately 0V	
		Brake pedal fully released		
		[Ignition switch: OFF]	BATTERY VOLTAGE	
		Brake pedal depressed	(11 - 14V)	
108 P/L	ASCD brake switch	[Ignition switch: ON]		
		Brake pedal is fully released (A/T)	BATTERY VOLTAGE	
		Clutch pedal and brake pedal are fully released (M/T)	(11 - 14V)	
		[Ignition switch: ON]		
		Brake pedal is depressed (A/T)	Approximately 0V	
		 Clutch pedal and/or brake pedal is slightly depressed (M/T) 		

ASCD BRAKE SWITCH

[QG18DE]

Diagnostic Procedure

1. CHECK OVERALL FUNCTION-I

UBS00BHQ

Α

EC

C

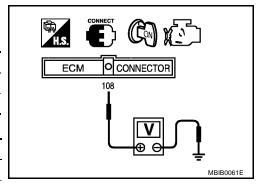
 D

Е

Н

(II) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-II.
- Check "BRAKE SW1" indication under the following conditions.
 A/T models


CONDITION	INDICATION
When brake pedal is depressed	OFF
When brake pedal is fully released	ON
M/T models	
CONDITION	INDICATION
When clutch pedal or brake pedal is depressed	OFF
When clutch pedal and brake pedal are fully released	ON

DATA MONITOR		
MONITOR	NO DTC	
BRAKE SW1	OFF	
		SEC011[

⋈ Without CONSULT-II

- 1. Turn ignition switch ON.
- Check voltage between ECM terminal 108 and ground under the following conditions.
 A/T models

CONDITION	VOLTAGE
When brake pedal is depressed	Approximately 0V
When brake pedal is fully released	Battery voltage
M/T models	
CONDITION	VOLTAGE
When clutch pedal or brake pedal is depressed	Approximately 0V
When clutch pedal and brake pedal are fully released	Battery voltage

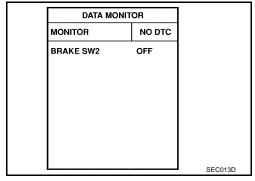
OK or NG

OK >> GO TO 2.

NG (M/T models) >>GO TO 3.

NG (A/T models) >>GO TO 4.

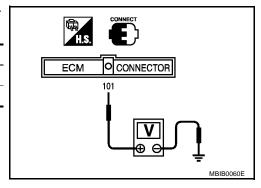
M


K

2. CHECK OVERALL FUNCTION-II

(P) With CONSULT-II

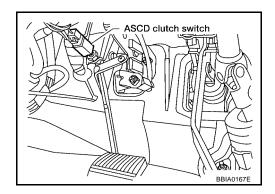
Check "BRAKE SW2" indication in "DATA MONITOR" mode.


CONDITION	INDICATION
When brake pedal is released	OFF
When brake pedal is depressed	ON

W Without CONSULT-II

Check voltage between ECM terminal 101 and ground under the following conditions.

CONDITION	VOLTAGE
When brake pedal is released	Approximately 0V
When brake pedal is depressed	Battery voltage

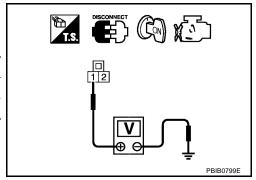

OK or NG

OK >> INSPECTION END

NG >> GO TO 13.

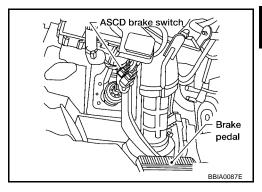
3. CHECK ASCD CLUTCH SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD clutch switch harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between ASCD clutch switch terminal 1 and ground under the following conditions with CONSULT-II or tester.

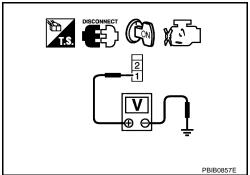
CONDITION	VOLTAGE
When brake pedal is released	Battery voltage
When brake pedal is depressed	Approx. 0V


OK or NG

OK >> GO TO 10. NG >> GO TO 4.

4. CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch harness connector.
- Turn ignition switch ON.



4. Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK (M/T models)>>GO TO 6. OK (A/T models)>>GO TO 7. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector M1
- 10A fuse
- Harness for open or short between ASCD brake switch and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Check harness continuity between ASCD brake switch terminal 2 and ASCD clutch switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

D

EC

Е

Н

$7.\,$ CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 108 and ASCD brake switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground or short to power.

OK or NG

```
OK >> GO TO 9.
NG >> GO TO 8.
```

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness for open or short between ECM and ASCD brake switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK ASCD BRAKE SWITCH

Refer to EC-616, "Component Inspection"

OK or NG

```
OK >> GO TO 18.
```

NG >> Replace ASCD brake switch.

10. CHECK ASCD CLUTCH SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 108 and ASCD clutch switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground or short to power.

OK or NG

```
OK >> GO TO 12.
NG >> GO TO 11.
```

11. DETECT MALFUNCTIONING PART

Check the following.

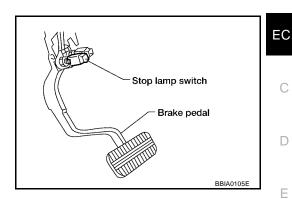
- Harness connectors M59, F27
- Harness for open or short between ECM and ASCD clutch switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

12. CHECK ASCD CLUTCH SWITCH

Refer to EC-616, "Component Inspection"

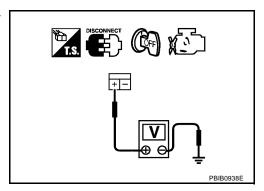
OK or NG

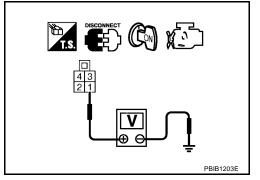
```
OK >> GO TO 18.
```


NG >> Replace ASCD clutch switch.

Н

M


13. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT


- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch harness connector.

3. Check voltage between stop lamp switch terminal + (M/T models) or 1 (A/T models) and ground with CONSULT -II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 15. NG >> GO TO 14.

14. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector M2
- 10A fuse
- Harness for open or short between stop lamp switch and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

15. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 101 and stop lamp switch terminal (M/T models) or 2 (A/T models).

Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 17. NG >> GO TO 16.

16. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness for open or short between ECM and stop lamp switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

17. CHECK STOP LAMP SWITCH

Refer to EC-616, "Component Inspection".

OK or NG

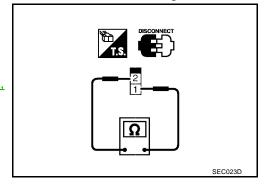
OK >> GO TO 18.

NG >> Replace stop lamp switch.

18. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection ASCD BRAKE SWITCH

UBS00BHR

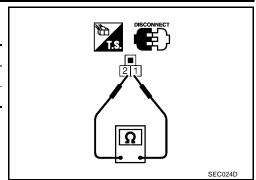
- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch harness connector.
- 3. Check harness continuity between ASCD brake switch terminals 1 and 2 under the following conditions.

Condition	Continuity
When brake pedal is fully released.	Should exist.
When brake pedal is depressed.	Should not exist.

If NG, adjust ASCD brake switch installation, refer to <u>BR-11</u>, <u>"BRAKE PEDAL AND BRACKET"</u>, and perform step 3 again.

ASCD CLUTCH SWITCH (FOR M/T MODELS)

- Turn ignition switch OFF.
- Disconnect ASCD clutch switch harness connector.

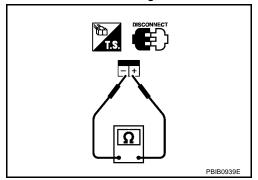

ASCD BRAKE SWITCH

[QG18DE]

3. Check continuity between ASCD clutch switch terminals 1 and 2 under the following conditions.

Condition	Continuity
When clutch pedal is fully released.	Should exist.
When clutch pedal is depressed.	Should not exist.

If NG, adjust ASCD clutch switch installation, refer to <u>CL-6</u>, <u>"CLUTCH SYSTEM"</u>, and perform step 3 again.

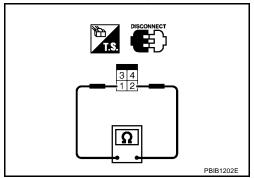

STOP LAMP SWITCH

With M/T Models

- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch harness connector.
- 3. Check harness continuity between stop lamp switch terminals + and under the following conditions.

Condition	Continuity
When brake pedal is fully released.	Should not exist.
When brake pedal is depressed.	Should exist.

If NG, adjust stop lamp switch installation, refer to <u>BR-11</u>, <u>"BRAKE PEDAL AND BRACKET"</u>, and perform step 3 again.



With A/T Models

- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch harness connector.
- 3. Check harness continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Condition	Continuity
When brake pedal is fully released.	Should not exist.
When brake pedal is depressed.	Should exist.

If NG, adjust stop lamp switch installation, refer to <u>BR-11</u>, <u>"BRAKE PEDAL AND BRACKET"</u>, and perform step 3 again.

Α

EC

D

Е

F

G

Н

J

<

ı

M

ASCD INDICATOR PFP:24814

Component Description

UBS00BHS

ASCD indicator lamp illuminates to indicate ASCD operation status. Lamp has two indicators, CRUISE and SET, and is integrated in combination meter.

CRUISE indicator illuminates when CRUISE switch on ASCD steering switch is turned ON to indicated that ASCD system is ready for operation.

SET indicator illuminates when following conditions are met.

- CRUISE indicator is illuminated.
- SET switch on ASCD steering switch is turned ON while vehicle speed is within the range of ASCD setting.

SET indicator remains lit during ASCD control.

Refer to EC-635, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for the ASCD function.

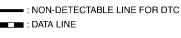
CONSULT-II Reference Value in Data Monitor Mode

UBS00BHT

Specification data are reference value.

MONITOR ITEM	CONI	SPECIFICATION	
CRUISE LAMP	• Ignition switch: ON	CRUISE switch: Pressed	ON
CRUISE LAMP • Ignition switch: ON	CRUISE switch: Released	OFF	
SET LAMP	■ Ignition switch: ON	COAST/SET switch: Pressed	ON
SET LAMP • Ignition switch: ON	COAST/SET switch: Released	OFF	

Wiring Diagram

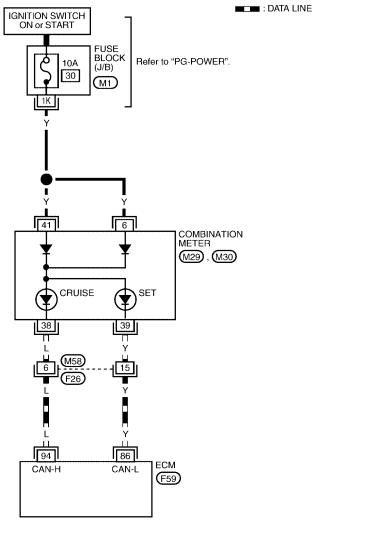

EC-ASCIND-01

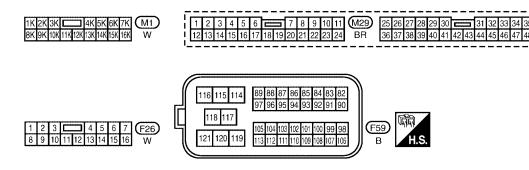
: DETECTABLE LINE FOR DTC

EC

C

Α




D

Е

Н

M

BBWA0716E

Diagnostic Procedure

1. CHECK OVERALL FUNCTION

Check ASCD indicator under the following conditions.

ASCD INDICATOR	CONI	SPECIFICATION	
CRUISE LAMP • Ignition switch: ON		CRUISE switch: Pressed	ON
CRUISE LAMP • Ignition switch: ON	CRUISE switch: Released	OFF	
SET LAMP	Ignition switch: ON	COAST/SET switch: Pressed	ON
• Ignition switch: ON	• Igililion switch. ON	COAST/SET switch: Released	OFF

OK or NG

OK >> INSPECTION END

NG >> GO TO 2.

2. CHECK DTC

Check that DTC U1000 or U1001 is not displayed.

Yes or No

Yes >> Perform trouble diagnoses for DTC U1000, U1001, refer to <u>EC-148, "DTC U1000, U1001 CAN COMMUNICATION LINE"</u>.

No >> GO TO 3.

3. CHECK COMBINATION METER OPERATION

Does combination meter operate normally?

Yes or No

Yes >> GO TO 4.

No >> Check combination meter circuit. Refer to DI-6, "Combination Meter".

4. CHECK INTERMITTENT INCIDENT

Refer to EC-140, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

MIL & DATA LINK CONNECTORS

Wiring Diagram

PFP:24814

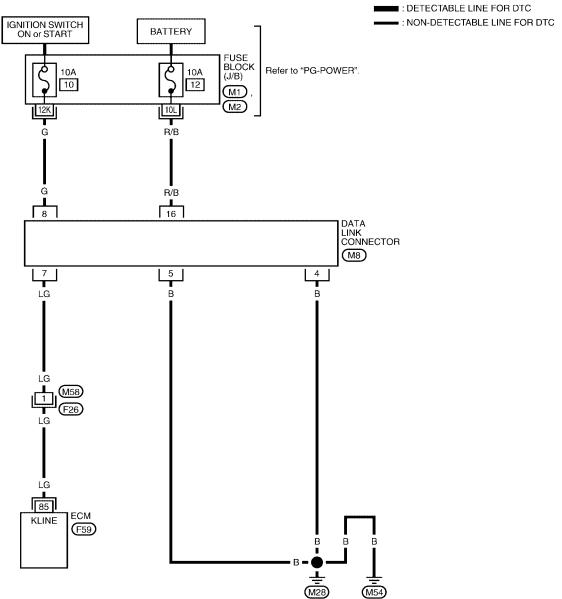
UBS00BHW

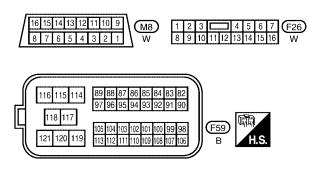
Α

EC

C

D


Е


Н

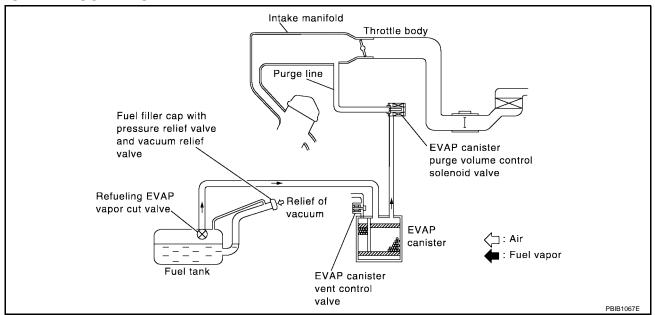
M

EC-DLC-01

REFER TO THE FOLLOWING.

M1 , M2 - FUSE

BLOCK-JUNCTON BOX (J/B)


BBWA0318E

EVAPORATIVE EMISSION SYSTEM

PFP:14950

UBS00BHX

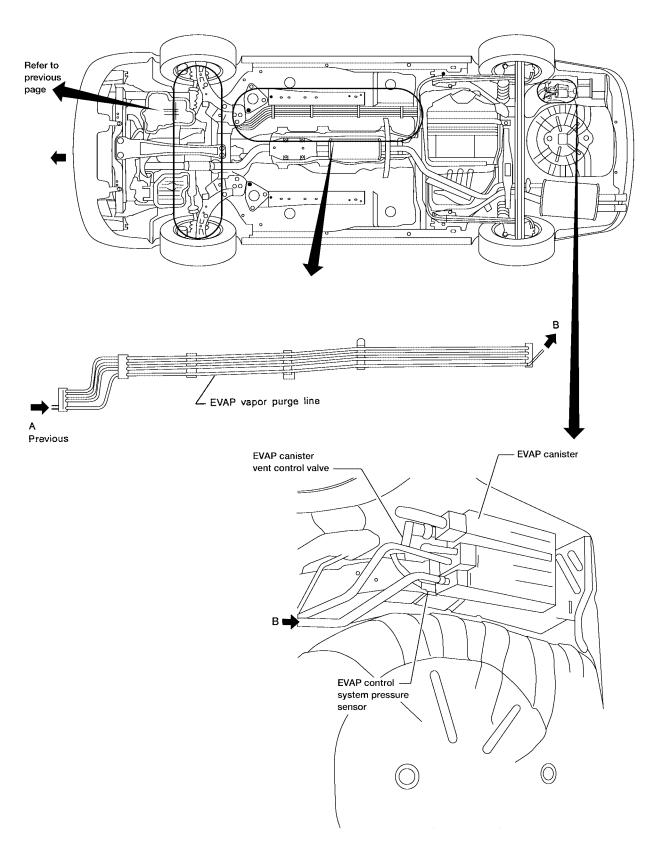
Description SYSTEM DESCRIPTION

The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.

The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the vapor is stored there when the engine is not operating or when refueling to the fuel tank.

The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the engine is operating. EVAP canister purge volume control solenoid valve is controlled by ECM. When the engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is proportionally regulated as the air flow increases.

EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating and idling.

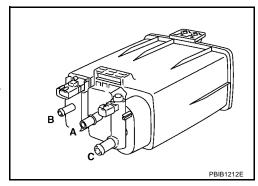

Α

EVAPORATIVE EMISSION LINE DRAWING

EC C Intake manifold collector D Е EVAP canister purge volume control solenoid valve Н M

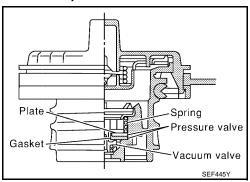
NOTE: Do not use soapy water or any type of solvent while installing vacuum hose or purge hoses.

PBIB1056E



UBS00BHY

Component Inspection EVAP CANISTER


Check EVAP canister as follows:

- 1. Block port B.
- 2. Blow air into port A and check that it flows freely out of port C.
- 3. Release blocked port B.
- 4. Apply vacuum pressure to port ${\bf B}$ and check that vacuum pressure exists at the ports ${\bf A}$ and ${\bf C}$.
- 5. Block port A and B.
- 6. Apply pressure to port **C** and check that there is no leakage.

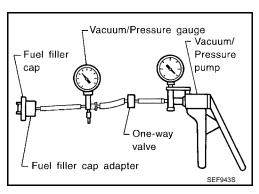
FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FILLER CAP)

1. Wipe clean valve housing.

2. Check valve opening pressure and vacuum.

Pressure: 15.3 - 20.0 kPa

(0.156 - 0.204 kg/cm², 2.22 - 2.90 psi)


Vacuum: −6.0 to −3.3 kPa

 $(-0.061 \text{ to } -0.034 \text{ kg/cm}^2, -0.87 \text{ to } -0.48 \text{ psi})$

3. If out of specification, replace fuel filler cap as an assembly.

CAUTION

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-284, "DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE" .

FUEL TANK TEMPERATURE SENSOR

Refer to EC-226, "DTC P0181 FTT SENSOR", EC-231, "DTC P0182, P0183 FTT SENSOR".

EVAP CANISTER VENT CONTROL VALVE

Refer to EC-291.

EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-300.

EC

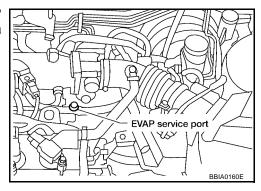
Α

D

Е

F

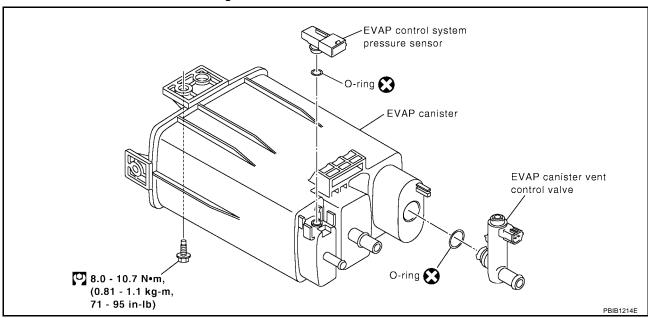
Н


J

K

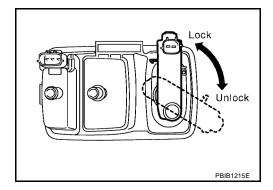
M

EVAP SERVICE PORT


Positive pressure is delivered to the EVAP system through the EVAP service port. If fuel vapor leakage in the EVAP system occurs, use a leak detector to locate the leak.

Removal and Installation EVAP CANISTER

UBS00BHZ


Tighten EVAP canister as shown in the figure.

EVAP CANISTER VENT CONTROL VALVE

- 1. Turn EVAP canister vent control valve counterclockwise.
- 2. Remove the EVAP canister vent control valve.

Do not reuse the O-ring, replace it with a new one.

How to Detect Fuel Vapor Leakage

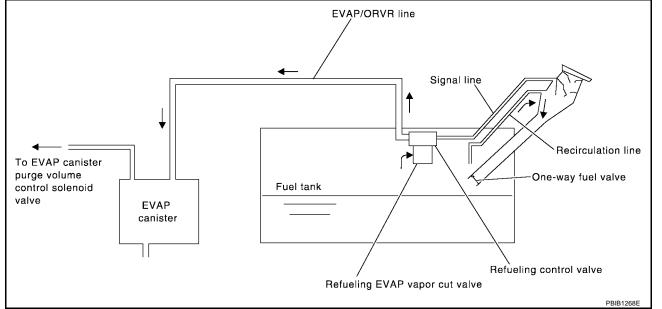
UBS00BI0

CAUTION:

- Never use compressed air or a high pressure pump.
- Do not start engine.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in EVAP system.

NOTE:

Improper installation of adapter to the service port may cause a leak.


[QG18DE]

ON BOARD REFUELING VAPOR RECOVERY (ORVR)

PFP:00000

System Description

UBS00BI1

From the beginning of refueling, the fuel tank pressure goes up. When the pressure reaches the setting value of the refueling control valve (RCV) opening pressure, the RCV is opened. After RCV opens, the air and vapor inside the fuel tank go through refueling EVAP vapor cut valve, RCV and EVAP/ORVR line to the EVAP canister. The vapor is absorbed by the EVAP canister and the air is released to the atmosphere.

When the refueling has reached the full level of the fuel tank, the refueling EVAP vapor cut valve is closed and refueling is stopped because of auto shut-off. The vapor which was absorbed by the EVAP canister is purged during driving.

The RCV is always closed during driving and the evaporative emission control system is operated the same as conventional system.

WARNING:

When conducting inspections below, be sure to observe the following:

- Put a "CAUTION: FLAMMABLE" sign in workshop.
- Do not smoke while servicing fuel system. Keep open flames and sparks away from work area.
- Be sure to furnish the workshop with a CO₂ fire extinguisher.

CAUTION:

- Before removing fuel line parts, carry out the following procedures:
- Put drained fuel in an explosion-proof container and put lid on securely.
- Release fuel pressure from fuel line. Refer to <u>EC-49, "FUEL PRESSURE RELEASE"</u>.
- Disconnect battery ground cable.
- Always replace O-ring when the fuel gauge retainer is removed.
- Do not kink or twist hose and tube when they are installed.
- Do not tighten hose and clamps excessively to avoid damaging hoses.
- After installation, run engine and check for fuel leaks at connection.
- Do not attempt to top off the fuel tank after the fuel pump nozzle shuts off automatically.
 Continued refueling may cause fuel overflow, resulting in fuel spray and possibly a fire.

EC

Α

Е

F

G

. .

Κ

L

M

ON BOARD REFUELING VAPOR RECOVERY (ORVR)

[QG18DE]

Diagnostic Procedure SYMPTOM: FUEL ODOR FROM EVAP CANISTER IS STRONG.

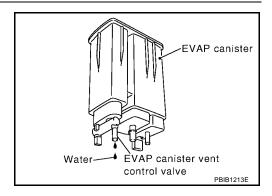
UBS00BI2

1. CHECK EVAP CANISTER

- 1. Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- 2. Weigh the EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 1.9 kg (4.2 lb).

OK or NG


OK >> GO TO 2. NG >> GO TO 3.

2. CHECK IF EVAP CANISTER SATURATED WITH WATER

Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 3. No >> GO TO 5.

3. REPLACE EVAP CANISTER

Replace EVAP canister with a new one.

>> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the EVAP hose between EVAP canister and vehicle frame for clogging or poor connection.

>> Repair or replace EVAP hose.

5. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-630, "Component Inspection".

OK or NG

OK >> INSPECTION END

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

ON BOARD REFUELING VAPOR RECOVERY (ORVR)

[QG18DE]

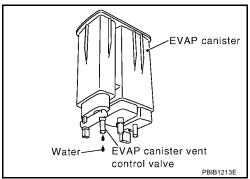
SYMPTOM: CANNOT REFUEL/FUEL ODOR FROM THE FUEL FILLER OPENING IS STRONG WHILE REFUELING.

1. CHECK EVAP CANISTER

- 1. Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- Weigh the EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 1.9 kg (4.2 lb).

OK or NG


OK >> GO TO 2. NG >> GO TO 3.

2. CHECK IF EVAP CANISTER SATURATED WITH WATER

Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 3. No >> GO TO 5.

3. REPLACE EVAP CANISTER

Replace EVAP canister with a new one.

>> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the EVAP hose between EVAP canister and vehicle frame for clogging or poor connection.

>> Repair or replace EVAP hose.

5. CHECK VENT HOSES AND VENT TUBES

Check hoses and tubes between EVAP canister and refueling control valve for clogging, kink, looseness and improper connection.

OK or NG

OK >> GO TO 6.

NG >> Repair or replace hoses and tubes.

6. CHECK FILLER NECK TUBE

Check signal line and recirculation line for clogging, dents and cracks.

OK or NG

OK >> GO TO 7.

NG >> Replace filler neck tube.

D

Α

EC

Н

[QG18DE]

7. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-630, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

8. CHECK FUEL FILLER TUBE

Check filler neck tube and hose connected to the fuel tank for clogging, dents and cracks.

OK or NG

OK >> GO TO 9.

NG >> Replace fuel filler tube.

9. CHECK ONE-WAY FUEL VALVE-I

Check one-way valve for clogging.

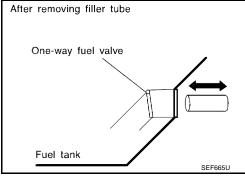
OK or NG

OK >> GO TO 10.

NG >> Repair or replace one-way fuel valve with fuel tank.

10. CHECK ONE-WAY FUEL VALVE-II

- Make sure that fuel is drained from the tank.
- Remove fuel filler tube and hose.
- Check one-way fuel valve for operation as follows. When a stick is inserted, the valve should open, when removing stick it should close.


Do not drop any material into the tank.

OK or NG

NG

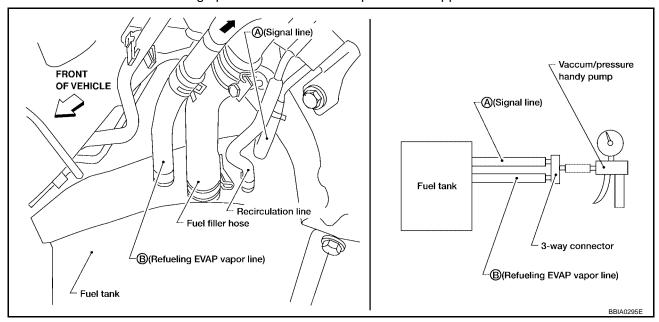
OK >> INSPECTION END

> >> Replace fuel filler tube or replace one-way fuel valve with fuel tank.

Component Inspection REFUELING EVAP VAPOR CUT VALVE

(P) With CONSULT-II

- 1. Remove fuel tank. Refer to FL-7, "Removal and Installation".
- Drain fuel from the tank as follows:
- Remove fuel feed hose located on the fuel level sensor unit retainer.
- Connect a spare fuel hose, one side to fuel level sensor unit retainer where the hose was removed and the other side to a fuel container.
- Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-II.
- Check refueling EVAP vapor cut valve for being stuck closed as follows. Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck open as follows.
- Connect vacuum pump to hose ends **A** and **B** using a suitable 3-way connector.
- Remove fuel level sensor unit retainer with fuel level sensor unit.


Always replace O-ring with new one.

Put fuel tank upside down.

ON BOARD REFUELING VAPOR RECOVERY (ORVR)

[QG18DE]

Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel level sensor unit retainer remaining open and check that the pressure is applicable.

⊗ Without CONSULT-II

- 1. Remove fuel tank. Refer to FL-7, "Removal and Installation".
- 2. Drain fuel from the tank as follows:
- Remove fuel level sensor unit retainer.
- Drain fuel from the tank using a handy pump into a fuel container.
- Check refueling EVAP vapor cut valve for being stuck closed as follows.
 Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck open as follows.
- Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- Remove fuel level sensor unit retainer with fuel level sensor unit.
 Always replace O-ring with new one.
- Put fuel tank upside down.

EC

D

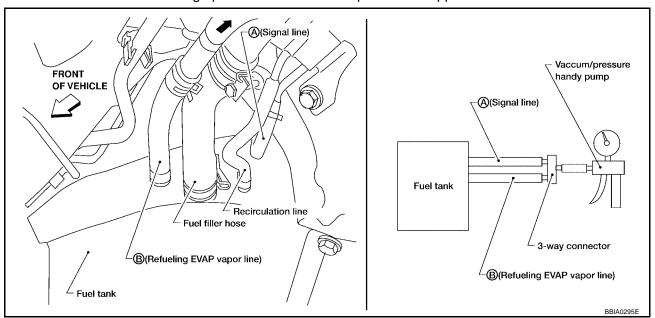
Е

F

G

Н

IZ.

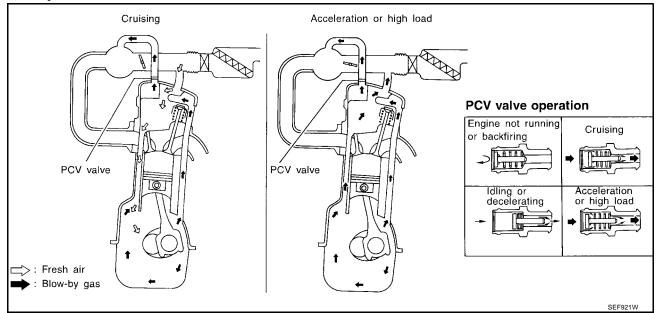

_

 \mathbb{N}

ON BOARD REFUELING VAPOR RECOVERY (ORVR)

[QG18DE]

Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel level sensor unit retainer remaining open and check that the pressure is applicable.



POSITIVE CRANKCASE VENTILATION

PFP:11810

Description

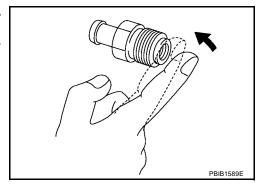
UBS00BI4

This system returns blow-by gas to the intake collector.

The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake manifold.

During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve.

Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air.


The ventilating air is then drawn from the air duct into the crankcase. In this process the air passes through the hose connecting air inlet tubes to rocker cover.

Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve. The flow goes through the hose connection in the reverse direction.

On vehicles with an excessively high blow-by, the valve does not meet the requirement. This is because some of the flow will go through the hose connection to the intake collector under all conditions.

Component Inspection PCV (POSITIVE CRANKCASE VENTILATION) VALVE

With engine running at idle, remove PCV valve from rocker cover. A properly working valve makes a hissing noise as air passes through it. A strong vacuum should be felt immediately when a finger is placed over the valve inlet.

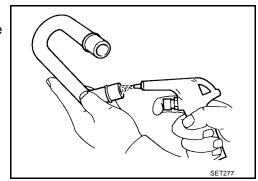
EC

Α

D

Е

J


UBS00BI5

L

M

VENTILATION HOSE

- 1. Check hoses and hose connections for leaks.
- 2. Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

[QG18DE]

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

PFP:18930

System Description INPUT/OUTPUT SIGNAL CHART

UBS00BI6

Sensor	Input signal to ECM	ECM function	Actuator		
ASCD brake switch	Brake pedal operation				
Stop lamp switch	Brake pedal operation				
ASCD clutch switch (M/T models)	Clutch pedal operation	ASCD vehicle speed control			
ASCD steering switch	ASCD steering switch operation		ol Electric throttle control actuator		
Park/Neutral position (PNP) switch	Gear position				
Unified meter and A/C amp.*	Vehicle speed				
TCM *	Powertrain revolution				

^{*:} These signals are sent to the ECM through CAN communication line.

BASIC ASCD SYSTEM

Refer to Owner's Manual for ASCD operating instructions.

Automatic Speed Control Device (ASCD) allows a driver to keep vehicle at predetermined constant speed without depressing accelerator pedal. Driver can set vehicle speed in advance between approximately 40 km/h (25 MPH) and 144 km/h (89 MPH).

ECM controls throttle angle of electric throttle control actuator to regulate engine speed.

Operation status of ASCD is indicated by CRUISE indicator and SET indicator in combination meter. If any malfunction occurs in ASCD system, it automatically deactivates control.

SET OPERATION

Press ASCD CRUISE switch (Main switch). (The CRUISE indicator in combination meter illuminates.) When vehicle speed reaches a desired speed between approximately 40 km/h (25 MPH) and 144 km/h (89 MPH), press SET switch. (Then SET indicator in combination meter illuminates.)

ACCEL OPERATION

If the RESUME/ACCEL switch is depressed during cruise control driving, increase the vehicle speed until the switch is released or vehicle speed reaches maximum speed controlled by the system. And then ASCD will keep the new set speed.

CANCEL OPERATION

When any of following conditions exist, cruise operation will be canceled.

- CANCEL switch is depressed
- More than 2 switches at ASCD steering switch are depressed at the same time (Set speed will be cleared.).
- Brake pedal is depressed
- Clutch pedal is depressed or gear position is changed to the neutral position (M/T models)
- Selector lever is changed to N, P, R position (A/T models).
- Vehicle speed decreased to 13 km/h (8 MPH) lower than the set speed

When the ECM detects any of the following conditions, the ECM will cancel the cruise operation and inform the driver by blinking indicator lamp.

- Engine coolant temperature is slightly higher than the normal operating temperature: CRUISE lamp may blink slowly.
 - When the engine coolant temperature decreases to the normal operating temperature, CRUISE lamp will stop blinking and the cruise operation will be able to work by depressing SET switch or RESUME switch.
- Malfunction for some self-diagnoses regarding ASCD control: SET lamp will blink quickly.

If MAIN switch is turned to OFF during ASCD is activated, all of ASCD operations will be canceled and vehicle speed memory will be erased.

COAST OPERATION

When the SET/COAST switch is depressed during cruise control driving, decrease vehicle set speed until the switch is released. And then ASCD will keep the new set speed.

EC-635

EC

Α

D

Е

F

Г

ì

,

Н

I

J

K

M

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

[QG18DE]

RESUME OPERATION

When the RESUME/ACCEL switch is depressed after cancel operation other than depressing MAIN switch is performed, vehicle speed will return to last set speed. To resume vehicle set speed, vehicle condition must meet following conditions.

- Brake pedal is released.
- Clutch pedal is released (M/T models)
- A/T selector lever is in other than P and N position (A/T models)
- Vehicle speed is greater than 40 km/h (25 MPH) and less than 144 km/h (89 MPH)

Component Description ASCD STEERING SWITCH

UBS00BI7

Refer to EC-510.

ASCD BRAKE SWITCH

Refer to EC-534, and EC-538.

ASCD CLUTCH SWITCH

Refer to EC-517 and EC-526.

STOP LAMP SWITCH

Refer to <u>EC-517</u>, <u>EC-534</u> and <u>EC-608</u>.

ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to <u>EC-373</u>, <u>EC-375</u>, <u>EC-382</u> and <u>EC-387</u>.

ASCD INDICATOR

Refer to EC-618.

SERVICE DATA AND SPECIFICATIONS (SDS)

[QG18DE]

SERVICE DATA AND SPECIFICATIONS (SDS) PFP:00030 Α **Fuel Pressure** UBS00BI8 Fuel pressure at idling kPa (kg/cm², psi) Approximately 350 (3.57, 51) EC Idle Speed and Ignition Timing UBS00BI9 A/T No-load*1 (in P or N position) $800 \pm 50 \text{ rpm}$ Target idle speed (Engine is warmed up to normal operating temperature) M/T No-load*1 (in Neutral position) $650 \pm 50 \text{ rpm}$ A/T In P or N position Air conditioner: ON 850 rpm or more M/T In Neutral position A/T In P or N position $18^{\circ} \pm 5^{\circ}$ BTDC Ignition timing M/T In Neutral position $7^{\circ} \pm 5^{\circ}$ BTDC Е *1: Under the following conditions: Air conditioner switch: OFF Electrical load: OFF (Lights, heater fan & rear window defogger) Steering wheel: Kept in straight-ahead position Mass Air Flow Sensor UBS00BIA Supply voltage Battery voltage (11 - 14) 1.0 - 1.7Output voltage at idle V 1.4 - 4.0 at idle* Mass air flow (Using CONSULT-II or GST) g·m/sec 5.0 - 10.0 at 2,500 rpm* *: Engine is warmed up to normal operating temperature and idling under no-load. **Engine Coolant Temperature Sensor** UBSOOBIB Temperature °C (°F) Resistance kΩ 25 (77) 2.1 - 2.9 50 (122) 0.68 - 1.0090 (194) 0.236 - 0.260**Fuel Pump** UBS00BIC Resistance [at 25°C (77°F)] 0.2 - 5.0Injector UBSOORID Resistance [at 20°C (68°F)] 13.5 - 17.5 Resistor UBS00BIE Resistance [at 25°C (77°F)] Ω 4 - 8 Throttle Control Motor UBS00BIF Resistance [at 25°C (77°F)] Approximately 1 - 15Ω Air Fuel Ratio (A/F) Sensor 1 Heater UBS00BIG Resistance [at 25°C (77°F)] Ω 2.3 - 4.3**Heated Oxygen Sensor 2 Heater** UBS00BIN

8 - 10

Resistance [at 25°C (77°F)] Ω

SERVICE DATA AND SPECIFICATIONS (SDS)

[QG18DE]

Calculated Load Value	UBSC
Condition	Calculated load value % (Using CONSULT-II or GST)
At idle	20.0 - 35.5
At 2,500 rpm	12.0 - 30.0
Intake Air Temperature Sensor	UBS
Temperature °C (°F)	Resistance $k\Omega$
25 (77)	1.9 - 2.1
Crankshaft Position Sensor (POS)	UBSC
Refer to EC-257, "Component Inspection".	
Fuel Tank Temperature Sensor	UBS
Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

INDEX FOR DTC

[QR25DE]

INDEX FOR DTC

PFP:00024

Alphabetical Index

UBS0026N

Α

EC

NOTE:

If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-789, "DTC U1000, U1001 CAN COMMUNICATION LINE" .

×: Applicable —: Not applicable

Items	DTC	DTC*1		MIL	
(CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	Trip	lighting up	Reference page
A/F SEN1 (B1)*8	P1271	1271	2	×	EC-1113
A/F SEN1 (B1)*8	P1272	1272	2	×	EC-1119
A/F SEN1 (B1)* ⁸	P1273	1273	2	×	EC-1125
A/F SEN1 (B1)*8	P1274	1274	2	×	EC-1132
A/F SEN1 (B1)* ⁸	P1276	1276	2	×	EC-1139
A/F SEN1 (B1)* ⁸	P1278	1278	2	×	EC-1145
A/F SEN1 (B1)* ⁸	P1279	1279	2	×	EC-1152
A/F SEN1 HTR (B1)* ⁸	P1031	1031	2	×	EC-1028
A/F SEN1 HTR (B1)*8	P1032	1032	2	×	EC-1028
A/T 1ST GR FNCTN	P0731	0731	2	×	AT-509
A/T 2ND GR FNCTN	P0732	0732	2	×	AT-514
A/T 3RD GR FNCTN	P0733	0733	2	×	AT-519
A/T 4TH GR FNCTN	P0734	0734	2	×	AT-524
A/T TCC S/V FNCTN	P0744	0744	2	×	<u>AT-536</u>
APP SEN 1/CIRC	P2122	2122	1	×	EC-1210
APP SEN 1/CIRC	P2123	2123	1	×	EC-1210
APP SEN 2/CIRC	P2127	2127	1	×	EC-1217
APP SEN 2/CIRC	P2128	2128	1	×	EC-1217
APP SENSOR	P2138	2138	1	×	EC-1230
ASCD BRAKE SW	P1572	1572	1	_	EC-1181
ASCD SW	P1564	1564	1	_	EC-1174
ASCD VHL SPD SEN	P1574	1574	1	_	EC-1192
ATF TEMP SEN/CIRC	P0710	0710	2	×	<u>AT-494</u>
BRAKE SW/CIRCUIT	P1805	1805	2	_	EC-1204
CAN COMM CIRCUIT	U1000	1000* ⁵	1	×	EC-789
CAN COMM CIRCUIT	U1001	1001* ⁵	2	_	EC-789
CKP SEN/CIRCUIT	P0335	0335	2	×	EC-930
CLOSED LOOP-B1	P1148	1148	1	×	EC-1090
CMP SEN/CIRC-B1	P0340	0340	2	×	EC-935
CTP LEARNING	P1225	1225	2	_	EC-1105
CTP LEARNING	P1226	1226	2	_	EC-1107
CYL 1 MISFIRE	P0301	0301	2	×	EC-919
CYL 2 MISFIRE	P0302	0302	2	×	EC-919
CYL 3 MISFIRE	P0303	0303	2	×	EC-919
CYL 4 MISFIRE	P0304	0304	2	×	EC-919

	DTO	C*1			
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	Trip	MIL lighting up	Reference page
ECM	P0605	0605	1 or 2	× or —	EC-1025
ECM BACK UP/CIRC	P1065	1065	2	×	EC-1034
ECT SEN/CIRCUIT	P0117	0117	1	×	EC-827
ECT SEN/CIRCUIT	P0118	0118	1	×	EC-827
ECT SENSOR	P0125	0125	1	×	EC-838
ENG OVER TEMP	P1217	1217	1	×	EC-1092
ENGINE SPEED SIG	P0725	0725	2	×	<u>AT-505</u>
ETC ACTR	P1121	1121	1 or 2	×	EC-1043
ETC FUNCTION/CIRC	P1122	1122	1	×	EC-1045
ETC MOT	P1128	1128	1	×	EC-1057
ETC MOT PWR	P1124	1124	1	×	EC-1052
ETC MOT PWR	P1126	1126	1	×	EC-1052
EVAP GROSS LEAK	P0455	0455	2	×	EC-990
EVAP PURG FLOW/MON	P0441	0441	2	×	EC-949
EVAP SMALL LEAK	P0442	0442	2	×	EC-955
EVAP SYS PRES SEN	P0452	0452	2	×	EC-976
EVAP SYS PRES SEN	P0453	0453	2	×	EC-982
EVAP VERY SML LEAK	P0456	0456	2	×	EC-998
FTT SEN/CIRCUIT	P0182	0182	2	×	EC-909
FTT SEN/CIRCUIT	P0183	0183	2	×	EC-909
FTT SENSOR	P0181	0181	2	×	EC-904
FUEL LEV SEN SLOSH	P0460	0460	2	×	EC-1008
FUEL LEVEL SENSOR	P0461	0461	2	×	EC-1010
FUEL LEVL SEN/CIRC	P0462	0462	2	×	EC-1012
FUEL LEVL SEN/CIRC	P0463	0463	2	×	EC-1012
FUEL SYS-LEAN-B1	P0171	0171	2	×	EC-883
FUEL SYS-RICH-B1	P0172	0172	2	×	EC-894
HO2S1 (B1)* ⁷	P0132	0132	2	×	EC-846
HO2S1 (B1)* ⁷	P0133	0133	2	×	EC-852
HO2S1 (B1)* ⁷	P0134	0134	2	×	EC-862
HO2S1 (B1)* ⁷	P1143	1143	2	×	EC-1062
HO2S1 (B1)* ⁷	P1144	1144	2	×	EC-1068
HO2S1 HTR (B1)* ⁷	P0031	0031	2	×	EC-795
HO2S1 HTR (B1)*7	P0032	0032	2	×	EC-795
HO2S2 (B1)	P0138	0138	2	×	EC-869
HO2S2 (B1)	P0139	0139	2	×	EC-875
HO2S2 (B1)	P1146	1146	2	×	EC-1074
HO2S2 (B1)	P1147	1147	2	×	EC-1082
HO2S2 HTR (B1)	P0037	0037	2	×	EC-801
HO2S2 HTR (B1)	P0038	0038	2	×	EC-801
IAT SEN/CIRCUIT	P0112	0112	2	×	EC-822

	ַנְעַרְצַאַטָּבַן					-
	DTO	C*1				-
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	Trip	MIL lighting up	Reference page	Α
IAT SEN/CIRCUIT	P0113	0113	2	×	EC-822	EC
IAT SENSOR	P0127	0127	2	×	EC-841	LC
INT/V TIM CONT-B1	P0011	0011	2	×	EC-792	-
INT/V TIM V/CIR-B1	P1111	1111	2	×	EC-1038	С
ISC SYSTEM	P0506	0506	2	×	EC-1016	=
ISC SYSTEM	P0507	0507	2	×	EC-1018	
KNOCK SEN/CIRC-B1	P0327	0327	2	_	EC-926	- D
KNOCK SEN/CIRC-B1	P0328	0328	2	_	EC-926	= ¹
L/PRESS SOL/CIRC	P0745	0745	2	×	<u>AT-544</u>	Е
MAF SEN/CIRCUIT	P0101	0101	1	×	EC-807	=
MAF SEN/CIRCUIT	P0102	0102	1	×	EC-815	_
MAF SEN/CIRCUIT	P0103	0103	1	×	EC-815	F
MULTI CYL MISFIRE	P0300	0300	2	×	EC-919	= ¹
NATS MALFUNCTION	P1610 - P1615	1610 - 1615	2	_	<u>EC-706</u>	G
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	No DTC	Flashing* ⁴	_	Flashing*4	EC-707	Н
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	0000	_	_	_	. !!
O/R CLTCH SOL/CIRC	P1760	1760	2	×	<u>AT-565</u>	-
P-N POS SW/CIRCUIT	P1706	1706	2	×	EC-1194	-
PNP SW/CIRC	P0705	0705	2	×	<u>AT-488</u>	J
PURG VOLUME CONT/V	P0444	0444	2	×	EC-963	=
PURG VOLUME CONT/V	P0445	0445	2	×	EC-963	-
PURG VOLUME CONT/V	P1444	1444	2	×	EC-1159	K
PW ST P SEN/CIRC	P0550	0550	2	_	EC-1020	-
SENSOR POWER/CIRC	P1229	1229	1	×	EC-1109	-
SFT SOL A/CIRC	P0750	0750	1	×	<u>AT-550</u>	_
SFT SOL B/CIRC	P0755	0755	1	×	<u>AT-555</u>	-
TCC SOLENOID/CIRC	P0740	0740	2	×	<u>AT-531</u>	M
THERMSTAT FNCTN	P0128	0128	2	×	EC-844	-
TP SEN 1/CIRC	P0222	0222	1	×	EC-913	-
TP SEN 1/CIRC	P0223	0223	1	×	EC-913	=
TP SEN 2/CIRC	P0122	0122	1	×	EC-832	=
TP SEN 2/CIRC	P0123	0123	1	×	EC-832	-
TP SENSOR	P2135	2135	1	×	EC-1224	-
TP SEN/CIRC A/T	P1705	1705	1	×	<u>AT-560</u>	=
TW CATALYST SYS-B1	P0420	0420	2	×	<u>EC-941</u>	-
VEH SPD SEN/CIR AT*6	P0720	0720	2	×	<u>AT-500</u>	-
VEH SPEED SEN/CIRC*6	P0500	0500	2	×	EC-1014	=
VENT CONTROL VALVE	P0447	0447	2	×	<u>EC-969</u>	=
			1		<u> </u>	_

lt	DTC*1			NAU.	
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	Trip	MIL lighting up	Reference page
VENT CONTROL VALVE	P1446	1446	2	×	EC-1167
VIAS S/V CIRC	P1800	1800	2	_	EC-1198

^{*1: 1}st trip DTC No. is the same as DTC No.

DTC No. Index

UBS0026O

NOTE:

If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-789, "DTC U1000, U1001 CAN COMMUNICATION LINE".

×: Applicable —: Not applicable

				γ., πρρι	icable —. Not applicable
CONSULT-II GST* ²	ECM* ³	ltems (CONSULT-II screen terms)	Trip	MIL lighting up	Reference page
No DTC	Flashing* ⁴	NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	_	Flashing* ⁴	EC-707
U1000	1000* ⁵	CAN COMM CIRCUIT	1	×	EC-789
U1001	1001* ⁵	CAN COMM CIRCUIT	2	_	EC-789
P0000	0000	NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	_	_	-
P0011	0011	INT/V TIM CONT-B1	2	×	EC-792
P0031	0031	HO2S1 HTR (B1)* ⁷	2	×	EC-795
P0032	0032	HO2S1 HTR (B1)* ⁷	2	×	EC-795
P0037	0037	HO2S2 HTR (B1)	2	×	EC-801
P0038	0038	HO2S2 HTR (B1)	2	×	EC-801
P0101	0101	MAF SEN/CIRCUIT	1	×	EC-807
P0102	0102	MAF SEN/CIRCUIT	1	×	EC-815
P0103	0103	MAF SEN/CIRCUIT	1	×	EC-815
P0112	0112	IAT SEN/CIRCUIT	2	×	EC-822
P0113	0113	IAT SEN/CIRCUIT	2	×	EC-822
P0117	0117	ECT SEN/CIRCUIT	1	×	EC-827
P0118	0118	ECT SEN/CIRCUIT	1	×	EC-827
P0122	0122	TP SEN 2/CIRC	1	×	EC-832
P0123	0123	TP SEN 2/CIRC	1	×	EC-832
P0125	0125	ECT SENSOR	1	×	EC-838
P0127	0127	IAT SENSOR	2	×	EC-841
P0128	0128	THERMSTAT FNCTN	2	×	EC-844
P0132	0132	HO2S1 (B1)* ⁷	2	×	EC-846
P0133	0133	HO2S1 (B1)* ⁷	2	×	EC-852

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:} When engine is running.

^{*5:} The troubleshooting for this DTC needs CONSULT-II.

^{*6:} When the fail-safe operations for both self-diagnoses occur, the MIL illuminates.

^{*7:} A/T models ULEV and M/T models.

^{*8:} A/T models except ULEV.

[QR25DE]

DTC	C*1			D. 411		,
CONSULT-II GST* ²	ECM*3	ltems (CONSULT-II screen terms)	Trip	MIL lighting up	Reference page	A
P0134	0134	HO2S1 (B1)* ⁷	2	×	EC-862	EC
P0138	0138	HO2S2 (B1)	2	×	EC-869	
P0139	0139	HO2S2 (B1)	2	×	EC-875	
P0171	0171	FUEL SYS-LEAN-B1	2	×	EC-883	
P0172	0172	FUEL SYS-RICH-B1	2	×	EC-894	
P0181	0181	FTT SENSOR	2	×	EC-904	
P0182	0182	FTT SEN/CIRCUIT	2	×	EC-909	
P0183	0183	FTT SEN/CIRCUIT	2	×	EC-909	
P0222	0222	TP SEN 1/CIRC	1	×	EC-913	Е
P0223	0223	TP SEN 1/CIRC	1	×	EC-913	
P0300	0300	MULTI CYL MISFIRE	2	×	EC-919	-
P0301	0301	CYL 1 MISFIRE	2	×	EC-919	F
P0302	0302	CYL 2 MISFIRE	2	×	EC-919	
P0303	0303	CYL 3 MISFIRE	2	×	EC-919	
P0304	0304	CYL 4 MISFIRE	2	×	EC-919	
P0327	0327	KNOCK SEN/CIRC-B1	2	_	EC-926	
P0328	0328	KNOCK SEN/CIRC-B1	2	_	EC-926	-
P0335	0335	CKP SEN/CIRCUIT	2	×	EC-930	
P0340	0340	CMP SEN/CIRC-B1	2	×	EC-935	
P0420	0420	TW CATALYST SYS-B1	2	×	EC-941	
P0441	0441	EVAP PURG FLOW/MON	2	×	EC-949	
P0442	0442	EVAP SMALL LEAK	2	×	EC-955	-
P0444	0444	PURG VOLUME CONT/V	2	×	EC-963	
P0445	0445	PURG VOLUME CONT/V	2	×	EC-963	ŀ
P0447	0447	VENT CONTROL VALVE	2	×	EC-969	
P0452	0452	EVAP SYS PRES SEN	2	×	EC-976	
P0453	0453	EVAP SYS PRES SEN	2	×	EC-982	L
P0455	0455	EVAP GROSS LEAK	2	×	EC-990	
P0456	0456	EVAP VERY SML LEAK	2	×	EC-998	1
P0460	0460	FUEL LEV SEN SLOSH	2	×	EC-1008	
P0461	0461	FUEL LEVEL SENSOR	2	×	EC-1010	
P0462	0462	FUEL LEVL SEN/CIRC	2	×	EC-1012	
P0463	0463	FUEL LEVL SEN/CIRC	2	×	EC-1012	
P0500	0500	VEH SPEED SEN/CIRC*6	2	×	EC-1014	
P0506	0506	ISC SYSTEM	2	×	EC-1016	
P0507	0507	ISC SYSTEM	2	×	EC-1018	
P0550	0550	PW ST P SEN/CIRC	2	_	EC-1020	
P0605	0605	ECM	1 or 2	× or —	EC-1025	
P0705	0705	PNP SW/CIRC	2	×	<u>AT-488</u>	
P0710	0710	ATF TEMP SEN/CIRC	2	×	<u>AT-494</u>	
P0720	0720	VEH SPD SEN/CIR AT*6	2	×	<u>AT-500</u>	
P0725	0725	ENGINE SPEED SIG	2	×	AT-505	

DTC*1					
CONSULT-II GST* ²	ECM* ³	ltems (CONSULT-II screen terms)	Trip	MIL lighting up	Reference page
P0731	0731	A/T 1ST GR FNCTN	2	×	AT-509
P0732	0732	A/T 2ND GR FNCTN	2	×	<u>AT-514</u>
P0733	0733	A/T 3RD GR FNCTN	2	×	<u>AT-519</u>
P0734	0734	A/T 4TH GR FNCTN	2	×	<u>AT-524</u>
P0740	0740	TCC SOLENOID/CIRC	2	×	<u>AT-531</u>
P0744	0744	A/T TCC S/V FNCTN	2	×	<u>AT-536</u>
P0745	0745	L/PRESS SOL/CIRC	2	×	<u>AT-544</u>
P0750	0750	SFT SOL A/CIRC	1	×	<u>AT-550</u>
P0755	0755	SFT SOL B/CIRC	1	×	<u>AT-555</u>
P1031	1031	A/F SEN1 HTR (B1)*8	2	×	EC-1028
P1032	1032	A/F SEN1 HTR (B1)*8	2	×	EC-1028
P1065	1065	ECM BACK UP/CIRC	2	×	EC-1034
P1111	1111	INT/V TIM V/CIR-B1	2	×	EC-1038
P1121	1121	ETC ACTR	1 or 2	×	EC-1043
P1122	1122	ETC FUNCTION/CIRC	1	×	EC-1045
P1124	1124	ETC MOT PWR	1	×	EC-1052
P1126	1126	ETC MOT PWR	1	×	EC-1052
P1128	1128	ETC MOT	1	×	EC-1057
P1143	1143	HO2S1 (B1)* ⁷	2	×	EC-1062
P1144	1144	HO2S1 (B1)* ⁷	2	×	EC-1068
P1146	1146	HO2S2 (B1)	2	×	EC-1074
P1147	1147	HO2S2 (B1)	2	×	EC-1082
P1148	1148	CLOSED LOOP-B1	1	×	EC-1090
P1217	1217	ENG OVER TEMP	1	×	EC-1092
P1225	1225	CTP LEARNING	2	_	EC-1105
P1226	1226	CTP LEARNING	2	_	EC-1107
P1229	1229	SENSOR POWER/CIRC	1	×	EC-1109
P1271	1271	A/F SENSOR1 (B1)*8	2	×	EC-1113
P1272	1272	A/F SENSOR1 (B1)*8	2	×	EC-1119
P1273	1273	A/F SENSOR1 (B1)*8	2	×	EC-1125
P1274	1274	A/F SENSOR1 (B1)*8	2	×	EC-1132
P1276	1276	A/F SENSOR1 (B1)*8	2	×	EC-1139
P1278	1278	A/F SENSOR1 (B1)*8	2	×	EC-1145
P1279	1279	A/F SENSOR1 (B1)*8	2	×	EC-1152
P1444	1444	PURG VOLUME CONT/V	2		
P1444 P1446	1444	VENT CONTROL VALVE	2	×	EC-1159 EC-1167
P1564	1564	ASCD SW	1	_	EC-1174
P1572	1572	ASCD SW ASCD BRAKE SW	1	_	EC-1174 EC-1181
P1574	1574	ASCD VHL SPD SEN	1	_	EC-1192
P1610 - P1615	1610 - 1615	NATS MALFUNCTION	2	_	EC-706
. 1010-1 1013	1705	TP SEN/CIRC A/T		_	AT-560

INDEX FOR DTC

[QR25DE]

Α

EC

С

D

Е

F

Н

M

DTC*1					
CONSULT-II GST* ²	ECM*3	ltems (CONSULT-II screen terms)	Trip	MIL lighting up	Reference page
P1706	1706	P-N POS SW/CIRCUIT	2	×	EC-1194
P1760	1760	O/R CLTCH SOL/CIRC	2	×	<u>AT-565</u>
P1800	1800	VIAS S/V CIRC	2	_	EC-1198
P1805	1805	BRAKE SW/CIRCUIT	2	_	EC-1204
P2122	2122	APP SEN 1/CIRC	1	×	EC-1210
P2123	2123	APP SEN 1/CIRC	1	×	EC-1210
P2127	2127	APP SEN 2/CIRC	1	×	EC-1217
P2128	2128	APP SEN 2/CIRC	1	×	EC-1217
P2135	2135	TP SENSOR	1	×	EC-1224
P2138	2138	APP SENSOR	1	×	EC-1230

^{*1: 1}st trip DTC No. is the same as DTC No.

EC-645

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:} When engine is running.

^{*5:} The troubleshooting for this DTC needs CONSULT-II.

^{*6:} When the fail-safe operations for both self-diagnoses occur, the MIL illuminates.

^{*7:} A/T models ULEV and M/T models.

^{*8:} A/T models except ULEV.

PRECAUTIONS PFP:00001

Precautions for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

UBS00BJ5

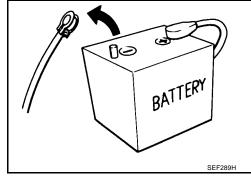
The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted. Information necessary to service the system safely is included in the SRS and SB section of this Service Manual

WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN/INFINITI dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the SRS section.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or harness connectors.

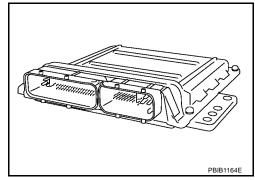
On Board Diagnostic (OBD) System of Engine and A/T

UBS0026Q

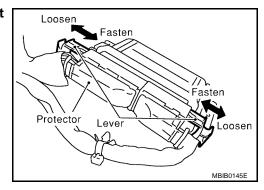

The ECM has an on board diagnostic system. It will light up the malfunction indicator (MIL) to warn the driver of a malfunction causing emission deterioration.

CAUTION:

- Be sure to turn the ignition switch OFF and disconnect the battery ground cable before any repair
 or inspection work. The open/short circuit of related switches, sensors, solenoid valves, etc. will
 cause the MIL to light up.
- Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will
 cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease,
 dirt, bent terminals, etc.)
- Certain systems and components, especially those related to OBD, may use a new style slidelocking type harness connector. For description and how to disconnect, refer to <u>PG-47</u>, "HAR-<u>NESS CONNECTOR"</u>.
- Be sure to route and secure the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MIL to light up due to the short circuit.
- Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
 may cause the MIL to light up due to the malfunction of the fuel injection system, etc.
- Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and TCM (Transmission control module) before returning the vehicle to the customer.

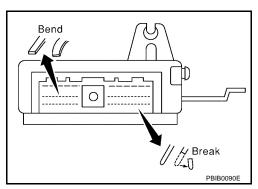

Precaution

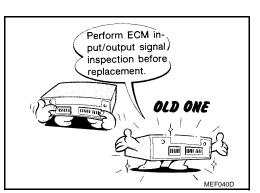
- Always use a 12 volt battery as power source.
- Do not attempt to disconnect battery cables while engine is running.
- Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect battery ground cable. Failure to do so may damage the ECM because battery voltage is applied to ECM even if ignition switch is turned off.
- Before removing parts, turn ignition switch OFF and then disconnect battery ground cable.



- Do not disassemble ECM.
- If battery cable is disconnected, the memory will return to the initial ECM values.

The ECM will now start to self-control at its initial values. Engine operation can vary slightly when the cable is disconnected. However, this is not an indication of a malfunction. Do not replace parts because of a slight variation.


 When connecting ECM harness connector, fasten it securely with a lever as far as it will go as shown at right.



 When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).

Make sure that there are not any bends or breaks on ECM pin terminal, when connecting pin connectors.

- Securely connect ECM harness connectors.
 - A poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs.
- Keep engine control system harness at least 10 cm (4 in) away from adjacent harness, to prevent engine control system malfunctions due to receiving external noise, degraded operation of ICs, etc.
- Keep engine control system parts and harness dry.
- Before replacing ECM, perform "ECM Terminals and Reference Value" inspection and make sure ECM functions properly. Refer to EC-746.
- Handle mass air flow sensor carefully to avoid damage.
- Do not disassemble mass air flow sensor.
- Do not clean mass air flow sensor with any type of detergent.
- Do not disassemble electric throttle control actuator.
- Even a slight leak in the air intake system can cause serious incidents.
- Do not shock or jar the camshaft position sensor (PHASE), crankshaft position sensor (POS).

Α

EC

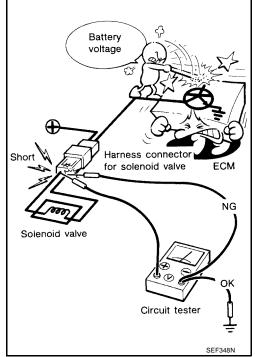
D

Е

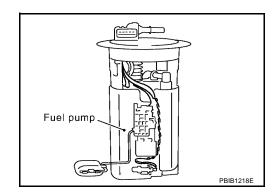
F

G

Н


-

M

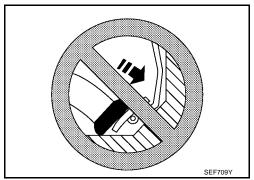

After performing each TROUBLE DIAGNOSIS, perform DTC Confirmation Procedure or Overall Function Check. The DTC should not be displayed in the DTC Confirmation Procedure if the repair is completed. The Overall Function Check should be a good result if the repair is completed.

- When measuring ECM signals with a circuit tester, never allow the two tester probes to contact.
 Accidental contact of probes will cause a short circuit and damage the ECM power transistor.
- Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

- Do not operate fuel pump when there is no fuel in lines.
- Tighten fuel hose clamps to the specified torque.

PRECAUTIONS

[QR25DE]


Α

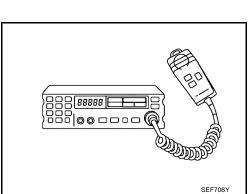
EC

D

Е

- Do not depress accelerator pedal when starting.
- Immediately after starting, do not rev up engine unnecessarily.
- Do not rev up engine just prior to shutdown.

- When installing C.B. ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on installation location.
- Keep the antenna as far as possible from the electronic control units.
- Keep the antenna feeder line more than 20 cm (8 in) away from the harness of electronic controls. Do not let them run parallel for a long distance.
- Adjust the antenna and feeder line so that the standingwave radio can be kept smaller.
- Be sure to ground the radio to vehicle body.


Wiring Diagrams and Trouble Diagnosis

When you read wiring diagrams, refer to the following:

- GI-13, "How to Read Wiring Diagrams"
- PG-3, "POWER SUPPLY ROUTING" for power distribution circuit

When you perform trouble diagnosis, refer to the following:

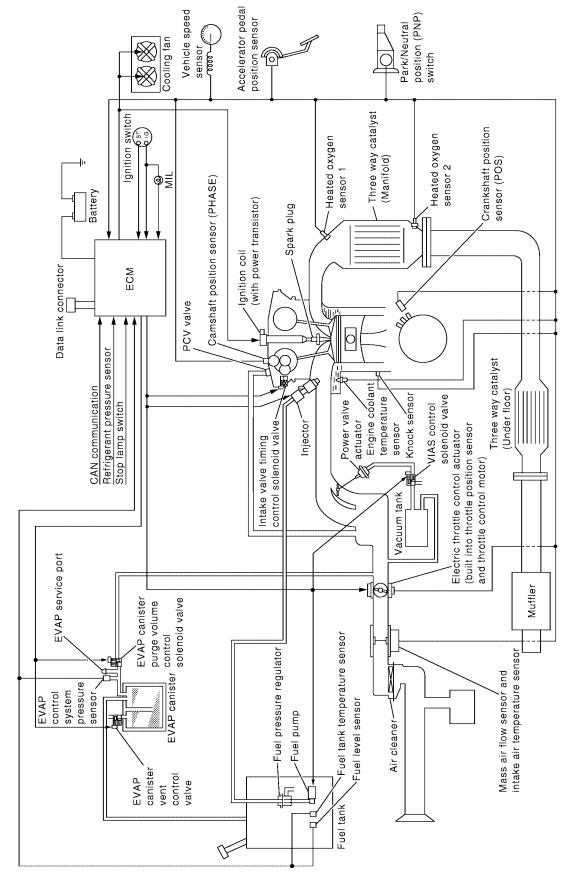
- GI-10, "HOW TO FOLLOW TEST GROUPS IN TROUBLE DIAGNOSES"
- GI-26. "How to Perform Efficient Diagnosis for an Electrical Incident"

LIBS0026S

PREPARATION PFP:00002

Special Service Tools

Tool number (Kent-Moore No.) Tool name	Description	
KV10117100 (J36471-A) Heated oxygen sensor wrench	S-NT379	Loosening or tightening heated oxygen sensors with 22 mm (0.87 in) hexagon nut
KV10114400 (J-38365) Heated oxygen sensor wrench	S-NT636	Loosening or tightening heated oxygen sensors a: 22 mm (0.87 in)
(J-44626) Air fuel ratio (A/F) sensor wrench	LEM054	Loosening or tightening air fuel ratio (A/F) sensor 1
(J-44321) Fuel pressure gauge kit	LEC642	Checking fuel pressure
KV109E0010 (J-46209) Break-out box	Break Out Box 00000000000000000000000000000000000	Measuring the ECM signals with a circuit tester
KV109E0080 (J-45819) Y-cable adapter	S-NT826	Measuring the ECM signals with a circuit tester
EG17650301 (J33984-A) Radiator cap tester adapter		Adapting radiator cap tester to radiator cap and radiator filler neck a: 28 (1.10) dia. b: 31.4 (1.236) dia. c: 41.3 (1.626) dia. Unit: mm (in)

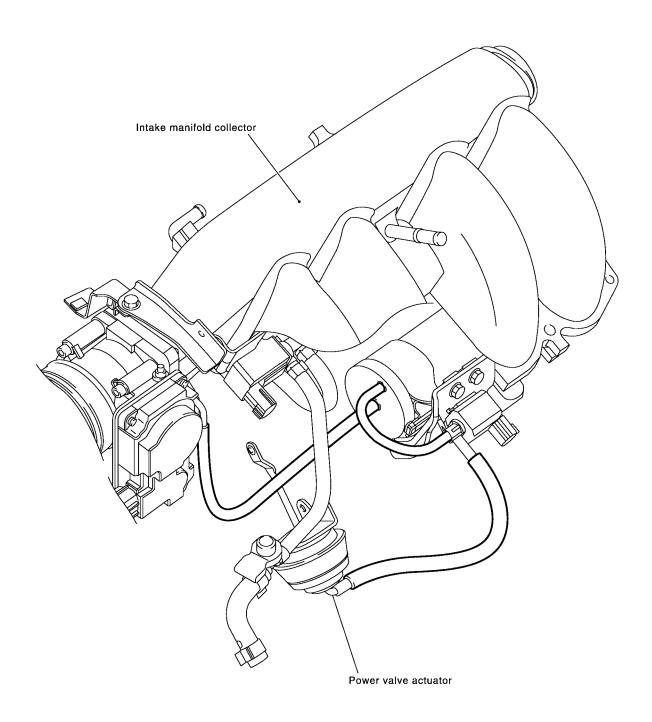

Tool name (Kent- Moore No.)	Description	
Fuel filler cap adapter J-45356)		Checking fuel tank vacuum relief valve opening pressure
_eak detector	S-NT815	Locating the EVAP leak
e: (J41416)		Locating the LVAL leak
	S-NT703	
EVAP service port		Applying positive pressure through EVAP service port
ie: (J41413-OBD)		
	S-NT704	
Socket wrench	19 mm (0.75 in) More than 32 mm (1.26 in)	Removing and installing engine coolant temperature sensor
Oxygen sensor thread cleaner	a b	Reconditioning the exhaust system threads before installing a new oxygen sensor. Use with anti-seize
e: (J-43897-18) (J-43897-12)	Mating surface shave cylinder Flutes AEM488	lubricant shown below. a: 18 mm diameter with pitch 1.5 mm for Zirconia Oxygen Sensor b: 12 mm diameter with pitch 1.25 mm for Titania Oxygen Sensor
Anti-seize lubricant ie: (Permatex TM 133AR or equivalent meeting MIL specifica- tion MIL-A-907)		Lubricating oxygen sensor thread cleaning tool when reconditioning exhaust system threads.

ENGINE CONTROL SYSTEM

PFP:23710

System Diagram A/T MODELS ULEV AND M/T MODELS

UBS0026V


[QR25DE] A/T MODELS EXCEPT ULEV Α Accelerator pedal Vehicle speed position (PNP) switch position sensor Park/Neutral Cooling fan sensor EC C Three way catalyst Ignition switch Crankshaft position Heated oxygen Air fuel ratio (A/F) sensor 1 (Manifold) sensor (POS) sensor 2 D φੂ≝ Camshaft position sensor (PHASE) Battery Ignition coil (with power transistor) Spark plug Е Data link connector ECM F PCV valve 0 Refrigerant pressure sensor Stop lamp switch Three way catalyst Н Engine coolant CAN communication (Under floor) temperature Knock sensor solenoid valve Power valve VIAS control Intake valve timing control solenoid valveactuator Injector sensor (built into throttle position sensor Electric throttle control actuator and throttle control motor) Vacuum tank K EVAP service port Muffler 10 L control solenoid valve EVÀP canister purge volume Fuel tank temperature sensor M -Fuel pressure regulator intake air temperature sensor Mass air flow sensor and **EVAP** canister pressure sensor control system EVAP Fuel level sensor Fuel pump Air cleanercanister control EVAP valve vent

PBIB1779E

Fuel tank

Vacuum Hose Drawing

UBS0026W

BBIA0286E

NOTE: Do not use soapy water or any type of solvent while installing vacuum hose or purge hoses. Refer to EC-652, "System Diagram" for Vacuum Control System.

ENGINE CONTROL SYSTEM

[QR25DE]

Α

EC

D

Е

System Chart Input (Sensor) **ECM Function** Output (Actuator) • Camshaft position sensor (PHASE) Fuel injection & mixture ratio control Fuel injectors Crankshaft position sensor (POS) Electronic ignition system Power transistor Mass air flow sensor Fuel pump control Fuel pump relay • Engine coolant temperature sensor ASCD vehicle speed control Electric throttle control actuator Heated oxygen sensor 1*4 On board diagnostic system MIL (On the instrument panel) Air fuel ratio (A/F) sensor 1*5 Power valve control VIAS control solenoid valve Throttle position sensor Heated oxygen sensor 1 heater*4 Heated oxygen sensor 1 heater control*4 Accelerator pedal position sensor • Park/neutral position (PNP) switch Air fuel ratio (A/F) sensor 1 heater control*5 Air fuel ratio (A/F) sensor 1 heater*5 Intake air temperature sensor Heated oxygen sensor 2 heater control Heated oxygen sensor 2 heater Power steering pressure sensor EVAP canister purge volume control EVAP canister purge flow control Ignition switch solenoid valve Battery voltage Air conditioner relay Air conditioning cut control Knock sensor Cooling fan control Cooling fan relays Refrigerant pressure sensor Stop lamp switch ASCD steering switch ASCD brake switch ASCD clutch switch Fuel level sensor*1 • EVAP control system pressure sensor ON BOARD DIAGNOSIS for EVAP system • EVAP canister vent control valve Fuel tank temperature sensor*1 Heated oxygen sensor 2 *2 TCM (Transmission control module) *3 Air conditioner switch Vehicle speed sensor Electrical load signal

^{*1:} This sensor is not used to control the engine system. This is used only for the on board diagnosis.

^{*2:} This sensor is not used to control the engine system under normal conditions.

^{*3:} The signal is sent to the ECM through CAN communication line.

^{*4:} A/T models ULEV and M/T models.

^{*5:} A/T models except ULEV.

Multiport Fuel Injection (MFI) System INPUT/OUTPUT SIGNAL CHART

UBS00261

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS)	Engine speed*5		
Camshaft position sensor (PHASE)	Piston position		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Heated oxygen sensor 1*1	Density of oxygen in exhaust gas		
Air fuel ratio (A/F) sensor*2	Density of oxygen in exhaust gas		
Throttle position sensor	Throttle position	Fuel injec-	
Accelerator pedal position sensor	Accelerator pedal position	tion & mix-	Fuel injectors
Park/neutral position (PNP) switch	Gear position	control	
Knock sensor	Engine knocking condition		
Battery	Battery voltage*5		
Power steering pressure sensor	Power steering operation		
Heated oxygen sensor 2*3	Density of oxygen in exhaust gas		
Vehicle speed sensor*4	Vehicle speed		
Air conditioner switch	Air conditioner operation		

^{*1:} A/T models ULEV and M/T models.

SYSTEM DESCRIPTION

The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from both the crankshaft position sensor and the mass air flow sensor.

VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION

In addition, the amount of fuel injected is compensated to improve engine performance under various operating conditions as listed below.

<Fuel increase>

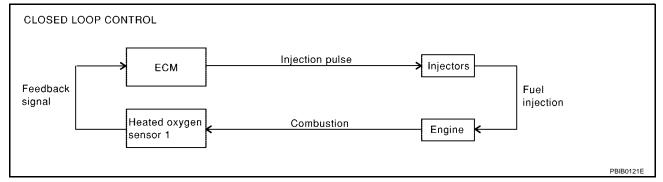
- During warm-up
- When starting the engine
- During acceleration
- Hot-engine operation
- When selector lever is changed from N to D (A/T models)
- High-load, high-speed operation

<Fuel decrease>

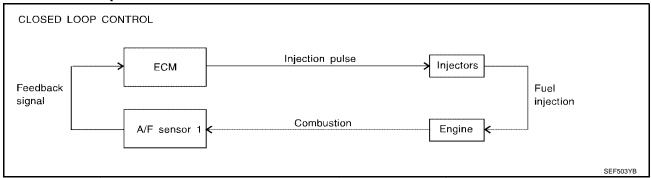
- During deceleration
- During high engine speed operation

^{*2:} A/T models except ULEV.

^{*3:} Under normal conditions, this sensor is not for engine control operation.


^{*4:} This signal is sent to the ECM through CAN communication line.

^{*5:} ECM determines the start signal status by the signal of engine speed and battery voltage.


[QR25DE]

MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)

A/T Models ULEV and M/T Models

A/T Models Except ULEV

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The three way catalyst (manifold) can then better reduce CO, HC and NOx emissions. This system uses heated oxygen sensor 1 (A/T models ULEV and M/T models), air fuel ratio (A/F) sensor 1 (A/T models except ULEV) in the exhaust manifold to monitor if the engine operation is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about heated oxygen sensor 1 (A/T models ULEV and M/T models), air fuel ratio (A/F) sensor 1 (A/T models except ULEV), refer to EC-846 /EC-1113 This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition.

Heated oxygen sensor 2 is located downstream of the three way catalyst (manifold). Even if the switching characteristics of heated oxygen sensor 1 (A/T models ULEV and M/T models), air-fuel ratio (A/F) sensor 1 (A/ T models except ULEV) shift, the air-fuel ratio is controlled to stoichiometric by the signal from heated oxygen sensor 2.

Open Loop Control

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

- Deceleration and acceleration
- High-load, high-speed operation
- Malfunction of heated oxygen sensor 1 (A/T models ULEV and M/T models), air fuel ratio (A/F) sensor 1 (A/T models except ULEV) or its circuit
- Insufficient activation of heated oxygen sensor 1 at low engine coolant temperature
- High engine coolant temperature
- During warm-up
- After shifting from N to D (A/T models)
- When starting the engine

MIXTURE RATIO SELF-LEARNING CONTROL

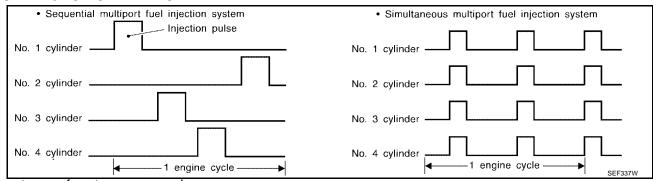
The mixture ratio feedback control system monitors the mixture ratio signal transmitted from heated oxygen sensor 1 (A/T models ULEV and M/T models), air fuel ratio (A/F) sensor 1 (A/T models except ULEV). This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both manufacturing differences (i.e., mass air flow sensor hot film) and characteristic changes during operation (i.e., injector clogging) directly affect mixture ratio.

EC-657

EC

Α

Н


Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.

"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short term fuel trim and long term fuel trim.

"Short term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from heated oxygen sensor 1 (A/T models ULEV and M/T models), air fuel ratio (A/F) sensor 1 (A/T models except ULEV) indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean.

"Long term fuel trim" is overall fuel compensation carried out long-term to compensate for continual deviation of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences, wear over time and changes in the usage environment.

FUEL INJECTION TIMING

Two types of systems are used.

Sequential Multiport Fuel Injection System

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

Simultaneous Multiport Fuel Injection System

Fuel is injected simultaneously into all four cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.

The four injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

FUEL SHUT-OFF

Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.

Electronic Ignition (EI) System INPUT/OUTPUT SIGNAL CHART

UBS0026Z

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS)	Engine speed*2		
Camshaft position sensor (PHASE)	Piston position		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Throttle position sensor	Throttle position	Ignition	_
Accelerator pedal position sensor	Accelerator pedal position	timing con-	Power transistor
Knock sensor	Engine knocking		
Park/neutral position (PNP) switch	Gear position		
Battery	Battery voltage*2		
Vehicle speed sensor*1	Vehicle speed		

^{*1:} This signal is sent to the ECM through communication line.

^{*2:} ECM determines the start signal status by the signal of engine speed and battery voltage.

ENGINE CONTROL SYSTEM

[QR25DE]

Α

EC

Е

Н

M

SYSTEM DESCRIPTION

The ignition timing is controlled by the ECM to maintain the best airfuel ratio for every running condition of the engine. The ignition timing data is stored in the ECM. This data forms the map shown.

The ECM receives information such as the injection pulse width and camshaft position sensor signal. Computing this information, ignition signals are transmitted to the power transistor.

e.g., N: 1,800 rpm, Tp: 1.50 msec

A °BTDC

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.

- At starting
- During warm-up
- At idle
- At low battery voltage
- During acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

Air Conditioning Cut Control INPUT/OUTPUT SIGNAL CHART

UBS00270

Sensor	Input Signal to ECM	ECM function	Actuator	
Air conditioner switch	Air conditioner ON signal		Air conditioner relay	
Throttle position sensor	Throttle position			
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*2			
Engine coolant temperature sensor	Engine coolant temperature	Air conditioner		
Battery	Battery voltage*2	Battery voltage*2 cut control		
Refrigerant pressure sensor	Refrigerant pressure			
Power steering pressure sensor	Power steering operation			
Vehicle speed sensor*1	Vehicle speed			

^{*1:} This signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

This system improves engine operation when the air conditioner is used. Under the following conditions, the air conditioner is turned off.

- When the accelerator pedal is fully depressed.
- When cranking the engine.
- At high engine speeds.
- When the engine coolant temperature becomes excessively high.
- When operating power steering during low engine speed or low vehicle speed.
- When engine speed is excessively low.
- When refrigerant pressure is excessively low or high.

Tp (msec)
1.75
4 1.50
600 1,000 1,400 1,800 2,200
Engine speed (rpm)
SEF742M

EC-659

^{*2:} ECM determines the start signal status by the signal of engine speed and battery voltage.

Fuel Cut Control (at No Load and High Engine Speed) INPUT/OUTPUT SIGNAL CHART

UBS00271

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Park/neutral position (PNP) switch	Neutral position		
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Accelerator pedal position	Fuel cut control Fuel injectors	
Engine coolant temperature sensor	Engine coolant temperature		Fuel injectors
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed		
Vehicle speed sensor*1	Vehicle speed		

^{*1:} This signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

If the engine speed is above 1,800 rpm with no load (for example, in neutral and engine speed over 1,800 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed. Fuel cut will operate until the engine speed reaches 1,500 rpm, then fuel cut is cancelled.

NOTE

This function is different from deceleration control listed under "Multiport Fuel Injection (MFI) System", $\underline{\text{EC-656}}$

EC-660

ENGINE CONTROL SYSTEM

[QR25DE]

CAN communication SYSTEM DESCRIPTION

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other EC control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

Α

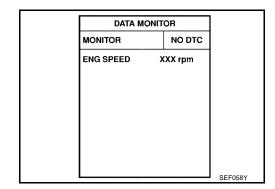
Refer to EC-789, "DTC U1000, U1001 CAN COMMUNICATION LINE", about CAN communication for detail.

D

Е

Н

BASIC SERVICE PROCEDURE


PFP:00018

UBS00273

Idle Speed and Ignition Timing Check IDLE SPEED

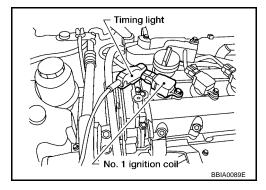
(P) With CONSULT-II

Check idle speed in "DATA MONITOR" mode with CONSULT-II.

With GST

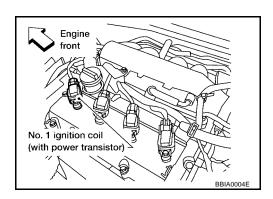
Check idle speed with GST.

NOTF:

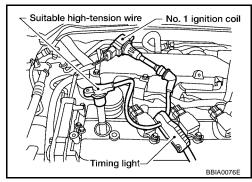

For the method of installing the tachometer, refer to "IGNITION TIMING".

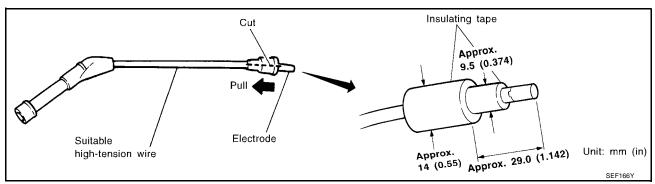
IGNITION TIMING

Any of following two methods may be used.

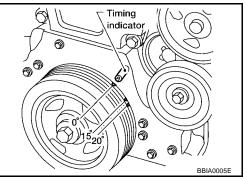

Method A

- 1. Slide the harness protector of ignition coil No. 1 to clear the wires.
- 2. Attach timing light to the wires as shown in the figure.
- 3. Check ignition timing.




Method B

1. Remove No. 1 ignition coil.



Connect No. 1 ignition coil and No. 1 spark plug with suitable high-tension wire as shown, and attach timing light clamp to this wire.

3. Check ignition timing.

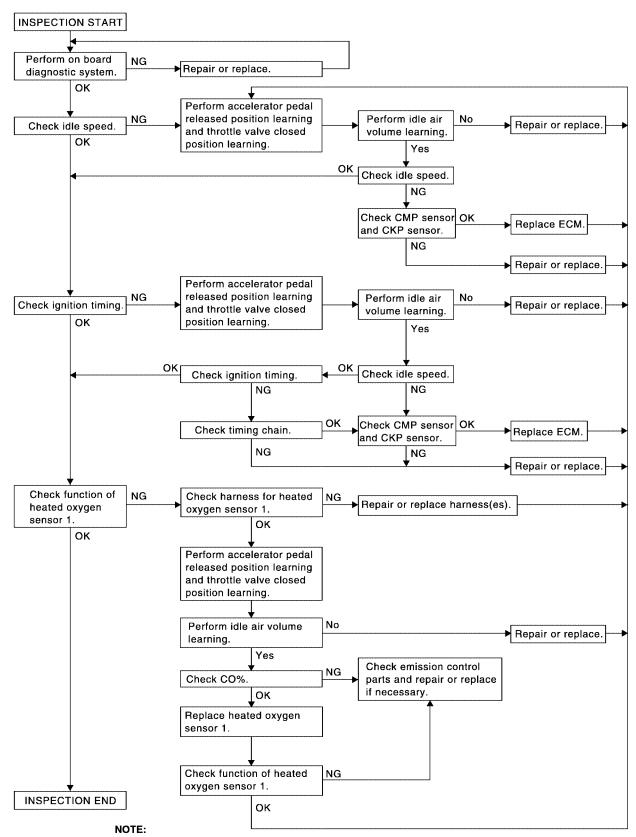
Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (A/T MODELS ULEV AND M/T MODELS) **PREPARATION**

Make sure that the following parts are in good order.

- Battery
- Ignition system
- Engine oil and coolant levels
- Fuses
- ECM harness connector
- Vacuum hoses
- Air intake system (Oil filler cap, oil level gauge, etc.)
- Fuel pressure
- Engine compression
- Throttle valve
- Evaporative emission system
- 2. On air conditioner equipped models, checks should be carried out while the air conditioner is OFF.
- 3. On automatic transmission equipped models, when checking idle rpm, ignition timing and mixture ratio, checks should be carried out while shift lever is in N position.
- When measuring CO percentage, insert probe more than 40 cm (15.7 in) into tail pipe.

Α

EC

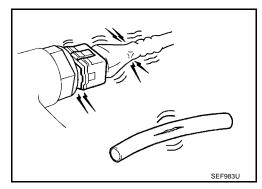

D

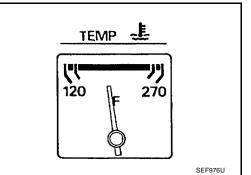
Е

Н

- Turn off headlamps, heater blower, rear window defogger.
- 6. Keep front wheels pointed straight ahead.

OVERALL INSPECTION SEQUENCE

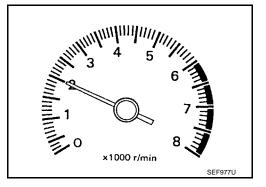

If a vehicle contains a part which is operating outside of design specifications with no MIL illumination, the part shall not be replaced prior to emission testing unless it is determined that the part has been tampered with or abused in such a way that the diagnostic system cannot reasonably be expected to detect the resulting malfunction.


INSPECTION PROCEDURE

1. INSPECTION START

1. Check service records for any recent repairs that may indicate a related malfunction, or a current need for scheduled maintenance.

- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Wiring harness for improper connections, pinches and cut
- Vacuum hoses for splits, kinks and improper connections
- Hoses and ducts for leaks
- Air cleaner clogging
- Gasket
- 3. Confirm that electrical or mechanical loads are not applied.
- Headlamp switch is OFF.
- Air conditioner switch is OFF.
- Rear window defogger switch is OFF.
- Steering wheel is in the straight-ahead position, etc.
- Start engine and warm it up until engine coolant temperature indicator points the middle of gauge.
 Ensure engine stays below 1,000 rpm.



- 5. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 6. Make sure that no DTC is displayed with CONSULT-II or GST.

OK or NG

OK >> GO TO 3.

NG >> GO TO 2.

2. REPAIR OR REPLACE

Repair or replace components as necessary according to corresponding Diagnostic Procedure.

>> GO TO 3.

Α

EC

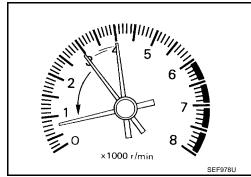
D

Е

F

G

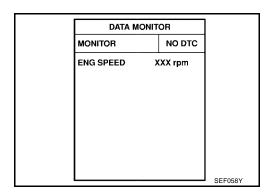
Н


K

L

3. CHECK TARGET IDLE SPEED

(P) With CONSULT-II


- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.

3. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

M/T: 700 \pm 50 rpm

A/T: 700 \pm 50 rpm (in P or N position)

W Without CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.
- 3. Check idle speed.

M/T: 700 \pm 50 rpm

A/T: 700 ± 50 rpm (in P or N position)

OK or NG

OK >> GO TO 10. NG >> GO TO 4.

4. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-684, "Accelerator Pedal Released Position Learning".

>> GO TO 5.

5. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-684, "Throttle Valve Closed Position Learning" .

>> GO TO 6.

BASIC SERVICE PROCEDURE

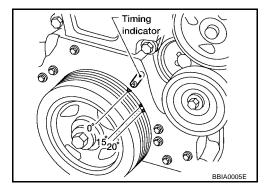
[QR25DE]

6. PERFORM IDLE AIR VOLUME LEARNING Perform EC-685, "Idle Air Volume Learning". Is the Idle Air Volume Learning carried out successfully? EC Yes or No Yes >> GO TO 7. No >> 1. Follow the instruction of Idle Air Volume Learning. 2. GO TO 4. 7. CHECK TARGET IDLE SPEED AGAIN D (P) With CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II. Е M/T: $700 \pm 50 \text{ rpm}$ A/T: 700 ± 50 rpm (in P or N position) Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Check idle speed. M/T: $700 \pm 50 \text{ rpm}$ A/T: 700 \pm 50 rpm (in P or N position) Н OK or NG OK >> GO TO 10. NG >> GO TO 8. 8. DETECT MALFUNCTIONING PART Check the following. Check camshaft position sensor (PHASE) and circuit. Refer to EC-935. Check crankshaft position sensor (POS) and circuit. Refer to EC-930. OK or NG >> GO TO 9. OK NG >> 1. Repair or replace. 2. GO TO 4. 9. CHECK ECM FUNCTION

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is the rarely the case.)
- Perform initialization of NVIS (NATS) system and registration of NVIS (NATS) ignition key IDs. Refer to <u>EC-706</u>, "NVIS (Nissan Vehicle Immobilizer System — NATS)"

>> GO TO 4.

10. CHECK IGNITION TIMING


- 1. Run engine at idle.
- 2. Check ignition timing with a timing light.

M/T: 15 \pm 5° BTDC

A/T: $15 \pm 5^{\circ}$ BTDC (in P or N position)

OK or NG

OK (With CONSULT-II)>>GO TO 19. OK (Without CONSULT-II)>>GO TO 20. NG >> GO TO 11.

11. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-684, "Accelerator Pedal Released Position Learning".

>> GO TO 12.

12. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-684, "Throttle Valve Closed Position Learning".

>> GO TO 13.

13. PERFORM IDLE AIR VOLUME LEARNING

Perform EC-685, "Idle Air Volume Learning".

Is the Idle Air Volume Learning carried out successfully?

Yes or No

Yes >> GO TO 14.

No >> 1. Follow the instruction of Idle Air Volume Learning.

2. GO TO 4.

14. CHECK TARGET IDLE SPEED AGAIN

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

M/T: 700 \pm 50 rpm

A/T: 700 ± 50 rpm (in P or N position)

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed.

M/T: 700 \pm 50 rpm

A/T: 700 \pm 50 rpm (in P or N position)

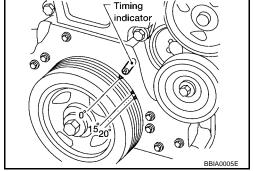
OK or NG

OK >> GO TO 15. NG >> GO TO 17.

BASIC SERVICE PROCEDURE

[QR25DE]

15. CHECK IGNITION TIMING AGAIN


- 1. Run engine at idle.
- 2. Check ignition timing with a timing light.

M/T: $15 \pm 5^{\circ}$ BTDC

A/T: $15 \pm 5^{\circ}$ BTDC (in P or N position)

OK or NG

OK (With CONSULT-II)>>GO TO 19. OK (Without CONSULT-II)>>GO TO 20. NG >> GO TO 16.

16. CHECK TIMING CHAIN INSTALLATION

Check timing chain installation. Refer to EM-131, "TIMING CHAIN".

OK or NG

OK >> GO TO 17.

NG >> 1. Repair the timing chain installation.

2. GO TO 4.

17. DETECT MALFUNCTIONING PART

Check the following.

- Check camshaft position sensor (PHASE) and circuit. Refer to EC-935.
- Check crankshaft position sensor (POS) and circuit. Refer to EC-930.

OK or NG

OK >> GO TO 18.

NG >> 1. Repair or replace.

2. GO TO 4.

18. CHECK ECM FUNCTION

- Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is the rarely the case.)
- 2. Perform initialization of NVIS (NATS) system and registration of NVIS (NATS) ignition key IDs. Refer to EC-706, "NVIS (Nissan Vehicle Immobilizer System — NATS)".

>> GO TO 4.

EC

D

Е

K

19. CHECK HEATED OXYGEN SENSOR 1 SIGNAL

(P) With CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. See "HO2S1 MNTR (B1)" in "DATA MONITOR" mode.
- Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the monitor fluctuates between LEAN and RICH more than 5 times during 10 seconds.

1 time: $RICH \rightarrow LEAN \rightarrow RICH$

2 times: $RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH$

OK or NG

OK >> INSPECTION END

NG (Monitor does not fluctuate.)>>GO TO 21.

NG (Monitor fluctuates less than 5 times.)>>GO TO 28.

MONITOR NO DTC ENG SPEED XXX rpm MAS A/F SE-B1 XXX V COOLAN TEMP/S XXX °C HO2S1 (B1) XXX V HO2S1 MNTR (B1) LEAN

DATA MONITOR

20. CHECK HEATED OXYGEN SENSOR 1 SIGNAL

⊗ Without CONSULT-II

- Stop engine and set ECM to Self-diagnostic mode II (Heated oxygen sensor 1 monitor). Refer to <u>EC-708</u>, "HOW TO SWITCH DIAGNOSTIC TEST MODE".
- Start engine and run it at about 2,000 rpm for about 2 minutes under no-load.
- 3. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the MIL comes on more than 5 times during 10 seconds.

OK or NG

OK >> INDPECTION END

NG (MIL does not come on)>>GO TO 21.

NG (MIL comes on less than 5 times)>>GO TO 28.

21. CHECK HEATED OXYGEN SENSOR 1 HARNESS

- 1. Turn ignition switch OFF and disconnect battery ground cable.
- 2. Disconnect ECM harness connector.
- Disconnect heated oxygen sensor 1 harness connector.
- Check harness continuity between ECM terminal 35 and heated oxygen sensor 1 terminal 1. Refer to EC-848, "Wiring Diagram".

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 22.

NG >> 1. Repair or replace harness between ECM and heated oxygen sensor 1.

2. GO TO 4.

22. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- Reconnect ECM harness connector.
- 2. Perform EC-684, "Accelerator Pedal Released Position Learning".

>> GO TO 23.

23. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-684, "Throttle Valve Closed Position Learning".

>> GO TO 24.

24. PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-685, "Idle Air Volume Learning".

Is the Idle Air Volume Learning carried out successfully?

Yes or No

Yes (With CONSULT-II)>>GO TO 25.

Yes (Without CONSULT-II)>> GO TO 26.

>> 1. Follow the instruction of Idle Air Volume Learning.

2. GO TO 4.

25. снеск со%

(P) With CONSULT-II

- 1. Start engine and warm it up until engine coolant temperature indicator points the middle of gauge.
- 2. Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- 3. Select "ENG COOLANT TEMP" in "ACTIVE TEST" mode.
- 4. Set "ENG COOLANT TEMP" to 5°C (41°F) by touching "DWN" and "Qd".
- 5. Start engine and rev it (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed.
- 6. Check CO%.

Idle CO: 0.3 – 9.5% and engine runs smoothly.

OK or NG

OK >> GO TO 28. NG >> GO TO 27.

26. CHECK CO%

⋈ Without CONSULT-II

- 1. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge.
- 2. Turn ignition switch OFF.
- Disconnect engine coolant temperature sensor harness connector.
- 4. Connect a resistor (4.4 k Ω) between terminals of engine coolant temperature sensor harness connector.
- Start engine and rev it (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed.
- 6. Check CO%.

Idle CO: 0.3 - 9.5% and engine runs smoothly.

7. After checking CO, turn ignition switch OFF, disconnect the resistor from the terminals of engine coolant temperature sensor harness connector, and then connect engine coolant temperature sensor harness connector to engine coolant temperature sensor.

Engine coolant temperature sensor harness connector 4.4kΩ resistor SEF982UA

ACTIVE TEST

MONITOR

XXX rpm

XXX msed

XXX BTDC

ENG COOLANT TEMP

ENG SPEED

INJ PULSE-B1

IGN TIMING

OK or NG

OK >> GO TO 28. NG >> GO TO 27.

EC-671

EC

Е

Н

SEF172Y

27. RECONNECT HEATED OXYGEN SENSOR 1 HARNESS CONNECTOR

- 1. Turn ignition switch OFF.
- 2. Reconnect heated oxygen sensor 1 harness connector.

>> GO TO 31.

28. REPLACE HEATED OXYGEN SENSOR 1

- 1. Stop engine.
- 2. Replace heated oxygen sensor 1.

With CONSULT-II>>GO TO 29. Without CONSULT-II>>GO TO 30.

29. CHECK HEATED OXYGEN SENSOR 1 SIGNAL

(II) With CONSULT-II

- 1. Start engine and warm it up until engine coolant temperature indicator points the middle of gauge.
- 2. See "HO2S1 MNTR (B1)" in "DATA MONITOR" mode.
- 3. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the monitor fluctuates between LEAN and RICH more than 5 times during 10 seconds.

1 time: $RICH \rightarrow LEAN \rightarrow RICH$

2 times: $RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH$

OK or NG

OK >> GO TO 4. NG >> GO TO 31.

30. CHECK HEATED OXYGEN SENSOR 1 SIGNAL

Without CONSULT-II

- 1. Set ECM to Self-diagnostic mode II (Heated oxygen sensor 1 monitor). Refer to EC-708, "How to Set Diagnostic Test Mode II (Heated Oxygen Sensor 1 Monitor)*".
- 2. Running engine at 2,000 rpm under no-load (The engine is warmed up to normal operating temperature.), check that the MIL comes on more than 5 times during 10 seconds.

OK or NG

OK >> GO TO 4. NG >> GO TO 31.

31. DETECT MALFUNCTIONING PART

Check the following.

- Check fuel pressure regulator and repair or replace if necessary.
 Refer to <u>EC-687</u>, "<u>Fuel Pressure Check</u>".
- Check mass air flow sensor and its circuit, and repair or replace if necessary.
 Refer to <u>EC-807</u>, <u>EC-815</u>.
- Check injector and its circuit, and repair or replace if necessary.
 Refer to EC-1258.
- Check engine coolant temperature sensor and its circuit, and repair or replace if necessary.
 Refer to <u>EC-827</u> and <u>EC-838</u>.

OK or NG

OK >> GO TO 33.

NG >> 1. Repair or replace.

2. GO TO 32.

BASIC SERVICE PROCEDURE

[QR25DE]

32. ERASE UNNECESSARY DTC

After this inspection, unnecessary DTC might be displayed.

Erase the stored memory in ECM and TCM.

Refer to EC-704, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION" .

>> GO TO 4.

33. CHECK ECM FUNCTION

1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is the rarely the case.)

2. Perform initialization of NVIS (NATS) system and registration of NVIS (NATS) ignition key IDs. Refer to EC-706, "NVIS (Nissan Vehicle Immobilizer System — NATS)".

>> GO TO 4.

EC

С

D

Е

1

Н

^

L

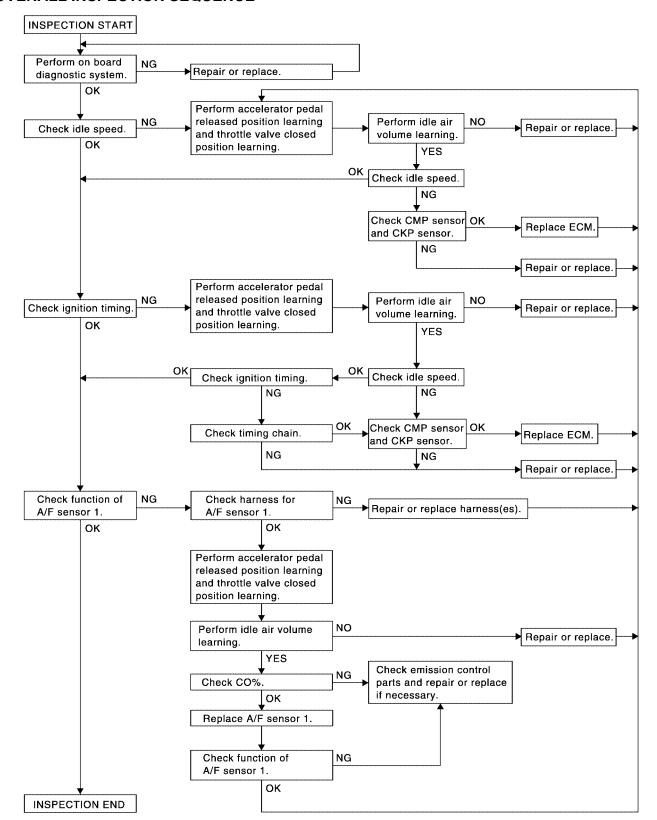
BASIC SERVICE PROCEDURE

[QR25DE]

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (A/T MODELS EXCEPT ULEV)

- 1. Make sure that the following parts are in good order.
 - Battery

PREPARATION

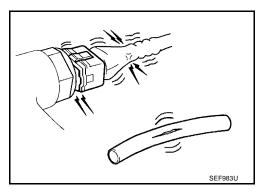

- Ignition system
- Engine oil and coolant levels
- Fuses
- ECM harness connector
- Vacuum hoses
- Air intake system (Oil filler cap, oil level gauge, etc.)
- Fuel pressure
- Engine compression
- Throttle valve
- Evaporative emission system
- 2. On air conditioner equipped models, checks should be carried out while the air conditioner is OFF.
- 3. On automatic transmission equipped models, when checking idle rpm, ignition timing and mixture ratio, checks should be carried out while shift lever is in N position.
- When measuring CO percentage, insert probe more than 40 cm (15.7 in) into tail pipe.
- 5. Turn off headlamp, heater blower, rear window defogger.
- 6. Keep front wheels pointed straight ahead.
- 7. Perform inspection after the cooling fans have completely stopped.

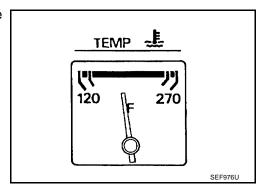
Α

EC

M

OVERALL INSPECTION SEQUENCE

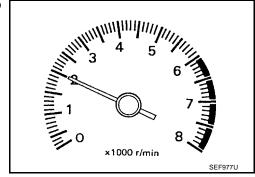

NOTE:


If a vehicle contains a part which is operating outside of design specifications with no MIL illumination, the part shall not be replaced prior to emission testing unless it is determined that the part has been tampered with or abused in such a way that the diagnostic system cannot reasonably be expected to detect the resulting malfunction.

INSPECTION PROCEDURE

1. INSPECTION START

- Check service records for any recent repairs that may indicate a related malfunction, or a current need for scheduled maintenance.
- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Wiring harness for improper connections, pinches and cut
- Vacuum hoses for splits, kinks and improper connections
- Hoses and ducts for leaks
- Air cleaner clogging
- Gasket
- 3. Confirm that electrical or mechanical loads are not applied.
- Head lamp switch is OFF.
- Air conditioner switch is OFF.
- Rear window defogger switch is OFF.
- Steering wheel is in the straight-ahead position, etc.
- Start engine and warm it up until engine coolant temperature indicator points the middle of gauge. Ensure engine stays below 1,000 rpm.

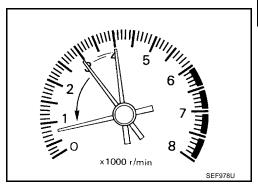


- 5. Run engine at about 2,000 rpm for about 2 minutes under no load.
- 6. Make sure that no DTC is displayed with CONSULT-II or GST.

OK or NG

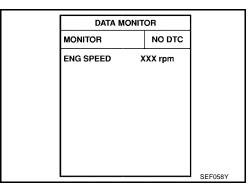
OK >> GO TO 3. NG >> GO TO 2.

2. REPAIR OR REPLACE


Repair or replace components as necessary according to corresponding Diagnostic Procedure.

>> GO TO 3.

3. CHECK TARGET IDLE SPEED


(II) With CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no load, then run engine at idle speed for about 1 minute.

3. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

700 \pm 50 rpm (in P or N position)

Without CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no load, then run engine at idle speed for about 1 minute.
- 3. Check idle speed.

700 \pm 50 rpm (in P or N position)

OK or NG

OK >> GO TO 10. NG >> GO TO 4.

4. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-684, "Accelerator Pedal Released Position Learning".

>> GO TO 5.

$5.\,$ PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-684, "Throttle Valve Closed Position Learning".

>> GO TO 6.

EC

С

D

Е

F

G

Н

Κ

6. PERFORM IDLE AIR VOLUME LEARNING

Perform EC-685, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes >> GO TO 7.

No >> 1. Follow the instruction of Idle Air Volume Learning.

2. GO TO 4.

7. CHECK TARGET IDLE SPEED AGAIN

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

 700 ± 50 rpm (in P or N position)

(R) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed.

700 \pm 50 rpm (in P or N position)

OK or NG

OK >> GO TO 10. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Check camshaft position sensor (PHASE) and circuit. Refer to EC-935.
- Check crankshaft position sensor (POS) and circuit. Refer to EC-930.

OK or NG

OK >> GO TO 9.

NG >> 1. Repair or replace.

2. GO TO 4.

9. CHECK ECM FUNCTION

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is the rarely the case.)
- Perform initialization of NVIS (NATS) system and registration of NVIS (NATS) ignition key IDs. Refer to <u>EC-706</u>, "NVIS (Nissan Vehicle Immobilizer System — NATS)"

>> GO TO 4.

10. CHECK IGNITION TIMING

- 1. Run engine at idle.
- 2. Check ignition timing with a timing light.

 $15 \pm 5^{\circ}$ BTDC (in P or N position)

OK or NG

OK (With CONSULT-II)>>GO TO 19. OK (Without CONSULT-II)>>GO TO 20. NG >> GO TO 11.

BASIC SERVICE PROCEDURE

[QR25DE]

11. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING 1. Stop engine. 2. Perform EC-684, "Accelerator Pedal Released Position Learning". EC >> GO TO 12. 12. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING Perform EC-684, "Throttle Valve Closed Position Learning". D >> GO TO 13. 13. PERFORM IDLE AIR VOLUME LEARNING Е Perform EC-685, "Idle Air Volume Learning". Is Idle Air Volume Learning carried out successfully? Yes or No Yes >> GO TO 14. No >> 1. Follow the instruction of Idle Air Volume Learning. 2. GO TO 4. 14. CHECK TARGET IDLE SPEED AGAIN (P) With CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II. 700 \pm 50 rpm (in P or N position) **⋈** Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Check idle speed. 700 ± 50 rpm (in P or N position) OK or NG >> GO TO 15. OK >> GO TO 17. NG 15. CHECK IGNITION TIMING AGAIN M 1. Run engine at idle. 2. Check ignition timing with a timing light. $15 \pm 5^{\circ}$ BTDC (in P or N position) OK or NG OK (With CONSULT-II)>>GO TO 19. OK (Without CONSULT-II)>>GO TO 20. NG >> GO TO 16. 16. CHECK TIMING CHAIN INSTALLATION Check timing chain installation. Refer to EM-131, "TIMING CHAIN". OK or NG >> GO TO 17. OK NG >> 1. Repair the timing chain installation.

2. GO TO 4.

17. DETECT MALFUNCTIONING PART

Check the following.

- Check camshaft position sensor (PHASE) and circuit. Refer to <u>EC-935</u>.
- Check crankshaft position sensor (POS) and circuit. Refer to <u>EC-930</u>.

OK or NG

OK >> GO TO 18.

NG >> 1. Repair or replace.

2. GO TO 4.

18. CHECK ECM FUNCTION

- Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is the rarely the case.)
- Perform initialization of NVIS (NATS) system and registration of NVIS (NATS) ignition key IDs. Refer to <u>EC-706</u>, "NVIS (Nissan Vehicle Immobilizer System — NATS)"

>> GO TO 4.

19. CHECK AIR FUEL RATIO (A/F) SENSOR 1 FUNCTION

(II) With CONSULT-II

- 1. Turn ignition switch OFF and wait at a least 10 seconds.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in D position with "OD" OFF.

NOTE:

Keep the accelerator pedal as steady as possible during the cruising.

4. Set "OD" ON, then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

- 5. Repeat steps 3 to 4 for five times.
- 6. Stop the vehicle and connect CONSULT-II to the vehicle.
- 7. Make sure that no (1st trip) DTC is displayed in "SELF-DIAG RESULTS" mode.

OK or NG

OK >> INSPECTION END

NG >> GO TO 21.

[QR25DE]

20. CHECK AIR FUEL RATIO (A/F) SENSOR 1 FUNCTION

With GST

- 1. Turn ignition switch OFF and wait at a least 10 seconds.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in D position with "OD" OFF.

Keep the accelerator pedal as steady as possible during the cruising.

4. Set "OD" ON, then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

- 5. Repeat steps 3 to 4 for five times.
- 6. Stop the vehicle and connect GST to the vehicle.
- 7. Make sure that no (1st trip) DTC is displayed.

OK or NG

>> INSPECTION END OK

NG >> GO TO 21.

21. CHECK AIR FUEL RATIO (A/F) SENSOR 1 HARNESS

- 1. Turn ignition switch OFF and disconnect battery ground cable.
- 2. Disconnect ECM harness connector.
- 3. Disconnect A/F sensor 1 harness connector.
- 4. Check harness continuity between the following terminals. Refer to EC-1116, "Wiring Diagram".

Bank 1		
ECM terminal	A/F sensor 1 terminal	
24	4	
76	1	
57	5	
58	6	
77	2	

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 22.

NG

>> 1. Repair open circuit or short to ground or short to power in harness or connectors between ECM and A/F sensor 1.

2. GO TO 4.

22. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Reconnect ECM harness connector.
- 2. Perform EC-684, "Accelerator Pedal Released Position Learning".

>> GO TO 23.

EC

D

Е

Н

$23.\,$ perform throttle valve closed position learning

Perform EC-684, "Throttle Valve Closed Position Learning".

>> GO TO 24.

24. PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-685, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes (With CONSULT-II)>>GO TO 25.

Yes (Without CONSULT-II)>>GO TO 26.

No >> 1. Follow the instruction of Idle Air Volume Learning.

2. GO TO 4.

25. снеск со%

(II) With CONSULT-II

- 1. Start engine and warm it up until engine coolant temperature indicator points the middle of gauge.
- 2. Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- 3. Select "ENG COOLANT TEMP" in "ACTIVE TEST" mode.
- 4. Set "ENG COOLANT TEMP" to 5°C (41°F) by touching "DWN" and "Qd".
- 5. Start engine and rev it (2,000 to 3,000 rpm) two or three times under no load, then run engine at idle speed.
- 6. Check CO%.

Idle CO: 0.7 – 9.9% and engine runs smoothly.

OK or NG

OK >> GO TO 28. NG >> GO TO 27.

26. CHECK CO%

⋈ Without CONSULT-II

- 1. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge.
- 2. Turn ignition switch OFF.
- 3. Disconnect engine coolant temperature sensor harness connector.
- 4. Connect a resistor (4.4 $k\Omega$) between terminals of engine coolant temperature sensor harness connector.
- 5. Start engine and rev it (2,000 to 3,000 rpm) two or three times under no load, then run engine at idle speed.
- 6. Check CO%.

Idle CO: 0.7 – 9.9% and engine runs smoothly.

 After checking CO%, turn ignition switch OFF, disconnect the resistor from the terminals of engine coolant temperature sensor harness connector, and then connect engine coolant temperature sensor harness connector to engine coolant temperature sensor.

Engine coolant temperature sensor harness connector 4.4kΩ resistor SEF982UA

OK or NG

OK >> GO TO 28. NG >> GO TO 27.

[QR25DE]

27. RECONNECT AIR FUEL RATIO (A/F) SENSOR 1 HARNESS CONNECTOR

Turn ignition switch OFF.

2. Reconnect A/F sensor 1 harness connector.

>> GO TO 31.

28. Replace air fuel ratio (a/f) sensor 1

1. Stop engine.

2. Replace A/F sensor 1.

With CONSULT-II>>GO TO 29. Without CONSULT-II>>GO TO 30.

29. Check air fuel ratio (a/f) sensor 1 function

(II) With CONSULT-II

1. Turn ignition switch OFF and wait at a least 10 seconds.

- 2. Start engine and warm it up to normal operating temperature.
- 3. Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in D position with "OD" OFF.

Keep the accelerator pedal as steady as possible during the cruising.

4. Set "OD" ON, then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

- 5. Repeat steps 3 to 4 for five times.
- 6. Stop the vehicle and connect CONSULT-II to the vehicle.
- 7. Make sure that no (1st trip) DTC is displayed in "SELF-DIAG RESULTS" mode.

OK or NG

OK >> GO TO 4. NG >> GO TO 31.

30. CHECK AIR FUEL RATIO (A/F) SENSOR 1 FUNCTION

With GST

- 1. Turn ignition switch OFF and wait at a least 10 seconds.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in D position with "OD" OFF.

Keep the accelerator pedal as steady as possible during the cruising.

4. Set "OD" ON, then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

- 5. Repeat steps 3 to 4 for five times.
- 6. Stop the vehicle and connect GST to the vehicle.
- 7. Make sure that no (1st trip) DTC is displayed.

OK or NG

OK >> GO TO 4. >> GO TO 31. NG

EC-683

EC

D

Е

Н

31. detect malfunctioning part

Check the following.

- Check fuel pressure regulator, and repair or replace if necessary.
 Refer to EC-687, "Fuel Pressure Check"
- Check mass air flow sensor and its circuit, and repair or replace if necessary.
 Refer to <u>EC-807</u> and <u>EC-815</u>.
- Check injector and its circuit, and repair or replace if necessary.
 Refer to <u>EC-1258</u>.
- Check engine coolant temperature sensor and its circuit, and repair or replace if necessary.
 Refer to <u>EC-827</u> and <u>EC-838</u>.

OK or NG

OK >> GO TO 33.

NG >> 1. Repair or replace.

2. GO TO 32.

32. ERASE UNNECESSARY DTC

After this inspection, unnecessary DTC might be displayed.

Erase the stored memory in ECM and TCM.

Refer to EC-704, "How to Erase DTC" and AT-427, "OBD-II Diagnostic Trouble Code (DTC)".

>> GO TO 4.

33. CHECK ECM FUNCTION

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is the rarely the case.)
- 2. Perform initialization of NVIS (NATS) system and registration of NVIS (NATS) ignition key IDs. Refer to EC-706, "NVIS (Nissan Vehicle Immobilizer System NATS)".

>> GO TO 4.

Accelerator Pedal Released Position Learning DESCRIPTION

UBS00275

Accelerator Pedal Released Position Learning is an operation to learn the fully released position of the accelerator pedal by monitoring the accelerator pedal position sensor output signal. It must be performed each time harness connector of accelerator pedal position sensor or ECM is disconnected.

OPERATION PROCEDURE

- 1. Make sure that accelerator pedal is fully released.
- Turn ignition switch ON and wait at least 2 seconds.
- 3. Turn ignition switch OFF wait at least 10 seconds.
- 4. Turn ignition switch ON and wait at least 2 seconds.
- 5. Turn ignition switch OFF wait at least 10 seconds.

Throttle Valve Closed Position Learning DESCRIPTION

UBS00276

Throttle Valve Closed Position Learning is an operation to learn the fully closed position of the throttle valve by monitoring the throttle position sensor output signal. It must be performed each time harness connector of electric throttle control actuator or ECM is disconnected.

OPERATION PROCEDURE

- 1. Make sure that accelerator pedal is fully released.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF wait at least 10 seconds.
 Make sure that throttle valve moves during above 10 seconds by confirming the operating sound.

BASIC SERVICE PROCEDURE

[QR25DE]

Idle Air Volume Learning DESCRIPTION

Idle Air Volume Learning is an operation to learn the idle air volume that keeps each engine within the specific range. It must be performed under any of the following conditions:

- Each time electric throttle control actuator or ECM is replaced.
- Idle speed or ignition timing is out of specification.

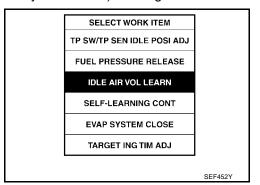
PREPARATION

Before performing Idle Air Volume Learning, make sure that all of the following conditions are satisfied. Learning will be cancelled if any of the following conditions are missed for even a moment.

- Battery voltage: More than 12.9V (At idle)
- Engine coolant temperature: 70 95°C (158 203°F)
- PNP switch: ON
- Electric load switch: OFF

(Air conditioner, headlamp, rear window defogger)

On vehicles equipped with daytime light systems, if the parking brake is applied before the engine is started, the headlamp will not be illuminated.


- Steering wheel: Neutral (Straight-ahead position)
- Vehicle speed: Stopped
- Transmission: Warmed-up For A/T models with CONSULT-II, drive vehicle until "FLUID TEMP SE" in "DATA MONITOR" mode of "A/ T" system indicates less than 0.9V.

For A/T models without CONSULT-II and M/T models, drive vehicle for 10 minutes.

OPERATION PROCEDURE

With CONSULT-II

- Perform EC-684, "Accelerator Pedal Released Position Learning".
- 2. Perform EC-684, "Throttle Valve Closed Position Learning".
- 3. Start engine and warm it up to normal operating temperature.
- 4. Check that all items listed under the topic "PREPARATION" (previously mentioned) are in good order.
- Select "IDLE AIR VOL LEARN" in "WORK SUPPORT" mode.

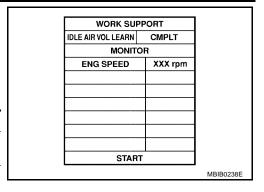
Touch "START" and wait 20 seconds.

	ORT	WORK SUP
		IDLE AIR VOL LEARN
	3	MONITO
	XXX rpm	ENG SPEED
		STAR
SEF454Y		

EC

Α

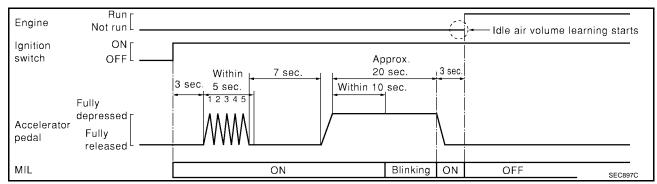
D


Е

F

Н

- Make sure that "CMPLT" is displayed on CONSULT-II screen. If "CMPLT" is not displayed, Idle Air Volume Learning will not be carried out successfully. In this case, find the cause of the incident by referring to the Diagnostic Procedure below.
- 8. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.


ITEM	SPECIFICATION
Idle speed	M/T: 700±50 rpm A/T: 700±50 rpm (in P or N position)
Ignition timing	M/T: 15±5° BTDC A/T: 15±5° BTDC (in P or N position)

⋈ Without CONSULT-II

NOTE:

- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.
- 1. Perform EC-684, "Accelerator Pedal Released Position Learning".
- 2. Perform EC-684, "Throttle Valve Closed Position Learning".
- 3. Start engine and warm it up to normal operating temperature.
- 4. Check that all items listed under the topic "PREPARATION" (previously mentioned) are in good order.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Confirm that accelerator pedal is fully released, turn ignition switch ON and wait 3 seconds.
- 7. Repeat the following procedure quickly five times within 5 seconds.
- a. Fully depress the accelerator pedal.
- b. Fully release the accelerator pedal.
- 8. Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 20 seconds until the MIL stops blinking and turned ON.
- 9. Fully release the accelerator pedal within 3 seconds after the MIL turned ON.
- Start engine and let it idle.
- 11. Wait 20 seconds.

12. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.

ITEM	SPECIFICATION
Idle speed	M/T: 700±50 rpm A/T: 700±50 rpm (in P or N position)
Ignition timing	M/T: 15±5° BTDC A/T: 15±5° BTDC (in P or N position)

13. If idle speed and ignition timing are not within the specification, Idle Air Volume Learning will not be carried out successfully. In this case, find the cause of the incident by referring to the Diagnostic Procedure below.

[QR25DE]

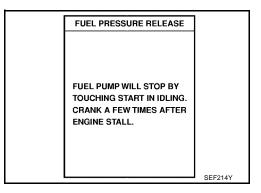
DIAGNOSTIC PROCEDURE

If idle air volume learning cannot be performed successfully, proceed as follows:

- 1. Check that throttle valve is fully closed.
- 2. Check PCV valve operation.
- 3. Check that downstream of throttle valve is free from air leakage.
- 4. When the above three items check out OK, engine component parts and their installation condition are questionable. Check and eliminate the cause of the incident.

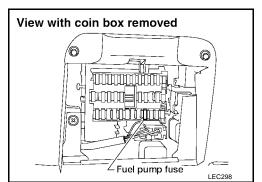
 It is useful to perform EC-777, "TROUBLE DIAGNOSIS SPECIFICATION VALUE".
- 5. If any of the following conditions occur after the engine has started, eliminate the cause of the incident and perform Idle air volume learning all over again:
- Engine stalls.
- Erroneous idle.

Fuel Pressure Check FUEL PRESSURE RELEASE


Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger.

NOTE

Prepare pans or saucers under the disconnected fuel line because the fuel may spill out. The fuel pressure cannot be completely released because B15 models do not have fuel return system.


(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Perform "FUEL PRESSURE RELEASE" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Start engine.
- 4. After engine stalls, crank it two or three times to release all fuel pressure.
- 5. Turn ignition switch OFF.

⋈ Without CONSULT-II

- 1. Remove fuel pump fuse.
- 2. Start engine.
- 3. After engine stalls, crank it two or three times to release all fuel pressure.
- 4. Turn ignition switch OFF.
- 5. Reinstall fuel pump fuse after servicing fuel system.

FUEL PRESSURE CHECK

CAUTION:

- The fuel hose connection method used when taking fuel pressure check must not be used for other purposes.
- Be careful not to scratch or put debris around connection area when servicing, so that the quick connector maintains saleability with O-rings inside.
- Release fuel pressure to zero. Refer to <u>EC-687, "FUEL PRESSURE RELEASE"</u>.
- 2. Prepare fuel hose and fuel hose clamp for fuel pressure check, and connect fuel pressure gauge.
 - Use suitable fuel hose for fuel pressure check (genuine NISSAN fuel hose without quick connector).
 - To avoid unnecessary force or tension to hose, use moderately long fuel hose for fuel pressure check.

EC

Α

D

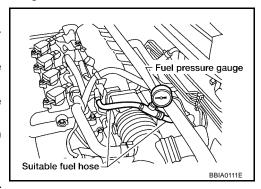
78 E

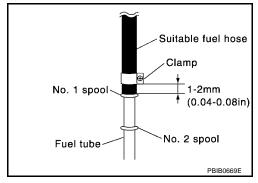
Н

I

K

- Do not use the fuel hose for checking fuel pressure with damage or cracks on it.
- Use fuel pressure gauge to check fuel pressure.
- 3. Remove fuel hose. Refer to EM-103, "INTAKE MANIFOLD".
 - Do not twist or kink fuel hose because it is plastic hose.
 - Do not remove fuel hose from quick connector.
 - Keep the original fuel hose to be free from intrusion of dust or foreign substances with a suitable cover.
- 4. Install the fuel pressure gauge as shown in the figure.
 - Wipe off oil or dirt from hose insertion part using cloth moistened with gasoline.
 - Apply proper amount of gasoline between top of the fuel tube and No.1 spool.
 - Insert fuel hose for fuel pressure check until it touches the No.1 spool on fuel tube.
 - Use NISSAN genuine hose clamp (part number: 16439 N4710 or 16439 40U00).
 - When reconnecting fuel line, always use new clamps.
 - When reconnecting fuel hose, check the original fuel hose for damage and abnormality.
 - Use a torque driver to tighten clamps.
 - Install hose clamp to the position within 1 2 mm (0.04 0.08 in).


- Make sure that clamp screw does not contact adjacent parts.
- 5. After connecting fuel hose for fuel pressure check, pull the hose with a force of approximately 98 N (10 kg, 22 lb.) to confirm fuel tube does not come off.
- 6. Turn ignition switch ON, and check for fuel leakage.
- 7. Start engine and check for fuel leakage.
- 8. Read the indication of fuel pressure gauge.
 - Do not perform fuel pressure check with system operating. Fuel pressure gauge may indicate false readings.
 - During fuel pressure check, confirm for fuel leakage from fuel connection every 3 minutes.


At idling: Approximately 350 kPa (3.57 kg/cm², 51 psi)

- 9. If result is unsatisfactory, go to next step.
- 10. Check the following.
 - Fuel hoses and fuel tubes for clogging
 - Fuel filter for clogging
 - Fuel pump
 - Fuel pressure regulator for clogging

If OK, replace fuel pressure regulator.

If NG, repair or replace.

[QR25DE]

ON BOARD DIAGNOSTIC (OBD) SYSTEM

PFP:00028

Α

EC

Е

Introduction

The ECM has an on board diagnostic system, which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

Emission-related diagnostic information	SAE Mode
Diagnostic Trouble Code (DTC)	Mode 3 of SAE J1979
Freeze Frame data	Mode 2 of SAE J1979
System Readiness Test (SRT) code	Mode 1 of SAE J1979
1st Trip Diagnostic Trouble Code (1st Trip DTC)	Mode 7 of SAE J1979
1st Trip Freeze Frame data	
Test values and Test limits	Mode 6 of SAE J1979
Calibration ID	Mode 9 of SAE J1979

The above information can be checked using procedures listed in the table below.

x: Applicable —: Not applica								
	DTC	1st trip DTC	Freeze Frame data	1st trip Freeze Frame data	SRT code	Test value		
CONSULT-II	×	×	×	×	×	_		
GST	×	×*1	×	_	×	×		
ECM	×	×*2	_	_	_	_		

^{*1: 1}st trip DTCs for self-diagnoses concerning SRT items cannot be shown on the GST display.

The malfunction indicator lamp (MIL) on the instrument panel lights up when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode. (Refer to EC-721.)

Two Trip Detection Logic

UBS0027A

M

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the ECM memory. The MIL will not light up at this stage. <1st trip>

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in the ECM memory, and the MIL lights up. The MIL lights up at the same time when the DTC is stored. <2nd trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to light up or blink the MIL, and store DTC and Freeze Frame data, even in the 1st trip, as shown below.

×: Applicable —: Not applicable

		M	IIL		D.	TC	1st trip DTC	
Items	1st trip		2nd trip		1st trip	2nd trip	1st trip	2nd trip
	Blinking	Lighting up	Blinking	Lighting up	displaying	displaying	displaying	display- ing
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0304 is being detected	×	_	_	_	_	_	×	_
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0304 is being detected	_	_	×	_	_	×	_	_
One trip detection diagnosis (refer to EC-639, "INDEX FOR DTC")	_	×	_	_	×	_	_	_
Except above	_	_	_	×	_	×	×	_

When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting MIL up when there is malfunction on engine control system.

Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected as NG for 5 trips, ECM warns the driver that engine control system malfunctions and MIL circuit is open by means of operating fail-safe function.

EC-689

^{*2:} When DTC and 1st trip DTC simultaneously appear on the display, they cannot be clearly distinguished from each other.

[QR25DE]

The fail-safe function also operates when above diagnoses except MIL circuit are detected, and demands the driver to repair the malfunction.

Engine operating condition in fail-safe mode

Engine speed will not rise more than 2,500 rpm due to the fuel cut

Emission-related Diagnostic Information EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS

UBS0027B

Items	DTC*	·1 ·2		Test value/		Reference	
(CONSULT-II screen terms)	CONSULT-II GST	ECM	SRT code	Test limit (GST only)	1st trip DTC	page	
CAN COMM CIRCUIT	U1000	1000* ⁵	_	_	_	EC-789	
CAN COMM CIRCUIT	U1001	1001* ⁵	_	_	×	EC-789	
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	0000	_	_	_	_	
INT/V TIM CONT-B1	P0011	0011	_	_	×	EC-792	
HO2S1 HTR (B1)* ⁷	P0031	0031	×	×	×* ⁴	EC-795	
HO2S1 HTR (B1)* ⁷	P0032	0032	×	×	×* ⁴	EC-795	
HO2S2 HTR (B1)	P0037	0037	×	×	×* ⁴	EC-801	
HO2S2 HTR (B1)	P0038	0038	×	×	×* ⁴	EC-801	
MAF SEN/CIRCUIT	P0101	0101	_	_	×	EC-807	
MAF SEN/CIRCUIT	P0102	0102	_	_	_	EC-815	
MAF SEN/CIRCUIT	P0103	0103	_	_	_	EC-815	
IAT SEN/CIRCUIT	P0112	0112	_	_	×	EC-822	
IAT SEN/CIRCUIT	P0113	0113	_	_	×	EC-822	
ECT SEN/CIRCUIT	P0117	0117	_	_	_	EC-827	
ECT SEN/CIRCUIT	P0118	0118	_	_	_	EC-827	
TP SEN 2/CIRC	P0122	0122	_	_	_	EC-832	
TP SEN 2/CIRC	P0123	0123	_	_	_	EC-832	
ECT SENSOR	P0125	0125	_	_	_	EC-838	
IAT SENSOR	P0127	0127	_	_	×	EC-841	
THERMSTAT FNCTN	P0128	0128	_	_	×	EC-844	
HO2S1 (B1)* ⁷	P0132	0132	×	×	×* ⁴	EC-846	
HO2S1 (B1)* ⁷	P0133	0133	×	×	×* ⁴	EC-852	
HO2S1 (B1)	P0134	0134	×	×	×* ⁴	EC-862	
HO2S2 (B1)	P0138	0138	_	_	×	EC-869	
HO2S2 (B1)	P0139	0139	×	×	×* ⁴	EC-875	
FUEL SYS-LEAN-B1	P0171	0171	_	_	×	EC-883	
FUEL SYS-RICH-B1	P0172	0172	_	_	×	EC-894	
FTT SENSOR	P0181	0181	_	_	×	EC-904	
FTT SEN/CIRCUIT	P0182	0182	_	_	×	EC-909	
FTT SEN/CIRCUIT	P0183	0183	_	_	×	EC-909	
TP SEN 1/CIRC	P0222	0222	_	_	_	EC-913	
TP SEN 1/CIRC	P0223	0223	_	_	_	EC-913	
MULTI CYL MISFIRE	P0300	0300	_	_	×	EC-919	
CYL 1 MISFIRE	P0301	0301	_	_	×	EC-919	
CYL 2 MISFIRE	P0302	0302	_	_	×	EC-919	

[QR25DE]

						[עאבטטב]	
	DTC*	1 *2		Test value/			'
Items (CONSULT-II screen terms)	CONSULT-II GST	ECM	SRT code	Test limit (GST only)	1st trip DTC	Reference page	Α
CYL 3 MISFIRE	P0303	0303	_	_	×	EC-919	EC
CYL 4 MISFIRE	P0304	0304	_	_	×	EC-919	LO
KNOCK SEN/CIRC-B1	P0327	0327	_	_	×	EC-926	
KNOCK SEN/CIRC-B1	P0328	0328	_	_	×	EC-926	С
CKP SEN/CIRCUIT	P0335	0335	_	_	×	EC-930	
CMP SEN/CIRC-B1	P0340	0340	_	_	×	EC-935	D
TW CATALYST SYS-B1	P0420	0420	×	×	×* ⁴	EC-941	D
EVAP PURG FLOW/MON	P0441	0441	×	×	×* ⁴	EC-949	
EVAP SMALL LEAK	P0442	0442	×	×	×* ⁴	EC-955	Е
PURG VOLUME CONT/V	P0444	0444	_	_	×	EC-963	
PURG VOLUME CONT/V	P0445	0445	_	_	×	EC-963	F
VENT CONTROL VALVE	P0447	0447	_	_	×	EC-969	
EVAP SYS PRES SEN	P0452	0452	_	_	×	EC-976	
EVAP SYS PRES SEN	P0453	0453	_	_	×	EC-982	G
EVAP GROSS LEAK	P0455	0455	_	×	×* ⁴	EC-990	
EVAP VERY SML LEAK	P0456	0456	×* ³	×	×* ⁴	EC-998	Н
FUEL LEV SEN SLOSH	P0460	0460	_	_	×	EC-1008	
FUEL LEVEL SENSOR	P0461	0461	_	_	×	EC-1010	
FUEL LEVL SEN/CIRC	P0462	0462	_	_	×	EC-1012	I
FUEL LEVL SEN/CIRC	P0463	0463	_	_	×	EC-1012	
VEH SPEED SEN/CIRC*6	P0500	0500	_	_	×	EC-1014	J
ISC SYSTEM	P0506	0506	_	_	×	EC-1016	
ISC SYSTEM	P0507	0507	_	_	×	EC-1018	1.7
PW STP SEN/CIRC	P0550	0550	_	_	×	EC-1020	K
ECM	P0605	0605	_	_	×	EC-1025	
PNP SW/CIRC	P0705	0705	_	_	×	<u>AT-488</u>	L
ATF TEMP SEN/CIRC	P0710	0710	_	_	×	AT-494	
VEH SPD SEN/CIR AT*6	P0720	0720	_	_	×	<u>AT-500</u>	B. //
ENGINE SPEED SIG	P0725	0725	_	_	×	<u>AT-505</u>	M
A/T 1ST GR FNCTN	P0731	0731	_	_	×	<u>AT-509</u>	
A/T 2ND GR FNCTN	P0732	0732	_	_	×	<u>AT-514</u>	
A/T 3RD GR FNCTN	P0733	0733	_	_	×	<u>AT-519</u>	
A/T 4TH GR FNCTN	P0734	0734	_	_	×	<u>AT-524</u>	
TCC SOLENOID/CIRC	P0740	0740	_	_	×	AT-531	
A/T TCC S/V FNCTN	P0744	0744	_	_	×	AT-536	
L/PRESS SOL/CIRC	P0745	0745	_	_	×	<u>AT-544</u>	
SFT SOL A/CIRC	P0750	0750	_	_	_	<u>AT-550</u>	
SFT SOL B/CIRC	P0755	0755	_	_	_	<u>AT-555</u>	Ξ.
A/F SEN1 HTR (B1)*8	P1031	1031	_	_	×	EC-1028	
A/F SEN1 HTR (B1)*8	P1032	1032	_	_	×	EC-1028	
ECM BACK UP/CIRC	P1065	1065	_	_	×	EC-1034	

[QR25DE]

						[QK25DE]
	DTC	×1 ×2		Test value/		
Items (CONSULT-II screen terms)	CONSULT-II GST	ECM	SRT code	Test limit (GST only)	1st trip DTC	Reference page
INT/V TIM V/CIR-B1	P1111	1111	_	_	×	EC-1038
ETC ACTR	P1121	1121	_	_	— or ×	EC-1043
ETC FUNCTION/CIRC	P1122	1122	_	_	_	EC-1045
ETC MOT PWR	P1124	1124	_	_	_	EC-1052
ETC MOT PWR	P1126	1126	_	_	_	EC-1052
ETC MOT	P1128	1128	_	_	_	EC-1057
HO2S1 (B1)	P1143	1143	×	×	×* ⁴	EC-1062
HO2S1 (B1)	P1144	1144	×	×	×* ⁴	EC-1068
HO2S2 (B1)	P1146	1146	×	×	×* ⁴	EC-1074
HO2S2 (B1)	P1147	1147	×	×	×* ⁴	EC-1082
CLOSED LOOP-B1	P1148	1148	_	_	_	EC-1090
ENG OVER TEMP	P1217	1217	_	_	_	EC-1092
CTP LEARNING	P1225	1225	_	_	×	EC-1105
CTP LEARNING	P1226	1226	_	_	×	EC-1107
SENSOR POWER/CIRC	P1229	1229	_	_	_	EC-1109
A/F SENSOR*8	P1271	1271	_	_	×	EC-1113
A/F SENSOR*8	P1272	1272	_	_	×	EC-1119
A/F SENSOR*8	P1273	1273	_	_	×	EC-1125
A/F SENSOR*8	P1274	1274	_	_	×	EC-1132
A/F SENSOR*8	P1276	1276	_	_	×	EC-1139
A/F SENSOR*8	P1278	1278	×	×	×* ⁴	EC-1145
A/F SENSOR*8	P1279	1279	×	×	×* ⁴	EC-1152
PURG VOLUME CONT/V	P1444	1444	_	_	×	EC-1159
VENT CONTROL VALVE	P1446	1446	_	_	×	EC-1167
ASCD SW	P1564	1564	_	_	_	EC-1174
ASCD BRAKE SW	P1572	1572	_	_	_	EC-1181
ASCD VHL SPD SEN	P1574	1574	_	_	_	EC-1192
TPV SEN/CIRC A/T	P1705	1705	_	_	_	AT-560
P-N POS SW/CIRCUIT	P1706	1706	_	_	×	EC-1194
O/R CLTCH SOL/CIRC	P1760	1760	_	_	×	AT-565
VIAS S/V CIRC	P1800	1800	_	_	×	EC-1198
BRAKE SW/CIRCUIT	P1805	1805	_	_	×	EC-1204
APP SEN 1/CIRC	P2122	2122	_	_	_	EC-1210
APP SEN 1/CIRC	P2123	2123	_	_	_	EC-1210
APP SEN 2/CIRC	P2127	2127	_	_	_	EC-1217
APP SEN 2/CIRC	P2128	2128	_		_	EC-1217
TP SENSOR	P2135	2135	_	_	_	EC-1224
APP SENSOR	P2138	2138			_	EC-1230

^{*1: 1}st trip DTC No. is the same as DTC No.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} SRT code will not be set if the self-diagnostic result is NG.

^{*4:} This is not displayed with GST.

[QR25DE]

- *5: The troubleshooting for this DTC needs CONSULT-II.
- *6: When the fail-safe operations for both self-diagnoses occur at the same time, the MIL illuminates.
- *7: A/T models ULEV and M/T models.
- *8: A/T models except ULEV.

DTC AND 1ST TRIP DTC

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip DTC will not be displayed.

If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MIL will not light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory and the MIL lights up. In other words, the DTC is stored in the ECM memory and the MIL lights up when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MIL during the 1st trip, the DTC and 1st trip DTC are stored in the ECM memory.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in <u>EC-704</u>, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"

For malfunctions in which 1st trip DTCs are displayed, refer to EC-704, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION". These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CON-SULT-II.

1st trip DTC is specified in Mode 7 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a malfunction. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in Work Flow procedure Step II, refer to <u>EC-716, "WORK FLOW"</u>. Then perform DTC Confirmation Procedure or Overall Function Check to try to duplicate the malfunction. If the malfunction is duplicated, the item requires repair.

How to Read DTC and 1st Trip DTC

DTC and 1st trip DTC can be read by the following methods.

- (P) WITH CONSULT-II
- **WITH GST**

CONSULT-II or GST (Generic Scan Tool) Examples: P0340, P1148, P1706, etc.

These DTCs are prescribed by SAE J2012.

(CONSULT-II also displays the malfunctioning component or system.)

NO TOOLS

The number of blinks of the MIL in the Diagnostic Test Mode II (Self-Diagnostic Results) indicates the DTC. Example: 0340, 1148, 1706, etc.

These DTCs are controlled by NISSAN.

- 1st trip DTC No. is the same as DTC No.
- Output of a DTC indicates a malfunction. However, GST or the Diagnostic Test Mode II do not indicate whether the malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT-II can identify malfunction status as shown below. Therefore, using CONSULT-II (if available) is recommended.

A sample of CONSULT-II display for DTC and 1st trip DTC is shown below. DTC or 1st trip DTC of a malfunction is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-II. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be [0].

EC

Α

_

D

F

G

Н

K

If a 1st trip DTC is stored in the ECM, the time data will be [1t].

	SELF DIAG RESU			LF DIAG RESI	
	DTC RESULTS	TIME	DTC	RESULTS	TIME
DTC	CKP SEN/CIRCUIT [P0335]	0		SEN/CIRCUIT [P0335]	1t
display			ay		
		l			

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed, base fuel schedule and intake air temperature at the moment a malfunction is detected.

Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data. The data, stored together with the DTC data, are called freeze frame data and displayed on CONSULT-II or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-II screen, not on the GST. For details, see EC-758, "Freeze Frame Data and 1st Trip Freeze Frame Data".

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the following priorities to update the data.

	Priority		Items					
	1	Freeze frame data	Misfire — DTC: P0300 - P0304 Fuel Injection System Function — DTC: P0171, P0172					
_	2		Except the above items (Includes A/T related items)					
_	3	1st trip freeze frame data						

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was stored in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is stored in the ECM memory, 1st trip freeze data is no longer stored (because only one freeze frame data or 1st trip freeze frame data can be stored in the ECM). If freeze frame data is stored in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in EC-704, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".

SYSTEM READINESS TEST (SRT) CODE

System Readiness Test (SRT) code is specified in Mode 1 of SAE J1979.

As part of an enhanced emissions test for Inspection & Maintenance (I/M), certain states require the status of SRT be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "INCMP", use the information in this Service Manual to set the SRT to "CMPLT".

In most cases the ECM will automatically complete its self-diagnosis cycle during normal usage, and the SRT status will indicate "CMPLT" for each application system. Once set as "CMPLT", the SRT status remains "CMPLT" until the self-diagnosis memory is erased.

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern; the SRT will indicate "INCMP" for these items.

NOTE

The SRT will also indicate "INCMP" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

[QR25DE]

If, during the state emissions inspection, the SRT indicates "CMPLT" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "INCMP" for one or more of the SRT items the vehicle is returned to the customer untested.

ne A

NOTE:

If MIL is ON during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "CMPLT" for all test items. Therefore, it is important to check SRT ("CMPLT") and DTC (No DTCs) before the inspection.

EC

С

D

Е

F

G

Н

<

L

SRT Item

The table below shows required self-diagnostic items to set the SRT to "CMPLT".

SRT item (CONSULT-II indication)	Perfor- mance Priority* ¹	Required self-diagnostic items to set the SRT to "CMPLT"	Corresponding DTC No.
CATALYST	2	Three way catalyst function	P0420
EVAP SYSTEM	1	EVAP control system	P0442
	2	EVAP control system	P0456
	2	EVAP control system purge flow monitoring	P0441
HO2S	2	Heated oxygen sensor 1*2	P0133
		Heated oxygen sensor 1*2	P1143
		Heated oxygen sensor 1*2	P1144
		Air fuel ratio (A/F) sensor 1*3	P1278, P1279
		Heated oxygen sensor 2	P0139
		Heated oxygen sensor 2	P1146
		Heated oxygen sensor 2	P1147
HO2S HTR	2	Heated oxygen sensor 1 heater	P0031, P0032
		Air fuel ratio (A/F) sensor*3	P1031, P1032
		Heated oxygen sensor 2 heater	P0037, P0038

^{*1:} If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure), one by one based on the priority for models with CONSULT-II.

SRT Set Timing

SRT is set as "CMPLT" after self-diagnosis has been performed one or more times. Completion of SRT is done regardless of whether the result is OK or NG. The set timing is different between OK and NG results and is shown in the table below.

		Example					
Self-diagnosis result		Diagnosis	\leftarrow ON \rightarrow C		tion cycle $OFF \leftarrow ON \rightarrow OO$	$OFF \leftarrow ON \rightarrow$	
All OK	Case 1	P0400	OK (1)	— (1)	OK (2)	— (2)	
		P0402	OK (1)	— (1)	— (1)	OK (2)	
		P1402	OK (1)	OK (2)	— (2)	— (2)	
		SRT of EGR	"CMPLT"	"CMPLT"	"CMPLT"	"CMPLT"	
	Case 2	P0400	OK (1)	— (1)	— (1)	— (1)	
		P0402	— (0)	— (0)	OK (1)	— (1)	
		P1402	OK (1)	OK (2)	— (2)	— (2)	
		SRT of EGR	"INCMP"	"INCMP"	"CMPLT"	"CMPLT"	
NG exists	Case 3	P0400	OK	ОК	_	_	
		P0402	_	_	_	_	
		P1402	NG	_	NG	NG (Consecutive NG)	
		(1st trip) DTC	1st trip DTC	_	1st trip DTC	DTC (= MIL "ON")	
		SRT of EGR	"INCMP"	"INCMP"	"INCMP"	"CMPLT"	

OK: Self-diagnosis is carried out and the result is OK. NG: Self-diagnosis is carried out and the result is NG.

^{*2:} A/T models ULEV and M/T models.

^{*3:} A/T models except ULEV.

[QR25DE]

-: Self-diagnosis is not carried out.

When all SRT related self-diagnoses showed OK results in a single cycle (Ignition OFF-ON-OFF), the SRT will indicate "CMPLT". → Case 1 above

When all SRT related self-diagnoses showed OK results through several different cycles, the SRT will indicate "CMPLT" at the time the respective self-diagnoses have at least one OK result. \rightarrow Case 2 above

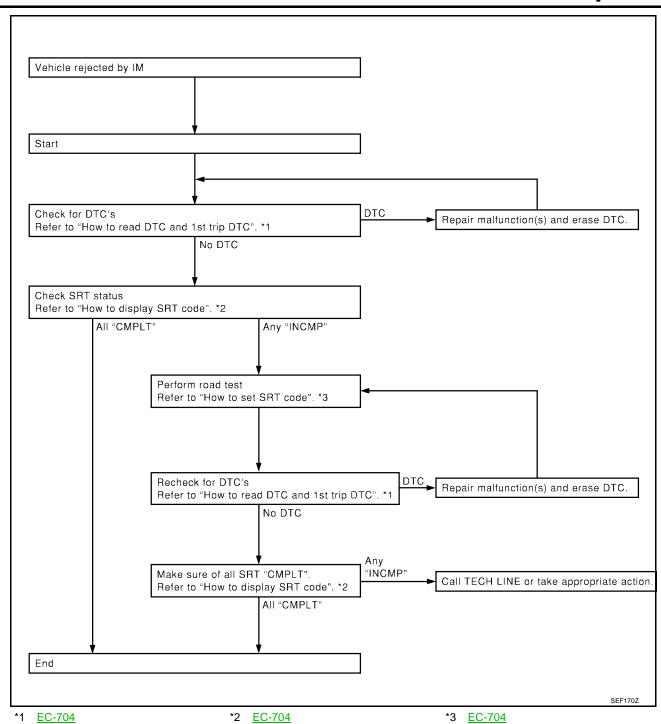
If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indicate "CMPLT". \rightarrow Case 3 above

The table above shows that the minimum number of cycles for setting SRT as "INCMP" is one (1) for each self-diagnosis (Case 1 & 2) or two (2) for one of self-diagnoses (Case 3). However, in preparation for the state emissions inspection, it is unnecessary for each self-diagnosis to be executed twice (Case 3) for the following

- The SRT will indicate "CMPLT" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "CMPLT" of the SRT only with OK self-diagnosis results.
- When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to "CMPLT" of SRT, the self-diagnosis memory must be erased from ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "INCMP".

NOTE:

SRT can be set as "CMPLT" together with the DTC(s). Therefore, DTC check must always be carried out prior to the state emission inspection even though the SRT indicates "CMPLT".


SRT Service Procedure

If a vehicle has failed the state emissions inspection due to one or more SRT items indicating "INCMP", review the flowchart diagnostic sequence on the next page.

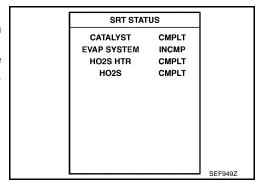
EC

D

Н

How to Display SRT Code

(P) WITH CONSULT-II


Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-II.

For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-II screen; for items whose SRT codes are not set, "INCMP" is displayed.

A sample of CONSULT-II display for SRT code is shown at right. "INCMP" means the self-diagnosis is incomplete and SRT is not set. "CMPLT" means the self-diagnosis is complete and SRT is set.

WITH GST

Selecting Mode 1 with GST (Generic Scan Tool)

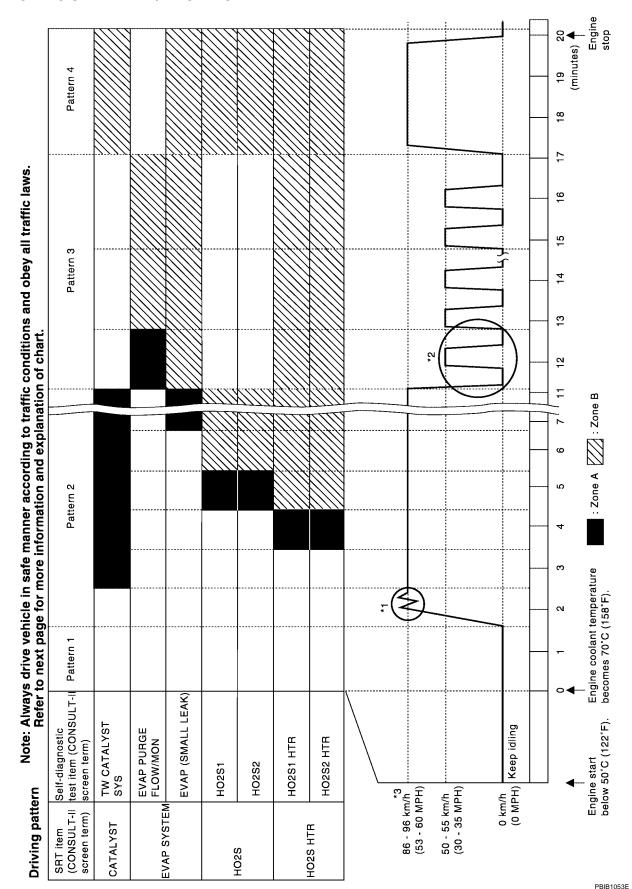
[QR25DE]

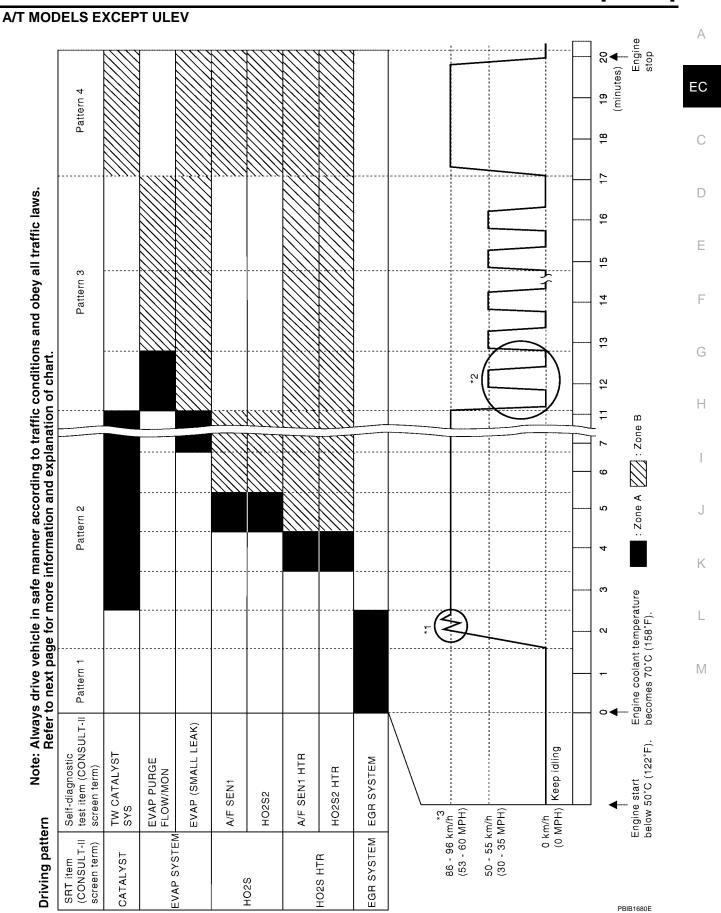
How to Set SRT Code

To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

Perform corresponding DTC Confirmation Procedure one by one based on Performance Priority in the table EC on EC-696, "SRT Item".

® WITHOUT CONSULT-II


The most efficient driving pattern in which SRT codes can be properly set is explained on the next page. The driving pattern should be performed one or more times to set all SRT codes.


 D

Е

Н

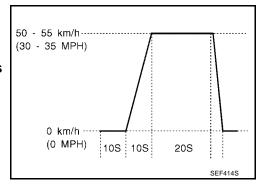
Driving Pattern A/T MODELS ULEV AND M/T MODELS

- The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.
 - Zone A refers to the range where the time, required for the diagnosis under normal conditions*, is the shortest
 - Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.
- *: Normal conditions refer to the following:
- Sea level
- Flat road
- Ambient air temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions.
 Under different conditions [For example: ambient air temperature other than 20 30°C (68 86°F)], diagnosis may also be performed.

Pattern 1:

- The engine is started at the engine coolant temperature of −10 to 35°C (14 to 95°F) (where the voltage between the ECM terminal 93 and ground is 3.0 - 4.3V).
- The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminal 93 and ground is lower than 1.4V).
- The engine is started at the fuel tank temperature of warmer than 0°C (32°F) (where the voltage between the ECM terminal 70 and ground is less than 4.1V).

Pattern 2:


When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted. In this case, the time required for diagnosis may be extended.

Pattern 3:

• The driving pattern outlined in *2 must be repeated at least 3 times.

Pattern 4:

- Tests are performed after the engine has been operated for at least 17 minutes.
- The accelerator pedal must be held very steady during steady-state driving.
- If the accelerator pedal is moved, the test must be conducted all over again.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Operate the vehicle in the following driving pattern.
- 1. Decelerate vehicle to 0 km/h (0 MPH) and let engine idle.
- 2. Repeat driving pattern shown at right at least 10 times.
- During acceleration, hold the accelerator pedal as steady as possible.
- *3: Checking the vehicle speed with GST is advised.

Suggested Transmission Gear Position for A/T Models

Set the selector lever in the D position with the overdrive switch turned ON.

Suggested Upshift Speeds for M/T Models

Shown below are suggested vehicle speeds for shifting into a higher gear. These suggestions relate to fuel economy and vehicle performance. Actual upshift speeds will vary according to road conditions, the weather and individual driving habits.

Α

EC

D

Е

Н

M

Model with 5-speed

	For normal acceleration in low altitude areas [less than 1,219 m (4,000 ft)]:		For normal acceleration in high altitude areas [over 1,219 m (4,000 ft)]:
Gear change	ACCEL shift point km/h (MPH)	CRUISE shift point km/h (MPH)	km/h (MPH)
1st to 2nd	24 (15)	24 (15)	24 (15)
2nd to 3rd	40 (25)	29 (18)	40 (25)
3rd to 4th	58 (36)	48 (30)	64 (40)
4th to 5th	64 (40)	62 (39)	72 (45)

Model with 6-speed

	For normal acceleration in low altitude areas [less than 1,219 m (4,000 ft)]:		For normal acceleration in high altitude areas [over 1,219 m (4,000 ft)]:	
Gear change	ACCEL shift point km/h (MPH)	CRUISE shift point km/h (MPH)	ACCEL shift point km/h (MPH)	CRUISE shift point km/h (MPH)
1st to 2nd	26 (16)	16 (10)	26 (16)	24 (15)
2nd to 3rd	42 (26)	23 (14)	42 (26)	40 (25)
3rd to 4th	55 (34)	40 (25)	64 (40)	64 (40)
4th to 5th	66 (41)	60 (37)	72 (45)	72 (45)
5th to 6th	72 (45)	72 (45)	80 (50)	80 (50)

Suggested Maximum Speed in Each Gear

Downshift to a lower gear if the engine is not running smoothly, or if you need to accelerate.

Do not exceed the maximum suggested speed (shown below) in any gear. For level road driving, use the highest gear suggested for that speed. Always observe posted sped limits and drive according to the road conditions to ensure sage operation. Do not over-rev the engine when shifting to a lower gear as it may cause engine damage or loss of vehicle control.

Model with 5-speed

Gear	km/h (MPH)
1st	55 (35)
2nd	95 (60)
3rd	135 (85)
4th	_
5th	_

Model with 6-speed

Gear	km/h (MPH)
1st	45 (25)
2nd	80 (50)
3rd	130 (80)
4th	_
5th	_
6th	_

TEST VALUE AND TEST LIMIT (GST ONLY — NOT APPLICABLE TO CONSULT-II)

The following is the information specified in Mode 6 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is OK or NG while being monitored by the ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored.

Items for which these data (test value and test limit) are displayed are the same as SRT code items (18 test items).

These data (test value and test limit) are specified by Test ID (TID) and Component ID (CID) and can be displayed on the GST screen.

A/T Models ULEV and M/T Models

SRT item	Self-diagnostic test item	DTC	Test value (GST display)		Test limit	Conversion
			TID	CID		
CATALYST	Three way catalyst function	P0420	01H	01H	Max.	1/128
CATALIST	Tillee way catalyst full clion	P0420	02H	81H	Min.	1
	EVAP control system (Small leak)	P0442	05H	03H	Max.	1/128 mm ²
EVAP SYSTEM	EVAP control system purge flow monitoring	P0441	06H	83H	Min.	20 mV
	EVAP control system (Very small leak)	P0456	07H	03H	Max.	1/128 mm ²
	Heated oxygen sensor 1	P0133	09H	04H	Max.	16 ms
		P1143	0AH	84H	Min.	10 mV
HO2S		P1144	0BH	04H	Max.	10 mV
11023		P0139	19H	86H	Min.	10 mV/500 ms
	Heated oxygen sensor 2	P1147	1AH	86H	Min.	10 mV
		P1146	1BH	06H	Max.	10 mV
	Heated oxygen sensor 1 heater	P0032	29H	08H	Max.	20 mV
HO2S HTR	Heated oxygen sensor i heater	P0031	2AH	88H	Min.	20 mV
110201111	Heated oxygen sensor 2 heater	P0038	2DH	0AH	Max.	20 mV
-	ricated oxygen sensor 2 neater	P0037	2EH	8AH	Min.	20 mV

A/T Models Except ULEV

SRT item	Self-diagnostic test item	DTC	Test value (GST display)		Test limit	Unit
			TID	CID		
CATALYST	Three way catalyst function	P0420	01H	01H	Max.	1/128
CATALIST	Tillee way catalyst fullclion	P0420	02H	81H	Min.	1
	EVAP control system (Small leak)	P0442	05H	03H	Max.	1/128 mm ²
EVAP SYSTEM	EVAP control system purge flow monitoring	P0441	06H	83H	Min.	20 mV
0.012	EVAP control system (Very small leak)	P0456	07H	03H	Max.	1/128 mm ²
	A/F sensor 1	P1278	45H	8EH	Min.	0.004
		P1279	48H	8EH	Min.	0.004
HO2S	Heated oxygen sensor 2	P0139	19H	86H	Min.	10 mV/500 ms
		P1147	1AH	86H	Min.	10 mV
		P1146	1BH	06H	Max.	10 mV
	A/F sensor 1 heater	P1032	57H	10H	Max.	5 mV
HO2S HTR	AVI Selisoi i lieatei	P1031	58H	90H	Max.	5 mV
11023 1111	Heated oxygen sensor 2 heater	P0038	2DH	0AH	Max.	20 mV
	Heated Oxygen Senson 2 heater	P0037	2EH	8AH	Min.	20 mV

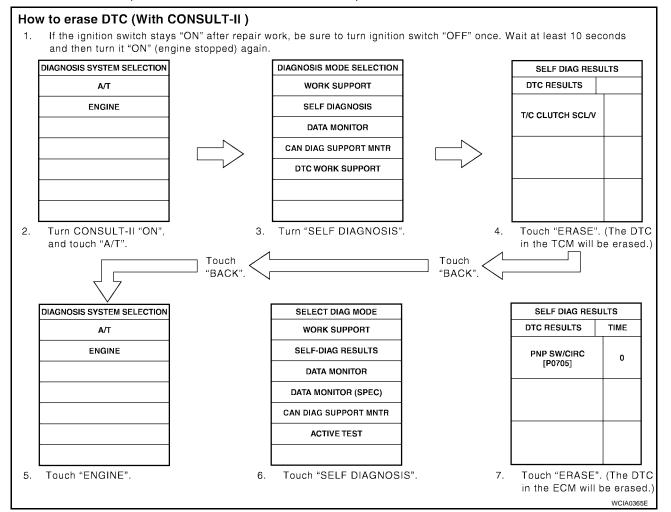
HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION How to Erase DTC

(II) WITH CONSULT-II

The emission related diagnostic information in the ECM can be erased by selecting "ERASE" in the "SELF-DIAG RESULTS" mode with CONSULT-II.

If DTCs are displayed for both ECM and TCM (Transmission control module), they need to be erased individually from the ECM and TCM (Transmission control module).

[QR25DE]


Α

EC

NOTE:

If the DTC is not for AT related items (see EC-639, "INDEX FOR DTC"), skip steps 2 through 4.

- 1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- 2. Turn CONSULT-II ON and touch "AT".
- Touch "SELF-DIAG RESULTS".
- 4. Touch "ERASE". [The DTC in the TCM (Transmission control module) will be erased.] Then touch "BACK" twice.
- 5. Touch "ENGINE".
- 6. Touch "SELF-DIAG RESULTS".
- Touch "ERASE". (The DTC in the ECM will be erased.)

WITH GST

The emission related diagnostic information in the ECM can be erased by selecting Mode 4 with GST.

NOTE

If the DTC is not for AT related items (see EC-639, "INDEX FOR DTC"), skip step 2.

- 1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- Perform "SELF-DIAGNOSTIC PROCEDURE (Without CONSULT-II)" in AT section titled "TROUBLE DIAGNOSIS", Self-diagnosis. (The engine warm-up step can be skipped when performing the diagnosis only to erase the DTC.)
- Select Mode 4 with GST (Generic Scan Tool).

NO TOOLS

- If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once.
- 2. Wait at least 10 seconds and then turn it ON (engine stopped) again.

EC-705

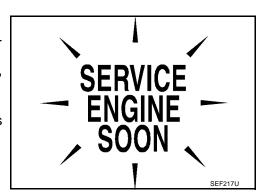
- 3. Change the diagnostic test mode from Mode II to Mode I by depressing the accelerator pedal. Refer to <u>EC-708</u>, "HOW TO SWITCH DIAGNOSTIC TEST MODE".
- If the battery is disconnected, the emission-related diagnostic information will be lost within 24 hours.
- The following data are cleared when the ECM memory is erased.
- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values
- Others

Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

NVIS (Nissan Vehicle Immobilizer System — NATS)

LIBS0027C

- If the security indicator lights up with the ignition switch in the ON position or "NATS MALFUNCTION" is displayed on "SELF-DIAG RESULTS" screen, perform self-diagnostic results mode with CONSULT-II using NATS program card. Refer to BL-92, "NVIS (NISSAN VEHICLE IMMOBILIZER SYSTEM NATS)".
- Confirm no self-diagnostic results of NVIS (NATS) is displayed before touching "ERASE" in "SELF-DIAG RESULTS" mode with CONSULT-II.
- When replacing ECM, initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs must be carried out with CONSULT-II using NATS program card.


Therefore, be sure to receive all keys from vehicle owner. Regarding the procedures of NVIS (NATS) initialization and NVIS (NATS) ignition key ID registration, refer to CONSULT-II operation manual, IVIS/NVIS.

Malfunction Indicator Lamp (MIL) DESCRIPTION

UBS0027D

The MIL is located on the instrument panel.

- The MIL will light up when the ignition switch is turned ON without the engine running. This is a bulb check.
 If the MIL does not light up, refer to DI-26, "WARNING LAMPS", or see EC-1303, "DATA LINK CONNECTOR".
- 2. When the engine is started, the MIL should go off. If the MIL remains on, the on board diagnostic system has detected an engine system malfunction.

SELF DIAG RESULTS

DTC RESULTS

NATS MALFUNCTION

[P1610]

[QR25DE]

M

ON BOARD DIAGNOSTIC SYSTEM FUNCTION

The on board diagnostic system has the following four functions.

Diagnostic Test Mode	KEY and ENG. Status	Function	Explanation of Function	
Mode I	Ignition switch in	BULB CHECK	This function checks the MIL bulb for damage (blown,	EC
	ON position		open circuit, etc.). If the MIL does not come on, check MIL circuit.	С
	Engine stopped			D
	Engine running	MALFUNCTION WARNING	This is a usual driving condition. When a malfunction is detected twice in two consecutive driving cycles (two trip detection logic), the MIL will light up to inform the driver that a malfunction has been detected.	E
	,— , —		The following malfunctions will light up or blink the MIL in the 1st trip.	F
			Misfire (Possible three way catalyst damage)	
			One trip detection diagnosis	G
Mode II	Ignition switch in ON position	SELF-DIAGNOSTIC RESULTS	This function allows DTCs and 1st trip DTCs to be read.	
	CON			Н
	Engine stopped			
	Engine running	HEATED OXYGEN SENSOR 1 MONITOR (A/T models except ULEV and M/T models)	This function allows the fuel mixture condition (lean or rich), monitored by heated oxygen sensor 1, to be read.	J
	W. 30			. K

When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting MIL up when there is malfunction on engine control system.

Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected as NG for 5 trips, ECM warns the driver that engine control system malfunctions and MIL circuit is open by means of operating fail-safe function.

The fail-safe function also operates when above diagnoses except MIL circuit are detected, and demands the driver to repair the malfunction.

Engine operating condition in fail-safe mode Engine speed will not rise more than 2,500 rpm due to the fuel cut

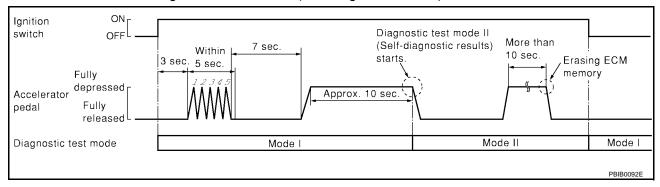
MIL Flashing Without DTC

If the ECM is in Diagnostic Test Mode II, MIL may flash when engine is running. In this case, check ECM diagnostic test mode. <u>EC-708</u>, "<u>HOW TO SWITCH DIAGNOSTIC TEST MODE</u>".

How to switch the diagnostic test (function) modes, and details of the above functions are described later. <u>EC-708</u>, "HOW TO SWITCH DIAGNOSTIC TEST MODE".

The following emission-related diagnostic information is cleared when the ECM memory is erased.

- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values
- Others


HOW TO SWITCH DIAGNOSTIC TEST MODE

NOTE:

- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.
- Always ECM returns to Diagnostic Test Mode I after ignition switch is turned OFF.

How to Set Diagnostic Test Mode II (Self-diagnostic Results)

- 1. Confirm that accelerator pedal is fully released, turn ignition switch ON and wait 3 seconds.
- Repeat the following procedure quickly five times within 5 seconds.
- a. Fully depress the accelerator pedal.
- b. Fully release the accelerator pedal.
- 3. Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 10 seconds until the MIL starts blinking.
- 4. Fully release the accelerator pedal. ECM has entered to Diagnostic Test Mode II (Self-diagnostic results).

How to Set Diagnostic Test Mode II (Heated Oxygen Sensor 1 Monitor)*

- 1. Set the ECM in Diagnostic Test Mode II (Self-diagnostic results). Refer to EC-708, "How to Set Diagnostic Test Mode II (Self-diagnostic Results)".
- 2. Start Engine.
 - ECM has entered to Diagnostic Test Mode II (Heated oxygen sensor 1 monitor).
- *: A/T models ULEV and M/T models

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

- Set ECM in Diagnostic Test Mode II (Self-diagnostic results). Refer to <u>EC-708</u>, "How to <u>Set Diagnostic</u> Test Mode II (Self-diagnostic Results)".
- Fully depress the accelerator pedal and keep it for more than 10 seconds.The emission-related diagnostic information has been erased from the backup memory in the ECM.
- 3. Fully release the accelerator pedal, and confirm the DTC 0000 is displayed.

DIAGNOSTIC TEST MODE I — BULB CHECK

In this mode, the MIL on the instrument panel should stay ON. If it remains OFF, check the bulb. Refer to <u>DI-26, "WARNING LAMPS"</u> or see <u>EC-1303, "DATA LINK CONNECTOR"</u>.

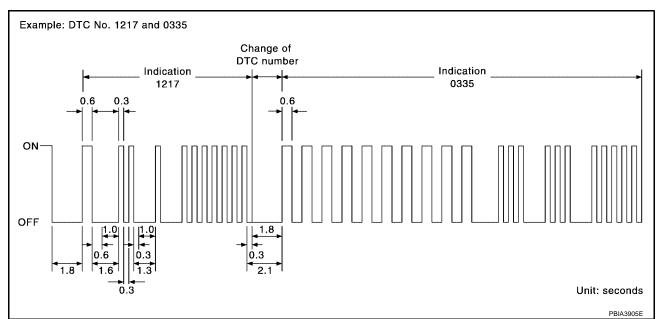
DIAGNOSTIC TEST MODE I — MALFUNCTION WARNING

MIL	Condition		
ON	When the malfunction is detected.		
OFF	No malfunction.		

These DTC numbers are clarified in Diagnostic Test Mode II (SELF-DIAGNOSTIC RESULTS)

DIAGNOSTIC TEST MODE II — SELF-DIAGNOSTIC RESULTS

In this mode, the DTC and 1st trip DTC are indicated by the number of blinks of the MIL as shown below. The DTC and 1st trip DTC are displayed at the same time. If the MIL does not illuminate in diagnostic test mode I (Malfunction warning), all displayed items are 1st trip DTCs. If only one code is displayed when the MIL illuminates in diagnostic test mode II (SELF-DIAGNOSTIC RESULTS), it is a DTC; if two or more codes are


EC

Е

M

UBS0027E

displayed, they may be either DTCs or 1st trip DTCs. DTC No. is same as that of 1st trip DTC. These unidentified codes can be identified by using the CONSULT-II or GST. A DTC will be used as an example for how to read a code.

A particular trouble code can be identified by the number of four-digit numeral flashes. The "zero" is indicated by the number of ten flashes. The length of time the 1,000th-digit numeral flashes on and off is 1.2 seconds consisting of an ON (0.6-second) - OFF (0.6-second) cycle.

The 100th-digit numeral and lower digit numerals consist of a 0.3-second ON and 0.3-second OFF cycle.

A change from one digit numeral to another occurs at an interval of 1.0-second OFF. In other words, the later numeral appears on the display 1.3 seconds after the former numeral has disappeared.

A change from one trouble code to another occurs at an interval of 1.8-second OFF.

In this way, all the detected malfunctions are classified by their DTC numbers. The DTC "0000" refers to no malfunction. (See EC-639, "INDEX FOR DTC")

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

The DTC can be erased from the back up memory in the ECM by depressing accelerator pedal. Refer to EC
708, "How to Erase Diagnostic Test Mode II (Self-diagnostic Results)".

- If the battery is disconnected, the DTC will be lost from the backup memory within 24 hours.
- Be careful not to erase the stored memory before starting trouble diagnoses.

DIAGNOSTIC TEST MODE II — HEATED OXYGEN SENSOR 1 MONITOR*

In this mode, the MIL displays the condition of the fuel mixture (lean or rich) which is monitored by the heated oxygen sensor 1.

*: A/T models ULEV and M/T models

MIL	Fuel mixture condition in the exhaust gas	Air-fuel ratio feedback control condition	
ON	Lean Closed loop system		
OFF	Rich	Closed loop system	
*Remains ON or OFF	Any condition	Open loop system	

^{*:} Maintains conditions just before switching to open loop.

To check the heated oxygen sensor 1 function, start engine in the Diagnostic Test Mode II and warm it up until engine coolant temperature indicator points to the middle of the gauge.

Next run engine at about 2,000 rpm for about 2 minutes under no-load conditions. Then make sure that the MIL comes ON more than 5 times within 10 seconds with engine running at 2,000 rpm under no-load.

OBD System Operation Chart RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS

When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.

EC-709

[QR25DE]

- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MIL will come on. For details, refer to <u>EC-689</u>, "Two Trip Detection <u>Logic"</u>.
- The MIL will go off after the vehicle is driven 3 times with no malfunction. The drive is counted only when
 the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting,
 the counter will reset.
- The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern C) without the same malfunction recurring. The "TIME" in "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-II will count the number of times the vehicle is driven.
- The 1st trip DTC is not displayed when the self-diagnosis results in "OK" for the 2nd trip.

SUMMARY CHART

Items	Fuel Injection System	Misfire	Other
MIL (goes off)	3 (pattern B)	3 (pattern B)	3 (pattern B)
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)


For details about patterns B and C under "Fuel Injection System" and "Misfire", see EC-712.

For details about patterns A and B under "Other", see EC-714.

^{*1:} Clear timing is at the moment OK is detected.

^{*2:} Clear timing is when the same malfunction is detected in the 2nd trip.

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction. (The DTC and the freeze frame data still remain in ECM.)
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *8: 1st trip DTC will be cleared when vehicle is driven once (pattern C) without the same malfunction after DTC is stored in ECM.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *6: The 1st trip DTC and the 1st trip freeze frame data will be cleared at the moment OK is detected.

EC

Α

Е

Н

[QR25DE]

EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern B>

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunction.
- The MIL will go off when the B counter reaches 3. (*2 in OBD SYSTEM OPERATION CHART)

<Driving Pattern C>

Driving pattern C means the vehicle operation as follows:

The following conditions should be satisfied at the same time:

Engine speed: (Engine speed in the freeze frame data) ±375 rpm

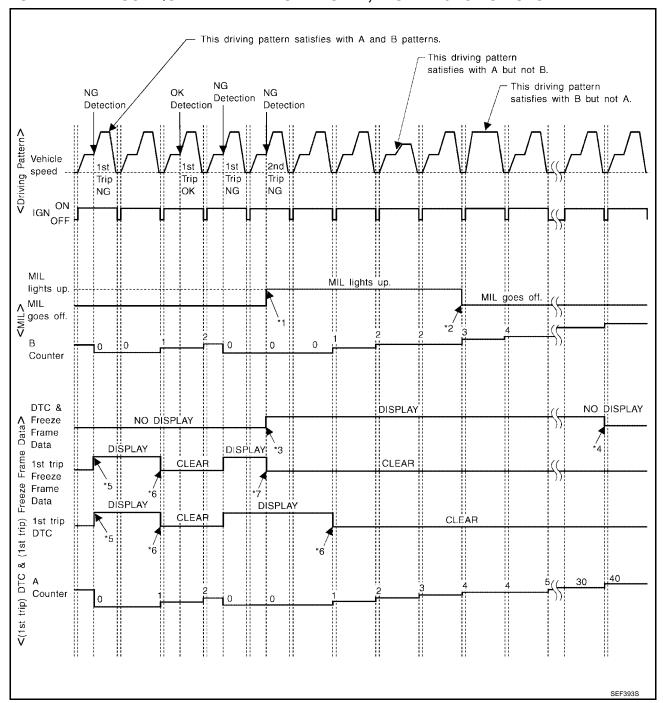
Calculated load value: (Calculated load value in the freeze frame data) x (1±0.1) [%]

Engine coolant temperature (T) condition:

- When the freeze frame data shows lower than 70°C (158°F), "T" should be lower than 70°C (158°F).
- When the freeze frame data shows higher than or equal to 70°C (158°F), "T" should be higher than or equal to 70°C (158°F).

Example:

If the stored freeze frame data is as follows:


Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F)

To be satisfied with driving pattern C, the vehicle should run under the following conditions:

Engine speed: 475 - 1,225 rpm, Calculated load value: 27 - 33%, Engine coolant temperature: more than 70°C (158°F)

- The C counter will be cleared when the malfunction is detected regardless of the vehicle conditions described above.
- The C counter will be counted up when the vehicle conditions described above is satisfied without the same malfunction.
- The DTC will not be displayed after C counter reaches 80.
- The 1st trip DTC will be cleared when C counter is counted once without the same malfunction after DTC is stored in ECM.

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction.

 (The DTC and the freeze frame data still remain in ECM.)
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- 1st trip DTC will be cleared after *6: vehicle is driven once (pattern B) without the same malfunction.

EC

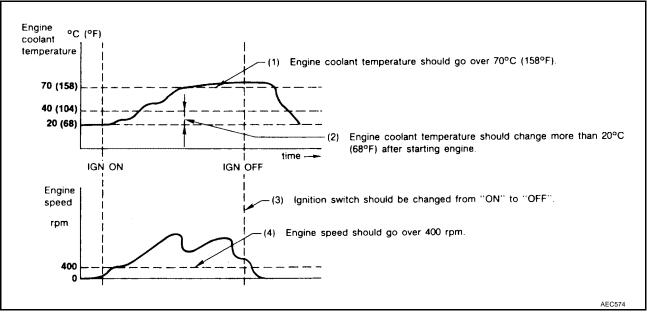
Α

C

Е

F

G


Н

K

L

EXPLANATION FOR DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern A>

- The A counter will be cleared when the malfunction is detected regardless of (1) (4).
- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

<Driving Pattern B>

Driving pattern B means the vehicle operation as follows:

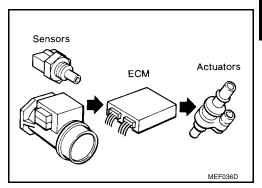
All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MIL will go off when the B counter reaches 3 (*2 in OBD SYSTEM OPERATION CHART).

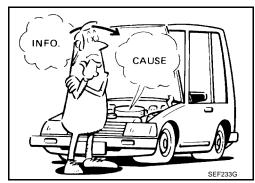
TROUBLE DIAGNOSIS

PFP:00004

UBS0027F

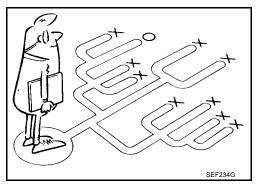

EC

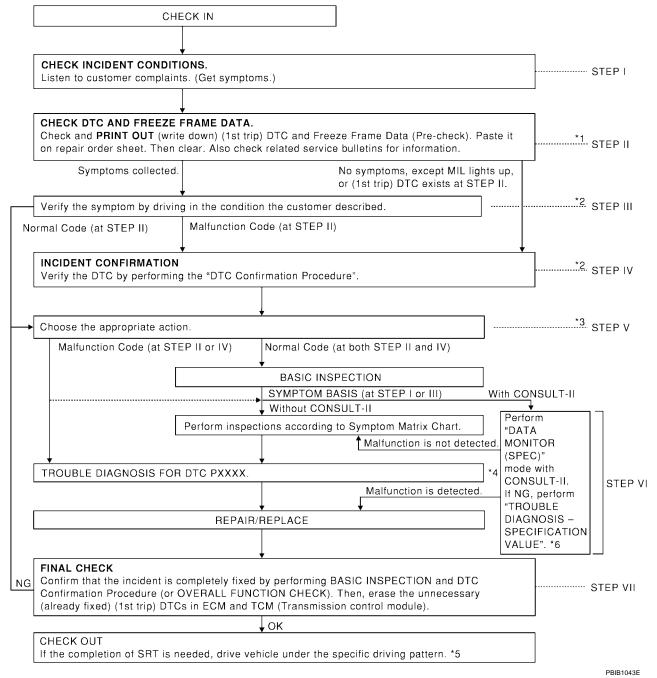
Е


Н

Trouble Diagnosis Introduction INTRODUCTION

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no malfunctions such as vacuum leaks, fouled spark plugs, or other malfunctions with the engine.


It is much more difficult to diagnose a incident that occurs intermittently rather than continuously. Most intermittent incidents are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.


A visual check only may not find the cause of the incidents. A road test with CONSULT-II (or GST) or a circuit tester connected should be performed. Follow the Work Flow on EC-716.

Before undertaking actual checks, take a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such incidents, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A Diagnostic Worksheet like the example on EC-719 should be used.

Start your diagnosis by looking for conventional incidents first. This will help troubleshoot driveability incidents on an electronically controlled engine vehicle.

WORK FLOW Flow Chart

- *1 If time data of "SELF-DIAG RESULTS" is other than[0] or [1t], perform EC-781, "TROUBLE DIAG-NOSIS FOR INTERMITTENT INCI-DENT".
- *4 If malfunctioning part cannot be detected, perform EC-781, "TROU-BLE DIAGNOSIS FOR INTERMIT-TENT INCIDENT".
- *2 If the incident cannot be verified, per- *3 If the on board diagnostic system form EC-781, "TROUBLE DIAGNO-SIS FOR INTERMITTENT INCIDENT".
- *5 <u>EC-700</u>

- cannot be performed, check main power supply and ground circuit. Refer to EC-782, "POWER SUPPLY CIRCUIT FOR ECM".
- *6 <u>EC-777</u>

Description for Work Flow			
STEP	DESCRIPTION		
STEPI	Get detailed information about the conditions and the environment when the incident/symptom occurred using the DIAGNOSTIC WORK SHEET, <u>EC-718</u> .		
STEP II	Before confirming the concern, check and write down (print out using CONSULT-II or GST) the (1st trip) DTC and the (1st trip) freeze frame data, then erase the DTC and the data. (Refer to EC-704 .) The (1st trip) DTC and the (1st trip) freeze frame data can be used when duplicating the incident at STEP III & IV. If the incident cannot be verified, perform EC-781 . "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" Study the relationship between the cause, specified by (1st trip) DTC, and the symptom described by the customer (The Symptom Matrix Chart will be useful. See EC-728 .) Also check related service bulletins for information.		
STEP III	Try to confirm the symptom and under what conditions the incident occurs. The DIAGNOSTIC WORK SHEET and the freeze frame data are useful to verify the incident. Connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform EC-781 , "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". If the malfunction code is detected, skip STEP IV and perform STEP V.		
STEP IV	Try to detect the (1st trip) DTC by driving in (or performing) the DTC Confirmation Procedure. Check and read the (1st trip) DTC and (1st trip) freeze frame data by using CONSULT-II or GST. During the (1st trip) DTC verification, be sure to connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform EC-781 . "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". In case the DTC Confirmation Procedure is not excelled a perform the Overall Function Check instead. The (4st trip)		
	In case the DTC Confirmation Procedure is not available, perform the Overall Function Check instead. The (1st trip) DTC cannot be displayed by this check, however, this simplified check is an effective alternative. The NG result of the Overall Function Check is the same as the (1st trip) DTC detection.		
STEP V	Take the appropriate action based on the results of STEP I through IV. If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC PXXXX. If the normal code is indicated, proceed to the BASIC INSPECTION. (Refer to EC-723 .) If CONSULT-II is available perform "DATA MONITOR (SPEC)" mode with CONSULT-II and proceed to the "TROUBLE DIAGNOSIS – SPECIF CATION VALUE". (Refer to EC-777 .) (If malfunction is detected, proceed to "REPAIR/REPLACE".) Then perform inspections according to the Symptom Matrix Chart. (Refer to EC-728 .)		
STEP VI	Identify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the system for mechanical binding, loose connectors or wiring damage using (tracing) "Harness Layouts". Gently shake the related connectors, components or wiring harness with CONSULT-II set in "DATA MONITOR (AUTO TRIG)" mode. Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CONSULT-II. Refer to EC-746, EC-769. The Diagnostic Procedure in EC section contains a description based on open circuit inspection. A short circuit inspection is also required for the circuit check in the Diagnostic Procedure. For details, refer to Circuit Inspection in GI-26, "How to Perform Efficient Diagnosis for an Electrical Incident".		
	Repair or replace the malfunction parts. If malfunctioning part cannot be detected, perform <u>EC-781</u> , "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".		
STEP VII	Once you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and circumstances which resulted in the customer's initial complaint. Perform the DTC Confirmation Procedure and confirm the normal code [DTC No. P0000] is detected. If the incident is still detected in the final check, perform STEP VI by using a method different from the previous one. Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) (1st trip) DTC in ECM and TCM (Transmission control module). (Refer to EC-704, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION" and AT-429, "HOW TO ERASE DTC".)		

DIAGNOSTIC WORKSHEET

Description

There are many operating conditions that lead to the malfunction of engine components. A good grasp of such conditions can make troubleshooting faster and more accurate.

In general, each customer feels differently about a incident. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one on the next page in order to organize all the information for troubleshooting.

Some conditions may cause the MIL to come on steady or blink and DTC to be detected. Examples:

- Vehicle ran out of fuel, which caused the engine to misfire.
- Fuel filler cap was left off or incorrectly screwed on, allowing fuel to evaporate into the atmosphere.

KEY POINTS

WHAT Vehicle & engine model WHEN Date, Frequencies WHERE.... Road conditions HOW Operating conditions,

Weather conditions, Symptoms

.....

SEF907L

TROUBLE DIAGNOSIS

[QR25DE]

Α

EC

С

D

Е

F

G

Н

Κ

M

Worksheet Sample

Customer name MR/MS		Model & Year	VIN	
Engine #		Trans.	Mileage	
Incident Date		Manuf. Date	In Service Date	
Fuel and fuel filler cap		☐ Vehicle ran out of fuel causing misfire ☐ Fuel filler cap was left off or incorrectly screwed on.		
Symptoms	☐ Startability	☐ Impossible to start ☐ No combus ☐ Partial combustion affected by the ☐ Partial combustion NOT affected ☐ Possible but hard to start ☐ Other	hrottle position d by throttle position	
	□ Idling	☐ No fast idle ☐ Unstable ☐ I ☐ Others [High idle	
	☐ Driveability	☐ Stumble ☐ Surge ☐ Knock ☐ Lack of power ☐ Intake backfire ☐ Exhaust backfire ☐ Others []		
	☐ Engine stall	At the time of start	elerating	
Incident occurrence		☐ Just after delivery ☐ Recently ☐ In the morning ☐ At night ☐ In the daytime		
Frequency		☐ All the time ☐ Under certain con-	ditions	
Weather conditions		☐ Not affected		
	Weather	☐ Fine ☐ Raining ☐ Snowing	☐ Others []	
	Temperature	☐ Hot ☐ Warm ☐ Cool ☐	Cold Humid °F	
Engine conditions		Cold During warm-up Engine speed 0 2,000	After warm-up 4,000 6,000 8,000 rpm	
Road conditions		☐ In town ☐ In suburbs ☐ Hig	ghway Off road (up/down)	
Driving conditions		Not affected At starting	•	
Malfunction indicator lamp		☐ Turned on ☐ Not turned on	22 13 33 33 III II	

MTBL0017

DTC Inspection Priority Chart

LIBS0027G

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

NOTE:

If DTC U1000 and/or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000 and U1001. Refer to EC-789.

Priority	Detected items (DTC)		
1	U1000 U1001 CAN communication line		
	● P0101 P0102 P0103 Mass air flow sensor		
	P0112 P0113 P0127 Intake air temperature sensor		
	P0117 P0118 P0125 Engine coolant temperature sensor		
	• P0122 P0123 P0222 P0223 P1225 P1226 P2135 Throttle position sensor		
	P0128 Thermostat function		
	P0181 P0182 P0183 Fuel tank temperature sensor		
	P0327 P0328 Knock sensor		
	P0335 Crankshaft position sensor (POS)		
	P0340 Camshaft position sensor (PHASE)		
	• P0460 P0461 P0462 P0463 Fuel level sensor		
	P0500 Vehicle speed sensor		
	● P0605 ECM		
	P1229 Sensor power supply		
	• P1610-P1615 NATS		
	P1706 Park/Neutral position (PNP) switch		
	P2122 P2123 P2127 P2128 P2138 Accelerator pedal position sensor		

[QR25DE]

M

Priority	Detected items (DTC)	
2	P0031 P0032 Heated oxygen sensor 1 heater*1	
	P0037 P0038 Heated oxygen sensor 2 heater	
	• P0132 P0133 P0134 P1143 P1144 Heated oxygen sensor 1*1	
	• P0138 P0139 P1146 P1147 Heated oxygen sensor 2	
	P0441 EVAP control system purge flow monitoring	
	P0444 P0445 P1444 EVAP canister purge volume control solenoid valve	
	P0447 P1446 EVAP canister vent control valve	
	P0452 P0453 EVAP control system pressure sensor	
	P0506 P0507 Idle speed control system	
	P0550 power steering pressure sensor	
	 P0705-P0725, P0740-P0755, P1705 P1760 A/T related sensors and solenoid valves 	
	• P1031, P1032 A/F sensor 1 heater* ²	
	P1065 ECM power supply	
	P1111 Intake valve timing control solenoid valve	
	P1122 Electric throttle control function	
	P1124 P1126 Throttle control motor relay	
	P1128 Electric throttle control actuator	
	• P1271, P1272, P1273, P1274, P1276, P1278, P1279 A/F sensor 1*2	
	P1800 VIAS control solenoid valve	
	P1805 Brake switch	
3	P0011 Intake valve timing control	
	P0171 P0172 Fuel injection system function	
	• P0300 - P0304 Misfire	
	P0420 Three way catalyst function	
	P0442 P0455 P0456 EVAP control system (SMALL LEAK, VERY SMALL LEAK, GROSS LEAK)	
	• P0731 - P0734 A/T function	
	P1121 Electric throttle control actuator	
	P1148 Closed loop control	
	P1217 Engine over temperature (OVERHEAT)	
	P1564 ASCD steering switch	
	P1572 ASCD brake switch	
	P1574 ASCD vehicle speed sensor	

^{*1:} A/T models ULEV and M/T models.

Fail-safe Chart

UBS0027H

The ECM enters fail-safe mode, if any of the following malfunctions is detected. When the ECM enters the failsafe mode, the MIL illuminates.

DTC No.	Detected items	Engine operating condition in fail-safe mode
P0102 P0103	Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.

^{*2:} A/T models except ULEV.

DTC No.	Detected items	Engine operating condition in fail-sa	afe mode				
P0117 P0118	Engine coolant tempera- ture sensor circuit	ignition switch ON or START.	determined by ECM based on the time after turning polant temperature decided by ECM.				
		Condition	Engine coolant temperature decided (CONSULT-II display)				
		Just as ignition switch is turned ON or Start	40°C (104°F)				
		More than approx. 4 minutes after ignition ON or Start	80°C (176°F)				
		Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)				
		When the fail-safe system for engir ing fan operates while engine is rur	ne coolant temperature sensor is activated, the cool- nning.				
P0122 P0123 P0222 P0223 P2135	Throttle position sensor	The ECM controls the electric throttle control actuator in regulating the throttle opening order for the idle position to be within +10 degrees. The ECM regulates the opening speed of the throttle valve to be slower than the normal operation. So, the acceleration will be poor.					
P1121	Electric throttle control actuator (ECM detects the throttle valve is stuck open.)	the engine stalls.	down gradually by fuel cut. After the vehicle stops, sition, and engine speed will not exceed 1,000 rpm				
P1122	Electric throttle control function	ECM stops the electric throttle cont fixed opening (approx. 5 degrees) I	rol actuator control, throttle valve is maintained at a by the return spring.				
P1124 P1126	Throttle control motor relay	ECM stops the electric throttle cont fixed opening (approx. 5 degrees) I	rol actuator control, throttle valve is maintained at a by the return spring.				
P1128	Throttle control motor	ECM stops the electric throttle cont fixed opening (approx. 5 degrees) I	rol actuator control, throttle valve is maintained at a by the return spring.				
P1229	Sensor power supply	ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.					
P2122 P2123 P2127 P2128 P2138	Accelerator pedal position sensor	The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees. The ECM regulates the opening speed of the throttle valve to be slower than the normal operation. So, the acceleration will be poor.					

 When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting MIL up when there is malfunction on engine control system.

Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected as NG for 5 trips, ECM warns the driver that engine control system malfunctions and MIL circuit is open by means of operating fail-safe function.

The fail-safe function also operates when above diagnoses except MIL circuit are detected, and demands the driver to repair the malfunction.

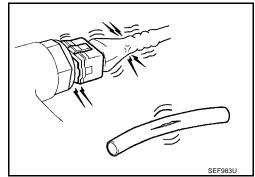
Engine operating condition in fail-safe mode	Engine speed will not rise more than 2,500 rpm due to the fuel cut
--	--

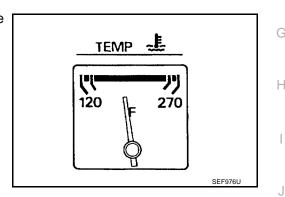
Basic Inspection

Α

EC

D

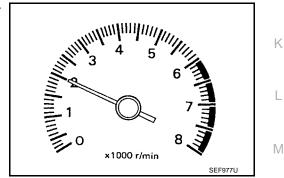

Е


F

1. INSPECTION START

Check service records for any recent repairs that may indicate a related malfunction, or a current need for scheduled maintenance.

- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Wiring harness for improper connections, pinches and cut
- Vacuum hoses for splits, kinks and improper connections
- Hoses and ducts for leaks
- Air cleaner clogging
- Gasket
- Confirm that electrical or mechanical loads are not applied. 3.
- Headlamp switch is OFF.
- Air conditioner switch is OFF.
- Rear window defogger switch is OFF.
- Steering wheel is in the straight-ahead position, etc.
- Start engine and warm it up until engine coolant temperature 4. indicator points the middle of gauge. Ensure engine stays below 1,000 rpm.

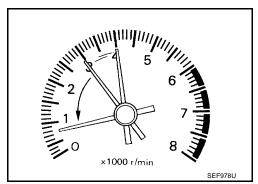


- 5. Run engine at about 2,000 rpm for about 2 minutes under no-
- 6. Make sure that no DTC is displayed with CONSULT-II or GST.

OK or NG

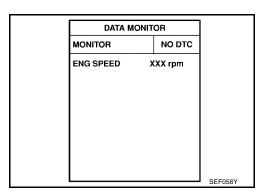
OK >> GO TO 3. NG >> GO TO 2.

2. REPAIR OR REPLACE


Repair or replace components as necessary according to corresponding Diagnostic Procedure.

>> GO TO 3.

3. CHECK TARGET IDLE SPEED


(P) With CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.

3. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

M/T: 700 \pm 50 rpm A/T: 700 \pm 50 rpm (in P or N position)

Without CONSULT-II

- Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.
- 3. Check idle speed.

M/T: 700 \pm 50 rpm

A/T: 700 \pm 50 rpm (in P or N position)

OK or NG

OK >> GO TO 10. NG >> GO TO 4.

4. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-684, "Accelerator Pedal Released Position Learning".

>> GO TO 5.

5. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-684, "Throttle Valve Closed Position Learning".

>> GO TO 6.

[QR25DE]

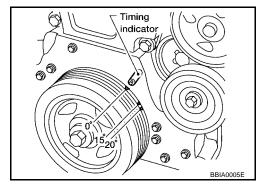
	[~: .====]
6. PERFORM IDLE AIR VOLUME LEARNING	
Refer to <u>EC-685, "Idle Air Volume Learning"</u> . Is the Air Volume Learning carried out successfully?	
Yes or No Yes >> GO TO 7. No >> 1. Follow the instruction of Idle Air Volume Learning.	
2. GO TO 4. 7. CHECK TARGET IDLE SPEED AGAIN	
With CONSULT-II	
1. Start engine and warm it up to normal operating temperature. 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II.	
M/T: 700 \pm 50 rpm A/T: 700 \pm 50 rpm (in P or N position)	
Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Check idle speed.	
M/T: 700 \pm 50 rpm A/T: 700 \pm 50 rpm (in P or N position)	
OK or NG OK >> GO TO 10. NG >> GO TO 8.	
8. detect malfunctioning part	
Check the following. Check camshaft position sensor (PHASE) and circuit. Refer to EC-935. Check crankshaft position sensor (POS) and circuit. Refer to EC-930. OK or NG	
OK 0F NG OK	
9. CHECK ECM FUNCTION	

- 2. Perform initialization of NATS system and registration of NATS ignition key IDs. Refer to <u>EC-706, "NVIS (Nissan Vehicle Immobilizer System NATS)"</u>.

>> GO TO 4.

10. CHECK IGNITION TIMING

- 1. Run engine at idle.
- 2. Check ignition timing with a timing light.


M/T: 15 \pm 5° BTDC

A/T: $15 \pm 5^{\circ}$ BTDC (in P or N position)

OK or NG

OK >> INSPECTION END

NG >> GO TO 11.

11. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-684, "Accelerator Pedal Released Position Learning".

>> GO TO 12.

12. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-684, "Throttle Valve Closed Position Learning".

>> GO TO 13.

13. PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-685, "Idle Air Volume Learning".

Is the Idle Air Volume Learning carried out successfully?

Yes or No

Yes >> GO TO 14.

No >> 1. Follow the instruction of Idle Air Volume Learning.

2. GO TO 4.

14. CHECK TARGET IDLE SPEED AGAIN

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

M/T: 700 \pm 50 rpm

A/T: 700 ± 50 rpm (in P or N position)

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed.

M/T: $700 \pm 50 \text{ rpm}$

A/T: 700 \pm 50 rpm (in P or N position)

OK or NG

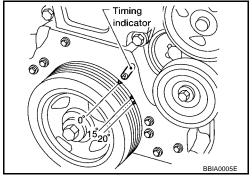
OK >> GO TO 15.

NG >> GO TO 17.

[QR25DE]

15. CHECK IGNITION TIMING AGAIN

- 1. Run engine at idle.
- 2. Check ignition timing with a timing light.


M/T: $15 \pm 5^{\circ}$ BTDC

A/T: $15 \pm 5^{\circ}$ BTDC (in P or N position)

OK or NG

OK >> INSPECTION END

NG >> GO TO 16.

16. CHECK TIMING CHAIN INSTALLATION

Check timing chain installation. Refer to EM-131, "TIMING CHAIN".

OK or NG

OK >> GO TO 17.

NG >> 1. Repair the timing chain installation.

2. GO TO 4.

17. DETECT MALFUNCTIONING PART

Check the following.

- Check camshaft position sensor (PHASE) and circuit. Refer to EC-935.
- Check crankshaft position sensor (POS) and circuit. Refer to EC-930.

OK or NG

OK >> GO TO 18.

NG >> 1. Repair or replace.

2. GO TO 4.

18. CHECK ECM FUNCTION

- Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is the rarely the case.)
- 2. Perform initialization of NATS system and registration of NATS ignition key IDs. Refer to EC-706, "NVIS (Nissan Vehicle Immobilizer System — NATS)".

>> GO TO 4.

EC

D

Е

K

M

Symptom Matrix Chart SYSTEM — BASIC ENGINE CONTROL SYSTEM

UBS0027J

SYMPTOM															
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
	y symptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА	
Fuel	Fuel pump circuit	1	1	2	3	2		2	2			3		2	EC-1264
	Fuel pressure regulator system	3	3	4	4	4	4	4	4	4		4			EC-687
	Injector circuit	1	1	2	3	2		2	2			2			EC-1258
	Evaporative emission system	3	3	4	4	4	4	4	4	4		4			EC-1305
Air	Positive crankcase ventilation system	3	3	4	4	4	4	4	4	4		4	1		EC-1317
	Incorrect idle speed adjustment	3	3				1	1	1	1		1			EC-723
	Electric throttle control actuator	1	1	2	3	3	2	2	2	2		2		2	EC-1043, EC-1045, EC-1052, EC-1057
Ignition	Incorrect ignition timing adjustment	3	3	1	1	1		1	1			1			EC-723
	Ignition circuit	1	1	2	2	2		2	2			2			EC-1237
Main po	wer supply and ground circuit	2	2	3	3	3		3	3		2	3		2	EC-782
Mass ai	r flow sensor circuit	1	1	2	2	2		2	2			2			EC-807, EC-815,
A/F sen	sor 1 circuit* ¹		1	2	3	2		2	2			2			EC-1113
Engine	coolant temperature sensor circuit	1	1	2	2	2	3	2	2	3	1	2			EC-827, EC-838
Throttle	position sensor circuit		1	2		2	2	2	2	2		2			EC-832, EC-913, EC-1105, EC-1107, EC-1109, EC-1224
Accelera	ator pedal position sensor circuit			3	2	1	2			2					EC-1210, EC-1217, EC-1230
Heated	oxygen sensor 1 circuit * ²		1	2	3	2		2	2			2			EC-846, EC-852, EC-862, EC-1062, EC-1068
Knock s	ensor circuit			2	2							3			EC-926
Cranksh	naft position sensor (POS) circuit	2	2												EC-930

[QR25DE]

														<u>-</u>
						S	/MPT	ОМ						
	HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty symptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА	-
Camshaft position sensor (PHASE) circuit	2	2												EC-935
Vehicle speed signal circuit		2	3		3						3			EC-1014
Power steering oil pressure sensor circuit		2				3	3	3	3					EC-1020
ECM	2	2	3	3	3	3	3	3	3	3	3			EC-1025, EC-1034
Intake valve timing control solenoid valve circuit	3	3	2		1	3	2	2	3		3			EC-1038
VIAS control solenoid valve circuit					1									EC-1198, EC-1249
PNP switch circuit			3		3	3	3	3	3		3			EC-1194
Refrigerant pressure sensor circuit		2				3	3	3	3		4			EC-1269
Electrical load signal circuit						3	3	3	3					EC-1274
Air conditioner circuit	2	2	3	3	3	3	3	3	3		3		2	MTC-19

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

EC-729

D

Α

F

Е

Н

J

Κ

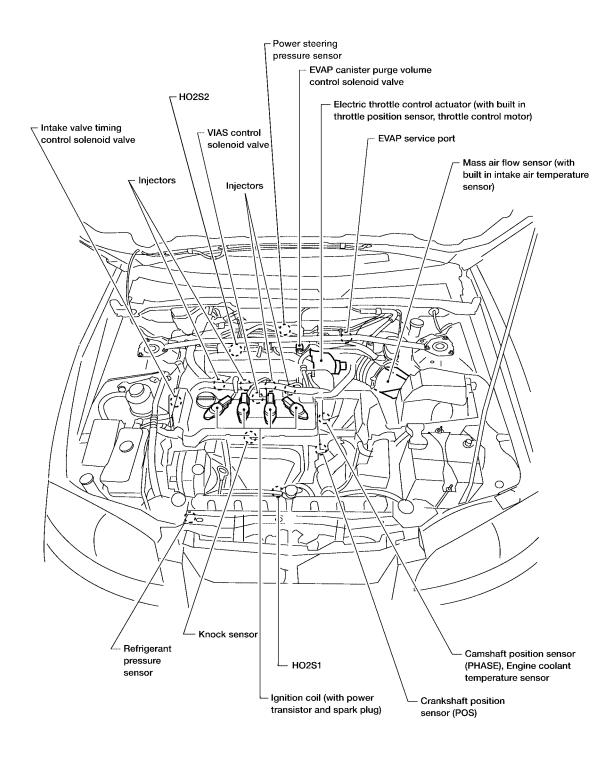
M

^{*1:} A/T models except ULEV.

^{*2:} A/T models ULEV and M/T models.

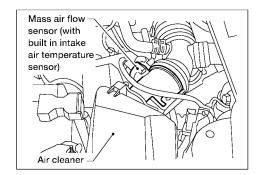
SYSTEM — ENGINE MECHANICAL & OTHER

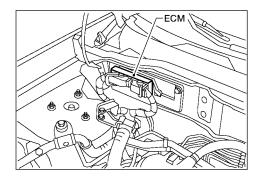
							S١	MPT	OM						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty s	ymptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Fuel	Fuel tank														<u>FL-7</u>
	Fuel piping Vapor lock	5	5	5	5	5		5	5			5			<u>EM-116</u> , <u>FL-2</u>
	Valve deposit Poor fuel (Heavy weight gasoline, Low octane)	5	3	5	5	5		5	5			5	_		
Air	Air duct														EM-101
	Air cleaner	-													EM-101
	Air leakage from air duct (Mass air flow sensor —electric throttle control actuator)	5	5	5	5	5	5	5	5	5		5			EM-101 EM-103
	Air leakage from intake manifold/ Collector/Gasket														<u>EM-103</u>
Cranking	Battery Alternator circuit	1	1	1		1		1	1			1		1	<u>SC-4</u> <u>SC-22</u>
	Starter circuit	3													<u>SC-9</u>
	Signal plate/Flywheel/Drive plate	6													EM-159
	PNP switch	4													EC-1194 MT-75 or AT-488
Engine	Cylinder head	5	5	5	5	5		5	5			5			EM-142
	Cylinder head gasket	3	5	J	5	5		5	5		4	5	3		<u>EM-143</u>
	Cylinder block Piston Piston ring Connecting rod	6	6	6	6	6		6	6			6	4		<u>EM-159</u>
	Bearing Crankshaft														

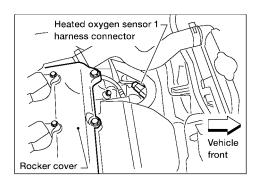

[QR25DE]

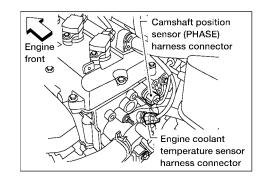
							S١	MPT	ОМ							/
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	
Warranty	symptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА		
Valve	Timing chain														EM-131	F
mecha- nism	Camshaft														EM-121	
шыш	Intake valve timing control	5	5	5	5	5		5	5			5			EM-139	(
	Intake valve														EM 440	
	Exhaust valve												3		<u>EM-143</u>	
Exhaust	Exhaust manifold/Tube/Muffler/ Gasket	5	5	5	5	5		5	5			5			EM-108, EX-3	ŀ
	Three way catalyst														<u>LX-3</u>	
Lubrica- tion	Oil pan/Oil strainer/Oil pump/Oil filter/Oil gallery	5	5	5	5	5		5	5			5	2		EM-110, LU-19, LU- 22	
	Oil level (Low)/Filthy oil														<u>LU-16</u>	,
Cooling	Radiator/Hose/Radiator filler cap														<u>CO-32</u>	
	Thermostat									5					<u>CO-30</u>	ŀ
	Water pump														CO-28	ľ
	Water gallery	5	5	5	5	5		5	5		2	5			<u>CO-25</u>	
	Cooling fan									5					<u>CO-37</u>	
	Coolant level (low)/Contaminated coolant														<u>CO-26</u>	
NVIS (NIS NATS)	SAN Vehicle Immobilizer System —	1	1												EC-706 or BL-92	

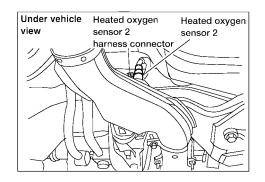
^{1 - 6:} The numbers refer to the order of inspection.

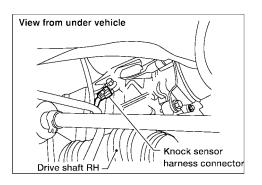

Engine Control Component Parts Location A/T MODELS ULEV AND M/T MODELS

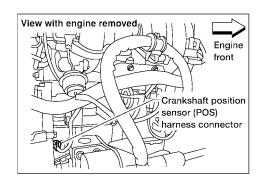

UBS0027K

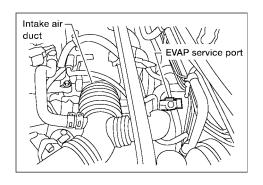



Α


EC



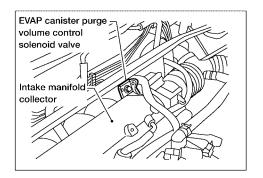


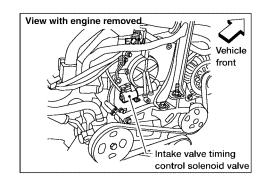


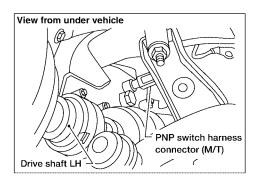
С

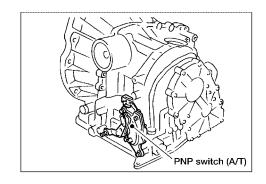
D

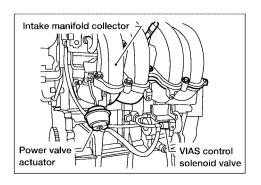
Е

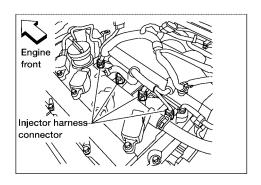

F

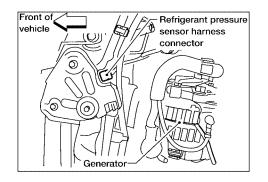

G

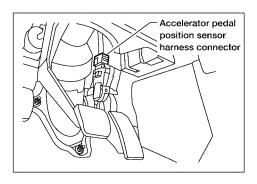

Н


M


BBIA0285E



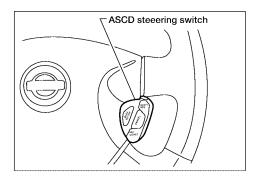


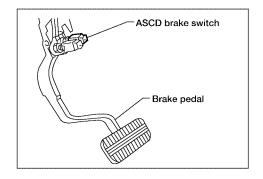


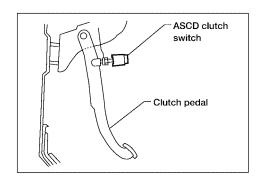
BBIA0128E

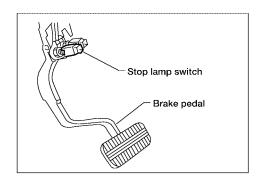
Α

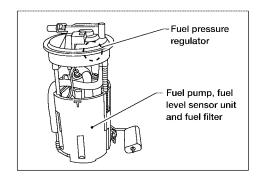
EC

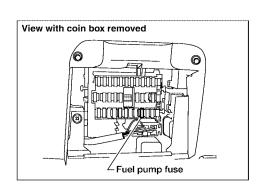

C

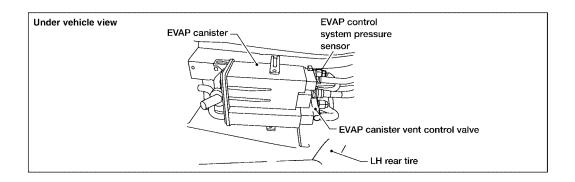

D

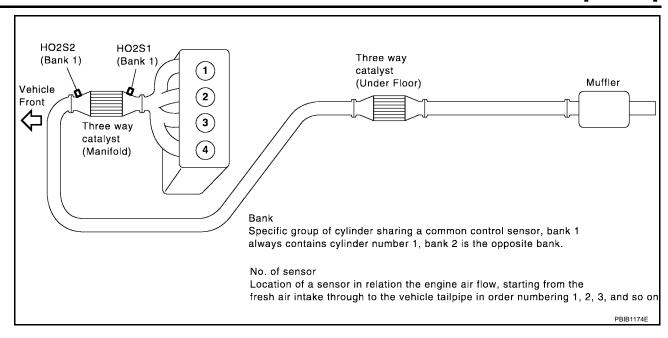

Е

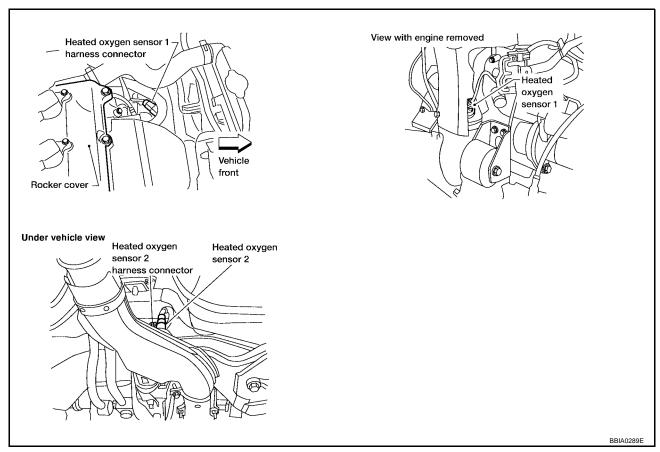

Н

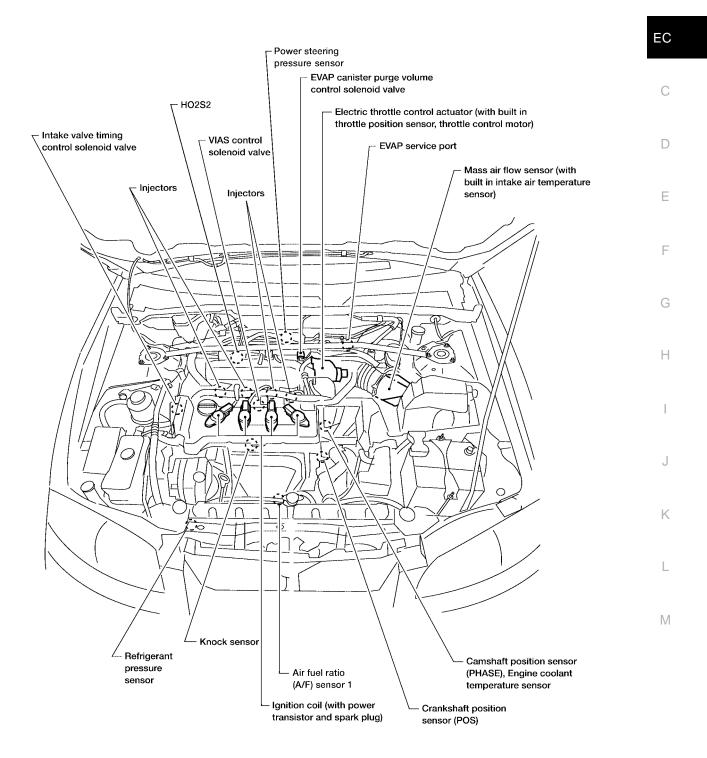

M

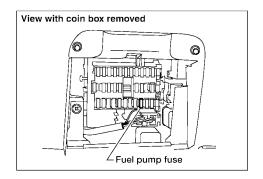


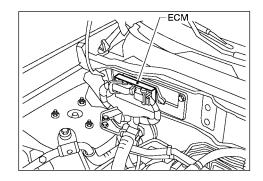


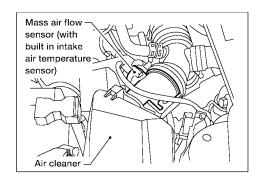


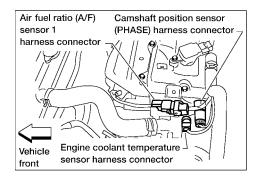


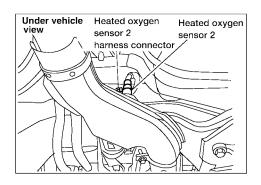

BBIA0288E

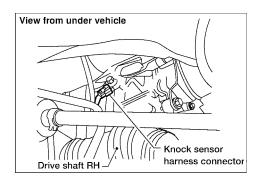


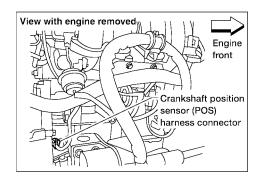

Α

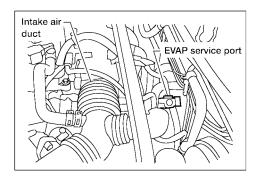

A/T MODELS EXCEPT ULEV

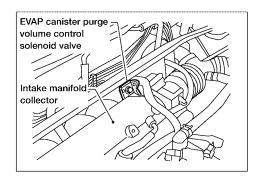


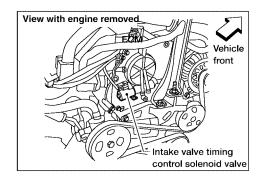

BBIA0302E

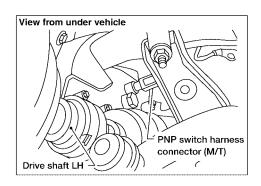


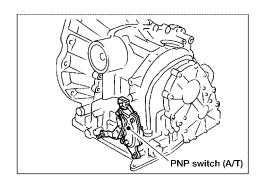


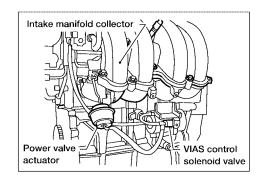


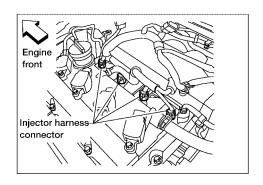


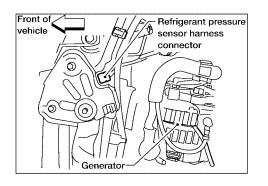


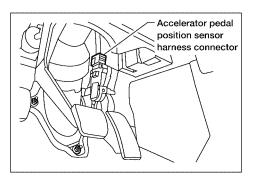

BBIA0303E


Α


EC





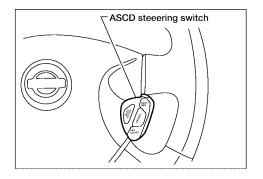


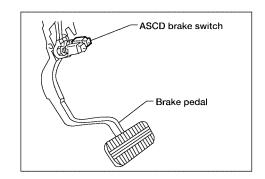
С

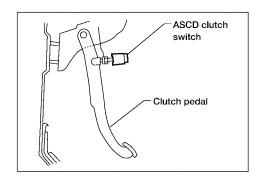
D

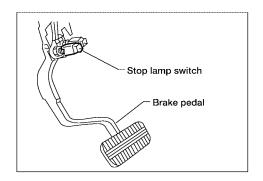
Е

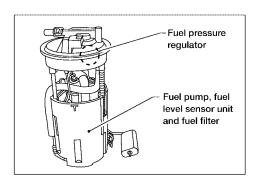
F

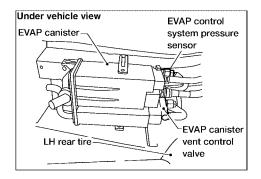

G

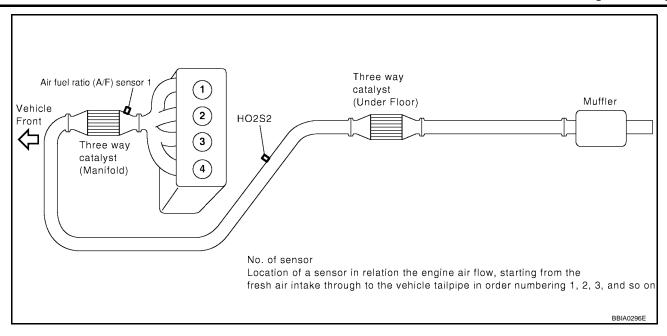

Н

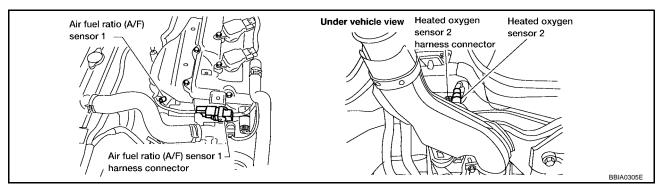

L


M


BBIA0128E







[QR25DE]

Α

EC

С

D

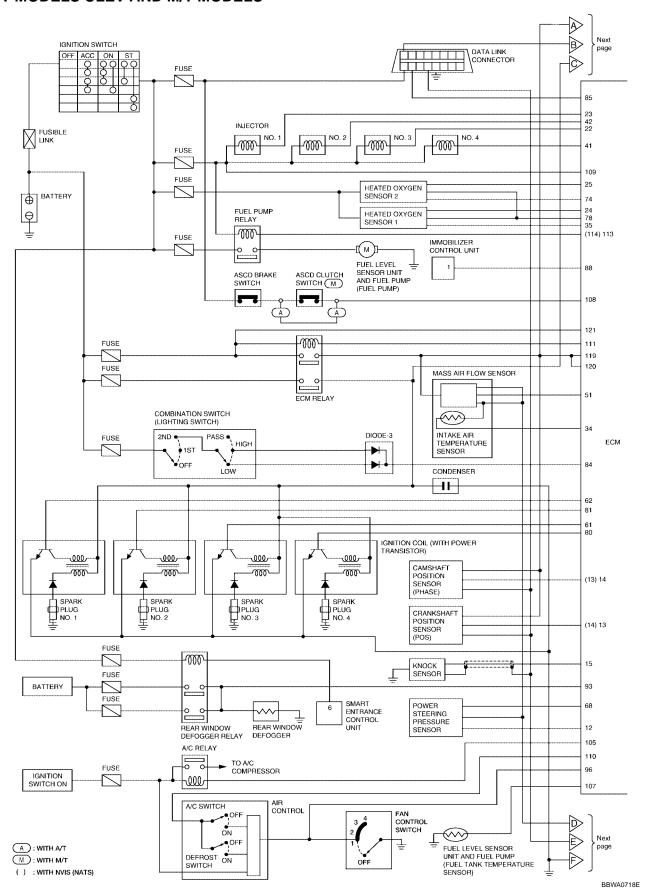
Е

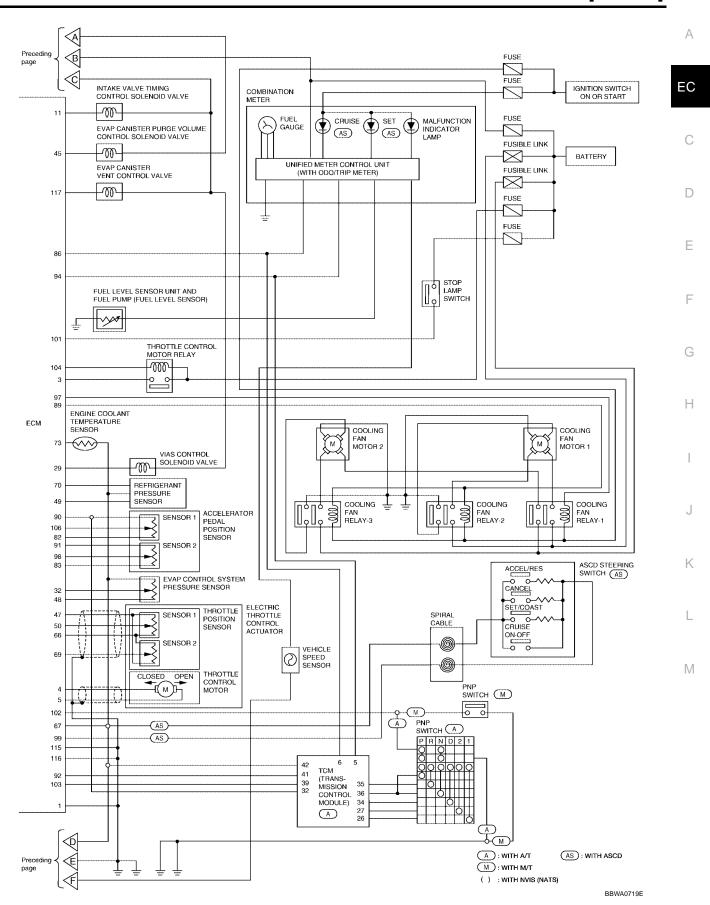
F

G

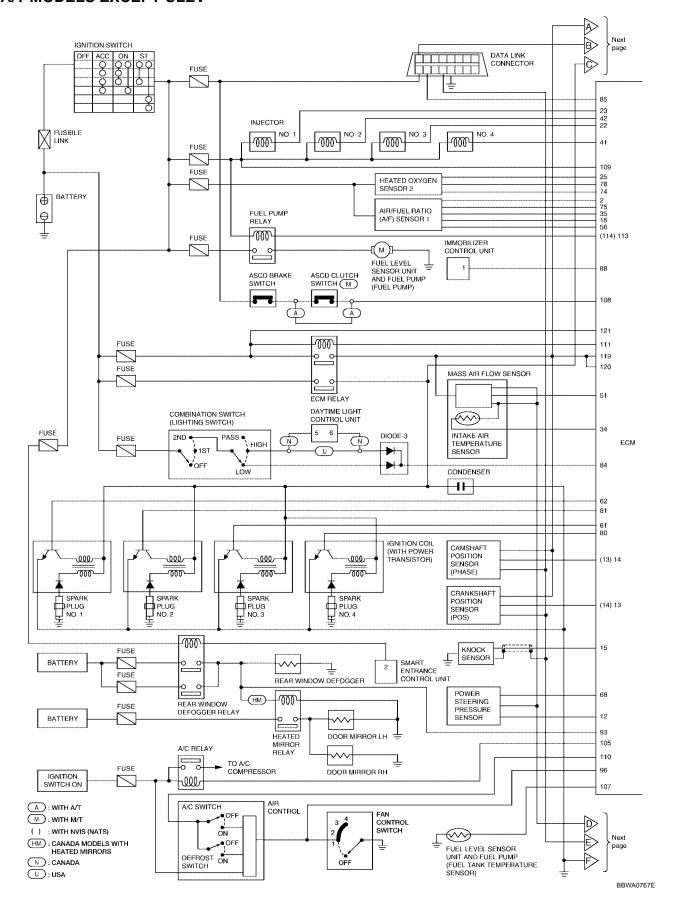
Н

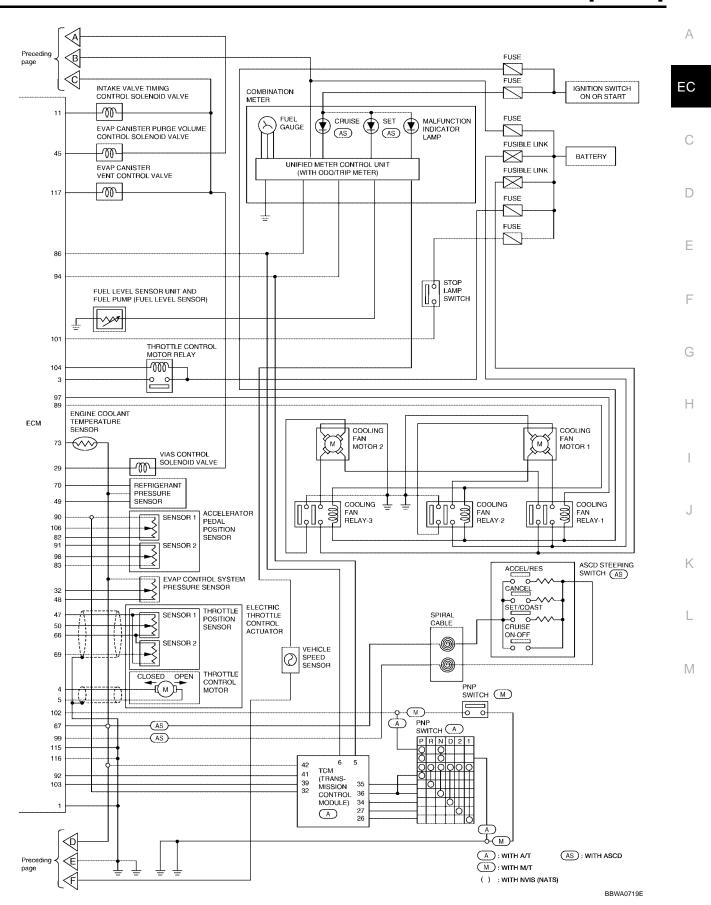
1

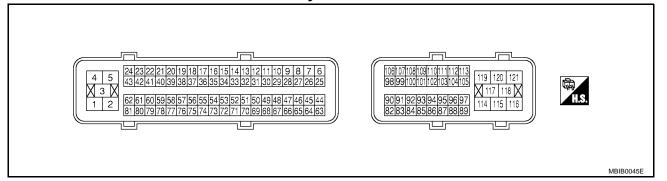

K


L

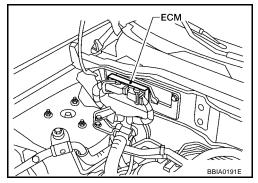
M

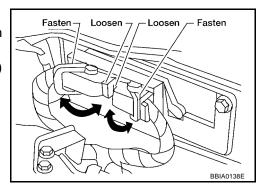

Circuit Diagram A/T MODELS ULEV AND M/T MODELS


UBS0027L


A/T MODELS EXCEPT ULEV

ECM Harness Connector Terminal Layout


JBS0027I


ECM Terminals and Reference Value PREPARATION

UBS0027N

1. ECM is located in the right side of the cowl top (behind the strut tower).

- 2. Remove ECM harness protector.
- 3. When disconnecting ECM harness connector, loosen it with levers as far as they will go as shown at right.
- 4. Connect a break-out box (SST) and Y-cable adapter (SST) between the ECM and ECM harness connector.
 - Use extreme care not to touch 2 pins at one time.
 - Data is for comparison and may not be exact.

ECM INSPECTION TABLE

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
1	В	ECM ground	[Engine is running] ● Idle speed	Engine ground
2* ⁴	R	A/F sensor 1 heater	[Engine is running]Warm-up conditionIdle speed	Approximately 5V
3	R/W	Throttle control motor power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

[QR25DE]

				[QIVZ3DL]	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	А
4	Р	Throttle control motor (Close)	[Ignition switch: ON] • Engine stopped • Shift lever: D (A/T), 1ST (M/T) • Accelerator pedal is releasing	0 - 14V★ >>> 10.0 V/Div 200 us/Div T PBIB0534E	EC C
5	L	Throttle control motor (Open)	[Ignition switch: ON] • Engine stopped • Shift lever: D (A/T), 1ST (M/T) • Accelerator pedal is depressing	0 - 14V★	D E F
			[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)	G
11	G/Y	solenoid valve [Engine is running] ● Warm-up condition		7 - 10V* 22 10.0 V/Div PBIB1790E	Н
12	P	Power steering pressure sensor	[Engine is running] ● Steering wheel is being turned [Engine is running]	0.5 - 4.0V	J
			Steering wheel is not being turned	0.4 - 0.8V	K
13* ¹	V	Crankshaft position sensor	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 3.0V★ → SV/Div 1 ms/Div T PBIB0527E	L
(14)*2	Y	(POS)	[Engine is running] ● Engine speed is 2,000 rpm	Approximately 3.0V★ Sov/Div 1 ms/Div PBIB0528E	

				[QK25DE]
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
14* ¹	W/R	Camshaft position sensor	[Engine is running] ■ Warm-up condition ■ Idle speed	1.0 - 4.0 V★ → 5.0 V/Div 20 ms/Div PBIB0525E
(13)*2	W/K	(PHASE)	[Engine is running] ● Engine speed is 2,000 rpm.	1.0 - 4.0 V★ → 5.0 V/Div 20 ms/Div T PBIB0526E
15	W	Knock sensor	[Engine is running] ● Idle speed	Approximately 2.5V
16* ⁴	OR/L			Approximately 3.1V
35* ⁴	B/Y		[Engine is running]	Approximately 2.6V
56* ⁴	OR	A/F sensor 1	Warm-up conditionIdle speed	2 - 3V
75* ⁴	W/L			2 - 3V
22 23	G/B R/B	Injector No. 3 Injector No. 1	[Engine is running] ■ Warm-up condition ■ Idle speed	BATTERY VOLTAGE (11 - 14V)★ → 10.0 V/Div 50 ms/Div T PBIB0529E
41 42	L/B Y/B	Injector No. 4 Injector No. 2	[Engine is running] ■ Warm-up condition ■ Engine speed is 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ → 10.0 V/Div 50 ms/Div T PBIB0530E
24* ³	G/W	Heated oxygen sensor 1 heater	[Engine is running]● Warm-up condition.● Engine speed is below 3,600 rpm.	Approximately 7.0V★
			[Engine is running]● Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)

[QR25DE]

				[QR25DE]	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
25	W/B	V/B Heated oxygen sensor 2	VV/B		0 - 1.0V
			 [Ignition switch: ON] Engine stopped. [Engine is running] Engine speed is above 3,600 rpm. 	BATTERY VOLTAGE (11 - 14V)	
20	Y/G	VIAS central calancid valve	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)	
29	1/G	VIAS control solenoid valve	[Engine is running] ● Engine speed is above 5,000 rpm	0 - 1.0V	
32	L	EVAP control system pressure sensor	[Ignition switch: ON]	Approximately 1.8 - 4.8V	
34	Y/G	Intake air temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with intake air temperature.	
35* ³	B/Y	Heated oxygen sensor 1	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)	
45	GY/L	EVAP canister purge vol-	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)★	
		ume control solenoid valve	 [Engine is running] Engine speed is about 2,000 rpm (More than 100 seconds after starting engine) 	Approximately 10V★	
47	В	Sensor power supply (Throttle position sensor)	[Ignition switch: ON]	Approximately 5V	
48	R/W	Sensor power supply (EVAP control system pres- sure sensor)	[Ignition switch: ON]	Approximately 5V	
49	R/Y	Sensor power supply (Refrigerant pressure sensor)	[Ignition switch: ON]	Approximately 5V	

				[QRZ5DE]
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
50	w	Throttle position sensor 1	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully released 	More than 0.36V
30	VV		 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully depressed 	Less than 4.75V
51	L/R	Mass air flow sensor	[Engine is running]Warm-up conditionIdle speed	0.8 - 1.3V
31	LIK	IVIASS AII IIUW SEIISUI	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm.	1.5 - 2.1V
61 62	L/W BR	Ignition signal No. 3 Ignition signal No. 1 Ignition signal No. 4 Ignition signal No. 2	[Engine is running] ■ Warm-up condition ■ Idle speed	0 - 0.1 V★
80 81	GY/R PU		 [Engine is running] ◆ Warm-up condition ◆ Engine speed is 2,000 rpm. 	0 - 0.2V★
66	R	Sensor ground (Throttle position sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
67	B/W	Sensor's ground	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V
68	G/R	Sensor power supply (Power steering pressure sensor)	[Ignition switch: ON]	Approximately 5V
69	G	G Throttle position sensor 2	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully released 	Less than 4.75V
	3		 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully depressed 	More than 0.36V

				[QIVZ3DL]	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	А
70	L	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower switch are ON (Compressor operates.) 	1.0 - 4.0V	EC
73	BR/W	Engine coolant temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with engine coolant temperature.	С
74	R/L	Heated oxygen sensor 2	 [Engine is running] Warm-up condition Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	0 - Approximately 1.0V	D E F
78	В	Sensor ground (Heated oxygen sensor)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	G
82	B/Y	Sensor ground (Accelerator pedal position sensor 1)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	Н
83	G	Sensor ground (Accelerator pedal position sensor 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	I
84	PU	Electrical load signal (Headlamp signal)	[Lighting switch: ON] • Lighting switch is 2nd position [Lighting switch: ON] • Lighting switch is OFF	BATTERY VOLTAGE (11 - 14V) Approximately 0V	J
85	LG	DATA link connector	[Ignition switch: ON] CONSULT-II or GST is disconnected.	BATTERY VOLTAGE (11 - 14V)	K
86	Υ	CAN communication line	[Ignition switch: ON]	Approximately 2.3V	
90	LG/B		[Engine is running] ■ Cooling fan is not operating	BATTERY VOLTAGE (11 - 14V)	L
89	LG/B	Cooling fan relay (High)	[Engine is running]Cooling fan is high speed operating	0 - 1.0V	M
90	R	Sensor power supply (Accelerator pedal position sensor 1)	[Ignition switch: ON]	Approximately 5V	
91	R/G	Sensor power supply (Accelerator pedal position sensor 2)	[Ignition switch: ON]	Approximately 5V	
93	L/W	Electrical load signal (Rear window defogger signal)	[Ignition switch: ON] Rear window defogger switch is ON [Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V) Approximately 0V	
		0.11	Rear window defogger switch is OFF		
94	L	CAN communication line	[Ignition switch: ON]	Approximately 2.8V	

				[QR25DE
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
96	Y/G	Heater fan switch	[Engine is running] • Heater fan switch ON	Approximately 0V
90	176	rieater fair Switch	[Engine is running] • Heater fan switch OFF	Approximately 5V
97	LG/R	Cooling fan rolay (Low)	[Ignition switch: ON] • Cooling fan is not operating	BATTERY VOLTAGE (11 - 14V)
97	LG/K	Cooling fan relay (Low)	[Ignition switch: ON] • Cooling fan is operating	0 - 1.0V
00	D /D	Accelerator pedal position	[Ignition switch: ON]Engine stoppedAccelerator pedal fully released	0.28 - 0.48V
98	R/B	sensor 2	[Ignition switch: ON] • Engine stopped • Accelerator pedal fully depressed	More than 2.0V
			[Ignition switch: ON] • ASCD steering switch is OFF.	Approximately 4V
		ASCD steering switch	[Ignition switch: ON] • CRUISE switch is ON.	Approximately 0V
99	W/R		[Ignition switch: ON] • CANCEL switch is ON.	Approximately 1V
			[Ignition switch: ON] • COAST/SET switch is ON.	Approximately 2V
			[Ignition switch: ON] • ACCEL/RESUME switch is ON.	Approximately 3V
404	R/G	Stop lamp switch	[Ignition switch: ON] • Brake pedal fully released	Approximately 0V
101			[Ignition switch: ON] • Brake pedal depressed	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: ON] • Gear position is P or N	Approximately 0V
102	G/OR PNP switch [Ignition switch: Of		[Ignition switch: ON] • Except the above gear position	A/T models BATTERY VOLTAGE (11 - 14V) M/T models Approximately 5V
104	Р	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: ON]	0 - 1.0V
100)A/	Accelerator pedal position sensor 1	[Ignition switch: ON]Engine stoppedAccelerator pedal fully released	0.65 - 0.87V
106	W		[Ignition switch: ON] • Engine stopped • Accelerator pedal fully depressed	More than 4.3V
107	OR	Fuel tank temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with fue tank temperature.

Α

D

Е

Н

Κ

M

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
			[Ignition switch: ON]		
			Brake pedal is depressed	Approximately 0V	
400	D.//	A00D 1 11	Clutch pedal is depressed (M/T)		
108	P/L	ASCD brake switch	[Ignition switch: ON]		
			Brake pedal is depressed	BATTERY VOLTAGE (11 - 14V)	
			 Clutch pedal is depressed (M/T) 	(11 - 140)	
			[Ignition switch: OFF]	0V	
109	B/R	Ignition switch	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	
			[Engine is running] [Ignition switch: OFF]	0 - 1.0V	
111	W/G	ECM relay (Self shut-off)	For 10 seconds after turning ignition switch OFF	0 - 1.0v	
			[Ignition switch: OFF]	DATTEDY VOLTAGE	
			 10 seconds passed after turning ignition switch OFF 		BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: ON]		
	B/P		For 1 second after turning ignition switch ON	0 - 1.0V	
113*1		Fuel pump relay	[Engine is running]		
(114)* ²			[Ignition switch: ON]	DATTEDY VOLTAGE	
			More than 1 second after turning ignition switch ON.	BATTERY VOLTAGE (11 - 14V)	
115	В	ECM ground	[Engine is running]	Engine ground	
116	В		Idle speed		
117	L/Y	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	
121	W/L	Power supply for ECM (Buck-up)	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)	

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

CONSULT-II Function FUNCTION

UBS0027O

Diagnostic test mode	Function
Work support	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-II unit.
Self-diagnostic results	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly.*
Data monitor	Input/Output data in the ECM can be read.
Data monitor (SPEC)	Input/Output of the specification for Basic fuel schedule, AFM, A/F feedback control value and the other data monitor items can be read.
CAN diagnostic support monitor	The results of transmit/receive diagnosis of CAN communication line.
Active test	Diagnostic Test Mode in which CONSULT-II drives some actuators apart from the ECMs and also shifts some parameters in a specified range.

^{*1:} Without NVIS (NATS).

^{*2:} With NVIS (NATS).

^{*3:} A/T models ULEV and M/T models.

^{*4:} A/T models except ULEV.

Diagnostic test mode	Function
Function test	This mode is used to inform customers when their vehicle condition requires periodic maintenance.
DTC & SRT confirmation	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.
ECM part number	ECM part number can be read.

^{*:} The following emission-related diagnostic information is cleared when the ECM memory is erased.

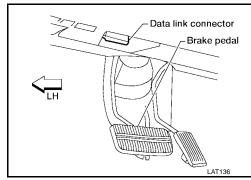
- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values
- Others

[QR25DE]

ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION

				DIAC	NOSTIC	TEST MO	DE		
		WORK		AGNOSTIC SULTS	DATA	DATA		DTC & SRT CONFIRMATION	
Item		WORK SUP- PORT	DTC*1	FREEZE FRAME DATA* ²	DATA MONI- TOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT
	Crankshaft position sensor (POS)		×	×	×	×			
	Camshaft position sensor (PHASE)		×		×	×			
	Mass air flow sensor		×		×	×			
	Engine coolant temperature sensor		×	×	×	×	×		
	Heated oxygen sensor 1*3		×		×	×		×	×
	A/F sensor 1*4		×		×			×	×
	Heated oxygen sensor 2		×		×	×		×	×
	Vehicle speed sensor		×	×	×	×			
တ	Accelerator pedal position sensor		×		×	×			
ARI	Throttle position sensor		×		×	×			
=	Fuel tank temperature sensor		×		×	×	×		
ONEN	EVAP control system pressure sensor		×		×	×			
통 5	Intake air temperature sensor		×		×	×			
INPUT	Knock sensor		×						
- RC	Refrigerant pressure sensor				×	×			
S S	Ignition switch (start signal)				×	×			
ENGINE CONTROL COMPONENT PARTS INPUT	Closed throttle position switch (accelerator pedal position sensor signal)				×	×			
	Air conditioner switch				×	×			
	Park/neutral position (PNP) switch		×		×	×			
	Stop lamp switch		×		×	×			
	Power steering pressure sensor		×		×	×			
	Battery voltage				×	×			
	Load signal				×	×			
	Fuel level sensor		×		×	×			
	ASCD steering switch		×		×	×			
	ASCD brake switch		×		×	×			

		DIAGNOSTIC TEST MODE							
	ltem		SELF-DIAGNOSTIC RESULTS		DATA	DATA		DTC & SRT CONFIRMATION	
			DTC*1	FREEZE FRAME DATA* ²	MONI- TOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT
	Injectors				×	×	×		
	Power transistor (Ignition timing)				×	×	×		
S	Throttle control motor relay		×		×	×			
\RT	Throttle control motor		×						
ENGINE CONTROL COMPONENT PARTS	EVAP canister purge volume control solenoid valve		×		×	×	×		×
Ö	Air conditioner relay				×	×			
AM F	Fuel pump relay	×			×	×	×		
OL COM	Cooling fan relay		×		×	×	×		
0 S	Heated oxygen sensor 1 heater*3		×		×	×		×	
CON	A/F sensor 1 heater*4		×		×	×		×	
빌	Heated oxygen sensor 2 heater		×		×	×		×	
ENGI	EVAP canister vent control valve		×		×	×	×		
	Intake valve timing control solenoid valve		×		×	×	×		
	VIAS control solenoid valve		×		×	×	×		
	Calculated load value			×	×	×			


X: Applicable

CONSULT-II INSPECTION PROCEDURE

CAUTION:

If CONSULT-II is used with no connection of CONSULT-II CONVERTER, malfunctions might be detected in self-diagnosis depending on control unit which carry out CAN communication.

- 1. Turn ignition switch OFF.
- 2. Connect CONSULT-II and CONSULT-II CONVERTER to data link connector, which is located under LH dash panel.
- 3. Turn ignition switch ON.

^{*1:} This item includes 1st trip DTCs.

^{*2:} This mode includes 1st trip freeze frame data or freeze frame data. The items appear on CONSULT-II screen in freeze frame data mode only if a 1st trip DTC or DTC is detected. For details, refer to <u>EC-694</u>.

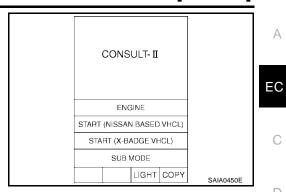
^{*3:} A/T models ULEV and M/T models.

^{*4:} A/T models except ULEV.

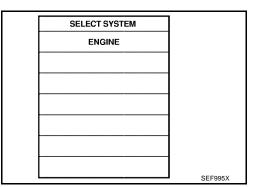
TROUBLE DIAGNOSIS

[QR25DE]

Α

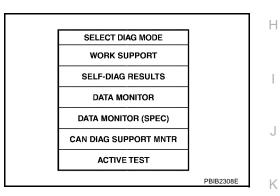

C

D


Е

M

Touch "START (NISSAN BASED VHCL)".



5. Touch "ENGINE". If "ENGINE" is not indicated, go to EC-1303, "DATA LINK CON-NECTOR".

6. Perform each diagnostic test mode according to each service procedure.

For further information, see the CONSULT-II Operation Manual.

WORK SUPPORT MODE

Work Item

WORK ITEM	CONDITION	USAGE	
FUEL PRESSURE RELEASE	FUEL PUMP WILL STOP BY TOUCHING "START" DUR- ING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.	When releasing fuel pressure from fuel line	
IDLE AIR VOL LEARN	THE IDLE AIR VOLUME THAT KEEPS THE ENGINE WITHIN THE SPECIFIED RANGE IS MEMORIZED IN ECM.	When learning the idle air volume	
SELF-LEARNING CONT	THE COEFFICIENT OF SELF-LEARNING CONTROL MIXTURE RATIO RETURNS TO THE ORIGINAL COEF- FICIENT.	When clearing the coefficient of self-learning control value	

WORK ITEM	CONDITION	USAGE
EVAP SYSTEM CLOSE	CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN ORDER TO MAKE EVAP SYSTEM CLOSE UNDER THE FOLLOWING CONDITIONS.	When detecting EVAP vapor leak point of EVAP system
	• IGN SW ON	
	ENGINE NOT RUNNING	
	● AMBIENT TEMPERATURE IS ABOVE 0°C (32°F).	
	NO VACUUM AND NO HIGH PRESSURE IN EVAP SYSTEM	
	• FUEL TANK TEMP. IS MORE THAN 0°C (32°F).	
	WITHIN 10 MINUTES AFTER STARTING "EVAP SYSTEM CLOSE"	
	WHEN TRYING TO EXECUTE "EVAP SYSTEM CLOSE" UNDER THE CONDITION EXCEPT ABOVE, CONSULT- II WILL DISCONTINUE IT AND DISPLAY APPROPRI- ATE INSTRUCTION.	
	NOTE: WHEN STARTING ENGINE, CONSULT-II MAY DISPLAY "BATTERY VOLTAGE IS LOW. CHARGE BATTERY", EVEN IN USING CHARGED BATTERY.	
TARGET IDLE RPM ADJ*	IDLE CONDITION	When setting target idle speed
TARGET IGN TIM ADJ*	IDLE CONDITION	When adjusting target ignition timing

^{*:} This function is not necessary in the usual service procedure.

SELF-DIAG RESULTS MODE

Self Diagnostic Item

Regarding items of DTC and 1st trip DTC, refer to EC-639, "INDEX FOR DTC" .)

Freeze Frame Data and 1st Trip Freeze Frame Data

Freeze frame data item*	Description
DIAG TROUBLE CODE [PXXXX]	The engine control component part/control system has a trouble code, it is displayed as "PXXXX". (Refer to EC-639, "INDEX FOR DTC" .)
FUEL SYS-B1	 "Fuel injection system status" at the moment a malfunction is detected is displayed. One mode in the following is displayed. Mode2: Open loop due to detected system malfunction Mode3: Open loop due to driving conditions (power enrichment, deceleration enrichment) Mode4: Closed loop - using oxygen sensor(s) as feedback for fuel control Mode5: Open loop - has not yet satisfied condition to go to closed loop
CAL/LD VALUE [%]	The calculated load value at the moment a malfunction is detected is displayed.
COOLANT TEMP [°C] or [°F]	The engine coolant temperature at the moment a malfunction is detected is displayed.
	"Long-term fuel trim" at the moment a malfunction is detected is displayed.
L-FUEL TRIM-B1 [%]	The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule than short-term fuel trim.
	"Short-term fuel trim" at the moment a malfunction is detected is displayed.
S-FUEL TRIM-B1 [%]	The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel schedule.
ENGINE SPEED [rpm]	The engine speed at the moment a malfunction is detected is displayed.
VEHICL SPEED [km/h] or [mph]	The vehicle speed at the moment a malfunction is detected is displayed.

Α

EC

Freeze frame data item*	Description
B/FUEL SCHDL [msec]	The base fuel schedule at the moment a malfunction is detected is displayed.
INT/A TEMP SE [°C] or [°F]	The intake air temperature at the moment a malfunction is detected is displayed.

^{*:} The items are the same as those of 1st trip freeze frame data.

DATA MONITOR MODE

Monitored Item

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
ENG SPEED [rpm]	×	×	Indicates the engine speed computed from the signals of the crankshaft posi- tion sensor (POS) and camshaft posi- tion sensor (PHASE).	 Accuracy becomes poor if engine speed drops below the idle rpm. If the signal is interrupted while the engine is running, an abnormal value may be indicated.
MAS A/F SE-B1 [V]	×	×	The signal voltage of the mass air flow sensor is displayed.	When the engine is stopped, a certain value is indicated.
B/FUEL SCHDL [msec]		×	"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	
			The mean value of the air-fuel ratio	When the engine is stopped, a certain value is indicated.
A/F ALPHA-B1 [%]		×	feedback correction factor per cycle is indicated.	 This data also includes the data for the air-fuel ratio learning con- trol.
COOLAN TEMP/S [°C] or [°F]	×	×	The engine coolant temperature (determined by the signal voltage of the engine coolant temperature sensor) is displayed.	When the engine coolant temperature sensor is open or short-circulated, ECM enters fail-safe mode. The engine coolant temperature determined by the ECM is displayed.
HO2S1 (B1) [V]* ¹	×	×	The signal voltage of the heated oxygen sensor 1 is displayed.	
A/F SEN1 (B1) [V]*2	×	×	The A/F signal computed from the input signal of the A/F sensor 1 is displayed.	
HO2S2 (B1) [V]	×	×	The signal voltage of the heated oxygen sensor 2 is displayed.	
HO2S1 MNTR (B1) [RICH/ LEAN]*1	×	×	Display of heated oxygen sensor 1 signal during air-fuel ratio feedback control: RICH means the mixture became rich, and control is being affected toward a leaner mixture. LEAN means the mixture became lean, and control is being affected toward a rich mixture.	 After turning ON the ignition switch, "RICH" is displayed until air-fuel mixture ratio feedback control begins. When the air-fuel ratio feedback is clamped, the value just before the clamping is displayed continuously.
HO2S2 MNTR (B1) [RICH/ LEAN]	×		Display of heated oxygen sensor 2 signal: RICH means the amount of oxygen after three way catalyst is relatively small. LEAN means the amount of oxygen after three way catalyst is relatively large.	When the engine is stopped, a certain value is indicated.

				[QR25DE]
Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
VHCL SPEED SE [km/h] or [mph]	×	×	The vehicle speed computed from the vehicle speed signal is displayed.	
BATTERY VOLT [V]	×	×	The power supply voltage of ECM is displayed.	
ACCEL SEN 1 [V]	×	×	The accelerator pedal position sensor	
ACCEL SEN 2 [V]	×		signal voltage is displayed.	
THRTL SEN 1 [V]	×	×	The throttle position sensor signal volt-	
THRTL SEN 2 [V]	×		age is displayed.	
FUEL T/TEMP SE [°C] or [°F]	×		The fuel temperature (determined by the signal voltage of the fuel tank tempera- ture sensor) is displayed.	
INT/A TEMP SE [°C] or [°F]	×	×	The intake air temperature (determined by the signal voltage of the intake air temperature sensor) is indicated.	
EVAP SYS PRES [V]	×		The signal voltage of EVAP control system pressure sensor is displayed.	
ABSOL PRES/SE [V]	×		The signal voltage of EVAP control system pressure sensor is displayed.	
FUEL LEVEL SE [V]	×		The signal voltage of the fuel level sensor is displayed.	
START SIGNAL [ON/OFF]	×	×	Indicates [ON/OFF] condition from the starter signal.	 After starting the engine, [OFF] is displayed regardless of the starter signal.
CLSD THL POS [ON/OFF]	×	×	 Indicates idle position [ON/OFF] computed by ECM according to the accelerator pedal position sensor signal. 	
AIR COND SIG [ON/OFF]	×	×	 Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioner signal. 	
P/N POSI SW [ON/OFF]	×	×	 Indicates [ON/OFF] condition from the park/neutral position (PNP) switch sig- nal. 	
PW/ST SIGNAL [ON/OFF]	×	×	[ON/OFF] condition of the power steering oil pressure switch as determined by the power steering oil pressure signal is indicated.	
LOAD SIGNAL [ON/OFF]	×	×	 Indicates [ON/OFF] condition from the electrical load signal. ON Rear window defogger switch is ON and/or lighting switch is in 2nd posi- tion. OFF Both rear window defogger switch and lighting switch are OFF. 	
IGNITION SW [ON/OFF]	×	×	Indicates [ON/OFF] condition from ignition switch.	
HEATER FAN SW [ON/OFF]	×		Indicates [ON/OFF] condition from the heater fan switch signal.	
BRAKE SW [ON/OFF]	×		Indicates [ON/OFF] condition from the stop lamp switch signal.	
INJ PULSE-B1 [msec]		×	 Indicates the actual fuel injection pulse width compensated by ECM according to the input signals. 	When the engine is stopped, a certain computed value is indicated.

				[QK25DE]	
Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks	А
IGN TIMING [BTDC]		×	Indicates the ignition timing computed by ECM according to the input signals.	When the engine is stopped, a certain value is indicated.	EC
CAL/LD VALUE [%]			"Calculated load value" indicates the value of the current airflow divided by peak airflow.		С
MASS AIRFLOW [g·m/s]			Indicates the mass airflow computed by ECM according to the signal voltage of the mass air flow sensor.		D
PURG VOL C/V [%]			 Indicates the EVAP canister purge volume control solenoid valve control value computed by the ECM according to the input signals. The opening becomes larger as the value increases. 		Е
INT/V TIM (B1) [°CA]			Indicates [°CA] of intake camshaft advanced angle.		F
INT/V SOL (B1) [%]			The control value of the intake valve timing control solenoid valve (determined by ECM according to the input signal) is indicated.		G
			The advance angle becomes larger as the value increases.		Н
VIAS S/V [ON/OFF]			 The control condition of the VIAS control solenoid valve (determined by ECM according to the input signals) is indi- cated. ON VIAS control solenoid valve is operating. OFF VIAS control solenoid valve is not operating. 		J
AIR COND RLY [ON/OFF]		×	The air conditioner relay control condition (determined by ECM according to the input signals) is indicated.		K
FUEL PUMP RLY [ON/OFF]		×	Indicates the fuel pump relay control condition determined by ECM according to the input signals.		L
VENT CONT/V [ON/OFF]			The control condition of the EVAP canister vent control valve (determined by ECM according to the input signals) is indicated. ON Closed OFF Open		M
THRTL RELAY [ON/OFF]			Indicates the throttle control motor relay control condition determined by the ECM according to the input signals.		
COOLING FAN [HI/LOW/OFF]			Indicates the condition of the cooling fan (determined by ECM according to the input signals). HI High speed operation LOW Low speed operation OFF Stop		
HO2S1 HTR (B1) [ON/ OFF]*1			 Indicates [ON/OFF] condition of heated oxygen sensor 1 heater determined by ECM according to the input signals. 		

				[WINZUDE]
Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
HO2S2 HTR (B1) [ON/OFF]			 Indicates [ON/OFF] condition of heated oxygen sensor 2 heater determined by ECM according to the input signals. 	
IDL A/V LEARN [YET/ CMPLT]			Display the condition of idle air volume learning YET Idle air volume learning has not been performed yet. CMPLT Idle air volume learning has already been performed successfully.	
TRVL AFTER MIL [km] or [mile]			Distance traveled while MIL is activated.	
A/F S1 HTR (B1) [%]*2			 Indicates A/F sensor 1 heater control value computed by ECM according to the input signals. 	
			The current flow to the heater becomes larger as the value increases.	
O2SEN HTR DTY [%]*1			 Indicates the heated oxygen sensor 1 heater control value computed by the ECM according to the input signals. 	
AC PRESS SEN [V]			The signal voltage from the refrigerant pressure sensor is displayed.	
VHCL SPEED SE [km/h] or [mph]			 The vehicle speed computed from the vehicle speed signal sent from TCM is displayed. 	
SET VHCL SPD [km/h] or [mph]			The preset vehicle speed is displayed.	
MAIN SW [ON/OFF]			Indicates [ON/OFF] condition from CRUISE switch signal.	
CANCEL SW [ON/OFF]			 Indicates [ON/OFF] condition from CAN- CEL switch signal. 	
RESUME/ACC SW [ON/OFF]			Indicates [ON/OFF] condition from ACCEL/RES switch signal.	
SET SW [ON/OFF]			Indicates [ON/OFF] condition from COAST/SET switch signal.	
BRAKE SW1 SW [ON/OFF]			Indicates [ON/OFF] condition from ASCD brake switch signal, and ASCD clutch switch signal (M/T models).	
BRAKE SW2 SW [ON/OFF]			Indicates [ON/OFF] condition of stop lamp switch signal.	
VHCL SPD CUT [NON/CUT]			 Indicates the vehicle cruise condition. NON Vehicle speed is maintained at the ASCD set speed. CUTVehicle speed increased to excessively high compared with the ASCD set speed, and ASCD operation is cut off. 	
LO SPEED CUT [NON/CUT]			 Indicates the vehicle cruise condition.	

TROUBLE DIAGNOSIS

[QR25DE]

Α

EC

C

 D

Е

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
AT OD MONITOR [ON/OFF]			 Indicates [ON/OFF] condition of A/T O/D according to the input signal from the TCM. 	
AT OD CANCEL [ON/OFF]			Indicates [ON/OFF] condition of A/T O/D cancel signal sent from the TCM.	
CRUISE LAMP [ON/OFF]			Indicates [ON/OFF] condition of CRUISE lamp determined by the ECM according to the input signals.	
SET LAMP [ON/OFF]			 Indicates [ON/OFF] condition of SET lamp determined by the ECM according to the input signals. 	
Voltage [V]				
Frequency [msec], [Hz] or [%]				 Only "#" is displayed if item is unable to be measured.
DUTY-HI			Voltage, frequency, duty cycle or pulse	Figures with "#"s are temporary
UTY-LOW			width measured by the probe.	ones. They are the same figures as an actual piece of data which
PLS WIDTH-HI				was just previously measured.
PLS WIDTH-LOW				

^{*1:} A/T models ULEV and M/T models.

NOTE

• Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

DATA MONITOR (SPEC) MODE Monitored Item

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
ENG SPEED [rpm]	×		 Indicates the engine speed computed from the signal of the crankshaft position sensor (POS). 	
MAS A/F SE-B1 [V]	×	×	The signal voltage of the mass air flow sensor specification is displayed.	When engine is running specification range is indicated.
B/FUEL SCHDL [msec]			"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	When engine is running specification range is indicated.
A/F ALPHA-B1 [%]		×	The mean value of the air-fuel ratio feed- back correction factor per cycle is indi- cated.	 When engine is running specification range is indicated. This data also includes the data for the air-fuel ratio learning control.

NOTE:

• Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

^{*2:} A/T models except ULEV.

ACTIVE TEST MODE Test Item

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
FUEL INJEC- TION	 Engine: Return to the original trouble condition Change the amount of fuel injection using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connectorsFuel injectorsHeated oxygen sensor 1
IGNITION TIM- ING	 Engine: Return to the original trouble condition Timing light: Set Retard the ignition timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Perform Idle Air Volume Learning.
POWER BAL- ANCE	 Engine: After warming up, idle the engine. A/C switch: OFF Shift lever: N Cut off each injector signal one at a time using CONSULT-II. 	Engine runs rough or dies.	 Harness and connectors Compression Fuel injectors Power transistor Spark plugs Ignition coils
COOLING FAN	 Ignition switch: ON Turn the cooling fan "ON" and "OFF" with CONSULT-II. 	Cooling fan moves and stops.	Harness and connectorsCooling fan relayCooling fan motor
ENG COOLANT TEMP	 Engine: Return to the original trouble condition Change the engine coolant temperature using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connectorsEngine coolant temperature sensorFuel injectors
FUEL PUMP RELAY	 Ignition switch: ON (Engine stopped) Turn the fuel pump relay "ON" and "OFF" using CONSULT-II and listen to operating sound. 	Fuel pump relay makes the operating sound.	Harness and connectorsFuel pump relay
VIAS SOL VALVE	 Ignition switch: ON Turn solenoid valve "ON" and "OFF" with CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connectors Solenoid valve
PURG VOL CONT/V	 Engine: After warming up, run engine at 1,500 rpm. Change the EVAP canister purge volume control solenoid valve opening percent using CONSULT-II. 	Engine speed changes according to the opening percent.	Harness and connectors Solenoid valve
FUEL/T TEMP SEN	Change the fuel tank temperature	using CONSULT-II.	
VENT CON- TROL/V	 Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" with the CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connectorsSolenoid valve
V/T ASSIGN ANGLE	 Engine: Return to the original trouble condition Change intake valve timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connectors Intake valve timing control solenoid valve

DTC & SRT CONFIRMATION MODE SRT STATUS Mode

For details, refer to EC-694, "SYSTEM READINESS TEST (SRT) CODE".

Α

D

Е

Н

M

SRT Work Support Mode

This mode enables a technician to drive a vehicle to set the SRT while monitoring the SRT status.

DTC Work Support Mode

Test mode	Test item	Condition	Reference page
	PURGE FLOW P0441		EC-949
EVAP SYSTEM	EVAP SML LEAK P0442/P1442*1		EC-955
EVAF SISIEW	EVAP V/S SML LEAK P0456/P1456*1		EC-998
	PURG VOL CN/V P1444		EC-1159
HO2S1* ²	HO2S1 (B1) P0133		EC-852
	HO2S1 (B1) P0134		EC-862
	HO2S1 (B1) P1143		EC-1062
	HO2S1 (B1) P1144	Refer to corresponding trouble diagnosis for	EC-1068
	A/F SEN1 (B1) P1273	DTC.	EC-1125
	A/F SEN1 (B1) P1274		EC-1132
A/F SEN1* ³	A/F SEN1 (B1) P1276		EC-1139
	A/F SEN1 (B1) P1278		EC-1145
	A/F SEN1 (B1) P1279		EC-1152
H02S2	HO2S2 (B1) P0139		EC-875
	HO2S2 (B1) P1146		EC-1074
	HO2S2 (B1) P1147		EC-1082

^{*1:} DTC P1442 and P14546 do not apply to B15 models but appears in DTC Work Support mode screens.

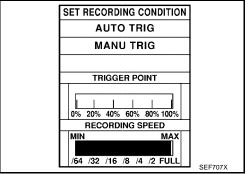
^{*2:} A/T models ULEV and M/T models.

^{*3:} A/T models except ULEV.

REAL TIME DIAGNOSIS IN DATA MONITOR MODE (RECORDING VEHICLE DATA) Description

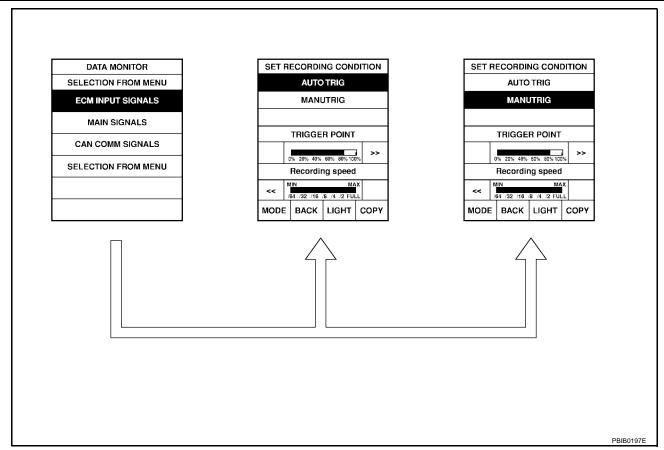
CONSULT-II has two kinds of triggers and they can be selected by touching "SETTING" in "DATA MONITOR" mode.

- 1. "AUTO TRIG" (Automatic trigger):
 - The malfunction will be identified on the CONSULT-II screen in real time.


In other words, DTC/1st trip DTC and malfunction item will be displayed if the malfunction is detected by ECM.

At the moment a malfunction is detected by ECM, "MONITOR" in "DATA MONITOR" screen is changed to "Recording Data... xx%" as shown at right, and the data after the malfunction detection is recorded. Then when the percentage reached 100%, "REAL-TIME DIAG" screen is displayed. If "STOP" is touched on the screen during "Recording Data... xx%", "REAL-TIME DIAG" screen is also displayed.

The recording time after the malfunction detection and the recording speed can be changed by "TRIGGER POINT" and "Recording Speed". Refer to CONSULT-II OPERATION MANUAL.


- "MANU TRIG" (Manual trigger):
 - DTC/1st trip DTC and malfunction item will not be displayed automatically on CONSULT-II screen even though a malfunction is detected by ECM.
 - DATA MONITOR can be performed continuously even though a malfunction is detected.

Operation

- 1. "AUTO TRIG"
 - While trying to detect the DTC/1st trip DTC by performing the DTC Confirmation Procedure, be sure to select to "DATA MONITOR (AUTO TRIG)" mode. You can confirm the malfunction at the moment it is detected.
 - While narrowing down the possible causes, CONSULT-II should be set in "DATA MONITOR (AUTO TRIG)" mode, especially in case the incident is intermittent.
 - When you are inspecting the circuit by gently shaking (or twisting) the suspicious connectors, components and harness in the DTC Confirmation Procedure, the moment a malfunction is found the DTC/1st trip DTC will be displayed. (Refer to Incident Simulation Tests in <u>GI-26</u>, "How to Perform Efficient Diagnosis for an Electrical Incident".)
- 2. "MANU TRIG"
 - If the malfunction is displayed as soon as "DATA MONITOR" is selected, reset CONSULT-II to "MANU TRIG". By selecting "MANU TRIG" you can monitor and store the data. The data can be utilized for further diagnosis, such as a comparison with the value for the normal operating condition.



Generic Scan Tool (GST) Function DESCRIPTION

Generic Scan Tool (OBDII scan tool) complying with SAE J1978 has 8 different functions explained below.

ISO9141 is used as the protocol.

The name "GST" or "Generic Scan Tool" is used in this service manual.

FUNCTION

Diagnostic test mode		Function
MODE 1 READINESS TESTS		This mode gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, and system status information.
MODE 2	(FREEZE DATA)	This mode gains access to emission-related data value which were stored by ECM during the freeze frame. For details, refer to EC-694 , "FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA".
MODE 3	DTCs	This mode gains access to emission-related power train trouble codes which were stored by ECM.

EC

Α

D

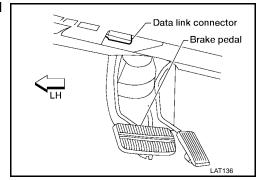
Е

F

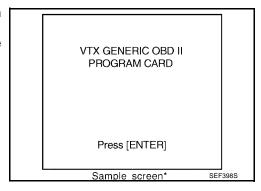
G

UBS0027P

J


K

L


Di	agnostic test mode	Function
MODE 4	CLEAR DIAG INFO	This mode can clear all emission-related diagnostic information. This includes: Clear number of diagnostic trouble codes (MODE 1) Clear diagnostic trouble codes (MODE 3) Clear trouble code for freeze frame data (MODE 1) Clear freeze frame data (MODE 2) Reset status of system monitoring test (MODE 1) Clear on board monitoring test results (MODE 6 and 7)
MODE 6	(ON BOARD TESTS)	This mode accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.
MODE 7	(ON BOARD TESTS)	This mode enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.
MODE 8	_	This mode can close EVAP system in ignition switch ON position (Engine stopped). When this mode is performed, the following parts can be opened or closed. • EVAP canister vent control valve open • Vacuum cut valve bypass valve closed In the following conditions, this mode cannot function. • Low ambient temperature • Low battery voltage • Engine running • Ignition switch OFF • Low fuel temperature • Too much pressure is applied to EVAP system
MODE 9	(CALIBRATION ID)	This mode enables the off-board test device to request specific vehicle information such as Vehicle Identification Number (VIN) and Calibration IDs.

GST INSPECTION PROCEDURE

- 1. Turn ignition switch OFF.
- 2. Connect "GST" to data link connector, which is located under LH dash panel near the fuse box cover.
- 3. Turn ignition switch ON.

- 4. Enter the program according to instruction on the screen or in the operation manual.
 - (*: Regarding GST screens in this section, sample screens are shown.)

TROUBLE DIAGNOSIS

[QR25DE]

Perform each diagnostic mode according to each service procedure.

For further information, see the GST Operation Manual of the tool maker.

OBD II FUNCTIONS

F0: DATA LIST

F1: FREEZE DATA

F2: DTCs

F3: SNAPSHOT

F4: CLEAR DIAG INFO F5: O2 TEST RESULTS

F6: READINESS TESTS

F7: ON BOARD TESTS

F8: EXPAND DIAG PROT F9: UNIT CONVERSION

Sample screen*

SEF416S

Α

EC

Е

F

Н

M

CONSULT-II Reference Value in Data Monitor Mode

UBS0027Q

Remarks:

Specification data are reference values.

Specification data are output/input values which are detected or supplied by the ECM at the connector.
 * Specification data may not be directly related to their components signals/values/operations.

i.e. Adjust ignition timing with a timing light before monitoring IGN TIMING, because the monitor may show the specification data in spite of the ignition timing not being adjusted to the specification data. This IGN TIMING monitors the data calculated by the ECM

according to the signals input from the camshaft position sensor and other ignition timing related sensors.

MONITOR ITEM	СО	NDITION	SPECIFICATION
ENG SPEED			Almost the same speed as the tachometer indication.
	Engine: After warming up Air conditioner switch: OFF	Idle	Approx. 0.8 - 1.3V
MAS A/F SE-B1	Air conditioner switch: OFFShift lever: NNo-load	2,500 rpm	Approx. 1.6 - 2.0V
	Engine: After warming up	Idle	2.5 - 3.5 msec
B/FUEL SCHDL	Shift lever: NAir conditioner switch: OFFNo-load	2,000 rpm	2.5 - 3.5 msec
A/F ALPHA-B1	Engine: After warming up	Maintaining engine speed at 2,000 rpm	54% - 155%
COOLAN TEMP/S	Engine: After warming up		More than 70°C (158°F)
HO2S1 (B1)*2	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ Approx. 0.6 - 1.0V
A/F SEN1 (B1)* 3	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V
HO2S2 (B1)	 Warm-up condition After keeping engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	Revving engine from idle to 3,000 rpm quickly.	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)* ²	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times dur- ing 10 seconds.
HO2S2 MNTR (B1)	 Engine: After warming up After keeping engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	Revving engine from idle to 3,000 rpm quickly.	LEAN ←→ RICH
VEH SPEED SE	Turn drive wheels and compare the CONSULT-II value with speedometer indication.		Almost the same speed as the speedometer indication.
BATTERY VOLT	Ignition switch: ON (Engine stop)	ped)	11 - 14V

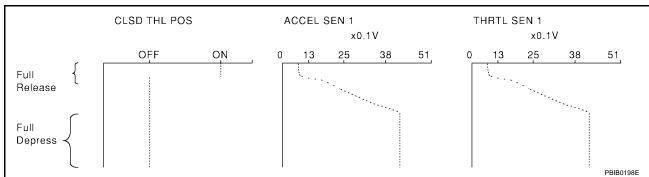
MONITOR ITEM	CO	NDITION	SPECIFICATION
	Ignition switch: ON	Accelerator pedal: Fully released	0.41 - 0.96V
ACCEL SEN1 ACCEL SEN2*1	(Engine stopped) ● Shift lever: D (A/T) 1ST (M/T)	Accelerator pedal: Fully depressed	More than 4.2V
THRTL SEN1	 Ignition switch: ON (Engine stopped) 	Accelerator pedal: Fully released	More than 0.36V
THRTL SEN2*1	Shift lever:D (A/T)1ST (M/T)	Accelerator pedal: Fully depressed	Less than 4.75V
EVAP SYS PRES	Ignition switch: ON		1.8 - 4.8V
START SIGNAL	ullet Ignition switch: ON $ o$ START $ o$	ON	$OFF \to ON \to OFF$
CLCD THE DOC	Ignition switch: ON	Accelerator pedal: Fully released	ON
CLSD THL POS	(Engine stopped)	Accelerator pedal: Slightly depressed	OFF
	F : A((: : : : : : : : : : : : : : : : :	Air conditioner switch: OFF	OFF
AIR COND SIG	 Engine: After warming up, idle the engine 	Air conditioner switch: ON (Compressor operates.)	ON
P/N POSI SW	• Ignition switch: ON	Shift lever: P or N (A/T model) Neutral (M/T model)	ON
		Shift lever: Except above	OFF
PW/ST SIGNAL	Engine: After warming up, idle the engine	Steering wheel is in neutral position. (Forward direction)	OFF
		Steering wheel is turned.	ON
LOAD SIGNAL	Ignition switch: ON	Rear window defogger switch is ON and/or lighting switch is in 2nd.	ON
		Rear window defogger switch is OFF and lighting switch is OFF.	OFF
IGNITION SW	• Ignition switch: $ON \rightarrow OFF \rightarrow ON$		$ON \to OFF \to ON$
HEATER FAN SW	Engine: After warming up, idle	Heater fan is operating.	ON
TIE/TIE/T/TIVOV	the engine	Heater fan is not operating	OFF
BRAKE SW	 Ignition switch: ON 	Brake pedal: Fully released	OFF
	• ignition owners or	Brake pedal: Slightly depressed	ON
	Engine: After warming up	Idle	2.0 - 3.0 msec
INJ PULSE-B1	Shift lever: NAir conditioner switch: OFFNo-load	2,000 rpm	1.9 - 2.9 msec
	Engine: After warming up	Idle	10° - 20° BTDC
IGN TIMING	Shift lever: NAir conditioner switch: OFFNo-load	2,000 rpm	25° - 45° BTDC
	Engine: After warming up	Idle	10% - 35%
CAL/LD VALUE	Shift lever: NAir conditioner switch: OFFNo-load	2,500 rpm	10% - 35%
MACC AIRE OW	Engine: After warming upShift lever: N	Idle	1.0 - 4.0 g·m/s
MASS AIRFLOW	Air conditioner switch: OFFNo-load	2,500 rpm	4.0 - 10.0 g·m/s

	[QRZ5DE]			
MONITOR ITEM	CO	NDITION	SPECIFICATION	
	Engine: After warming up Shift lever: N	Idle	0%	- A
PURG VOL C/V	Air conditioner switch: OFFNo-load	2,000 rpm	20 - 30%	EC
	Engine: After warming up	Idle	−5° - 5°CA	
INT/V TIM (B1)	Shift lever: NAir conditioner switch: OFFNo-load	2,000 rpm	Approx. 0° - 20°CA	С
	Engine: After warming up	Idle	0% - 2%	D
INT/V SOL (B1)	Shift lever: NAir conditioner switch: OFFNo-load	2,000 rpm	Approx. 25% - 60%	E
	Engine: After warming up, idle	Air conditioner switch: OFF	OFF	_
AIR COND RLY	the engine	Air conditioner switch: ON (Compressor operates)	ON	F
VIAS S/V	Engine: After warming up	Idle	OFF	
V 1/1.0 0/ V	Engine. Aiter warming up	More than 5,000 rpm	ON	- G
FUEL PUMP RLY	For 1 seconds after turning ignitiEngine running or cranking	on switch ON	ON	
	Except above conditions		OFF	Н
VENT CONT/V	Ignition switch: ON		OFF	_
THRTL RELAY	Ignition switch: ON		ON	_
		Engine coolant temperature is 94°C (201°F) or less	OFF	_
COOLING FAN	Engine: After warming up, idle the engineAir conditioner switch: OFF	Engine coolant temperature is between 95°C (203°F) and 104°C (219°F)	LOW	J
		Engine coolant temperature is 105°C (221°F) or more	HIGH	K
	Engine: After warming up		ON	
HO2S1 HTR (B1)*2	- '	Engine speed: Below 3,600 rpm		- ,
	Engine speed: Above 3,600 rpm		OFF	
		after the following conditions are met		
HO2S2 HTR (B1)	 Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 		ON	M
	Engine speed: Above 3,600 rpm		OFF	_
TRVL AFTER MIL	Ignition switch: ON Vehicle has traveled after MIL has turned ON.		0 - 65,535 km (0 - 40,723 mile)	_
A/F S1 HTR (B1)*3	Engine: After warming up, idle the engine		0 - 100%	_
O2SEN HTR DTY*2	 Engine coolant temperature when engine started: More than 80°C (176°F) Engine speed: Below 3,600 rpm 		Approx. 50%	_
	Ignition switch: ON (Engine stop)	ped)	Approx. 0V	_
AC PRESS SEN	Engine: IdleAir conditioner switch: OFF		1.0 - 4.0V	
VEH SPEED SE	Turn drive wheels and compare the CONSULT-II value with speedometer indication.		Almost the same speed as the speedometer indication.	=

MONITOR ITEM	CON	NDITION	SPECIFICATION
SET VHCL SPD	Engine: Running	ASCD: Operating	The preset vehicle speed is displayed.
MAIN SW	- Innitian quitable ON	CRUISE switch: Pressed	ON
WAIN SW	Ignition switch: ON	CRUISE switch: Released	OFF
CANCEL SW	- Ignition quitable ON	CANCEL switch: Pressed	ON
CANCEL SW	Ignition switch: ON	CANCEL switch: Released	OFF
RESUME/ACC SW	- Ignition quitable ON	ACCEL/RES switch: Pressed	ON
RESUME/ACC SW	Ignition switch: ON	ACCEL/RES switch: Released	OFF
CET CW	Ignition switch: ON	COAST/SET switch: Pressed	ON
SET SW		COAST/SET switch: Released	OFF
BRAKE SW1	a Ignition quitable ON	Brake pedal: Fully released	ON
(ASCD brake switch)	Ignition switch: ON	Brake pedal: Slightly depressed	OFF
BRAKE SW2	a Ignition quitable ON	Brake pedal: Fully released	OFF
(STOP lamp switch)	Ignition switch: ON	Brake pedal: Slightly depressed	ON
CRUISE LAMP	Ignition switch: ON	CRUISE switch is pressed at first time → second time	$ON \to OFF$
	CRUISE switch: ON	SET switch pressed	ON
SET LAMP	 When vehicle is between 40 km/h (25 MPH) and 144 km/h (89 MPH) 	ASCD control is canceled.	OFF

^{*1:} Accelerator pedal position sensor 2 signal and throttle position sensor 2 signal are converted by ECM internally. Thus, they differ from ECM terminals voltage signal.

Major Sensor Reference Graph in Data Monitor Mode


UBS0027R

The following are the major sensor reference graphs in "DATA MONITOR" mode.

CLSD THL POS, ACCEL SEN 1, THRTL SEN 1

Below is the data for "CLSD THL POS", "ACCEL SEN 1" and "THRTL SEN 1" when depressing the accelerator pedal with the ignition switch ON and with selector lever in D position (A/T models) or with shift lever in 1st position (M/T models).

The signal of "ACCEL SEN 1" and "THRTL SEN 1" should rise gradually without any intermittent drop or rise after "CLSD THL POS" is changed from "ON" to "OFF".

ENG SPEED, MAS A/F SE-B1, THRTL SEN 1, HO2S2 (B1), HO2S1 (B1), INJ PULSE-B1(A/T MODELS ULEV AND M/T MODELS)

Below is the data for "ENG SPEED", "MAS A/F SE-B1", "THRTL SEN 1", "HO2S2 (B1)", "HO2S1 (B1)" and "INJ PULSE-B1" when revving engine quickly up to 4,800 rpm under no load after warming up engine sufficiently.

^{*2:} A/T models ULEV and M/T models.

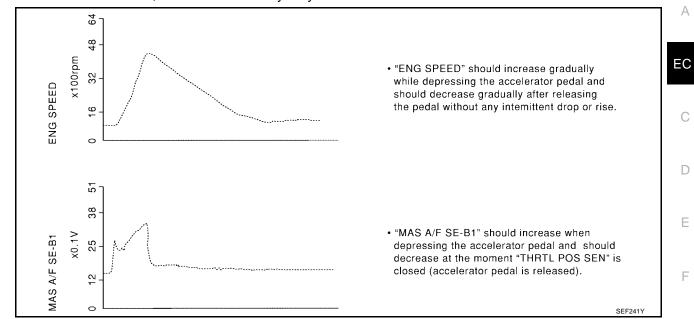
^{*3:} A/T models except ULEV.

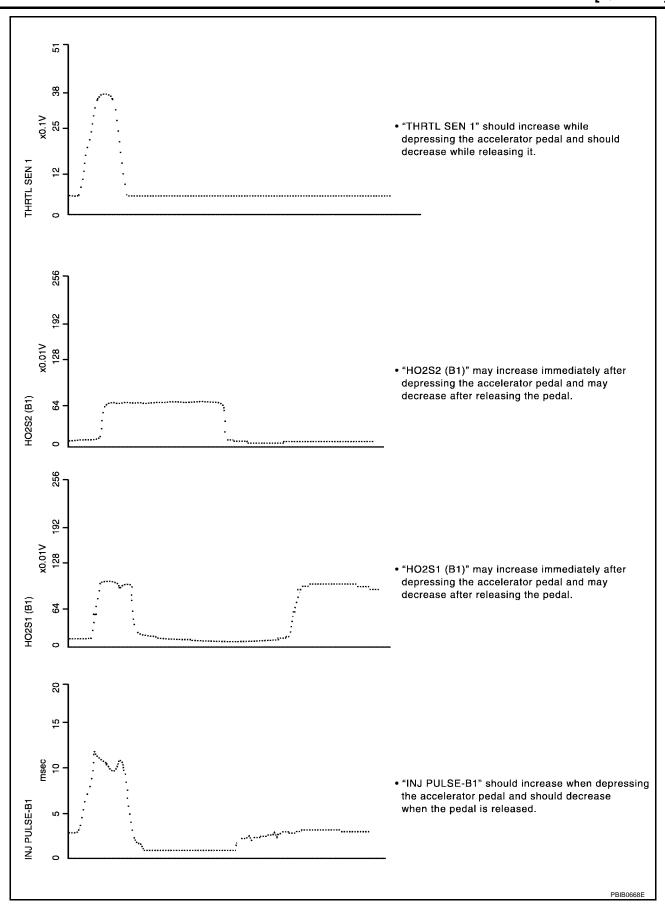
TROUBLE DIAGNOSIS

[QR25DE]

Α

C


D


Е

Н

M

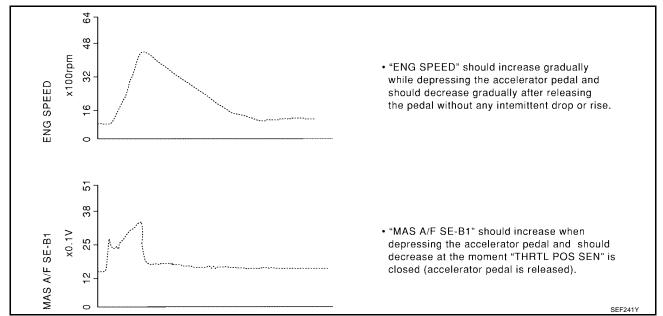
Each value is for reference, the exact value may vary.

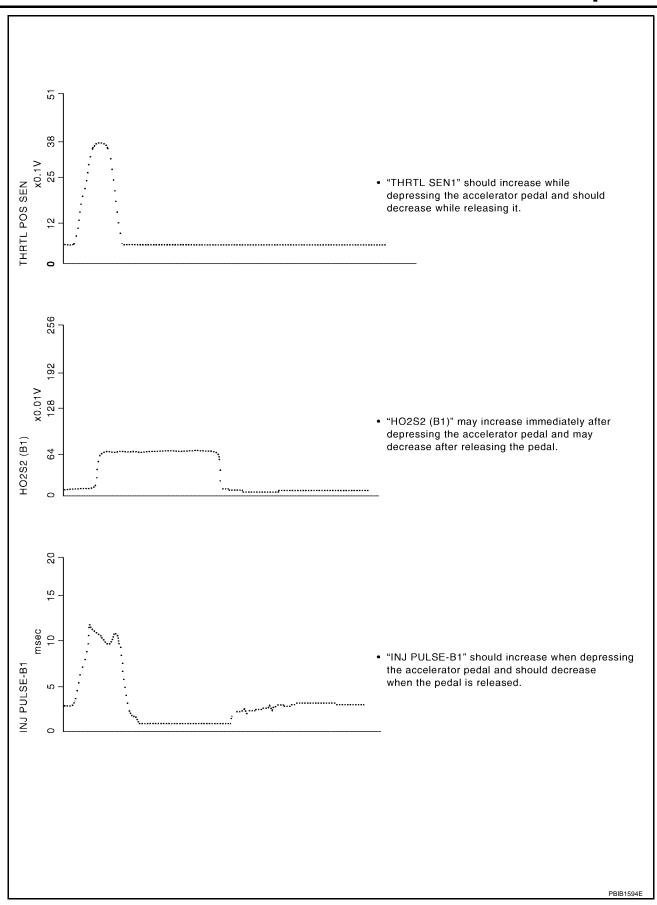
Α

EC

D

Е


Н


M

ENG SPEED, MAS A/F SE-B1, THRTL SEN 1, HO2S2 (B1), INJ PULSE-B1(A/T MODELS EXCEPT ULEV)

Below is the data for "ENG SPEED", "MAS A/F SE-B1", "THRTL SEN 1", "HO2S2 (B1)", "HO2S1 (B1)" and "INJ PULSE-B1" when revving engine quickly up to 4,800 rpm under no load after warming up engine sufficiently.

Each value is for reference, the exact value may vary.

TROUBLE DIAGNOSIS - SPECIFICATION VALUE

[QR25DE]

TROUBLE DIAGNOSIS - SPECIFICATION VALUE

PFP:00031

Description

The specification (SP) value indicates the tolerance of the value that is displayed in "DATA MONITOR (SPEC)" mode of CONSULT-II during normal operation of the Engine Control System. When the value in "DATA MONITOR (SPEC)" mode is within the SP value, the Engine Control System is confirmed OK. When the value in "DATA MONITOR (SPEC)" mode is NOT within the SP value, the Engine Control System may have one or more malfunctions.

ΞC

Α

The SP value is used to detect malfunctions that may affect the Engine Control System, but will not light the MIL.

С

D

Е

Н

M

The SP value will be displayed for the following three items:

- B/FUEL SCHDL (The fuel injection pulse width programmed into ECM prior to any learned on board correction)
- A/F ALPHA-B1 (The mean value of air-fuel ratio feedback correction factor per cycle)
- MAS A/F SE-B1 (The signal voltage of the mass air flow sensor)

Testing Condition

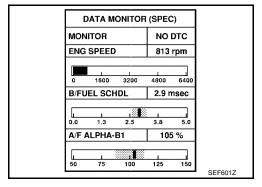
LIBS0027T

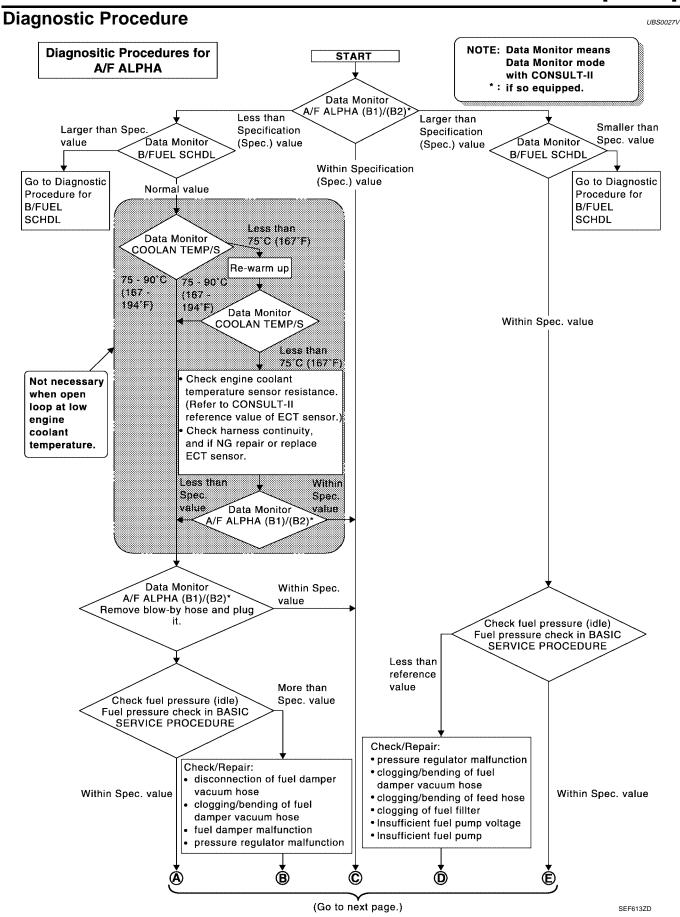
- Vehicle driven distance: More than 5,000 km (3,017 miles)
- Barometric pressure: 98.3 104.3 kPa (1.003 1.064 kg/cm², 14.25 15.12 psi)
- Atmospheric temperature: 20 30°C (68 86°F)
- Engine coolant temperature: 75 95°C (167 203°F)
- Transmission: Warmed-up*¹
- Electrical load: Not applied*²
- Engine speed: Idle

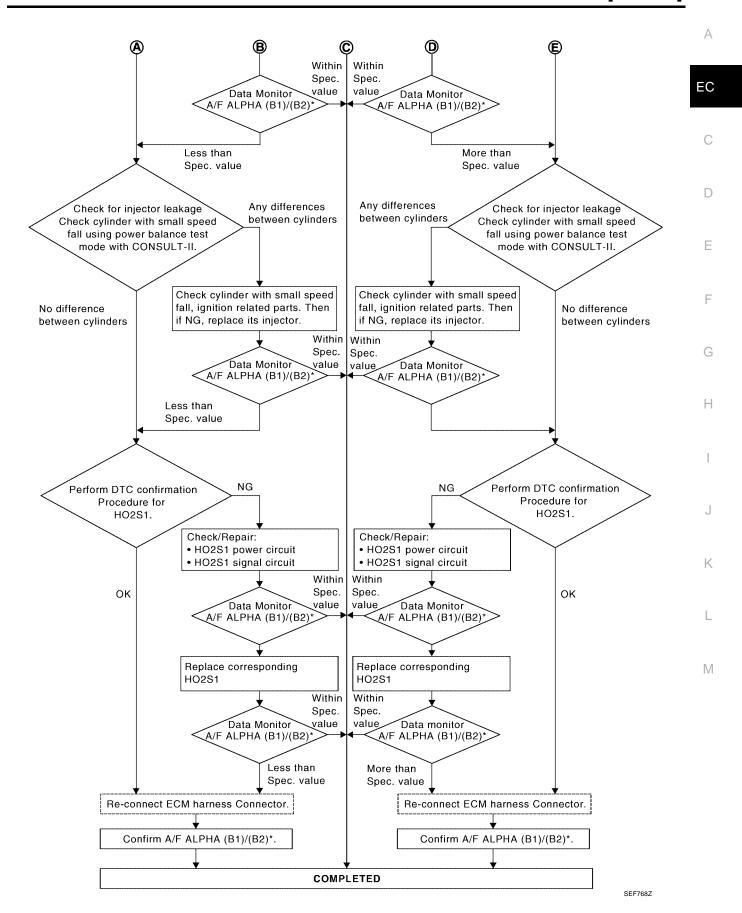
*1: For A/T models, after the engine is warmed up to normal operating temperature, drive vehicle until "FLUID TEMP SE" (A/T fluid temperature sensor signal) indicates more than 60°C (140°F).

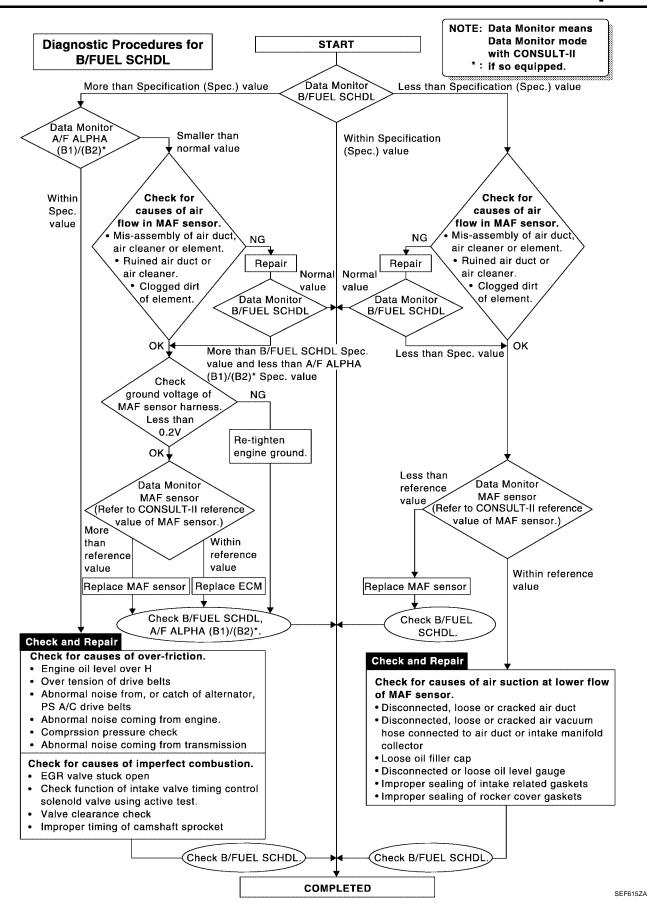
For M/T models, after the engine is warmed up to normal operating temperature, drive vehicle for 5 minutes.

*2: Rear window defogger switch, air conditioner switch, lighting switch are OFF. Steering wheel is straight ahead.


Inspection Procedure


UBS0027U


NOTE:


Perform "DATA MONITOR (SPEC)" mode in maximum scale display.

- Perform <u>EC-723</u>, "Basic Inspection".
- 2. Confirm that the testing conditions indicated above are met.
- 3. Select "B/FUEL SCHDL", "A/F ALPHA-B1" and "MAS A/F SE-B1" in "DATA MONITOR (SPEC)" mode with CONSULT-II.
- 4. Make sure that monitor items are within the SP value.
- 5. If NG, go to EC-778, "Diagnostic Procedure".

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT

[QR25DE]

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT

PFP:00006

Description

Intermittent incidents (I/I) may occur. In many cases, the malfunction resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on (1st trip) DTC visits. Realize also that the most frequent cause of I/I occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific malfunctioning area.

C

D

Е

Α

Common I/I Report Situations

STEP in Work Flow	Situation	
II	The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other than [0] or [1t].	
III	The symptom described by the customer does not recur.	
IV	(1st trip) DTC does not appear during the DTC Confirmation Procedure.	
VI	The Diagnostic Procedure for PXXXX does not indicate the malfunctioning area.	

LIBS0027X

Diagnostic Procedure

1. INSPECTION START

Erase (1st trip) DTCs. Refer to EC-704, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION" .

G

>> GO TO 2.

Н

2. CHECK GROUND TERMINALS

Check ground terminals for corroding or loose connection.

Refer to GI-26, "How to Perform Efficient Diagnosis for an Electrical Incident", Incident Simulation Tests.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

J

3. SEARCH FOR ELECTRICAL INCIDENT

Perform GI-26, "How to Perform Efficient Diagnosis for an Electrical Incident", Incident Simulation Tests.

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

_

M

4. CHECK CONNECTOR TERMINALS

Refer to GI-23, "How to Check Terminal", "HOW TO PROBE CONNECTORS", "How to Check Enlarged Contact Spring of Terminal".

OK or NG

OK >> INSPECTION END

NG >> Repair or replace connector.

POWER SUPPLY CIRCUIT FOR ECM PFP:24110 **Wiring Diagram** UBS0027Y EC-MAIN-01 IGNITION SWITCH ON or START BATTERY FUSE AND FUSE BLOCK (J/B) FUSIBLE LINK BOX : DETECTABLE LINE FOR DTC 10A REFER TO PG-POWER. E22), E24) 17 36 34 ■ : NON-DETECTABLE LINE FOR DTC M1) B/R 7 B/R W/L R/B M19 W/L R/B W/L 3 R/B 3 (F48) ECM RELAY W/L R/B (F35) 5 R/G G/W G/W → TO EC-IGNSYS W/L R/G R/G B/R W/G 120 109 119 111 IGNSW SSOFF VΒ (F59), (F60) GND GND GND 116 115 4 16 В (M54) (M28) 18 6 7 E108, F26 2S 3S 4U 5U 6U 4 (F35) (F48) 8 GY F59 (F60 116 115 114 В В 118 117 爾 3 酮 121 120 119

POWER SUPPLY CIRCUIT FOR ECM

[QR25DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

			· · · · · · · · · · · · · · · · · · ·	
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
1	В	ECM ground	[Engine is running] ● Idle speed	Engine ground
109	B/R	Ignition switch	[Ignition switch: OFF] [Ignition switch: ON]	0V BATTERY VOLTAGE (11 - 14V)
111	W/G	ECM relay	[Engine is running] [Ignition switch: OFF] • For 10 seconds after turning ignition switch OFF	0 - 1.0V
111 W/G ((Self shut-off)	[Ignition switch: OFF] ● 10 seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	
115 116	B B	ECM ground	[Engine is running] • Idle speed	Engine ground
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
121	W/L	Power supply for ECM (Buck-up)	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

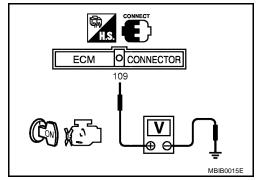
1. INSPECTION START

Start engine.

Is engine running?

Yes or No

Yes >> GO TO 9. No >> GO TO 2.


2. CHECK ECM POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF and then ON.
- Check voltage between ECM terminal 109 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

Α

EC

D

Е

F

G

Н

_

UBS0027Z

K

M

3. detect malfunctioning part

Check the following.

- Harness connectors M19, E108
- Harness connectors E10, F48
- Fuse block (J/B) connector M1
- 10A fuse
- Harness for open or short between ECM and fuse
 - >> Repair harness or connectors.

4. CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT-I

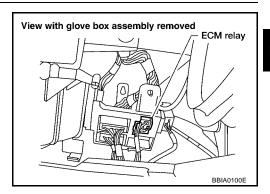
- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminals 1, 115, 116 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

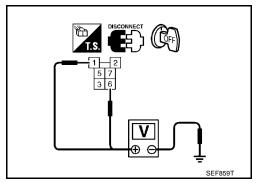

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M58, F26
- Harness for open or short between ECM and ground
 - >> Repair open circuit or short to power in harness or connectors.

6. CHECK ECM POWER SUPPLY CIRCUIT-II

1. Disconnect ECM relay.



2. Check voltage between ECM relay terminals 1, 6 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10, F48
- 10A fuse
- 15A fuse
- Fuse and fusible link box connectors E22, E24
- Harness for open or short between ECM relay and battery

>> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between ECM terminal 111 and ECM relay terminal 2. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> Go to EC-1237, "IGNITION SIGNAL".

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

С

D

Е

F

G

Н

K

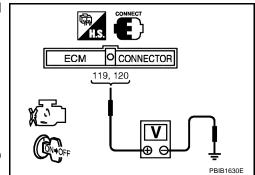
M

9. CHECK ECM POWER SUPPLY CIRCUIT-III

- 1. Stop engine.
- 2. Turn ignition switch ON and then OFF.
- 3. Check voltage between ECM terminals 119, 120 and ground with CONSULT-II or tester.

Voltage: After turning ignition switch OFF, battery

voltage will exist for a few seconds, then


drop approximately 0V.

OK or NG

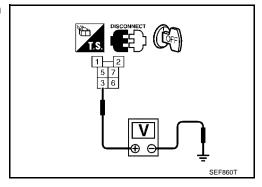
OK >> GO TO 14.


NG (Battery voltage does not exist.)>>GO TO 10.

NG (Battery voltage exists for more than a few seconds.)>>GO TO

10. CHECK ECM POWER SUPPLY CIRCUIT-IV

1. Disconnect ECM relay.



Check voltage between ECM relay terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 12. NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10, F48
- Fuse and fusible link box connectors E22, E24
- Harness for open or short between ECM relay and harness connector F48
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

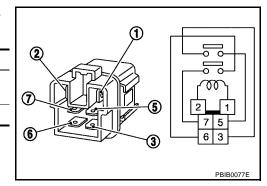
POWER SUPPLY CIRCUIT FOR ECM

[QR25DE]

12. CHECK HARNESS CONTINUITY BETWEEN ECM RELAY AND ECM FOR OPEN AND SHORT Α Disconnect ECM harness connector. 2. Check harness continuity between ECM terminals 119, 120 and ECM relay terminal 5. EC Refer to Wiring Diagram. Continuity should exist. 3. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 13. >> Repair open circuit or short to ground or short to power in harness or connectors. NG D 13. CHECK ECM RELAY Е Refer to EC-788, "Component Inspection". OK or NG OK >> GO TO 14. >> Replace ECM relay. NG 14. CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT-II Turn ignition switch OFF. 1. 2. Disconnect ECM harness connector. Check harness continuity between ECM terminals 1, 115, 116 and engine ground. Н Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to power. OK or NG >> GO TO 16. OK NG >> GO TO 15. 15. DETECT MALFUNCTIONING PART Check the following. Harness connectors M58, F26 Harness for open or short between ECM and ground >> Repair open circuit or short to power in harness or connectors. M 16. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection ECM RELAY

UBS00280

- 1. Apply 12V direct current between ECM relay terminals 1 and 2.
- 2. Check continuity between relay terminals 3 and 5, 6 and 7.

Condition	Continuity
12V direct current supply between terminals1 and 2	Yes
OFF	No

3. If NG, replace ECM relay.

DTC U1000, U1001 CAN COMMUNICATION LINE

[QR25DE]

DTC U1000, U1001 CAN COMMUNICATION LINE

PFP:23710

Description

Α

EC

D

Е

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

On Board Diagnosis Logic

UBS00AOJ

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
U1000 ^{*1} 1000 ^{*1}	- CAN communication line	ECM can not communicate to other control units.	Harness or connectors (CAN communication line is open or
U1001 ^{*2} 1001 ^{*2}	CAN communication line	ECM can not communicate for more than the specified time.	shorted).

^{*1:} This self-diagnosis has the one trip detection logic.

DTC Confirmation Procedure

UBS00AOK

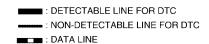
- 1. Turn ignition switch ON and wait at least 3 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. If 1st trip DTC is detected, go to EC-791, "Diagnostic Procedure".

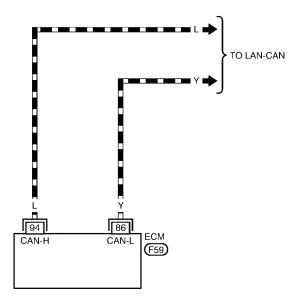
Н

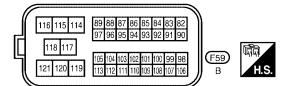
J

<

_


M


^{*2:} The MIL will not light up for this diagnosis.


Wiring Diagram

UBS00AOL

EC-CAN-01

BBWA0274E

DTC U1000, U1001 CAN COMMUNICATION LINE

[QR25DE]

Diagnostic Procedure

Go to LAN-4, "CAN Communication Unit" .

UBS00AOM

EC

Α

С

D

Е

F

G

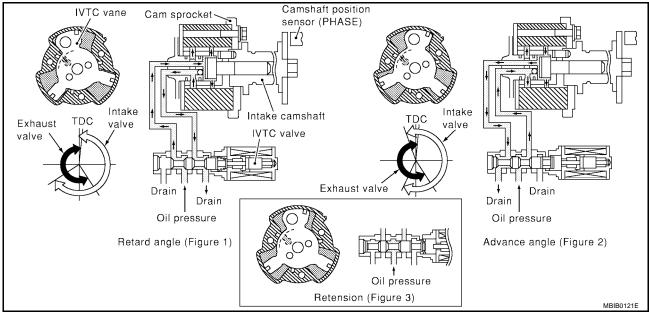
Н

K

L

M

DTC P0011 IVT CONTROL


PFP:23796

UBS00AON

Description SYSTEM DESCRIPTION

Sensor	Input Signal to ECM	ECM Function	Actuator	
Crankshaft position sensor (POS)	Engine speed and piston position			
Camshaft position sensor (PHASE)	Lingine speed and piston position	Intake valve	Intake valve timing control	
Engine coolant temperature sensor	Engine coolant temperature	timing control	solenoid valve	
Vehicle speed signal [*]	Vehicle speed			

^{*:} This signal is sent to the ECM through CAN communication line.

This mechanism hydraulically controls cam phases continuously with the fixed operating angle of the intake valve.

The ECM receives signals such as crankshaft position, camshaft position, engine speed, and engine coolant temperature. Then, the ECM sends ON/OFF pulse duty signals to the intake valve timing control solenoid valve depending on driving status. This makes it possible to control the shut/open timing of the intake valve to increase engine torque in low/mid speed range and output in high-speed range.

CONSULT-II Reference Value in Data Monitor Mode

UBS00AOO

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	–5° - 5°CA
INT/V TIM (B1)	Shift lever: NAir conditioner switch: OFFNo-load	2,000 rpm	Approx. 0° - 20°CA
	Engine: After warming up	Idle	0% - 2%
INT/V SOL (B1)	Shift lever: NAir conditioner switch: OFFNo-load	2,000 rpm	Approx. 25% - 60%

DTC P0011 IVT CONTROL

[QR25DE]

On Board Diagnosis Logic

SONAOP

DTC No.	Trouble diagnosis name	Detecting condition	Possible cause
P0011 0011	Intake valve timing control performance	There is a gap between angle of target and phase-control angle degree.	 Crankshaft position sensor (POS) Camshaft position sensor (PHASE) Accumulation of debris to the signal pick-up portion of the camshaft

EC

D

F

M

Α

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode.

Detected items	Engine operating condition in fail-safe mode	
Intake valve timing control	The signal is not energized to the solenoid valve and the valve control does not function	

DOAOQ E

DTC Confirmation Procedure

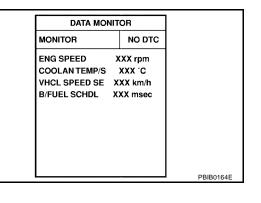
CAUTION:

Always drive at a safe speed.

NOTE:

- If DTC P0011 is displayed with DTC P1111, first perform trouble diagnosis for DTC P1111. See <u>EC-1038</u>, "DTC P1111 IVT CONTROL SOLENOID VALVE"
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:


Before performing the following procedure, confirm that battery voltage is between 10V and 16V at idle.

(P) WITH CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to the normal operating temperature.
- Maintain the following conditions for at least 6 consecutive seconds.

Hold the accelerator pedal as steady as possible.

VHCL SPEED SE	100 - 120 km/h (63 - 75 MPH)	
ENG SPEED	500 - 2,000 rpm	
Selector lever	A/T models: D position M/T models: 5th position	

- 4. Stop vehicle with engine running and let engine idle for 10 seconds.
- If 1st trip DTC is detected, go to <u>EC-794, "Diagnostic Procedure"</u>.
 If 1st trip DTC is not detected, go to next step.
- 6. Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	1,800 - 3,175 rpm (A constant rotation is maintained.)	
Selector lever	1st or 2nd position	
Driving location uphill	Driving vehicle uphill (Increased engine load will help maintain the driving conditions required for this test.)	

7. If 1st trip DTC is detected, go to EC-794, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

1. CHECK CRANKSHAFT POSITION SENSOR (POS)

Refer to EC-934, "Component Inspection".

OK or NG

OK >> GO TO 2.

NG >> Replace crankshaft position sensor (POS).

2. CHECK CAMSHAFT POSITION SENSOR (PHASE)

Refer to EC-940, "Component Inspection".

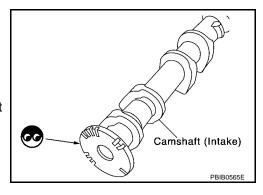
OK or NG

OK >> GO TO 3.

NG >> Replace camshaft position sensor (PHASE).

3. CHECK CAMSHAFT (INTAKE)

Check the following.


- Accumulation of debris to the signal plate of camshaft rear end
- Chipping signal plate of camshaft rear end

OK or NG

OK >> GO TO 4.

NG >> Remove

>> Remove debris and clean the signal plate of camshaft rear end or replace camshaft.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

For wiring diagram refer to <u>EC-931, "Wiring Diagram"</u> for CKP sensor (POS) and <u>EC-936, "Wiring Diagram"</u> for CMP sensor (PHASE).

>> INSPECTION END

[QR25DE]

DTC P0031, P0032 HO2S1 HEATER

PFP:22690

Description SYSTEM DESCRIPTION

UBS00AOS

Sensor	Input Signal to ECM	ECM function	Actuator	
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed	Heated oxygen sensor 1	Heated oxygen sensor 1 heater	
Engine coolant temperature sensor	Engine coolant tempera- ture	heater control	Treated oxygen sensor Triedler	

Α

The ECM performs ON/OFF duty control of the heated oxygen sensor 1 heater corresponding to the engine speed and engine coolant temperature. The duty percent varies with engine coolant temperature when engine is started.

.

Е

Н

OPERATION

Engine speed rpm	Heated oxygen sensor 1 heater
Above 3,600	OFF
Below 3,600	ON

CONSULT-II Reference Value in Data Monitor Mode

UBS00AOT

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION	
	Engine: After warming up	ON	
HO2S1 HTR (B1)	Engine speed: Below 3,600 rpm		
	Engine speed: Above 3,600 rpm	OFF	
O2SEN HTR DTY	 Engine coolant temperature when engine started: More than 80°C (176°F) Engine speed: Below 3,600 rpm 	Approx. 50%	

On Board Diagnosis Logic

UBS00AOU

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	12
P0031 0031	Heated oxygen sensor 1 heater control circuit low	The current amperage in the heated oxygen sensor 1 heater circuit is out of the normal range. (An excessively low voltage signal is sent to ECM through the heated oxygen sensor 1 heater.)	Harness or connectors (The heated oxygen sensor 1 heater circuit is open or shorted.) Heater oxygen sensor 1 heater	L
P0032 0032	Heated oxygen sensor 1 heater control circuit high	The current amperage in the heated oxygen sensor 1 heater circuit is out of the normal range. (An excessively high voltage signal is sent to ECM through the heated oxygen sensor 1 heater.)	Harness or connectors (The heated oxygen sensor 1 heater circuit is shorted.) Heater oxygen sensor 1 heater	M

DTC Confirmation Procedure

UBS00AOV

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.

DTC P0031, P0032 HO2S1 HEATER

[QR25DE]

- 3. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 4. Start engine and run it for at least 6 seconds at idle speed.
- If 1st trip DTC is detected, go to <u>EC-798, "Diagnostic Procedure"</u>

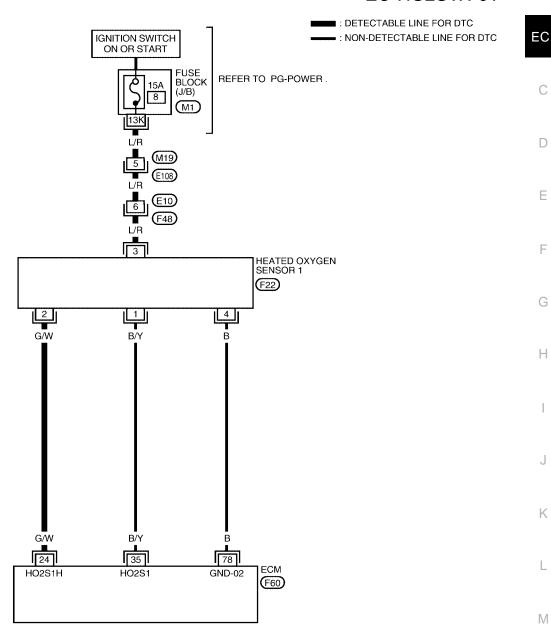
DATA MONITOR

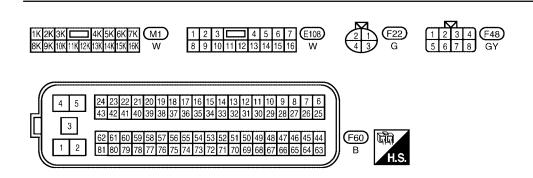
MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

WITH GST


- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and run it for at least 6 seconds at idle speed.
- 4. Turn ignition switch OFF and wait at least 10 seconds.
- 5. Start engine and run it for at least 6 seconds at idle speed.
- 6. Select MODE 3 with GST.
- 7. If DTC is detected, go to EC-798, "Diagnostic Procedure".
- When using GST, DTC Confirmation Procedure should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.


Wiring Diagram

UBS00AOW

Α

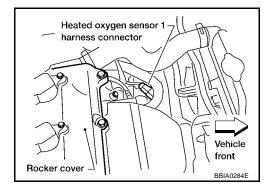
EC-HO2S1H-01

BBWA0721E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

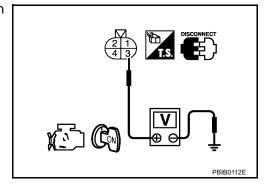

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	G/W	Heated oxygen sensor 1 heater	[Engine is running]Warm-up condition.Engine speed is below 3,600 rpm.	Approximately 7.0V★
			[Engine is running]	BATTERY VOLTAGE
			 Engine speed is above 3,600 rpm. 	(11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

UBSONACX

- 1. CHECK HO2S1 POWER SUPPLY CIRCUIT
- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 1 harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between HO2S1 terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

DTC P0031, P0032 HO2S1 HEATER

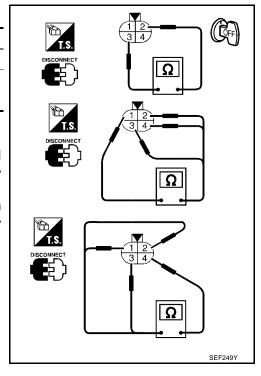
[QR25DE]

 \mathbb{N}

2. DETECT MALFUNCTIONING PART	A
Check the following.	
Harness connectors M19, E108	EO
Harness connectors E10, F48	
Fuse block (J/B) connector M1	
15A fuseHarness for open or short between heated oxygen sensor 1 and fuse	(
>> Repair harness or connectors.	
3. CHECK HO2S1 OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	
1. Turn ignition switch OFF.	E
2. Disconnect ECM harness connector.	
 Check harness continuity between ECM terminal 24 and HO2S1 terminal 2. Refer to Wiring Diagram. 	I
Continuity should exist.	
4. Also check harness for short to ground and short to power.	
OK or NG	
OK >> GO TO 4. NG >> Repair open circuit or short to ground or short to power in harness or connectors.	ŀ
4. CHECK HEATED OXYGEN SENSOR 1 HEATER	
Refer to EC-800, "Component Inspection" .	
OK or NG	
OK >> GO TO 5. NG >> Replace heated oxygen sensor 1.	
5. CHECK INTERMITTENT INCIDENT	
	k
Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	
>> INSPECTION END	ı

Component Inspection HEATED OXYGEN SENSOR 1 HEATER

UBS00AOY


Check resistance between HO2S1 terminals as follows.

Terminal No.	Resistance	
2 and 3	3.3 - 4.0 Ω at 25°C (77°F)	
1 and 2, 3, 4	∞ Ω	
4 and 1, 2, 3	(Continuity should not exist)	

2. If NG, replace heated oxygen sensor 1.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 1

Refer to EM-108, "Removal and Installation".

UBS00AOZ

[QR25DE]

DTC P0037, P0038 HO2S2 HEATER

PFP:226A0

Description SYSTEM DESCRIPTION

UBS00AP0

Sensor	Input Signal to ECM	ECM Function	Actuator
Camshaft position sensor (PHASE)	Engine speed		
Crankshaft position sensor (POS)	Engine speed	Heated oxygen sensor 2 heater control Heated oxygen sen	
Engine coolant temperature sensor	Engine coolant temperature		Heated oxygen sensor 2 heater
Mass air flow sensor	Amount of intake air		

The ECM performs ON/OFF control of the heated oxygen sensor 2 heater corresponding to the engine speed, amount of intake air and engine coolant temperature.

OPERATION

Е

Engine speed rpm	Heated oxygen sensor 2 heater
Above 3,600	OFF
Below 3,600 rpm after the following conditions are met.	
Engine: After warming up	ON
 Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	<u></u>

CONSULT-II Reference Value in Data Monitor Mode

UBS00AP

Specification data are reference values.

Н

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S2 HTR (B1)	Engine speed: Below 3,600 rpm after the following conditions are met	
	Engine: After warming up	ON
	 Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	
	Engine speed: Above 3,600 rpm	OFF

On Board Diagnosis Logic

UBS00AP2

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0037 0037	Heated oxygen sensor 2 heater control circuit low	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range. (An excessively low voltage signal is sent to ECM through the heated oxygen sensor 2 heater.)	 Harness or connectors (The heated oxygen sensor 2 heater circuit is open or shorted.) Heater oxygen sensor 2 heater 	L
P0038 0038	Heated oxygen sensor 2 heater control circuit high	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range. (An excessively high voltage signal is sent to ECM through the heated oxygen sensor 2 heater.)	 Harness or connectors (The heated oxygen sensor 2 heater circuit is shorted.) Heater oxygen sensor 2 heater 	IVI

DTC Confirmation Procedure

UBS00AP3

NOTE:

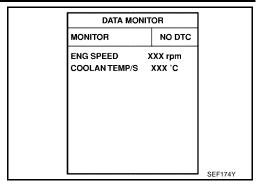
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.


DTC P0037, P0038 HO2S2 HEATER

[QR25DE]

- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.

6. If 1st trip DTC is detected, go to EC-804, "Diagnostic Procedure"

.

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 1 minute.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 7. Let engine idle for 1 minute.
- Select MODE 3 with GST.
- If DTC is detected, go to <u>EC-804</u>, "<u>Diagnostic Procedure</u>".
- When using GST, DTC Confirmation Procedure should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

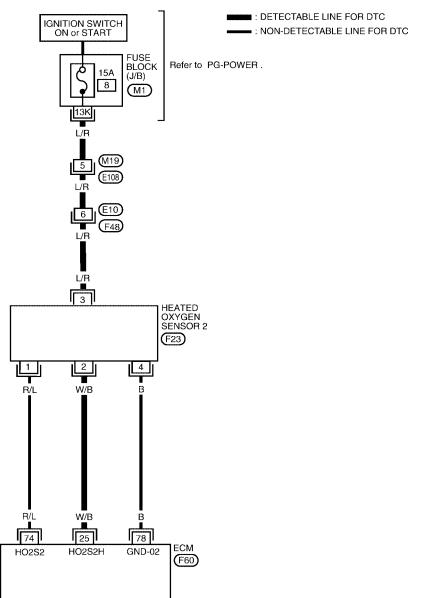
Wiring Diagram

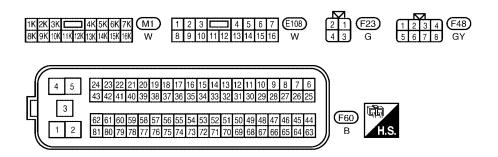
Α

EC

C

D


Е


Н

K

M

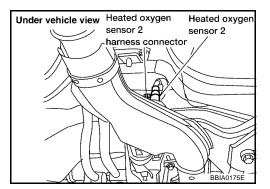
EC-HO2S2H-01

BBWA0722E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

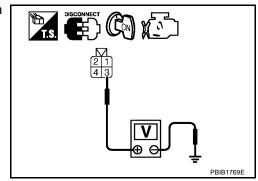

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
25	W/B	Heated oxygen sensor 2 heater	 [Engine is running] Warm-up condition Engine speed: Below 3,600 rpm after the following conditions are met. Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under on load 	0 - 1.0V
			 [Ignition switch: ON] Engine stopped [Engine is running] Engine speed is above 3,600 rpm. 	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS00AP5

1. CHECK HO2S2 POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 2 harness connector.
- 3. Turn ignition switch ON.



 Check voltage between HO2S2 terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

DTC P0037, P0038 HO2S2 HEATER

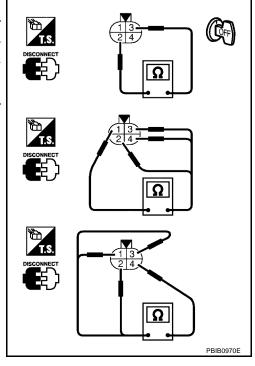
[QR25DE]

 \mathbb{N}

Check the following.	
Harness connectors M19, E108	
Harness connectors E10, F48	EC
Fuse block (J/B) connector M1	
• 15A fuse	C
Harness for open or short between heated oxygen sensor 2 and fuse	
>> Repair open circuit or short to ground or short to power in harness or connectors.	
3. CHECK HO2S2 OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	
1. Turn ignition switch OFF.	E
2. Disconnect ECM harness connector.	
Check harness continuity between ECM terminal 25 and HO2S2 terminal 2.Refer to Wiring Diagram.	F
Continuity should exist.	
Also check harness for short to ground and short to power. OK or NG	G
OK >> GO TO 4.	
NG >> Repair open circuit or short to ground or short to power in harness or connectors.	-
4. CHECK HEATED OXYGEN SENSOR 2 HEATER	
Refer to EC-806, "Component Inspection".	
OK or NG	
OK >> GO TO 5. NG >> Replace heated oxygen sensor 2.	J
5. CHECK INTERMITTENT INCIDENT	
	K
Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	
>> INSPECTION END	
>> INSPECTION END	L

Component Inspection HEATED OXYGEN SENSOR 2 HEATER

UBS00AP6


1. Check resistance between HO2S2 terminals as follows.

Terminal No.	Resistance
2 and 3	5.0 - 7.0 Ω at 25°C (77°F)
1 and 2, 3, 4	∞ Ω
4 and 1, 2, 3	(Continuity should not exist)

2. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

Refer to EX-3, "EXHAUST SYSTEM" .

UBS00AP7

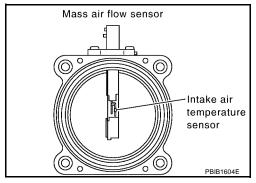
DTC P0101 MAF SENSOR

PFP:22680

Component Description

UBS00AP8

Α


EC

D

Е

Н

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the greater the heat loss. Therefore, the ECM must supply more electric current to maintain the temperature of the hot film as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

UBS00AP9

Specification data are reference values.

MONITOR ITEM	MONITOR ITEM CONDITION		SPECIFICATION	
	Engine: After warming up Air conditioner switch: OFF	Idle	Approx. 0.8 - 1.3V	
MAS A/F SE-B1	 Shift lever: N (A/T), Neutral (M/T) No-load 	2,500 rpm	Approx. 1.6 - 2.0V	
	Engine: After warming up	Idle	10% - 35%	
CAL/LD VALUE	 Shift lever: N (A/T), Neutral (M/T) Air conditioner switch: OFF No-load 	2,500 rpm	10% - 35%	
	Engine: After warming up	Idle	1.0 - 4.0 g·m/s	
MASS AIRFLOW	 Shift lever: N (A/T), Neutral (M/T) Air conditioner switch: OFF No-load 	2,500 rpm	4.0 - 10.0 g·m/s	

On Board Diagnosis Logic

UBS00APA

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name		DTC detecting condition	Possible cause	
Mass air flow sensor cir-		A)	A high voltage from the sensor is sent to ECM under light load driving condition.	Harness or connectors (The sensor circuit is open or shorted.)	L
			Mass air flow sensor	M	
P0101 0101	cuit range/performance problem	B)	A low voltage from the sensor is sent to ECM under heavy load driving condition.	 Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor 	

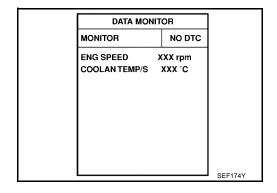
DTC Confirmation Procedure

UBS00APB

Perform PROCEDURE FOR MALFUNCTION A first. If the DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B.

NOTE:

If DTC Confirmation Procedure has been previously conducted always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


PROCEDURE FOR MALFUNCTION A

NOTE:

If engine will not start or stops soon, wait at least 10 seconds with engine stopped (Ignition switch ON) instead of running engine at idle speed.

(II) With CONSULT-II

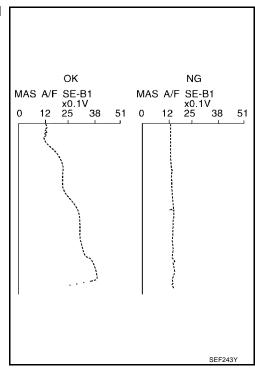
- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and warm it up to normal operating temperature.
- 4. Run engine for at least 10 seconds at idle speed.
- 5. If DTC is detected, go to EC-811, "Diagnostic Procedure".

With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION B

CAUTION:


Always driver vehicle at a safe speed.

(II) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Start engine and warm it up to normal operating temperature.

 If engine cannot be started, go to EC-811, "Diagnostic Procedure".
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- 4. Check the voltage of "MAS A/F SE-B1" with "DATA MONITOR".
- 5. Increases engine speed to about 4,000 rpm.
- 6. Monitor the linear voltage rise in response to engine speed increases.

If NG, go to $\underline{\text{EC-811}}$, "Diagnostic Procedure" . If OK, go to following step.

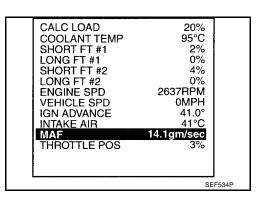
DTC P0101 MAF SENSOR

[QR25DE]

 Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	More than 2,000 rpm
THRTL SEN 1	More than 3.0V
THRTL SEN 2	More than 3.0V
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

DATA MO	ONITOR	
MONITOR	NO DTC	
ENG SPEED VHCL SPEED SE THRTL SEN 1 THRTL SEN 2	xxx v	
		PBIB0199E


8. If DTC is detected, go to EC-811, "Diagnostic Procedure".

Overall Function Check PROCEDURE FOR MALFUNCTION B

Use this procedure to check the overall function of the mass air flow sensor circuit. During this check, a DTC might not be confirmed.

With GST

- 1. Turn ignition switch ON.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Select MODE 1 with GST.
- 4. Check the mass air flow sensor signal with MODE 1.
- 5. Check for linear mass air flow sensor signal value rise in response to increases to about 4,000 rpm in engine speed.
- 6. If NG, go to EC-811, "Diagnostic Procedure".

Α

EC

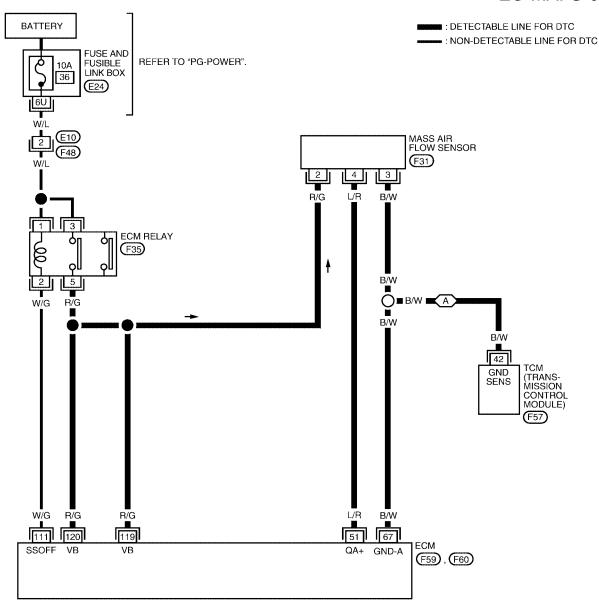
D

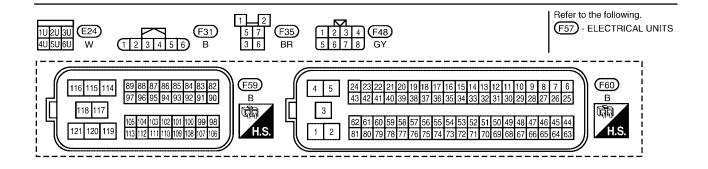
Е

F

UBS00APC

Н


Κ


L

M

Wiring Diagram UBSOOAPD

EC-MAFS-01

BBWA0723E

Α

K

M

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
51	L/R	Mass air flow sensor	[Engine is running] • Warm-up condition • Idle speed	0.8 - 1.3V	С
51	LK	iviass all flow serisor	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm.	1.5 - 2.1V	D
67	B/W	Mass air flow sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	E
111	W/G	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For 10 seconds after turning ignition switch OFF	0 - 1.0V	- F G
		[Ignition switch: OFF] ● 10 seconds passed after turning ignition switch OFF	10 seconds passed after turning ignition	BATTERY VOLTAGE (11 - 14V)	Н
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	_

Diagnostic Procedure

1. INSPECTION START

Which malfunction (A or B) is duplicated?

A or B

>> GO TO 3. Α

В >> GO TO 2.

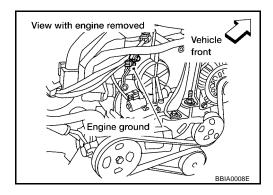
2. CHECK INTAKE AIR LEAK

Check the following for connections.

- Air duct
- Vacuum hoses
- Intake air passage between air duct and intake manifold

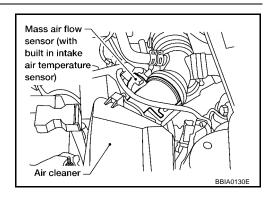
OK or NG

OK >> GO TO 3.


NG >> Reconnect the parts. UBS00APE

EC-811

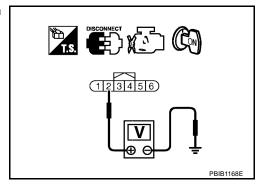
3. RETIGHTEN GROUND SCREWS


- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 4.

4. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect mass air flow (MAF) sensor harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between MAF sensor terminal 2 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

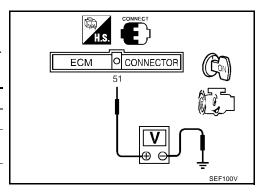
- Harness for open or short between ECM relay and mass air flow sensor
- Harness for open or short between mass air flow sensor and ECM
 - >> Repair harness or connectors.

DTC P0101 MAF SENSOR

[QR25DE]

6.	CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT	А
1. 2. 3. 4.	Turn ignition switch OFF. Disconnect ECM harness connector. Disconnect TCM harness connector (A/T models). Check harness continuity between MAF sensor terminal 3 and ECM terminal 67, TCM terminal 42 (A/T	EC
	models). Refer to Wiring Diagram.	С
	Continuity should exist.	
5. <u>OK</u> O	Also check harness for short to ground and short to power. <u>For NG</u> K >> GO TO 8.	D
N		Е
7.	DETECT MALFUNCTIONING PART	
Che	eck the following. Harness for open or short between mass air flow sensor and ECM	F
•	Harness for open or short between mass air flow sensor and TCM (A/T models)	G
	>> Repair open circuit or short to ground or short to power in harness or connectors.	
8.	CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	Н
1.	Check harness continuity between MAF sensor terminal 4 and ECM terminal 51. Refer to Wiring Diagram.	I
	Continuity should exist.	
	Also check harness for short to ground and short to power. Tor NG	J
O N		K
9.	CHECK MASS AIR FLOW SENSOR	
	fer to EC-814, "Component Inspection".	L
O N		M
10). CHECK INTERMITTENT INCIDENT	

Perform <u>EC-781</u>, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .


>> INSPECTION END

Component Inspection MASS AIR FLOW SENSOR

UBS00APF

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 51 (Mass air flow sensor signal) and ground.

Conditions	Voltage V
Ignition switch ON (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up to normal operating temperature.)	0.8 - 1.3
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.5 - 2.1
Idle to about 4,000 rpm*	0.8- 1.3 to Approx. 2.2

^{*:}Make sure liner voltage rises as engine speed increases to about 4,000 rpm.

- 4. If the voltage is out of specification, proceed the following.
 - Turn ignition switch OFF.
 - Disconnect mass air flow sensor harness connector and reconnect it again.
 - Perform step 2 and 3 again.
- 5. If NG, remove mass air flow sensor from air duct. Check hot film for damage or dust.
- 6. If NG, clean or replace mass air flow sensor.

Removal and Installation MASS AIR FLOW SENSOR

UBS00BJV

Refer to EM-101, "AIR CLEANER AND AIR DUCT" .

[QR25DE]

DTC P0102, P0103 MAF SENSOR

Component Description

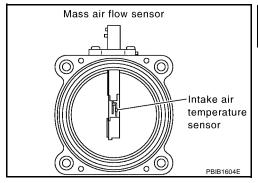
PFP:22680

UBS00APG

LIBSONAPH

LIBSONAPI

M


Α

EC

D

Е

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the greater the heat loss. Therefore, the ECM must supply more electric current to maintain the temperature of the hot film as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	Approx. 0.8 - 1.3V
MAS A/F SE-B1	 Air conditioner switch: OFF Shift lever: N (A/T), Neutral (M/T) No-load 	2,500 rpm	Approx. 1.6 - 2.0V
	Engine: After warming up	Idle	10% - 35%
CAL/LD VALUE	 Shift lever: N (A/T), Neutral (M/T) Air conditioner switch: OFF No-load 	2,500 rpm	10% - 35%
	Engine: After warming up	Idle	1.0 - 4.0 g·m/s
MASS AIRFLOW	 Shift lever: N (A/T), Neutral (M/T) Air conditioner switch: OFF No-load 	2,500 rpm	4.0 - 10.0 g·m/s

On Board Diagnosis Logic

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0102 0102	Mass air flow sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor
P0103 0103	Mass air flow sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)Mass air flow sensor

FAIL-SAFE MODE

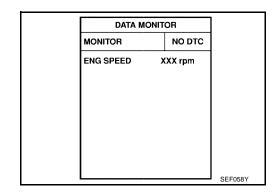
When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.

DTC Confirmation Procedure

UBS00APJ

NOTE

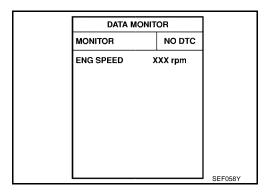

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

EC-815

PROCEDURE FOR DTC P0102

(II) With CONSULT-II

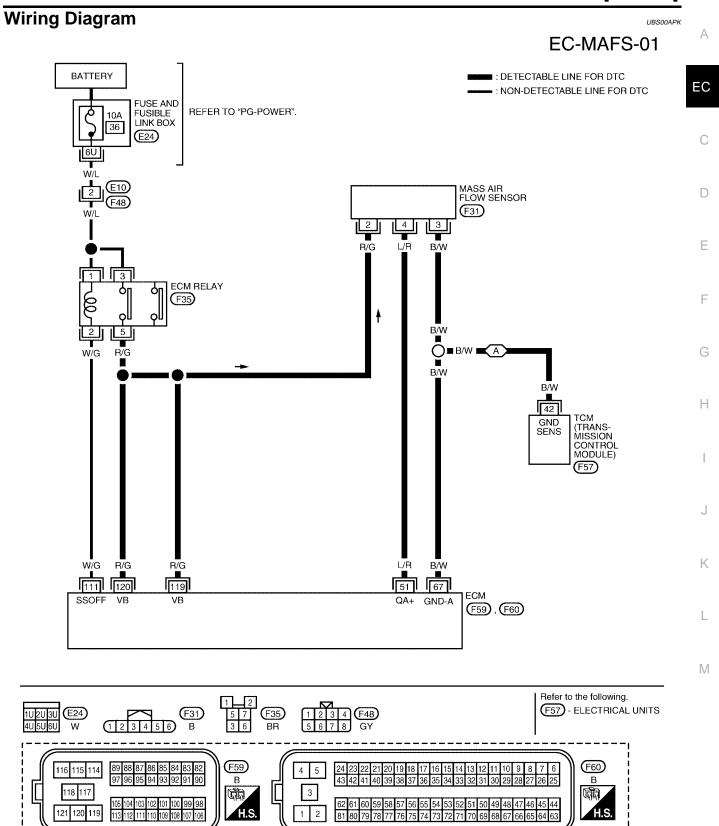
- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait at least 5 seconds.
- 4. If DTC is detected, go to EC-825, "Diagnostic Procedure".


With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR DTC P0103

(II) With CONSULT-II


- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait at least 5 seconds.
- 4. If DTC is detected, go to <u>EC-825</u>, "<u>Diagnostic Procedure</u>". If DTC is not detected, go to next step.
- 5. Start engine and wait at least 5 seconds.
- 6. If DTC is directed, go to EC-825, "Diagnostic Procedure".

With GST

Follow the procedure "With CONSULT-II" above.

[QR25DE]

BBWA0723E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
51	L/R	Mass air flow sensor	[Engine is running]Warm-up conditionIdle speed	0.8 - 1.3V
31	L/IX	iwass all now sensor	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm.	1.5 - 2.1V
67	B/W	Mass air flow sensor ground	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V
111	W/G	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For 10 seconds after turning ignition switch OFF	0 - 1.0V
		[Ignition switch: OFF]10 seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS00APL

1. INSPECTION START

Which malfunction (P0102 or P0103) is duplicated?

P0102 or P0103

P0102 >> GO TO 2.

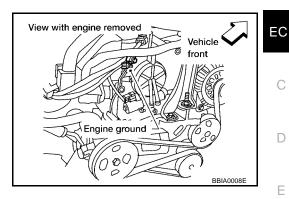
P0103 >> GO TO 3.

2. CHECK INTAKE SYSTEM

Check the following for connections.

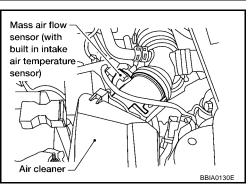
- Air duct
- Vacuum hoses
- Intake air passage between air duct and intake manifold

OK or NG


OK >> GO TO 3.

NG >> Reconnect the parts.

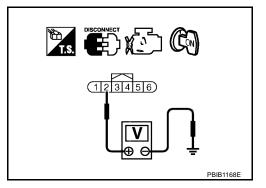
3. RETIGHTEN GROUND SCREWS


- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 4.

4. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect mass air flow (MAF) sensor harness connector.
- Turn ignition switch ON.



3. Check voltage between MAF sensor terminal 2 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between ECM relay and mass air flow sensor
- Harness for open or short between mass air flow sensor and ECM
 - >> Repair harness or connectors.

D

Е

M

6. CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector (A/T models).
- 4. Check harness continuity between MAF sensor terminal 3 and ECM terminal 67, TCM terminal 42 (A/T models).

Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-1
- Harness for open or short between mass air flow sensor and ECM
- Harness for open or short between mass air flow sensor and TCM (A/T models)
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

$8.\,$ check maf sensor input signal circuit for poen and short

 Check harness continuity between MAF sensor terminal 4 and ECM terminal 51. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK MASS AIR FLOW SENSOR

Refer to EC-826, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace mass air flow sensor.

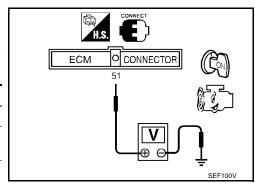
10. CHECK INTERMITTENT INCIDENT

Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0102, P0103 MAF SENSOR

[QR25DE]


UBS00APM

Component Inspection MASS AIR FLOW SENSOR

Reconnect harness connectors disconnected.

- 2. Start engine and warm it up to normal operating temperature.
- Check voltage between ECM terminal 51 (Mass air flow sensor signal) and ground.

Conditions	Voltage V
Ignition switch: ON (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up to normal operating temperature.)	0.8 - 1.3
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.5 - 2.1
Idle to about 4,000 rpm*	0.8 - 1.3 to Approx. 2.2

^{*:} Make sure liner voltage rises as engine speed increases to about 4,000 rpm.

- 4. If the voltage is out of specification, proceed the following.
 - Turn ignition switch OFF.
 - Disconnect mass air flow sensor harness connector and reconnect it again.
 - Perform step 2 and 3 again.
- 5. If NG, remove mass air flow sensor from air duct. Check hot film for damage or dust.
- 6. If NG, clean or replace mass air flow sensor.

Removal and Installation MASS AIR FLOW SENSOR

Refer to EM-101, "AIR CLEANER AND AIR DUCT" .

EC

Α

С

D

Е

N8

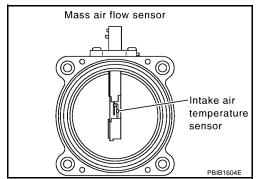
UBS00BJ8

v

ì

M

DTC P0112, P0113 IAT SENSOR


PFP:22630

UBS00APN

Component Description

The intake air temperature sensor is built-into mass air flow sensor. The sensor detects intake air temperature and transmits a signal to the FCM

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
25 (77)	3.32	1.9 - 2.1
80 (176)	1.23	0.31 - 0.37

^{*:} These data are reference values and are measured between ECM terminal 34 (Intake air temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

UBS00APO

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0112 0112	Intake air tempera- ture sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0113 0113	Intake air tempera- ture sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Intake air temperature sensor

DTC Confirmation Procedure

UBS00APP

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait at least 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-825, "Diagnostic Procedure"

DATA MONITOR

MONITOR

NO DTC

ENG SPEED

XXX rpm

SEF058Y

DTC P0112, P0113 IAT SENSOR

[QR25DE]

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

С

D

Е

F

G

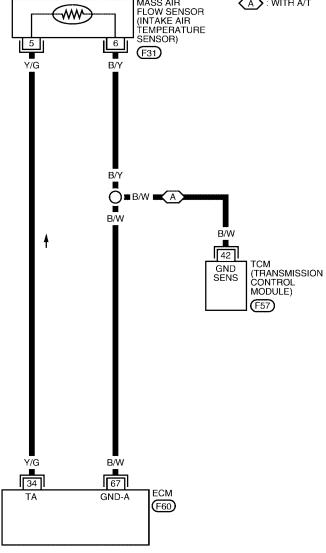
Н

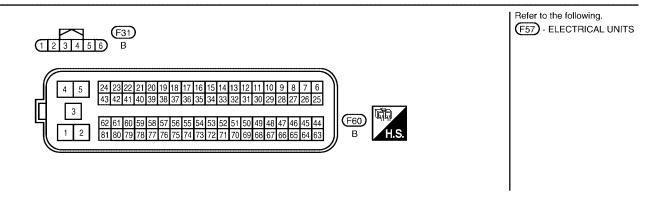
1

J

Κ

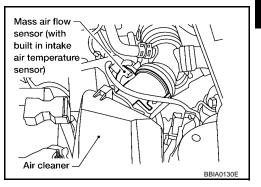
L


M


Wiring Diagram

UBS00APC

EC-IATS-01



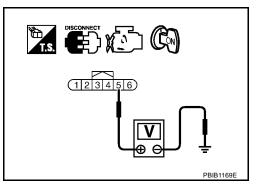
BBWA0724E

Diagnostic Procedure

1. CHECK INTAKE AIR TEMPERATURE SENSOR POWER SUPPLY

- Turn ignition switch OFF.
- 2. Disconnect mass air flow sensor (intake air temperature sensor is built-into) sensor harness connector.
- 3. Turn ignition switch ON.

4. Check voltage between MAF sensor terminal 5 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG

>> Repair open circuit or short to ground or short to power in harness or connectors.

2. CHECK INTAKE AIR TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF. 1.
- Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector (A/T models).
- Check harness continuity between terminal 6 and ECM terminal 67, TCM terminal 42 (A/T models). Refer to wiring diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. >> GO TO 3. NG

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between TCM and intake air temperature sensor (A/T models)
- Harness for open or short between ECM and intake air temperature sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK INTAKE AIR TEMPERATURE SENSOR

Refer to EC-826, "Component Inspection".

OK or NG

>> GO TO 5. OK

NG >> Replace intake air temperature sensor. EC

Α

Е

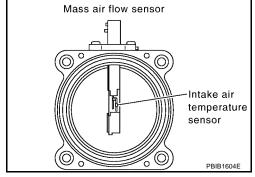
Н

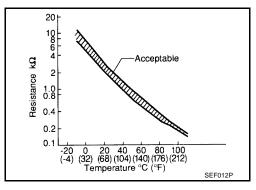
M

5. CHECK INTERMITTENT INCIDENT

Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection INTAKE AIR TEMPERATURE SENSOR


UBS00APS

1. Check resistance between intake air temperature sensor terminals 5 and 6 under the following conditions.

Intake air temperature °C (°F)	Resistance $k\Omega$
25 (77)	1.9 - 2.1

2. If NG, replace mass air flow sensor (with intake air temperature sensor).

Removal and Installation MASS AIR FLOW SENSOR

UBS00BJW

Refer to EM-101, "AIR CLEANER AND AIR DUCT" .

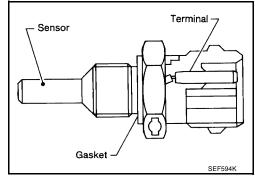
DTC P0117, P0118 ECT SENSOR

PFP:22630

Component Description

UBS00APT

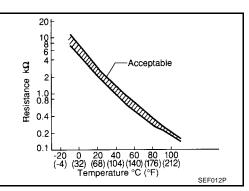
Α


EC

D

Е

Н


The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 73 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may damage the ECM's transistor. Use ground other than ECM, such as the ground.

On Board Diagnosis Logic

UBS00APU

These self-diagnoses have the one trip detection logic.

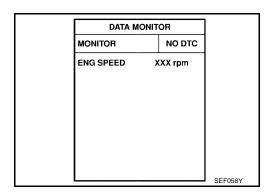
DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause	
P0117 0117	Engine coolant temperature sen- sor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors	K
P0118 0118	Engine coolant temperature sen- sor circuit high input	An excessively high voltage from the sensor is sent to ECM.	 (The sensor circuit is open or shorted.) Engine coolant temperature sensor 	L
				- N

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode		
	Engine coolant temperature will be determined by ECM based on the time after turning ignition switch ON or START. CONSULT-II displays the engine coolant temperature decided by ECM.		
	Condition	Engine coolant temperature decided (CONSULT-II display)	
Engine coolant tempera-	Just as ignition switch is turned ON or Start	40°C (104°F)	
ture sensor circuit	More than approx. 4 minutes after ignition ON or Start	80°C (176°F)	
	Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)	
	When the fail-safe system for engine coolant tempera while the engine is running.	ature sensor is activated, the cooling fan operates	

DTC Confirmation Procedure


LIBSONAPV

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait at least 5 seconds.
- 4. If DTC is detected, go to EC-830, "Diagnostic Procedure".

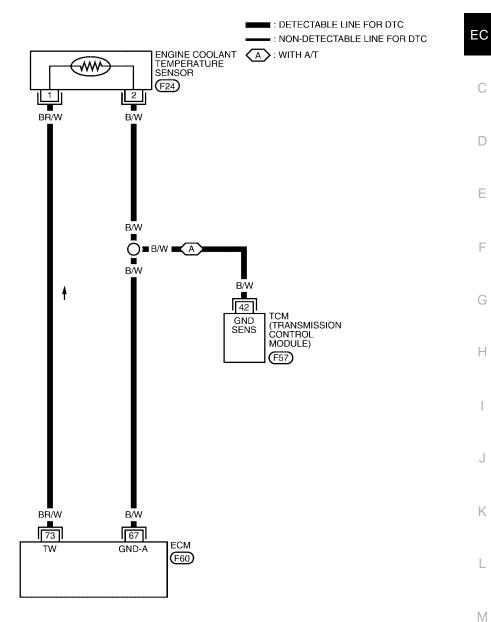
WITH GST

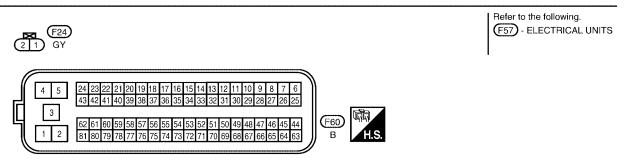
Follow the procedure "WITH CONSULT-II" above.

[QR25DE]

Α

C

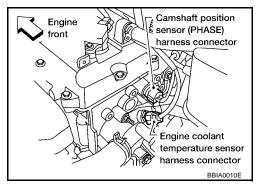

D


Е

Н

Wiring Diagram UBS00APW

EC-ECTS-01



BBWA0725E

Diagnostic Procedure

1. CHECK ETC SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect engine coolant temperature (ECT) sensor harness connector.
- 3. Turn ignition switch ON.


Check voltage between ECT terminal 1 and ground with CON-SULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 2.

NG >> Repair or replace harness or connectors.

2. CHECK ETC SENSOR GROUND CIRCUIT FOR OPEN AND SHORRT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector (A/T models).
- 4. Check harness continuity between ECT terminal 2 and ECM terminal 67, TCM terminal 42 (A/T models). Refer to wiring diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between TCM and engine coolant temperature sensor (A/T models)
- Harness for open or short between ECM and engine coolant temperature sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-831, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace engine coolant temperature sensor.

EC-830

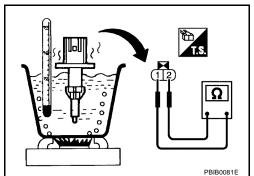
EC

D

Е

Н

UBS00APY


5. CHECK INTERMITTENT INCIDENT

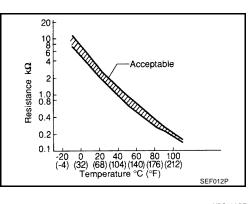
Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection ENGINE COOLANT TEMPERATURE SENSOR

1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

<Reference data>


Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 73 (Engine coolant temperature sensor) and ground.

If NG, replace engine coolant temperature sensor.

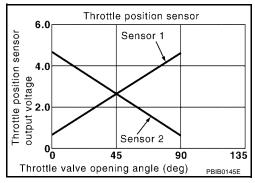
Removal and Installation ENGINE COOLANT TEMPERATURE SENSOR

Refer to CO-30, "THERMOSTAT AND THERMOSTAT HOUSING".

UBS00APZ

L

DTC P0122, P0123 TP SENSOR


PFP:16119

UBS00AQ0

Component Description

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

UBS00AQ1

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL SEN1	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	More than 0.36V
THRTL SEN2*	Shift leverD: (A/T models)1st: (M/T models)	Accelerator pedal: Fully depressed	Less than 4.75V

^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

UBS00AQ2

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0122 0122	Throttle position sensor 2 circuit low input	An excessively low voltage from the TP sensor 2 is sent to ECM.	Harness or connectors (The TP sensor 2 circuit is open or
P0123 0123	Throttle position sensor 2 circuit high input	An excessively high voltage from the TP sensor 2 is sent to ECM.	shorted.) • Electric throttle control actuator (TP sensor 2)

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

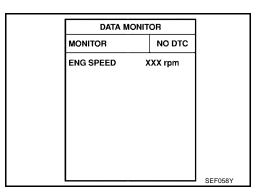
DTC P0122, P0123 TP SENSOR

[QR25DE]

DTC Confirmation Procedure

UBS00AQ3

NOTE


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to <a>EC-835, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

С

D

Е

G

Н

<

L

Wiring Diagram EC-TPS2-01 ELECTRIC THROTTLE CONTROL ACTUATOR (THROTTLE POSITION SENSOR) SENSOR 1 SENSOR 2 : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC (F50) 2 5 4 69 47 50 66 ECM GND-A3 (F60) (M54)

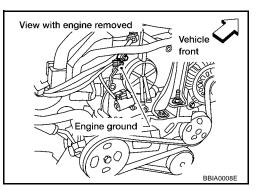
BBWA0741E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

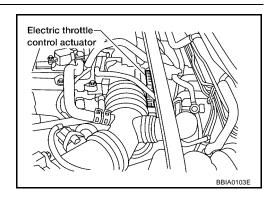
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
47	В	Sensor power supply (Throttle position sensor)	[Ignition switch: ON]	Approximately 5V	
50	w	Throttle position concerd	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully released 	More than 0.36V	_
50	VV	Throttle position sensor 1	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully depressed 	Less than 4.75V	_
66	R	Sensor ground (Throttle position sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	
69	G	Throttle position concer 2	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully released 	Less than 4.75V	_
09	G	Throttle position sensor 2	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1st (M/T) Accelerator pedal fully depressed 	More than 0.36V	


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

Turn ignition switch OFF. 1.

Loosen and retighten engine ground screws.

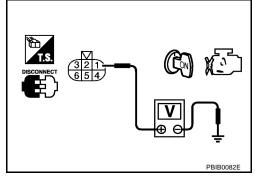

>> GO TO 2.

UBS00AQ5

2. CHECK THROTTLE POSITION SENSOR 2 POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.

 Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repai

>> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK THROTTLE POSITION SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 66 and electric throttle control actuator terminal 5. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK THROTTLE POSITION SENSOR 2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 69 and electric throttle control actuator terminal 2. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK THROTTLE POSITION SENSOR

Refer to EC-837, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

DTC P0122, P0123 TP SENSOR

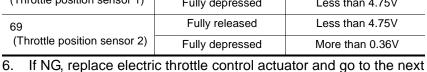
[QR25DE]

6. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-684, "Throttle Valve Closed Position Learning".
- Perform EC-685, "Idle Air Volume Learning".

>> INSPECTION END

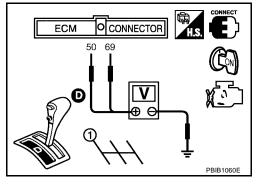
7. CHECK INTERMITTENT INCIDENT


Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection THROTTLE POSITION SENSOR

- Reconnect all harness connectors disconnected.
- 2. Perform EC-684, "Throttle Valve Closed Position Learning".
- 3. Turn ignition switch ON.
- Set selector lever to D position (A/T) or 1st position (M/T).
- 5. Check voltage between ECM terminals 50 (TP sensor 1 signal), 69 (TP sensor 2 signal) and engine ground under the following conditions.


Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
69	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- step. 7. Perform EC-684, "Throttle Valve Closed Position Learning".
- Perform EC-685, "Idle Air Volume Learning".

Remove and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-103, "INTAKE MANIFOLD".

EC

D

Е

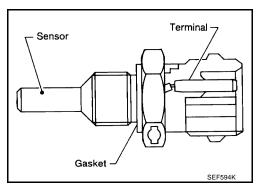
LIBSONAO6

Н

K

DTC P0125 ECT SENSOR

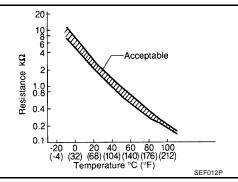
PFP:22630


UBS00AQ8

Component Description

NOTE:

If DTC P0125 is displayed with P0117 or P0118, first perform trouble diagnosis for DTC P0117, P0118, <u>EC-827</u>.


The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 73 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may damage the ECM's transistor. Use ground other than ECM, such as body ground.

On Board Diagnosis Logic

UBS00AQ9

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0125 0125	Insufficient engine cool- ant temperature for closed loop fuel control	 Voltage sent to ECM from the sensor is not practical, even when some time has passed after starting the engine. Engine coolant temperature is insufficient for closed loop fuel control. 	 Harness or connectors (High resistance in the circuit) Engine coolant temperature sensor Thermostat

DTC Confirmation Procedure

UBS00AQA

CAUTION:

Be careful not to overheat engine.

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Check that "COOLAN TEMP/S" is above 15°C (59°F). If it is above 15°C (59°F), the test result will be OK. If it is below 15°C (59°F), go to following step.
- Start engine and run it for 65 minutes at idle speed.
 If "COOLAN TEMP/S" increases to more than 15°C (59°F) within 65 minutes, stop engine because the test result will be OK.
- 5. If DTC is detected, go to EC-839, "Diagnostic Procedure".

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm COOLAN TEMP/S XXX C

WITH GST

Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure

1. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-839, "Component Inspection".

OK or NG

OK >> GO TO 2.

NG >> Replace engine coolant temperature sensor.

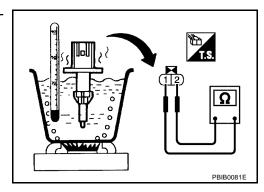
2. CHECK THERMOSTAT OPERATION

When the engine is cooled [lower than 75°C (167°F)], grasp lower radiator hose and confirm the engine coolant does not flow.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace thermostat. Refer to CO-30, "THERMOSTAT AND THERMOSTAT HOUSING" .


3. CHECK INTERMITTENT INCIDENT

Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection ENGINE COOLANT TEMPERATURE SENSOR

Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

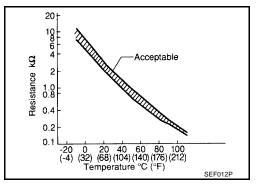
EC

Α

Е

UBS00AQB

Н


J

UBS00AQC

<Reference data>

Temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

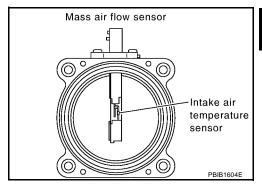
^{*:} These data are reference values and are measured between ECM terminal 73 (Engine coolant temperature sensor) and ground. If NG, replace engine coolant temperature sensor.

UBS00AQD

Removal and Installation ENGINE COOLANT TEMPERATURE SENSOR

Refer to CO-30, "THERMOSTAT AND THERMOSTAT HOUSING" .

DTC P0127 IAT SENSOR


PFP:22630

Component Description

UBS00AQE

The intake air temperature sensor is built into mass air flow sensor. The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
25 (77)	3.32	1.9 - 2.1
80 (176)	1.23	0.31 - 0.37

^{*:} These data are reference values and are measured between ECM terminal 34 (Intake air temperature sensor) and ground.

20 | Acceptable |

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

UBS00AQF

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0127 0127	Intake air temperature too high	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signal from engine coolant temperature sensor.	Harness or connectors (The sensor circuit is open or shorted)Intake air temperature sensor

DTC Confirmation Procedure

UBS00AQG

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

EC

Α

D

Е

G

Н

K

(II) WITH CONSULT-II

- Wait until engine coolant temperature is less than 90°C (194°F)
- a. Turn ignition switch ON.
- b. Select "DATA MONITOR" mode with CONSULT-II.
- c. Check the engine coolant temperature.
- d. If the engine coolant temperature is not less than 90°C (194°F), turn ignition switch OFF and cool down engine.
 - Perform the following steps before engine coolant temperature is above 90°C (194°F).
- 2. Turn ignition switch ON.
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- 4. Start engine.
- 5. Hold vehicle speed at more than 70 km/h (43 MPH) for 100 consecutive seconds.
- 6. If 1st trip DTC is detected, go to EC-842, "Diagnostic Procedure".

WITH GST

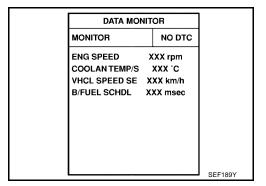
Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

1. CHECK INTAKE AIR TEMPERATURE SENSOR

Refer to EC-843, "Component Inspection".

OK or NG


OK >> GO TO 2.

NG >> Replace intake air temperature sensor.

2. CHECK INTERMITTENT INCIDENT

Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

DTC P0127 IAT SENSOR

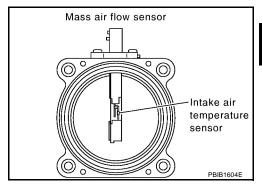
[QR25DE]

Component Inspection INTAKE AIR TEMPERATURE SENSOR

0000404

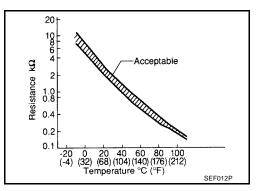
Α

EC


C

 D

Е


Н

1. Check resistance between intake air temperature sensor terminals 1 and 2 under the following conditions.

Intake air temperature °C (°F)	Resistance kΩ
25 (77)	1.9 - 2.1

2. If NG, replace mass air flow sensor (with intake air temperature sensor).

Removal and Installation MASS AIR FLOW SENSOR

UBS00BJX

Refer to EM-101, "AIR CLEANER AND AIR DUCT".

[QR25DE]

DTC P0128 THERMOSTAT FUNCTION

PFP:21200

On Board Diagnosis Logic

UBS00AQJ

Engine coolant temperature has not risen enough to open the thermostat even though the engine has run long enough.

This is due to a leak in the seal or the thermostat stuck open.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0128 0128	Thermostat function	The engine coolant temperature does not reach to specified temperature even though the engine has run long enough.	 Thermostat Leakage from sealing portion of thermostat Engine coolant temperature sensor

DTC Confirmation Procedure

UBS00AQK

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- For best results, perform at ambient temperature of −10°C (14°F) or higher.
- For best results, perform at engine coolant temperature of −10°C (14°F) to 68°C (154°F).

WITH CONSULT-II

- Replace thermostat with new one. Refer to <u>CO-30, "THERMOSTAT AND THERMOSTAT HOUSING"</u>.
 Use only a genuine NISSAN thermostat as a replacement. If an incorrect thermostat is used, the MIL may come on.
- 2. Turn ignition switch ON.
- 3. Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- 4. Check that the "COOLAN TEMP/S" is above 68°C (154°F).
 If it is below 68°C (154°F), go to following step.
 If it is above 68°C (154°F), cool down the engine to less than 60°C (140°F), then retry from step 1.
- 5. Drive vehicle for 10 consecutive minutes under the following conditions.

VHCL SPEED SE	80 - 120 km/h (50 - 75 MPH)

If 1st trip DTC is detected, go to EC-844, "Diagnostic Procedure".

WITH GST

1. Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

UBS00AQL

1. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-845, "Component Inspection".

OK or NG

OK >> INSPECTION END

NG >> Replace engine coolant temperature sensor.

DTC P0128 THERMOSTAT FUNCTION

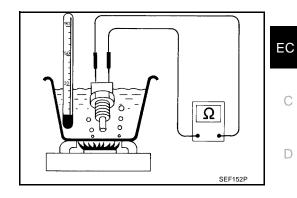
[QR25DE]

UBS00AQM

Α

C

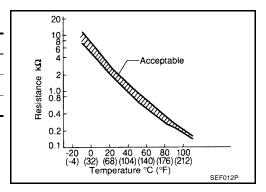
 D


Е

Н

M

Component Inspection ENGINE COOLANT TEMPERATURE SENSOR


Check resistance as shown in the figure.

<Reference data>

Temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.0
90 (194)	0.236 - 0.260

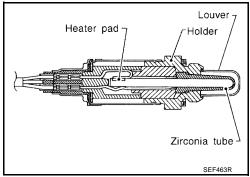
If NG, replace engine coolant temperature sensor.

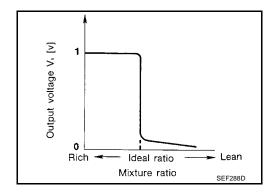
UBS00AQN

Removal and Installation ENGINE COOLANT TEMPERATURE SENSOR

Refer to CO-30, "THERMOSTAT AND THERMOSTAT HOUSING".

DTC P0132 HO2S1


PFP:22690


UBS00BIO

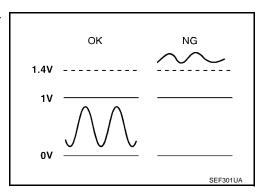
Component Description

The heated oxygen sensor 1 is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube

outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

UBS00BIP


Specification data are reference values.

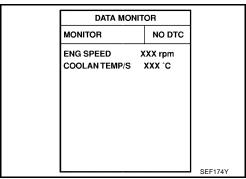
MONITOR ITEM	C	SPECIFICATION	
HO2S1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

On Board Diagnosis Logic

UBS00BIQ

To judge the malfunction, the diagnosis checks that the heated oxygen sensor 1 output is not inordinately high.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0132 0132	Heated oxygen sensor 1 circuit high voltage	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 1


DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds. 2.
- 3. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Restart engine and let it idle for 2 minutes.
- If 1st trip DTC is detected, go to EC-849, "Diagnostic Procedure"

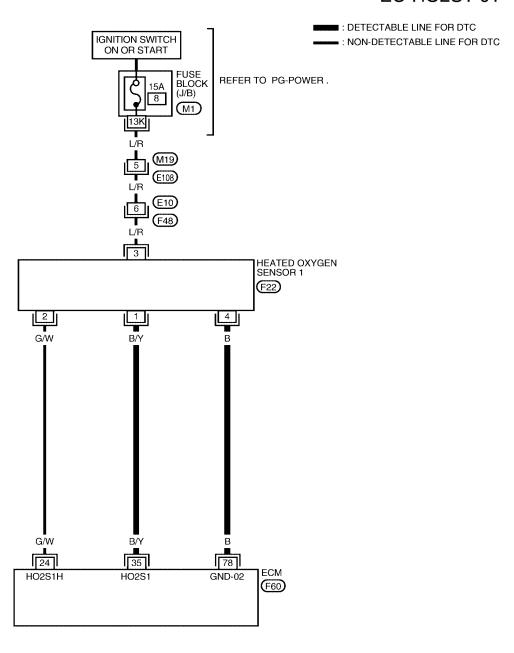
WITH GST

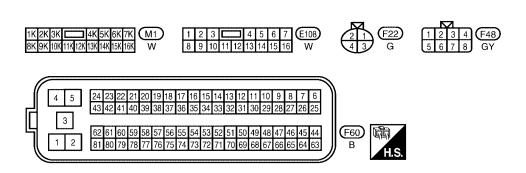
- Start engine and warm it up to normal operating temperature. 1.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Restart engine and let it idle for 2 minutes.
- 4. Turn ignition switch OFF and wait at least 10 seconds.
- 5. Restart engine and let it idle for 2 minutes.
- Select MODE 3 with GST.
- 7. If DTC is detected, go to EC-849, "Diagnostic Procedure".
- When using GST, DTC Confirmation Procedure should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

EC

Α

Е


Н


K

Wiring Diagram

UBS00BIS

EC-HO2S1-01

BBWA0726E

Α

EC

Е

Н

M

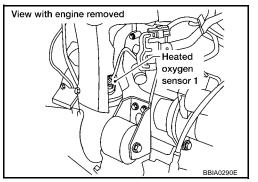
Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
35	В/Ү	Heated oxygen sensor 1	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)
78	В	Heated oxygen sensor ground	[Engine is running] • Idle speed	Approximately 0V

Diagnostic Procedure


UBSOORIT

1. RETIGHTEN HEATED OXYGEN SENSOR 1

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten heated oxygen sensor 1.

Tightening torque: 40 - 60 N·m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)

>> GO TO 2.

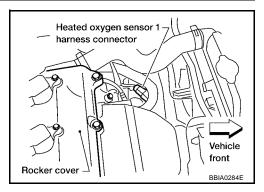
2. CHECK HO2S1 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect heated oxygen sensor 1 harness connector.
- Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 78 and HO2S1 terminal 4.

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.


OK or NG

NG

OK >> G

>> GO TO 3.

>> Repair open circuit or short to ground short to power in harness or connectors.

3. CHECK HO2S1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 35 and HO2S1 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

Check harness continuity between ECM terminal 35, HO2S1 terminal 1 and ground. Refer to Wiring Diagram.

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK HO2S1 CONNECTOR FOR WATER

Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 5.

NG >> Repair or replace harness or connectors.

CHECK HEATED OXYGEN SENSOR 1

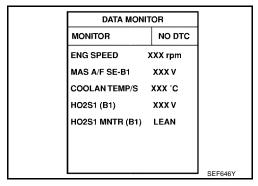
Refer to EC-850, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace heated oxygen sensor 1.

6. CHECK INTERMITTENT INCIDENT

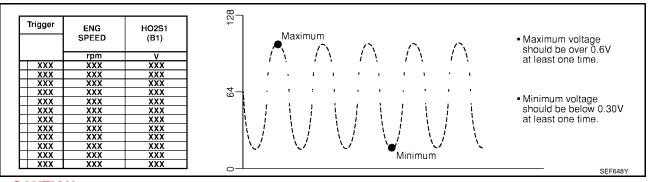

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 1

UBS00BIU

- (P) With CONSULT-II
- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.



- 6. Check the following.
 - "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" more than 5 times in 10 seconds.

5 times (cycles) are counted as shown at right.

- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

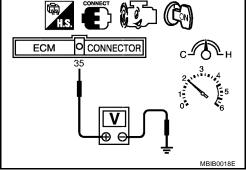
cycle | 1 | 2 | 3 | 4 | 5 |
HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R
R means HO2S1 MNTR (B1) indicates RICH
L means HO2S1 MNTR (B1) indicates LEAN

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 35 [HO2S1 (B1) signal] and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least 1 time.
 - The minimum voltage is below 0.3V at least 1 time.
 - The voltage never exceeds 1.0V.


1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V 2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 1

Refer to EM-108, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

Α

EC

D

C

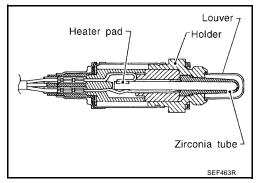
F

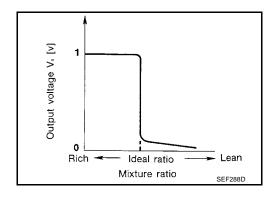
Н

I

J

UBS00BIV


DTC P0133 HO2S1


PFP:22690

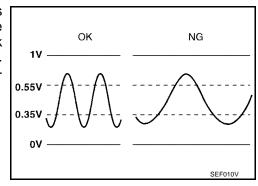
Component Description

UBS00BIW

The heated oxygen sensor 1 is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

UBS00BIX


Specification data are reference values.

MONITOR ITEM	CON	SPECIFICATION	
HO2S1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times dur- ing 10 seconds.

On Board Diagnosis Logic

UBS00BIY

To judge the malfunction of heated oxygen sensor 1, this diagnosis measures response time of heated oxygen sensor 1 signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and heated oxygen sensor 1 temperature index. Judgment is based on whether the compensated time (heated oxygen sensor 1 cycling time index) is inordinately long or not.

Α

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	_
P0133 0133	Heated oxygen sensor 1 circuit slow response	The response of the voltage signal from the sensor takes more than the specified time.	 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 1 Fuel pressure Injectors Intake air leaks Exhaust gas leaks PCV valve Mass air flow sensor 	E

DTC Confirmation Procedure

UBS00BIZ

Е

Н

M

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above –10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

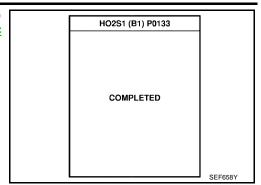
(II) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine and wait at least 10 seconds.
- Turn ignition switch ON and select "HO2S1 (B1) P0133" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4. Touch "START".
- 5. Start engine and let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 5.

HO2S1 (B1) PO		
OUT OF CONDI		
MONITOR		
ENG SPEED		
B/FUEL SCHDL		
COOLAN TEMP/S		
VHCL SPEED SEN	0550007	
		SEF338Z


6. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 20 to 50 seconds.)

ENG SPEED	1,500 - 3,100 rpm (A/T models) 1,600 - 3,000 rpm (M/T models)
Vehicle speed	More than 80 km/h (50 MPH)
B/FUEL SCHDL	3.5 - 13.0 msec (A/T models) 4.0 - 12.0 msec (M/T models)
Selector lever	Suitable position

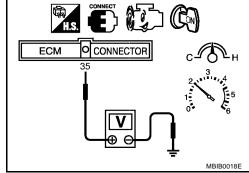
HO2S1 (B1) PC		
TESTING		
MONITOR		
ENG SPEED		
B/FUEL SCHDL		
COOLAN TEMP/S		
VHCL SPEED SEN		
		SEF339Z

If "TESTING" is not displayed after 5 minutes, retry from step 2.

 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to <u>EC-856, "Diagnostic</u> <u>Procedure"</u>.

Overall Function Check

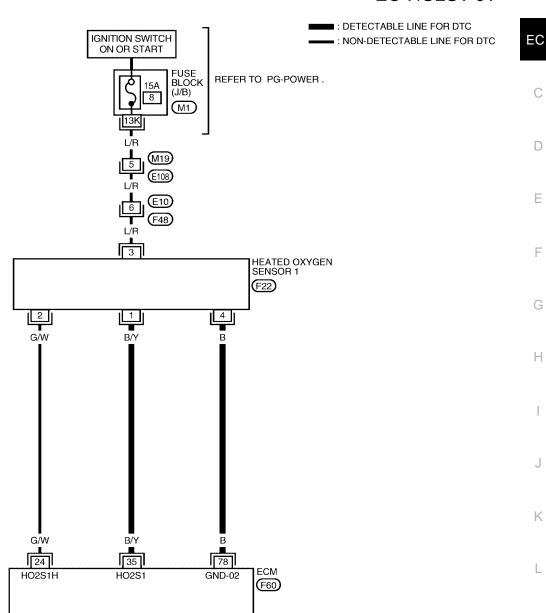
UBS00BJ0

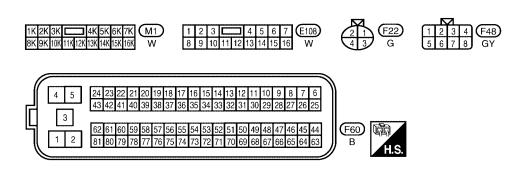

Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 35 [HO2S1(B1) signal] and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.

```
1 time  \begin{array}{ll} \text{1 time} & :0\text{-}0.3V\rightarrow0.6\text{-}1.0V\rightarrow0\text{-}0.3V\\ \text{2 times} & :0\text{-}0.3V\rightarrow0.6\text{-}1.0V\rightarrow0\text{-}0.3V\rightarrow0.6\text{-}1.0V\\ & \rightarrow0\text{-}0.3V \end{array}
```


4. If NG, go to EC-856, "Diagnostic Procedure".



Wiring Diagram

Α

EC-HO2S1-01

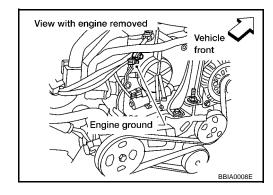
BBWA0726E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
35	B/Y	Heated oxygen sensor 1	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)
78	В	Heated oxygen sensor ground	[Engine is running] • Idle speed	Approximately 0V

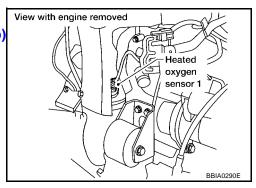

Diagnostic Procedure

LIBSOOR.12

1. RETIGHTEN GROUND SCREWS

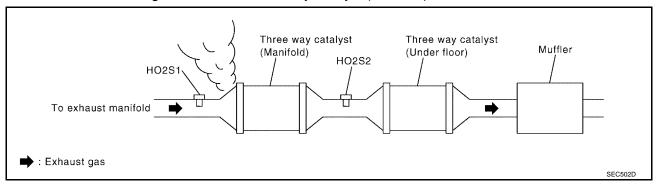
- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.



2. RETIGHTEN HEATED OXYGEN SENSOR 1

Loosen and retighten heated oxygen sensor 1.


Tightening torque: 40 - 60 N·m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)

>> GO TO 3.

$\overline{3}$. Check for exhaust gas leak

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust gas leak before three way catalyst (Manifold).

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

4. CHECK FOR INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 5.

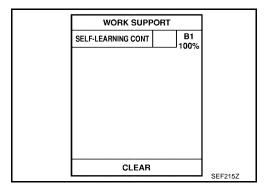
NG >> Repair or replace. EC

Α

C

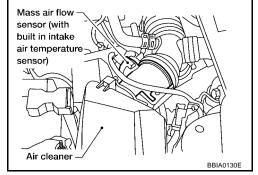
D

Е


F

Н

5. CLEAR THE SELF-LEARNING DATA


(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-704, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Yes or No

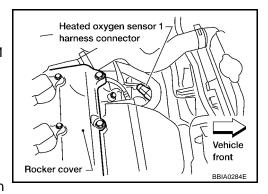
Yes >> Perform trouble diagnosis for DTC P0171 or DTC P0172 (Refer to EC-883 or EC-894).

No >> GO TO 6.

6. CHECK HO2S1 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect heated oxygen sensor 1 harness connector.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 78 and HO2S1 terminal 4.

Refer to Wiring Diagram.


Continuity should exist.

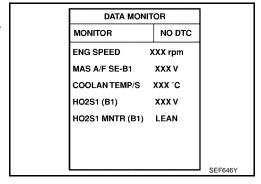
4. Also check harness for short to ground and short to power.

OK or NG

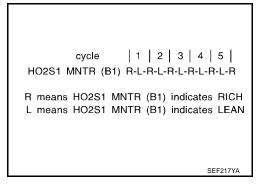
OK >> GO TO 7.

NG >> Repair open circuit or short to ground short to power in harness or connectors.

$7.\,$ CHECK HO2S1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT Α Check harness continuity between ECM terminal 35 and HO2S1 terminal 1. Refer to Wiring Diagram. EC Continuity should exist. Check harness continuity between ECM terminal 35 or HO2S1 terminal 1 and ground. Refer to Wiring Diagram. Continuity should not exist. 3. Also check harness for short to power. D OK or NG OK >> GO TO 8. NG >> Repair open circuit or short to ground or short to power in harness or connectors. Е 8. CHECK HEATED OXYGEN SENSOR 1 HEATER Refer to EC-800, "Component Inspection". OK or NG OK >> GO TO 9. NG >> Replace heated oxygen sensor 1. 9. CHECK MASS AIR FLOW SENSOR Refer to EC-814, "Component Inspection". OK or NG OK >> GO TO 10. NG >> Replace mass air flow sensor. 10. CHECK PCV VALVE Refer to EC-1317, "Component Inspection". OK or NG OK >> GO TO 11. NG >> Replace PCV valve. 11. CHECK HEATED OXYGEN SENSOR 1 Refer to EC-859, "Component Inspection". OK or NG M OK >> GO TO 12. NG >> Replace heated oxygen sensor 1. 12. CHECK INTERMITTENT INCIDENT Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 1


UBS00BJ3

- (P) With CONSULT-II
- 1. Start engine and warm it up to normal operating temperature.
- Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.

- 3. Select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

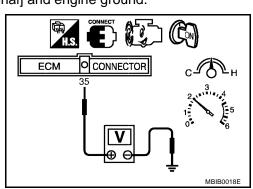
- Check the following.
 - "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" more than 5 times in 10 seconds.
 - 5 times (cycles) are counted as shown at right.
 - "HO2S1 (B1)" voltage goes above 0.6V at least once.
 - "HO2S1 (B1)" voltage goes below 0.3V at least once.
 - "HO2S1 (B1)" voltage never exceeds 1.0V.

			1 28 –	1									
Trigger	ENG SPEED	HO2S1 (B1)	-		Maxir						,		Maximum voltage
	rpm	v	1	/	٦,	/	į		- /	\	ĺ	\	should be over 0.6V
XXX	XXX	xxx		l '	:	, ,	,	·	,	•	'	•	at least one time.
XXX	XXX	XXX	1	,		1 1	,		r	1	•	1	
XXX	XXX	XXX	1 .										
XXX	XXX	XXX	26-		1	: 1			•	•		•	N 41 1
XXX	XXX	XXX	_	i .				,					 Minimum voltage
XXX	XXX	XXX		į ;	į	1 1	! ;	į	i	١.	i	ļ.	should be below 0.30V
XXX	XXX	XXX		1	1	i '	\	1	į	ì	i i	1	at least one time.
XXX	XXX	XXX		l\	i	!	i /	i	- !	į.	- 1	ì	
XXX	XXX	XXX		N /	į	;	\ /	١.	i	,	i	/	
XXX	XXX	XXX		V/	_/	i	_/	,	•	`	./	`.	
XXX	XXX	XXX							Mini	mum			
XXX	XXX	XXX]										
													SEF648Y

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II


- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 35 [HO2S1 (B1) signal] and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least 1 time.
 - The minimum voltage is below 0.3V at least 1 time.
 - The voltage never exceeds 1.0V.

1 time : $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$

2 times : $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V$

CAUTION:

• Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

DTC P0133 H02S1

[QR25DE]

• Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 1

UBS00BJ4

Refer to EM-108, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

EC

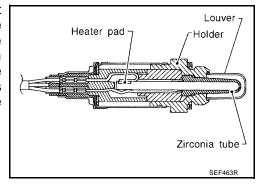
C

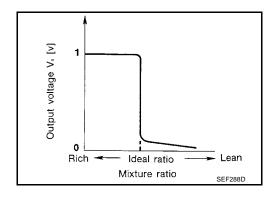
 D

Е

F

Н


DTC P0134 HO2S1


PFP:22690

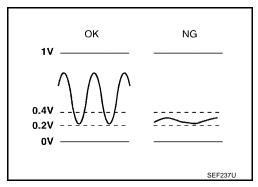
Component Description

UBS00AQO

The heated oxygen sensor 1 is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

UBS00AQP


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times dur- ing 10 seconds.

On Board Diagnosis Logic

UBS00AQQ

Under the condition in which the heated oxygen sensor 1 signal is not input, the ECM circuits will read a continuous approximately 0.3V. Therefore, for this diagnosis, the time that output voltage is within 200 to 400 mV range is monitored, and the diagnosis checks that this time is not inordinately long.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0134 0134	Heated oxygen sensor 1 circuit no activity detected	The voltage from the sensor is constantly approx. 0.3V.	 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 1

DTC Confirmation Procedure

UBS00AQR

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "HO2S1 (B1) P0134" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START".
- 4. Let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 4.

HO2S1 (B1) P0		
OUT OF CONDI	TION	
MONITOR		
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S	xxx .c	
VHCL SPEED SEN	XXX km/h	PBIB0544E
		FDIDU344E

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 10 to 60 seconds.)

ENG SPEED	1,200 - 3,200 rpm
Vehicle speed	More than 80 km/h (50 MPH)
B/FUEL SCHDL	1.9 - 13.0 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from | step 2.

6. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-866, "Diagnostic Procedure".

HO2S1 (B1) F	20134	
TESTING	à	
MONITO	R	
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S	xxx .c	
VHCL SPEED SEN	XXX km/h	PBIB0545E

COMPLETED

SEC750C

EC

Α

D

Е

G

Н

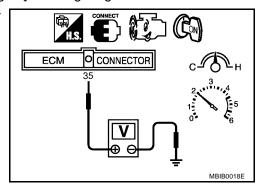
J

K

L

Overall Function Check

IBSONAOS

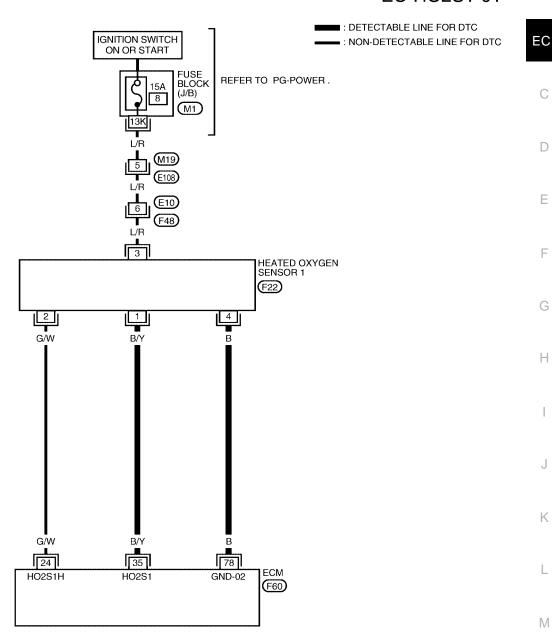

Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a DTC might not be confirmed.

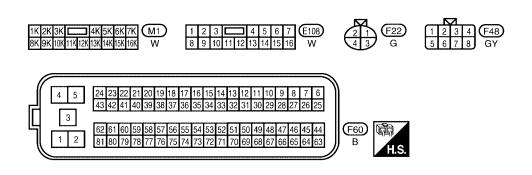
WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 35 [HO2S1 (B1) signal] and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage does not remain in the range of 0.2 to 0.4V.

4.

If NG, go to EC-866, "Diagnostic Procedure".




Wiring Diagram

1D00010T

Α

EC-HO2S1-01

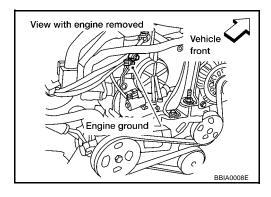
BBWA0726E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
35	B/Y	Heated oxygen sensor 1	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm.	0 - Approximately 1.0V (Periodically change)
78	В	Heated oxygen sensor ground	[Engine is running] ● Idle speed	Approximately 0V


Diagnostic Procedure

UBSONACII

1. INSPECTION START

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

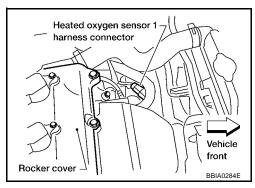
>> GO TO 2.

2. CHECK HO2S1 GROUND CIRCUIT FOR OPEN AND SHORT

- Disconnect heated oxygen sensor 1 harness connector.
- Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 78 and HO2S1 terminal 4.

Refer to Wiring Diagram.

Continuity should exist.


4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair of

>> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK HO2S1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 35 and HO2S1 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

2. Check harness continuity between ECM terminal 35, HO2S1 terminal 1 and ground. Refer to Wiring Diagram.

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

D

Е

Н

M

UBS00AQV

4. CHECK HEATED OXYGEN SENSOR 1

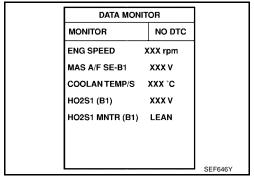
Refer to EC-867, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace heated oxygen sensor 1.

5. CHECK INTERMITTENT INCIDENT


Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 1

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

- Check the following.
 - "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" more than 5 times in 10 seconds.
 - 5 times (cycles) are counted as shown at right.
 - "HO2S1 (B1)" voltage goes above 0.6V at least once.
 - "HO2S1 (B1)" voltage goes below 0.3V at least once.
 - "HO2S1 (B1)" voltage never exceeds 1.0V.

cycle 1 2 3 4 5 HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R
R means HO2S1 MNTR (B1) indicates RICH L means HO2S1 MNTR (B1) indicates LEAN
SEF217YA

Trigger	ENG SPEED	HO2S1 (B1)	128		Ma>	dmun		<u> </u>	`	ſ	`	,	``	Maximum voltage should be over 0.6V
	rpm	V]		j	- /	1	- /	Ì	- /	,	i	,	at least one time.
XXX	XXX	XXX												
XXX	XXX	XXX			•	1	ι	•	ı	r	1	•		
XXX	XXX	XXX	1 .											
XXX	XXX	XXX	_ 24	1 .	1			•	- 1	•	•		•	A. 42 - 43 - 43
XXX	XXX	XXX]	i .										 Minimum voltage should be below 0.30V
XXX	XXX	XXX		ji	i	- 1	į	1	į	i	į.	i	ļ	
XXX	XXX	XXX		i	1	i	1	i	l l	i	i	i	- 1	at least one time.
XXX	XXX	XXX		l\ !	١.	!	i	!	- i	!	i	!	i	
XXX	XXX	XXX	1	[i /	i	- /	į	1	Ì	i	· ·	<i>i</i>	,	
XXX	XXX	XXX	1	\ ./	` '	Į,	ν,	j.	``	a '	`	j	`_	
XXX	XXX	XXX	1							- Minii	mum			
XXX	XXX	XXX]											
														SEF648Y

CAUTION:

• Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

• Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 35 [HO2S1 (B1) signal] and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least 1 time.
 - The minimum voltage is below 0.3V at least 1 time.
 - The voltage never exceeds 1.0V.

1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V **CAUTION:**

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor;
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation **HEATED OXYGEN SENSOR 1**

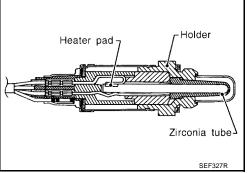
UBS00AQW

Refer to EM-108, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

DTC P0138 HO2S2

PFP:226A0

UBS00AQX


Component Description

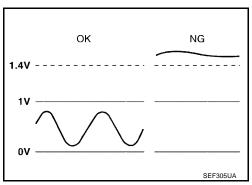
The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the heated oxygen sensor 1 (A/T models ULEV and M/T models) or air fuel ratio (A/F) sensor 1 (A/T models except ULEV) are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

LIBSONACY


CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONI	SPECIFICATION	
HO2S2 (B1)	Engine: After warming up		0 - 0.3V ←→ 0.6 - 1.0V
HO2S2 MNTR (B1)	 Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	Revving engine from idle to 3,000 rpm quickly	$LEAN \longleftrightarrow RICH$

On Board Diagnosis Logic

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1 (A/T models ULEV and M/T models) or the air fuel ratio (A/F) sensor 1 (A/T models except ULEV). The oxygen storage capacity before the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of rear heated oxygen sensor 2, ECM monitors whether the voltage is unusually high during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0138 0138	Heated oxygen sensor 2 circuit high voltage	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2

EC

Α

Е

Н

DTC Confirmation Procedure

IIRSONARO

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(III) WITH CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 2 minutes.
- 6. If 1st trip DTC is detected, go to EC-872, "Diagnostic Procedure"

DATA MONITOR

MONITOR

NO DTC

ENG SPEED XXX rpm
COOLAN TEMP/S XXX C

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 2 minutes.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 7. Let engine idle for 2 minutes.
- 8. Select "Mode 3" with GST.
- 9. If DTC is detected, go to EC-872, "Diagnostic Procedure".
- When using GST, DTC Confirmation Procedure should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

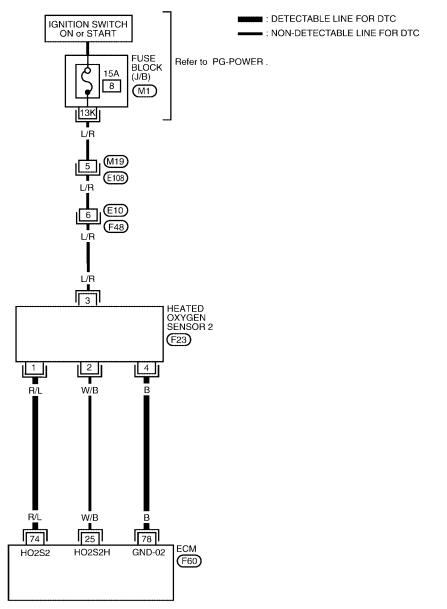
Wiring Diagram

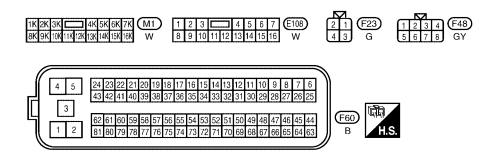
UBS00AR1

Α

EC

C


D


Е

Н

M

EC-HO2S2-01

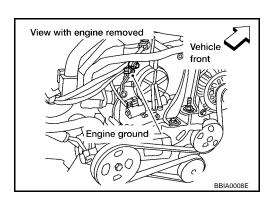
BBWA0727E

LIBSONAR2

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
74	R/L	Heated oxygen sensor 2	 [Engine is running] Warm-up condition Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

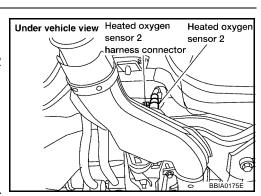
>> GO TO 2.

2. CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect heated oxygen sensor 2 harness connector.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 78 and HO2S2 terminal 4.

Refer to Wiring Diagram.

Continuity should exist.


4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> I

>> Repair open circuit or short to ground or short to power in harness or connectors.

$3.\,$ check ho2s2 input signal circuit for open and short

1. Check harness continuity between ECM terminal 74 and HO2S2 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

Check harness continuity between ECM terminal 74 or HO2S2 terminal 1 and ground. Refer to Wiring Diagram.

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK HO2S2 CONNECTOR FOR WATER

Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 5.

NG >> Repair or replace harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-850, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

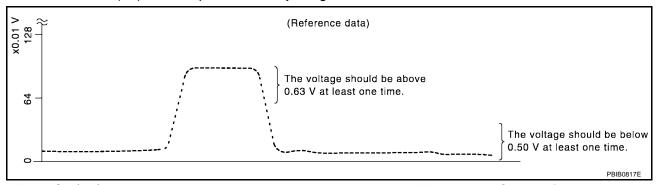
Component Inspection HEATED OXYGEN SENSOR 2

(P) With CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.

ACTIVE TE		
FUEL INJECTION	25 %	
MONITOR	₹	
ENG SPEED	XXX rpm	
HO2S2 (B1)	xxx v	
		PBIB1783E

EC


D

Е

Н

UBS00AR3

6. Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)" should be above 0.63V at least once when the "FUEL INJECTION" is +25%.

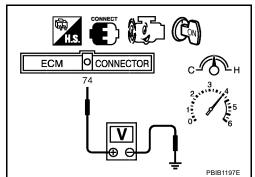
"HO2S2 (B1)" should be below 0.50V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed at between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 74 (HO2S2 signal) and engine ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.63V at least once during this procedure.
 - If the voltage is above 0.63V at step 6, step 7 is not necessary.
- Keep vehicle idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF (A/T models) 3rd gear position (M/T models).
 The voltage should be below 0.50V at least once during this procedure.
- 8. If NG, replace heated oxygen sensor 2.


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

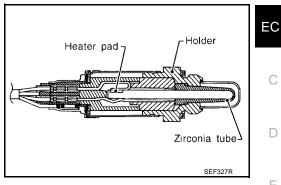
UBS00AR4

Refer to EM-108, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

DTC P0139 HO2S2

PFP:226A0

Component Description

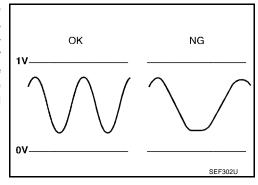

UBS00AR5

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the heated oxygen sensor 1 (A/T models ULEV and M/T models) or the air fuel ratio (A/F) sensor 1 (A/ T models except ULEV) are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.


CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONI	SPECIFICATION	
HO2S2 (B1)	Engine: After warming up		0 - 0.3V ←→ 0.6 - 1.0V
HO2S2 MNTR (B1)	Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	Revving engine from idle to 3,000 rpm quickly	$LEAN \longleftrightarrow RICH$

On Board Diagnosis Logic

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1 (A/T models ULEV and M/T models) or the air fuel ratio (A/F) sensor 1 (A/T models except ULEV). The oxygen storage capacity before the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the switching response of the sensor's voltage is faster than specified during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0139 0139	Heated oxygen sensor 2 circuit slow response	It takes more time for the sensor to respond between rich and lean than the specified time.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 Fuel pressure Injectors Intake air leaks

Е

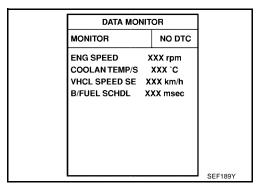
Α

UBSODARA

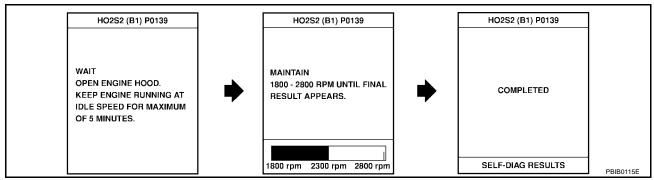
Н

DTC Confirmation Procedure

UBSOOARS


NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


(P) WITH CONSULT-II

For the best results, perform "DTC WORK SUPPORT" at a temperature of 0 to 30°C (32 to 86°F)

- 1. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.
- Make sure that "COOLANT TEMP/S" indicates more than 70°C (158°F). If not, warm up and go to next step when "COOLANT TEMP/S" indication reaches to 70°C (158°F).
- Select "HO2S2 (B1) P0139" of "HO2S2" in "DTC WORK SUP-PORT" mode with CONSULT-II.

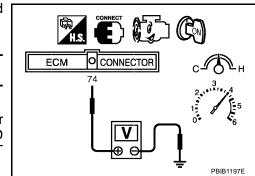
8. Start engine and following the instruction of CONSULT-II.

- 9. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If "NG" is displayed, refer to EC-879.
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- a. Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- b. Return to step 1.

Overall Function Check

UBS00AR9

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a DTC might not be confirmed.


WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 74 (HO2S2 signal) and engine ground.

DTC P0139 HO2S2

[QR25DE]

- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) A change of voltage should be more than 0.06V for 1 second during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF (A/T models) 3rd gear position (M/T models).
 - A change of voltage should be more than 0.06V for 1 second during this procedure.
- 8. If NG, go to EC-879, "Diagnostic Procedure".

Α

EC

С

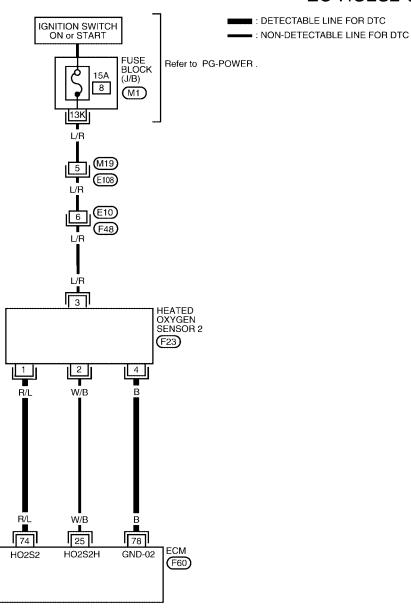
D

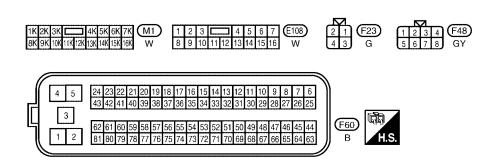
Е

F

G

Н


K


L

Wiring Diagram

UBS00ARA

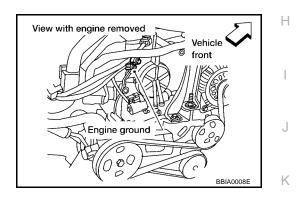
EC-HO2S2-01

BBWA0727E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TEDM				
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
74	R/L	Heated oxygen sensor 2	 [Engine is running] Warm-up condition Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

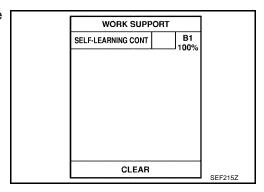
- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

EC

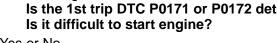
D

Е


Α

UBS00ARB

2. clear the self-learning data


(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure that DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to EC-704, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".
- 7. Make sure that DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected?

Yes >> Perform trouble diagnosis for DTC P0171 or P0172. Refer to EC-883 or EC-894.

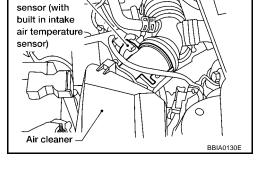
Nο >> GO TO 3.

$3.\,$ check ho2s2 ground circuit for open and short

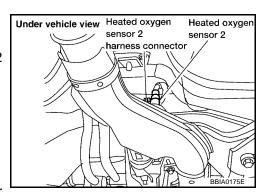
- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 2 harness connector.
- Disconnect ECM harness connector.
- 4. Check harness continuity between ECM terminal 78 and HO2S2 terminal 4.

Refer to Wiring Diagram.

Continuity should exist.


5. Also check harness for short to ground and short to power.

OK or NG


NG

OK >> GO TO 4.

> >> Repair open circuit or short to ground or short to power in harness or connectors.

Mass air flow

$4.\,$ CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 74 and HO2S2 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

Check harness continuity between ECM terminal 74 or HO2S2 terminal 1 and ground. Refer to Wiring Diagram.

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-881, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2

(P) With CONSULT-II

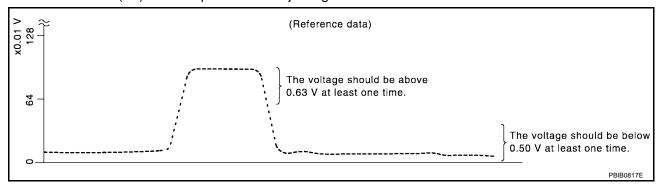
- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 1 minute.
- 5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.

ACTIVE TE		
FUEL INJECTION	25 %	
MONITOR	₹	
ENG SPEED	XXX rpm	
HO2S2 (B1)	xxx v	
		PBIB1783E

EC

D

Е


ı

UBS00ARC

M

EC-881

6. Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)" should be above 0.63V at least once when the "FUEL INJECTION" is +25%.

"HO2S2 (B1)" should be below 0.50V at least once when the "FUEL INJECTION" is -25%.

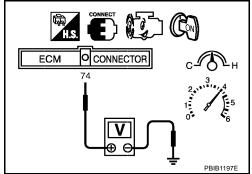
CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- Set voltmeter probes between ECM terminal 74 (HO2S2 signal) and engine ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.)

 The voltage should be above 0.63V at least once during this
 - If the voltage is above 0.63V at step 6, step 7 is not necessary.
- 7. Keep vehicle idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position.
 - The voltage should be below 0.50V at least once during this procedure.
- 8. If NG, replace heated oxygen sensor 2.


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

UBS00ARD

Refer to EM-108, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

[QR25DE]

DTC P0171 FUEL INJECTION SYSTEM FUNCTION

PFP:16600

On Board Diagnosis Logic

UBS00ARE

With the Air-Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensor 1 (A/T models ULEV and M/T models) or the air fuel ratio (A/F) sensor 1 (A/T models except ULEV). The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios.

In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

Sensor	Input Signal to ECM	ECM function	Actuator	
Heated oxygen sensor 1*1	Density of oxygen in exhaust gas	Fuel injec-	Fuel injectors	
Air fuel ratio (A/F) sensor 1*2	(Mixture ratio feedback signal)	tion control	i dei injectora	

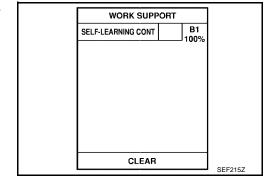
^{*1:} A/T models ULEV and M/T models.

^{*2:} A/T models except ULEV.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P0171 0171	Fuel injection system too lean	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too lean.) 	 Intake air leaks Heated oxygen sensor 1*1 Air fuel ratio (A/F) sensor 1*2 Injectors Exhaust gas leaks Incorrect fuel pressure Lack of fuel Mass air flow sensor Incorrect PCV hose connection

^{*1:} A/T models ULEV and M/T models

DTC Confirmation Procedure


UBS00ARI

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(I) WITH CONSULT-II

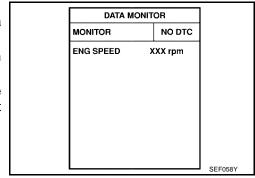
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-II.
- 4. Clear the self-learning control coefficient by touching "CLEAR".
- 5. Select "DATA MONITOR" mode with CONSULT-II.

EC

Α

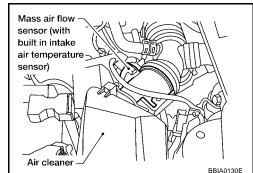
D

Е

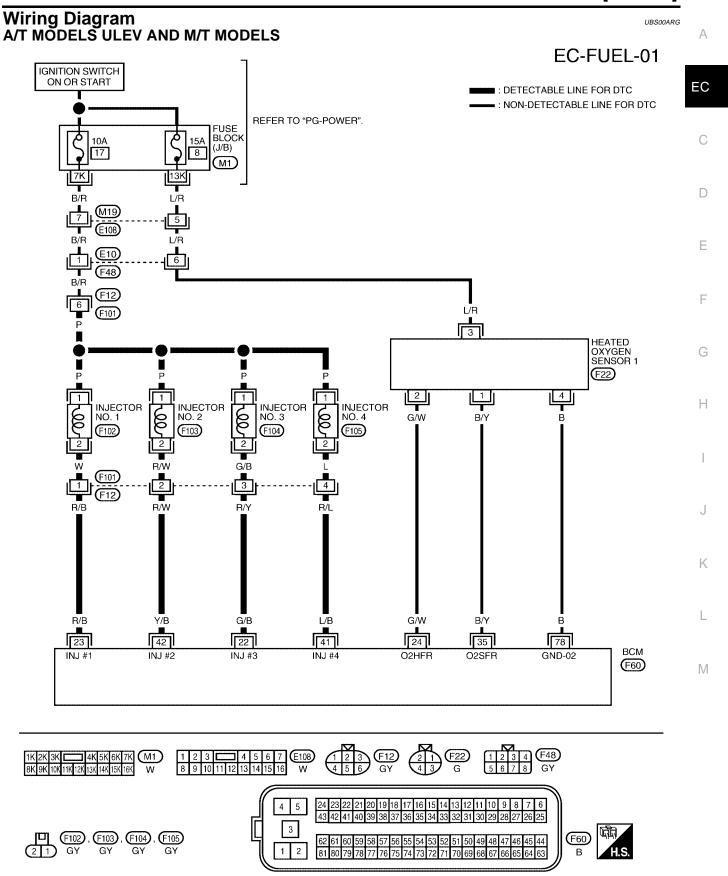

.

Н

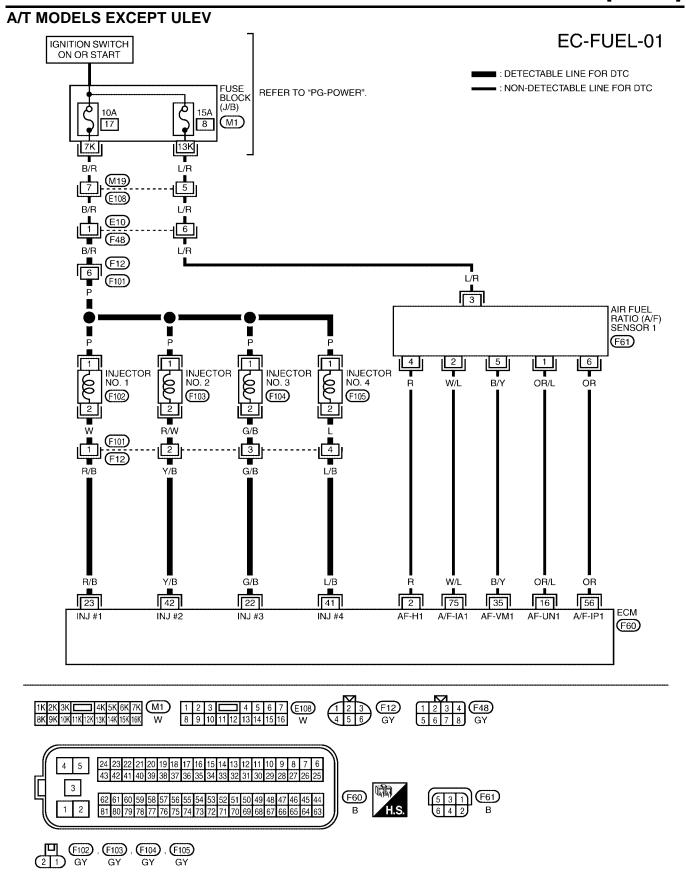
^{*2:} A/T models except ULEV


[QR25DE]

- Start engine again and let it idle for at least 10 minutes.
 The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to EC-887, "Diagnostic Procedure"
- 7. If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
- 8. Crank engine while depressing accelerator pedal. If engine starts, go to EC-887, "Diagnostic Procedure". If engine does not start, check for exhaust and intake air leak visually.


WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Select MODE 3 with GST. Make sure DTC P0102 is detected.
- 6. Select MODE 4 with GST and erase the DTC P0102.
- 7. Start engine again and let it idle at least 10 minutes.
- Select MODE 7 with GST. The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to <u>EC-</u> 887, "Diagnostic Procedure".

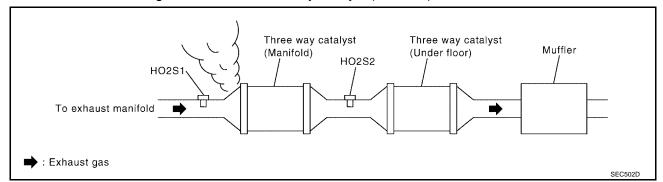


- 9. If it is difficult to start engine at step 7, the fuel injection system has a malfunction.
- 10. Crank engine while depressing accelerator pedal. If engine starts, go to <u>EC-887, "Diagnostic Procedure"</u>. If engine does not start, check exhaust and intake air leak visually.

[QR25DE]

BBWA0728E

BBWA0760E


[QR25DE]

Diagnostic Procedure A/T MODELS ULEV AND M/T MODELS

UBS00ARH

1. CHECK EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- Listen for an exhaust gas leak before three way catalyst (manifold).

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK FOR INTAKE AIR LEAK AND PCV HOSE

- Listen for an intake air leak after the mass air flow sensor.
- 2. Check PCV hose connection.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK HEATED OXYGEN SENSOR 1 CIRCUIT FOR OPEN AND SHORT

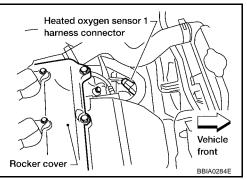
- Turn ignition switch OFF. 1.
- 2. Disconnect heated oxygen sensor 1 (HO2S1) harness connec-
- 3. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 35 and HO2S1 terminal 1.

Refer to Wiring Diagram.

Continuity should exist.

Check harness continuity between ECM terminal 35 or HO2S1 terminal 1 and ground.

Refer to Wiring Diagram.


Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

Α

D

Е

Н

[QR25DE]

4. CHECK FUEL PRESSURE

- 1. Release fuel pressure to zero. Refer to EC-687, "FUEL PRESSURE RELEASE".
- 2. Install fuel pressure gauge and check fuel pressure. Refer to EC-687, "Fuel Pressure Check".

At idling: Approximately 350 kPa (3.57 kg/cm², 51 psi)

OK or NG

OK >> GO TO 5.

NG >> Follow the instruction of FUEL PRESSURE CHECK.

5. CHECK MASS AIR FLOW SENSOR

(II) With CONSULT-II

1. Install all removed parts.

2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II.

1.4 - 4.0 g·m/sec: at idling 4.0 - 10 g·m/sec: at 2,500 rpm

With GST

1. Install all removed parts.

2. Check mass air flow sensor signal in MODE 1 with GST.

1.4 - 4.0 g·m/sec: at idling 4.0 - 10 g·m/sec: at 2,500 rpm

OK or NG

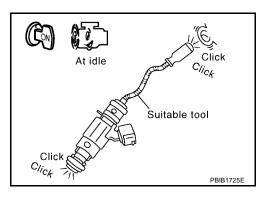
OK >> GO TO 6.

NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to <u>EC-807</u>, "DTC P0101 MAF SENSOR".

[QR25DE]

6. CHECK FUNCTION OF INJECTORS

(P) With CONSULT-II


- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Make sure that each circuit produces a momentary engine speed drop.

ACTIVE TES		
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		PBIB0133E

⋈ Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound.

Clicking noise should be heard.

OK or NG

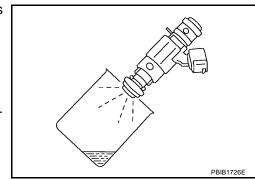
OK >> GO TO 7.

NG >> Perform trouble diagnosis for <u>EC-1258</u>, "INJECTOR CIRCUIT".

7. CHECK INJECTOR

- 1. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 2. Turn ignition switch OFF.
- 3. Disconnect injector harness connectors.
- 4. Remove injector gallery assembly. Refer to EM-116, "FUEL INJECTOR AND FUEL TUBE".

Keep fuel hose and all injectors connected to injector gallery.


- The injector harness connectors should remain connected.
- 5. Disconnect all ignition coil harness connectors.
- 6. Prepare pans or saucers under each injector.
- 7. Crank engine for about 3 seconds. Make sure that fuel sprays out from injectors.

Fuel should be sprayed evenly for each injector.

OK or NG

OK >> GO TO 8.

NG >> Replace injectors from which fuel does not spray out. Always replace O-ring with new ones.

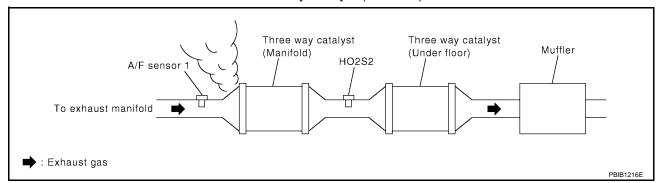
EC

D

Е

Н

8. CHECK INTERMITTENT INCIDENT


Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

A/T MODELS EXCEPT ULEV

1. CHECK EXHAUST AIR LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust air leak before three way catalyst (manifold).

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

$2. \ \mathsf{CHECK} \ \mathsf{FOR} \ \mathsf{INTAKE} \ \mathsf{AIR} \ \mathsf{LEAK} \ \mathsf{AND} \ \mathsf{PCV} \ \mathsf{HOSE}$

- 1. Listen for an intake air leak after the mass air flow sensor.
- Check PCV hose connection.

OK or NG

OK >> GO TO 3.

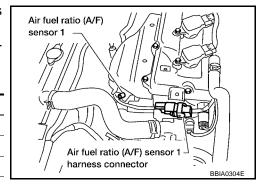
NG >> Repair or replace.

[QR25DE]

Α

EC

D


Е

Н

$3.\,$ check air fuel ratio (a/f) sensor 1 circuit for open and short

- 1. Turn ignition switch OFF.
- Disconnect A/F sensor 1 harness connector and ECM harness connector.
- Check harness continuity between ECM terminals and A/F sensor 1 terminals as follows.
 Refer to Wiring Diagram.

ECM terminal	A/F sensor 1
16	1
35	5
56	6
75	2

Continuity should exist.

4. Check harness continuity between ECM terminals 16, 35, 56, 75 and ground, or A/F sensor 1 terminals 1, 2, 5, 6 and ground.

Refer to Wiring Diagram.

Continuity should not exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK FUEL PRESSURE

- 1. Release fuel pressure to zero. Refer to <u>EC-687</u>, "<u>FUEL PRESSURE</u> RELEASE".
- Install fuel pressure gauge and check fuel pressure. Refer to <u>EC-687, "Fuel Pressure Check"</u>.

At idling: 350 kPa (3.57 kg/cm², 51 psi)

OK or NG

OK >> GO TO 5.

NG >> Follow the instruction of FUEL PRESSURE CHECK.

[QR25DE]

5. CHECK MASS AIR FLOW SENSOR

(II) With CONSULT-II

1. Install all removed parts.

2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II.

at idling: 1.4 - 4.0 g·m/sec at 2,500 rpm: 4.0 - 10.0 g·m/sec

With GST

1. Install all removed parts.

2. Check mass air flow sensor signal in MODE 1 with GST.

at idling: 1.4 - 4.0 g·m/sec at 2,500 rpm: 4.0 - 10.0 g·m/sec

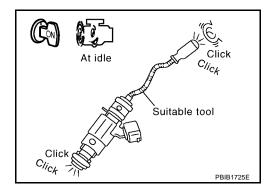
OK or NG

OK >> GO TO 6.

NG \rightarrow Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to <u>EC-807</u>.

6. CHECK FUNCTION OF INJECTORS

With CONSULT-II


1. Start engine.

- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Make sure that each circuit produces a momentary engine speed drop.

		1
ACTIVE TES		
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
	.]	PBIB0133E

Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound. Clicking noise should be heard.

OK or NG

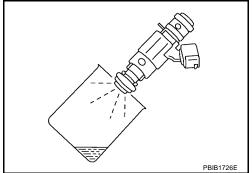
OK >> GO TO 7.

NG >> Perform trouble diagnosis for <u>EC-1258</u>, "INJECTOR CIRCUIT".

[QR25DE]

7. CHECK INJECTOR

- 1. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 2. Turn ignition switch OFF.
- 3. Disconnect all injector harness connectors.
- Remove injector gallery assembly. Refer to <u>EM-116</u>, <u>"FUEL INJECTOR AND FUEL TUBE"</u>.
 Keep fuel hose and all injectors connected to injector gallery.
 The injector harness connectors should remain connected.
- 5. Disconnect all ignition coil harness connectors.
- 6. Prepare pans or saucers under each injector.
- 7. Crank engine for about 3 seconds. Make sure that fuel sprays out from injectors.


Fuel should be sprayed evenly for each injector.

OK or NG

OK >> GO TO 8.

NG >

>> Replace injectors from which fuel does not spray out. Always replace O-ring with new ones.

8. CHECK INTERMITTENT INCIDENT

Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

EC

D

Е

F

G

K

L

[QR25DE]

DTC P0172 FUEL INJECTION SYSTEM FUNCTION

PFP:16600

On Board Diagnosis Logic

LIRSONAR

With the Air-Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensor 1 (A/T models ULEV and M/T models) or the air fuel ratio (A/F) sensor 1 (A/T models except ULEV). The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios. In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the

ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

Sensor	Input Signal to ECM	ECM function	Actuator
Heated oxygen sensor 1*1	Density of oxygen in exhaust gas	Fuel injec- tion control	Fuel injectors
Air fuel ratio (A/F) sensor 1*2	(Mixture ratio feedback signal)		

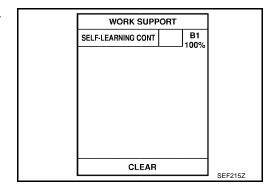
^{*1:} A/T models ULEV and M/T models

^{*2:} A/T models except ULEV

DTC No.	Trouble diag- nosis name	DTC detecting condition	Possible Cause
P0172 0172	Fuel injection system too rich	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too rich.) 	 Heated oxygen sensor 1*1 Air fuel ratio (A/F) sensor 1*2 Injectors Exhaust gas leaks Incorrect fuel pressure Mass air flow sensor

^{*1:} A/T models ULEV and M/T models.

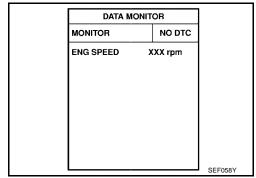
DTC Confirmation Procedure


UBS00ARJ

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II


- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-II.
- 4. Clear the self-learning control coefficient by touching "CLEAR".
- 5. Select "DATA MONITOR" mode with CONSULT-II.

^{*2:} A/T models except ULEV.


[QR25DE]

- Start engine again and let it idle for at least 10 minutes.
 The 1st trip DTC P0172 should be detected at this stage, if a malfunction exists. If so, go to EC-898, "Diagnostic Procedure"
- 7. If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
- 8. Crank engine while depressing accelerator pedal. If engine starts, go to EC-898, "Diagnostic Procedure". If engine does not start, remove ignition plugs and check for fouling, etc.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- Select MODE 3 with GST. Make sure DTC P0102 is detected.
- 6. Select MODE 4 with GST and erase the DTC P0102.
- 7. Start engine again and let it idle at least 10 minutes.
- 8. Select MODE 7 with GST. The 1st trip DTC P0172 should be detected at this stage, if a malfunction exists. If so, go to EC-898, "Diagnostic Procedure".

- 9. If it is difficult to start engine at step 7, the fuel injection system has a malfunction.
- Crank engine while depressing accelerator pedal.
 If engine starts, go to <u>EC-898</u>, "<u>Diagnostic Procedure</u>". If engine does not start, remove ignition plugs and check for fouling, etc.

Α

EC

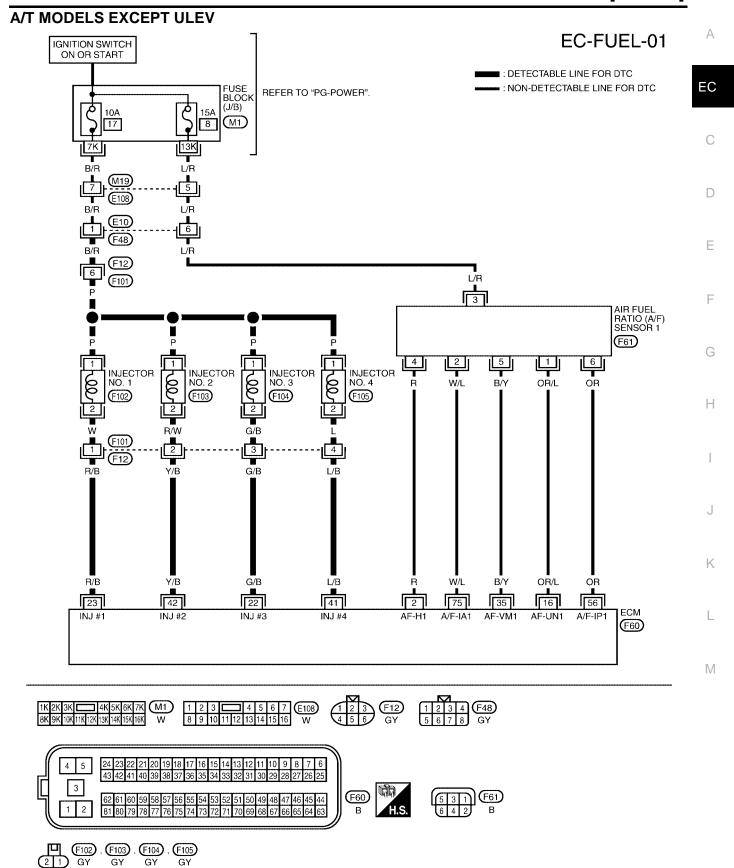
 $^{\prime}$

Е

F

G

Н

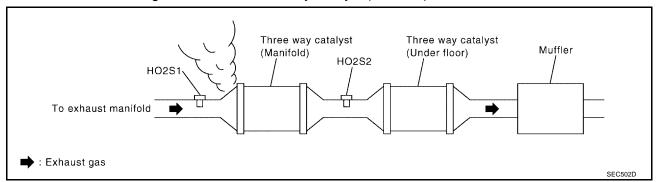

J

K

ı

Wiring Diagram UBS00ARK A/T MODELS ULEV AND M/T MODELS EC-FUEL-01 IGNITION SWITCH ON OR START : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC REFER TO "PG-POWER". **FUSE** BLOCK (J/B) 17 8 (M1)B/R (M19) E108 **E10** (F48) B/R 6 L/R (F101) 3 HEATED OXYGEN SENSOR 1 (F22) 2 4 1 INJECTOR NO. 2 INJECTOR NO. 4 INJECTOR NO. 1 INJECTOR NO. 3 G/W B/Y В (F102) (F103) (F104) (F105) R/W G/B (F101) 3 (F12) R/B G/B L/B G/W Y/B B/Y 23 22 24 35 42 41 78 всм (F60) 1K 2K 3K 4K 5K 6K 7K M1 8K 9K 10K 11K 12K 13K 14K 15K 16K W 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 , (F103), (F104), (F105) (F60)

[QR25DE]


BBWA0760E

Diagnostic Procedure A/T MODELS ULEV AND M/T MODELS

UBS00ARL

1. CHECK EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust gas leak before three way catalyst (manifold).

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK FOR INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

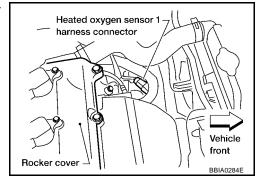
3. CHECK HEATED OXYGEN SENSOR 1 CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect heated oxygen sensor 1 (HO2S1) harness connector.
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between ECM terminal 35 and HO2S1 terminal 1.

Refer to Wiring Diagram.

Continuity should exist.

 Check harness continuity between ECM terminal 35 or HO2S1 terminal 1 and ground. Refer to Wiring Diagram.


Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

[QR25DE]

4. CHECK FUEL PRESSURE

1. Release fuel pressure to zero. Refer to EC-687, "FUEL PRESSURE RELEASE".

2. Install fuel pressure gauge and check fuel pressure. Refer to EC-687, "Fuel Pressure Check".

At idling: 350 kPa (3.57 kg/cm², 51 psi)

OK or NG

OK >> GO TO 5.

NG >> Follow the instruction of FUEL PRESSURE CHECK.

5. CHECK MASS AIR FLOW SENSOR

(P) With CONSULT-II

1. Install all removed parts.

2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II.

1.0 - 4.0 g·m/sec: at idling 4.0 - 10 g·m/sec: at 2,500 rpm

With GST

1. Install all removed parts.

2. Check mass air flow sensor signal in MODE 1 with GST.

1.4 - 4.0 g·m/sec: at idling 4.0 - 10 g·m/sec: at 2,500 rpm

OK or NG

OK >> GO TO 6.

NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-807, "DTC P0101 MAF SENSOR".

D

Е

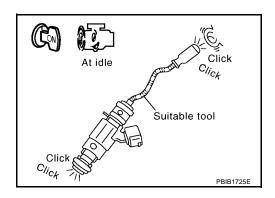
EC

Н

K

6. CHECK FUNCTION OF INJECTORS

(P) With CONSULT-II


- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Make sure that each circuit produces a momentary engine speed drop.

ACTIVE TES	·T	
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		PBIB0133E

Without CONSULT-II

- Start engine.
- 2. Listen to each injector operating sound.

Clicking noise should be heard.

OK or NG

OK >> GO TO 7.

NG >> Perform trouble diagnosis for <u>EC-1258</u>, "INJECTOR CIRCUIT".

7. CHECK INJECTOR

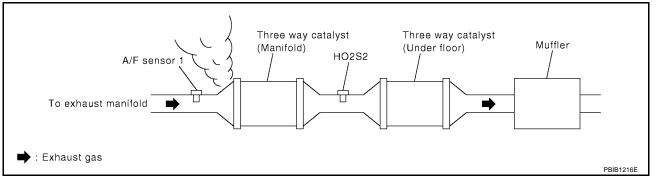
- Remove injector assembly. Refer to <u>EM-116, "FUEL INJECTOR AND FUEL TUBE"</u>. Keep fuel hose and all injectors connected to injector gallery.
- 2. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 3. Disconnect injector harness connectors.
 - The injector harness connectors should remain connected.
- 4. Disconnect all ignition coil harness connectors.
- 5. Prepare pans or saucers under each injectors.
- Crank engine for about 3 seconds. Make sure fuel does not drip from injector.

OK or NG

OK (Does not drip.)>>GO TO 8.

NG (Drips.)>>Replace the injectors from which fuel is dripping. Always replace O-ring with new one.

8. CHECK INTERMITTENT INCIDENT


Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

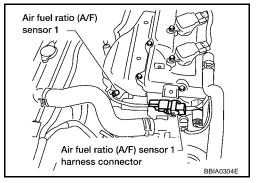
>> INSPECTION END

A/T MODELS EXCEPT ULEV

1. CHECK FOR EXHAUST AIR LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust air leak before three way catalyst (manifold).

OK or NG


OK >> GO TO 2.

NG >> Repair or replace.

2. Check air fuel ratio (a/f) sensor 1 circuit for open and short

- 1. Turn ignition switch OFF.
- Disconnect A/F sensor 1 harness connector and ECM harness connector.
- Check harness continuity between ECM terminals and A/F sensor 1 terminals as follows.
 Refer to Wiring Diagram.

ECM terminal	A/F sensor 1
16	1
35	5
56	6
75	2

Continuity should exist.

4. Check harness continuity between ECM terminals 16, 35, 56, 75 and ground, or A/F sensor 1 terminals 1, 2, 5, 6 and ground.

Refer to Wiring Diagram.

Continuity should not exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

Α

D

Е

F

Н

I

J

Κ

M

DTC P0172 FUEL INJECTION SYSTEM FUNCTION

[QR25DE]

3. CHECK FUEL PRESSURE

- 1. Release fuel pressure to zero. Refer to <u>EC-687</u>.
- 2. Install fuel pressure gauge and check fuel pressure.

```
At idling: Approximately 350 kPa (3.57 kg/cm<sup>2</sup>, 51 psi)
```

OK or NG

```
OK >> GO TO 5.
NG >> GO TO 4.
```

4. DETECT MALFUNCTIONING PART

Check the following.

Fuel pump and circuit (Refer to <u>EC-1264</u>.)

OK or NG

OK >> Replace fuel pressure regulator.

NG >> Repair or replace.

5. CHECK MASS AIR FLOW SENSOR

With CONSULT-II

- 1. Install all removed parts.
- 2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II.

at idling : 1.4 - 4.0 g·m/sec at 2,500 rpm : 5.0 - 10.0 g·m/sec

With GST

- 1. Install all removed parts.
- 2. Check mass air flow sensor signal in MODE 1 with GST.

at idling : 1.4 - 4.0 g·m/sec at 2,500 rpm : 5.0 - 10.0 g·m/sec

OK or NG

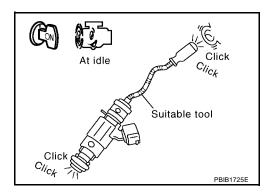
OK >> GO TO 6.

NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to <u>EC-807</u>.

DTC P0172 FUEL INJECTION SYSTEM FUNCTION

[QR25DE]

6. CHECK FUNCTION OF INJECTORS


(P) With CONSULT-II

- Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Make sure that each circuit produces a momentary engine speed drop.

ACTIVE TEST		
POWER BALANCE		
MONITOR	1	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		PBIB0133E

⋈ Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound. Clicking noise should be heard.

OK or NG

>> GO TO 7. OK

NG >> Perform trouble diagnosis for EC-1258, "INJECTOR CIRCUIT" .

7. CHECK INJECTOR

- Remove injector assembly. Refer to EM-116, "FUEL INJECTOR AND FUEL TUBE". 1. Keep fuel hose and all injectors connected to injector gallery.
- 2. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- Disconnect all injector harness connectors. The injector harness connectors should remain connected.
- 4. Disconnect all ignition coil harness connectors.
- 5. Prepare pans or saucers under each injectors.
- 6. Crank engine for about 3 seconds. Make sure fuel does not drip from injector.

OK or NG

OK (Does not drip.)>>GO TO 8.

NG (Drips.)>>Replace the injectors from which fuel is dripping. Always replace O-ring with new one.

EC-903

8. CHECK INTERMITTENT INCIDENT

Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

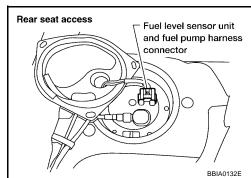
>> INSPECTION END

EC

D

Е

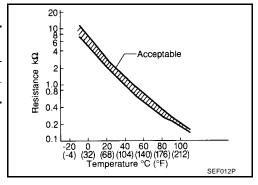
Н


DTC P0181 FTT SENSOR

PFP:22630

UBS00ARM

Component Description


The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Fluid temperature °C (°F)	Voltage* V	Resistance $k\Omega$
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} These data are reference values and are measured between ECM terminal 107 (Fuel tank temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may damage the ECM's transistor. Use ground other than ECM, such as ground.

On Board Diagnosis Logic

UBS00ARN

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0181 0181	Fuel tank temperature sensor circuit range/ performance	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signals from engine coolant temperature sensor and intake air temperature sensor.	Harness or connectors (The sensor circuit is open or shorted) Fuel tank temperature sensor

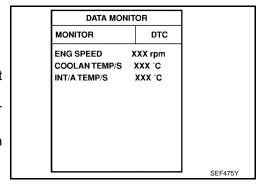
DTC Confirmation Procedure

UBS00ARO

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II


- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 10 seconds.

 If the result is NG, go to <u>EC-907, "Diagnostic Procedure"</u>.

 If the result is OK, go to following step.
- 4. Check "COOLAN TEMP/S" value.
 If the "COOLANT TEMP/S" is less than 60°C (140°F), the result

If the "COOLANT TEMP/S" is above 60°C (140°F), go to the following step.

- 5. Cool engine down until "COOLAN TEMP/S" signal is less than 60°C (140°F).
- 6. Wait at least 10 seconds.
- If 1st trip DTC is detected, go to <u>EC-907</u>, "<u>Diagnostic Procedure</u>".

DTC P0181 FTT SENSOR

[QR25DE]

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

С

D

Е

F

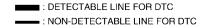
G

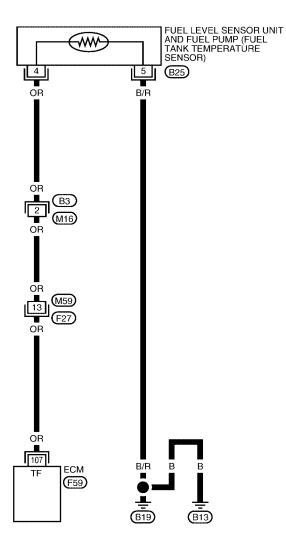
Н

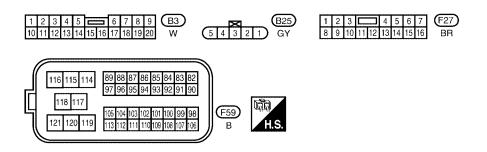
ı

J

Κ

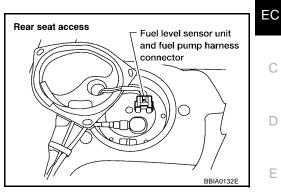

L


M


Wiring Diagram

UBS00ARP

EC-FTTS-01

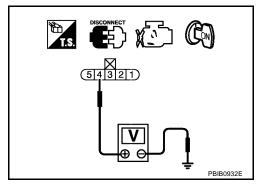

BBWA0285E

[QR25DE]

Diagnostic Procedure

1. CHECK FUEL TANK TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- 2. Disconnect "fuel level sensor unit and fuel pump" harness connector.
- 3. Turn ignition switch ON.



Check voltage between "fuel level sensor unit and fuel pump" terminal 4 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness connectors B3, M16
- Harness for open or short between ECM and "fuel level sensor unit and fuel pump"

>> Repair harness or connector.

$3.\,$ check fuel tank temperature sensor ground circuit for open and short

- Turn ignition switch OFF.
- Check harness continuity between "fuel level sensor unit and fuel pump" terminal 5 and body ground. 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

>> Repair open circuit or short to power in harness or connectors. NG

4. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to, EC-908, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace fuel level sensor unit.

Α

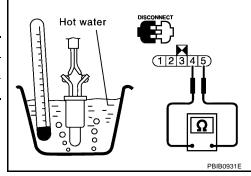
Е

Н

M

5. CHECK INTERMITTENT INCIDENT

Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection FUEL TANK TEMPERATURE SENSOR

UBS00ARR

Check resistance by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance kΩ
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

Removal and Installation FUEL TANK TEMPERATURE SENSOR

UBS00ARS

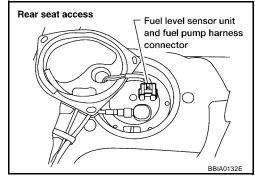
Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

DTC P0182, P0183 FTT SENSOR

PFP:22630

Component Description

UBS00ART


Α

EC

Е

Н

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Fluid temperature °C (°F)	Voltage* V	Resistance $k\Omega$
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} These data are reference values and are measured between ECM terminal 107 (Fuel tank temperature sensor) and ground.

20 | Acceptable |

CALITION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may damage the ECM's transistor. Use ground other than ECM, such as ground.

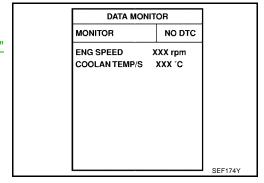
On Board Diagnosis Logic

UBS00ARU

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0182 0182	Fuel tank temperature sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0183 0183	Fuel tank temperature sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Fuel tank temperature sensor

DTC Confirmation Procedure

UBS00ARV

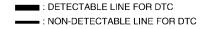

M

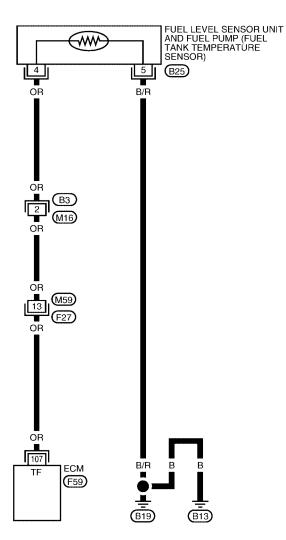
NOTE:

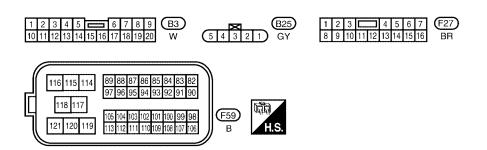
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(I) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-911, "Diagnostic Procedure"


WITH GST


Follow the procedure "WITH CONSULT-II" above.


Wiring Diagram

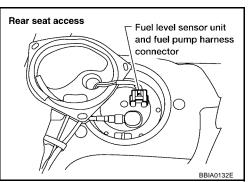
UBS00ARW

EC-FTTS-01

BBWA0285E

[QR25DE]

Diagnostic Procedure

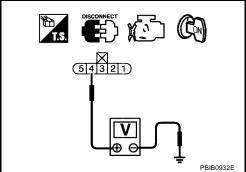

1. CHECK FUEL TANK TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

Α

EC

Е

- Turn ignition switch OFF.
- 2. Disconnect "fuel level sensor unit and fuel pump" harness connector.
- 3. Turn ignition switch ON.



Check voltage between "fuel level sensor unit and fuel pump" terminal 4 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness connectors B3, M16
- Harness for open or short between ECM and "fuel level sensor unit and fuel pump"

>> Repair harness or connector.

$3.\,$ check fuel tank temperature sensor ground circuit for open and short

- Turn ignition switch OFF.
- Check harness continuity between "fuel level sensor unit and fuel pump" terminal 5 and body ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to power in harness or connectors.

4. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to, EC-912, "Component Inspection".

OK or NG

OK >> GO TO 5.

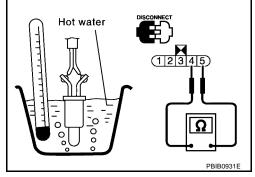
NG >> Replace "fuel level sensor unit and fuel pump".

Н

5. CHECK INTERMITTENT INCIDENT

Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection FUEL TANK TEMPERATURE SENSOR

UBS00ARY

Check resistance by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance kΩ
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

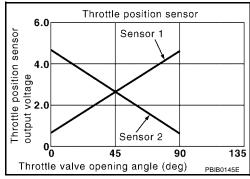
If NG, replace "fuel level sensor unit and fuel pump".

Removal and Installation FUEL TANK TEMPERATURE SENSOR

UBS00ARZ

Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY" .

DTC P0222, P0223 TP SENSOR


PFP:16119

UBS00AS0

Component Description

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

UBS00AS1

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL SEN1	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	More than 0.36V
THRTL SEN2*1	Shift lever: D (A/T) 1ST (M/T)	Accelerator pedal: Fully depressed	Less than 4.75V

^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

UBS00AS2

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0222 0222	Throttle position sensor 1 circuit low input	An excessively low voltage from the TP sensor 1 is sent to ECM.	Harness or connectors (The TP sensor 1 circuit is open or
P0223 0223	Throttle position sensor 1 circuit high input	An excessively high voltage from the TP sensor 1 is sent to ECM.	shorted.) • Electric throttle control actuator (TP sensor 1)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

EC

Α

С

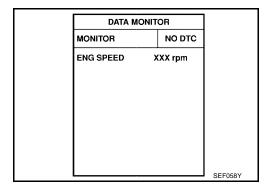
Е

-

DTC Confirmation Procedure

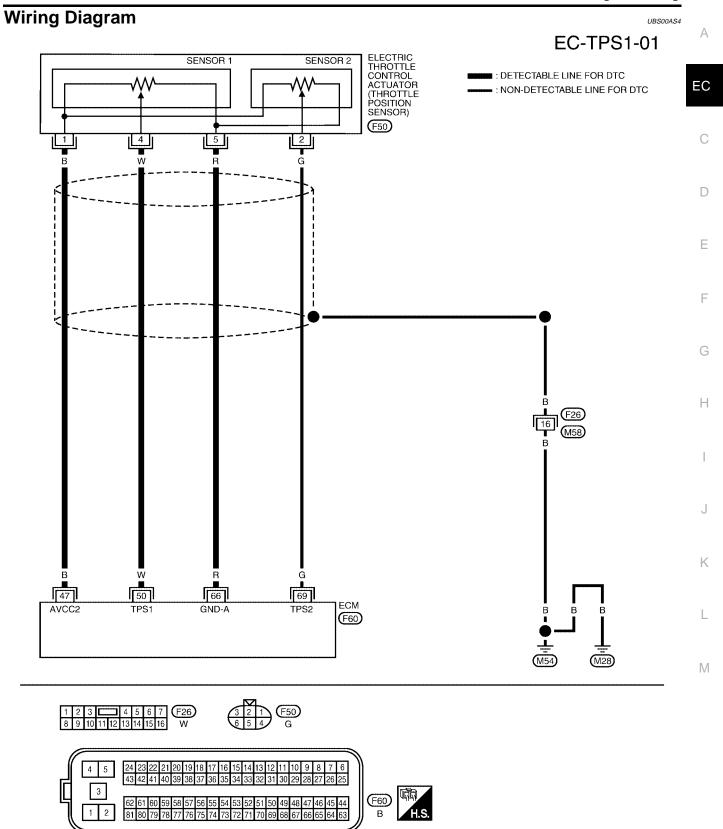
UBS00AS3

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.


(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-916, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

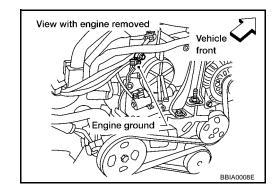
BBWA0868E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

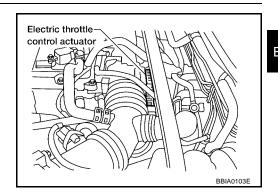
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
47	В	Sensor power supply (Throttle position sensor)	[Ignition switch: ON]	Approximately 5V
		Throttle position concerd	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully released 	More than 0.36V
50	50 W Throttle position sensor 1	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully depressed 	Less than 4.75V	
66	R	Sensor ground (Throttle position sensor)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
69	G	Throttle position sensor 2	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully released 	Less than 4.75V
			 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully depressed 	More than 0.36V


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

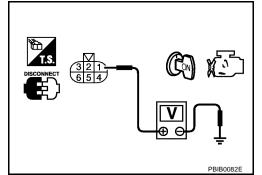
UBS00AS5


- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK THROTTLE POSITION SENSOR 1 POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.


Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK THROTTLE POSITION SENSOR 1 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 66 and electric throttle control actuator terminal 5. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

$4.\,$ check throttle position sensor 1 input signal circuit for open and short

- Disconnect ECM harness connector. 1.
- Check harness continuity between ECM terminal 50 and electric throttle control actuator terminal 4. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK THROTTLE POSITION SENSOR

Refer to EC-918, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

EC-917

EC

Α

Е

M

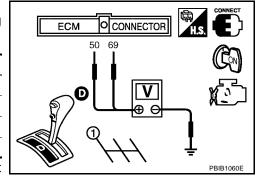
6. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform <u>EC-684</u>, "Throttle Valve Closed Position Learning".
- 3. Perform EC-685, "Idle Air Volume Learning".

>> INSPECTION END

7. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection THROTTLE POSITION SENSOR

UBS00AS6

- 1. Reconnect all harness connectors disconnected.
- 2. Perform EC-684, "Throttle Valve Closed Position Learning".
- 3. Turn ignition switch ON.
- Set selector lever to D position (A/T) or 1st position (M/T).
- Check voltage between ECM terminals 50 (TP sensor 1 signal),
 (TP sensor 2 signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
69 (Throttle position sensor 2)	Fully released	Less than 4.75V
	Fully depressed	More than 0.36V

- If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform EC-684, "Throttle Valve Closed Position Learning".
- 8. Perform <u>EC-685, "Idle Air Volume Learning"</u>.

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

UBS00AS7

Refer to EM-103, "INTAKE MANIFOLD".

DTC P0300 - P0304 NO. 4 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MIS-

[QR25DE]

DTC P0300 - P0304 NO. 4 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MIS-**FIRE**

On Board Diagnosis Logic

UBS00AS8

EC

D

Е

Н

When a misfire occurs, engine speed will fluctuate. If the engine speed fluctuates enough to cause the crankshaft position (CKP) sensor (POS) signal to vary, ECM can determine that a misfire is occurring.

Sensor	Input Signal to ECM	ECM function
Crankshaft position sensor (POS)	Engine speed	On board diagnosis of misfire

The misfire detection logic consists of the following two conditions.

One Trip Detection Logic (Three Way Catalyst Damage)

On the first trip that a misfire condition occurs that can damage the three way catalyst (TWC) due to overheating, the MIL will blink.

When a misfire condition occurs, the ECM monitors the CKP sensor signal every 200 engine revolutions for a change.

When the misfire condition decreases to a level that will not damage the TWC, the MIL will turn off.

If another misfire condition occurs that can damage the TWC on a second trip, the MIL will blink.

When the misfire condition decreases to a level that will not damage the TWC, the MIL will remain on. If another misfire condition occurs that can damage the TWC, the MIL will begin to blink again.

Two Trip Detection Logic (Exhaust quality deterioration)

For misfire conditions that will not damage the TWC (but will affect vehicle emissions), the MIL will only light when the misfire is detected on a second trip. During this condition, the ECM monitors the CKP sensor signal every 1,000 engine revolutions.

A misfire malfunction can be detected on any one cylinder or on multiple cylinders.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0300 0300	Multiple cylinder misfire detected	Multiple cylinder misfire.	Improper spark plug Insufficient compression
P0301 0301	No.1 cylinder misfire detected	No. 1 cylinder misfires.	Incorrect fuel pressure The injector circuit is open or shorted
P0302 0302	No. 2 cylinder misfire detected	No. 2 cylinder misfires.	Injectors Intake air leak
P0303 0303	No. 3 cylinder misfire detected	No. 3 cylinder misfires.	The ignition signal circuit is open or shorted
P0304	No. 4 cylinder misfire		Lack of fuelDrive plate
0304	detected	No. 4 cylinder misfires.	 Heated oxygen sensor 1*1 Air fuel ratio (A/F) sensor 1*2 Incorrect PCV hose connection

^{*1:} A/T models ULEV and M/T models.

DTC Confirmation Procedure

LIBSOOB.IO

Always drive vehicle in safe manner according to traffic conditions and obey all traffic laws when driving.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

^{*2:} A/T models except ULEV.

DTC P0300 - P0304 NO. 4 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MISFIRE

[QR25DE]

(P) WITH CONSULT-II

- 1. Turn ignition switch ON, and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Restart engine and let it idle for about 15 minutes.
- 5. If 1st trip DTC is detected, go to EC-920, "Diagnostic Procedure"

NOTE:

If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for a certain time. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	gine speed Engine speed in the freeze frame data \pm 400 rpm	
Vehicle speed in the feaze frame data ± 10 km/h (5 MPH)		
Engine coolant temperature	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).	
(T) condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).	

The time to driving varies according to the engine speed in the freeze frame data.

Engine speed	Time
Around 1,000 rpm	Approximately 10 minutes
Around 2,000 rpm	Approximately 5 minutes
More than 3,000 rpm	Approximately 3.5 minutes

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

1. CHECK FOR INTAKE AIR LEAK AND PCV HOSE

- 1. Start engine and run it at idle speed.
- 2. Listen for the sound of the intake air leak.
- 3. Check PCV hose connection.

OK or NG

OK >> GO TO 2.

NG >> Discover air leak location and repair.

2. CHECK FOR EXHAUST SYSTEM CLOGGING

Stop engine and visually check exhaust tube, three way catalyst (manifold) and muffler for dents. OK or NG

OK >> GO TO 3.

NG >> Repair or replace it.

DATA MONITOR

MONITOR

NO DTC

ENG SPEED XXX rpm

COOLAN TEMP/S XXX °C

VHCL SPEED SE XXX km/h

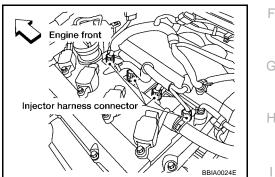
B/FUEL SCHDL XXX msec

UBS00ASA

DTC P0300 - P0304 NO. 4 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MIS-

[QR25DE]

3. PERFORM POWER BALANCE TEST


(II) With CONSULT-II

- 1. Perform "POWER BALANCE" in "ACTIVE TEST" mode.
- 2. Is there any cylinder which does not produce a momentary engine speed drop?

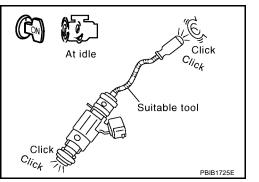
ACTIVE TE		
POWER BALANCE		
MONITOR	}	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxxv	
		PBIB0133E

── Without CONSULT-II

When disconnecting each injector harness connector one at a time, is there any cylinder which does not produce a momentary engine speed drop?

Yes or No

>> GO TO 4. Yes


>> GO TO 7. No

4. CHECK INJECTOR

Does each injector make an operating sound at idle? Yes or No

Yes >> GO TO 5.

No >> Check injector(s) and circuit(s). Refer to EC-578.

EC

D

Е

Н

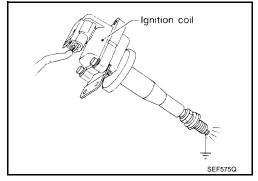
K

M

DTC P0300 - P0304 NO. 4 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MISFIRE

[QR25DE]

5. CHECK IGNITION SPARK


- 1. Remove ignition coil assembly from rocker cover.
- 2. Remove spark plug from ignition coil assembly.
- 3. Connect a known-good spark plug to ignition coil.
- 4. Place and of spark plug against a suitable ground crank engine.
- 5. Check for spark.

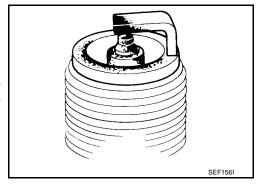
OK or NG

OK >> GO TO 6.

NG

>> Check ignition coil, power transistor and their circuits. Refer to <u>EC-1237</u>, "IGNITION SIGNAL".

6. CHECK SPARK PLUGS


Check the spark plugs and check for fouling, etc.

OK or NG

OK >> GO TO 7.

NG

>> Repair or replace spark plug (s) with standard type one (s). For spark plug type ignition coil. Refer to MA-28, "Changing Spark Plugs (Double Platinum - Tipped Type)".

7. CHECK COMPRESSION PRESSURE

Check compression pressure.

Refer to EM-143, "CHECKING COMPRESSION PRESSURE".

 Standard:
 1,190 kPa (12,1 kg/cm², 172 psi)/300 rpm

 Minimum:
 990 kPa (10,1 kg/cm², 144 psi)/300 rpm

 Difference between each cylinder:
 98 kPa (1.0 kg/cm², 14 psi)/300 rpm

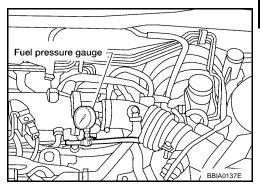
OK or NG

OK >> GO TO 8.

NG >> Check pistons, piston rings, valves, valve seats and cylinder head gaskets.

DTC P0300 - P0304 NO. 4 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MISFIRE

[QR25DE]


8. CHECK FUEL PRESSURE

- 1. Install all removed parts.
- 2. Release fuel pressure to zero. Refer to EC-687, "FUEL PRESSURE RELEASE" .
- 3. Install fuel pressure gauge and check fuel pressure.

At idle: Approx. 350 kPa (3.57 kg/cm², 51 psi)

OK or NG

OK >> GO TO 10. NG >> GO TO 9.

9. DETECT MALFUNCTIONING PART

Check the following.

- Fuel pump and circuit (Refer to EC-1264, "FUEL PUMP CIRCUIT" .)
- Fuel pressure regulator (Refer to <u>FL-3</u>.)
- Fuel lines (Refer to MA-25, "Checking Fuel Lines" .)
- Fuel filter for clogging

>> Repair or replace.

10. CHECK IGNITION TIMING

Perform EC-723, "Basic Inspection".

Items	Specifications		
Target idle speed	A/T	700 ± 50 rpm (in P or N position)	
raiget luie speed	M/T	700 ± 50 rpm	
Ignition timing	A/T	15 ± 5° BTDC (in P or N position)	
	M/T	15 ± 5° BTDC	

OK or NG

OK >> GO TO 11 (A/T models ULEV and M/T models).

>> GO TO 12 (A/T models except ULEV).

NG >> Adjust ignition timing.

11. CHECK HEATED OXYGEN SENSOR 1

Refer to EC-850, "Component Inspection".

OK or NG

OK >> GO TO 14.

NG >> Replace heated oxygen sensor 1.

EC

Е

D

Г

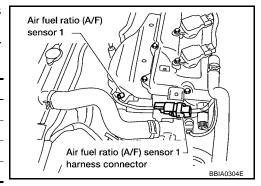
G

Н

J

<

L


M

[QR25DE]

12. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector and A/F sensor 1 harness connector.
- 3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

ECM terminal	A/F sensor 1 terminal
16	1
35	5
56	6
75	2

Continuity should exist.

4. Check harness continuity between ECM terminals 16, 35, 56, 75 or A/F sensor 1 terminals 1, 2, 5, 6 and ground. Refer to Wiring Diagram.

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 13.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

13. CHECK A/F SENSOR 1 HEATER

Refer to EC-1033, "Component Inspection".

OK or NG

OK >> GO TO 14.

NG >> Replace A/F sensor 1.

14. CHECK MASS AIR FLOW SENSOR

With CONSULT-II

Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II.

1.4 - 4.0 g·m/sec: at idling 4.0 - 10.0 g·m/sec: at 2,500 rpm

With GST

Check mass air flow sensor signal in MODE 1 with GST.

1.4 - 4.0 g·m/sec: at idling 4.0 - 10.0 g·m/sec: at 2,500 rpm

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

15. CHECK CONNECTORS

Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds.

Refer to EC-807, "DTC P0101 MAF SENSOR", EC-815, "DTC P0102, P0103 MAF SENSOR" and EC-361, "DTC P1102 MAF SENSOR".

OK or NG

OK >> GO TO 16.

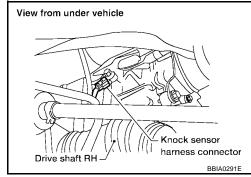
NG >> Repair or replace it.

DTC P0300 - P0304 NO. 4 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MISFIRE

[QR25DE]

 \mathbb{N}

[&\\Z3DL]	
16. CHECK SYMPTOM MATRIX CHART	А
Check items on the rough idle symptom in EC-728, "Symptom Matrix Chart".	, ,
<u>OK or NG</u> OK >> GO TO 17.	EC
NG >> Repair or replace.	
17. ERASE THE 1ST TRIP DTC	С
Some tests may cause a 1st trip DTC to be set. Erase the 1st trip DTC from the ECM memory after performing the tests. Refer to EC-704 , "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION" .	D
>> GO TO 18.	Е
18. CHECK INTERMITTENT INCIDENT	_
Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .	F
>> INSPECTION END	
	G
	Н
	I
	J
	Κ
	L


DTC P0327, P0328 KS

PFP:22060

Component Description

UBS00ASB

The knock sensor is attached to the cylinder block. It senses engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM.

On Board Diagnosis Logic

UBS00ASC

The MIL will not light up for these diagnoses.

DTC No.	Trouble Diagnosis Name	DTC Detected Condition	Possible Cause
P0327 0327	Knock sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0328 0328	Knock sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Knock sensor

DTC Confirmation Procedure

UBS00ASD

NOTE:

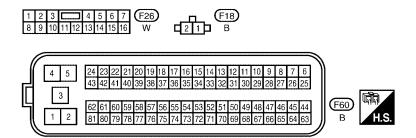
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(II) WITH CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and run it for at least 5 seconds at idle speed.
- 3. If 1st trip DTC is detected, go to EC-928, "Diagnostic Procedure"


DATA MONITOR
MONITOR NO DTC
ENG SPEED XXX rpm

SEF058Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

[QR25DE] **Wiring Diagram** Α EC-KS-01 (F60) : DETECTABLE LINE FOR DTC EC : NON-DETECTABLE LINE FOR DTC 15 W С D Е Н 2 KNOCK SENSOR F18 M

BBWA0736E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
15	W	Knock sensor	[Engine is running] ● Idle speed	Approximately 2.5V

Diagnostic Procedure

UBS00ASF

1. CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT-I

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Check resistance between ECM terminal 15 and engine ground. Refer to Wiring Diagram.

NOTE:

It is necessary to use an ohmmeter which can measure more than 10 M Ω .

Resistance: Approximately 530 - 590k Ω [at 20°C (68°F)]

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 2.

2. CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT-II

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector and knock sensor harness connector.
- 3. Check harness continuity between knock sensor terminal 1 and ECM terminal 15.

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power

in harness or connectors.

View from under vehicle Knock sensor harness connector BBIA0291E

3. CHECK KNOCK SENSOR

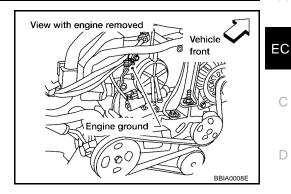
Refer to EC-929, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace knock sensor.

Α


D

Е

Н

4. RETIGHTEN GROUND SCREWS

Loosen and retighten engine ground screws.

>> GO TO 5.

5. CHECK INTERMITTENT INCIDENT

Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

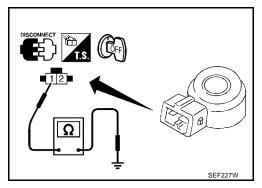
>> INSPECTION END

Component Inspection KNOCK SENSOR

Use an ohmmeter which can measure more than 10 M Ω .

- Disconnect knock sensor harness connector.
- Check resistance between terminal 1 and ground.

Resistance: 530 - 590 k Ω [at 20°C (68°F)]


CAUTION:

Discard any knock sensors that have been dropped or physically damaged. Use only new ones.

Refer to EM-159, "CYLINDER BLOCK".

Removal and Installation

KNOCK SENSOR

UBS00ASH

M

UBS00ASG

EC-929

DTC P0335 CKP SENSOR (POS)

PFP:23731

UBS00ASI

Component Description

The crankshaft position sensor (POS) is located on the oil pan facing the gear teeth (cogs) of the signal plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet and Hall IC.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

CONSULT-II Reference Value in Data Monitor Mode

UBS00ASJ

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
ENG SPEED	Tachometer: Connect	Almost the same speed as the
LING OF LLD	Run engine and compare with the tachometer indication.	tachometer indication.

On Board Diagnosis Logic

UBS00ASK

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0335 0335	Crankshaft position sensor (POS) circuit	 The crankshaft position sensor (POS) signal is not detected by the ECM during the first few seconds of engine cranking. The proper pulse signal from the crankshaft position sensor (POS) is not sent to ECM while the engine is running. The crankshaft position sensor (POS) signal is not in the normal pattern during engine running. 	 Harness or connectors (The sensor circuit is open or shorted) Crankshaft position sensor (POS) Signal plate

DTC Confirmation Procedure

UBS00ASL

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

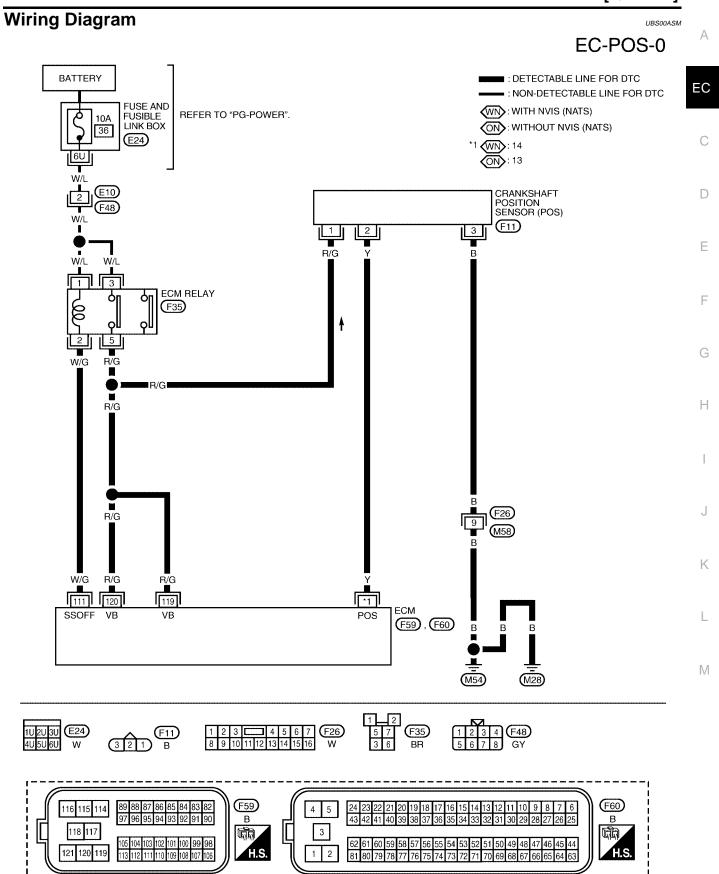
Before performing the following procedure, confirm that battery voltage is more than 10,5V with ignition switch ON.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.
- 3. If 1st trip DTC is detected, go to EC-932, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC


ENG SPEED XXX rpm

SEF058Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

[QR25DE]

BBWA0737E

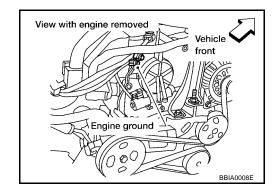
Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
13* ¹ (14)* ²	Y	Crankshaft position sensor (POS)	[Engine is running] • Warm-up condition • Idle speed	Approximately 3.0V★
			[Engine is running] ● Engine speed is 2,000 rpm.	Approximately 3.0V★ → 5.0 V/Div 1 ms/Div PBIB0528E

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)


Diagnostic Procedure

UBS00ASN

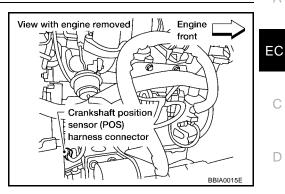
1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

^{*1:} Without NVIS (NATS)

^{*2:} With NVIS (NATS)

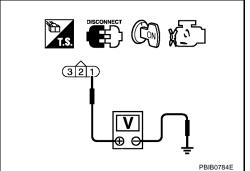

Α

D

Е

2. CHECK POWER SUPPLY

- Disconnect crankshaft position (CKP) sensor (POS) harness connector.
- Turn ignition switch ON.


Check voltage between CKP sensor (POS) harness connector terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between ECM and crankshaft position sensor (POS)
- Harness for open or short between ECM relay and crankshaft position sensor (POS)
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK CKP SENSOR (POS) GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Check harness continuity between CKP sensor (POS) terminal 3 and engine ground. Refer to the wiring diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connector M58, F26
- Harness for open or short between crankshaft position sensor (POS) and engine ground
 - >> Repair open circuit or short to power in harness or connectors.

K

M

6. CHECK CKP SENSOR (POS) INPUT SIGNAL CIRCUIT

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 13 or 14 and CKP sensor (POS) terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK CRANKSHAFT POSITION SENSOR (POS)

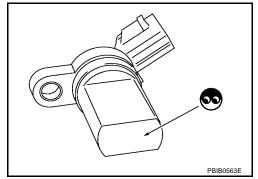
Refer to EC-934, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace crankshaft position sensor (POS).

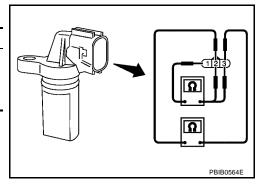
8. CHECK INTERMITTENT INCIDENT


Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

Component Inspection CRANKSHAFT POSITION SENSOR (POS)

UBS00ASO


- Disconnect crankshaft position sensor (POS) harness connector.
- 2. Loosen the fixing bolt of the sensor.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.

5. Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]	
1 (+) - 3 (–)		
1 (+) - 2 (–)	Except 0 or ∞	
2 (+) - 3 (–)		

If NG, replace crankshaft position sensor (POS).

UBS00ASP

Removal and Installation CRANKSHAFT POSITION SENSOR (POS)

Refer to EM-159, "CYLINDER BLOCK".

DTC P0340 CMP SENSOR (PHASE)

PFP:23731

Component Description

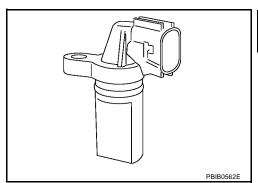
UBS00ASQ

Α

EC

Е

The camshaft position sensor (PHASE) senses the retraction of intake valve camshaft to identify a particular cylinder. The camshaft position sensor (PHASE) senses the piston position.


When the crankshaft position sensor (POS) system becomes inoperative, the camshaft position sensor (PHASE) provides various controls of engine parts instead, utilizing timing of cylinder identification signals.

The sensor consists of a permanent magnet and Hall IC.

When engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

On Board Diagnosis Logic

UBS00ASR

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0340 0340	Camshaft position sensor (PHASE) circuit	 The cylinder No. signal is not sent to ECM for the first few seconds during engine cranking. The cylinder No. signal is not sent to ECM during engine running. The cylinder No. signal is not in the normal pattern during engine running. 	 Harness or connectors (The sensor circuit is open or shorted) Camshaft position sensor (PHASE) Camshaft (Intake) Starter motor (Refer to SC-9 .) Starting system circuit (Refer to SC-9 .) Dead (Weak) battery 	-

DTC Confirmation Procedure

UBS00ASS

M

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10,5V with ignition switch ON.

(III) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.
- 4. If 1st trip DTC is detected, go to <u>EC-937, "Diagnostic Procedure"</u>

If 1st trip DTC is not detected, go to next step.

- Maintaining engine speed at more than 800 rpm for at least 5 seconds.
- 6. If 1st trip DTC is detected, go to EC-937, "Diagnostic Procedure"

DATA MONITOR
MONITOR NO DTC
ENG SPEED XXX rpm

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC-935

Wiring Diagram EC-PHASE-01 BATTERY : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC FUSE AND FUSIBLE LINK BOX REFER TO "PG-POWER". WN : WITH NVIS (NATS) 36 ON: WITHOUT NVIS (NATS) (E24) **WN**: 13 ON> : 14 CAMSHAFT POSITION SENSOR (PHASE) F9 3 R/G W/R **ECM RELAY** (F35) w/G R/G W/R W/G R/G R/G 120 14 119 ЕСМ SSOFF (F59), (F60) M28 1U 2U 3U E24 4U 5U 6U W (F35) 3 6

BBWA0738E

(F60)

В

3

量

116 115 114

118 117

DTC P0340 CMP SENSOR (PHASE)

[QR25DE]

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

(13)*2 W/R (PHASE) [Engine is running] • Engine speed is 2,000 rpm. 1.0 - 4.0V★ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □					
[Engine is running] • Warm-up condition • Idle speed W/R Camshaft position sensor (PHASE) [Engine is running] • Warm-up condition • Idle speed 1.0 - 4.0V* [Engine is running] • Engine is running] • Engine speed is 2,000 rpm.	MINAL		ITEM	CONDITION	DATA (DC Voltage)
(13)*2 (PHASE) [Engine is running] • Engine speed is 2,000 rpm. 1.0 - 4.0V★ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□		W/D	Camshaft position sensor	Warm-up condition	
PBIB0526E		W/K			

★: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

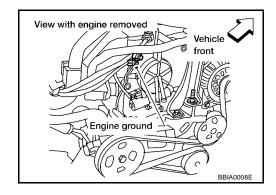
1. CHECK STARTING SYSTEM

Turn ignition switch to START position.

Does the engine turn over?

Does the starter motor operate?

Yes or No


Yes >> GO TO 2.

No >> Check starting system. (Refer to <u>SC-9</u>, "<u>STARTING SYSTEM</u>".)

2. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 3.

EC

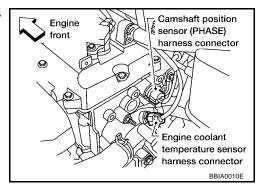
Α

D

Е

F

UBS00ASU

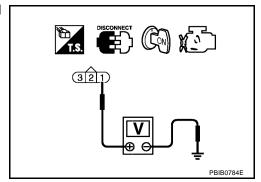

Κ

^{*1:} Without NVIS (NATS)

^{*2:} With NVIS (NATS)

$3.\,$ check cmp sensor (phase) power supply circuit

- Disconnect camshaft position (CMP) sensor (PHASE) harness connector.
- 2. Turn ignition switch ON.


Check voltage between CMP sensor (PHASE) terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between camshaft position sensor (PHASE) and ECM relay
- Harness for open or short between camshaft position sensor (PHASE) and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK CMP SENSOR (PHASE) GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Check harness continuity between (CMP) sensor (PHASE) terminal 3 and engine ground. Refer to the wiring diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connector M58, F26
- Harness for open or short between crankshaft position sensor (POS) and engine ground
 - >> Repair open circuit short to power in harness or connectors.

DTC P0340 CMP SENSOR (PHASE)

[QR25DE]

7. CHECK CMP SENSOR (PHASE) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between CMP sensor (PHASE) terminal 2 and ECM terminal 14 or 13. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK CAMSHAFT POSITION SENSOR (PHASE)

Refer to EC-940, "Component Inspection".

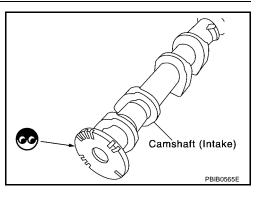
OK or NG

OK >> GO TO 9.

NG >> Replace camshaft position sensor (PHASE).

9. CHECK CAMSHAFT (INTAKE)

Check the following.


- Accumulation of debris to the signal plate of camshaft rear end
- Chipping signal plate of camshaft rear end

OK or NG

OK >> GO TO 10.

NG >> F

>> Remove debris and clean the signal plate of camshaft rear end or replace camshaft.

10. CHECK INTERMITTENT INCIDENT

Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

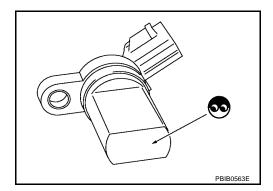
M

EC-939

EC

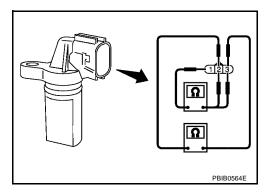
D

Е


Н

J

Component Inspection
CAMSHAFT POSITION SENSOR (PHASE)


UBS00ASV

- 1. Loosen the fixing bolt of the sensor.
- 2. Disconnect camshaft position sensor (PHASE) harness connector.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.

5. Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
1 (+) - 3 (-)	
1 (+) - 2 (-)	Except 0 or ∞
2 (+) - 3 (-)	

UBS00ASW

Removal and Installation CAMSHAFT POSITION SENSOR (PHASE)

Refer to EM-121, "CAMSHAFT".

DTC P0420 THREE WAY CATALYST FUNCTION

PFP:20905

On Board Diagnosis Logic A/T MODELS ULEV AND M/T MODELS

UBS00ASX

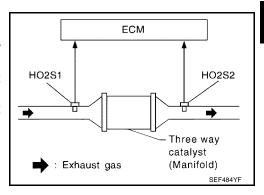
Α

EC

Е

F

Н

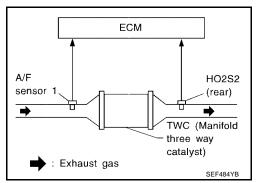

M

The ECM monitors the switching frequency ratio of heated oxygen sensor 1 and 2.

A three way catalyst (manifold) with high oxygen storage capacity will indicate a low switching frequency of heated oxygen sensor 2. As oxygen storage capacity decreases, the heated oxygen sensor 2

switching frequency will increase.

When the frequency ratio of heated oxygen sensor 1 and 2 approaches a specified limit value, the three way catalyst (manifold) malfunction is diagnosed.


DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0420 0420	Catalyst system efficiency below threshold	 Three way catalyst (manifold) does not operate properly. Three way catalyst (manifold) does not have enough oxygen storage capacity. 	 Three way catalyst (manifold) Exhaust tube Intake air leaks Fuel injectors Fuel injector leaks Spark plug Improper ignition timing

A/T MODELS EXCEPT ULEV

The ECM monitors the switching frequency ratio of air fuel ratio (A/F) sensor 1 and heated oxygen sensor 2.

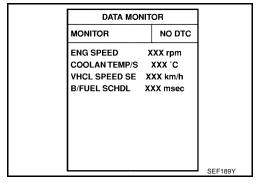
A three way catalyst (manifold) with high oxygen storage capacity will indicate a low switching frequency of heated oxygen sensor 2. As oxygen storage capacity decreases, the heated oxygen sensor 2 switching frequency will increase.

When the frequency ratio of air fuel ratio (A/F) sensor 1 and heated oxygen sensor 2 approaches a specified limit value, the three way catalyst (manifold) malfunction is diagnosed.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
		Three way catalyst (manifold) does not oper-	Three way catalyst (manifold)Exhaust tube
P0420 0420	Catalyst system effi- ciency below threshold	 ate properly. Three way catalyst (manifold) does not have enough oxygen storage capacity. 	 Intake air leaks Fuel injectors Fuel injector leaks Spark plug Improper ignition timing

DTC Confirmation ProcedureA/T MODELS ULEV AND M/T MODELS

UBS00BJL


NOTE:

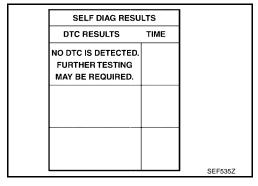
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

With CONSULT-II

TESTING CONDITION:

- Open engine hood before conducting the following procedure.
- Do not hold engine speed for more than the specified minutes below.
- 1. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.

- Select "DTC & SRT CONFIRMATION" then "SRT WORK SUP-PORT" mode with CONSULT-II.
- 7. Open engine hood.
- Rev engine up to 2,000 to 3,000 rpm and hold it for 3 consecutive minutes then release the accelerator pedal completely.
 If "INCMP" of "CATALYST" changed to "COMPLT", go to step 7
- 9. Wait 5 seconds at idle.


SRT WORK SI	JPPORT	
CATALYST	INCMP	
EVAP SYSTEM	INCMP	
HO2S HTR	CMPLT	
HO2S	INCMP	
MONITO)R	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxxv	
B/FUEL SCHDL	XXX msec	
A/F ALPHA-B1	xxx v	
COOLAN TEMP/S	xx °c	
HO2S1 (B1)	xxx v	SEF9402

 Rev engine up to 2,000 to 3,000 rpm and maintain it until "INCMP" of "CATALYST" changes to "CMPLT" (It will take approximately 5 minutes).

If not "CMPLT", stop engine and cool it down to less than 70°C (158°F) and then retest from step 1.

SRT WORK SU	PPORT	1
CATALYST EVAP SYSTEM HO2S HTR HO2S	CMPLT INCMP CMPLT INCMP	
MONITO	R	
ENG SPEED MAS A/F SE-B1 B/FUEL SCHDL A/F ALPHA-B1 COOLAN TEMP/S	XXX rpm XXX V XXX msec XXX V XX °C XXX V	
HO2S1 (B1)	AAA V	SEF941Z

- 11. Select "SELF-DIAG RESULTS" mode with CONSULT-II.
- 12. Confirm that the 1st trip DTC is not detected. If the 1st trip DTC is detected, go to EC-944, "Diagnostic Procedure".

A/T MODELS EXCEPT ULEV

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(III) With CONSULT-II

TESTING CONDITION:

Do not hold engine speed for more than the specified minutes below.

DTC P0420 THREE WAY CATALYST FUNCTION

[QR25DE]

SEF189Y

PRIR1784F

Α

EC

Е

Н

DATA MONITOR

COOLAN TEMP/S XXX °C VHCL SPEED SE XXX km/h

SRT WORK SUPPORT

MONITOR

CATALYST

EVAP SYSTEM

HO2S HTR

HO2S

ENG SPEED

MAS A/F SE-B1

B/FUEL SCHDL

A/F ALPHA-B1

COOLAN TEMP/S

A/F SEN1 (B1)

NO DTC

XXX rpm

XXX msec

INCMP

INCMP

CMPLT

INCMP

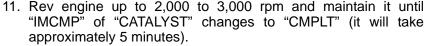
XXX rpm

XXX V

XXX msec

XXX V

XX °C

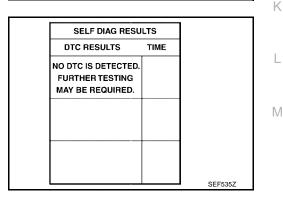

XXX V

MONITOR

ENG SPEED

B/FUEL SCHDL

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.
- 6. Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).
- 7. Open engine hood.
- 8. Select "DTC & SRT CONFIRMATION" then "SRT WORK SUP-PORT" mode with CONSULT-II.
- Rev engine up to 2,500 to 3,500 rpm and hold it for 3 consecutive minutes, then release the accelerator pedal completely.
 If "CMPLT" of "CATALYST" changed to "COMPLT", GO TO STEP 12.
- 10. Wait 5 seconds at idle.



If not "CMPLT", stop engine and cool it down to less than 70°C (158°F) and then retest step 1.

SUPPORT	
CMPLT	
INCMP	
CMPLT	
INCMP	
OR	
XXX rpm	
XXX V	
XXX msec	
xxx v	
s xx°c	
xxx v	PBIB1785E
	INCMP CMPLT INCMP TOR XXX rpm XXX V XXX msec XXX V S XX °C

- 12. Select "SELF-DIAG RESULTS" mode with CONSULT-II.
- 13. Confirm that the 1st trip DTC is not detected.

 If the 1st trip DTC is detected, go to EC-944, "Diagnostic Procedure".

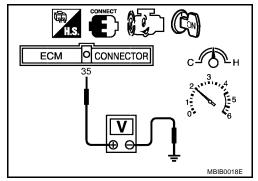
Overall Function Check

UBS00BJM

Use this procedure to check the overall function of the three way catalyst (Manifold). During this check, a DTC might not be confirmed.

CAUTION:

Always drive vehicle at a safe speed.

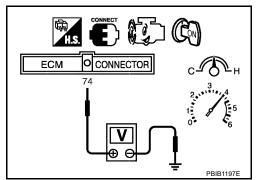

A/T MODELS ULEV AND M/T MODELS

With GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.

EC-943

- Let engine idle for 1 minute.
- Set voltmeters probes between ECM terminal 35 (HO2S1 signal) and engine ground, and ECM terminal 74 (HO2S2 signal) and engine ground.
- 6. Keep engine speed at 2,000 rpm constant under no load.



7. Make sure that the voltage switching frequency (high & low) between ECM terminal 74 and engine ground is very less than that of ECM terminal 35 and engine ground.

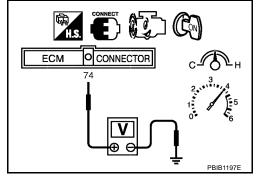
Switching frequency ratio = A/B

A: Heated oxygen sensor 2 voltage switching frequency B: Heated oxygen sensor 1 voltage switching frequency This ratio should be less than 0.75.

If the ratio is greater than above, it means three way catalyst does not operate properly. Go to $\underline{\text{EC-944}}$, "Diagnostic Procedure".

NOTE:

If the voltage at terminal 35 does not switch periodically more than 5 times within 10 seconds at step 7, perform trouble diagnosis for "DTC P0133" first. (See <u>EC-856</u>.)


AT MODELS EXCEPT ULEV

With GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- Open engine hood.
- 6. Set voltmeter probe between ECM terminal 74 and ground.
- 7. Keep engine speed at 2,500 rpm constant under no load.
- 8. Make sure that the voltage does not vary for more than 5 seconds.

If the voltage fluctuation cycle takes less than 5 seconds, go to $\underline{\text{EC-944}}$, "Diagnostic Procedure" .

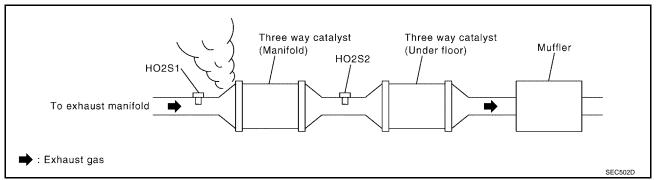
• 1 cycle: $0.6 - 1.0 \text{ V} \rightarrow 0 - 0.3 \text{ V} \rightarrow 0.6 - 1.0 \text{ V}$

UBS00BJN

Diagnostic Procedure A/T MODELS ULEV AND M/T MODELS

1. CHECK EXHAUST SYSTEM

Visually check exhaust tubes and muffler for dent.


OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust gas leak before the three way catalyst (manifold).

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

4. CHECK IGNITION TIMING

Check the following items. Refer to EC-723, "Basic Inspection".

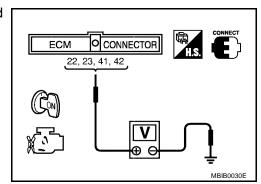
Items	Specifications		
Target idle speed	A/T	700 ± 50 rpm (in P or N position)	
raiget luie speed	M/T	700 ± 50 rpm	
Ignition timing	A/T	$15 \pm 5^{\circ}$ BTDC (in P or N position)	
	M/T	15 ± 5° BTDC	

OK or NG

OK >> GO TO 5.

NG >> Follow the Basic Inspection.

5. CHECK INJECTORS


- 1. Refer to Wiring Diagram for Injectors, <u>EC-1259</u>.
- 2. Stop engine and then turn ignition switch ON.
- 3. Check voltage between ECM terminals 22, 23, 41, 42 and ground with CONSULT-II or tester.

Battery voltage should exist.

OK or NG

OK >> GO TO 6.

NG >> Perform <u>EC-1260</u>, "<u>Diagnostic Procedure</u>".

EC

D

Е

Г

G

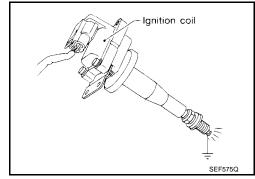
Н

J

K

M

6. CHECK IGNITION SPARK


- 1. Turn ignition switch OFF.
- 2. Disconnect ignition coil assembly from rocker cover.
- 3. Connect a known-good spark plug to the ignition coil assembly.
- 4. Place end of spark plug against a suitable ground and crank engine.
- 5. Check for spark.

OK or NG

OK >> GO TO 7.

NG

>> Check ignition coil with power transistor and their circuit. Refer to <u>EC-1237</u>, "IGNITION SIGNAL".

7. CHECK INJECTOR

- 1. Turn ignition switch OFF.
- 2. Remove injector assembly.

Refer to EM-116, "FUEL INJECTOR AND FUEL TUBE".

Keep fuel hose and all injectors connected to injector gallery.

- 3. Disconnect all ignition coil harness connectors.
- 4. Turn ignition switch ON.

 Make sure fuel does not drip from injector.

OK or NG

OK (Does not drip.)>>GO TO 8.

NG (Drips.)>>Replace the injector(s) from which fuel is dripping.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

Trouble is fixed.>>INSPECTION END

Trouble is not fixed.>>Replace three way catalyst (manifold).

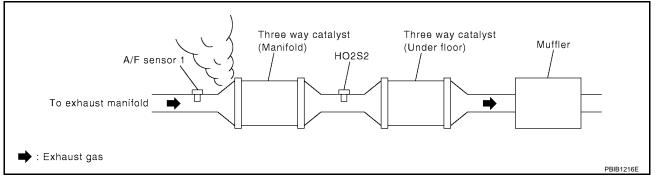
DTC P0420 THREE WAY CATALYST FUNCTION

[QR25DE]

A/T MODELS EXCEPT ULEV

1. CHECK EXHAUST SYSTEM

Visually check exhaust tubes and muffler for dent.


OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust gas leak before the three way catalyst (manifold).

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

4. CHECK IGNITION TIMING

Check for ignition timing. Refer to EC-723, "Basic Inspection".

Items	Specifications
Target idle speed	700 ± 50 rpm (in P or N position)
Ignition timing	$15\pm5^{\circ}$ BTDC (in P or N position)

OK or NG

OK >> GO TO 5.

NG >> Follow the Basic Inspection.

EC

Α

D

Е

F

Н

J

Κ

L

M

IV

5. CHECK INJECTORS

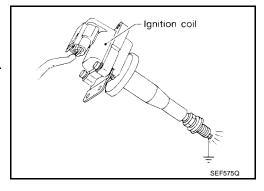

- 1. Refer to Wiring Diagram for Injectors, <u>EC-1259</u>.
- 2. Stop engine and then turn ignition switch ON.
- Check voltage between ECM terminals 22, 23, 41, 42 and ground with CONSULT-II or tester.

Battery voltage should exist.

OK or NG

OK >> GO TO 6.

NG >> Perform Diagnostic Procedure INJECTOR, <u>EC-1260</u>.


6. CHECK IGNITION SPARK

- 1. Turn ignition switch OFF.
- 2. Disconnect ignition coil assembly from rocker cover.
- 3. Connect a known-good spark plug to the ignition coil assembly.
- 4. Place end of spark plug against a suitable ground and crank engine.
- 5. Check for spark.

OK or NG

OK >> GO TO 7.

NG >> Check ignition coil with power transistor and their circuit.

7. CHECK INJECTOR

- 1. Turn ignition switch OFF.
- Remove injector assembly. Refer to <u>EM-116</u>, "<u>FUEL INJECTOR AND FUEL TUBE</u>".
 Keep fuel hose and all injectors connected to injector gallery.
- 3. Disconnect ignition coil assembly harness connector.
- Turn ignition switch ON.
 Make sure fuel does not drip from injector.

OK or NG

OK (Does not drip)>>GO TO 8.

NG (Drips)>>Replace the injector(s) from which fuel is dripping.

8. CHECK INTERMITTENT INCIDENT

Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

Trouble is fixed>>INSPECTION END

Trouble is not fixed>>Replace three way catalyst (manifold).

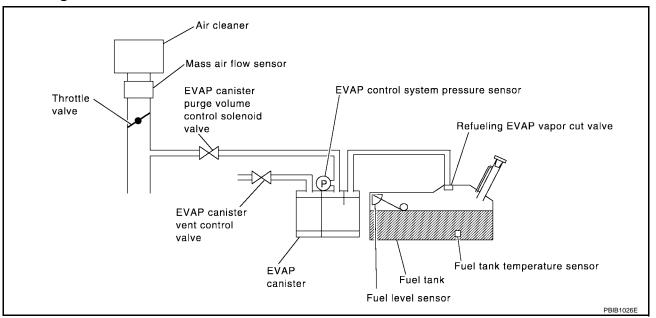
DTC P0441 EVAP CONTROL SYSTEM

PFP:14950

System Description

UBS00AT1

Α


EC

Е

Н

NOTE:

If DTC P0441 is displayed with other DTC such as P2122, P2123 P2127, P2128, P2138, first perform trouble diagnosis for other DTC.

In this evaporative emission (EVAP) control system, purge flow occurs during non-closed throttle conditions. Purge volume is related to air intake volume. Under normal purge conditions (non-closed throttle), the EVAP canister purge volume control solenoid valve is open to admit purge flow. Purge flow exposes the EVAP control system pressure sensor to intake manifold vacuum.

On Board Diagnosis Logic

UBS00AT2

Under normal conditions (non-closed throttle), sensor output voltage indicates if pressure drop and purge flow are adequate. If not, a malfunction is determined.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
	EVAP control system incorrect purge flow	EVAP control system does not operate properly, EVAP control system has a leak between intake manifold and EVAP control system pressure sensor.	EVAP canister purge volume control solenoid valve stuck closed
			EVAP control system pressure sensor and the circuit
P0441 0441			Loose, disconnected or improper con- nection of rubber tube
			Blocked rubber tube
			Cracked EVAP canister
			EVAP canister purge volume control solenoid valve circuit
			Accelerator pedal position sensor
			Blocked purge port
			EVAP canister vent control valve

EC-949

DTC Confirmation Procedure

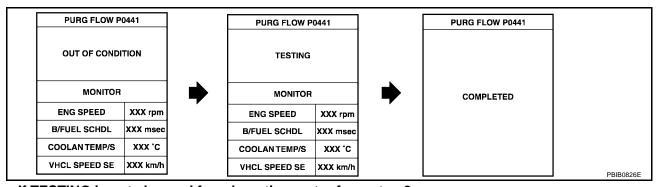
UBS00AT3

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(II) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and let it idle for at least 70 seconds.
- Select "PURG FLOW P0441" of "EVAPORATIVE SYSTEM" in "DTC CONFIRMATION" mode with CON-SULT-II.
- 5. Touch "START". If "COMPLETED" is displayed, go to step 7.
- 6. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 35 seconds.)

Selector lever	Suitable position
Vehicle speed	32 - 120 km/h (20 - 75 MPH)
ENG SPEED	500 - 3,800 rpm
B/FUEL SCHDL	1.0 - 10.0 msec
Engine coolant temperature	More than 0°C

If TESTING is not changed for a long time, retry from step 2.

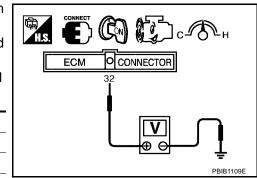
7. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-951, "Diagnostic Procedure".

Overall Function Check

UBS00AT4

Use this procedure to check the overall monitoring function of the EVAP control system purge flow monitoring. During this check, a DTC might not be confirmed.

WITH GST


- 1. Lift up drive wheels.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch OFF, wait at least 10 seconds.
- 4. Start engine and wait at least 70 seconds.

DTC P0441 EVAP CONTROL SYSTEM

[QR25DE]

- Set voltmeter probes to ECM terminals 32 (EVAP control system pressure sensor signal) and ground.
- Check EVAP control system pressure sensor value at idle speed and note it.
- Establish and maintain the following conditions for at least 1 minute.

Air conditioner switch	ON
Headlamp switch	ON
Rear window defogger switch	ON
Engine speed	Approx. 3,000 rpm
Gear position	Any position other than P, N or R

- Verify that EVAP control system pressure sensor value stays 0.1V less than the value at idle speed (measured at step 6) for at least 1 second.
- 9. If NG, go to EC-951, "Diagnostic Procedure".

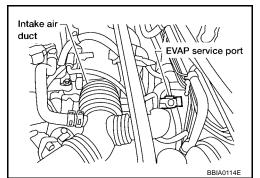
Diagnostic Procedure

1. CHECK EVAP CANISTER

- 1. Turn ignition switch OFF.
- 2. Check EVAP canister for cracks.

OK or NG

OK (With CONSULT-II)>>GO TO 2.


OK (Without CONSULT-II)>>GO TO 3.

NG >> Replace EVAP canister.

2. CHECK PURGE FLOW

With CONSULT-II

- Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge.
- 2. Start engine and let it idle.
- Select "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.
- 4. Rev engine up to 2,000 rpm.

5. Touch "Qd" and "Qu" on CONSULT-II screen to adjust "PURG VOL CONT/V" opening and check vacuum existence.

PURG VOL CONT/V	VACUUM
100%	Should exist.
0%	should not exist.

OK or NG

OK >> GO TO 7.

NG >> GO TO 4.

ACTIVE TES	ST .	
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	A/F ALPHA-B1 XXX %	
	1	PBIB1786E

Α

EC

C

D

Е

Н

M

UBS00AT5

3. CHECK PURGE FLOW

⊗ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum gauge indication when revving engine up to 2,000 rpm.

Vacuum should exist.

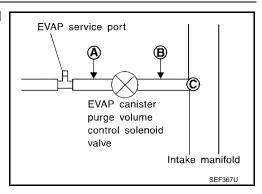
6. Release the accelerator pedal fully and let idle.

Vacuum should not exist.

OK or NG

OK >> GO TO 7. NG >> GO TO 4.

4. CHECK EVAP PURGE LINE

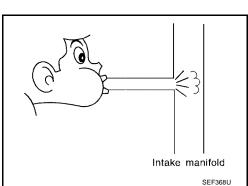

- 1. Turn ignition switch OFF.
- 2. Check EVAP purge line for improper connection or disconnection. Refer to EC-1306, "EVAPORATIVE EMISSION LINE DRAWING".

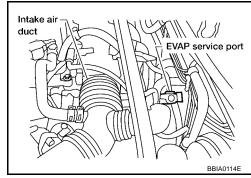
OK or NG

OK >> GO TO 5. NG >> Repair it.

5. CHECK EVAP PURGE HOSE AND PURGE PORT

- Disconnect purge hoses connected to EVAP service port A and EVAP canister purge volume control solenoid valve B.
- 2. Blow air into each hose and EVAP purge port C.




3. Check that air flows freely.

OK or NG

OK (With CONSULT-II)>>GO TO 6. OK (Without CONSULT-II)>>GO TO 7.

NG >> Repair or clean hoses and/or purge port.

6. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(III) With CONSULT-II

- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

ACTIVE TES	T	
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
		PBIB1786E

7. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-963.

OK or NG

OK >> GO TO 8.

NG >> Replace EVAP canister purge volume control solenoid valve.

8. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- 1. Disconnect EVAP control system pressure sensor harness connector.
- Check connectors for water.

Water should not exist

OK or NG

OK >> GO TO 9.

NG >> Replace EVAP control system pressure sensor.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION

Refer to DTC Confirmation Procedure for DTC P0452, EC-976 P0453, EC-982.

OK or NG

OK >> GO TO 10.

NG >> Replace EVAP control system pressure sensor.

10. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 11.

NG >> Clean the rubber tube using an air blower.

11. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-974.

OK or NG

OK >> GO TO 12.

NG >> Replace EVAP canister vent control valve.

EC-953

EC

D

Е

K

M

DTC P0441 EVAP CONTROL SYSTEM

[QR25DE]

12. CHECK EVAP PURGE LINE

Inspect EVAP purge line (pipe and rubber tube). Check for evidence of leaks. Refer to EC-1306, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 13. NG >> Replace it.

13. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 14.

14. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0442 EVAP CONTROL SYSTEM

PFP:14950

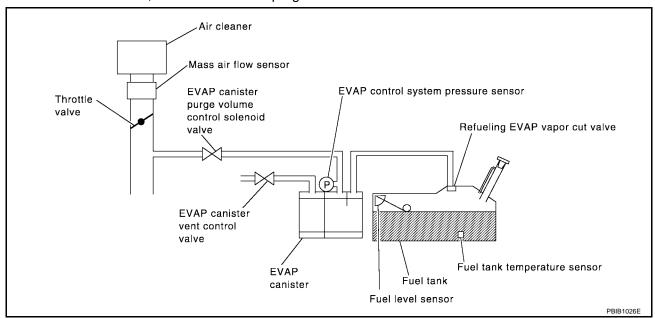
On Board Diagnosis Logic

UBS00AT6

Α

EC

C


D

Е

This diagnosis detects leaks in the EVAP purge line using engine intake manifold vacuum.

If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge volume control solenoid valve, under the following Vacuum test conditions.

The EVAP canister vent control valve is closed to shut the EVAP purge line off. The EVAP canister purge volume control solenoid valve will then be opened to depressurize the EVAP purge line using intake manifold vacuum. After this occurs, the EVAP canister purge volume control solenoid valve will be closed.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
			Incorrect fuel tank vacuum relief valve	
			Incorrect fuel filler cap used	
			Fuel filler cap remains open or fails to close.	
			Foreign matter caught in fuel filler cap.	
			Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.	
			 Foreign matter caught in EVAP canister vent control valve. 	
			EVAP canister or fuel tank leaks	
		EVAP purge line (pipe and rubber tube) leaks		
			EVAP purge line rubber tube bent	
P0442 0442	EVAP control system small leak detected	EVAP control system has a leak, EVAP control system does not operate prop-	 Blocked or bent rubber tube to EVAP control system pressure sensor. 	
	(negative pressure)	erly.	Loose or disconnected rubber tube	
			EVAP canister vent control valve and the circuit	
			EVAP canister purge volume control solenoid valve and the circuit	
			Fuel tank temperature sensor	
				O-ring of EVAP canister vent control valve is missing or damaged
			EVAP canister is saturated with water	
			EVAP control system pressure sensor	
			Fuel level sensor and the circuit	
			Refueling EVAP vapor cut valve	
		ORVR system leaks		

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

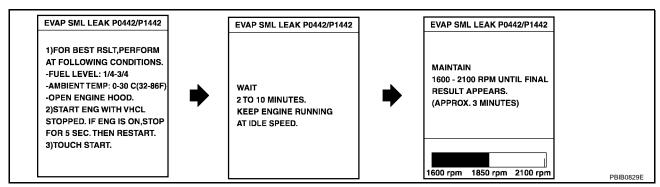
UBS00AT7

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 and 3/4 full, and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).
- Open engine hood before conducting following procedure.

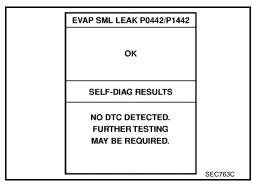

WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 4. Check the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 30°C (32 - 86°F)

5. Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.


NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to <u>EC-723</u>, "<u>Basic Inspection</u>".

6. Make sure that "OK" is displayed. If "NG" is displayed, refer to EC-957, "Diagnostic Procedure".

NOTE:

Make sure that EVAP hoses are connected to the EVAP canister purge volume control solenoid valve properly.

WITH GST

NOTE:

Be sure to read the explanation of Driving Pattern on <u>EC-700</u> before driving vehicle.

Start engine.

DTC P0442 EVAP CONTROL SYSTEM

[QR25DE]

Α

EC

D

Е

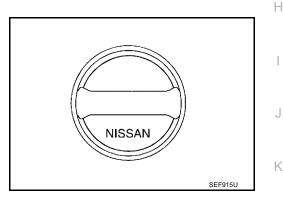
F

M

UBS00AT8

- 2. Drive vehicle according to Driving Pattern, EC-700
- 3. Stop vehicle.
- 4. Select MODE 1 with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Start engine.
 - It is not necessary to cool engine down before driving.
- 7. Drive vehicle again according to the Driving Pattern, EC-700.
- 8. Stop vehicle.
- 9. Select MODE 3 with GST.
- If P0442 is displayed on the screen, go to EC-957, "Diagnostic Procedure".
- If P0441 is displayed on the screen, go to Diagnostic Procedure for DTC P0441, EC-951.
- If P0441 and P0442 are not displayed on the screen, go to the following step.
- 10. Select MODE 1 with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6.

Diagnostic Procedure


1. CHECK FUEL FILLER CAP DESIGN

- 1. Turn ignition switch OFF.
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until reteaching sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

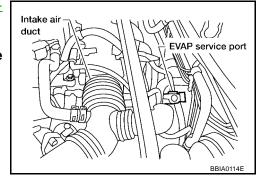
4. CHECK FUEL TANK VACUUM RELIEF VALVE

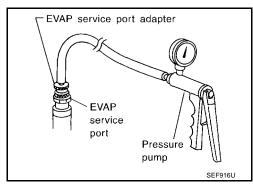
Refer to EC-1308, "FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FULLER CAP)".

OK or NG

OK >> GO TO 5.

NG >> Replace fuel filler cap with a genuine one.


5. Install the pressure pump


To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely.

For the location of EVAP service port, refer to <u>EC-1306</u>, <u>"EVAPORA-TIVE EMISSION LINE DRAWING"</u>.

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

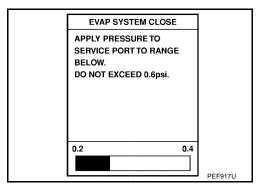
Models with CONSULT-II>>GO TO 6. Models without CONSULT-II>>GO TO 7.

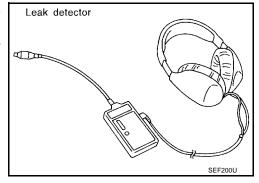
6. CHECK FOR EVAP LEAK

(III) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

NOTE:

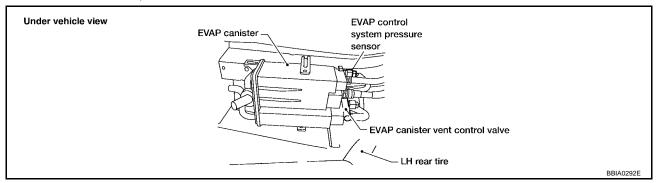

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.



OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

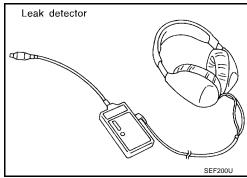


7. CHECK FOR EVAP LEAK

Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)

 Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-1306, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

8. CHECK EVAP CANISTER VENT CONTROL VALVE

Check the following,

- EVAP canister vent control valve is installed properly.
 Refer to <u>EC-1309</u>, "Removal and Installation".
- EVAP canister vent control valve.
 Refer to EC-974, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Repair or replace EVAP canister vent control valve and O-ring.

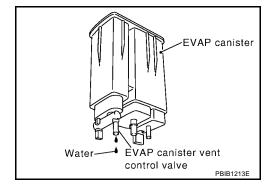
Е

EC

Н

-

K


M

9. CHECK IF EVAP CANISTER SATURATED WITH WATER

- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- 2. Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 10. No (With CONSULT-II)>>GO TO 12. No (Without CONSULT-II)>>GO TO 13.

10. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 1.9 kg (4.2 lb).

OK or NG

OK (With CONSULT-II)>>GO TO 12. OK (Without CONSULT-II)>>GO TO 13. NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose connected to EVAP canister for clogging or poor connection

>> Repair hose or replace EVAP canister.

12. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 15. NG >> GO TO 14.

ACTIVE TEST		
PURG VOL CONT/V	PURG VOL CONT/V XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
		PBIB1786E

13. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. EC 2. Stop engine. 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port. 4. Start engine and let it idle for at least 80 seconds. Check vacuum hose for vacuum when revving engine up to 2,000 rpm. Vacuum should exist. D OK or NG >> GO TO 16. OK >> GO TO 14. NG Е 14. CHECK VACUUM HOSE Check vacuum hoses for clogging or disconnection. Refer to EC-1306, "EVAPORATIVE EMISSION LINE DRAWING". OK or NG OK >> GO TO 15. NG >> Repair or reconnect the hose. 15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE Refer to EC-968, "Component Inspection". OK or NG OK >> GO TO 16. NG >> Replace EVAP canister purge volume control solenoid valve. 16. CHECK FUEL TANK TEMPERATURE SENSOR Refer to EC-908, "Component Inspection". OK or NG OK >> GO TO 17. NG >> Replace fuel level sensor unit. 17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR Refer to EC-981, "Component Inspection". M OK or NG OK >> GO TO 18. NG >> Replace EVAP control system pressure sensor. 18. CHECK EVAP PURGE LINE Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to EC-1305, "EVAPORATIVE EMISSION SYSTEM". OK or NG OK >> GO TO 19. NG >> Repair or reconnect the hose.

19. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 20.

20. CHECK EVAP/ORVR LINE

Check EVAP/ORVR line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to EC-1312, "ON BOARD REFUELING VAPOR RECOVERY (ORVR)".

OK or NG

OK >> GO TO 21.

NG >> Repair or replace hoses and tubes.

21. CHECK SIGNAL LINE AND RECIRCULATION LINE

Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 22.

NG >> Repair or replace hoses, tubes or filler neck tube.

22. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-1315, "Component Inspection".

OK or NG

OK >> GO TO 23.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

23. CHECK FUEL LEVEL SENSOR

Refer to DI-25, "FUEL LEVEL SENSOR UNIT CHECK".

OK or NG

OK >> GO TO 24.

NG >> Replace fuel level sensor unit.

24. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

[QR25DE]

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID **VALVE**

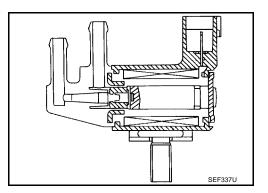
Description SYSTEM DESCRIPTION

UBS00AT9

Н

K

M


Sensor	Input Signal to ECM	ECM function	Actuator	EC
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*1			С
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Battery	Battery voltage*1	EVAD conjeter		D
Throttle position sensor	Throttle position	EVAP canister purge flow control EVAP canister purge volum	EVAP canister purge volume	
Accelerator pedal position sensor	Accelerator pedal position		control solenoid valve	Е
Heated oxygen sensor 1*3	Density of oxygen in exhaust gas (Mixture ratio feedback signal)			
Air fuel ratio (A/F) sensor 1*4	Density of oxygen in exhaust gas (Mixture ratio feedback signal)			F
Fuel tank temperature sensor	Fuel temperature in fuel tank			
Vehicle speed signal*2	Vehicle speed			G

^{*1:} The ECM determines the start signal status by the signal of engine speed and battery voltage.

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/ OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

CONSULT-II Reference Value in Data Monitor Mode

UBS00ATA

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	0%
PURG VOL C/V	• Shift lever: N (A/T), Neutral (M/T)	2,000 rpm	
FORG VOL C/V	 Air conditioner switch: OFF 		20 - 30%
	No-load		

EC-963

^{*2:} This signal is sent to the ECM through CAN communication line.

^{*3:} A/T models ULEV and M/T models.

^{*4:} A/T models except ULEV.

[QR25DE]

On Board Diagnosis Logic

UBS00ATB

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0444 0444	EVAP canister purge volume control solenoid valve circuit open	An excessively low voltage signal is sent to ECM through the valve	Harness or connectors (The solenoid valve circuit is open or shorted.) EVAP canister purge volume control
			solenoid valve
P0445	EVAP canister purge volume	An excessively high voltage signal is sent	Harness or connectors (The solenoid valve circuit is shorted.)
0445	control solenoid valve circuit shorted	to ECM through the valve	EVAP canister purge volume control solenoid valve

DTC Confirmation Procedure

UBS00ATC

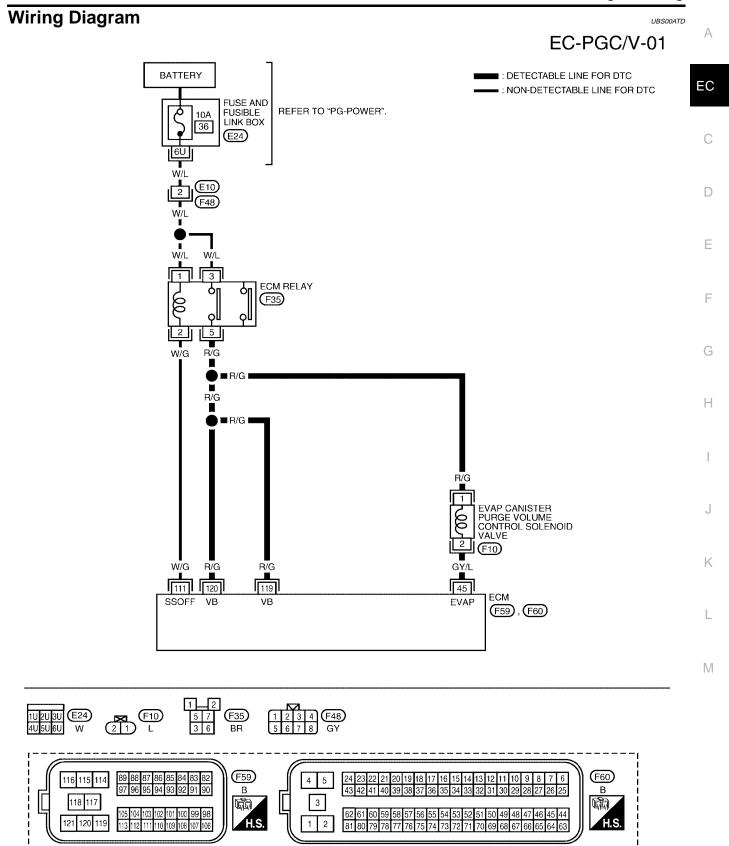
NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

(P) WITH CONSULT-II


- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 13 seconds.
- 4. If 1st trip DTC is detected, go to EC-966, "Diagnostic Procedure"

DATA M	ONITOR
MONITOR	NO DTC
ENG SPEED XXX rpm	

WITH GST

Follow the procedure "WITH CONSULT-II" above.

[QR25DE]

BBWA0739E

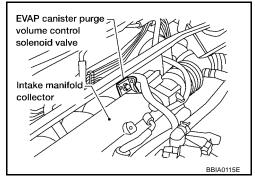
[QR25DE]

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
45	GY/L	EVAP canister purge vol- ume control solenoid valve	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)*
		une senior serencia varve	 [Engine is running] Engine speed is about 2,000 rpm (More than 100 seconds after starting engine). 	Approximately 10V★

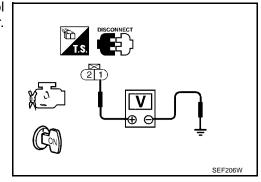

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

UBS00ATE

1. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIR-CUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect EVAP canister purge volume control solenoid valve harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

[QR25DE]

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM relay.

>> Repair harness or connectors.

$3.\,$ check evap canister purge volume control solenoid valve output signal cir-**CUIT FOR OPEN AND SHORT**

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 45 and EVAP canister purge volume control solenoid valve terminal 2.

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK (With CONSULT-II)>>GO TO 4.

OK (Without CONSULT-II)>>GO TO 5.

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

With CONSULT-II

- 1. Reconnect all harness connectors disconnected.
- Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 6.

NG >> GO TO 5.

ACTIVE TES	ST.	
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
		PBIB1786E

5. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-968, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace EVAP canister purge volume control solenoid valve.

6. CHECK INTERMITTENT INCIDENT

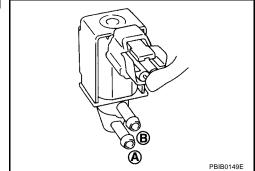
Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

EC

M

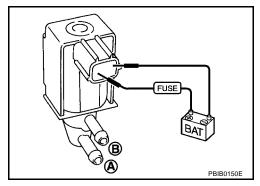
[QR25DE]


Component Inspection EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

UBS00ATF

(P) With CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.


Condition (PURG VOL CONT/V value)	Air passage continuity between A and B
100%	Yes
0%	No

⊗ Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B	
12V direct current supply between terminals 1 and 2	Yes	
No supply	No	

Removal and Installation EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

UBS00ATG

Refer to EM-103, "INTAKE MANIFOLD".

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

[QR25DE]

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

PFP:14935

UBS00ATH

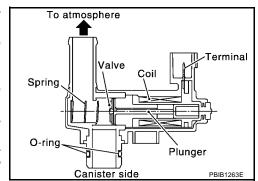
Α

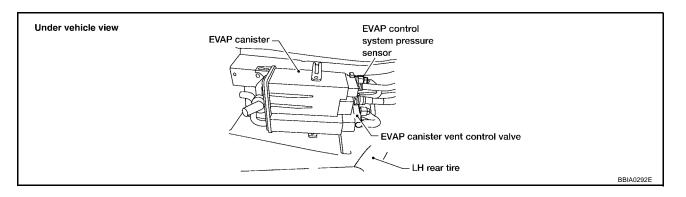
EC

D

Е

Н


Component Description


The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System" diagnoses.

CONSULT-II Reference Value in Data Monitor Mode

LIBSODATI

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	• Ignition switch: ON	OFF

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0447 0447	EVAP canister vent control valve circuit open	An improper voltage signal is sent to ECM through EVAP canister vent control valve.	 Harness or connectors (The valve circuit is open or shorted.) EVAP canister vent control valve

DTC Confirmation Procedure

UBS00ATK

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

(III) WITH CONSULT-II

Turn ignition switch ON.

M

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

[QR25DE]

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait at least 8 seconds.
- 4. If 1st trip DTC is detected, go to EC-972, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram UBS00ATL Α EC-VENT/V-01 ■: DETECTABLE LINE FOR DTC EC = : NON-DETECTABLE LINE FOR DTC **BATTERY** FUSE AND FUSIBLE LINK BOX C Refer to "PG-POWER". 10A (E22), (E24) 36 34 6U 38 D R/B **E10** [3] Е (F48) R/B W/L ı F W/L R/B W/L 3 6 ECM RELAY φr (F35) (M59) G/W 5 (M4) B₁ Н R/G W/G G/W G/W EVAP CANISTER VENT CONTROL VALVE **B35** L/Y
15
L/Y M₁₆ M59 K (F27) L/Y W/G R/G R/G 117 120 111 119 ECM SSOFF VΒ (F59) M F35 BR (E22) **E24** 18 1 4 5 6 7 (F27), (B1) W W 116 115 114

BBWA0740E

(F59)

118 117

121 120 119

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

[QR25DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
111 W/G ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For 10 seconds after turning ignition switch OFF	0 - 1.5V		
	[Ignition switch: OFF] ● 10 seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)		
117	L/Y	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS00ATM

1. INSPECTION START

1. Do you have CONSULT-II?

Yes or No

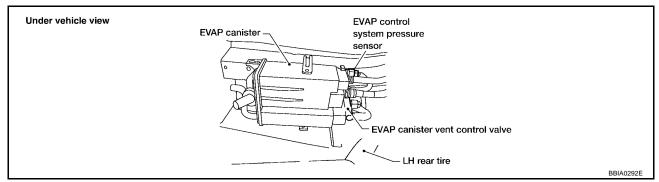
Yes >> GO TO 2. No >> GO TO 3.

2. CHECK EVAP CANISTER VENT CONTROL VALVE CIRCUIT

With CONSULT-II

- 1. Turn ignition switch OFF and then turn ON.
- 2. Select "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Touch "ON/OFF" on CONSULT-II screen.
- 4. Check for operating sound of the valve. Clicking noise should be heard.

OK or NG


OK >> GO TO 7. NG >> GO TO 3.

ACTIVE TE		
VENT CONTROL/V	OFF	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
HO2S1 (B1)	xxx v	
		PBIB0834E

[QR25DE]

3. CHECK EVAP CANISTER VENT CONTROL VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect EVAP canister vent control valve harness connector.

- 3. Turn ignition switch ON.
- 4. Check voltage between EVAP canister vent control valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F27, M59
- Harness connectors B1, M4
- Harness for open or short between EVAP canister vent control valve and ECM relay
 - >> Repair harness or connectors.

5. CHECK EVAP CANISTER VENT CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 117 and EVAP canister vent control valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

EC

Е

F

G

Н

IZ

[QR25DE]

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B3, M16
- Harness connectors M59, F27
- Harness for open or short between EVAP canister vent control valve and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 8.

NG >> Clean the rubber tube using an air blower.

8. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-974, "Component Inspection".

OK or NG

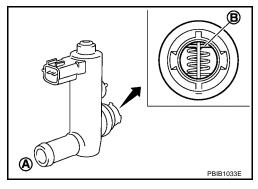
OK >> GO TO 9.

NG >> Replace EVAP canister vent control valve.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection EVAP CANISTER VENT CONTROL VALVE

(P) With CONSULT-II

- 1. Remove EVAP canister vent control valve from EVAP canister.
- 2. Check portion **B** of EVAP canister vent control valve for being rusted.

If NG, replace EVAP canister vent control valve. If OK, go to next step.

- 3. Reconnect harness connectors disconnected.
- 4. Turn ignition switch ON.

UBS00ATN

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

[QR25DE]

Α

EC

D

Е

Н

- 5. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 6. Check air passage continuity and operation delay time.

 Make sure new O-ring is installed properly.

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

ACTIVE TEST

VENT CONTROL/V OFF

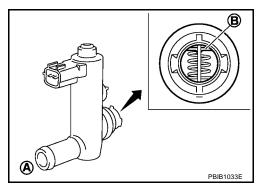
MONITOR

ENG SPEED XXX rpm

A/F ALPHA-B1 XXX %

HO2S1 (B1) XXX V

Operation takes less than 1 second.


If NG, replace EVAP canister vent control valve.

If OK, go to next step.

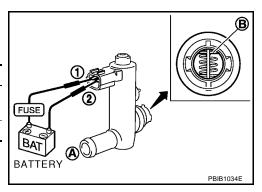
- 7. Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower.
- 8. Perform step 6 again.

⋈ Without CONSULT-II

- 1. Remove EVAP canister vent control valve from EVAP canister.
- Check portion B of EVAP canister vent control valve for being rusted.

3. Check air passage continuity and operation delay time under the following conditions.

Make sure new O-ring is installed properly.

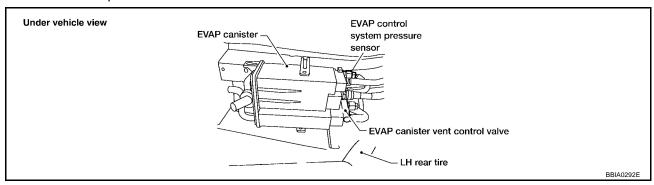

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

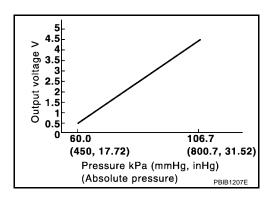
Operation takes less than 1 second.

If NG, replace EVAP canister vent control valve.

If OK, go to next step.

- 4. Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower.
- 5. Perform step 3 again.




PFP:25085

Component Description

UBS00ATO

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

CONSULT-II Reference Value in Data Monitor Mode

UBS00ATP

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	• Ignition switch: ON	Approx. 1.8 - 4.8V

On Board Diagnosis Logic

UBS00ATQ

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0452 0452	EVAP control system pressure sensor low input	An excessively low voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor

[QR25DE]

DTC Confirmation Procedure

UBS00ATR

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

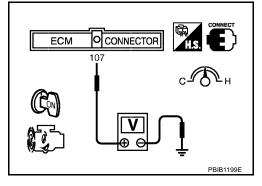
Always perform test at a temperature of 5°C (41°F) or more.

(II) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- 5. Make sure that "FUEL T/TEMP SE" is more than 0°C (32°F).
- Start engine and wait at least 20 seconds.
 If 1st trip DTC is detected, go to <u>EC-979</u>, "<u>Diagnostic Procedure</u>"

DATA MONITOR

MONITOR NO DTC


ENG SPEED XXX rpm

COOLAN TEMP/S XXX °C

FUEL T/TMP SE XXX °C

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- Check that voltage between ECM terminal 107 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and wait at least 20 seconds.
- Select MODE 7 with GST.
 If 1st trip DTC is detected, go to <u>EC-979</u>, "<u>Diagnostic Procedure</u>"

EC

Α

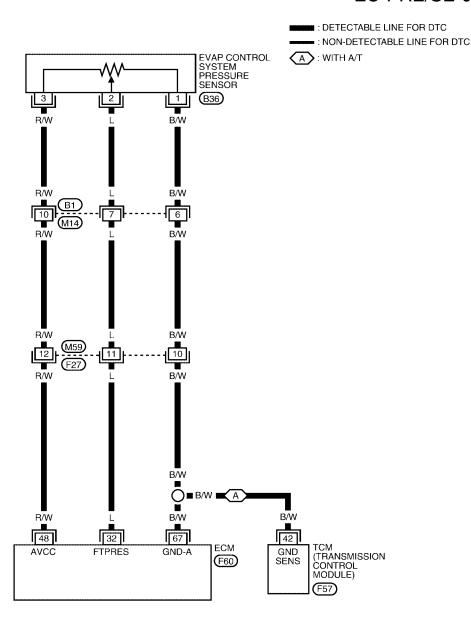
Е

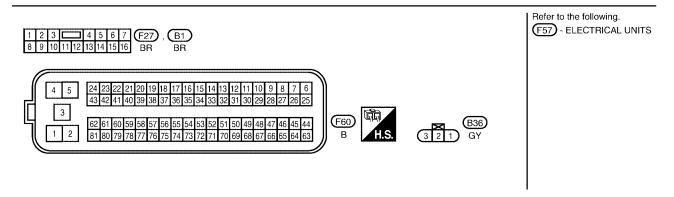
G

F

Н

|


K


L

Wiring Diagram

UBS00ATS

EC-PRE/SE-01

BBWA0688E

[QR25DE]

Α

EC

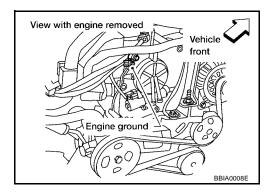
D

UBSOOATT

Specification data are reference values and are measured between each terminal and ground.

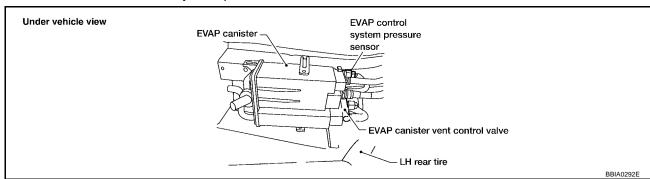
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
32	L	EVAP control system pressure sensor	[Ignition switch: ON]	Approximately 1.8 - 4.8V
48	R/W	Sensors power supply	[Ignition switch: ON]	Approximately 5V
67	B/W	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS


- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK CONNECTOR

1. Disconnect EVAP control system pressure sensor harness connector.

Check sensor harness connector for water.

Water should not exist.

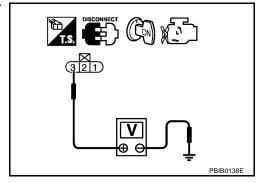
OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness connector.

EC-979

[QR25DE]


3. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch ON.
- 2. Check voltage between EVAP control system pressure sensor terminal 3 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B1, M14
- Harness connectors M59, F27
- Harness for open or short between EVAP control system pressure sensor and ECM

>> Repair harness or connectors.

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector (A/T models).
- 4. Check harness continuity between EVAP control system pressure sensor terminal 1 and ECM terminal 67, TCM terminal 42.

Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B1, M14
- Harness connectors M58, F26
- Harness for open or short between EVAP control system pressure sensor and TCM
- Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

[QR25DE]

1. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND **SHORT**

1. Disconnect ECM harness connector.

Check harness continuity between ECM terminal 32 and EVAP control system pressure sensor terminal

Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B1, M14
- Harness connectors M58, F26
- Harness for open or short between ECM and EVAP control system pressure sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-981, "Component Inspection".

OK or NG

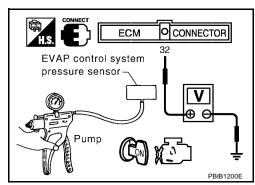
OK >> GO TO 10.

NG >> Replace EVAP control system pressure sensor.

10. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection EVAP CONTROL SYSTEM PRESSURE SENSOR

- Remove EVAP control system pressure sensor with its harness connector connected.
- Remove EVAP control system pressure sensor from EVAP canister. Do not reuse the O-ring, replace it with a new one.
- Install a vacuum pump to EVAP control system pressure sensor. 3.
- Turn ignition switch ON and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value

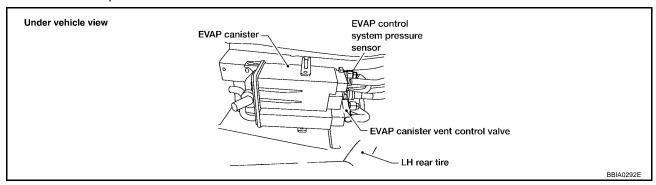
CAUTION:

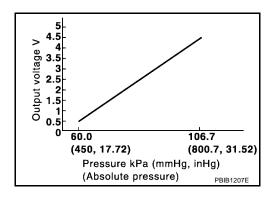
- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- If NG, replace EVAP control system pressure sensor.

EC

Α

Е


Н


PFP:25085

Component Description

UBS00ATV

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

CONSULT-II Reference Value in Data Monitor Mode

UBS00ATW

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	• Ignition switch: ON	Approx. 1.8 - 4.8V

On Board Diagnosis Logic

UBS00ATX

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0453 0453	EVAP control system pressure sensor high input	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor EVAP canister vent control valve EVAP canister Rubber hose to EVAP canister vent control valve

[QR25DE]

DTC Confirmation Procedure

UBS00ATY

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

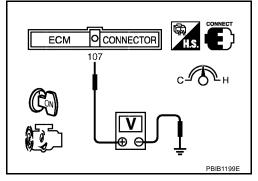
Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- 5. Make sure that "FUEL T/TEMP SE" is more than 0°C (32°F).
- Start engine and wait at least 20 seconds.
 If 1st trip DTC is detected, go to <u>EC-985</u>, "<u>Diagnostic Procedure</u>"

DATA MONITOR

MONITOR NO DTC


ENG SPEED XXX rpm

COOLAN TEMP/S XXX °C

FUEL T/TMP SE XXX °C

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check that voltage between ECM terminal 107 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and wait at least 20 seconds.
- Select MODE 7 with GST.
 If 1st trip DTC is detected, go to <u>EC-985</u>, "<u>Diagnostic Procedure</u>"

EC

D

Е

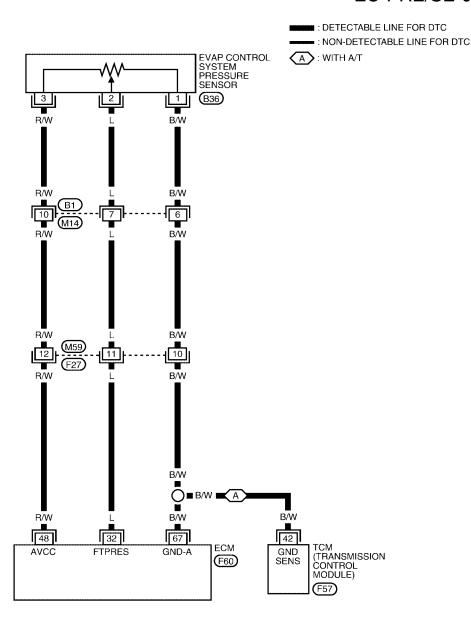
Α

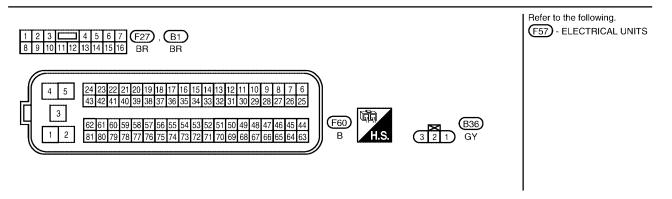
F

G

Н

J


Κ


L

Wiring Diagram

UBS00ATZ

EC-PRE/SE-01

BBWA0688E

[QR25DE]

Α

EC

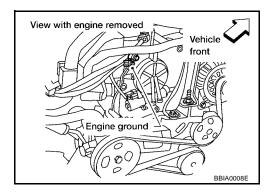
D

UBSOOAUO

Specification data are reference values and are measured between each terminal and ground.

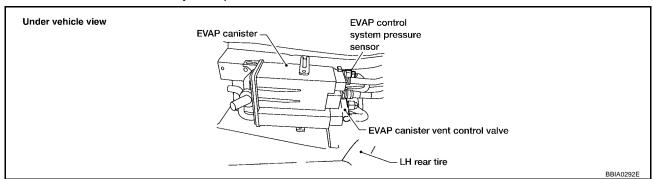
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
32	L	EVAP control system pressure sensor	[Ignition switch: ON]	Approximately 1.8 - 4.8V
48	R/W	Sensors' power supply	[Ignition switch: ON]	Approximately 5V
67	B/W	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS


- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK CONNECTOR

Disconnect EVAP control system pressure sensor harness connector.

Check sensor harness connector for water.

Water should not exist.

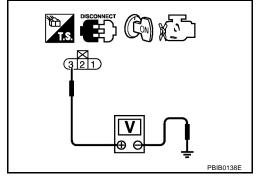
OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness connector.

EC-985

[QR25DE]


3. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch ON.
- 2. Check voltage between EVAP control system pressure sensor terminal 3 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B1, M14
- Harness connectors M59, F27
- Harness for open or short between EVAP control system pressure sensor and ECM

>> Repair harness or connectors.

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector (A/T models).
- 4. Check harness continuity between EVAP control system pressure sensor terminal 1 and ECM terminal 67, TCM terminal 42.

Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B1, M14
- Harness connectors M58, F26
- Harness for open or short between EVAP control system pressure sensor and TCM
- Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

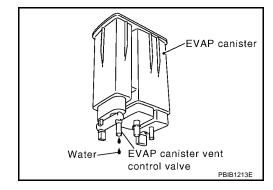
[QR25DE]

7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR INPUT SIGNATOR	NAL CIRCUIT FOR OPEN AND
Disconnect ECM harness connector.	
2. Check harness continuity between ECM terminal 32 and EVAP control 2.	system pressure sensor terminal EC
Refer to Wiring Diagram.	
Continuity should exist.	С
3. Also check harness for short to ground and short to power.	
OK or NG OK >> GO TO 9.	D
NG >> GO TO 8.	
8. DETECT MALFUNCTIONING PART	E
Check the following.	
Harness connectors B1, M14 Harness connectors M59, 526	F
 Harness connectors M58, F26 Harness for open or short between ECM and EVAP control system pres 	sure sensor
>> Repair open circuit or short to ground or short to power in harne	
9. CHECK RUBBER TUBE FOR CLOGGING	Н
Disconnect rubber tube connected to EVAP canister vent control valve.	_
2. Check the rubber tube for clogging.	1
OK or NG OK >> GO TO 10.	
NG >> Clean the rubber tube using an air blower.	J
10. CHECK EVAP CANISTER VENT CONTROL VALVE	
Refer to EC-974, "Component Inspection".	K
OK or NG	
OK >> GO TO 11. NG >> Replace EVAP canister vent control valve.	L
11. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR	
Refer to EC-988, "Component Inspection".	
OK or NG	
OK >> GO TO 12. NG >> Replace EVAP control system pressure sensor.	
12. CHECK RUBBER TUBE	
Check obstructed rubber tube connected to EVAP canister vent control valve).
OK or NG	

EC-987

>> Clean rubber tube using an air blower, repair or replace rubber tube.

>> GO TO 13.


OK NG

13. CHECK IF EVAP CANISTER SATURATED WITH WATER

- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- Check if water will drain from the EVAP canister.

Yes or No

Yes >> GO TO 14. No >> GO TO 16.

14. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 1.9 kg (4.2 lb).

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

15. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose connected to EVAP canister for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

16. CHECK INTERMITTENT INCIDENT

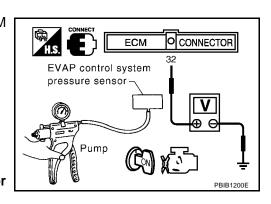
Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection EVAP CONTROL PRESSURE SENSOR

UBS00AU1

- 1. Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove EVAP control system pressure sensor from EVAP canister.


Do not reuse the O-ring, replace it with a new one.

- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch ON and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).

[QR25DE]

5. If NG, replace EVAP control system pressure sensor.

EC

Α

С

D

Е

F

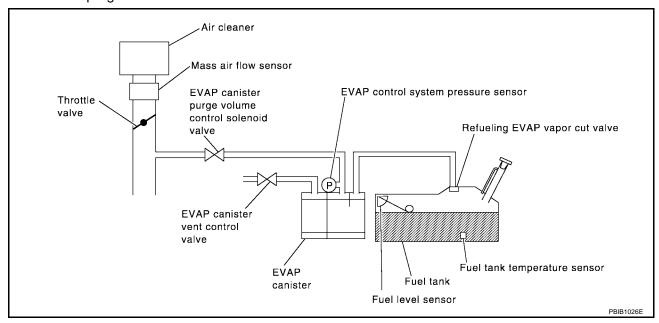
G

Н

1

J

Κ


L

DTC P0455 EVAP CONTROL SYSTEM

On Board Diagnosis Logic

PFP:14950 UBS00AU2

This diagnosis detects a very large leak (fuel filler cap fell off etc.) in EVAP system between the fuel tank and EVAP canister purge volume control solenoid valve.

 Incorrect fuel filler cap used Foreign matter caught in fuel filler cap Leak is in line between intake manifold and EVAP canister purge volume cont solenoid valve. Foreign matter caught in EVAP caniste vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube 	DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0455 0455 EVAP control system gross leak detected EVAP control system has a very large leak such as fuel filler cap fell off, EVAP control system does not operate properly. EVAP control system has a very large leak such as fuel filler cap fell off, EVAP control system purge line rubber tube to EVAP control system pressure sensor Loose or disconnected rubber tube EVAP canister vent control valve and to circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged.	P0455	EVAP control system	EVAP control system has a very large leak such as fuel filler cap fell off, EVAP control sys-	 Fuel filler cap remains open or fails to close. Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent. Blocked or bent rubber tube to EVAP control system pressure sensor Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged. EVAP control system pressure sensor Refueling EVAP vapor cut valve

CAUTION:

 Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

[QR25DE]

- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

UBS00AU3

CAUTION:

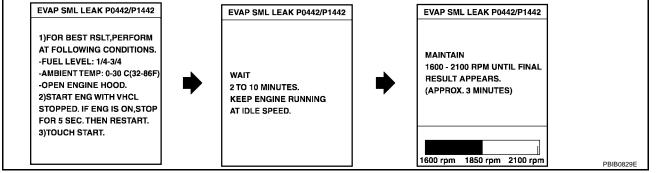
Never remove fuel filler cap during the DTC Confirmation Procedure.

NOTE:

- Make sure that EVAP hose are connected to EVAP canister purge volume control solenoid valve properly.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 and 3/4 full, and vehicle is placed on flat level surface.
- Open engine hood before conducting the following procedure.

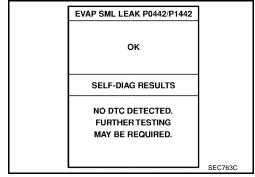

(II) WITH CONSULT-II

- 1. Tighten fuel filler cap securely until reteaching sound is heard.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 5. Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 60°C (32 - 140°F)

6. Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.


NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to EC-723, "Basic Inspection".

7. Make sure that "OK" is displayed.

If "NG" is displayed, select "SELF-DIAG RESULTS" mode with CONSULT-II and make sure that "EVAP GROSS LEAK [P0455]" is displayed. If it is displayed, refer to EC-992, "Diagnostic Procedure".

If P0442 is displayed, perform Diagnostic Procedure for DTC P0442, EC-957.

EC

Α

D

Е

F

Н

1

K

L

UBS00AU4

WITH GST

NOTE:

Be sure to read the explanation of Driving Pattern on EC-700 before driving vehicle.

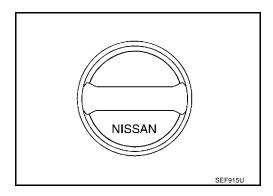
- Start engine.
- 2. Drive vehicle according to Driving Pattern, <u>EC-700</u>.
- 3. Stop vehicle.
- 4. Select MODE 1 with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Start engine.

It is not necessary to cool engine down before driving.

- 7. Drive vehicle again according to the Driving Pattern, EC-700.
- 8. Stop vehicle.
- 9. Select MODE 3 with GST.
- If P0455 is displayed on the screen, go to <u>EC-992, "Diagnostic Procedure"</u>.
- If P0442 is displayed on the screen, go to Diagnostic Procedure, for DTC P0442, <u>EC-957</u>.
- If P0441 is displayed on the screen, go to Diagnostic Procedure for DTC P0441, <u>EC-951</u>.
- If P0441, P0442 and P0455 are not displayed on the screen, go to the following step.
- 10. Select MODE 1 with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6.

Diagnostic Procedure

Turn ignition switch OFF.


1. CHECK FUEL FILLER CAP DESIGN

2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until reteaching sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

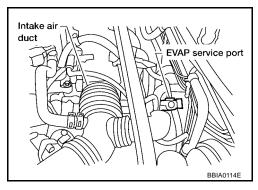
OK >> GO TO 5.

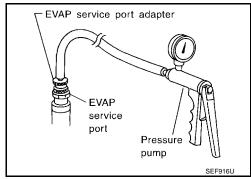
NG >> GO TO 4.

DTC P0455 EVAP CONTROL SYSTEM

[QR25DE]

 \mathbb{N}


[QR25DE	<u> </u>
4. CHECK FUEL TANK VACUUM RELIEF VALVE	_
Refer to EC-1308, "FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FULLER CAP)"	_
OK or NG	
OK >> GO TO 5. NG >> Replace fuel filler cap with a genuine one.	
5. CHECK EVAP PURGE LINE	
Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks, improper connection o	- r
Refer to <u>EC-1305, "EVAPORATIVE EMISSION SYSTEM"</u> .	
OK or NG	
OK >> GO TO 6. NG >> Repair or reconnect the hose.	
O. CLEAN EVAP PURGE LINE	
Clean EVAP purge line (pipe and rubber tube) using air blower.	_
ziean z w ir pange inte (p.pe and russer tuse) deinig an sienen	
>> GO TO 7.	
7. CHECK EVAP CANISTER VENT CONTROL VALVE	
Check the following.	_
EVAP canister vent control is installed properly. Refer to EC-1309, "Removal and Installation"	
EVAP canister vent control valve.	
Refer to EC-974, "Component Inspection" OK or NG	
OK >> GO TO 8.	
NG >> Repair or replace EVAP canister vent control valve and O-ring.	


8. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely.

NOTE:

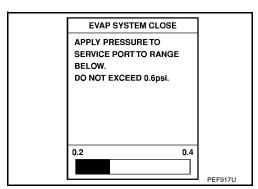
Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

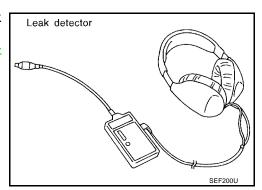
Models with CONSULT-II>>GO TO 9.
Models without CONSULT-II>>GO TO 10.

9. CHECK FOR EVAP LEAK

With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

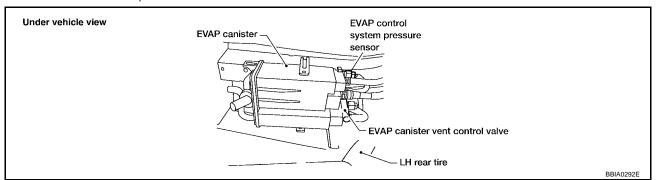

NOTE:


- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to <u>EC-1306</u>, "EVAPORATIVE EMISSION LINE DRAW-ING".

OK or NG

OK >> GO TO 11.

NG >> Repair or replace.



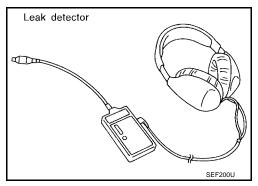
10. CHECK FOR EVAP LEAK

⊗ Without CONSULT-II

- Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)

Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:


- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-1306, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

NG

>> GO TO 12. OK

>> Repair or replace.

11. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 14. NG >> GO TO 13.

ACTIVE TES	T T	
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
-		
	1	
		PBIB1786E

EC

Е

12. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 15. NG >> GO TO 13.

13. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to <u>EC-1306, "EVAPORATIVE EMISSION LINE DRAWING"</u>.

OK or NG

OK (With CONSULT-II)>>GO TO 14.

OK (Without CONSULT-II)>>GO TO 15.

NG >> Repair or reconnect the hose.

14. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(III) With CONSULT-II

- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

ACTIVE TE		
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
		DDID4700E
		PBIB1786E

15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-968, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace EVAP canister purge volume control solenoid valve.

16. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-908, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace fuel level sensor unit.

DTC P0455 EVAP CONTROL SYSTEM

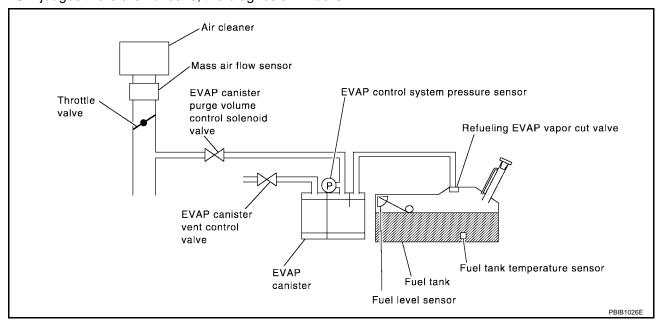
[QR25DE]

[4,,100-1	
17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR	
Refer to EC-981, "Component Inspection".	, ,
OK or NG	E
OK >> GO TO 18. NG >> Replace EVAP control system pressure sensor.	
18. CHECK EVAP/ORVR LINE	(
Check refueling EVAP/ORVR line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to EC-1312 , "ON BOARD REFUELING VAPOR RECOVERY (ORVR)".	
OK or NG OK >> GO TO 19. >> Repair or replace hoses and tubes.	I
19. CHECK SIGNAL LINE AND RECIRCULATION LINE	
Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.	<u> </u>
OK or NG	(
OK >> GO TO 20. >> Repair or replace hoses, tubes or filler neck tube.	`
20. check refueling evap vapor cut valve	ŀ
Refer to EC-1315, "Component Inspection" .	•
OK or NG OK >> GO TO 21. >> Replace refueling EVAP vapor cut valve with fuel tank.	
21. CHECK INTERMITTENT INCIDENT	4
Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	
INODECTION END	
>> INSPECTION END	
	L

DTC P0456 EVAP CONTROL SYSTEM

PFP:14950

On Board Diagnosis Logic


UBS00AU5

This diagnosis detects very small leaks in the EVAP line between fuel tank and EVAP canister purge volume control solenoid valve, using the intake manifold vacuum in the same way as conventional EVAP small leak diagnosis.

If ECM judges a leak which corresponds to a very small leak, the very small leak P0456 will be detected.

If ECM judges a leak equivalent to a small leak, EVAP small leak P0442 will be detected.

If ECM judges there are no leaks, the diagnosis will be OK.

K

M

UBS00AU6

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	А
	Evaporative emission FVAP system has a very small leak		 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. 	EC
			 Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. 	С
			Foreign matter caught in EVAP canister vent control valve.	
			EVAP canister or fuel tank leaks	D
			EVAP purge line (pipe and rubber tube) leaks	D
			EVAP purge line rubber tube bent	
			 EVAP system has a very small leak. 	Blocked or bent rubber tube to EVAP control system pressure sensor
P0456 0456	control system very	system very	Loose or disconnected rubber tube	
0430	small leak (negative pressure check) • EVAP system does not operate projectly.	erly.	EVAP canister vent control valve and the circuit	_
		EVAP canister purge volume con valve and the circuit	EVAP canister purge volume control solenoid valve and the circuit	F
			Fuel tank temperature sensor	
			O-ring of EVAP canister vent control valve is missing or damaged	G
			EVAP canister is saturated with water	
			EVAP control system pressure sensor	Н
			Refueling EVAP vapor cut valve	
			ORVR system leaks	
			Fuel level sensor and the circuit	
			Foreign matter caught in EVAP canister purge vol- ume control solenoid valve	

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

NOTE

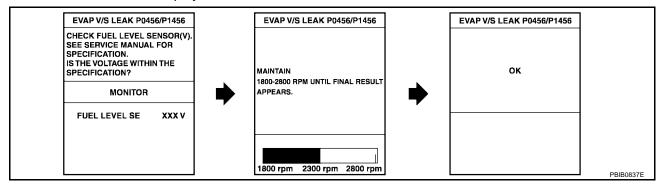
- If DTC P0456 is displayed with P0442, first perform trouble diagnosis for DTC P0456.
- After repair, make sure that the hoses and clips are installed properly.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- If any of following conditions are met just before the DTC confirmation procedure, leave the vehicle for more than 1 hour.
- Fuel filler cap is removed.
- Refilled or drained the fuel.
- EVAP component parts is/are removed.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Make sure the following conditions are met.


FUEL LEVEL SE: 0.25 - 1.4V

COOLAN TEMP/S: 0 - 32°C (32 - 90°F) FUEL T/TMP SE: 0 - 35°C (32 - 95°F) INT A/TEMP SE: More than 0°C (32°F)

If NG, turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle) or refilling/draining fuel until the output voltage condition of the "FUEL LEVEL SE" meets within the range above and leave the vehicle for more than 1 hour. Then start from step 1).

- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON.
- 5. Select "EVAP V/S LEAK P0456" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

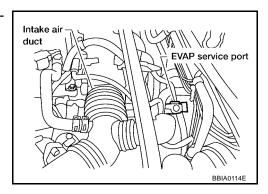
6. Make sure that "OK" is displayed.

If "NG" is displayed, refer to EC-1001, "Diagnostic Procedure".

NOTE:

- If the engine speed cannot be maintained within the range displayed on CONSULT-II screen, go to <u>EC-723</u>, "<u>Basic Inspection</u>".
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

Overall Function Check


UBS00AU7

WITH GST

Use this procedure to check the overall function of the EVAP very small leak function. During this check, a DTC might not be confirmed.

CAUTION:

- Never use compressed air, doing so may damage the EVAP system.
- Do not start engine.
- Do not exceeded 4.12 kPa (0.042 kg/cm², 0.6 psi).
- 1. Attach the EVAP service port adapter securely to the EVAP service port.

DTC P0456 EVAP CONTROL SYSTEM

[QR25DE]

- 2. Set the pressure pump and a hose.
- 3. Also set a vacuum gauge via 3-way connector and a hose.
- 4. Turn ignition switch ON.
- 5. Connect GST and select mode 8.
- 6. Using mode 8 control the EVAP canister vent control valve (close).
- Apply pressure and make sure the following conditions are satisfied.

Pressure to be applied: 2.7 kPa (20 mmHg, 0.79 inHg) Time to be waited after the pressure drawn in to the EVAP system and the pressure to be dropped: 60 seconds and

the pressure should not be dropped more than 0.4 kPa (3 mmHg, 0.12 inHg).

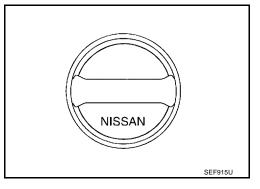
If NG, go to <u>EC-1001, "Diagnostic Procedure"</u>. If OK, go to next step.

- 8. Disconnect GST.
- 9. Start engine and warm it up to normal operating temperature.
- 10. Turn ignition switch OFF and wait at least 10 seconds.
- 11. Restart engine and let it idle for 90 seconds.
- 12. Keep engine speed at 2,000 rpm for 30 seconds.
- 13. Turn ignition switch OFF.

NOTE:

For more information, refer to GST instruction manual.

Diagnostic Procedure


1. CHECK FUEL FILLER CAP DESIGN

- 1. Turn ignition switch OFF.
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until reteaching sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

Adapter for EVAP service port

EVAP
service
port

Pressure pump
SEFAGUII

EC

Α

Е

F

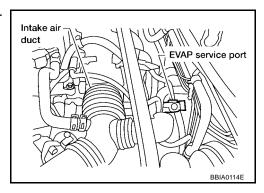
G

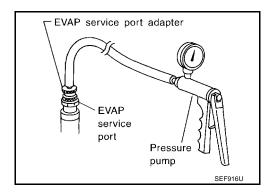
UBS00AU8

K

4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-1308, "FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FULLER CAP)".


OK or NG


OK >> GO TO 5.

NG >> Replace fuel filler cap with a genuine one.

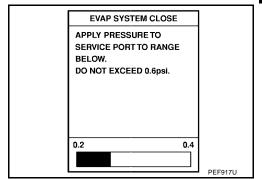
5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely.

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

Models with CONSULT-II>>GO TO 6. Models without CONSULT-II>>GO TO 7.

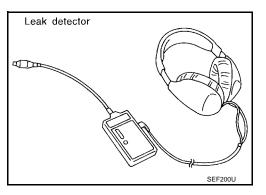

6. CHECK FOR EVAP LEAK

(II) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.



 Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to <u>EC-1306</u>, "<u>EVAPORATIVE EMISSION LINE DRAW-ING</u>".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

EC

Α

D

Е

F

G

Н

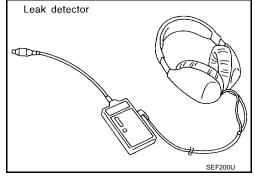
K

7. CHECK FOR EVAP LEAK

W Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)

3. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-1306, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

8. CHECK EVAP CANISTER VENT CONTROL VALVE

Check the following.

- EVAP canister vent control valve is installed properly. Refer to <u>EC-1309</u>, "Removal and Installation"
- EVAP canister vent control valve.
 Refer to <u>EC-974</u>, "Component Inspection"

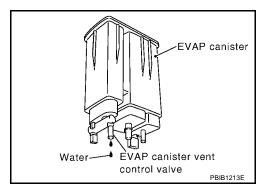
OK or NG

OK >> GO TO 9.

NG >> Repair or replace EVAP canister vent control valve and O-ring.

[QR25DE]

9. CHECK IF EVAP CANISTER SATURATED WITH WATER


- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- 2. Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 10.

No (With CONSULT-II)>>GO TO 12.

No (Without CONSULT-II)>>GO TO 13.

10. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 1.9 kg (4.2 lb).

OK or NG

OK (With CONSULT-II)>>GO TO 12.

OK (Without CONSULT-II)>>GO TO 13.

NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection

>> Repair hose or replace EVAP canister.

12. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 15.

NG >> GO TO 14.

ACTIVE T		
PURG VOL CONT/	/ XXX %	
MONITO	DR .	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
		PBIB1786E

EC

D

Е

Н

B

K

13. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 16. NG >> GO TO 14.

14. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-654, "Vacuum Hose Drawing" .

OK or NG

OK >> GO TO 15.

NG >> Repair or reconnect the hose.

15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-968, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace EVAP canister purge volume control solenoid valve.

16. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-908, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace fuel level sensor unit.

17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-981, "Component Inspection".

OK or NG

OK >> GO TO 18.

NG >> Replace EVAP control system pressure sensor.

18. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to EC-1306, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 19.

NG >> Repair or reconnect the hose.

19. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

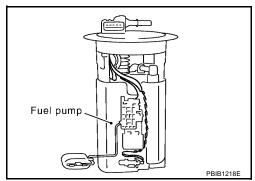
>> GO TO 20.

DTC P0456 EVAP CONTROL SYSTEM

[QR25DE]

[Q/\Z5DL	1
20. CHECK EVAP/ORVR LINE	_
Check EVAP/ORVR line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to EC-1312, "ON BOARD REFUELING VAPOR RECOVERY (ORVR)".	
OK or NG	E
OK >> GO TO 21. NG >> Repair or replace hoses and tubes.	
21. CHECK SIGNAL LINE AND RECIRCULATION LINE	
Check signal line recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, loosenes and improper connection. OK or NG	s S
OK >> GO TO 22. NG >> Repair or replace hose, tube or filler neck tube.	Е
22. CHECK REFUELING EVAP VAPOR CUT VALVE	
Refer to EC-1315, "Component Inspection" .	- F
OK or NG OK >> GO TO 23. NG >> Replace refueling EVAP vapor cut valve with fuel tank.	C
23. CHECK FUEL LEVEL SENSOR	-
Refer to DI-25, "FUEL LEVEL SENSOR UNIT CHECK". OK or NG	_ '
OK >> GO TO 24. NG >> Replace fuel level sensor unit.	I
24. CHECK INTERMITTENT INCIDENT	J
Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	_
>> INSPECTION END	K
	L

DTC P0460 FUEL LEVEL SENSOR


PFP:25060

UBS00AU9

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the "unified meter and A/C amp." The unified "meter and A/C amp." sends the fuel level sensor signal to the ECM through CAN communication line.

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnostic Logic

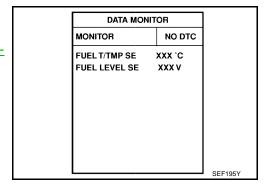
UBS00AUA

NOTE:

If DTC P0460 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-789, "DTC U1000, U1001 CAN COMMUNICATION LINE".

When the vehicle is parked, naturally the fuel level in the fuel tank is stable. It means that output signal of the fuel level sensor does not change. If ECM senses sloshing signal from the sensor, fuel level sensor malfunction is detected.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0460 0460	Fuel level sensor circuit noise	Even though the vehicle is parked, a signal being varied is sent from the fuel level sensor to ECM.	 Harness or connectors (The CAN communication line is open or shorted) Harness or connectors (The sensor circuit is open or shorted) Unified meter and A/C amp. Fuel level sensor


DTC Confirmation Procedure

UBSOOAUB

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and wait maximum of 2 consecutive minutes.
- If 1st trip DTC is detected, go to EC-1009, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

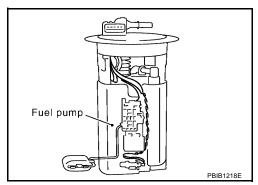
DTC P0460 FUEL LEVEL SENSOR

[QR25DE] **Diagnostic Procedure** UBS00AUC Α 1. CHECK DTC WITH "UNIFIED METER AND A/C AMP." Refer to DI-15, "SELF-DIAGNOSIS FUNCTION". EC OK or NG OK >> GO TO 2. NG >> Follow the instruction of "METER AND GAUGES". Refer to DI-15. C 2. CHECK INTERMITTENT INCIDENT Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". D >> INSPECTION END Removal and Installation Е UBS00AUD **FUEL LEVEL SENSOR** Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY". F Н

M

DTC P0461 FUEL LEVEL SENSOR

PFP:25060


UBS00AUE

Component Description

The fuel level sensor is mounted in the fuel level s

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the "unified meter and A/C amp." The "unified meter and A/C amp." sends the fuel level sensor signal to the ECM through CAN communication line.

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnostic Logic

UBSOOAUF

NOTE:

If DTC P0461 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-789, "DTC U1000, U1001 CAN COMMUNICATION LINE".

Driving long distances naturally affect fuel gauge level.

This diagnosis detects the fuel gauge malfunction of the gauge not moving even after a long distance has been driven.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0461 0461	Fuel level sensor circuit range/performance	The output signal of the fuel level sensor does not change within the specified range even though the vehicle has been driven a long distance.	 Harness or connectors (the CAN communication line is open or shorted) Harness or connectors (The sensor circuit is open or shorted) Unified meter and A/C amp. Fuel level sensor

Overall Function Check

UBS00AUG

Use this procedure to check the overall function of the fuel level sensor function. During this check, a 1st trip DTC might not be confirmed.

WARNING:

When performing following procedure, be sure to observe the handling of the fuel. Refer to $\underline{\mathsf{FL-7}}$, "FUEL TANK".

TESTING CONDITION:

Before starting overall function check, preparation of draining fuel and refilling fuel is required.

(P) WITH CONSULT-II

NOTE:

Start from step 11, if it is possible to confirm that the fuel cannot be drained by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

- 1. Prepare a fuel container and a spare hose.
- 2. Release fuel pressure from fuel line, refer to EC-687, "FUEL PRESSURE RELEASE".
- 3. Remove the fuel feed hose on the fuel level sensor unit.
- 4. Connect a spare fuel hose where the fuel feed hose was removed.

DTC P0461 FUEL LEVEL SENSOR

[QR25DE] 5. Turn ignition switch OFF and wait at least 10 seconds then turn DATA MONITOR Α MONITOR NO DTC Select "FUEL LEVEL SE" in "DATA MONITOR" mode with CON-6. FUEL T/TMP SE XXX °C SULT-II. FUEL LEVEL SE XXX V 7. Check "FUEL LEVEL SE" output voltage and note it. Select "FUEL PUMP" in "ACTIVE TEST" mode with CONSULT-Touch "ON" and drain fuel approximately 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) and stop it. 10. Fill fuel into the fuel tank for 30 ℓ (7-7/8 US gal, 6-5/8 lmp gal). 11. Check "FUEL LEVEL SE" output voltage and note it. 12. Check "FUEL LEVEL SE" output voltage and confirm whether the voltage changes more than 0.03V during step 7 to 11. If NG, go to Diagnostic Procedure EC-1011. **WITH GST** NOTE: Start from step 8, if it is possible to confirm that the fuel cannot be drained by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) in advance. Prepare a fuel container and a spare hose. 2. Release fuel pressure from fuel line, refer to EC-687, "FUEL PRESSURE RELEASE". Remove the fuel feed hose on the fuel level sensor unit. 3. Connect a spare fuel hose where the fuel feed hose was removed. 5. Turn ignition switch ON. 6. Drain fuel by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) from the fuel tank using proper equipment. 7. Confirm that the fuel gauge indication varies. 8. Fill fuel into the fuel tank for 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal). 9. Confirm that the fuel gauge indication varies. 10. If NG, go to Diagnostic Procedure, EC-1011.

Diagnostic Procedure

CHECK DTC WITH "UNIFIED METER AND A/C AMP."

Refer to DI-15

OK or NG

OK >> GO TO 2.

NG >> GO TO DI-15.

2. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Removal and Installation **FUEL LEVEL SENSOR**

Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

EC

Е

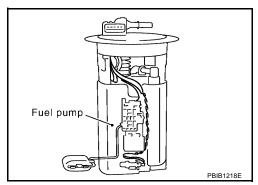
Н

K

UBS00AUH

M

DTC P0462, P0463 FUEL LEVEL SENSOR


PFP:25060

UBS00AUJ

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the "unified meter and A/C amp". The "unified meter and A/C amp". sends the fuel level sensor signal to the ECM through CAN commu-

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnostic Logic

LIBSODALIK

NOTE:

If DTC P0462 or P0463 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-789, "DTC U1000, U1001 CAN COMMUNICATION LINE".

ECM receives two signals from the fuel level sensor circuit.

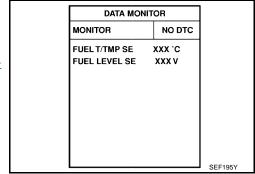
One is fuel level sensor power supply circuit, and the other is fuel level sensor ground circuit.

This diagnosis indicates the former, to detect open or short circuit malfunction.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0462 0462	Fuel level sensor circuit low input	An excessively low voltage it from the sensor to ECM.	Harness or connectors (The CAN communication line is open or
P0463 0463	Fuel level sensor circuit high input	An excessively high voltage from the sensor to ECM.	 shorted) Harness or connectors (The sensor circuit is open or shorted) Unified meter and A/C amp. Fuel level sensor

DTC Confirmation Procedure

UBS00AUL


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at ignition switch ON.

(III) WITH CONSULT-II

- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-1013, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P0462, P0463 FUEL LEVEL SENSOR

[QR25DE]

 \mathbb{N}

Diagnostic Procedure 1. CHECK DTC WITH "UNIFIED METER AND A/C AMP."	UBS00AUM	А
Refer to DI-15, "SELF-DIAGNOSIS FUNCTION" . OK or NG OK >> GO TO 2.		EC
NG >> GO TO "METER AND GAUGES". Refer to DI-15.		С
2. CHECK INTERMITTENT INCIDENT Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".		
		D
>> INSPECTION END		Е
Removal and Installation FUEL LEVEL SENSOR	UBS00AUN	
Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".		F
		G
		Н
		I
		J
		K
		r\
		L

DTC P0500 VSS PFP:32702

Component Description

UBS00AUO

NOTE:

If DTC P0500 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-789, "DTC U1000, U1001 CAN COMMUNICATION LINE".

The vehicle speed sensor is installed in the transaxle. It contains a pulse generator which provides a vehicle speed signal to the "unified meter and A/C amp." The "unified meter and A/C amp." then sends a signal to the ECM through CAN communication line.

On Board Diagnosis Logic

UBS00AUF

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
		The almost 0 km/h (0 MPH) signal from	Harness or connectors (The CAN communication line is open or shorted)
P0500 0500	Vehicle speed sensor	vehicle speed sensor is sent to ECM even when vehicle is being driven.	 Harness or connectors (The vehicle speed signal circuit is open or shorted)
			Vehicle speed sensor
		 unified meter and A/C amp. 	

DTC Confirmation Procedure

UBS00AUQ

CAUTION:

Always drive vehicle at a safe speed.

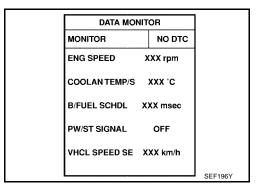
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Steps 1 and 2 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(II) WITH CONSULT-II


- 1. Start engine (TCS switch OFF).
- Read "VHCL SPEED SE" in "DATA MONITOR" mode with CONSULT-II. The vehicle speed on CONSULT-II should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.

If NG, go to EC-1015, "Diagnostic Procedure".

- If OK, go to following step.
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- 4. Warm engine up to normal operating temperature.
- Maintain the following conditions for at least 60 consecutive seconds.

ENG SPEED	1,200 - 6,000 rpm (A/T models) 1,800 - 6,000 rpm (M/T models)
B/FUEL SCHDL	More then 6.0 msec (A/T models) More than 5.0 msec (M/T models)
Selector lever	Except P or N position
PW/ST SIGNAL	OFF

If 1st trip DTC is detected, go to <u>EC-1015</u>, "<u>Diagnostic Procedure</u>".

Overall Function Check

UBS00AUR

Use this procedure to check the overall function of the vehicle speed signal circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

Lift up drive wheels.

DTC P0500 VSS

[QR25DE]

 \mathbb{N}

_	Other transfers	
2. 3.	Start engine. Read vehicle speed sensor signal in MODE 1 with GST. The vehicle speed sensor on GST should be able to exceed 10 km/h (6 MPH) when rotating wheels with	A
1	suitable gear position.	Г(
4.	If NG, go to EC-1015, "Diagnostic Procedure".	EC
_	agnostic Procedure	
<u> </u>	CHECK VEHICLE SPEED SENSOR CITCUIT	С
	fer to DI-3, "METERS AND GAUGES" .	
_	K or NG	D
	K >> GO TO 2. G >> Repair or replace.	
_	·	_
<u></u>	CHECK DTC WITH "UNIFIED METER AND A/C AMP."	Е
Re	fer to DI-15, "SELF-DIAGNOSIS FUNCTION".	
	>> INSPECTION END	F
	>> INSPECTION END	
		G
		-
		J
		K
		ı
		L

DTC P0506 ISC SYSTEM

PFP:23781

Description

NOTE:

If DTC P0506 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner, power steering and cooling fan operation, etc.).

On Board Diagnosis Logic

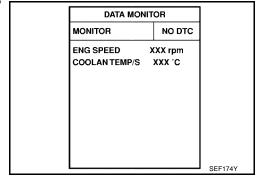
UBS00AUU

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0506 0506	Idle speed control sys- tem RPM lower than expected	The idle speed is less than the target idle speed by 100 rpm or more.	Electric throttle control actuator Intake air leak

DTC Confirmation Procedure

UBS00AUV

NOTE


- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform Idle Air Volume Learning, <u>EC-47</u>, before conducting DTC Confirmation Procedure. For the target idle speed, refer to the Service Data and Specifications (SDS), <u>EC-1321</u>.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above –10°C (14°F).

(III) WITH CONSULT-II

- Open engine hood.
- Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON again and select "DATA MONITOR" mode with CONSULT-II.
- 5. Start engine and run it for at least 1 minute at idle speed.
- If 1st trip DTC is detected, go to <u>EC-1017</u>.

WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P0506 ISC SYSTEM

[QR25DE] **Diagnostic Procedure** UBS00AUW 1. CHECK INTAKE AIR LEAK Α Start engine and let it idle. EC 2. Listen for an intake air leak after the mass air flow sensor. OK or NG OK >> GO TO 2. C NG >> Discover air leak location and repair. 2. REPLACE ECM D 1. Stop engine. 2. Replace ECM. 3. Perform initialization of NATS system and registration of all NATS ignition key IDs. Refer to EC-706, "NVIS (Nissan Vehicle Immobilizer System — NATS)" . 4. Perform EC-684, "Accelerator Pedal Released Position Learning". Perform EC-684, "Throttle Valve Closed Position Learning". F 6. Perform EC-685, "Idle Air Volume Learning". >> INSPECTION END Н

M

DTC P0507 ISC SYSTEM

PFP:23781

Description

NOTE:

If DTC P0507 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner, power steering and cooling fan operation, etc.).

On Board Diagnosis Logic

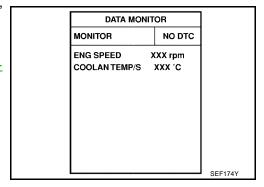
UBS00AUY

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0507 0507	Idle speed control sys- tem RPM higher than expected	The idle speed is more than the target idle speed by 200 rpm or more.	 Electric throttle control actuator Intake air leak PCV system

DTC Confirmation Procedure

UBS00AUZ

NOTE


- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform Idle Air Volume Learning, <u>EC-47</u>, before conducting DTC Confirmation Procedure. For the target idle speed, refer to the Service Data and Specifications (SDS), <u>EC-1321</u>.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above –10°C (14°F).

(P) WITH CONSULT-II

- Open engine hood.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON again and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 1 minute at idle speed.
- 6. If 1st trip DTC is detected, go to EC-1019, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P0507 ISC SYSTEM

[QR25DE]

UBSOOAVO

A

EC

C

D

E

Н

M

Diagnostic Procedure

1. CHECK PCV HOSE CONNECTION

Confirm that PCV hose is connected correctly.

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK INTAKE AIR LEAK

- 1. Start engine and let it idle.
- 2. Listen for an intake air leak after the mass air flow sensor.

OK or NG

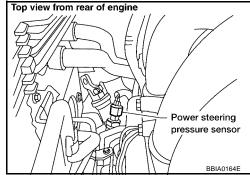
OK >> GO TO 3.

NG >> Discover air leak location and repair.

3. REPLACE ECM

- 1. Stop engine.
- 2. Replace ECM.
- 3. Perform initialization of NATS system and registration of all NATS ignition key IDs. Refer to <u>EC-706</u>, "NVIS (Nissan Vehicle Immobilizer System NATS)".
- 4. Perform EC-684, "Accelerator Pedal Released Position Learning".
- 5. Perform EC-684, "Throttle Valve Closed Position Learning".
- 6. Perform EC-685, "Idle Air Volume Learning".

>> INSPECTION END


DTC P0550 PSP SENSOR

Component Description

UBS00AV1

PFP:49763

Power steering pressure (PSP) sensor is installed to the power steering high-pressure tube and detects a power steering load. This sensor is a potentiometer which transforms the power steering load into output voltage, and emits the voltage signal to the ECM. The ECM controls the electric throttle control actuator and adjusts the throttle valve opening angle to increase the engine speed and adjusts the idle speed for the increased load.

CONSULT-II Reference Value in Data Monitor Mode

UBS00AV2

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
PW/ST SIGNAL	Engine: After warming up, idle the engine	Steering wheel is in neutral position. (Forward direction)	OFF
	the engine	Steering wheel is turned.	ON

On Board Diagnosis Logic

UBS00AV3

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0550 0550	Power steering pressure sensor circuit	An excessively low or high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)Power steering pressure sensor

DTC Confirmation Procedure

UBS00AV4

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-1022, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

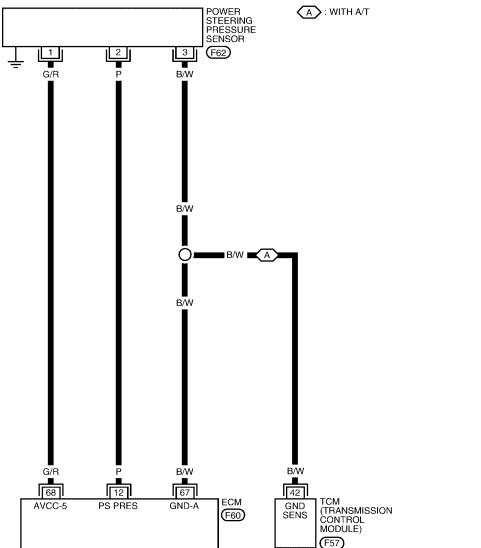
Wiring Diagram

EC-PS/SEN-01

: DETECTABLE LINE FOR DTC ■ : NON-DETECTABLE LINE FOR DTC

EC

C


D

Е

Н

M

Α

Refer to the following. (F57) - ELECTRICAL UNITS

123 3 (F60)

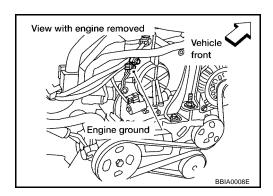
BBWA0757E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

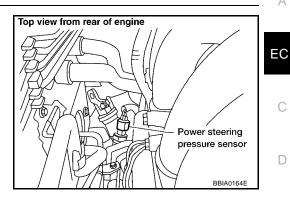
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
12	Р	Power steering pressure	[Engine is running]Steering wheel is being turned.	0.5 - 4.0V
12	'	sensor	[Engine is running]Steering wheel is not being turned.	0.4 - 0.8V
67	B/W	Sensor's ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
68	G/R	Sensor power supply (Power steering pressure sensor)	[Ignition switch: ON]	Approximately 5V


Diagnostic Procedure

UBS00AV6

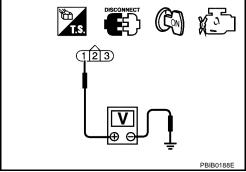
1. RETIGHTEN GROUND SCREWS


- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK PSP SENSOR POWER SUPPLY CIRCUIT

- Disconnect PSP sensor harness connector. 1.
- 2. Turn ignition switch ON.


3. Check voltage between PSP sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK PSP SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector (A/T models).
- 4. Check harness continuity between PSP sensor terminal 3 and ECM terminal 67, TCM terminal 42 (A/T models).

Continuity should exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between power steering pressure sensor and ECM
- Harness for open or short between power steering pressure sensor and TCM (A/T models)
 - >> Repair open circuit or short to power in harness or connectors.

M

K

D

Е

5. CHECK PSP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 12 and PSP sensor terminal 2.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK PSP SENSOR

Refer to EC-1024, "Component Inspection".

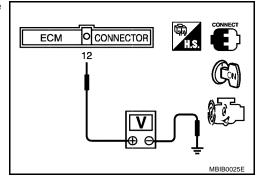
OK or NG

OK >> GO TO 7.

NG >> Replace PSP sensor.

7. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection POWER STEERING PRESSURE SENSOR

UBS00AV7

- Reconnect all harness connectors disconnected.
- 2. Start engine and let it idle.
- 3. Check voltage between ECM terminal 12 and ground under the following conditions.

Condition	Voltage
Steering wheel is being turned fully.	0.5 - 4.0V
Steering wheel is not being turned.	0.4 - 0.8V

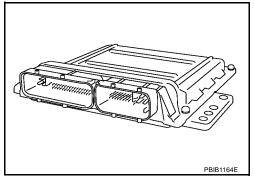
[QR25DE]

DTC P0605 ECM PFP:23710

Component Description

UBS00AV8

Α


EC

Е

Н

M

The ECM consists of a microcomputer and connectors for signal input and output and for power supply. The ECM controls the engine.

On Board Diagnosis Logic

LIBSONAV9

This self-diagnosis has one or two trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
	P0605 0605 Engine control module	A)	ECM calculation function is malfunctioning.	
P0605 0605		B)	ECM EEP-ROM system is malfunctioning.	• ECM
0000		C)	ECM self shut-off function is malfunctioning.	

FAIL-SAFE MODE

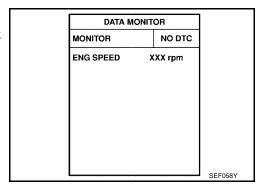
ECM enters fail-safe mode when the malfunction A is detected.

Detected items	Engine operation condition in fail-safe mode		
Malfunction A	 ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring. ECM deactivates ASCD operation. 		

DTC Confirmation Procedure

Perform PROCEDURE FOR MALFUNCTION A first. If the 1st trip DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B. If there is no malfunction on PROCEDURE FOR MALFUNCTION B, perform PROCEDURE FOR MALFUNCTION C.

NOTE:

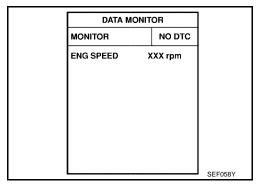

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A

(P) With CONSULT-II

1. Turn ignition switch ON.

- Select "DATA MONITOR" mode with CONSULT-II.
- 3. If 1st trip DTC is detected, go to EC-1026, "Diagnostic Procedure".

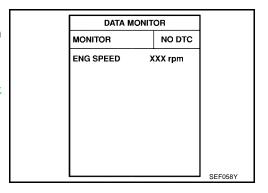

₩ith GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II

- 1. Turn ignition switch ON and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- If 1st trip DTC is detected, go to <u>EC-1026, "Diagnostic Procedure"</u>.


With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION C

(With CONSULT-II

- 1. Turn ignition switch ON and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- 4. Repeat step 3 for 32 times.
- 5. If 1st trip DTC is detected, go to <u>EC-1026, "Diagnostic Procedure"</u>.

With GST

Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure

UBS00AVB

1. INSPECTION START

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "SELF DIAG RESULTS" mode with CONSULT-II.
- 3. Touch "ERASE".
- 4. Perform DTC Confirmation Procedure.

See EC-1025.

5. Is the 1st trip DTC P0605 displayed again?

6 With GST

- 1. Turn ignition switch ON.
- 2. Select MODE 4 with GST.
- 3. Touch "ERASE".
- 4. Perform DTC Confirmation Procedure.

See EC-1025.

5. Is the 1st trip DTC P0605 displayed again?

Yes or No

Yes >> GO TO 2.

No >> INSPECTION END

DTC P0605 ECM

[QR25DE]

$\overline{2}$. REPLACE ECM

- 1. Replace ECM.
- 2. Perform initialization of NATS system and registration of all NATS ignition key IDs. Refer to EC-706, <a href=""INVIS (Nissan Vehicle Immobilizer System NATS)".
- 3. Perform EC-684, "Accelerator Pedal Released Position Learning" .
- 4. Perform EC-684, "Throttle Valve Closed Position Learning".
- 5. Perform EC-685, "Idle Air Volume Learning".

>> INSPECTION END

EC

С

D

Е

.

Н

<

L

M

DTC P1031, P1032 A/F SENSOR 1 HEATER

PFP:22693

DescriptionSYSTEM DESCRIPTION

UBS00AVC

Sensor	Input Signal to ECM	ECM function	Actuator	
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed	Air fuel ratio (A/F)	Air fuel ratio (A/F) sensor 1	
Mass air flow sensor	Amount of intake air	sensor 1 heater control	heater	

The ECM performs ON/OFF duty control of the A/F sensor 1 heater corresponding to the engine operating condition to keep the temperature of A/F sensor 1 element at the specified range.

CONSULT-II Reference Value in Data Monitor Mode

UBS00AVD

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
A/F S1 HTR (B1)	Engine: After warming up, idle the engine	0 - 100%

On Board Diagnosis Logic

UBS00AVE

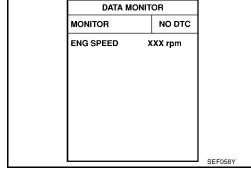
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1031 1031	Air fuel ratio (A/F) sensor 1 heater control circuit low	The current amperage in the air fuel ratio (A/F) sensor 1 heater circuit is out of the normal range. (An excessively low voltage signal is sent to ECM through the air fuel ratio (A/F) sensor 1 heater.)	 Harness or connectors (The A/F sensor 1 heater circuit is open or shorted.) A/F sensor 1 heater
P1032 1032	Air fuel ratio (A/F) sensor 1 heater control circuit high	The current amperage in the air fuel ratio (A/F) sensor 1 heater circuit is out of the normal range. (An excessively high voltage signal is sent to ECM through the air fuel ratio (A/F) sensor 1 heater.)	 Harness or connectors (The A/F sensor 1 heater circuit is shorted.) A/F sensor 1 heater

DTC Confirmation Procedure

UBS00AVF

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

With CONSULT-II

(II) WITH CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and run it for at least 10 seconds at idle speed.
- 3. If 1st trip DTC is detected, go to <u>EC-1031, "Diagnostic Procedure"</u>.

WITH GST

- 1. Start engine and let it idle for at least 10 seconds.
- 2. Turn ignition switch OFF and wait at least 10 seconds.

DTC P1031, P1032 A/F SENSOR 1 HEATER

[QR25DE]

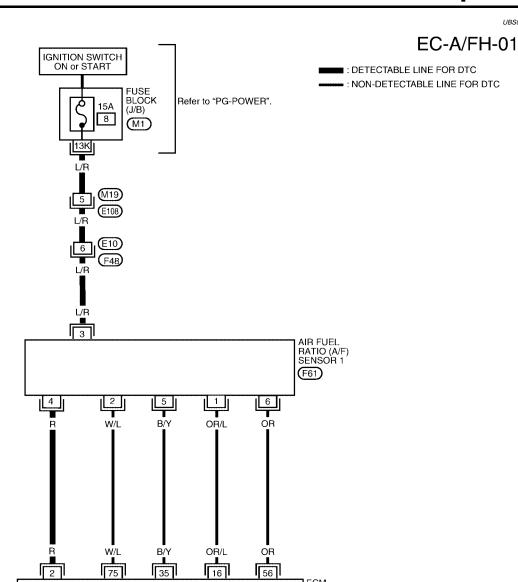
- Start engine and let it idle for at least 10 seconds.
- Select MODE 3 with GST. 4.
- If DTC is detected, go to EC-1031, "Diagnostic Procedure".
- When using GST, DTC Confirmation Procedure should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

EC

Α

С

 D

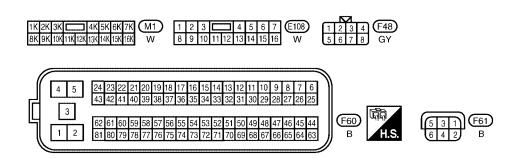

Е

Н

M

Wiring Diagram

UBS00AVG



ECM

(F60)

A/F-IP1

AF-UN1

A/F-IA1

AF-VM1

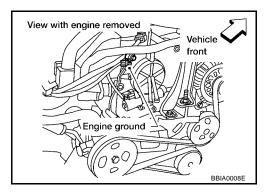
BBWA0761E

DTC P1031, P1032 A/F SENSOR 1 HEATER

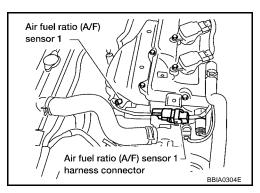
[QR25DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

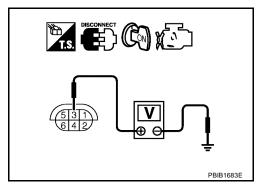
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	R	A/F sensor 1 heater	[Engine is running]Warm-up conditionIdle speed	Approximately 5V


Diagnostic Procedure

1. CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

- 3. Disconnect air fuel ratio (A/F) sensor 1 harness connector.
- 4. Turn ignition switch ON.



5. Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

EC

Α

UBSOOAVH

Е

G

Н

J

r\

M

[QR25DE]

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M19, E108
- Harness connectors E10, F48
- Fuse block (J/B) connector M1
- 15A fuse
- Harness for open or short between A/F sensor 1 and fuse
 - >> Repair or replace harness or connectors.

3. CHECK A/F SENSOR 1 HEATER OUTPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 2 and A/F sensor 1 terminal 4. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK A/F SENSOR 1 HEATER

Refer to EC-1033, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace A/F sensor 1.

5. CHECK INTERMITTENT INCIDENT

Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> Replace A/F sensor 1.

NG >> Repair or replace.

[QR25DE]

UBS00AVI

Α

D

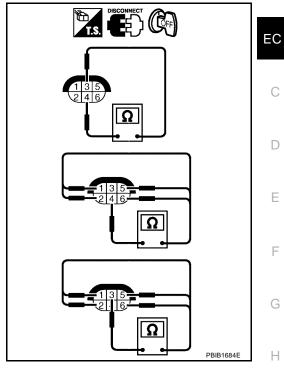
Е

Н

Component Inspection AIR FÜEL RATIO (A/F) SENSOR 1 HEATER

Check resistance between terminals 3 and 4.

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)


Check continuity between terminals 3 and 1, 2, 5, 6, terminals 4 and 1, 2, 5, 6.

Continuity should not exist.

If NG, replace the A/F sensor 1.

CAUTION:

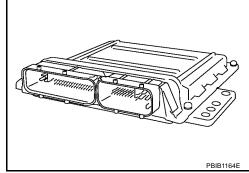
- Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new A/F sensor, clean exhaust system threads using Heated Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation AIR FUEL RATIO SENSOR HEATER

Refer to EM-108, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

LIBSONAV.I

M


DTC P1065 ECM POWER SUPPLY

PFP:23710

Component Description

UBS00AVK

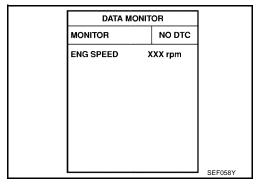
Battery voltage is supplied to the ECM even when the ignition switch is turned OFF for the ECM memory function of the DTC memory, the air-fuel ratio feedback compensation value memory, the idle air volume learning value memory, etc.

On Board Diagnosis Logic

UBS00AVL

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1065 1065	ECM power supply circuit	ECM back-up RAM system does not function properly.	 Harness or connectors [ECM power supply (back-up) circuit is open or shorted.] ECM

DTC Confirmation Procedure


UBSOOAVM

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- 5. Repeat steps 3 and 4 for 4 times.
- 6. If 1st trip DTC is detected, go to <u>EC-1036, "Diagnostic Procedure"</u>.

WITH GST

Follow the procedure "WITH CONSULT-II" above.

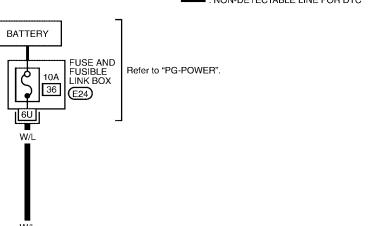
DTC P1065 ECM POWER SUPPLY

[QR25DE]

Wiring Diagram

EC-ECM/PW-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

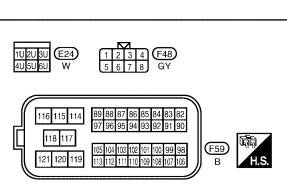

EC

C

D

Е

Α


Н

J

K

L

M

BBWA0691E

121

(F59)

Specification data are reference values and are measured between each terminal and ground.

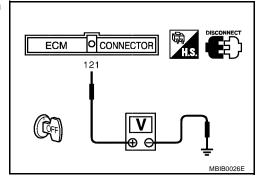
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
121	W/L	Power supply for ECM (Back-up)	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS00AVO


1. CHECK ECM POWER SUPPLY

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Check voltage between ECM terminal 121 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10, F48
- Fuse and fusible link box connector E24
- 10A fuse
- Harness for open or short between ECM and battery
 - >> Repair or replace harness or connectors.

3. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit short to ground or short to power in harness or connectors.

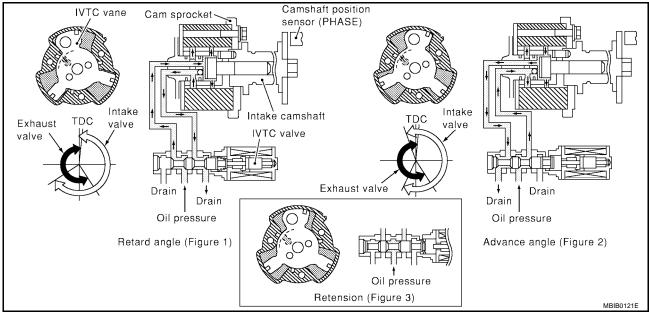
DTC P1065 ECM POWER SUPPLY

[QR25DE]

M

4. PERFORM DTC CONFIRMATION PROCEDURE (P) With CONSULT-II 1. Turn ignition switch ON. EC 2. Select "SELF DIAG RESULTS" mode with CONSULT-II. 3. Touch "ERASE". 4. Perform DTC Confirmation Procedure. See <u>EC-1034</u>. 5. Is the 1st trip DTC P1065 displayed again? **With GST** D 1. Turn ignition switch ON. 2. Select MODE 4 with GST. Е 3. Touch "ERASE". 4. Perform DTC Confirmation Procedure. See EC-1034. 5. Is the 1st trip DTC P1065 displayed again? Yes or No Yes >> GO TO 5. >> INSPECTION END No 5. REPLACE ECM 1. Replace ECM. 2. Perform initialization of NATS system and registration of all NATS ignition key IDs. Refer to.BL-92, "NVIS (NISSAN VEHICLE IMMOBILIZER SYSTEM — NATS)" 3. Perform EC-684, "Accelerator Pedal Released Position Learning". 4. Perform EC-684, "Throttle Valve Closed Position Learning". 5. Perform EC-685, "Idle Air Volume Learning". >> INSPECTION END

DTC P1111 IVT CONTROL SOLENOID VALVE


PFP:23796

UBS00AVP

Description SYSTEM DESCRIPTION

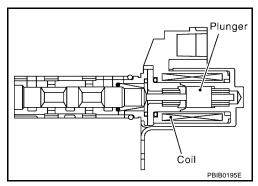
Sensor	Input Signal to ECM	ECM Function	Actuator	
Crankshaft position sensor (POS)	Engine speed and piston position	Intake valve		
Camshaft position sensor (PHASE)	Lingine speed and piston position		Intake valve timing control solenoid valve	
Engine coolant temperature sensor	Engine coolant temperature	timing control		
Vehicle speed signal*	Vehicle speed			

^{*:} This signal is sent to the ECM through CAN communication line.

This mechanism hydraulically controls cam phases continuously with the fixed operating angle of the intake valve.

The ECM receives signals such as crankshaft position, camshaft position, engine speed, and engine coolant temperature. Then, the ECM sends ON/OFF pulse duty signals to the intake valve timing control solenoid valve depending on driving status. This makes it possible to control the shut/open timing of the intake valve to increase engine torque in low/mid speed range and output in high-speed range.

COMPONENT DESCRIPTION


Intake valve timing control solenoid valve is activated by ON/OFF pulse duty (ratio) signals from the ECM.

The intake valve timing control solenoid valve changes the oil amount and direction of flow through intake valve timing control unit or stops oil flow.

The longer pulse width advances valve angle.

The shorter pulse width retards valve angle.

When ON and OFF pulse widths become equal, the solenoid valve stops oil pressure flow to fix the intake valve angle at the control position.

DTC P1111 IVT CONTROL SOLENOID VALVE

[QR25DE]

CONSULT-II Reference Value in Data Monitor Mode

UBS00AVQ

Α

EC

D

Е

Specification data are reference values.

MONITOR ITEM	CON	NDITION	SPECIFICATION	
	Engine: After warming up	Idle	0% - 2%	
INT/V SOL (B1)	 Shift lever: N (A/T), Neutral (M/T) Air conditioner switch: OFF No-load 	2,000 rpm	Approx. 25% - 60%	

On Board Diagnosis Logic

S	00	ΙA	VI	₹

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1111 1111	Intake valve timing control solenoid valve circuit	An improper voltage is sent to the ECM through intake valve timing control solenoid valve.	 Harness or connectors (Intake valve timing control solenoid valve circuit is open or shorted.) Intake valve timing control solenoid valve

DTC Confirmation Procedure

UBS00AVS

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

nd (

(P) WITH CONSULT-II

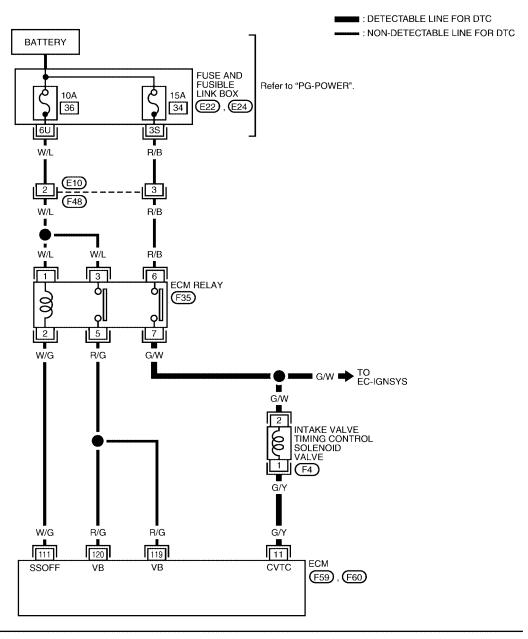
- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-1041, "Diagnostic Procedure".

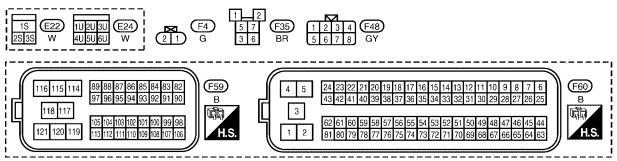
DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED	XXX rpm	

Н

WITH GST

Following the procedure "WITH CONSULT-II" above.


M


K

Wiring Diagram

UBS00AVT

EC-IVC-01

BBWA0744E

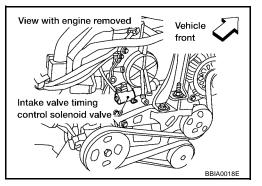
DTC P1111 IVT CONTROL SOLENOID VALVE

[QR25DE]

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

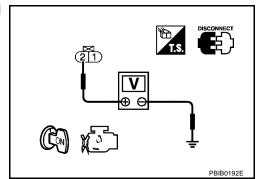

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)		
		Intake valve timing control solenoid valve	Y	Warm-up condition	BATTERY VOLTAGE (11 - 14V)	[
11	G/Y				7 - 10V ★	[
	Engine speed is 2,500 rpm	>> 10.0 V/Div PBIB1790E	ı			

★: Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. CHECK IVT CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect intake valve timing control solenoid valve harness connector.
- Turn ignition switch ON.



4. Check voltage between intake valve timing control solenoid valve terminal 2 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PARTS

Check harness for open or short between intake valve timing control solenoid valve and ECM relay.

>> Repair harness or connectors.

EC

Α

D

Е

LIBSODAVLI

[QR25DE]

3. check ivt control solenoid valve output signal circuit for open and short

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 11 and intake valve timing control solenoid valve terminal 1. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Refer to EC-1042, "Component Inspection".

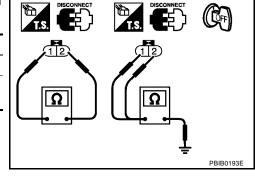
OK or NG

OK >> GO TO 5.

NG >> Replace intake valve timing control solenoid valve.

5. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection INTAKE VALVE TIMING CONTROL SOLENOID VALVE

UBS00AVV

- Disconnect intake valve timing control solenoid valve harness connector.
- Check resistance between intake valve timing control solenoid valve terminals 1 and 2 under the following conditions.

Terminals	Terminals Resistance	
1 and 2	Approximately 8Ω at 20°C (68°F)	
1 or 2 and ground	${}^{\infty}\Omega$ (Continuity should not exist)	

Removal and Installation
INTAKE VALVE TIMING CONTROL SOLENOID VALVE

UBS00AVW

Refer to EM-131, "TIMING CHAIN".

DTC P1121 ELECTRIC THROTTLE CONTROL ACTUATOR

[QR25DE]

DTC P1121 ELECTRIC THROTTLE CONTROL ACTUATOR

PFP:16119

Component Description

UBS00AVX

Α

EC

Е

Н

M

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The throttle position sensor detects the throttle valve position, and the opening and closing speed of the throttle valve and feeds the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

UBS00AVY

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
		A)	Electric throttle control actuator does not function properly due to the return spring malfunction.	
P1121 1121	Electric throttle control actuator B) Throttle valve opening angle in fail-safe mode is not in specified range. ECM detects the throttle valve is stuck open. This self-diagnosis has the one trip detection logic.	Electric throttle control actuator		
		C)	This self-diagnosis has the one trip detec-	

FAIL-SAFE MODE

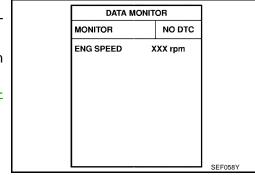
When the malfunction A or B is detected in the two consecutive trip, the ECM enters fail-safe mode and the MIL lights up.

When the malfunction C is detected even in the 1st trip, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode	
Malfunction A	The ECM controls the electric throttle control actuator by regulating the throttle opening around the idle position. The engine speed will not rise more than 2,000 rpm.	
Malfunction B	ECM controls the electric throttle control actuator by regulating the throttle opening to 20 degrees or less.	
Malfunction C	While the vehicle is driving, it slows down gradually by fuel cut. After the vehicle stops, the engine stalls. The engine can restart in N or P position, and engine speed will not exceed 1,000 rpm or more.	

DTC Confirmation Procedure

UBS00AVZ


NOTE:

- Perform PROCEDURE FOR MALFUNCTION A AND B first. If the 1st trip DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION C
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A AND B

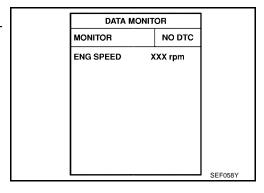
(P) With CONSULT-II

- 1. Turn ignition switch ON and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Shift selector lever to D position (A/T models), 1st position (M/T models) and wait at least 2 seconds.
- Turn ignition switch OFF, wait at least 10 seconds, and then turn ON
- If 1st trip DTC is detected, go to <u>EC-1044, "Diagnostic Procedure"</u>.

₩ith GST

Follow the procedure "With CONSULT-II" above.

DTC P1121 ELECTRIC THROTTLE CONTROL ACTUATOR


[QR25DE]

UBS00AW0

PROCEDURE FOR MALFUNCTION C

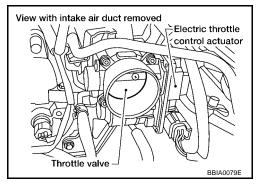
(P) With CONSULT-II

- 1. Turn ignition switch ON and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Shift selector lever to D position (A/T models), 1st position (M/T models) and wait at least 2 seconds.
- 4. Shift selector lever to N or P position.
- 5. Start engine and let it idle for 5 seconds.
- 6. If DTC is detected, go to EC-1044, "Diagnostic Procedure".

With GST

Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure


1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY

- Remove the intake air duct.
- 2. Check if a foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG >> Remove the foreign matter and clean the electric throttle control actuator inside.

2. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- Replace the electric throttle control actuator.
- 2. Perform EC-684, "Throttle Valve Closed Position Learning".
- 3. Perform EC-685, "Idle Air Volume Learning".

>> INSPECTION END

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

[QR25DE]

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

PFP:16119

Description

UBS00AW1

NOTE:

If DTC P1122 is displayed with DTC P1121 or 1126, first perform the trouble diagnosis for DTC P1121 or P1126. Refer to <u>EC-1043</u> or <u>EC-1052</u>.

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feedback to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

UBS00AW2

This self-diagnosis has the one trip detection logic.

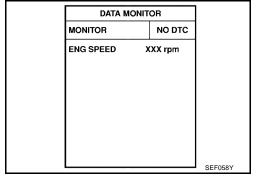
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1122 1122	Electric throttle control performance problem	Electric throttle control function does not operate properly.	Harness or connectors (Throttle control motor circuit is open or shorted) Electric throttle control actuator

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.


DTC Confirmation Procedure

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(III) WITH CONSULT-II

- 1. Turn ignition switch ON and wait at least 2 seconds.
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and let it idle for 5 seconds.
- If DTC is detected, go to EC-1047, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

Е

Wiring Diagram UBS00AW4 EC-ETC1-01 **BATTERY** ■ : DETECTABLE LINE FOR DTC ■: NON-DETECTABLE LINE FOR DTC FUSE AND FUSIBLE LINK BOX Refer to "PG-POWER". 41 (E23) W/R **E10** (F48) W/R W/R W/R 5 2 THROTTLE ELECTRIC THROTTLE CONTROL MOTOR RELAY CONTROL ACTUATOR (THROTTLE CONTROL OPEN CLOSED MOTOR) (F33) ΠМ (F50) 3 R/W (F26) (M58) **■** 16 **■** B R/W В 116 3 5 104 4 MOTRLY MOTOR 2 MOTOR 1 **GND** (F59), (F60) (M54) M28 1 2 3 4 F48 5 6 7 8 GY 1T 2T E23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 W (F33) (F50) 3T 4T W (F59) 116 115 114 5 В В **1**18 117 3 121 120 119

BBWA0745E

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

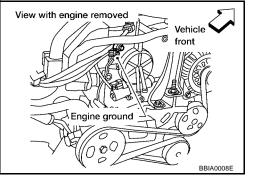
[QR25DE]

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

RMI- AL O. WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
3 R/W	Throttle control motor power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
4 P	Throttle control motor (Close)	[Ignition switch: ON] • Engine stopped • Shift lever: D (A/T), 1ST (M/T) • Accelerator pedal is releasing	0 - 14V★ → 10.0 V/Div 200 us/Div T PBIB0534E
5 L	Throttle control motor (Open)	[Ignition switch: ON] • Engine stopped • Shift lever: D (A/T), 1ST (M/T) • Accelerator pedal is depressing	0 - 14V★
04 P	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V) 0 - 1.0V
04 P		Throttle control motor relay	Throttle control motor relay [Ignition switch: OFF] [Ignition switch: ON]


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

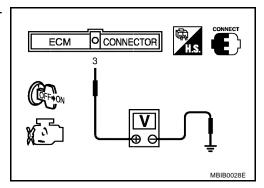
- Turn ignition switch OFF 1.
- Loosen and retighten engine ground screws.

>> GO TO 2.

EC

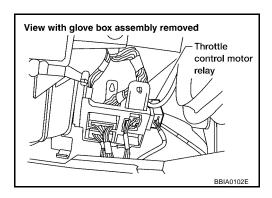
Α

UBS00AW5


$2.\,$ check throttle control motor relay signal circuit

Check voltage between ECM terminal 3 and ground under the following conditions with CONSULT-II or tester.

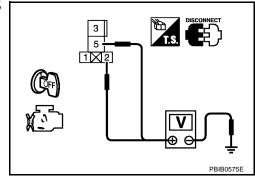
Ignition switch	Voltage
OFF	Approximately 0V
ON	Battery voltage (11 - 14V)


OK or NG

OK >> GO TO 8. NG >> GO TO 3.

3. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect throttle control motor relay.



3. Check voltage between throttle control motor relay terminals 2, 5 and ground.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10, F48
- Fuse and fusible link box connector E23
- 15A fuse
- Harness for open or short between throttle control motor relay and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

[QR25DE]

5. CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 3 and throttle control motor relay terminal 3. Refer to Wiring Diagram.

EC

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

D

6. CHECK THROTTLE CONTROL MOTOR RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check continuity between ECM terminal 104 and throttle control motor relay terminal 1. Refer to Wiring Diagram.

Е

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

G

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

Ш

M

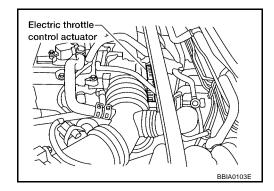
7. CHECK THROTTLE CONTROL MOTOR RELAY

Н

Refer to EC-1050, "Component Inspection".

OK or NG

OK >> GO TO 11.


I

NG >> Replace throttle control motor relay.

8. CHECK THROTTLE CONTROL MOTOR OUTPUT SIGNAL CIRCUIT FOR OPEN OR SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect electric throttle control actuator harness connector.
- Disconnect ECM harness connector.
- 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

Electric throttle control actuator terminal	ECM terminal	Continuity
2	4	Should exist
3	5	Should not exist
6	4	Should not exist
	5	Should exist

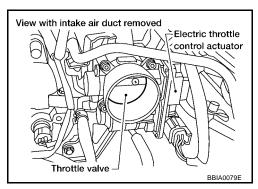
5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY


- Remove the intake air duct.
- 2. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 10.

NG

>> Remove the foreign matter and clean the electric throttle control actuator inside.

10. CHECK THROTTLE CONTROL MOTOR

Refer to EC-1050, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> GO TO 12.

11. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT"

OK or NG

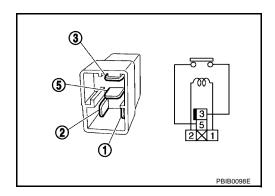
OK >> GO TO 12.

NG >> Repair or replace harness or connectors.

12. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-684, "Throttle Valve Closed Position Learning".
- Perform EC-685, "Idle Air Volume Learning".

>> INSPECTION END


Component Inspection THROTTLE CONTROL MOTOR RELAY

1. Apply 12V direct current between relay terminals 1 and 2.

2. Check continuity between relay terminals 3 and 5.

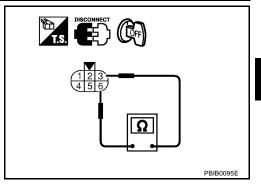
Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

If NG, replace throttle control motor relay.

UBS00AW6

THROTTLE CONTROL MOTOR

Disconnect electric throttle control actuator harness connector.


DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

[QR25DE]

2. Check resistance between terminals 3 and 6.

Resistance: Approximately 1 - 15 Ω [at 25 °C (77°F)]

- 3. If NG, replace electric throttle control actuator and go to next step.
- 4. Perform EC-684, "Throttle Valve Closed Position Learning".
- 5. Perform EC-685, "Idle Air Volume Learning".

UBS00AW7

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-103, "INTAKE MANIFOLD".

EC-1051

Α

EC

С

D

Е

F

Н

K

L

DTC P1124, P1126 THROTTLE CONTROL MOTOR RELAY

[QR25DE]

DTC P1124, P1126 THROTTLE CONTROL MOTOR RELAY

PFP:16119

Component Description

UBS00AW8

Power supply for the throttle control motor is provided to the ECM via throttle control motor relay. The throttle control motor relay is ON/OFF controlled by the ECM. When the ignition switch is turned ON, the ECM sends an ON signal to throttle control motor relay and battery voltage is provided to the ECM. When the ignition switch is turned OFF, the ECM sends an OFF signal to throttle control motor relay and battery voltage is not provided to the ECM.

CONSULT-II Reference Value in Data Monitor Mode

UBS00AW9

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
THRTL RELAY	Ignition switch: ON	ON

On Board Diagnosis Logic

UBS00AWA

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1124 1124	Throttle control motor relay circuit short	ECM detects the throttle control motor relay is stuck ON.	Harness or connectors (Throttle control motor relay circuit is shorted) Throttle control motor relay
P1126 1126	Throttle control motor relay circuit open	ECM detects a voltage of power source for throttle control motor is excessively low.	Harness or connectors (Throttle control motor relay circuit is open) Throttle control motor relay

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

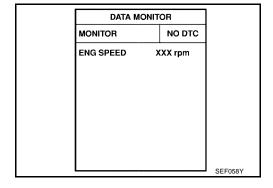
ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

UBS00AWB

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


PROCEDURE FOR DTC P1124

TESTING CONDITION:

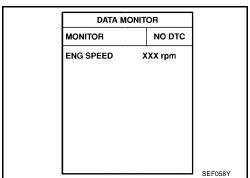
Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(With CONSULT-II

- 1. Turn ignition switch ON and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. If DTC is detected, go to EC-1055, "Diagnostic Procedure".

DTC P1124, P1126 THROTTLE CONTROL MOTOR RELAY

[QR25DE]


With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR DTC P1126

(F) With CONSULT-II

- 1. Turn ignition switch ON and wait at least 2 seconds.
- 2. Select "DATA MONITOR"" mode with CONSULT-II.
- 3. Start engine and let it idle for 5 seconds.
- 4. If DTC is detected, go to EC-1055, "Diagnostic Procedure".

With GST

Follow the procedure "With CONSULT-II" above.

EC

D

Е

Α

F

Н

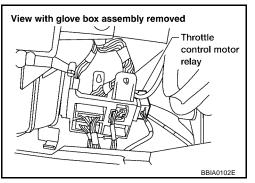
Wiring Diagram UBS00AWC EC-ETC2-01 **BATTERY** ■ : DETECTABLE LINE FOR DTC ■: NON-DETECTABLE LINE FOR DTC FUSE AND FUSIBLE LINK BOX Refer to "PG-POWER". 41 (E23) W/R **E10** (F48) W/R W/R W/R 5 2 THROTTLE ELECTRIC THROTTLE CONTROL MOTOR RELAY CONTROL ACTUATOR (THROTTLE CONTROL CLOSED OPEN MOTOR) (F33) ΠМ (F50) 3 R/W (F26) (M58) 16 - B R/W В 116 3 5 104 4 MOTRLY MOTOR 2 MOTOR 1 **GND** (F59), (F60) (M54) M28 E23 (F33) 1T 2T 1 2 3 4 5 6 7 F26 8 9 10 11 12 13 14 15 16 W (F50) W 3T 4T 1 X 2 116 115 114 4 В В 3 118 117 爾 H.S. 121 120

DTC P1124, P1126 THROTTLE CONTROL MOTOR RELAY

[QR25DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

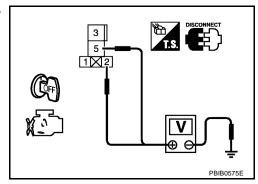

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
3	R/W	Throttle control motor power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
104	Р	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: ON]	0 - 1.0V

Diagnostic Procedure

1. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect throttle control motor relay harness connector.



3. Check voltage between throttle control motor relay terminal 2, 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10, F48
- Fuse and fusible link box connector E23
- 15A fuse
- Harness for open or short between throttle control motor relay and battery
 - >> Repair or replace harness or connectors.

EC

D

Е

Α

UBS00AWD

F

G

Н

J

Κ

[QR25DE]

3. CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check continuity between ECM terminal 3 and throttle control motor relay terminal 3. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK THROTTLE CONTROL MOTOR RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Check continuity between ECM terminal 104 and throttle control motor relay terminal 1. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK THROTTLE CONTROL MOTOR RELAY

Refer to EC-1056, "Component Inspection".

OK or NG

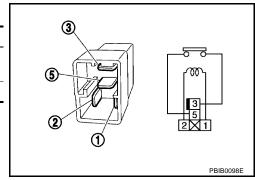
OK >> GO TO 6.

NG >> Replace throttle control motor relay.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection THROTTLE CONTROL MOTOR RELAY

UBS00AWE

- 1. Apply 12V direct current between relay terminals 1 and 2.
- 2. Check continuity between relay terminals 3 and 5.

Continuity
Yes
No

If NG, replace throttle control motor relay.

DTC P1128 THROTTLE CONTROL MOTOR

[QR25DE]

DTC P1128 THROTTLE CONTROL MOTOR

PFP:16119

Component Description

UBS00AWF

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feedback to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

EC

Е

Н

Α

On Board Diagnosis Logic

UBS00AWG

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1128 1128	Throttle control motor circuit short	ECM detects short in both circuits between ECM and throttle control motor.	 Harness or connectors (Throttle control motor circuit is shorted.) Electric throttle control actuator (Throttle control motor)

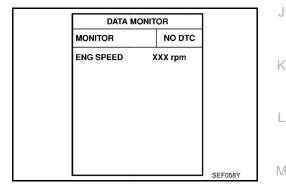
FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure


UBS00AWH

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON and wait at least 2 seconds.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 5 seconds.
- 4. If DTC is detected, go to EC-1059, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram UBS00AWI EC-ETC3-01 **BATTERY** : DETECTABLE LINE FOR DTC ■ : NON-DETECTABLE LINE FOR DTC FUSE AND FUSIBLE LINK BOX Refer to "PG-POWER". 41 (E23) W/R **E10** (F48) W/R W/R W/R 5 2 ELECTRIC THROTTLE CONTROL ACTUATOR (THROTTLE CONTROL THROTTLE CONTROL MOTOR RELAY CLOSED OPEN MOTOR) (F33) ΠD (F50) 3 R/W (F26) (M58) 16 - B R/W В 116 3 5 104 4 MOTRLY MOTOR 2 MOTOR 1 GND (F59), (F60) (M54) M28 2 3 4 F48 6 7 8 GY 1T 2T E23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 W (F33) W 3T 4T (F59) (F60 116 115 114 5 В В 118 117 爾 3 121 120 119

DTC P1128 THROTTLE CONTROL MOTOR

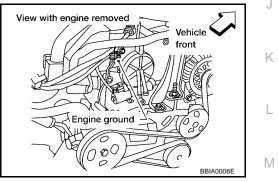
[QR25DE]

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	С
4	Р	Throttle control motor (Close)	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal is releasing 	0 - 14V★ 10.0 V/Div 200 us/Div T PBIB0534E	D E
5	L	Throttle control motor (Open)	[Ignition switch: ON] • Engine stopped • Shift lever: D (A/T), 1ST (M/T) • Accelerator pedal is depressing	0 - 14V★ 1400000000000000000000000000000000000	F G
				PBIB0533E	Ы


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

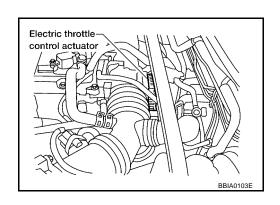
1. RETIGHTEN GROUND SCREWS

- Turn ignition switch OFF.
- Loosen and retighten engine ground screws.

>> GO TO 2.

EC

Α


UBS00AWJ

EC-1059

$2.\,$ check throttle control motor output signal circuit for open or short

- 1. Turn ignition switch OFF.
- 2. Disconnect electric throttle control actuator harness connector.
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

Electric throttle control actuator terminal	ECM terminal	Continuity
2	4	Should exist
3	5	Should not exist
6	4	Should not exist
O	5	Should exist

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK THROTTLE CONTROL MOTOR

Refer to EC-1060, "Component Inspection".

OK or NG

OK >> GO TO 4. NG >> GO TO 5.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

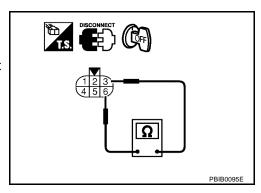
OK >> GO TO 5.

NG >> Repair or replace harness or connectors.

5. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-684, "Throttle Valve Closed Position Learning".
- 3. Perform EC-685, "Idle Air Volume Learning".

>> INSPECTION END


Component Inspection THROTTLE CONTROL MOTOR

UBS00AWK

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Check resistance between terminals 3 and 6.

Resistance: Approximately 1 - 15 Ω [at 25 °C (77°F)]

- 3. If NG, replace electric throttle control actuator and go to next step.
- 4. Perform EC-684, "Throttle Valve Closed Position Learning".
- 5. Perform EC-685, "Idle Air Volume Learning".

DTC P1128 THROTTLE CONTROL MOTOR

[QR25DE]

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

UBS00AWL

OUAVVL

Refer to EM-103, "INTAKE MANIFOLD".

EC

Α

С

D

Е

F

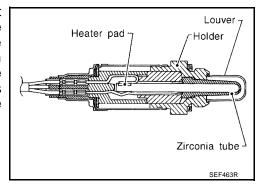
G

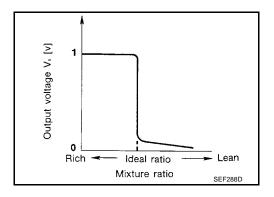
Н

1

Κ

L


DTC P1143 HO2S1


PFP:22690

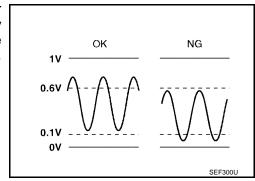
Component Description

UBS00AWM

The heated oxygen sensor 1 is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

UBS00AWN


Specification data are reference values.

MONITOR ITEM	CON	SPECIFICATION	
HO2S1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times dur- ing 10 seconds.

On Board Diagnosis Logic

UBS00AWO

To judge the malfunction, the output from the heated oxygen sensor 1 is monitored to determine whether the rich output is sufficiently high and whether the lean output is sufficiently low. When both the outputs are shifting to the lean side, the malfunction will be detected.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1143 1143	Heated oxygen sensor 1 lean shift monitoring	The maximum and minimum voltage from the sensor are not reached to the specified voltages.	 Heated oxygen sensor 1 Heated oxygen sensor 1 heater Fuel pressure Injectors Intake air leaks

DTC Confirmation Procedure

UBS00AWP

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above –10°C (14°F).
- Before performing following procedure, confirm that battery voltage is more than 11V at idle.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine and wait at least 10 seconds.
- 3. Turn ignition switch ON and select "HO2S1 (B1) P1143" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4. Touch "START".
- 5. Start engine and let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 5.

HO2S1 (B1) P1		
OUT OF CONDI		
MONITOR		
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S		
VHCL SPEED SEN	XXX km/h	PBIB0546E

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)

ENG SPEED	1,200 - 3,200 rpm
Vehicle speed	Less than 100 km/h (62 MPH)
B/FUEL SCHDL	109 - 13.0 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to <u>EC-1064, "Diagnostic</u> Procedure".

HO2S1 (B1) P1		
TESTING		
MONITOR		
ENG SPEED		
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S		
VHCL SPEED SEN	XXX km/h	PRIR0547F
ENG SPEED B/FUEL SCHDL COOLAN TEMP/S	xxx .c	PBIB0547E

HO2S1 (B1) P1143

COMPLETED

SEC769C

Overall Function Check

UBS00AWQ

Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a DTC might not be confirmed.

® WITH GST

1. Start engine and warm it up to normal operating temperature.

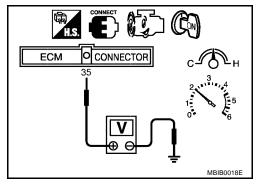
EC-1063

EC

Α

D

F

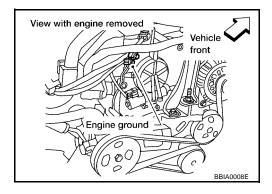

Е

G

Н

K

- 2. Set voltmeter probes between ECM terminal 35 [HO2S1(B1) signal] and engine ground.
- 3. Check one of the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is over 0.6V at least 1 time.
- The minimum voltage is over 0.1V at least 1 time.
- 4. If NG, go to EC-1064, "Diagnostic Procedure".

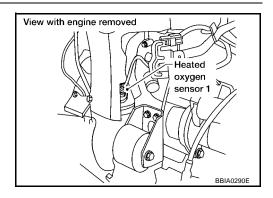

UBS00AWR

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

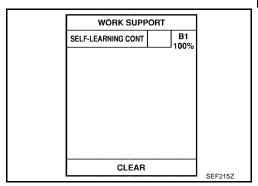
>> GO TO 2.


2. RETIGHTEN HEATED OXYGEN SENSOR 1

Loosen and retighten heated oxygen sensor 1.

Tightening torque:

40 - 60 N·m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)


>> GO TO 3.

$3.\,$ clear the self-learning data

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to EC-704, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

sensor (with built in intake air temperatur sensor) BBIA0130E

Mass air flow

Yes or No

Yes >> Perform trouble diagnosis for DTC P0171. Refer to EC-883.

>> GO TO 4. No

4. CHECK HEATED OXYGEN SENSOR 1 HEATER

Refer to EC-800, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace heated oxygen sensor 1.

5. CHECK HEATED OXYGEN SENSOR 1

Refer to EC-1066, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace heated oxygen sensor 1.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". For circuit, refer to EC-848, "Wiring Diagram".

EC-1065

>> INSPECTION END

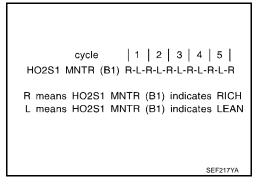
EC

Е

Н

Component Inspection HEATED OXYGEN SENSOR 1

UBS00AWS


(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

DATA MON	DATA MONITOR					
MONITOR NO DTC						
ENG SPEED	XXX rpm					
MAS A/F SE-B1	xxx v					
COOLAN TEMP/S	XXX °C					
HO2S1 (B1)	xxx v					
HO2S1 MNTR (B1)	LEAN					

6. Check the following.

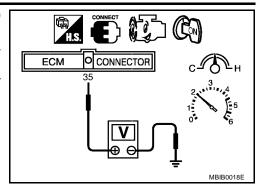
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH"more than 5 times in 10 seconds.
 - 5 times (cycles) are counted as shown at right.
- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

Trigger	ENG SPEED	HO2S1 (B1)		128		Maxii	mum							Maximum voltage
	rpm	V			<i>!</i>	•	1	\	\bigcap	1	`\	1	1	should be over 0.6V
XXX	XXX	xxx	1		· '	:	'	•	, .	,	•		•	at least one time.
XXX	XXX	XXX	1				1	ı		- 1	•	•	1	
XXX	XXX	XXX	1											
XXX	XXX	XXX	1	64		1	:	1			•			
XXX	XXX	XXX		_	i .									 Minimum voltage
XXX	XXX	XXX			h	i	;	į į	1	- 1		- 1	Ļ	should be below 0.30V
XXX	XXX	XXX			} i	1	i	-\ i	1	i	- 1	i	1	at least one time.
XXX	XXX	XXX			l\ !	,	!	1 /	i	!	i	- !	i	
XXX	XXX	XXX			N /	, i	/	- \ /	1	. <i>i</i>	,	i	,	
XXX	XXX	XXX			\. /	١.,	<i>i</i>	_/	,	'	`	1	`_	
XXX	XXX	XXX								Mini	imum			
XXX	XXX	XXX	1	0-	l									

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II


1. Start engine and warm it up to normal operating temperature.

DTC P1143 HO2S1

[QR25DE]

- 2. Set voltmeter probes between ECM terminal 35 [HO2S1 (B1) signal] and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least 1 time.
 - The minimum voltage is below 0.3V at least 1 time.
 - The voltage never exceeds 1.0V.

1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V 2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 1

Refer to EM-108, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

UBS00AWT

EC-1067

Α

EC

С

D

Е

or

. '

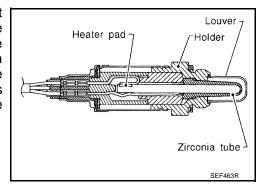
Н

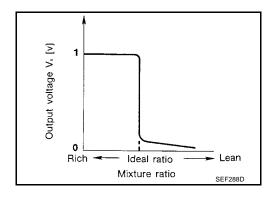
J

<

L

 \mathbb{N}


DTC P1144 HO2S1


PFP:22690

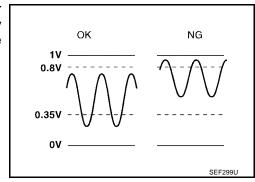
Component Description

UBS00AWU

The heated oxygen sensor 1 is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

UBS00AWV


Specification data are reference values.

MONITOR ITEM	CON	SPECIFICATION	
HO2S1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times dur- ing 10 seconds.

On Board Diagnosis Logic

UBS00AWW

To judge the malfunction, the output from the heated oxygen sensor 1 is monitored to determine whether the rich output is sufficiently high and lean output is sufficiently low. When both the outputs are shifting to the rich side, the malfunction will be detected.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1144 1144	Heated oxygen sensor 1 rich shift monitoring	The maximum and minimum voltages from the sensor are beyond the specified voltages.	 Heated oxygen sensor 1 Heated oxygen sensor 1 heater Fuel pressure Injectors

DTC Confirmation Procedure

UBS00AWX

Α

EC

D

Е

F

Н

M

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above –10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(III) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 5 seconds.
- 3. Turn ignition switch ON and select "HO2S1 (B1) P1144" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4. Touch "START".
- 5. Start engine and let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,600 rpm after this step. If the engine speed limit is exceeded, return to step 5.

HO2S1 (B1) P1		
OUT OF CONDI		
MONITOR		
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S		
VHCL SPEED SEN	XXX km/h	
		PBIB0548E

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)

ENG SPEED	1,200 - 3,200 rpm
Vehicle speed	Less than 100 km/h (62 MPH)
B/FUEL SCHDL	1.9 - 13.0 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to <u>EC-1070</u>, "<u>Diagnostic</u> Procedure".

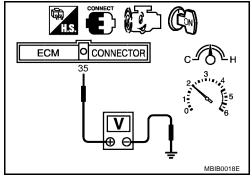
HO2S1 (B1) P1	144	
TESTING		
MONITOR		
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S	xxx .c	
VHCL SPEED SEN	XXX km/h	PBIB0549E

HO2S1 (B1) P1144

COMPLETED

SEC772C

Overall Function Check

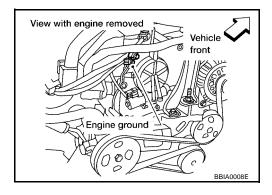

UBS00AWY

Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a DTC might not be confirmed.

WITH GST

1. Start engine and warm it up to normal operating temperature.

- 2. Set voltmeter probes between ECM terminal 35 [HO2S1(B1) signal] and engine ground.
- 3. Check one of the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is below 0.8V at least 1 time.
- The minimum voltage is below 0.35V at least 1 time.
- 4. If NG, go to EC-1070, "Diagnostic Procedure".

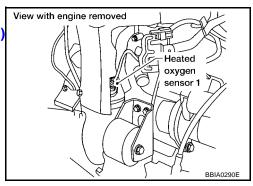

UBS00AWZ

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.



2. RETIGHTEN HEATED OXYGEN SENSOR 1

Loosen and retighten heated oxygen sensor 1.

Tightening torque: 40 - 60 N·m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)

>> GO TO 3.

EC

Е

Н

3. CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 detected?

Is it difficult to start engine?

WORK SUPPORT B1 SELF-LEARNING CONT CLEAR SEF215Z

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to EC-704, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

Yes or No

Yes >> Perform trouble diagnosis for DTC P0172. Refer to EC-894.

>> GO TO 4. No

4. CHECK HO2S1 CONNECTOR FOR WATER

- 1. Turn ignition switch OFF.
- Disconnect heated oxygen sensor 1 harness connector.
- 3. Check connectors for water.

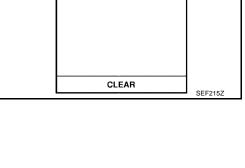
Water should not exist.

OK or NG

OK >> GO TO 5.

NG >> Repair or replace harness or connectors.

Heated oxygen sensor harness connector Vehicle front Rocker cover


5. CHECK HEATED OXYGEN SENSOR 1 HEATER

Refer to EC-800, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace heated oxygen sensor 1.

Mass air flow

sensor (with

built in intake

air temperatur

sensor)

BBIA0130E

UBS00AX0

6. CHECK HEATED OXYGEN SENSOR 1

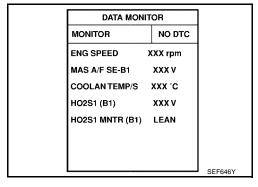
Refer to EC-1072, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace heated oxygen sensor 1.

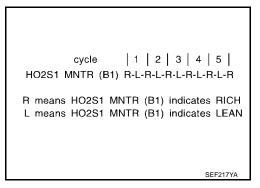
7. CHECK INTERMITTENT INCIDENT

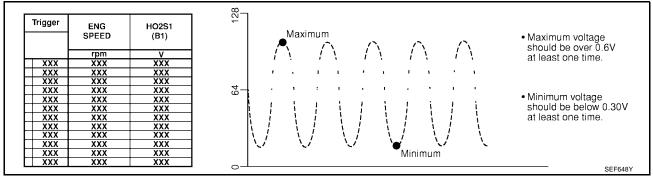

Refer to <u>EC-781</u>, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". For circuit, refer to EC-848, "Wiring Diagram".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 1

(P) With CONSULT-II


- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.



- Check the following.
 - "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" more than 5 times in 10 seconds.

5 times (cycles) are counted as shown at right.

- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

CAUTION:

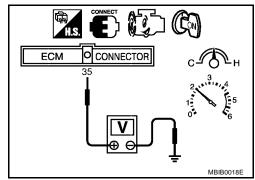
• Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

Α

EC

Е

Н


M

• Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 35 [HO2S1 (B1) signal] and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least 1 time.
 - The minimum voltage is below 0.3V at least 1 time.
 - The voltage never exceeds 1.0V.

1 time: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V 2 times: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V \to 0.6 - 1.0V

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 1

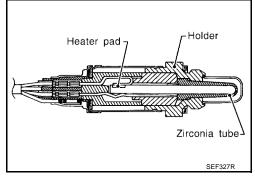
Refer to EM-108, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

BS00AX1

DTC P1146 HO2S2

PFP:226A0

UBS00AX2


Component Description

The heated oxygen sensor 2, after three way catalyst (manifold),

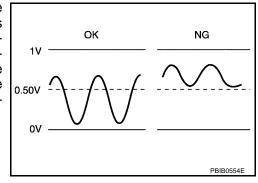
monitors the oxygen level in the exhaust gas. Even if switching characteristics of the heated oxygen sensor 1 (A/T models ULEV and M/T models) or the air fuel ratio (A/F) sensor 1 (A/T models except ULEV) are shifted, the air-fuel ratio is controlled to

stoichiometric, by the signal from the heated oxygen sensor 2. This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

UBS00AX3


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1)	Engine: After warming up		0 - 0.3V ←→ 0.6 - 1.0V
HO2S2 MNTR (B1)	 Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	Revving engine from idle to 3,000 rpm quickly	$LEAN \longleftrightarrow RICH$

On Board Diagnosis Logic

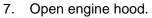
UBS00AX4

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1 (A/T models ULEV and M/T models) or the air fuel ratio (A/F) sensor 1 (A/T models except ULEV). The oxygen storage capacity of the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the minimum voltage of sensor is sufficiently low during the various driving condition such as fuel-cut.

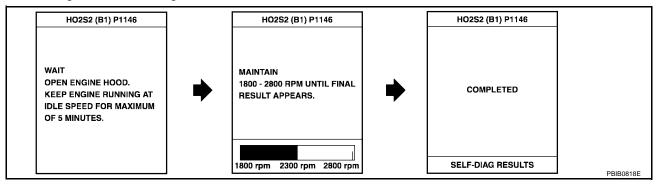
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1146 1146	Heated oxygen sensor 2 minimum voltage monitoring	The minimum voltage from the sensor is not reached to the specified voltage.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 Fuel pressure Injectors

DTC Confirmation Procedure

If DTC confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


(P) WITH CONSULT-II

TESTING CONDITION:


For the best results, perform DTC WORK SUPPORT at a temperature of 0 to 30°C (32 to 86°F).

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II
- 2. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.
- 6. Make sure that "COOLANT TEMP/S" indicates more than 70°C (158°F).

If not, warm up engine and go to next step when "COOLANT TEMP/S" indication reaches to 70°C (158°F).

- Select "HO2S2 (B1) P1146" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Start engine and following the instruction of COSULT-II.

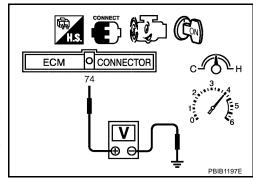
- 10. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-1078, "Diagnostic Procedure". If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- Return to step 1.

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle 1 minute.
- Set voltmeter probes between ECM terminal 74 (HO2S2 signal) and engine ground.


DATA MONITOR MONITOR NO DTC **ENG SPEED** XXX rpm COOLAN TEMP/S XXX °C SEF174Y EC

Α

Е

Н

- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be below 0.18V at least once during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- 7. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF (A/T models) 3rd gear position (M/T models).
 - The voltage should be below 0.18V at least once during this procedure.
- 8. If NG, go to EC-1078, "Diagnostic Procedure".

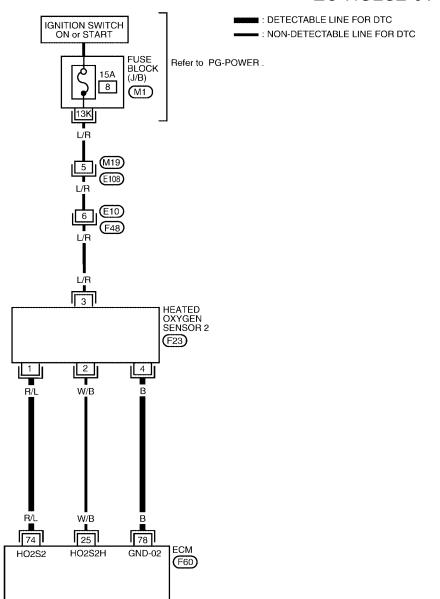
Wiring Diagram

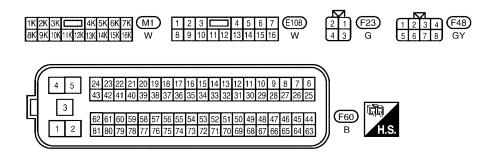
Α

EC

C

D


Е


Н

K

M

EC-HO2S2-01

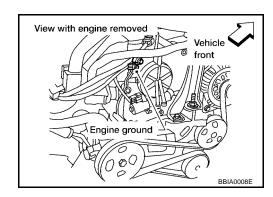
BBWA0727E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
74	R/L	Heated oxygen sensor 2	 [Engine is running] Warm-up condition Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

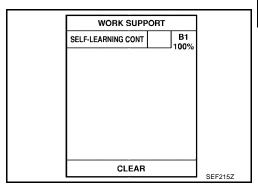

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

UBS00AX8

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.



2. CLEAR THE SELF-LEARNING DATA

(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure that DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-704, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 7. Make sure that DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 detected?

Is it difficult to start engine?

Yes or No

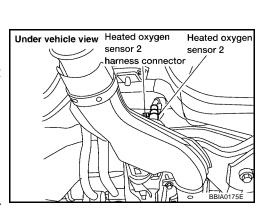
Yes >> Perform trouble diagnosis for DTC P0172. Refer to EC-894.

No >> GO TO 3.

3. CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 2 harness connector.
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between ECM terminal 78 and HO2S2 terminal 4.

Refer to Wiring Diagram.


Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

Mass air flow sensor (with built in intake air temperature sensor)

Air cleaner

BBIA0130E

EC

D

Е

Н

M

4. CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 74 and HO2S2 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

2. Check harness continuity between ECM terminal 74 or HO2S2 terminal 1 and ground. Refer to Wiring Diagram.

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-1080, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

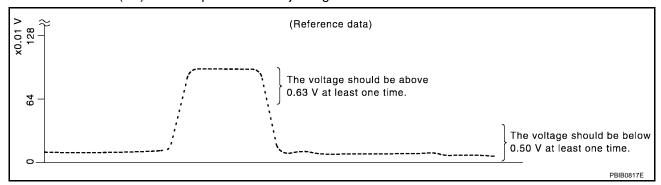
>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2

UBS00AX9

(I) With CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle and wait until 2 minutes have passed from starting the engine.
- 5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.


ACTIVE TES		
FUEL INJECTION	25 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S2 (B1)	xxx v	
		PBIB1783E

Α

EC

Е

6. Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)" should be above 0.63V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)" should be below 0.50V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- Set voltmeter probes between ECM terminal 74 (HO2S2 signal) and engine ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.

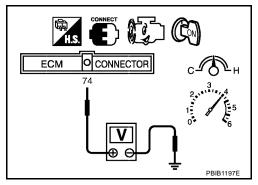
(Depress and release accelerator pedal as soon as possible.)

The voltage should be above 0.63V at least once during this procedure.

If the voltage is above 0.63V at step 6, step 7 is not necessary.

 Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF (A/T models) or 3rd gear position (M/T models).

The voltage should be below 0.50V at least once during this procedure.


8. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

Refer to EX-3, "EXHAUST SYSTEM".

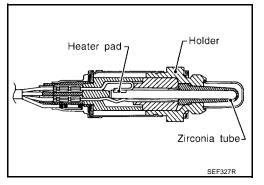
M

UBS00AXA

DTC P1147 HO2S2

PFP:226A0

Component Description


UBS00AXB

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas.

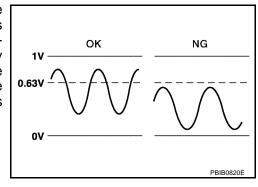
Even if switching characteristics of the heated oxygen sensor 1 (A/T models ULEV and M/T models) or the air fuel ratio (A/F) sensor 1 (A/T models except ULEV) are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

UBS00AXC


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1)	Engine: After warming up		0 - 0.3V ←→ 0.6 - 1.0V
HO2S2 MNTR (B1)	 Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	Revving engine from idle to 3,000 rpm quickly	$LEAN \longleftrightarrow RICH$

On Board Diagnosis Logic

UBS00AXD

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1 (A/T models ULEV and M/T models) or the air fuel ratio (A/F) sensor 1 (A/T models except ULEV). The oxygen storage capacity before the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the maximum voltage of the sensor is sufficiently high during the various driving condition such as fuel-cut.

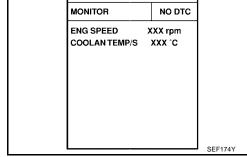
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1147 1147	Heated oxygen sensor 2 maximum voltage monitoring	The maximum voltage from the sensor is not reached to the specified voltage.	 Harness or connectors (The sensor circuit open or shorted.) Heated oxygen sensor 2 Fuel pressure Injectors Intake air leaks

DTC Confirmation Procedure

RSOOAXE

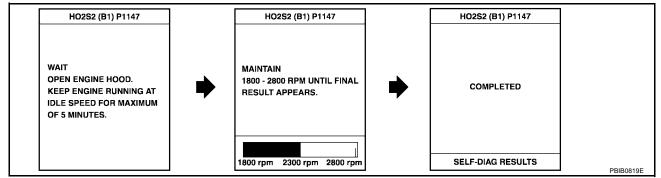
NOTE

If DTC confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


(II) WITH CONSULT-II

TESTING CONDITION:

For the best results, perform DTC WORK SUPPORT at a temperature of 0 to 30°C (32 to 86°F).


- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.
- 6. Make sure that "COOLANT TEMP/S" indicates more than 70°C (158°F).

If not, warm up engine and go to next step when "COOLANT TEMP/S" indication reaches to 70°C (158°F).

DATA MONITOR

- 7. Open engine hood.
- Select "HO2S2 (B1) P1147" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Start engine and following the instruction of CONSULT-II.

- 10. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If "NG" is displayed, refer to EC-1086.
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- b. Return to step 1.

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle 1 minute.
- Set voltmeter probes between ECM terminal 74 (HO2S2 signal) and engine ground.

EC

Α

Е

C

Н

K

M

UBS00AXI

- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.70V at least once during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- 7. Keep vehicle idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF (A/T models) 3rd gear position (M/T models).
 - The voltage should be above 0.70V at least once during this procedure.
- 8. If NG, go to EC-1086, "Diagnostic Procedure".

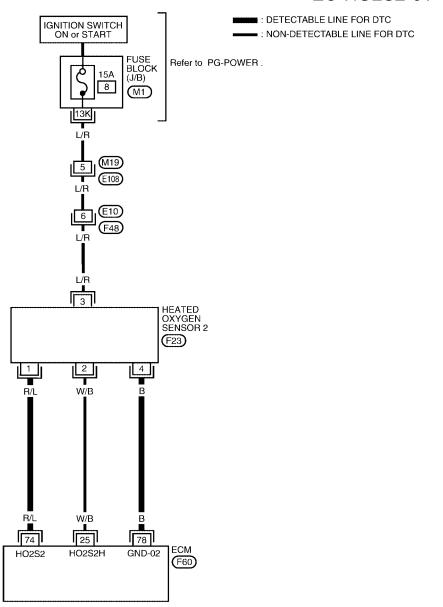
Wiring Diagram

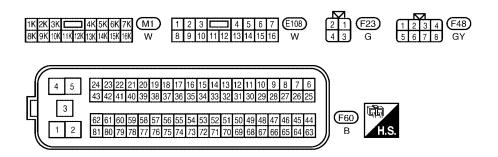
UBS00AXG

Α

EC

C


D


Е

Н

M

EC-HO2S2-01

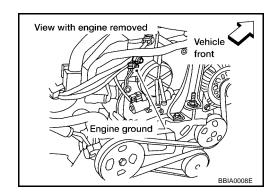
BBWA0727E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
74	R/L	Heated oxygen sensor 2	 [Engine is running] Warm-up condition Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	0 - Approximately 1.0V
78	В	Sensor ground (Heated oxygen sensor)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V


Diagnostic Procedure

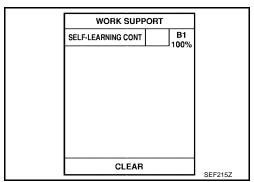
1. RETIGHTEN GROUND SCREWS

UBS00AXH

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

EC


Е

2. CLEAR THE SELF-LEARNING DATA

(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure that DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-704, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 7. Make sure that DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected?

Is it difficult to start engine?

Yes or No

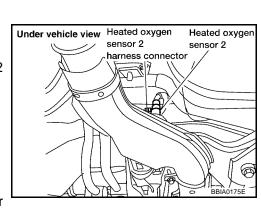
Yes >> Perform trouble diagnosis for DTC P0171. Refer to EC-883.

No >> GO TO 3.

3. CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 2 harness connector.
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between ECM terminal 78 and HO2S2 terminal 4.

Refer to Wiring Diagram.


Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

CLEAR

SEF215Z

Mass air flow
sensor (with
built in intake

air temperatur

Air cleaner

sensor)

J

BBIA0130E

Н

n

4. CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 74 and HO2S2 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

Check harness continuity between ECM terminal 74 or HO2S2 terminal 1 and ground. Refer to Wiring Diagram.

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-1088, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

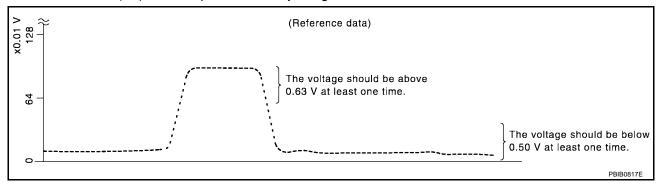
>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2

UBS00AXI

(P) With CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle 1 minute.
- 5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.


	ACTIVE TEST		
	FUEL INJECTION	25 %	
	MONITOR		
	ENG SPEED	XXX rpm	
	HO2S2 (B1)	xxx v	
-			PBIB1783E

Α

EC

Е

6. Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)" should be above 0.63V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)" should be below 0.50V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- Set voltmeter probes between ECM terminal 74 (HO2S2 signal) and engine ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.

(Depress and release accelerator pedal as soon as possible.)

The voltage should be above 0.63V at least once during this

If the voltage is above 0.63V at step 6, step 7 is not neces-

 Keep vehicle idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF (A/T models) 3rd gear position (M/T models).
 The voltage should be below 0.50V at least once during this procedure.

procedure.8. If NG, replace heated oxygen sensor 2.

ECM OCONNECTOR C H

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

Refer to EX-3, "EXHAUST SYSTEM".

- PBIB1197E

UBS00AXJ

DTC P1148 CLOSED LOOP CONTROL

PFP:22690

UBS00AXK

On Board Diagnosis Logic A/T MODELS ULEV AND M/T MODELS

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1148 1148	Closed loop control function	The closed loop control function does not operate even when vehicle is driving in the specified condition.	 The heated oxygen sensor 1 circuit is open or shorted. Heated oxygen sensor 1 Heated oxygen sensor heater

A/T MODELS EXCEPT ULEV

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1148 1148	Closed loop control function	The closed loop control function for bank 1 does not operate even when vehicle is driving in the specified condition.	 The air fuel ratio (A/F) sensor 1 circuit is open or shorted. Air fuel ratio (A/F) sensor 1 Air fuel ratio (A/F) sensor 1 heater

DTC P1148 is displayed with another DTC for air fuel ratio (A/F) sensor 1. Perform the trouble diagnosis for the corresponding DTC.

DTC Confirmation Procedure (A/T MODELS ULEV AND M/T MODELS)

UBS00B.II

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

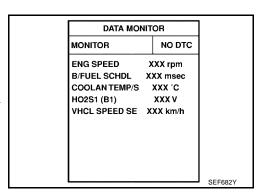
- Never raise engine speed above 3,600 rpm during the DTC Confirmation Procedure. If the engine speed limit is exceeded, retry the procedure from step 2.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(II) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Hold engine speed at 2,000 rpm and check one of the following.
 - "HO2S1 (B1)" voltage should go above 0.70V at least once.
 - "HO2S1 (B1)" voltage should go below 0.21V at least once.

If the check result is NG, perform EC-1091, "Diagnostic Procedure (A/T MODELS ULEV AND M/T MODELS)".

If the check result is OK, perform the following step.


- 4. Let engine idle at least 5 minutes.
- Maintain the following condition at least 50 consecutive seconds.

B/FUEL SCHDL	4.0 msec or more
ENG SPEED	More than 1,600 rpm
Selector lever	Suitable position
VHCL SPEED SE	More than 70 km/h (43 MPH)

ENG SPEED	More than 1,600 rpm
Selector lever	Suitable position
VHCL SPEED SE	More than 70 km/h (43 MPH)

During this test, P0134 may be displayed on CONSULT-II screen.

If DTC is detected, go to EC-1091, "Diagnostic Procedure (A/T MODELS ULEV AND M/T MODELS)".

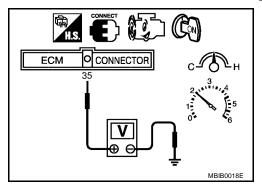
DTC P1148 CLOSED LOOP CONTROL

[QR25DE]

Overall Function Check (A/T MODELS ULEV AND M/T MODELS)

BS00BJ

EC


D

Е

Use this procedure to check the overall function of the closed loop control. During this check, a DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 35 [HO2S1 (B1) signal] and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no-load.
 - The voltage should go above 0.70V at least once.
 - The voltage should go below 0.21V at least once.
- 4. If NG, go to <u>EC-1091</u>, "<u>Diagnostic Procedure (A/T MODELS</u> ULEV AND M/T MODELS)".

Diagnostic Procedure (A/T MODELS ULEV AND M/T MODELS)

UBS00BJK

Perform trouble diagnosis for DTC P0133, EC-856.

Н

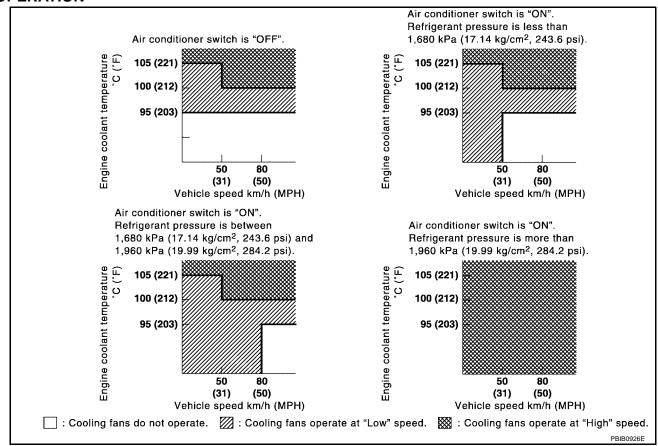
.

K

L

PFP:00000

System Description COOLING FAN CONTROL


UBS00AXL

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed*1		
Battery	Battery voltage*1		
Vehicle speed sensor	Vehicle speed*1	Cooling fan control	Cooling fan relay(s)
Engine coolant temperature sensor	Engine coolant temperature		
Air conditioner switch	Air conditioner ON signal		
Refrigerant pressure sensor	Refrigerant pressure		

^{*1:} The ECM determines the start signal status by the signals of engine speed and battery voltage.

The ECM controls the cooling fan corresponding to the vehicle speed, engine coolant temperature, refrigerant pressure, and air conditioner ON signal. The control system has 3-step control [HIGH/LOW/OFF].

OPERATION

CONSULT-II Reference Value in Data Monitor Mode

UBS00AXM

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up, idle the	A/C switch: OFF	OFF
AIR COND SIG	engine	A/C switch: ON (Compressor operates)	ON

^{*2:} This signal is sent to ECM through CAN communication line.

[QR25DE]

MONITOR ITEM	CONDITION		SPECIFICATION	_
		Engine coolant temperature is 94°C (201°F) or less	OFF	_
COOLING FAN	 Engine: After warming up, idle the engine Air conditioner switch: OFF 	Engine coolant temperature is between 95°C (203°F) and 104°C (219°F)	LOW	
		Engine coolant temperature is 105°C (221°F) or more	HIGH	_

On Board Diagnosis Logic

UBS00AXN

If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will rise.

When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diag- nosis name	DTC detecting condition	Possible Cause
P1217 1217	Engine over temperature (Overheat)	 Cooling fan does not operate properly (Overheat). Cooling fan system does not operate properly (Overheat). Engine coolant was not added to the system using the proper filling method. Engine coolant is not within the specified range. 	 Harness or connectors (The cooling fan circuit is open or shorted.) Cooling fan Radiator hose Radiator Radiator cap Water pump Thermostat For more information, refer to EC-1103, "Main 12 Causes of Overheating"

CAUTION:

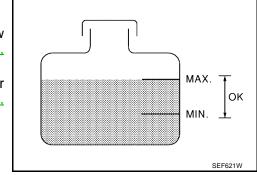
When a malfunction is indicated, be sure to replace the coolant. Refer to MA-23, "Changing Engine Coolant". Also, replace the engine oil. Refer to MA-26, "Changing Engine Oil".

- 1. Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Be sure to use coolant with the proper mixture ratio. Refer to MA-14, "Anti-freeze Coolant Mixture Ratio".
- 2. After refilling coolant, run engine to ensure that no water-flow noise is emitted.

Overall Function Check

UBS00AXO

Use this procedure to check the overall function of the cooling fan. During this check, a DTC might not be confirmed.


WARNING:

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator.

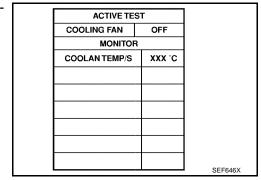
Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

WITH CONSULT-II

- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to EC-1096, "Diagnostic Procedure".
- 2. Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to EC-1096, "Diagnostic Procedure".
- 3. Turn ignition switch ON.

Α

EC


EC

G

Н

200

- Perform "COOLING FAN" in "ACTIVE TEST" mode with CON-SULT-II.
- If the results are NG, go to <u>EC-1096</u>, "<u>Diagnostic Procedure</u>".

WITH GST

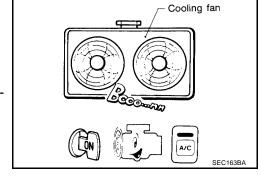
1. Check the coolant level in the reservoir tank and radiator.

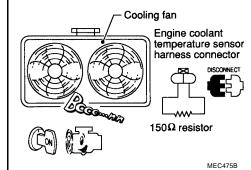
Allow engine to cool before checking coolant level.

If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to $\underline{\text{EC-}1096}$, "Diagnostic Procedure".

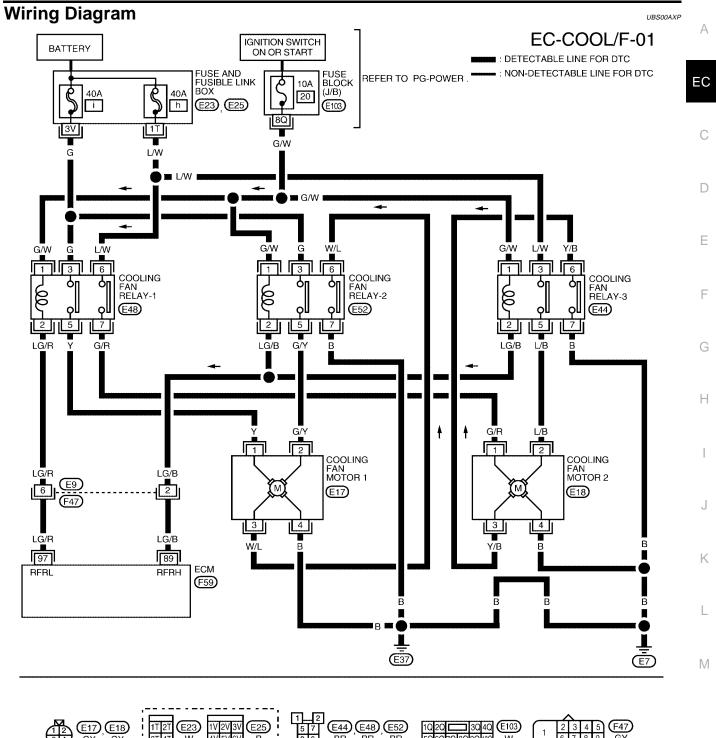
- 2. Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to EC-1096, "Diagnostic Procedure".
- 3. Start engine.

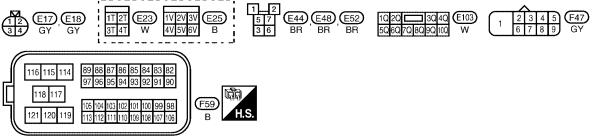
Be careful not to overheat engine.


- 4. Set temperature control lever to full cold position.
- Turn air conditioner switch ON.
- Turn blower fan switch ON.
- 7. Run engine at idle for a few minutes with air conditioner operating.


Be careful not to overheat engine.

- Make sure that cooling fan operates at low speed. If NG, go to <u>EC-1096</u>, "<u>Diagnostic Procedure</u>".
 If OK, go to the following step.
- 9. Turn ignition switch OFF.
- 10. Turn air conditioner switch and blower fan switch OFF.
- 11. Disconnect engine coolant temperature sensor harness connector.
- 12. Connect 150 Ω resistor to engine coolant temperature sensor harness connector.
- 13. Restart engine and make sure that cooling fan operates at higher speed than low speed.


Be careful not to overheat engine.


14. If NG, go to EC-1096, "Diagnostic Procedure".

[QR25DE]

BBWA0729E

UBS00AXQ

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

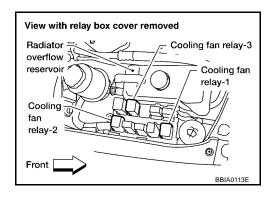
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
89	LG/B	Cooling fan relay (High)	[Engine is running]◆ Cooling fan is not operating	BATTERY VOLTAGE (11-14V)
09			[Engine is running]Cooling fan is high speed operating	0 - 1.0V
97	LG/R	Cooling fan relay	[Ignition switch: ON] • Cooling fan is not operating	BATTERY VOLTAGE (11-14V)
		(Low)	(Low)	[Ignition switch: ON] • Cooling fan is operating

Diagnostic Procedure

1. INSPECTION START

Do you have CONSULT-II?

Yes or No


Yes >> GO TO 2.

>> GO TO 4. No

2. CHECK COOLING FAN LOW SPEED OPERATION

With CONSULT-II

- Disconnect cooling fan relay-2 and relay-3.
- Turn ignition switch ON.

- Perform "COOLING FAN" in "ACTIVE TEST" mode with CON-SULT-II.
- 4. Make sure that cooling fans-1 and -2 operate at low speed.

OK or NG

OK >> GO TO 3.

NG >> Check cooling fan low speed control circuit. (Go to PRO-

CEDURE A, <u>EC-1100</u>.)

 ACTIVE TEC	_	1
ACTIVE TES		
COOLING FAN	OFF	
MONITOR		
COOLAN TEMP/S	XXX ,C	
		SEF646X

[QR25DE]

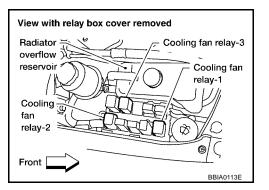
3. CHECK COOLING FAN HIGH SPEED OPERATION

(III) With CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Reconnect cooling fan relay-2 and relay-3.
- 3. Turn ignition switch ON.
- 4. Perform "COOLING FAN" in "ACTIVE TEST" mode with CONSULT-II.
- 5. Make sure that cooling fan-1 operates at high speed.

OK or NG

OK >> GO TO 6.

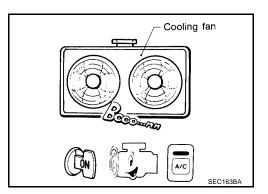

NG >> Check cooling fan high speed control circuit. (Go to PROCEDURE B, <u>EC-1102</u>.)

ACTIV	ETEST	
COOLING FAI	N OFF	
MON	ITOR	
COOLANTEM	P/S XXX °C	
		SEF646X

4. CHECK COOLING FAN LOW SPEED OPERATION

Without CONSULT-II

- 1. Disconnect cooling fan relay-2 and relay-3.
- 2. Start engine and let it idle.
- 3. Set temperature lever at full cold position.
- 4. Turn air conditioner switch ON.
- 5. Turn blower fan switch ON.



6. Make sure that cooling fans-1 and -2 operate at low speed.

OK or NG

OK >> GO TO 5.

NG >> Check cooling fan low speed control circuit. (Go to PRO-CEDURE A, <u>EC-1100</u>.)

EC

D

Е

G

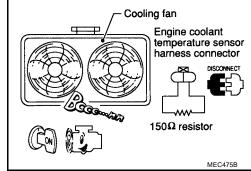
Н

J

K

5. CHECK COOLING FAN HIGH SPEED OPERATION

Without CONSULT-II


- 1. Turn ignition switch OFF.
- 2. Reconnect cooling fan relay-2 and relay-3.
- 3. Turn air conditioner switch and blower fan switch OFF.
- 4. Disconnect engine coolant temperature sensor harness connector.
- 5. Connect 150Ω resistor to engine coolant temperature sensor harness connector.
- 6. Restart engine and make sure that cooling fan-1 operates at high speed.

OK or NG

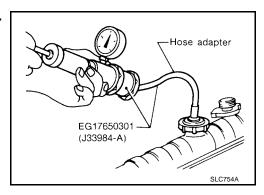
OK >> GO TO 6.

NG >

>> Check cooling fan high speed control circuit. (Go to PROCEDURE B, <u>EC-1102</u>.)

6. CHECK COOLING SYSTEM FOR LEAK

Apply pressure to the cooling system with a tester, and check if the pressure drops.


Testing pressure: 157 kPa (1.6 kg/cm², 23 psi)

CAUTION:

Higher than the specified pressure may cause radiator damage. Pressure should not drop.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following for leak.

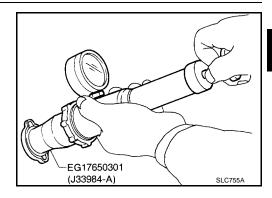
- Hose
- Radiator
- Water pump (Refer to <u>CO-28, "WATER PUMP"</u> .)

>> Repair or replace.

[QR25DE]

8. CHECK RADIATOR CAP

Apply pressure to cap with a tester.


Radiator cap relief pressure:

59 - 98 kPa (0.6 - 1.0 kg/cm², 9 - 14 psi)

OK or NG

OK >> GO TO 9.

NG >> Replace radiator cap.

9. CHECK THERMOSTAT

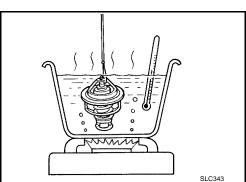
- Check valve seating condition at normal room temperatures. It should seat tightly.
- 2. Check valve opening temperature and valve lift.

Valve opening temperature:

82°C (180°F) [standard]

Valve lift:

More than 8 mm/95°C (0.31 in/203°F)


3. Check if valve is closed at 5°C (9°F) below valve opening tem-

For details, refer to CO-30, "THERMOSTAT AND THERMOSTAT HOUSING".

OK >> GO TO 10.

NG >> Replace thermostat.

10. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-1104, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> Replace engine coolant temperature sensor.

11. CHECK MAIN 12 CAUSES

If the cause cannot be isolated, go to EC-1103, "Main 12 Causes of Overheating" .

>> INSPECTION END

EC

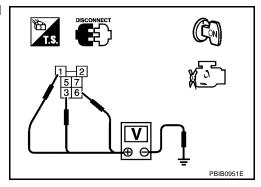
Α

D

Е

Н

PROCEDURE A


1. CHECK POWER SUPPLY

- 1. Turn ignition switch OFF.
- 2. Disconnect cooling fan relay-1.
- 3. Turn ignition switch ON.
- 4. Check voltage between cooling fan relay-1 terminals 1, 3, 6 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E103
- Fuse and fusible link box connectors E23, E25
- 10A fuse
- 40A fusible links
- Harness for open or short between cooling fan relay-1 and fuse
- Harness for open or short between cooling fan relay-1 and battery
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK COOLING FAN GROUND CIRCUIT FOR OPEN AND SHORT

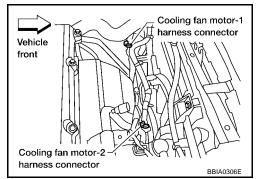
- 1. Turn ignition switch OFF.
- Disconnect cooling fan motor-1 harness connector and cooling fan motor-2 harness connector.
- Check harness continuity between cooling fan relay-1 terminal 5 and cooling fan motor-1 terminal 1, cooling fan motor-1 terminal 4 and ground.

Refer to Wiring Diagram.

Continuity should exist.

- 4. Also check harness for short to ground and short to power.
- 5. Check harness continuity between cooling fan relay-1 terminal 7 and cooling fan motor-2 terminal 1, cooling fan motor-2 terminal 4 and ground.

Refer to Wiring Diagram.


Continuity should exist.

6. Also check harness for short to ground and short to power.

OK or NG

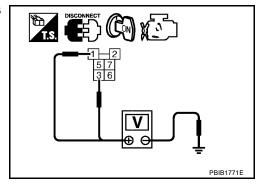
OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

[QR25DE]

 Disconnect ECM harness connector. Check harness continuity between ECM terminal 97 and cooling fan relay-1 terminal 2. Refer to Wiring Diagram. 	EC
	EC
Continuity should exist.	
3. Also check harness for short to ground and short to power.	С
OK or NG OK >> GO TO 6. NG >> GO TO 5.	D
5. DETECT MALFUNCTIONING PART	
Check the following. • Harness connectors E9, F47	Е
Harness for open or short between cooling fan relay-1 and ECM	F
>> Repair open circuit or short to ground or short to power in harness or connectors.	
6. CHECK COOLING FAN RELAY-1	G
Refer to EC-1104, "Component Inspection" .	
OK or NG	Н
OK >> GO TO 7. NG >> Replace cooling fan relay.	
7. CHECK COOLING FAN MOTORS-1 AND -2	
Refer to EC-1104, "Component Inspection".	
OK or NG	J
OK >> GO TO 8.	
NG >> Replace cooling fan motors.	K
8. CHECK INTERMITTENT INCIDENT	1 <
Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .	L
>> INSPECTION END	

PROCEDURE B


1. CHECK COOLING FAN POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect cooling fan relay-2 and relay-3.
- 3. Turn ignition switch ON.
- 4. Check voltage between cooling fan relay-2 and relay-3 terminals 1, 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

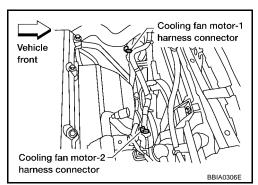
- Fuse and fusible link box connectors E23, E25
- Fuse block (J/B) connector E103
- Harness for open or short between cooling fan relay-2, relay-3 and fuse
- Harness for open or short between cooling fan relay-2, relay-3 and fusible link
 - >> Repair harness or connectors.

3. CHECK COOLING FAN MOTORS CIRCUIT

- 1. Turn ignition switch OFF.
- Disconnect cooling fan motor-1 harness connector and cooling fan motor-2 harness connector.
- Check harness continuity between the following; cooling fan motor-1 terminal 2 and cooling fan relay-2 terminal 5, cooling fan motor-1 terminal 3 and cooling fan relay-2 terminal 6, cooling fan relay-2 terminal 7and body ground. Refer to wiring diagram.

Continuity should exist.

- 4. Also check harness for short to ground and short to power.
- Check harness continuity between the following; cooling fan motor-2 terminal 2 and cooling fan relay-3 terminal 5, cooling fan motor-2 terminal 3 and cooling fan relay-3 terminal 6, cooling fan relay-3 terminal 7and body ground. Refer to wiring diagram.


Continuity should exist.

6. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

[QR25DE]

4. CHECK COOLING FAN OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Disconnect ECM harness connector.

2. Check harness continuity between ECM terminal 89 and cooling fan relay-2 and relay-3 terminals 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

>> GO TO 6. OK NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E9, F47
- Harness for open or short between cooling fan relay-2 and ECM
- Harness for open or short between cooling fan relay-3 and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

O. CHECK COOLING FAN RELAY-2 AND RELAY-3

Refer to EC-1104, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace cooling fan relays.

7. CHECK COOLING FAN MOTORS-1 AND -2

Refer to EC-1104, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace cooling fan motors.

8. CHECK INTERMITTENT INCIDENT

Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Main 12 Causes of Overheating

UBS00AXR

Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	Blocked radiatorBlocked condenserBlocked radiator grilleBlocked bumper	Visual	No blocking	_
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See <u>MA-14</u> .
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See <u>MA-23</u> .
	4	Radiator cap	Pressure tester	59 - 98 kPa (0.6 - 1.0 kg/ cm ² , 9 - 14 psi) (Limit)	See <u>CO-36</u> .
ON* ²	5	Coolant leaks	Visual	No leaks	See <u>CO-26</u> .

EC

Α

D

Е

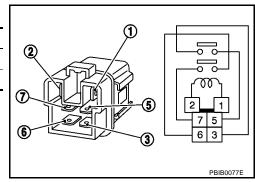
Н

[QR25DE]

UBS00AXS

Engine	Step	Inspection item	Equipment	Standard	Reference page
ON* ²	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	See <u>CO-30</u> and <u>CO-32</u> .
ON* ¹	7	Cooling fan	CONSULT-II	Operating	See trouble diagnosis for DTC P1217 (<u>EC-1092</u>).
OFF	8	Combustion gas leak	Color checker chemical tester 4 Gas analyzer	Negative	_
ON* ³	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driv- ing and idling	See <u>CO-26</u> .
OFF* ⁴	10	Coolant return from reservoir tank to radia- tor	Visual	Should be initial level in reservoir tank	See <u>CO-26</u> .
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	See <u>EM-143</u> .
-	12	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	See <u>EM-159</u> .

^{*1:} Turn the ignition switch ON.

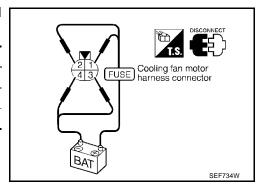

For more information, refer to CO-23, "OVERHEATING CAUSE ANALYSIS" .

Component Inspection COOLING FAN RELAYS-1 AND -2

Check continuity between terminals 3 and 5, 6 and 7.

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

If NG, replace relay.


COOLING FAN MOTOR-1 AND MOTOR-2

- 1. Disconnect cooling fan motor harness connectors.
- 2. Supply cooling fan motor terminals with battery voltage and check operation.

	Speed		Terminals		
Speed		(+)	(–)		
Cooling fan motor	Low	1	4		
	High	1, 2	3, 4		

Cooling fan motor should operate.

If NG, replace cooling fan motor.

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (56 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

DTC P1225 TP SENSOR

PFP:16119

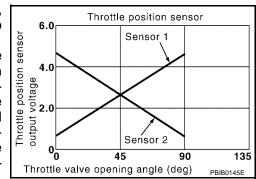
UBS00AXT

Α

EC

Е

Н


M

Component Description

the throttle valve movement.

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition

On Board Diagnosis Logic

UBS00AXU

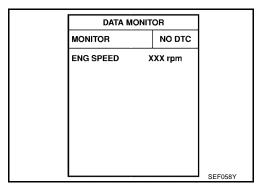
The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1225 1225	Closed throttle position learning performance problem	Closed throttle position learning value is excessively low.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure

UBS00AXV

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Turn ignition switch OFF, wait at least 10 seconds.
- 4. Turn ignition switch ON.
- If 1st trip DTC is detected, go to <u>EC-1106, "Diagnostic Procedure"</u>.

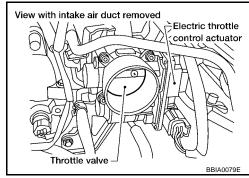
WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY

UBSUUAXVV


- 1. Turn ignition switch OFF.
- 2. Remove the intake air duct.
- 3. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG >> Rem

>> Remove the foreign matter and clean the electric throttle control actuator inside.

2. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-684, "Throttle Valve Closed Position Learning".
- 3. Perform EC-685, "Idle Air Volume Learning".

>> INSPECTION END

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-103, "INTAKE MANIFOLD".

UBS00AXX

DTC P1226 TP SENSOR

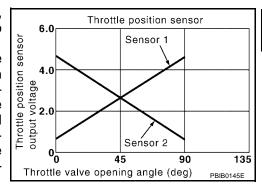
PFP:16119

UBS00AXY

Α

EC

Е


M

Component Description

the throttle valve movement.

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

UBS00AXZ

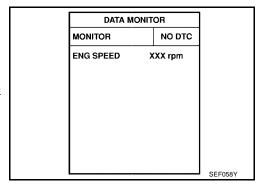
The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1226 1226	Closed throttle position learning performance problem	Closed throttle position learning is not performed successfully, repeatedly.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure

UBS00AY0

NOTE


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Turn ignition switch OFF, wait at least 10 seconds.
- 4. Turn ignition switch ON.
- 5. Repeat steps 3 and 4 for 32 times.
- 6. If 1st trip DTC is detected, go to EC-1108, "Diagnostic Procedure".

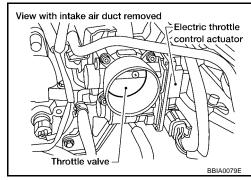
WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY

0200


- 1. Turn ignition switch OFF.
- 2. Remove the intake air duct.
- 3. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG >> Ren

>> Remove the foreign matter and clean the electric throttle control actuator inside.

2. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-684, "Throttle Valve Closed Position Learning".
- 3. Perform EC-685, "Idle Air Volume Learning".

>> INSPECTION END

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-103, "INTAKE MANIFOLD".

UBS00AY2

DTC P1229 SENSOR POWER SUPPLY

[QR25DE]

DTC P1229 SENSOR POWER SUPPLY

This self-diagnosis has the one trip detection logic.

PFP:16119

UBS00AY3

Α

EC

Е

Н

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1229 1229	Sensor power supply circuit short	ECM detects a voltage of power source for sensor is excessively low or high.	 Harness or connectors (The TP sensor 1 and 2 circuit is shorted.) Electric throttle control actuator (TP sensor 1 and 2) ECM pin terminal

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

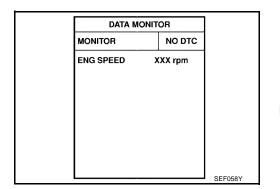
Engine operation condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return

DTC Confirmation Procedure

UBS00AY4

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(III) WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- If DTC is detected, go to EC-1111, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram UBS00AY5 EC-SEN/PW-01 ELECTRIC THROTTLE CONTROL ACTUATOR (THROTTLE POSITION SENSOR) SENSOR 1 SENSOR 2 : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC (F50) 4 5 2 69 47 50 66 ECM GND-A3 (F60) (M54) 3

DTC P1229 SENSOR POWER SUPPLY

[QR25DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

•	TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
_	47	В	Sensor power supply (Throttle position sensor)	[Ignition switch: ON]	Approximately 5V

UBS00AY6

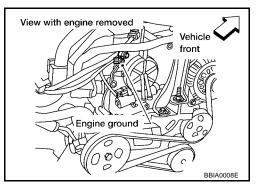
Α

EC

D

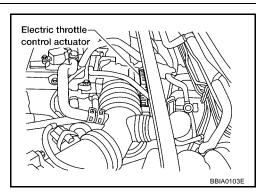
Е

Н


M

Diagnostic Procedure

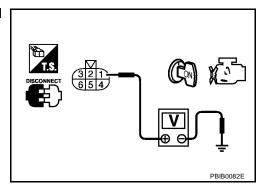
1. RETIGHTEN GROUND SCREWS


- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

EC-1111

[QR25DE]

3. CHECK SENSOR POWER SUPPLY CIRCUITS FOR SHORT

Check the following.

- Harness for short to power and short to ground between ECM terminal 47 and electric throttle control actuator terminal 1.
- ECM pin terminal.

OK or NG

OK >> GO TO 4.

NG >> Repair short to ground or short to power in harness or connectors.

4. CHECK THROTTLE POSITION SENSOR

Refer to EC-918, "Component Inspection".

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace electric throttle control actuator.
- 2. Perform EC-684, "Throttle Valve Closed Position Learning".
- 3. Perform EC-685, "Idle Air Volume Learning".

>> INSPECTION END

6. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P1271 A/F SENSOR 1

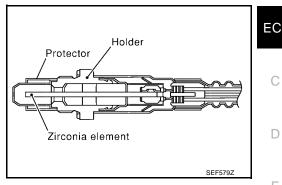
PFP:22693

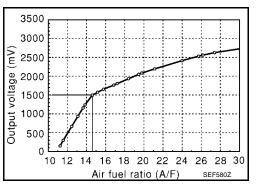
Component Description

UBS00AY7

Α

Е


Н


The A/F sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement $\lambda = 1$, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < $\lambda < air$).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygenpump cell so that the composition of the exhaust gas in the diffusion gap remains constant at $\lambda = 1$. Therefore, the A/F sensor 1 is able to indicate air-fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-II Reference Value in Data Monitor Mode

UBS00AY8

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V

On Board Diagnosis Logic

To judge the malfunction, the diagnosis checks that the A/F signal computed by ECM from the air fuel ratio (A/ F) sensor 1 signal is not inordinately low.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P1271	Air fuel ratio (A/F) sensor 1 circuit no activity detected	The A/F signal computed by ECM from the	 Harness or connectors
1271		A/F sensor 1 signal is constantly approx. 0V.	(The sensor circuit is open or shorted.) Air fuel ratio (A/F) sensor 1

DTC Confirmation Procedure

LIBSONAYA

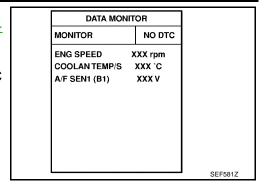
M

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

WITH CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Select "A/F SEN1 (B1)" in "DATA MONITOR" mode with CONSULT-II.

- Check "A/F SEN1 (B1)" indication.
 If the indication is constantly approx. 0V, go to <u>EC-1117</u>, "<u>Diagnostic Procedure</u>".
 - If the indication is not constantly approx. 0V, go to next step.
- 4. Select "A/F SEN1 (B1) P1278/P1279" of "A/F SEN1" in "DTC WORK SUPPORT" mode.
- 5. Touch "START".

6. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen.

ENG SPEED	1,800 - 3,200 rpm
Vehicle speed	More than 80 km/h (50 MPH)
B/FUEL SCHDL	2.2 - 9.0 msec
COOLANT TEMP/S	Less than 70°C (158°F)
Selector lever	D position with "OD" ON

If "TESTING" is not displayed after 20 seconds, retry from step 2.

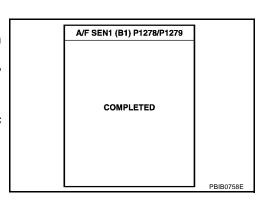
A/F SEN1 (B1) P1278/P1279

OUT OF CONDITION

MONITOR

ENG SPEED XXX rpm

B/FUEL SCHDL XXX msec


COOLAN TEMP/S XXX 'C

VHCL SPEED SE XXX km/h

7. Following the instructions of CONSULT-II screen, set D position with "OD" OFF and release accelerator pedal fully.

A/F SEN1 (B1) P12		
TESTING		
SELECT 3RD GEAR RELEASE ACCELERATOR		
MONITOR		
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S	xxx .c	
VHCL SPEED SE	XXX km/h	
		PBIB0757E

- 8. Make sure that "TESTING" changes to "COMPLETED". If "TESTING" changed to "OUT OF CONDITION", retry from step 6.
- 9. Touch "BACK" and "MODE", then select "SELF-DIAG RESULT" mode.
 - If P1271 is displayed, go to <u>EC-1117</u>, "<u>Diagnostic Procedure</u>". If another DTC is displayed, go to the corresponding Diagnostic Procedure.

Overall Function Check

UBS00AYB

Use this procedure to check the overall function of the A/F sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Drive the vehicle at a speed of 90 km/h (56 MPH) for a few minutes in D position with "OD" OFF.

NOTE:

Keep the accelerator pedal as steady as possible during the cruising.

DTC P1271 A/F SENSOR 1

[QR25DE]

3. Set D position with "OD" ON, then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

- 4. Repeat steps 2 to 3 five times.
- 5. Stop the vehicle and turn ignition switch OFF.
- 6. Wait at least 10 seconds and restart engine.
- 7. Repeat steps 2 to 3 five times.
- 8. Stop the vehicle and connect GST to the vehicle.
- 9. Make sure that no DTC is displayed. If the DTC is displayed, go to <u>EC-1117, "Diagnostic Procedure"</u>.

EC

Α

С

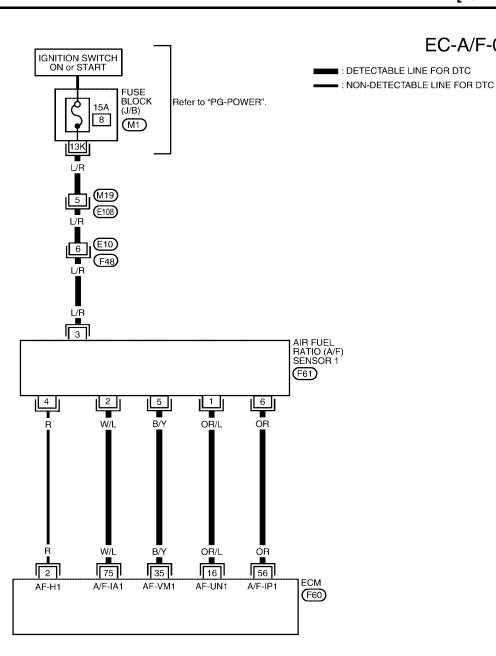
D

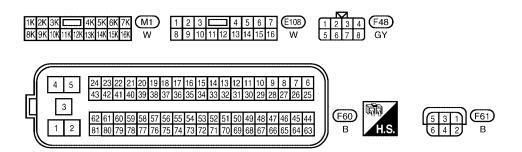
Е

F

G

Н


Κ


L

EC-A/F-01

Wiring Diagram

UBS00AYC

BBWA0762E

Α

EC

D

Е

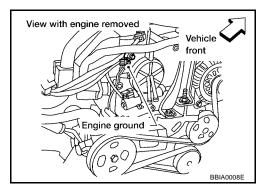
Н

M

Specification data are reference values and are measured between each terminal and ground.

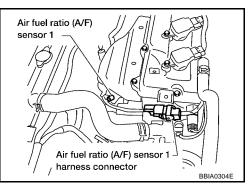
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
16	OR/L			Approximately 3.1V
35	B/Y	A/F sensor 1	[Engine is running]	Approximately 2.6V
56	OR		Warm-up condition Idle speed	2 - 3V
75	W/L		• Tale speed	2 - 3V

Diagnostic Procedure

UBS00AYD


1. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

- 3. Disconnect ECM harness connector and A/F sensor 1 harness connector.
- 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

ECM terminal	A/F sensor 1 terminal
16	1
35	5
56	6
75	2

Continuity should exist.

5. Check harness continuity between ECM terminals 16, 35, 56, 75 or A/F sensor 1 terminals 1, 2, 5, 6 and ground. Refer to Wiring Diagram.

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK >> GO TO 2.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

[QR25DE]

2. CHECK INTERMITTENT INCIDENT

Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> Replace A/F sensor 1.

NG >> Repair or replace.

Removal and Installation AIR FUEL RATIO SENSOR

UBS00AYE

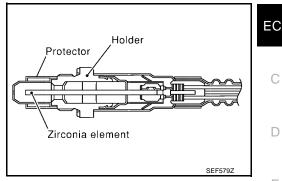
Refer to EM-108, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

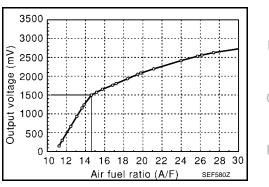
PFP:22693

Component Description

UBS00AYF

Α


Е


The A/F sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air-fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-II Reference Value in Data Monitor Mode

UBS00AYG

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V

On Board Diagnosis Logic

BS00AYH

To judge the malfunction, the diagnosis checks that the A/F signal computed by ECM from the air fuel ratio (A/F) sensor 1 signal is not inordinately high.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause	L
P1272 1272	Air fuel ratio (A/F) sensor 1 circuit no activity detected	The A/F signal computed by ECM from the A/F sensor 1 signal is constantly approx. 5V.	 Harness or connectors (The sensor circuit is open or shorted.) Air fuel ratio (A/F) sensor 1 	M

DTC Confirmation Procedure

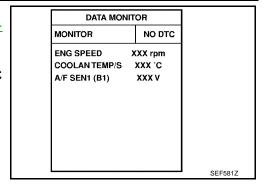
UBS00AYI

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "A/F SEN1 (B1)" in "DATA MONITOR" mode with CONSULT-II.

- Check "A/F SEN1 (B1)" indication.
 If the indication is constantly approx. 5V, go to <u>EC-1123</u>, "<u>Diagnostic Procedure</u>".
 - If the indication is not constantly approx.5V, go to next step.
- 4. Select "A/F SEN1 (B1) P1278/P1279" of "A/F SEN1" in "DTC WORK SUPPORT" mode.
- 5. Touch "START".

6. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen.

ENG SPEED	1,800 - 3,200 rpm
Vehicle speed	More than 80 km/h (50 MPH)
B/FUEL SCHDL	2.2 - 9.0 msec
COOLANT TEMP/S	Less than 70°C (158°F)
Selector lever	D position with "OD" ON

If "TESTING" is not displayed after 20 seconds, retry from step 2.

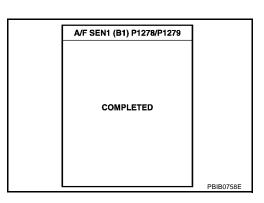
A/F SEN1 (B1) P1278/P1279

OUT OF CONDITION

MONITOR

ENG SPEED XXX rpm

B/FUEL SCHDL XXX msec


COOLAN TEMP/S XXX 'C

VHCL SPEED SE XXX km/h

7. Following the instructions of CONSULT-II screen, set D position with "OD" OFF and release accelerator pedal fully.

A/F SEN1 (B1) P12	78/P1279	
TESTING		
SELECT 3RD GEAR RELEASE ACCELERATOR		
MONITOR		
ENG SPEED XXX rpm		
B/FUEL SCHDL XXX msec		
COOLAN TEMP/S XXX °C		
VHCL SPEED SE		
		PBIB0757E

- 8. Make sure that "TESTING" changes to "COMPLETED". If "TESTING" changed to "OUT OF CONDITION", retry from step 6.
- 9. Touch "BACK" and "MODE", then select "SELF-DIAG RESULT" mode.
 - If P1272 is displayed, go to <u>EC-1123, "Diagnostic Procedure"</u>. If another DTC is displayed, go to the corresponding Diagnostic Procedure.

Overall Function Check

UBS00AYJ

Use this procedure to check the overall function of the A/F sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Drive the vehicle at a speed of 90 km/h (56MPH) for a few minutes in D position with "OD" OFF.

NOTE:

Keep the accelerator pedal as steady as possible during the cruising.

[QR25DE]

3. Set D position with "OD" ON, then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

- 4. Repeat steps 2 to 3 five times.
- 5. Stop the vehicle and turn ignition switch OFF.
- 6. Wait at least 10 seconds and restart engine.
- 7. Repeat steps 2 to 3 five times.
- 8. Stop the vehicle and connect GST to the vehicle.
- 9. Make sure that no DTC is displayed. If the DTC is displayed, go to <u>EC-1123, "Diagnostic Procedure"</u>.

EC

Α

С

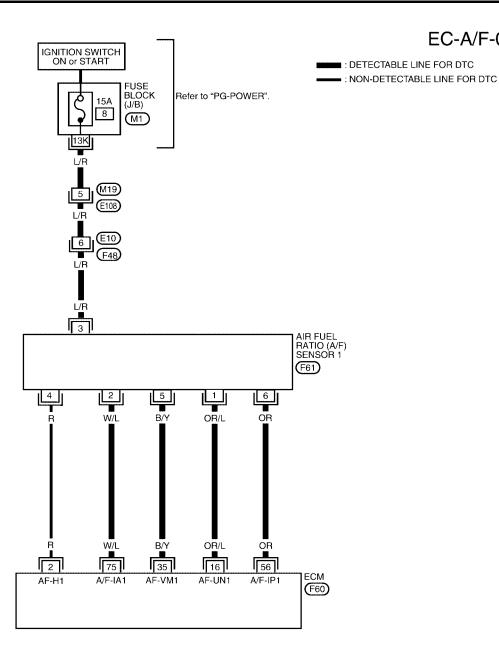
 D

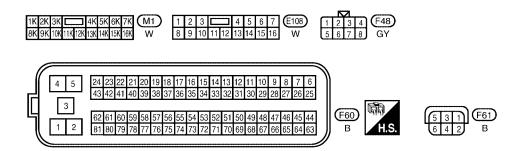
Е

F

G

Н


Κ


L

EC-A/F-01

Wiring Diagram

UBS00AYK

BBWA0762E

Α

EC

D

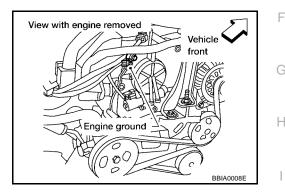
Е

M

Specification data are reference values and are measured between each terminal and ground.

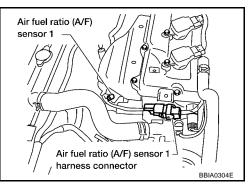
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
16	OR/L	A/F sensor 1	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 3.1V
35	B/Y			Approximately 2.6V
56	OR			2 - 3V
75	W/L			2 - 3V

Diagnostic Procedure

UBS00AYL


1. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

- 3. Disconnect ECM harness connector and A/F sensor 1 harness connector.
- Check harness continuity between the following terminals. Refer to Wiring Diagram.

ECM terminal	A/F sensor 1 terminal
16	1
35	5
56	6
75	2

Continuity should exist.

5. Check harness continuity between ECM terminals 16, 35, 56, 75 or A/F sensor 1 terminals 1, 2, 5, 6 and ground. Refer to Wiring Diagram.

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK >> GO TO 2

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

2. CHECK INTERMITTENT INCIDENT

Perform <u>EC-781</u>, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> Replace A/F sensor 1.

NG >> Repair or replace.

[QR25DE]

Removal and Installation AIR FUEL RATIO SENSOR

UBS00AYM

Refer to EM-108, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

PFP:22693

Component Description

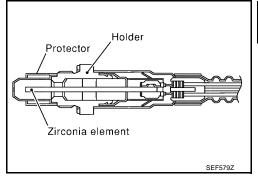
UBS00AYN

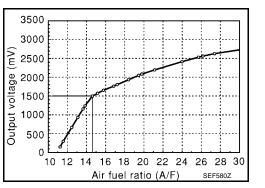
Α

EC

Е

Н


M


The A/F sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air-fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-II Reference Value in Data Monitor Mode

UBS00AYO

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V

On Board Diagnosis Logic

SOOAYP

To judge the malfunction, the A/F signal computed by ECM from the air fuel ratio (A/F) sensor 1 signal is monitored not to be shifted lean side or rich side. When the A/F sensor 1 signal is shifting to the lean side, the malfunction will be detected.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P1273 1273	Air fuel ratio (A/F) sensor 1 lean shift monitoring	The output voltage computed by ECM from the A/F sensor 1 signal is shifted to the lean side for a specified period.	 Air fuel ratio (A/F) sensor 1 Air fuel ratio (A/F) sensor heater 1 Fuel pressure Injectors Intake air leaks

DTC Confirmation Procedure

UBS00AYQ

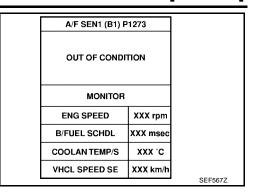
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

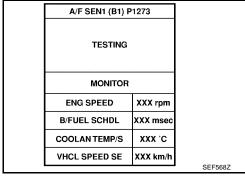
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(II) WITH CONSULT-II

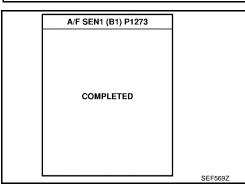

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "A/F SEN1 (B1) P1273" of "A/F SEN1" in "DTC WORK SUPPORT" mode.
- 3. Touch "START".

 Maintain the following conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 400 to 800 seconds.)


NOTE:

Keep the accelerator pedal as steady as possible.

ENG SPEED	Below 3,200 rpm
B/FUEL SCHDL	Below 13.6 msec
COOLANT TEMP/S	Less than 70°C (158°F)
Selector lever	P or N position



If "TESTING" is not displayed after 20 minutes, retry from step 2.

5. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".

If "NG" is displayed, go to EC-1129, "Diagnostic Procedure".

Overall Function Check

UBS00AYR

Use this procedure to check the overall function of the A/F sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Drive the vehicle at a speed of 90 km/h (56 MPH) for a few minutes in D position with "OD" OFF.

NOTE:

Keep accelerator pedal as steady as possible during the cruising.

3. Set D position with "OD" ON, then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

- 4. Repeat steps 2 to 3 five times.
- 5. Stop the vehicle and turn ignition switch OFF.
- 6. Wait at least 10 seconds and restart engine.
- 7. Repeat steps 2 to 3 five times.
- 8. Stop the vehicle and connect GST to the vehicle.
- Make sure that no DTC is displayed.

[QR25DE]

If the DTC is displayed, go to $\underline{\text{EC-1129}}$, "Diagnostic Procedure".

Α

EC

С

D

Е

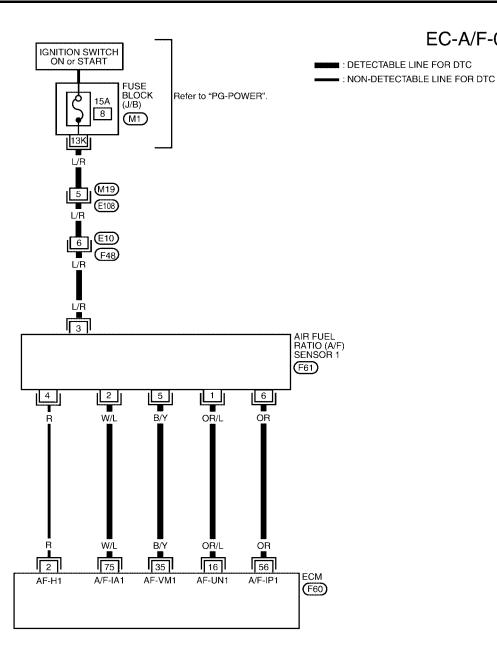
F

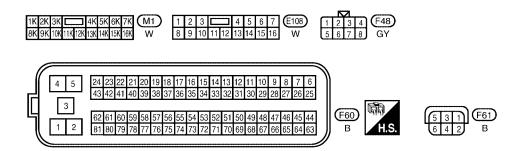
G

Н

1

J


Κ


L

EC-A/F-01

Wiring Diagram

UBS00AYS

BBWA0762E

[QR25DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
16	OR/L	A/F sensor 1	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 3.1V
35	B/Y			Approximately 2.6V
56	OR			2 - 3V
75	W/L			2 - 3V

Diagnostic Procedure

UBS00AYT

1. RETIGHTEN AIR FUEL RATIO (A/F) SENSOR 1

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten the air fuel ratio (A/F) sensor 1.

Tightening torque: 40 - 60 N-m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)

>> GO TO 2.

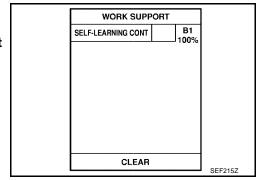
EC

C

D

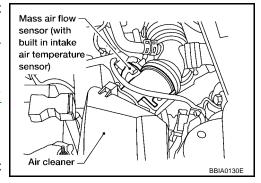
Е

F


Α

Н

2. CLEAR THE SELF-LEARNING DATA.

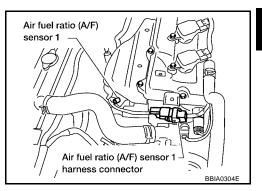

(III) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-704, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.
 Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

Yes or No


Yes >> Perform trouble diagnosis for DTC P0171. Refer to EC-883.

No >> GO TO 3.

3. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector and A/F sensor 1 harness connector.
- 3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

ECM terminal	A/F sensor 1 terminal
16	1
35	5
56	6
75	2

Continuity should exist.

4. Check harness continuity between ECM terminals 16, 35, 56, 75 or A/F sensor 1 terminals 1, 2, 5, 6 and ground. Refer to Wiring Diagram.

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK A/F SENSOR 1 HEATER

Refer to EC-1033, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace A/F sensor 1.

5. CHECK INTERMITTENT INCIDENT

Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> Replace A/F sensor 1.

NG >> Repair or replace.

Removal and Installation AIR FUEL RATIO SENSOR

Refer to EM-108, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

EC

Α

D

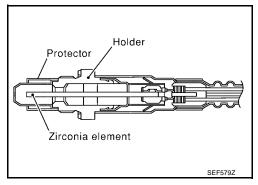
Е

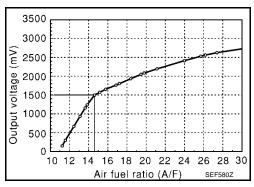
Н

UBS00AYU

PFP:22693

Component Description


UBS00AYV


The A/F sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air-fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-II Reference Value in Data Monitor Mode

UBS00AYW

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V

On Board Diagnosis Logic

UBS00AY

To judge the malfunction, the A/F signal computed by ECM from the air fuel ratio (A/F) sensor 1 signal is monitored not to be shifted to the lean side or rich side. When the A/F sensor 1 signal is shifting to the rich side, the malfunction will be detected.

DTC No.	Trouble diag- nosis name	DTC detecting condition	Possible Cause
P1274 1274	Air fuel ratio (A/F) sensor 1 rich shift moni- toring	The A/F signal computed by ECM from the A/F sensor 1 signal is shifted to the rich side for a specified period.	 Air fuel ratio (A/F) sensor 1 Air fuel ratio (A/F) sensor heater 1 Fuel pressure Injectors

DTC Confirmation Procedure

UBS00AYY

NOTF:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(II) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "A/F SEN1 (B1) P1274" of "A/F SEN1" in "DTC WORK SUPPORT" mode.
- Touch "START".

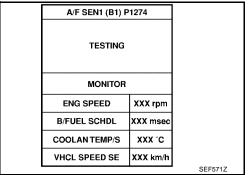
[QR25DE]

Α

EC

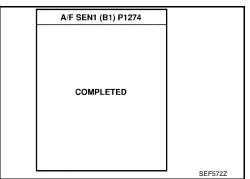
Е

Maintain the following conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 400 to 800 seconds.)


NOTE:

Keep the accelerator pedal as steady as possible.

ENG SPEED	Below 3,200 rpm
B/FUEL SCHDL	Below 13.6 msec
COOLANT TEMP/S	Less than 70°C (158°F)
Selector lever	P or N position


A/F SEN1 (B1) P1274 OUT OF CONDITION MONITOR **ENG SPEED** XXX rpm B/FUEL SCHDL XXX msed COOLAN TEMP/S XXX C **VHCL SPEED SE** XXX km/h SEF570Z

If "TESTING" is not displayed after 20 minutes, retry from step 2.

5. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".

If "NG" is displayed, go to EC-1136, "Diagnostic Procedure".

Overall Function Check

Use this procedure to check the overall function of the A/F sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Drive the vehicle at a speed of 90 km/h (56 MPH) for a few minutes in D position with "OD" OFF.

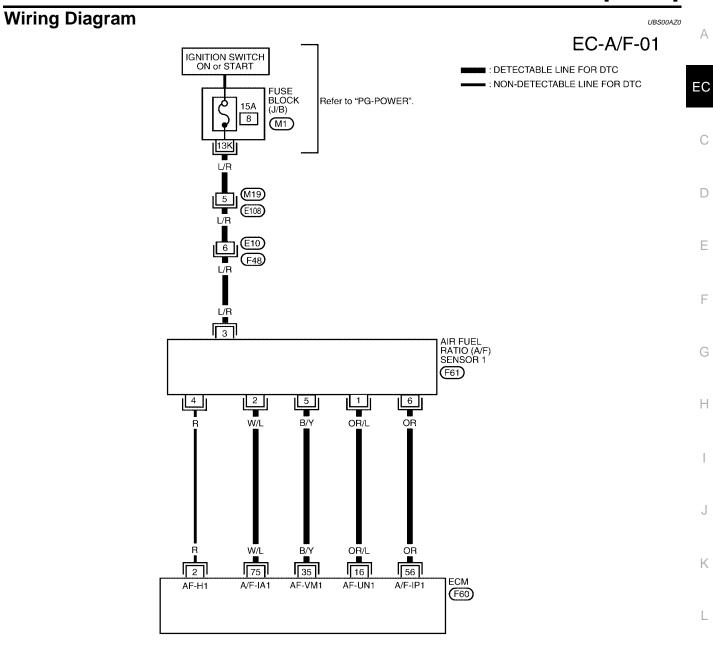
Keep accelerator pedal as steady as possible during the cruising.

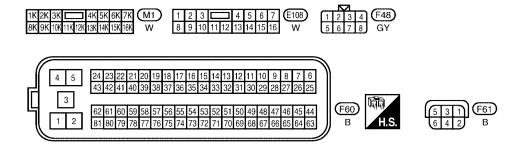
3. Set D position with "OD" ON, then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

- 4. Repeat steps 2 to 3 five times.
- 5. Stop the vehicle and turn ignition switch OFF.
- 6. Wait at least 10 seconds and restart engine.
- 7. Repeat steps 2 to 3 five times.
- 8. Stop the vehicle and connect GST to the vehicle.
- Make sure that no DTC is displayed.


Н


UBS00AYZ

[QR25DE]

If the DTC is displayed, go to EC-1136, "Diagnostic Procedure" .

[QR25DE]

BBWA0762E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

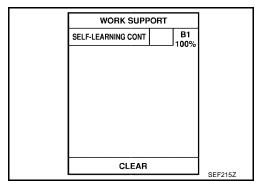
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
16	OR/L			Approximately 3.1V
35	B/Y	Λ/Γ	[Engine is running]	Approximately 2.6V
56	OR	A/F sensor 1	Warm-up condition Idle speed	2 - 3V
75	W/L		• Idio opocu	2 - 3V

Diagnostic Procedure

UBS00AZ1

1. RETIGHTEN AIR FUEL RATIO (A/F) SENSOR 1

- Turn ignition switch OFF.
- 2. Loosen and retighten the air fuel ratio (A/F) sensor 1.


Tightening torque: 40 - 60 N-m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)

>> GO TO 2.

2. CLEAR THE SELF-LEARNING DATA

(III) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

☒ Without CONSULT-II

- Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to EC-704, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

Mass air flow sensor (with built in intake air temperature sensor) Air cleaner BBIA0130E

Yes or No

Yes >> Perform trouble diagnosis for DTC P0172. Refer to EC-894.

No >> GO TO 3.

3. CHECK HARNESS CONNECTOR

- Turn ignition switch OFF. 1.
- Disconnect A/F sensor 1 harness connector.
- Check harness connector for water.

Water should not exit.

OK or NG

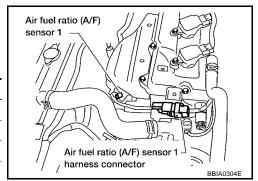
OK >> GO TO 4.

NG >> Repair or replace harness connector.

EC

Е

F


Н

K

4. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector and A/F sensor 1 harness connector.
- 3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

ECM terminal	A/F sensor 1 terminal
16	1
35	5
56	6
75	2

Continuity should exist.

4. Check harness continuity between ECM terminals 16, 35, 56, 75 or A/F sensor 1 terminals 1, 2, 5, 6 and ground. Refer to Wiring Diagram.

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK A/F SENSOR 1 HEATER

Refer to EC-1033, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace A/F sensor 1.

6. CHECK INTERMITTENT INCIDENT

Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> Replace A/F sensor 1.

NG >> Repair or replace.

Removal and Installation AIR FUEL RATIO SENSOR

UBS00AZ2

Refer to EM-108, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

[QR25DE]

DTC P1276 A/F SENSOR 1

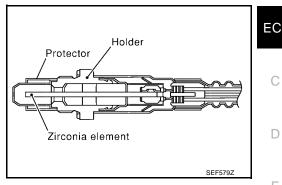
PFP:22693

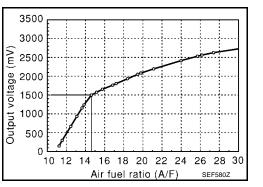
Component Description

UBS00AZ3

Α

Е


Н


The A/F sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement $\lambda = 1$, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 <

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygenpump cell so that the composition of the exhaust gas in the diffusion gap remains constant at $\lambda = 1$. Therefore, the A/F sensor 1 is able to indicate air-fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-II Reference Value in Data Monitor Mode

LIBSONA74

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V

On Board Diagnosis Logic

To judge the malfunction, the diagnosis checks that the A/F signal computed by ECM from the air fuel ratio (A/ F) sensor 1 signal fluctuates according to fuel feedback control.

DTC No.	Trouble diag- nosis name	DTC detecting condition	Possible Cause
P1276 1276	Air fuel ratio (A/F) sensor 1 circuit high voltage	The A/F signal computed by ECM from the A/F sensor 1 signal is constantly approx. 1.5V.	 Harness or connectors (The sensor circuit is open or shorted.) Air fuel ratio (A/F) sensor 1

DTC Confirmation Procedure

UBS00AZ6

M

CAUTION:

Always drive vehicle at a safe speed.

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

WITH CONSULT-II

- Start engine and warm it up to normal operating temperature.
- 2. Select "A/F SEN1 (B1)" of "DATA MONITOR" mode with CONSULT-II.
- Check "A/F SEN1 (B1)" indication.

If the indication is constantly approx. 1.5V and does not fluctuates, go to EC-1143, "Diagnostic Procedure"

If the indication fluctuates around 1.5V, go to next step.

- 4. Select "A/F SEN1 (B1) P1276" of "A/F SEN1" in "DTC WORK SUPPORT" mode.
- 5. Touch "START".
- 6. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen.

ENG SPEED	1,750 - 2,600 rpm
Vehicle speed	More than 64 km/h (40MPH)
B/FUEL SCHDL	1.0 - 1.8 msec
COOLANT TEMP/S	Less than 70°C (158°F)
Selector lever	D position with "OD" ON

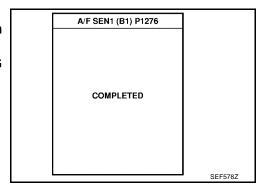
MONITOR

ENG SPEED XXX rpm

B/FUEL SCHDL XXX msec

COOLAN TEMP/S XXX 'C

VHCL SPEED SE XXX km/h


A/F SEN1 (B1) P1276

If "TESTING" is not displayed after 20 seconds, retry from step 2.

7. Following the instructions of CONSULT-II screen, set D position with "OD" OFF and release accelerator pedal fully.

		1
A/F SEN1 (B1) P1276		
TESTING		
SELECT 3RD GEAR AND THEN RELEASE ACCELERATOR PEDAL OFF		
MONITOR		
ENG SPEED XXX rpm		
B/FUEL SCHDL XXX msec		
COOLANTEMP/S XXX °C		
VHCL SPEED SE XXX km/h		
		SEF577Z

- 8. Make sure that "TESTING" changes to "COMPLETED". If "TESTING" changed to "OUT OF CONDITION", retry from step 6.
- 9. Make sure that "OK" is displayed after touching "SELF-DIAG RESULT".
 - If "NG" is displayed, go to EC-1143, "Diagnostic Procedure".

Overall Function Check

UBS00AZ7

Use this procedure to check the overall function of the A/F sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in D position with "OD" OFF.

NOTE:

Keep the accelerator pedal as steady as possible during the cruising.

3. Set D position with "OD" ON, then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

- 4. Repeat steps 2 to 3 five times.
- 5. Stop the vehicle and turn ignition switch OFF.

[QR25DE]

- 6. Wait at least 10 seconds and restart engine.
- 7. Repeat steps 2 to 3 five times.
- 8. Stop the vehicle and connect GST to the vehicle.
- Make sure that no DTC is displayed.
 If the DTC is displayed, go to <u>EC-1143, "Diagnostic Procedure"</u>.

EC

Α

С

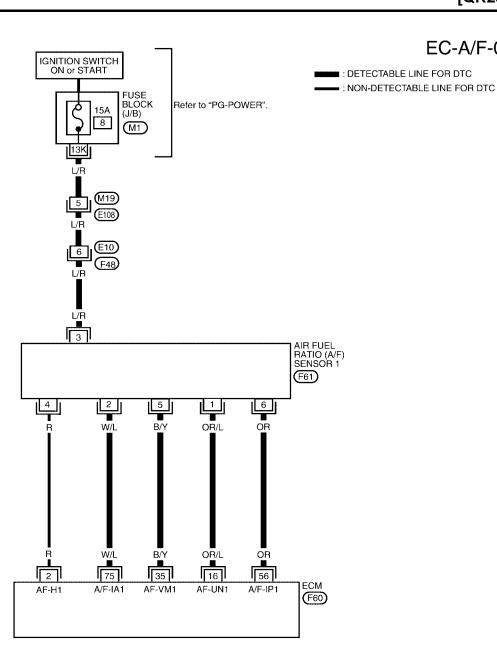
D

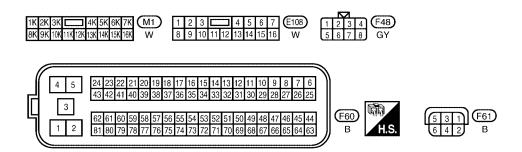
Е

F

G

Н


Κ


L

EC-A/F-01

Wiring Diagram

UBS00AZ8

BBWA0762E

Α

EC

D

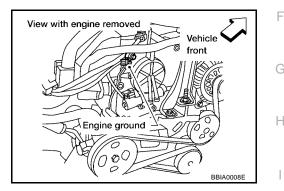
Е

M

Specification data are reference values and are measured between each terminal and ground.

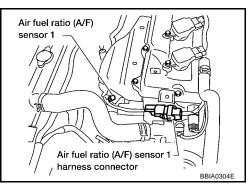
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
16	OR/L			Approximately 3.1V
35	B/Y	A/E consor 1	[Engine is running]Warm-up conditionIdle speed	Approximately 2.6V
56	OR	A/F sensor 1		2 - 3V
75	W/L		Train opens	2 - 3V

Diagnostic Procedure

UBS00AZ9


1. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

- 3. Disconnect ECM harness connector and A/F sensor 1 harness connector.
- Check harness continuity between the following terminals. Refer to Wiring Diagram.

ECM terminal	A/F sensor 1 terminal
16	1
35	5
56	6
75	2

Continuity should exist.

5. Check harness continuity between ECM terminals 16, 35, 56, 75 or A/F sensor 1 terminals 1, 2, 5, 6 and ground. Refer to Wiring Diagram.

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK >> GO TO 2

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

2. CHECK INTERMITTENT INCIDENT

Perform <u>EC-781</u>, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> Replace A/F sensor 1.

NG >> Repair or replace.

[QR25DE]

Removal and Installation AIR FUEL RATIO SENSOR

UBS00AZA

Refer to EM-108, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

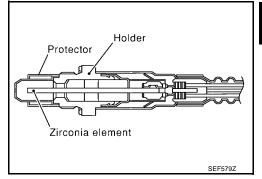
PFP:22693

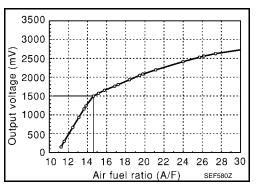
Component Description

UBS00AZB

Α

EC


Е


The A/F sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air-fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-II Reference Value in Data Monitor Mode

UBS00AZC

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V

On Board Diagnosis Logic

BS00AZD

M

To judge the malfunction of air fuel ratio (A/F) sensor 1, this diagnosis measures response time of the A/F signal computed by ECM from the air fuel ratio (A/F) sensor 1 signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and the air fuel ratio (A/F) sensor 1 temperature index. Judgment is based on whether the compensated time (the A/F sensor 1 signal cycling time index) is inordinately long or not.

DTC No.	Trouble diag- nosis name	DTC detecting condition	Possible Cause
P1278 1278	Air fuel ratio (A/F) sensor 1 circuit slow response	The response (from RICH to LEAN) of the A/F signal computed by ECM from A/F sensor 1 signal takes more than the specified time.	 Harness or connectors (The sensor circuit is open or shorted.) Air fuel ratio (A/F) sensor 1 Air fuel ratio (A/F) sensor heater 1 Fuel pressure Injectors Intake air leaks Exhaust gas leaks PCV Mass air flow sensor

DTC Confirmation Procedure

UBS00AZE

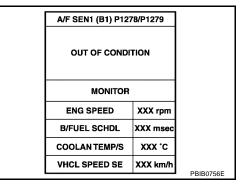
CAUTION:

Always drive vehicle at a safe speed.

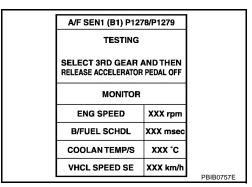
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

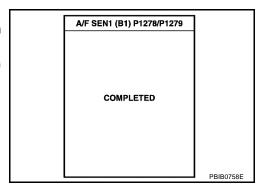
TESTING CONDITION:


Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(II) WITH CONSULT-II


- 1. Perform <u>EC-685</u>, "Idle Air Volume Learning". Make sure that "CMPLT" is displayed on CONSULT-II screen. If "INCMP" is displayed, follow the instruction for Idle Air Volume Learning.
- 2. Select "A/F SEN1 (B1) P1278/P1279" of "A/F SEN1" in "DTC WORK SUPPORT" mode.
- 3. Touch "START".
- 4. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen.

ENG SPEED	1,750 - 2,600 rpm
Vehicle speed	More than 64 km/h (40MPH)
B/FUEL SCHDL	1,0 - 8.0 msec
COOLANT TEMP/S	Less than 70°C (158°F)
Selector lever	D position with "OD" ON


If "TESTING" is not displayed after 20 seconds, retry from step 2.

 Following the instructions of CONSULT-II screen, set D position with "OD" OFF (A/T models) or 3rd position (M/T models) and release accelerator pedal fully.

- 6. Make sure that "TESTING" changes to "COMPLETED". If "TESTING" changed to "OUT OF CONDITION", retry from step 6.
- Make sure that "OK" is displayed after touching "SELF-DIAG RESULT".
 - If "NG" is displayed, go to EC-1149, "Diagnostic Procedure".

Overall Function Check

UBS00AZF

Use this procedure to check the overall function of the A/F sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Perform <u>EC-685</u>, "Idle Air Volume Learning". Make sure the result is OK. If NG, follow the instruction for Idle Air Volume Learning.
- 2. Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in D position with "OD" OFF.

NOTE:

Keep the accelerator pedal as steady as possible during the cruising.

[QR25DE]

3. Set D position with "OD" ON, then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

- 4. Repeat steps 2 to 3 five times.
- 5. Stop the vehicle and turn ignition switch OFF.
- 6. Wait at least 10 seconds and restart engine.
- 7. Repeat steps 2 to 3 five times.
- 8. Stop the vehicle and connect GST to the vehicle.
- 9. Make sure that no DTC is displayed. If the DTC is displayed, go to <u>EC-1149</u>, "<u>Diagnostic Procedure</u>" .

EC

Α

С

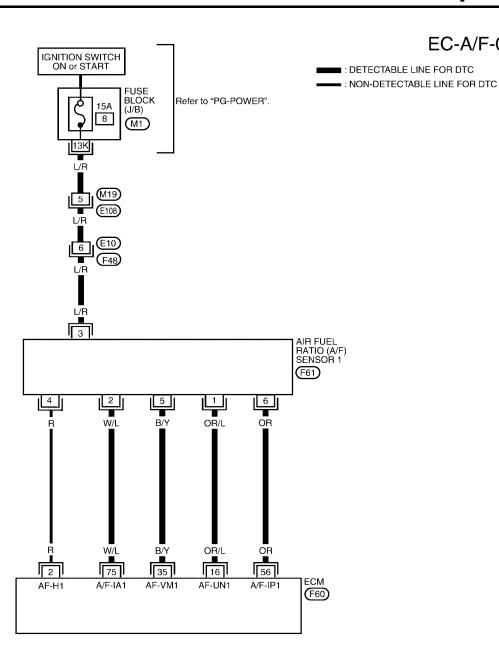
D

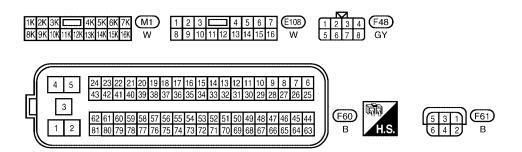
Е

F

G

Н


K


L

EC-A/F-01

Wiring Diagram

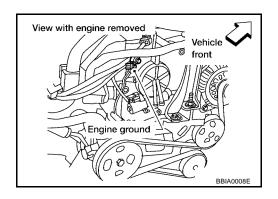
UBS00AZG

BBWA0762E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
16	OR/L			Approximately 3.1V
35	B/Y	A/F sensor 1	[Engine is running]Warm-up conditionIdle speed	Approximately 2.6V
56	OR			2 - 3V
75	W/L			2 - 3V

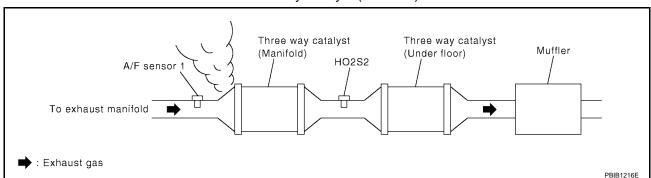
Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. RETIGHTEN AIR FUEL RATIO (A/F) SENSOR 1


Loosen and retighten the air fuel ratio (A/F) sensor 1.

Tightening torque: 40 - 60 N-m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)

>> GO TO 3.

3. CHECK EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust air leak before three way catalyst (manifold).

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

EC

Α

- D

UBS00AZH

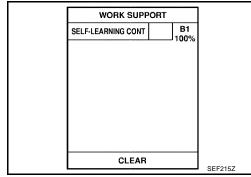
_ E

Н

4. CHECK FOR INTAKE AIR LEAK

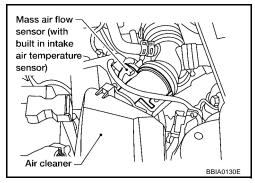
Listen for an intake air leak after the mass air flow sensor.

OK or NG


OK >> GO TO 5.

NG >> Repair or replace.

CLEAR THE SELF-LEARNING DATA

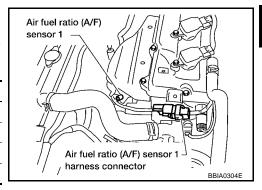

(III) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- Clear the self-learning control coefficient by touching "CLEAR" or "START".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-704, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Yes or No


Yes >> Perform trouble diagnosis for DTC P0171, P0172. Refer to EC-883, EC-894.

No >> GO TO 6.

6. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector and A/F sensor 1 harness connector.
- 3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

ECM terminal	A/F sensor 1 terminal
16	1
35	5
56	6
75	2

Continuity should exist.

Check harness continuity between ECM terminals 16, 35, 56, 75 or A/F sensor 1 terminals 1, 2, 5, 6 and ground. Refer to Wiring Diagram.

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK AIR FUEL RATIO (A/F) SENSOR 1 HEATER

Refer to EC-1033, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace A/F sensor 1.

8. CHECK MASS AIR FLOW SENSOR

Refer to EC-814, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace mass air flow sensor.

9. CHECK PCV VALVE

Refer to EC-1317, "POSITIVE CRANKCASE VENTILATION" .

OK or NG

OK >> GO TO 10.

NG >> Repair or replace PCV valve.

10. CHECK INTERMITTENT INCIDENT

Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> Replace A/F sensor 1.

NG >> Repair or replace.

Removal and Installation AIR FUEL RATIO SENSOR

Refer to EM-108, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

EC

Α

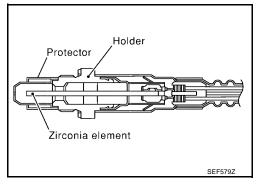
Е

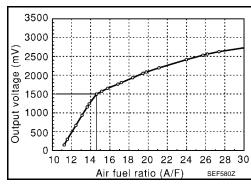
Н

PFP:22693

UBS00AZJ

Component Description


The A/F sensor 1 is a planar dual-cell limit current sensor. The sensor element of the A/F sensor 1 is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which


transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor 1 is able to indicate air-fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-II Reference Value in Data Monitor Mode

UBS00AZK

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V

On Board Diagnosis Logic

UBS00AZL

To judge the malfunction of air fuel ratio (A/F) sensor 1, this diagnosis measures response time of the A/F signals computed by ECM from the air fuel ratio (A/F) sensor 1 signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and the air fuel ratio (A/F) sensor 1 temperature index. Judgment is based on whether the compensated time (the A/F sensor 1 signal cycling time index) is inordinately long or not.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P1279 1279	Air-fuel ratio (A/F) sensor 1 circuit slow response	The response (from LEAN to RICH) of the A/F signal computed by ECM from A/F sensor 1 signal takes more than the specified time.	 Harness or connectors (The sensor circuit is open or shorted.) Air-fuel ratio (A/F) sensor 1 Air-fuel ratio (A/F) sensor heater 1 Fuel pressure Injectors Intake air leaks Exhaust gas leaks PCV Mass air flow sensor

DTC Confirmation Procedure

UBS00AZM

CAUTION:

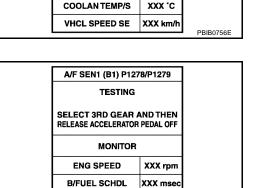
Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.


WITH CONSULT-II

- Perform EC-685, "Idle Air Volume Learning". Make sure that "CMPLT" is displayed on CONSULT-II screen. If "INCMP" is displayed, follow the instruction for Idle Air Volume Learning.
- Select "A/F SEN1 (B1) P1278/P1279" of "A/F SEN1" in "DTC WORK SUPPORT" mode.
- 3. Touch "START".
- When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen.

ENG SPEED	1,500 - 3,200 rpm
Vehicle speed	70 - 120 km/h (43 - 75 MPH)
B/FUEL SCHDL	1.9 - 4.0 msec
COOLANT TEMP/S	Less than 70°C (158°F)
Selector lever	D position with "OD" ON

If "TESTING" is not displayed after 20 seconds, retry from step 2.

Following the instructions of CONSULT-II screen, set D position with "OD" OFF and release accelerator pedal fully.

A/F SEN1 (B1) P1278/P1279

OUT OF CONDITION

MONITOR

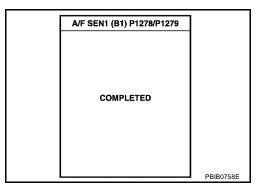
XXX rpm

XXX mse

XXX °C

XXX km/h

ENG SPEED


B/FUEL SCHDL

COOLAN TEMP/S

VHCL SPEED SE

- 6. Make sure that "TESTING" changes to "COMPLETED". If "TESTING" changed to "OUT OF CONDITION", retry from step 6.
- 7. Make sure that "OK" is displayed after touching "SELF-DIAG RESULT".

If "NG" is displayed, go to EC-1156, "Diagnostic Procedure".

Overall Function Check

PBIB0757E

Use this procedure to check the overall function of the A/F sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- Perform <u>EC-685</u>, "Idle Air Volume Learning". Make sure the result is OK. If NG, follow the instruction for Idle Air Volume Learning.
- 2. Drive the vehicle at a speed of 90 km/h (56 MPH) for a few minutes in D position with "OD" OFF.

NOTE:

Keep the accelerator pedal as steady as possible during the cruising.

EC

Н

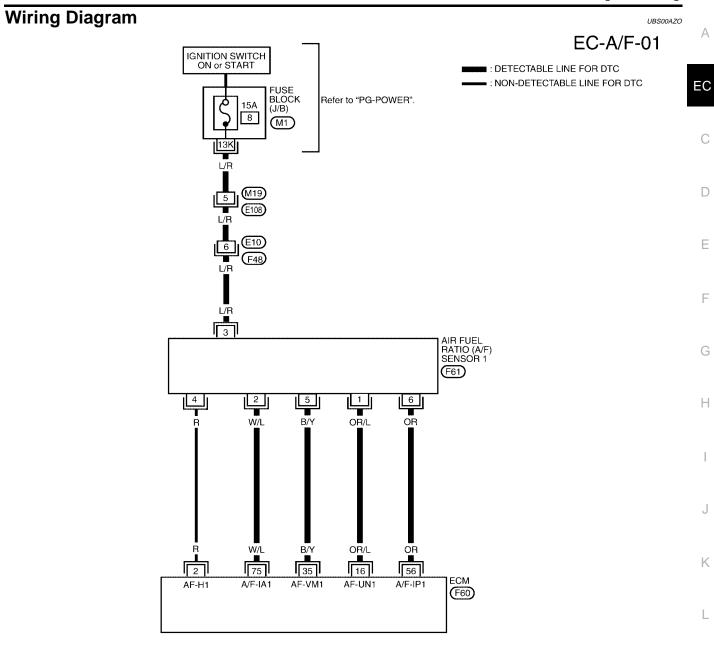
Е

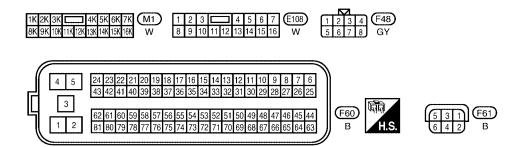
M

DTC P1279 A/F SENSOR 1

[QR25DE]

3. Set D position with "OD" ON, then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).


NOTE:


Never apply brake during releasing the accelerator pedal.

- 4. Repeat steps 2 to 3 five times.
- 5. Stop the vehicle and turn ignition switch OFF.
- 6. Wait at least 10 seconds and restart engine.
- 7. Repeat steps 2 to 3 five times.
- 8. Stop the vehicle and connect GST to the vehicle.
- 9. Make sure that no DTC is displayed. If the DTC is displayed, go to <u>EC-1156, "Diagnostic Procedure"</u>.

DTC P1279 A/F SENSOR 1

[QR25DE]

BBWA0762E

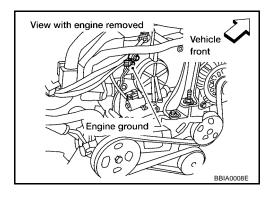
M

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
16	OR/L			Approximately 3.1V
35	B/Y	A/E concer 1	[Engine is running]	Approximately 2.6V
56	OR	A/F sensor 1	Warm-up condition Idle speed	2 - 3V
75	W/L			2 - 3V


Diagnostic Procedure

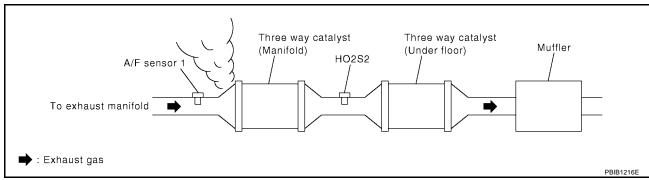
UBS00AZP

1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. RETIGHTEN AIR FUEL RATIO (A/F) SENSOR 1


Loosen and retighten the air fuel ratio (A/F) sensor 1.

Tightening torque: 40 - 60 N-m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)

>> GO TO 3.

3. CHECK EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust gas leak before three way catalyst (manifold).

OK or NG

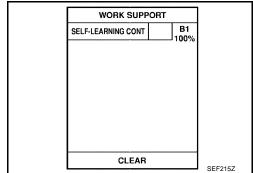
OK >> GO TO 4.

NG >> Repair or replace.

4. CHECK FOR INTAKE AIR LEAK

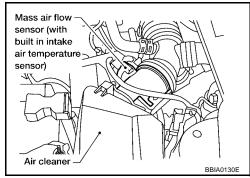
Listen for an intake air leak after the mass air flow sensor.

OK or NG


OK >> GO TO 5.

NG >> Repair or replace.

5. CLEAR THE SELF-LEARNING DATA


(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR" or "START".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

⊗ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-704, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Yes or No

Yes >> Perform trouble diagnosis for DTC P0171, P0172. Refer to EC-883, EC-894.

No >> GO TO 6.

EC-1157

EC

С

D

F

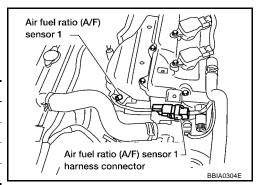
Е

G

Н

J

K


_

M

6. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector and A/F sensor 1 harness connector.
- 3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

ECM terminal	A/F sensor 1 terminal
16	1
35	5
56	6
75	2

Continuity should exist.

4. Check harness continuity between ECM terminals 16, 35, 56, 75 or A/F sensor 1 terminals 1, 2, 5, 6 and ground. Refer to Wiring Diagram.

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK AIR FUEL RATIO (A/F) SENSOR 1 HEATER

Refer to EC-1033, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace A/F sensor 1.

8. CHECK MASS AIR FLOW SENSOR

Refer to EC-814, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace mass air flow sensor.

9. CHECK PCV VALVE

Refer to EC-1317, "POSITIVE CRANKCASE VENTILATION" .

OK or NG

OK >> GO TO 10.

NG >> Repair or replace PCV valve.

10. CHECK INTERMITTENT INCIDENT

Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> Replace A/F sensor 1.

NG >> Repair or replace.

Removal and Installation AIR FUEL RATIO SENSOR

Refer to EM-108, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

UBS00AZQ

DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

PFP:14920

Description SYSTEM DESCRIPTION

UBS00AZR

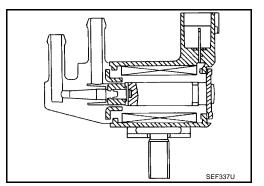
D

Е

Н

K

M


Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*1		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Battery	Battery voltage*1	E) (A D	
Throttle position sensor	Throttle position	EVAP can- ister purge	EVAP canister purge volume
Accelerator pedal position sensor	Accelerator pedal position	flow con-	control solenoid valve
Heated oxygen sensor 1*3		trol	
Air fuel ratio (A/F) sensor 1*4	Density of oxygen in exhaust gas (Mixture ratio feedback signal)		
Fuel tank temperature sensor	Fuel temperature in fuel tank		
Vehicle speed sensor	Vehicle speed*2		

^{*1:} ECM determines the start signal status by the signals of engine speed and battery voltage.

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/ OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

CONSULT-II Reference Value in Data Monitor Mode

UBS00AZS

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	0%
PURG VOL C/V	 Air conditioner switch: OFF Shift lever: N (A/T), Neutral (M/T) No-load 	2,000 rpm	_

EC-1159

^{*2:} This signal is sent to the ECM though CAN communication line.

^{*3:} A/T models ULEV and M/T models.

^{*4:} A/T models except ULEV.

On Board Diagnosis Logic

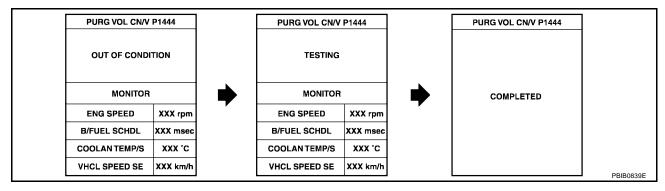
UBS00AZT

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1444 1444	EVAP canister purge volume control solenoid valve	The canister purge flow is detected during the specified driving conditions, even when EVAP canister purge volume control solenoid valve is completely closed.	 EVAP control system pressure sensor EVAP canister purge volume control solenoid valve (The valve is stuck open.) EVAP canister vent control valve EVAP canister Hoses (Hoses are connected incorrectly or clogged.)

DTC Confirmation Procedure

UBS00AZU

NOTE:

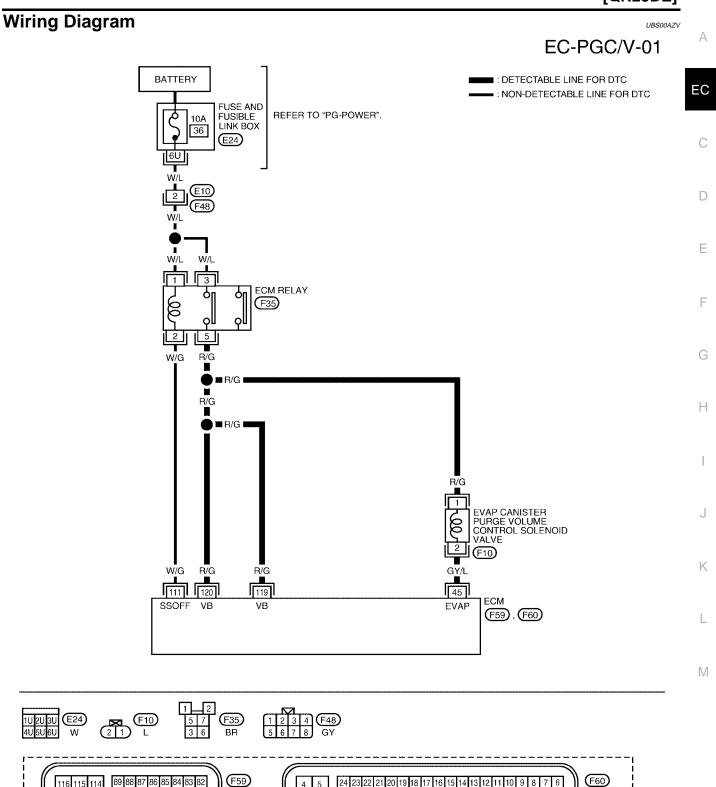

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- Select "PURG VOL CN/V P1444" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 5. Touch "START".


6. Start engine and let it idle until "TESTING" on CONSULT-II changes to "COMPLETED". (It will take approximately 10 seconds.)

If "TESTING" is not displayed after 5 minutes, retry from step 2.

7. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-1163, "Diagnostic Procedure".

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and let it idle for at least 20 seconds.
- 4. Select MODE 7 with GST.
- 5. If 1st trip DTC is detected, go to EC-1163, "Diagnostic Procedure".

BBWA0739E

В

3

В

励

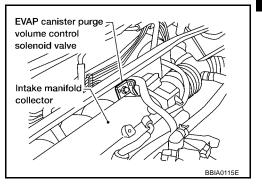
118 117

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
45	GV/I EVAP canister purge vol-		[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)★ → 10.0V/Div 50 ms/Div PBIB0050E
		ume control solenoid valve	 [Engine is running] Engine speed is about 2,000 rpm (More than 100 seconds after starting engine) 	Approximately 10V★ → 10.0 V/Div 50 ms/Div T PBIB0520E
111	111 W/G ECM relay (Self shut-		[Engine is running] [Ignition switch: OFF] • For 10 seconds after turning ignition switch OFF	0 - 1.0V
			[Ignition switch: OFF]10 seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

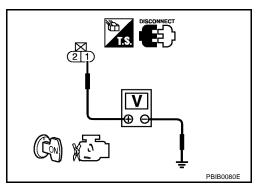

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

JBS00AZVI

1. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIR-CUIT

- 1. Turn ignition switch OFF.
- Disconnect EVAP canister purge volume control solenoid valve harness connector.
- 3. Turn ignition switch ON.



 Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and engine ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM relay
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM
 - >> Repair harness or connectors.

3. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIR-CUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 45 and EVAP canister purge volume control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

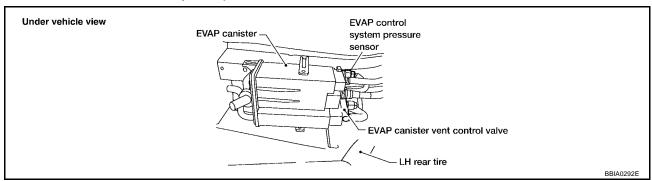
Α

EC

F

Е

G


Н

ı

<

4. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

Disconnect EVAP control system pressure sensor harness connector.

Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 5.

NG >> Replace EVAP control system pressure sensor.

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-981, "Component Inspection".

OK or NG

OK (With CONSULT-II)>>GO TO 6.

OK (Without CONSULT-II)>>GO TO 7.

NG >> Replace EVAP control system pressure sensor.

6. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

With CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Reconnect harness connectors disconnected.
- 3. Start engine.
- 4. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

	1 701111	,,	
	PURG VOL CONT/V	XXX %	
	MONITOR		
	ENG SPEED	XXX rpm	
	A/F ALPHA-B1	XXX %	
			PBIB1786E
-			

ACTIVE TEST

7. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-988, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace EVAP canister purge volume control solenoid valve.

8. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 9.

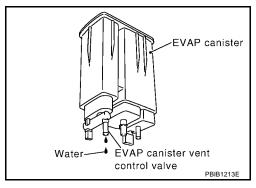
NG >> Clean the rubber tube using an air blower.

9. CHECK EVAP CANISTER VENT CONTROL VALVE-II

Refer to EC-974, "Component Inspection" .

OK or NG

OK >> GO TO 10.


NG >> Replace EVAP canister vent control valve.

10. CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

YES or NO

YES >> GO TO 11. NO >> GO TO 13.

11. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.9 kg (4.2 lb).

OK or NG

OK >> GO TO 13. NG >> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

13. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

EC

D

Е

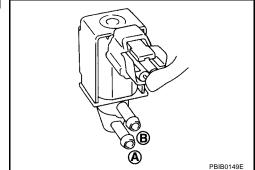
G

Н

J

K

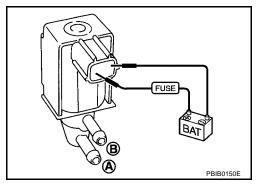
N


Component Inspection EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

UBS00AZX

(P) With CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.


Condition (PURG VOL CONT/V value)	Air passage continuity between A and B
100.0%	Yes
0.0%	No

⊗ Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Removal and Installation EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

UBS00BJY

Refer to EM-103, "INTAKE MANIFOLD".

[QR25DE]

DTC P1446 EVAP CANISTER VENT CONTROL VALVE

PFP:14935

UBS00AZY

Α

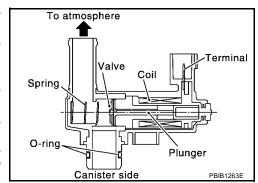
EC

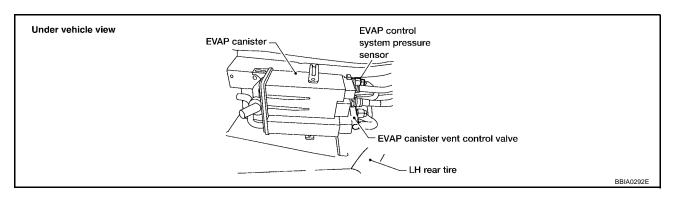
D

Е

Н

Component Description


ter and is used to seal the canister vent.


The EVAP canister vent control valve is located on the EVAP canis-

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System" diagnoses.

CONSULT-II Reference Value in Data Monitor Mode

UBS00AZZ

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

On Board Diagnosis Logic

S00B00

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1446 1446	EVAP canister vent control valve close	EVAP canister vent control valve remains closed under specified driving conditions.	 EVAP canister vent control valve EVAP control system pressure sensor and the circuit Blocked rubber tube to EVAP canister vent control valve EVAP canister is saturated with water

DTC Confirmation Procedure

UBS00B01

M

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

EC-1167

DTC P1446 EVAP CANISTER VENT CONTROL VALVE

[QR25DE]

SEF058Y

DATA MONITOR

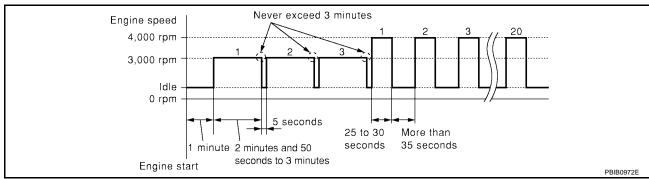
NO DTC

XXX rpm

MONITOR

ENG SPEED

(P) WITH CONSULT-II


- 1. Turn ignition switch ON and wait at least 5 seconds.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 4. Start engine and let it idle for at least 1 minute.
- 5. Repeat next procedures 3 times.
- Increase the engine speed up to 3,000 to 3,500 rpm and keep it for 2 minutes and 50 seconds to 3 minutes.

Never exceed 3 minutes.

- b. Fully released accelerator pedal and keep engine idle for about 5 seconds.
- 6. If 1st trip DTC is detected, go to EC-1078, "Diagnostic Procedure".

If 1st trip DTC is not detected, go to the next step.

- 7. Repeat next procedure 20 times.
- a. Quickly increase the engine speed up to 4,000 to 4,500 rpm or more and keep it for 25 to 30 seconds.
- b. Fully released accelerator pedal and keep engine idle for at least 35 seconds.

8. If 1st trip DTC is detected, go to <u>EC-1078, "Diagnostic Procedure".</u>

WITH GST

Follow the procedure "WITH CONSULT-II" above.

[QR25DE] **Wiring Diagram** Α EC-VENT/V-01 ■: DETECTABLE LINE FOR DTC EC = : NON-DETECTABLE LINE FOR DTC **BATTERY** FUSE AND FUSIBLE LINK BOX C Refer to "PG-POWER". 10A E22), E24 36 34 <u>6U</u> 38 D R/B **E10** 3 Е (F48) R/B W/L ı F W/L R/B W/L 3 6 ECM RELAY φſ (F35) (M59) G/W 5 (M4) B₁ Н R/G W/G G/W G/W EVAP CANISTER VENT CONTROL VALVE **B35** L/Y
15
L/Y M₁₆ M59 K (F27) W/G R/G R/G L/Y 117 120 111 119 ECM SSOFF VΒ (F59) M F35 BR (E22) **E24** 18 (F27), (B1) W W

BBWA0740E

(F59)

116 115 114

121 120 119

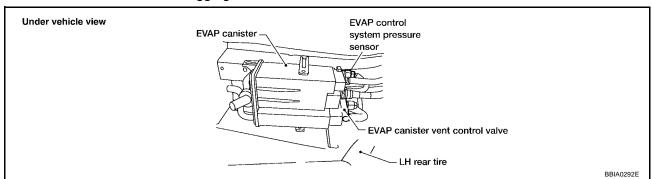
DTC P1446 EVAP CANISTER VENT CONTROL VALVE

[QR25DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
111	W/G	ECM relay (Self shut-off)	 [Engine is running] [Ignition switch: OFF] For 10 seconds after turning ignition switch OFF [Ignition switch: OFF] 10 seconds passed after turning ignition switch OFF 	0 - 1.0V BATTERY VOLTAGE (11 - 14V)
117	L/Y	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS00B03

1. CHECK RUBBER TUBE

- 1. Turn ignition switch OFF.
- 2. Disconnect rubber tube connected to EVAP canister vent control valve.
- 3. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 2.

NG >> Clean rubber tube using an air blower.

2. CHECK EVAP CANISTER VENT CONTROL VALVE-I

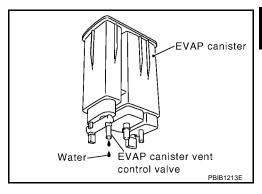
Refer to EC-1080, "Component Inspection".

OK or NG

OK >> GO TO 3.

NG >> Replace EVAP canister vent control valve.

DTC P1446 EVAP CANISTER VENT CONTROL VALVE


[QR25DE]

3. CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

Yes or No

>> GO TO 4. Yes No >> GO TO 6.

4. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

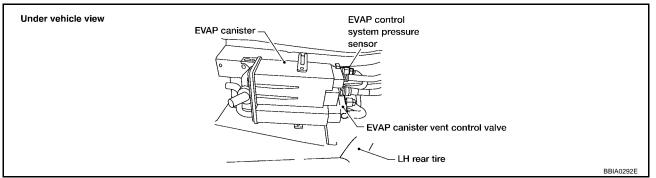
The weight should be less than 1.9 kg (4.2 lb).

OK or NG

OK >> GO TO 6.

NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART


Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection

>> Repair hose or replace EVAP canister.

6. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

Disconnect EVAP control system pressure sensor harness connector.

Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 7.

NG >> Replace EVAP control system pressure sensor. EC

D

Е

UBS00B04

7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-988, "Component Inspection".

OK or NG

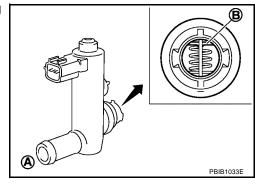
OK >> GO TO 8.

NG >> Replace EVAP control system pressure sensor.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection EVAP CANISTER VENT CONTROL VALVE

(P) With CONSULT-II

- 1. Remove EVAP canister vent control valve from EVAP canister.
- Check portion **B** of EVAP canister vent control valve for being rusted

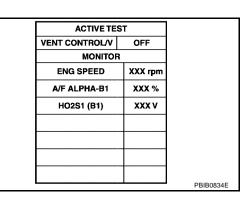
If NG, replace EVAP canister vent control valve. If OK, go to next step.

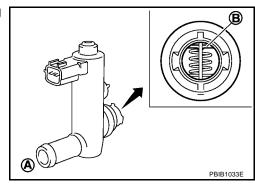
- 3. Reconnect harness connectors disconnected.
- 4. Turn ignition switch ON.

- 5. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 6. Check air passage continuity and operation delay time.

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

Operation takes less than 1 second. Make sure new O-ring is installed properly.

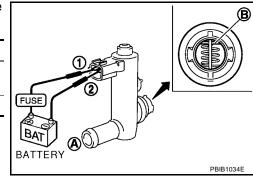

If NG, replace EVAP canister vent control valve.


If OK, go to next step.

- 7. Clean the air passage (Portion **A** to **B**) of EVAP canister vent control valve using an air blower.
- 8. Perform step 5 again.

⋈ Without CONSULT-II

- 1. Remove EVAP canister vent control valve from EVAP canister.
- Check portion **B** of EVAP canister vent control valve for being rusted.



DTC P1446 EVAP CANISTER VENT CONTROL VALVE

[QR25DE]

3. Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

Operation takes less than 1 second.

Make sure new O-ring is installed properly.

If NG, replace EVAP canister vent control valve.

If OK, go to next step.

- 4. Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower.
- 5. Perform step 3 again.

EC

Α

С

D

Ε

F

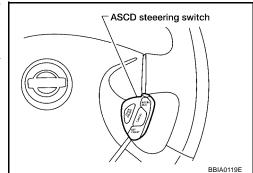
Н

K

L

M

DTC P1564 ASCD STEERING SWITCH


Component Description

PFP:25551

UBS00B0A

ASCD steering switch has variant values of electrical resistance for each button. ECM reads voltage variation of switch, and determines which button is operated.

Refer to <u>EC-1319</u>, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for the ASCD function.

CONSULT-II Reference Value in Data Monitor Mode

UBSOOBOB

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
MAIN SW	Ignition switch: ON	CRUISE switch: Pressed	ON
WAIN SW		CRUISE switch: Released	OFF
CANCEL SW	a Ignition quitable ON	CRUISE switch: Pressed	ON
CANCEL SW	Ignition switch: ON	CRUISE switch: Released	OFF
DESUME (A SO SW)	- Impition quitable ONI	ACCEL/RES switch: Pressed	ON
RESUME/ACC SW	Ignition switch: ON	ACCEL/RES switch: Released	OFF
SET SW	1 32 34 01	COAST/SET switch: Pressed	ON
SELSW	Ignition switch: ON	COAST/SET switch: Released	OFF

On Board Diagnosis Logic

UBS00B0C

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

If DTC P1564 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to <u>EC-1025</u>.

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P1564 1564	ASCD steering switch	 An excessively high voltage signal from the ASCD steering switch is sent to ECM. ECM detects that input signal from the ASCD steering switch is out of the specified range. ECM detects that the ASCD steering switch is stuck ON. 	 Harness or connectors (The switch circuit is open or shorted.) ASCD steering switch ECM

DTC Confirmation Procedure

UBS00B0D

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 10 seconds.
- 4. Press "CRUISE" switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 5. Press "ACCEL/RES" switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 6. Press "COAST/SET" switch for at least 10 seconds, then release it and wait at least 10 seconds.

DTC P1564 ASCD STEERING SWITCH

[QR25DE]

- 7. Press "CANCEL" switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 8. If trip DTC is detected, go to EC-1178, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

С

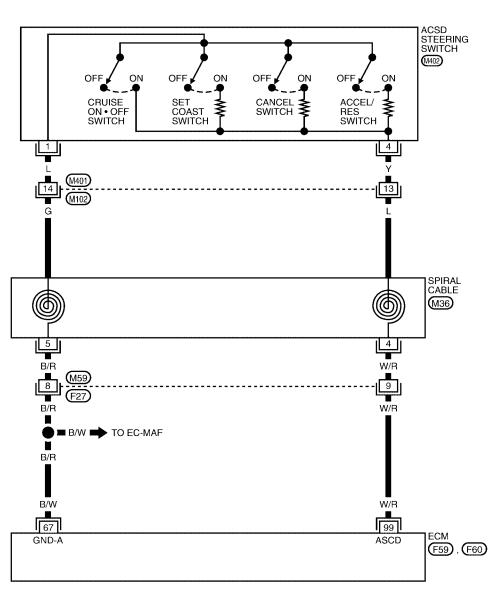
D

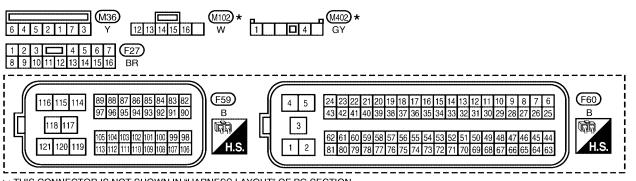
Е

F

G

Н


L


M

Wiring Diagram

EC-ASC/SW-01

■: DETECTABLE LINE FOR DTC ■ : NON-DETECTABLE LINE FOR DTC

DTC P1564 ASCD STEERING SWITCH

[QR25DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
67	B/W	Sensor's ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
99 W/R		W/R ASCD steering switch	[Ignition switch: ON] • ASCD steering switch is OFF.	Approximately 4V
			[Ignition switch: ON] • CRUISE switch is ON.	Approximately 0V
	W/R A		[Ignition switch: ON] • CANCEL switch is ON.	Approximately 1V
			[Ignition switch: ON] • COAST/SET switch is ON.	Approximately 2V
			[Ignition switch: ON] • ACCEL/RESUME switch is ON.	Approximately 3V

Α

EC

С

 D

Е

G

Н

|

ı

M

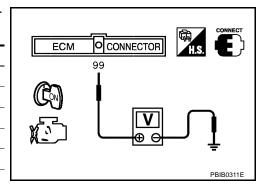
Diagnostic Procedure

1. CHECK ASCD STEERING SWITCH CIRCUIT

UBS00B0F

(II) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "MAIN SW", "RESUME/ACC SW", "SET SW" and "CANCEL SW" in "DATA MONITOR" mode with CONSULT-II.
- 3. Check each item indication under the following conditions.


Switch	Monitor item	Condition	Indication
CRUISE	MAIN SW	Pressed	ON
CITOIOL	WAIN OW	Released	OFF
COAST/SET	SET SW	Pressed	ON
COAST/SET	SET SW	Released	OFF
ACCEL/RES	RESUME/ACC SW	Pressed	ON
ACCLL/NLS	RESONE/ACC SW	Released	OFF
CANCEL	CANCEL SW	Pressed	ON
CANCLL	CANCLL SW	Released	OFF

MONITOR NO DTC MAIN SW OFF CANCEL SW OFF RESUME/ACC SW OFF SET SW OFF	DATA MONIT	TOR
CANCEL SW OFF RESUME/ACC SW OFF	MONITOR	NO DTC
RESUME/ACC SW OFF	MAIN SW	OFF
	CANCEL SW	OFF
SET SW OFF	RESUME/ACC SW	OFF
	SET SW	OFF

Without CONSULT-II

- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminal 99 and ground with pressing each button.

Switch	Condition	Voltage [V]
CRUISE SW	Pressed	Approx. 0
CRUISE SW	Released	Approx. 4
COAST/SET SW	Pressed	Approx. 2
COAS1/3L1 3W	Released	Approx. 4
ACCEL/RES SW	Pressed	Approx. 3
ACCLL/RES SW	Released	Approx. 4
CANCEL SW	Pressed	Approx. 1
OANOLL OW	Released	Approx. 4

OK or NG

OK >> GO TO 7.

NG >> GO TO 2.

[QR25DE]

$2.\,$ check ascd steering switch ground circuit for open and short

- Turn ignition switch OFF.
- 2. Disconnect ASCD steering switch harness connector.
- 3. Disconnect ECM harness connector.
- 4. Disconnect TCM harness connector.
- 5. Check harness continuity between switch terminal 1 and ECM terminal 67, TCM terminal 42. Refer to Wiring Diagram.

Continuity should exist.

6. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

Check the following.

- Harness connectors M401, M102
- Harness connectors M59, F27
- Spiral cable
- Harness for open or short between ECM and ASCD steering switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK ASCD STEERING SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal 99 and ASCD steering switch terminal 4. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M401, M102
- Harness connectors M59, F27
- Spiral cable
- Harness for open or short between ECM and ASCD steering switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK ASCD STEERING SWITCH

Refer to EC-1180, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace ASCD steering switch. ASCD steeering switch BBIA0119E

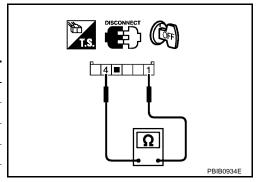
EC

Е

Н

7. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .


>> INSPECTION END

Component Inspection ASCD STEERING SWITCH

UBS00B0G

- 1. Disconnect ASCD steering switch.
- 2. Check continuity between ASCD steering switch terminals 1 and 4 with pushing each switch.

Switch	Condition	Resistance [Ω]
CRUISE SW	Pressed	Approx. 0
CRUISE SW	Released	Approx. 4,000
COAST/SET SW	Pressed	Approx. 660
COAST/SET SW	Released	Approx. 4,000
ACCEL/RES SW	Pressed	Approx. 1,480
ACCEL/RES SW	Released	Approx. 4,000
CANCEL SW	Pressed	Approx. 250
CANCEL 3W	Released	Approx. 4,000

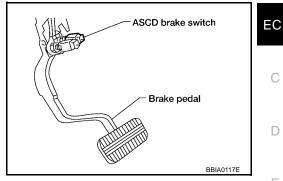
[QR25DE]

DTC P1572 ASCD BRAKE SWITCH

PFP:25320

Component Description

UBS00B0H


Α

D

Е

Н

When the brake pedal is depressed, ASCD brake switch is turned OFF and stop lamp switch is turned ON. ECM detects the state of the brake pedal by this input of two kinds (ON/OFF signal). Refer to for the ASCD function EC-1319, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)".

CONSULT-II Reference Value in Data Monitor Mode

UBS00B0I

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW1	Ignition switch: ON	Clutch pedal (M/T) and brake pedal: Fully released	ON
BRAKE SWI	• Ignition switch. On	Clutch pedal (M/T) and brake pedal: Slightly depressed	OFF
		Brake pedal: Fully released	OFF
BRAKE SW2	Ignition switch: ON	Brake pedal: Slightly depressed	ON

On Board Diagnosis Logic

UBS00B0J

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

If DTC P1572 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to EC-1025

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause	k
	ASCD brake switch	When the vehicle speed is above 30 km/h (19 MPH), ON signals from the stop lamp switch and the ASCD brake switch are sent to the ECM at the same time.	Harness or connectors (The stop lamp switch circuit is open or shorted.)	L
			Harness or connectors (The ASCD brake switch circuit is open or shorted.)	M
P1572			 Harness or connectors (The ASCD clutch switch circuit is open or shorted.) 	
1572			Stop lamp switch	
			ASCD brake switch	
			ASCD clutch switch	
			 Incorrect stop lamp switch installation 	
			Incorrect ASCD brake switch installation	
			Incorrect ASCD clutch switch installation	
			• ECM	

DTC Confirmation Procedure

UBS00B0K

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Steps 3 and 4 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(P) WITH CONSULT-II

- 1. Start engine.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Drive the vehicle for at least 5 consecutive seconds under the following condition.

VHCL SPEED SE	More than 30 km/h (19 MPH)
Selector lever	Suitable position

If DTC is detected, go to EC-1185, "Diagnostic Procedure".

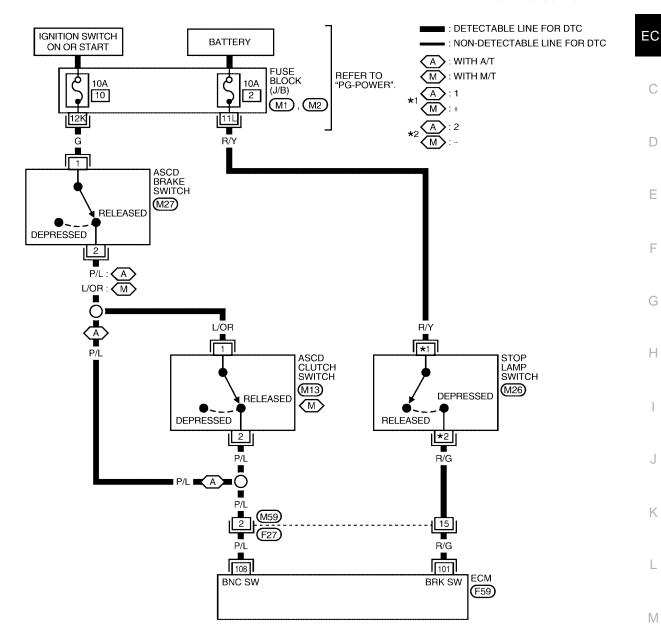
If DTC is not detected, go to the following step.

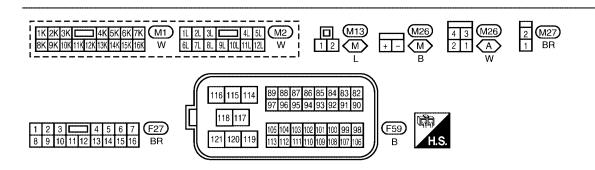
4. Drive the vehicle for at least 5 consecutive seconds under the following condition.

VHCL SPEED SE	More than 30 km/h (19 MPH)
Selector lever	Suitable position
Driving location	Depress the brake pedal for more than five seconds so as not to come off from the above-mentioned condition.

5. If DTC is detected, go to EC-1185, "Diagnostic Procedure".

WITH GST


Follow the procedure "WITH CONSULT-II" above.


Wiring Diagram

._ _

Α

EC-ASC/BS-01

BBWA0702E

DTC P1572 ASCD BRAKE SWITCH

[QR25DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101 R/G Stop lamp switch		Stop lamp switch	[Ignition switch: ON] • Brake pedal fully released	Approximately 0V
Stop lamp switch	[Ignition switch: ON] • Brake pedal depressed	BATTERY VOLTAGE (11 - 14V)		
108 P/L ASCD brake switch	[Ignition switch: ON]Brake pedal is depressedClutch pedal is depressed (M/T)	Approximately 0V		
	 [Ignition switch: ON] Brake pedal is fully released Clutch pedal is fully released (M/T) 	BATTERY VOLTAGE (11 - 14V)		

DTC P1572 ASCD BRAKE SWITCH

ON

[QR25DE]

UBS00B0M

Diagnostic Procedure

1. CHECK OVERALL FUNCTION-I

(II) With CONSULT-II

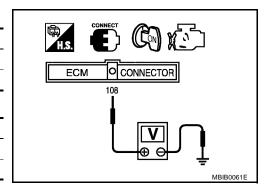
- 1. Turn ignition switch ON.
- 2. Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-II.
- 3. Check "BRAKE SW1" indication under the following conditions.

A/T models

CONDITION	INDICATION
When brake pedal is depress	OFF
When brake pedal is fully released	ON
M/T models	
CONDITION	INDICATION
When clutch pedal and/or brake pedal is depressed	OFF

DATA MONITOR		
MONITOR	NO DTC	
BRAKE SW1	OFF	
		SEC011D

(X) Without CONSULT-II


1. Turn ignition switch ON.

When clutch pedal and brake pedal are fully released

2. Check voltage between ECM terminal 108 and ground under the following conditions.

A/T models

CONDITION	VOLTAGE
When brake pedal is depress	Approximately 0V
When brake pedal is fully released	Battery voltage
M/T models	
CONDITION	VOLTAGE
When clutch pedal and/or brake pedal is depressed	Approximately 0V
When clutch pedal and brake pedal are fully released	Battery voltage

OK or NG

OK >> GO TO 2.

NG (M/T models) >>GO TO 3.

NG (A/T models) >>GO TO 4.

EC

Α

 \circ

D

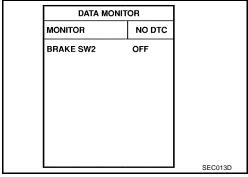
Е

Н

Н

J

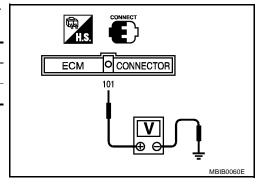
K


M

2. CHECK OVERALL FUNCTION-II

(P) With CONSULT-II

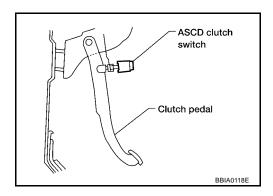
Check "BRAKE SW2" indication in "DATA MONITOR" mode.


CONDITION	INDICATION
When brake pedal is released	OFF
When brake pedal is depressed	ON

W Without CONSULT-II

Check voltage between ECM terminal 101 and ground under the following conditions.

CONDITION	VOLTAGE
When brake pedal is released	Approximately 0V
When brake pedal is depressed	Battery voltage

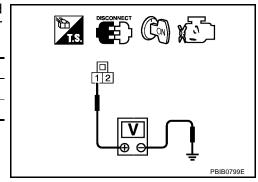


OK or NG

OK >> GO TO 18. NG >> GO TO 13.

3. CHECK ASCD CLUTCH SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD clutch switch harness connector.
- 3. Turn ignition switch ON.

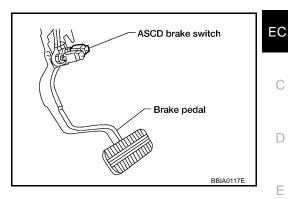


4. Check voltage between ASCD clutch switch terminal 1 and ground under the following conditions with CONSULT-II or tester.

CONDITION	VOLTAGE
When brake pedal is released	Battery voltage
When brake pedal is depressed	Approx. 0V

OK or NG

OK >> GO TO 10. NG >> GO TO 4.

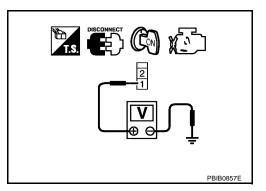

Α

Е

Н

4. CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch harness connector.
- Turn ignition switch ON.



4. Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK (M/T models)>>GO TO 6. OK (A/T models)>>GO TO 7. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector M1
- 10A fuse
- Harness for open or short between ASCD brake switch and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Check harness continuity between ASCD brake switch terminal 2 and ASCD clutch switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

$7.\,$ CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 108 and ASCD brake switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground or short to power.

OK or NG

```
OK >> GO TO 9.
NG >> GO TO 8.
```

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness for open or short between ECM and ASCD brake switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK ASCD BRAKE SWITCH

Refer to EC-1190, "Component Inspection".

OK or NG

```
OK >> GO TO 18.
```

NG >> Replace ASCD brake switch.

10. CHECK ASCD CLUTCH SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 108 and ASCD clutch switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground or short to power.

OK or NG

```
OK >> GO TO 12.
NG >> GO TO 11.
```

11. DETECT MALFUNCTIONING PART

Check the following.

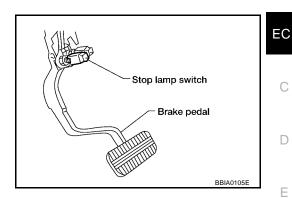
- Harness connectors M59, F27
- Harness for open or short between ECM and ASCD clutch switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

12. CHECK ASCD CLUTCH SWITCH

Refer to EC-1190, "Component Inspection".

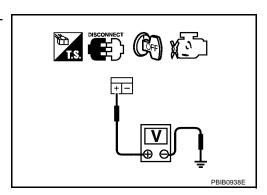
OK or NG

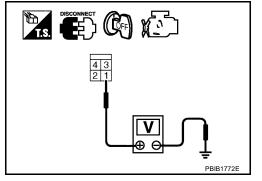
```
OK >> GO TO 18.
```


NG >> Replace ASCD clutch switch.

Н

M


13. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT


- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch harness connector.

3. Check voltage between stop lamp switch terminal + (M/T models) or 1 (A/T models) and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 15. NG >> GO TO 14.

14. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector M2
- 10A fuse
- Harness for open or short between stop lamp switch and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC-1189

15. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 101 and stop lamp switch terminal (M/T models) or 2 (A/T models).

Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 17. NG >> GO TO 16.

16. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness for open or short between ECM and stop lamp switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

17. CHECK STOP LAMP SWITCH

Refer to EC-1190, "Component Inspection".

OK or NG

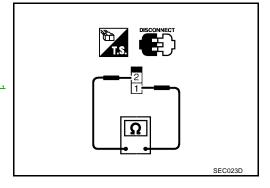
OK >> GO TO 18.

NG >> Replace stop lamp switch.

18. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection ASCD BRAKE SWITCH

UBS00B0N

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch harness connector.
- 3. Check harness continuity between ASCD brake switch terminals 1 and 2 under the following conditions.

Condition	Continuity
When brake pedal is fully released.	Should exist.
When brake pedal is depressed.	Should not exist.

If NG, adjust ASCD brake switch installation, refer to <u>BR-11</u>, <u>"BRAKE PEDAL AND BRACKET"</u>, and perform step 3 again.

ASCD CLUTCH SWITCH (FOR M/T MODELS)

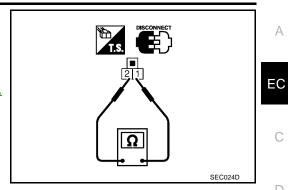
- Turn ignition switch OFF.
- 2. Disconnect ASCD clutch switch harness connector.
- 3. Check harness continuity between ASCD clutch switch terminals 1 and 2 under the following conditions.

DTC P1572 ASCD BRAKE SWITCH

[QR25DE]

Α

C

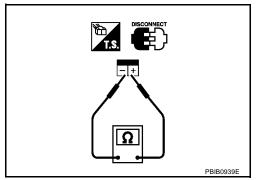

D

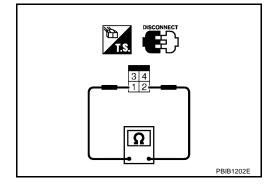
Е

Н

Condition	Continuity
When clutch pedal is fully released.	Should exist.
When clutch pedal is depressed.	Should not exist.

If NG, adjust ASCD clutch switch installation, refer to CL-23, "CLUTCH SYSTEM", and perform step 3 again.




STOP LAMP SWITCH

- 1. Turn ignition switch OFF.
- Disconnect stop lamp switch harness connector.
- Check harness continuity between stop lamp switch terminals 1 and 2 (A/T models), + and (M/T models) 3. under the following conditions.

Condition	Continuity
When brake pedal is fully released.	Should not exist.
When brake pedal is depressed.	Should exist.

If NG, adjust stop lamp switch installation, refer to BR-11, "BRAKE PEDAL AND BRACKET", and perform step 3 again.

[QR25DE]

DTC P1574 ASCD VEHICLE SPEED SENSOR

PFP:31036

Component Description

UBSOOBOO

The ECM receives two vehicle speed sensor signals via CAN communication line. One is sent from "unified meter and A/C amp." and the other is from TCM (Transmission control module). The ECM uses these signals for ASCD control. Refer to EC-1319, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for ASCD functions.

On Board Diagnosis Logic

UBS00B0P

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

- If DTC P1574 is displayed with DTC U1000, U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-789</u>, "<u>DTC U1000</u>, <u>U1001 CAN COMMUNICATION LINE</u>".
- If DTC P1574 is displayed with DTC P0500, first perform the trouble diagnosis for DTC P0500.
 Refer to <u>EC-1014</u>, "DTC P0500 VSS"
- If DTC P1574 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605.
 Refer to <u>EC-1025</u>, "DTC P0605 ECM"

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P1574 1574	ASCD vehicle speed sensor	ECM detects a difference between two vehicle speed signals is out of the specified range.	 Harness or connectors (The CAN communication line is open or shorted.) Unified meter and A/C amp. Vehicle speed sensor TCM ECM

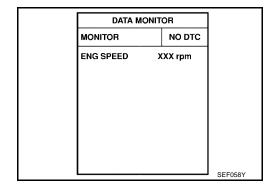
DTC Confirmation Procedure

UBS00B0Q

CAUTION:

Always drive vehicle at a safe speed.

NOTE


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Step 3 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(P) WITH CONSULT-II

- 1. Start engine.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Drive the vehicle at more than 30 km/h (19 MPH).
- 4. If DTC is detected, go to EC-1193, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P1574 ASCD VEHICLE SPEED SENSOR

[QR25DE]

	QR25DE]	
Diagnostic Procedure 1. CHECK DTC WITH TCM	UBS00B0R	А
Check DTC with TCM. Refer to AT-40, "HOW TO ERASE DTC" or AT-429, "HOW TO ERASE DT OK or NG OK or NG OK >> GO TO 2.	<u>C"</u> .	EC
NG >> Perform trouble shooting relevant to DTC indicated. 2. CHECK DTC WITH "UNIFIED METER AND A/C AMP."		С
Refer to DI-15, "SELF-DIAGNOSIS FUNCTION" .		D
>> INSPECTION END		Е
		F
		G
		Н
		I
		J
		K
		L

DTC P1706 PNP SWITCH

PFP:32006

Component Description

UBS00B0S

When the gear position is P or N (A/T models), park/neutral position (PNP) switch is ON.

ECM detects the park/neutral position when continuity with ground exists.

For A/T models, the park/neutral position (PNP) switch assembly also indicates a transmission range switch to detect selector lever position.

CONSULT-II Reference Value in Data Monitor Mode

UBS00B0T

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
P/N POSI SW	Ignition switch: ON	Shift lever: P or N (A/T) Neutral (M/T)	ON
		Shift lever: Except above	OFF

On Board Diagnosis Logic

UBS00B0U

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1706 1706	Park/neutral position switch	The signal of the park/neutral position (PNP) switch is not changed in the process of engine starting and driving.	 Harness or connectors [The park/neutral position (PNP) switch circuit is open or shorted.] Park/neutral position (PNP) switch

DTC Confirmation Procedure

UBS00B0V

CAUTION:

Always drive vehicle at a safe speed.

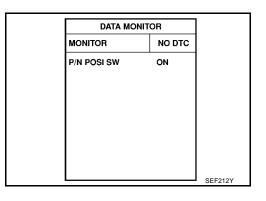
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "P/N POSI SW" in "DATA MONITOR" mode with CON-SULT-II. Then check the "P/N POSI SW" signal under the following conditions.

Position (Selector lever)	Known good signal
N and P position	ON
Except the above position	OFF


If NG, go to EC-1197, "Diagnostic Procedure".

If OK, go to following step.

- 3. Select "DATA MONITOR" mode with CONSULT-II.
- 4. Start engine and warm it up to normal operating temperature.
- Maintain the following conditions for at least 50 consecutive seconds.

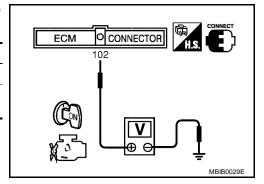
ENG SPEED	More than 1,500 rpm
B/FUEL SCHDL	More than 3.0 msec (A/T models) More than 2.5 msec (M/T models)
VHCL SPEED SE	More than 64 km/h (40 MPH)
Selector lever	Suitable position

6. If 1st trip DTC is detected, go to EC-1197, "Diagnostic Procedure".

DATA MC	ONITOR]
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
COOLAN TEMP/S	s xxx c	
VHCL SPEED SE	XXX km/h	
P/N POSI SW	OFF	
B/FUEL SCHDL	XXX msec	SEF213Y

Overall Function Check

SOOROW


Use this procedure to check the overall function of the park/neutral position switch circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminal 102 (PNP switch signal) and ground under the following conditions.

Condition (Gear position)	Voltage (V) (Known-good data)	
P (A/T models) and N position	Approx. 0	
Except the above position	A/T models: Battery voltage M/T models: Approximately 5V	

3. If NG, go to EC-1197, "Diagnostic Procedure".

EC

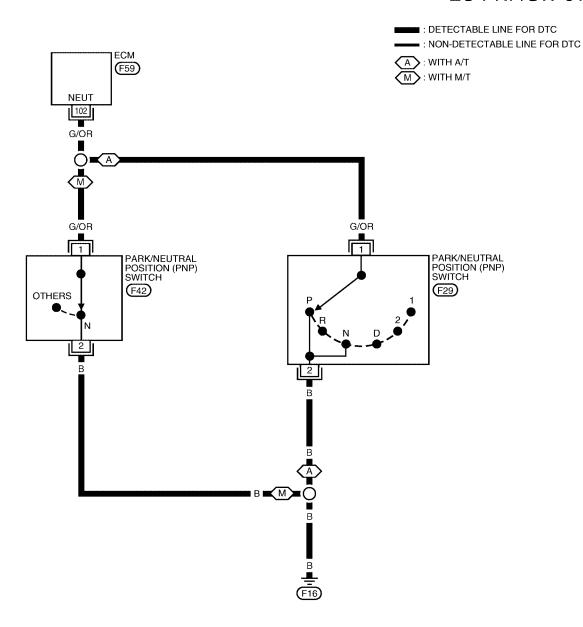
Α

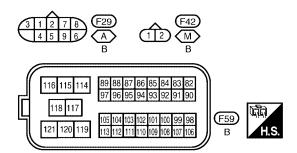
С

D

Е

F


G


Н

ı

Wiring Diagram UBS00BD.

EC-PNP/SW-01

BBWA0749E

[QR25DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Ignition switch: ON] • Shift lever: P or D (A/T), Neutral (M/T)	Approximately 0V
102	G/OR	PNP switch	[Ignition switch: ON] • Except the above gear position	A/T models BATTERY VOLTAGE (11 - 14V) M/T models Approximately 5V

Diagnostic Procedure

1. CHECK GROUND CIRCUIT

- 1. Turn ignition switch OFF.
- Disconnect PNP switch harness connector.
- 3. Check harness continuity between PNP switch terminal 2 and ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 2.

NG >> Repair open circuit or short to power in harness or connectors.

2. CHECK INPUT SIGNAL CIRCUIT

- Disconnect ECM harness connector. 1.
- 2. Check harness continuity between ECM terminal 102 and PNP switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK PNP SWITCH

Refer to AT-115, "DTC P0705 PARK/NEUTRAL POSITION (PNP) SWITCH" or AT-488, "DTC P0705 PARK/ NEUTRAL POSITION SWITCH" (A/T models)

EC-1197

Refer to MT-12, "POSITION SWITCH" or MT-75, "POSITION SWITCH" (M/T models).

OK or NG

OK >> GO TO 4.

NG >> Replace PNP switch.

4. CHECK INTERMITTENT INCIDENT

Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

EC

D

Α

UBS00B0Y

DTC P1800 VIAS CONTROL SOLENOID VALVE

[QR25DE]

DTC P1800 VIAS CONTROL SOLENOID VALVE

PFP:14955

Component Description

UBS00B0Z

The VIAS control solenoid valve cuts the intake manifold vacuum signal for power valve control. It responds to ON/OFF signals from the ECM. When the solenoid is off, the vacuum signal from the intake manifold is cut. When the ECM sends an ON signal the coil pulls the plunger downward and feeds the vacuum signal to the power valve actuator.

CONSULT-II Reference Value in Data Monitor Mode

UBS00B10

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
VIAS S/V	Engine: After warming up	Idle	OFF
VIAO O/V		More than 5,000 rpm	ON

On Board Diagnosis Logic

UBS00B11

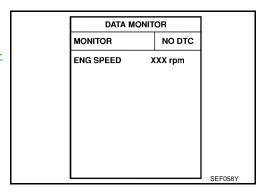
The MIL will not light up for this self-diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1800 1800	VIAS control solenoid valve circuit	An excessively low or high voltage signal is sent to ECM through the valve	 Harness or connectors (The solenoid valve circuit is open or shorted.) VIAS control solenoid valve

DTC Confirmation Procedure

UBS00B12

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 11V at idle.

WITH CONSULT-II

- Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 5 seconds.
- If 1st trip DTC is detected, go to <u>EC-1200, "Diagnostic Procedure"</u>.

WITH GST

Follow the procedure "WITH CONSULT-II" above.

[QR25DE]

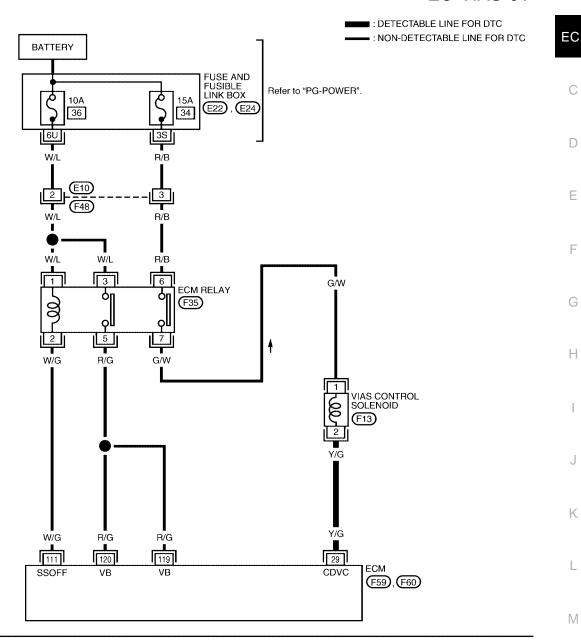
Α

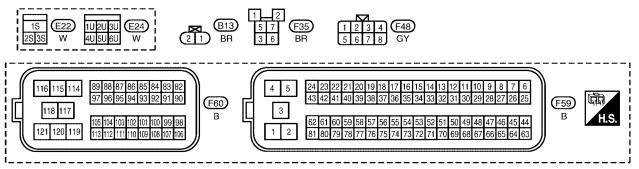
C

D

Е

F


Н


K

M

Wiring Diagram

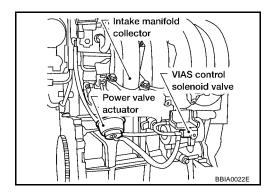
EC-VIAS-01

BBWA0754E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

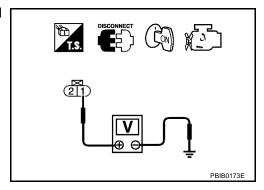

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running]	BATTERY VOLTAGE (11 - 14V)
29	Y/G	VIAS control solenoid valve	• Idle speed	(11 147)
		[Engine is running]● Engine speed is above 5,000 rpm	0 - 1.0V	
		ECM relay	[Engine is running] [Ignition switch: OFF]	0.400
111 W/G	For 10 seconds after turning ignition switch OFF		0 - 1.0V	
		(Self shut-off)	[Ignition switch: OFF]	BATTERY VOLTAGE
		 10 seconds passed after turning ignition switch OFF 	(11 - 14V)	
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS00B14

1. CHECK VIAS CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF.
- 2. Disconnect VIAS control solenoid valve harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

[QR25DE]

Α

EC

D

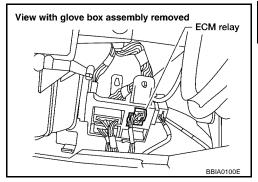
Е

Н

2. CHECK VIAS CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM relay.
- 3. Check harness continuity between ECM relay terminal 7 and VIAS control solenoid valve terminal 1. Refer to Wiring Diagram.

Continuity should exist.

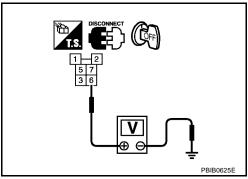

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG

>> Repair open circuit or short to ground or short to power in harness or connectors.


3. CHECK VIAS CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT-III

Check voltage between ECM relay terminal 6 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10, F48
- Fuse and fusible link box connector E22
- 15A fuse
- Harness for open or short between ECM relay and battery
 - >> Repair or replace harness or connectors.

5. CHECK ECM RELAY

Refer to EC-1247, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace ECM relay.

6. CHECK VIAS CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 29 and VIAS control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK VIAS CONTROL SOLENOID VALVE

Refer to EC-1202, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace VIAS control solenoid valve.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

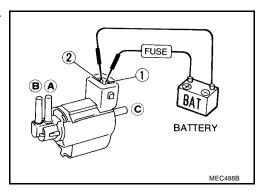
Component Inspection VIAS CONTROL SOLENOID VALVE

UBS00B15

- (III) With CONSULT-II
- 1. Reconnect harness connectors disconnected.
- 2. Turn ignition switch ON.
- 3. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode.
- Check air passage continuity and operation delay time under the following conditions.

Condition VIAS SOL VALVE	Air passage continuity between A and B	Air passage continuity between A and C	
ON	Yes	No	
OFF	No	Yes	

Operation takes less than 1 second.


BACTIVE TEST VIAS SOL VALVE ON MONITOR ENG SPEED XXX rpm PBIB0177E

☞ With GST

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes

Operation takes less than 1 second.

DTC P1800 VIAS CONTROL SOLENOID VALVE

[QR25DE]

UBS00B16

Removal and Installation VIAS CONTROL SOLENOID VALVE

VE

Refer to EM-103, "INTAKE MANIFOLD".

EC

Α

С

 D

Е

F

G

Н

1

Κ

L

[QR25DE]

DTC P1805 BRAKE SWITCH

PFP:25320

Description

UBS00B17

Brake switch signal is applied to the ECM through the stop lamp switch when the brake pedal is depressed. This signal is used mainly to decrease the engine speed when the vehicle is driving.

CONSULT-II Reference Value in Data Monitor Mode

UBS00B18

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW	Ignition switch: ON	Brake pedal: Fully released	OFF
DIVINE OW		Brake pedal: Slightly depressed	ON

On Board Diagnosis Logic

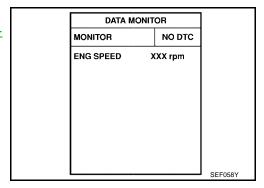
LIRSONR10

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1805 1805	Brake switch	A brake switch signal is not sent to ECM for an extremely long time while the vehicle is driving.	Harness or connectors (Stop lamp switch circuit is open or shorted.)Stop lamp switch

FALI-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode.


Engine operating condition in fail-safe mode			
ECM controls the electric throttle control actuator by regulating the throttle opening to a small range. Therefore, acceleration will be poor.			
Vehicle condition	Vehicle condition		
When engine is idling Normal			
When accelerating Poor acceleration			

DTC Confirmation Procedure

UBS00B1A

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Fully depress the brake pedal for at least 5 seconds.
- 3. Erase the DTC with CONSULT-II.
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- 5. If 1st trip DTC is detected, go to <u>EC-1206, "Diagnostic Procedure"</u>.

WITH GST

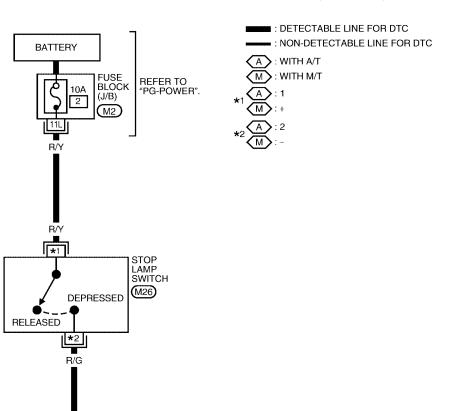
Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram

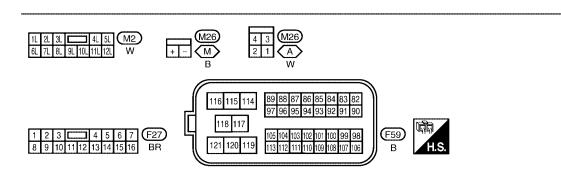
Α

EC

C


D

Е


Н

K

EC-BRK/SW-01

M

R/G

101

BRK SW

ECM

(F59)

BBWA0703E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

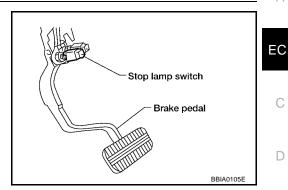
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101 R/G	Stop lamp switch	[Ignition switch: ON] • Brake pedal fully released	Approximately 0V	
		[Ignition switch: ON] • Brake pedal depressed	BATTERY VOLTAGE (11 - 14V)	

Diagnostic Procedure

UBS00B1C

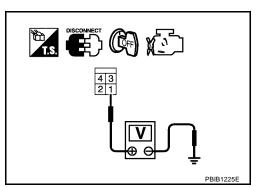
1. CHECK STOP LAMP SWITCH CIRCUIT

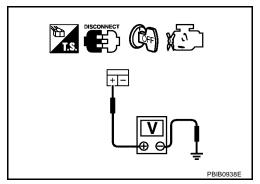
- 1. Turn ignition switch OFF.
- 2. Check the stop lamp when depressing and releasing the brake pedal.


Brake pedal	Stop lamp
Fully released	Not illuminated
Depressed	Illuminated

OK or NG

OK >> GO TO 4. NG >> GO TO 2.


2. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT


Disconnect stop lamp switch harness connector.

2. Check voltage between stop lamp switch terminal 1 (A/T models), + (M/T models) and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- 10A fuse
- Fuse block (J/B) connector M2
- Harness for open or short between stop lamp switch and battery
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

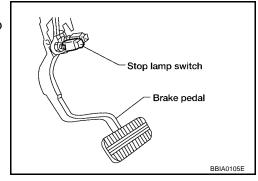
Α

D

Е

Н

$4.\,$ check stop lamp switch input signal circuit for open and short


- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect stop lamp switch harness connector.
- Check harness continuity between ECM terminal 101 and stop lamp switch terminal 2 (A/T models), – (M/T models). Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness for open or short between ECM and stop lamp switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK STOP LAMP SWITCH

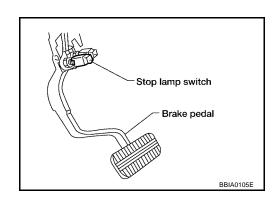
Refer to EC-1208, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace stop lamp switch.

7. CHECK INTERMITTENT INCIDENT

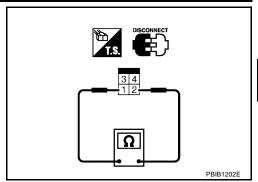

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

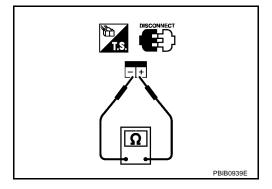
>> INSPECTION END

Component Inspection STOP LAMP SWITCH

1. Disconnect stop lamp switch harness connector.

UBS00B1D


DTC P1805 BRAKE SWITCH


[QR25DE]

2. Check continuity between stop lamp switch terminals 1 and 2 (A/ T models), + and - (M/T models) under the following conditions.

Conditions	Continuity
Brake pedal fully released	Should not exist.
Brake pedal depressed	Should exist.

If NG, adjust brake pedal installation, refer to <u>BR-11, "BRAKE PEDAL AND BRACKET"</u>, and perform step 2 again.

Α

EC

С

D

Е

F

G

Н

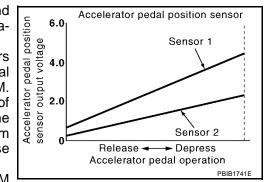
J

Κ

L

DTC P2122, P2123 APP SENSOR

PFP:18002


UBS00B1E

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelera-

tor position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

UBS00B1F

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN1 ACCEL SEN2*1	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	0.41 - 0.96V
	Shift lever:D (A/T)1ST (M/T)	Accelerator pedal: Fully depressed	More than 4.2V
CLSD THL POS	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	ON
		Accelerator pedal: Slightly depressed	OFF

^{*:} Accelerator pedal sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

UBS00B1G

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P2122 2122	Accelerator pedal position sensor 1 circuit low input	An excessively low voltage from the APP sensor 1 is sent to ECM.	Harness or connectors (The APP sensor 1 circuit is open or	
P2123 2123	Accelerator pedal position sensor 1 circuit high input	An excessively high voltage from the APP sensor 1 is sent to ECM.	shorted.) • Accelerator pedal position sensor (Accelerator pedal position sensor 1)	

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

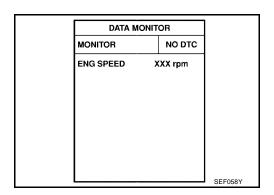
DTC P2122, P2123 APP SENSOR

[QR25DE]

DTC Confirmation Procedure

UBS00B1H

NOTE


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-1213, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

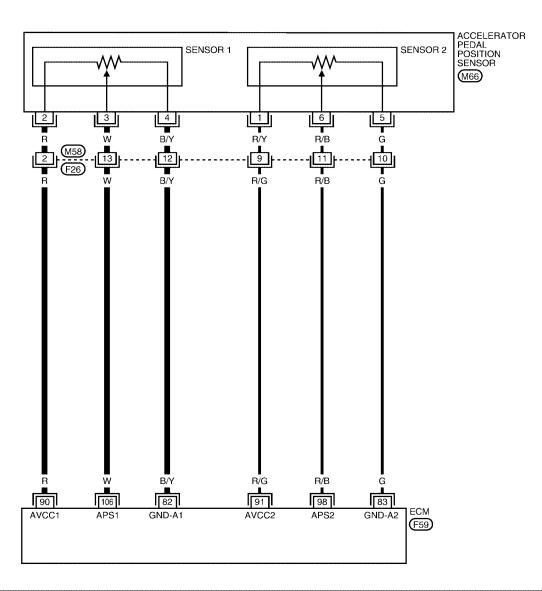
С

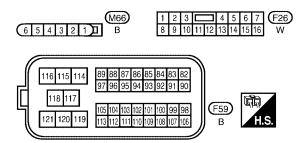
D

Е

Н

<


ı


Wiring Diagram

JBS00B1I

EC-APPS1-01

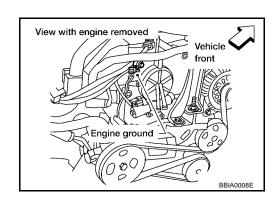
: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
82	B/Y	Sensor ground (Accelerator pedal position sensor 1)	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V
83	G	Sensor ground (Accelerator pedal position sensor 2)	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V
90	R	Sensor power supply (Accelerator pedal position sensor 1)	[Ignition switch: ON]	Approximately 5V
91	R/G	Sensor power supply (Accelerator pedal position sensor 2)	[Ignition switch: ON]	Approximately 5V
98 R/B	D/D	Accelerator pedal position sensor 2	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully released 	0.28 - 0.48V
	IVB		 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully depressed 	More than 2.0V
106 W	W	Accelerator pedal position sensor 1	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully released 	0.65 - 0.87V
	VV		 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully depressed 	More than 4.3V


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

1. Turn ignition switch OFF.

2. Loosen and retighten engine ground screws.

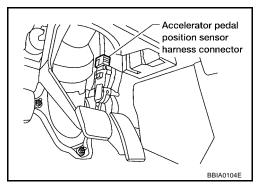
>> GO TO 2.

Α

С

Е

G

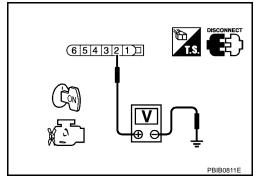

J

Κ

__

$2.\,$ check app sensor 1 power supply circuit

- Disconnect accelerator pedal position (APP) sensor harness connector.
- 2. Turn ignition switch ON.



Check voltage between APP sensor terminal 2 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK APP SENSOR 1 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between APP sensor terminal 4 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

[QR25DE]

6. CHECK APP SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 106 and APP sensor terminal 3. Refer to Wiring Diagram.

EC

Α

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

D

Е

Н

M

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK APP SENSOR

Refer to EC-1215, "Component Inspection".

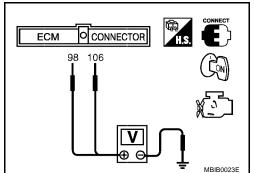
OK or NG

OK >> GO TO 9.

NG >> Replace accelerator pedal assembly.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


UBSOOB1K

>> INSPECTION END

Component Inspection ACCELERATOR PEDAL POSITION SENSOR

- Reconnect all harness connectors disconnected.
- 2. Turn ignition switch ON.
- Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
106	Fully released	0.65 - 0.87V
(Accelerator pedal position sensor 1)	Fully depressed	More than 4.3V
98	Fully released	0.28 - 0.48V
(Accelerator pedal position sensor 2)	Fully depressed	More than 2.0V

- If NG, replace accelerator pedal assembly and go to the next step.
- Perform EC-684, "Accelerator Pedal Released Position Learning".
- Perform EC-684, "Throttle Valve Closed Position Learning". 6.
- Perform EC-685, "Idle Air Volume Learning".

DTC P2122, P2123 APP SENSOR

[QR25DE]

Removal and Installation ACCELERATOR PEDAL

UBS00B1L

Refer to ACC-2, "ACCELERATOR CONTROL SYSTEM" .

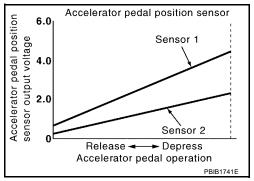
[QR25DE]

DTC P2127, P2128 APP SENSOR

PFP:18002

Component Description

UBS00B1M


Α

EC

Е

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM

receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

UBS00B1N

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN1	 Ignition switch: ON (Engine stopped) Shift lever: D (A/T) 1ST (M/T) 	Accelerator pedal: Fully released	0.41 - 0.96V
ACCEL SEN2*1		Accelerator pedal: Fully depressed	More than 4.2V
CLSD THL POS	Ignition switch: ON	Accelerator pedal: Fully released	ON
OLOD THE FOO	(Engine stopped)	Accelerator pedal: Slightly depressed	OFF

^{*:} Accelerator pedal sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

UBS00B1O

M

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P1227 1227	Accelerator pedal position sensor 2 circuit low input	An excessively low voltage from the APP sensor 2 is sent to ECM.	Harness or connectors (The APP sensor 2 circuit is open or shorted.)	
P1228 1228	Accelerator pedal position sensor 2 circuit high input	An excessively high voltage from the APP sensor 2 is sent to ECM.	,	

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

So, the acceleration will be poor.

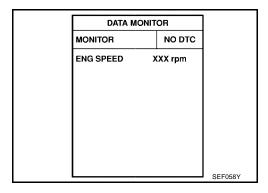
The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

DTC Confirmation Procedure

UBS00B1P

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-1220, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram

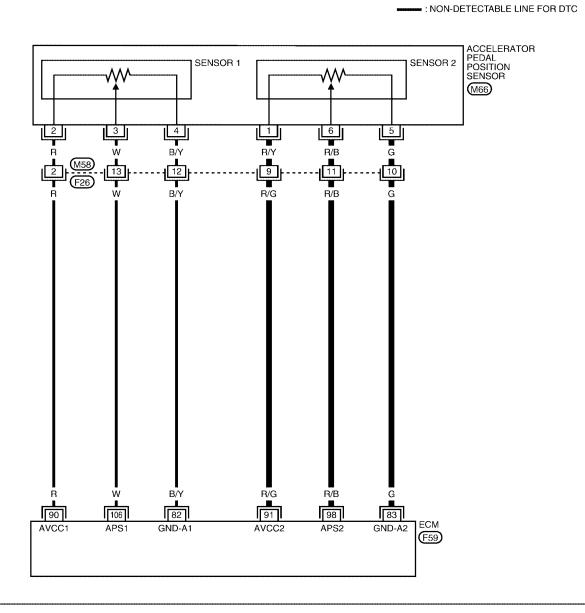
UBS00B1Q

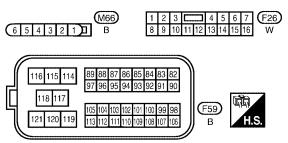
EC-APPS2-01

: DETECTABLE LINE FOR DTC

EC

C


D


Е

Н

M

Α

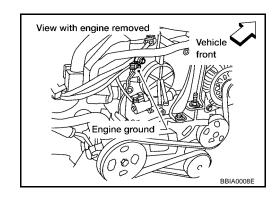
BBWA0705E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

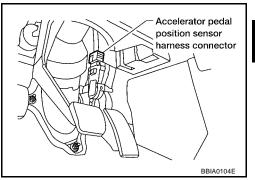
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
82	B/Y	Sensor ground (Accelerator pedal position sensor 1)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
83	G	Sensor ground (Accelerator pedal position sensor 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
90	R	Sensor power supply (Accelerator pedal position sensor 1)	[Ignition switch: ON]	Approximately 5V
91	R/G	Sensor power supply (Accelerator pedal position sensor 2)	[Ignition switch: ON]	Approximately 5V
00	R/B	Accelerator pedal position	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully released 	0.28 - 0.48V
98 R/B	sensor 2	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully depressed 	More than 2.0V	
106 W	W	Accelerator pedal position sensor 1	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully released 	0.65 - 0.87V
			 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully depressed 	More than 4.3V


Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

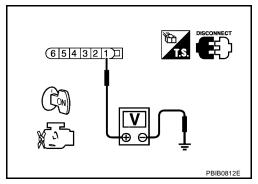
UBS00B1R


- Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

2. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT

- Disconnect accelerator pedal position (APP) sensor harness connector.
- Turn ignition switch ON.



3. Check voltage between APP sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness for open or short between ECM and accelerator pedal position sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK APP SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Check harness continuity between ECM terminal 83 APP sensor terminal 5. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

D

Α

EC

Е

K

6. CHECK APP SENSOR 2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 98 and APP sensor terminal 6. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK APP SENSOR

Refer to EC-1223, "Component Inspection".

OK or NG

OK >> GO TO 9.

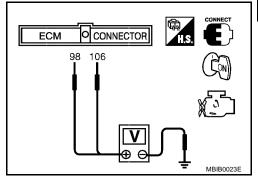
NG >> Replace accelerator pedal assembly.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P2127, P2128 APP SENSOR


[QR25DE]

Component Inspection ACCELERATOR PEDAL POSITION SENSOR

UBS00B1S

- 1. Reconnect all harness connectors disconnected.
- 2. Turn ignition switch ON.
- 3. Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
106	Fully released	0.65 - 0.87V
(Accelerator pedal position sensor 1)	Fully depressed	More than 4.3V
98	Fully released	0.28 - 0.48V
(Accelerator pedal position sensor 2)	Fully depressed	More than 2.0V

- 4. If NG, replace accelerator pedal assembly.
- 5. Perform EC-684, "Accelerator Pedal Released Position Learning".
- 6. Perform EC-684, "Throttle Valve Closed Position Learning".
- 7. Perform <u>EC-685</u>, "Idle Air Volume Learning".

Removal and Installation ACCELERATOR PEDAL

Refer to ACC-2, "ACCELERATOR CONTROL SYSTEM"

EC

Α

С

D E

F

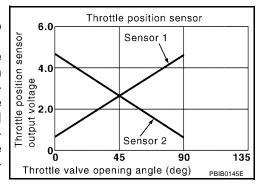
UBS00B1T

Н

<

L

DTC P2135 TP SENSOR


PFP:16119

UBS00B1U

Component Description

Electric Throttle Control Actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

UBS00B1V

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL SEN1	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	More than 0.36V
THRTL SEN2*	● Shift lever D: (A/T) 1ST: (M/T)	Accelerator pedal: Fully depressed	Less than 4.75V

^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

UBS00B1W

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2135 2135	Throttle position sensor circuit range/performance problem	Rationally incorrect voltage is sent to ECM compared with the signals from TP sensor 1 and TP sensor 2.	 Harness or connector (The TP sensor 1 and 2 circuit is open or shorted.) Electric throttle control actuator (TP sensor 1 and 2)

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

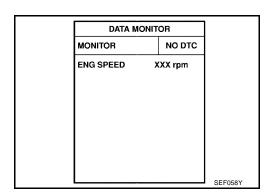
DTC P2135 TP SENSOR

[QR25DE]

DTC Confirmation Procedure

BSOOR1 V

NOTE


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-1227, "Diagnostic Procedure".

WITH GST

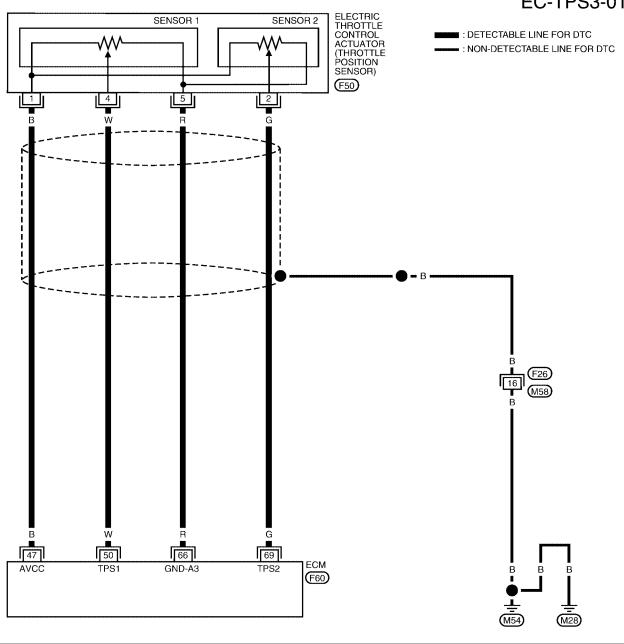
Follow the procedure "WITH CONSULT-II" above.

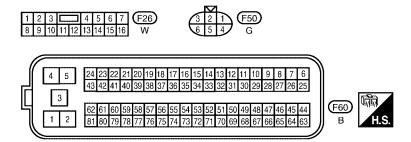
EC

Α

С

D


Е


Н

Wiring Diagram

EC-TPS3-01

SENSOR 1 SENSOR 2 THROTTLE

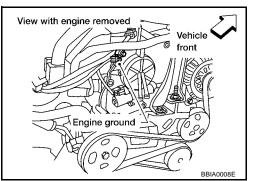
BBWA0750E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC	
47	В	Sensor power supply (Throttle position sensor)	[Ignition switch: ON]	Approximately 5V	C	
		 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully released 	More than 0.36V	D		
50	50 W Thro	Throttle position sensor 1	Inrottle position sensor 1 [Ignition switch: ON] • Engine stopped • Shift lever: D (A/T), 1ST (M/T) • Accelerator pedal fully depressed	Less than 4.75V	E F	
66	R	Sensor ground (Throttle position sensor)	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	G	
00		The will be a sition of a second of	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully released 	Less than 4.75V	Н	
69	69 G	G	Throttle position sensor 2	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully depressed 	More than 0.36V	_ I J

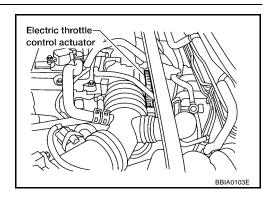

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

Turn ignition switch OFF. 1.

Loosen and retighten engine ground screws.

>> GO TO 2.



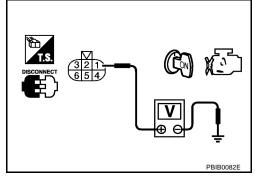
Е

UBS00B1Z

2. CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.

3. Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repair on

>> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK THROTTLE POSITION SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 5 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK THROTTLE POSITION SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 50 and electric throttle control actuator terminal 4, ECM terminal 69 and electric throttle control actuator terminal 2. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK THROTTLE POSITION SENSOR

Refer to EC-1229, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

DTC P2135 TP SENSOR

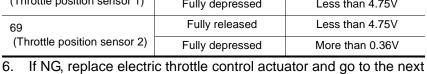
[QR25DE]

6. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-684, "Throttle Valve Closed Position Learning".
- Perform EC-685, "Idle Air Volume Learning".

>> INSPECTION END

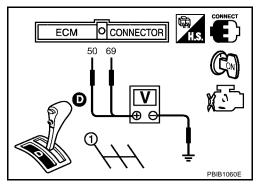
7. CHECK INTERMITTENT INCIDENT


Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection THROTTLE POSITION SENSOR

- Reconnect all harness connectors disconnected.
- 2. Perform EC-684, "Throttle Valve Closed Position Learning".
- 3. Turn ignition switch ON.
- Set selector lever to D position (A/T) or 1st position (M/T).
- 5. Check voltage between ECM terminals 50 (TP sensor 1 signal), 69 (TP sensor 2 signal) and engine ground under the following conditions.


Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
69	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- step.
- 7. Perform EC-684, "Throttle Valve Closed Position Learning".
- Perform EC-685, "Idle Air Volume Learning".

Removal and Installation **ELECTRIC THROTTLE CONTROL ACTUATOR**

Refer to EM-103, "INTAKE MANIFOLD".

EC

Α

D

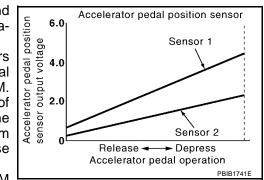
Е

LIBSOOB20

Н

K

DTC P2138 APP SENSOR


PFP:18002

UBS00B22

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

UBS00B23

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN1	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	0.41 - 0.96V
ACCEL SEN2*1	Shift lever:D (A/T)1ST (M/T)	Accelerator pedal: Fully depressed	More than 4.2V
CLSD THL POS	• Ignition switch: ON	Accelerator pedal: Fully released	ON
OLOD THE FOO	(Engine stopped)	Accelerator pedal: Slightly depressed	OFF

^{*:} Accelerator pedal sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

UBS00B24

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2138 2138	Accelerator pedal position sensor circuit range/performance problem	Rationally incorrect voltage is sent to ECM compared with the signals from APP sensor 1 and APP sensor 2.	 Harness or connector (The APP sensor 1 and 2 circuit is open or shorted.) Accelerator pedal position sensor 1 and 2

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

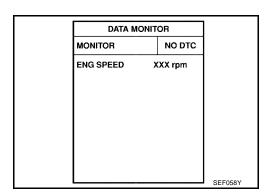
DTC P2138 APP SENSOR

[QR25DE]

DTC Confirmation Procedure

UBS00B25

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-1233, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

С

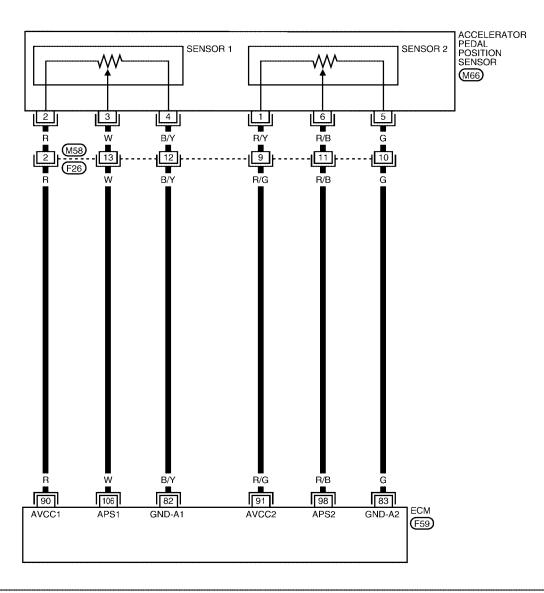
D

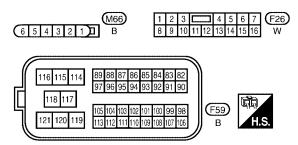
Е

F

Н

K


L


Wiring Diagram

IBS00B26

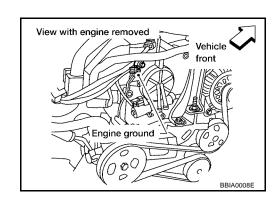
EC-APPS3-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

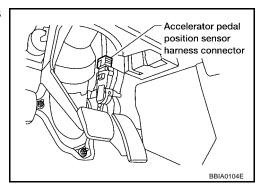

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	E	
82	B/Y	Sensor ground (Accelerator pedal position sensor 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V		
83	G	Sensor ground (Accelerator pedal position sensor 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V		
90	R	Sensor power supply (Accelerator pedal position sensor 1)	[Ignition switch: ON]	Approximately 5V		
91	R/G	Sensor power supply (Accelerator pedal position sensor 2)	[Ignition switch: ON]	Approximately 5V		
00	R/B	Accelerator pedal position	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully released 	0.28 - 0.48V		
98 R	NB	sensor 2	sensor 2	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully depressed 	More than 2.0V	
106	w	Accelerator pedal position	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully released 	0.65 - 0.87V		
106	VV	sensor 1	 [Ignition switch: ON] Engine stopped Shift lever: D (A/T), 1ST (M/T) Accelerator pedal fully depressed 	More than 4.3V		

Diagnostic Procedure

1. RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.

>> GO TO 2.

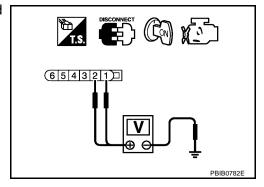


M

UBS00B27

2. CHECK APP SENSOR POWER SUPPLY CIRCUIT

- Disconnect accelerator pedal position (APP) sensor harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between APP sensor terminals 1, 2 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK APP SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 82 and APP sensor terminal 4, ECM terminal 83 and APP sensor terminal 5.
 Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

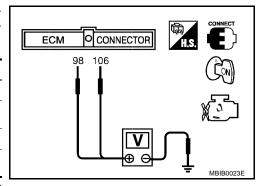
Check the following.

- Harness connectors M59, F27
- Harness for open or short between ECM and accelerator pedal position sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

DTC P2138 APP SENSOR

[QR25DE]

 \mathbb{N}


6. CHECK APP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	_
 Check harness continuity between ECM terminal 106 and APP sensor terminal 3, ECM terminal 98 an APP sensor terminal 6. Refer to Wiring Diagram. 	id E
Continuity should exist.	
 Also check harness for short to ground and short to power. OK or NG OK >> GO TO 8. NG >> GO TO 7.]
7. DETECT MALFUNCTIONING PART	
Check the following. Harness connectors M59, F27 Harness for open or short between FCM and accelerator podel position concern.	E
Harness for open or short between ECM and accelerator pedal position sensor	F
>> Repair open circuit or short to ground or short to power in harness or connectors.	
8. CHECK APP SENSOR	
Refer to EC-1236, "Component Inspection" .	_
OK or NG OK >> GO TO 9. NG >> Replace the accelerator pedal position sensor.	ŀ
9. CHECK INTERMITTENT INCIDENT	
Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	_
>> INSPECTION END	,
	ŀ
	l

Component Inspection ACCELERATOR PEDAL POSITION SENSOR

UBS00B28

- Reconnect all harness connectors disconnected.
- 2. Turn ignition switch ON.
- 3. Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and engine ground under the following conditions.

Terminal	Accelerator pedal	Voltage
106	Fully released	0.65 - 0.87V
(Accelerator pedal position sensor 1)	Fully depressed	More than 4.3V
98	Fully released	0.28 - 0.48V
(Accelerator pedal position sensor 2)	Fully depressed	More than 2.0V

- 4. If NG, replace accelerator pedal assembly and go to the next step.
- 5. Perform EC-684, "Accelerator Pedal Released Position Learning".
- 6. Perform EC-684, "Throttle Valve Closed Position Learning".
- 7. Perform EC-685, "Idle Air Volume Learning".

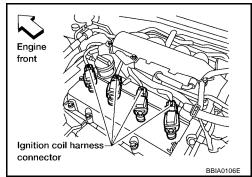
Removal and Installation ACCELERATOR PEDAL

UBS00B29

Refer to ACC-2, "ACCELERATOR CONTROL SYSTEM".

IGNITION SIGNAL

[QR25DE]


IGNITION SIGNAL

PFP:22448

UBS002LS

Component Description IGNITION COIL & POWER TRANSISTOR

The ignition signal from the ECM is sent to and amplified by the power transistor. The power transistor turns on and off the ignition coil primary circuit. This on-off operation induces the proper high voltage in the coil secondary circuit.

EC

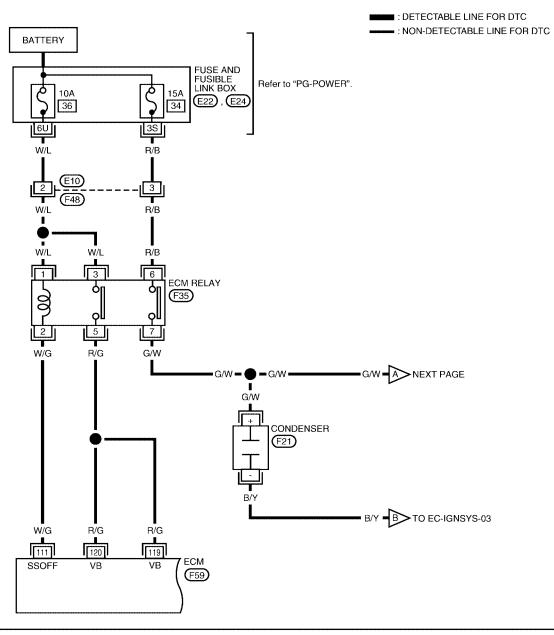
Α

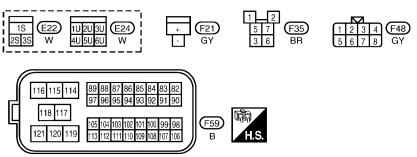
С

D

Е

F


Н


K

Wiring Diagram

JBS002LT

EC-IGNSYS-01

BBWA0751E

IGNITION SIGNAL

[QR25DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
111 W/G	W/G	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] ● For 10 seconds after turning ignition switch OFF	0 - 1.0V
		(Son Shat On)	[Ignition switch: OFF]10 seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

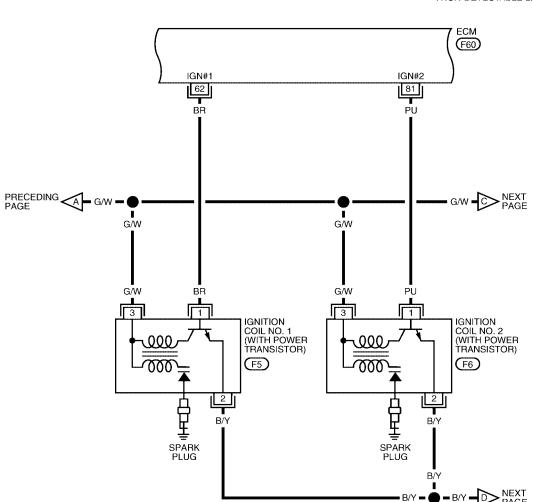
Α

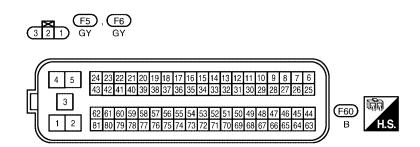
EC C

D

Е

F


G


Н

1

EC-IGNSYS-02

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

BBWA0752E

IGNITION SIGNAL

[QR25DE]

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
62	BR	Ignition signal No. 1	[Engine is running] • Warm-up condition • Idle speed	0 - 0.1V★
81	PU	Ignition signal No. 2	 [Engine is running] Warm-up condition Engine speed is 2,000 rpm. 	0 - 0.2V★

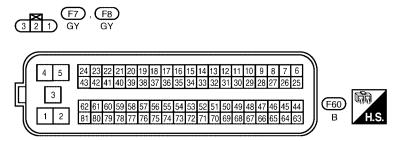
^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

EC

Α

C


 D


Е

F

Н

EC-IGNSYS-03

BBWA0753E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	С
61	L/W	Ignition signal No. 3	[Engine is running] ■ Warm-up condition ■ Idle speed	0 - 0.1V★	D E
80	GY/R	Ignition signal No. 4	[Engine is running] ■ Warm-up condition ■ Engine speed is 2,000 rpm.	0 - 0.2∀★	F G
				>> 2.0 V/Div 50 ms/Div PBIB0522E	Н

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. CHECK ENGINE START

Turn ignition switch OFF, and restart engine.

Is engine running?

Yes or No

Yes (With CONSULT-II)>>GO TO 2. Yes (Without CONSULT-II)>>GO TO 3. >> GO TO 4. Nο

2. CHECK OVERALL FUNCTION

(II) With CONSULT-II

- 1. Perform "POWER BALANCE" in "ACTIVE TEST" mode with [CONSULT-II.
- 2. Make sure that all circuits do not produce a momentary engine speed drop.

OK or NG

OK >> INSPECTION END

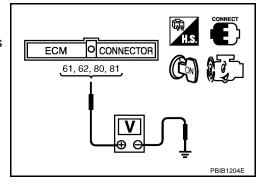
NG >> GO TO 10.

		1	
ACTIVE TES	ST		
POWER BALANCE	POWER BALANCE		
MONITOR			
ENG SPEED	XXX rpm		
MAS A/F SE-B1	xxx v		
		PBIB0133E	

EC

Α

UBS002LU


3. CHECK OVERALL FUNCTION

⋈ Without CONSULT-II

- 1. Let engine idle.
- 2. Read the voltage signal between ECM terminals 61, 62, 80, 81 and ground with an oscilloscope.
- 3. Verify that the oscilloscope screen shows the signal wave as shown below.

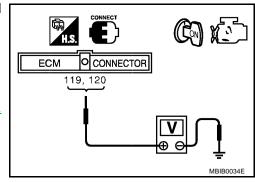
PBIB0521E

OK or NG

OK >> INSPECTION END

NG >> GO TO 10.

4. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-I

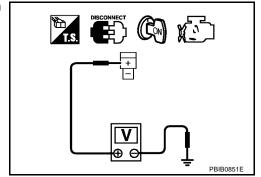

- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminals 119, 120 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5.

NG >> GO TO <u>EC-782</u>, "POWER SUPPLY CIRCUIT FOR ECM" .


5. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect condenser harness connector.
- 3. Turn ignition switch ON.
- 4. Check voltage between condenser terminal + and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10. NG >> GO TO 6.

EC

D

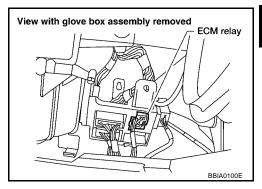
Е

Н

M

6. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-III

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM relay.
- Check harness continuity between ECM relay terminal 7 and condenser terminal +. Refer to Wiring Diagram.

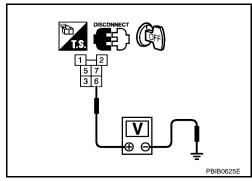

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.


7. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-IV

Check voltage between ECM relay terminal 6 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10, F48
- Fuse and fusible link box connector E22
- 15A fuse
- Harness for open or short between ECM relay and battery

>> Repair or replace harness or connectors.

9. CHECK ECM RELAY

Refer to EC-1247, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace ECM relay.

EC-1245

10. CHECK CONDENSER GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect condenser harness connector.
- Check harness continuity between condenser terminal and ground. Refer to Wiring diagram.

Continuity should exist.

4. Also check harness for short to power.

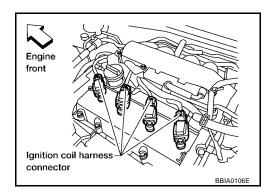
OK or NG

OK >> GO TO 11.

NG >> Repair open circuit or short to power in harness or connector.

11. CHECK CONDENSER

Refer to EC-1247, "Component Inspection".

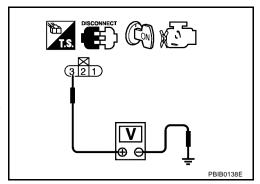

OK or NG

OK >> GO TO 12.

NG >> Replace condenser.

12. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-V

- 1. Turn ignition switch OFF.
- 2. Reconnect all harness connectors disconnected.
- 3. Disconnect ignition coil harness connector.
- 4. Turn ignition switch ON.


5. Check voltage between ignition coil terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 13.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

13. CHECK IGNITION COIL GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Check harness continuity between ignition coil terminal 2 and engine ground. Refer to Wiring Diagram.

EC

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 14.

NG >> Repair open circuit or short to power in harness or connectors.

D

Е

14. CHECK IGNITION COIL OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminals 61, 62, 80, 81 and ignition coil terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 15.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

Н

15. CHECK IGNITION COIL WITH POWER TRANSISTOR

Refer to EC-1247, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace ignition coil with power transistor.

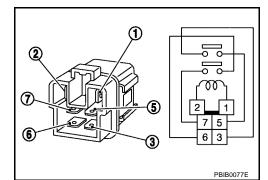
ı

16. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

M

>> INSPECTION END

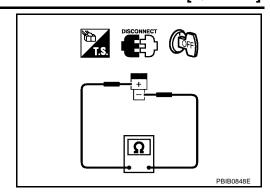

Component Inspection ECM RELAY

UBS00BJ9

- 1. Apply 12V direct current between ECM relay terminals 1 and 2.
- 2. Check continuity between relay terminals 3 and 5, 6 and 7.

Condition	Continuity
12V direct current supply between terminals 1 and 2	Yes
OFF	No

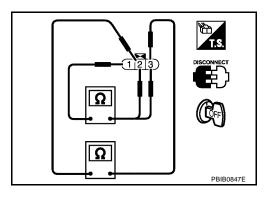
3. If NG, replace ECM relay.



CONDENSER

- 1. Turn ignition switch OFF.
- 2. Disconnect condenser harness connector.

3. Check resistance between condenser terminals + and -.


Resistance: Above 1 M Ω at 25°C (77°F)

IGNITION COIL WITH POWER TRANSISTOR

- 1. Turn ignition switch OFF.
- 2. Disconnect ignition coil harness connector.
- 3. Check resistance between ignition coil terminals as follows.

Terminal No.	Resistance Ω [at 25°C (77°F)]	
3 and 1	Except 0 or ∞	
3 and 2	Except 0	
1 and 2		

UBS00BJA

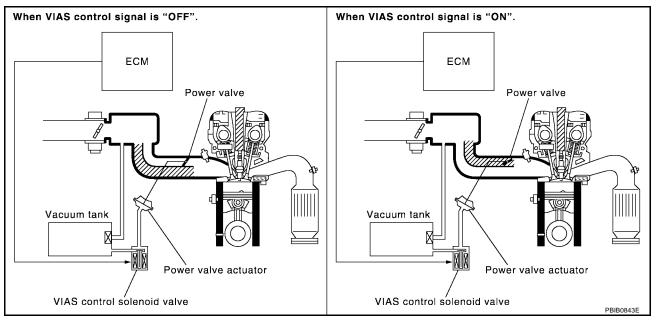
Removal and Installation IGNITION COIL WITH POWER TRANSISTOR

Refer to EM-113, "IGNITION COIL".

VIAS PFP:14956

Description SYSTEM DESCRIPTION

UBS002LX


EC

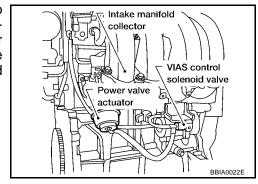
D

Н

Sensor	Input Signal to ECM	ECM function	Actuator
Mass air flow sensor	Amount of intake air		
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Closed throttle position	VIAS	
Battery	Battery voltage*	control	VIAS control solenoid valve
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*		
Engine coolant temperature sensor	Engine coolant temperature		

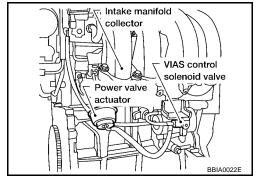
^{*:} ECM determines the start signal status by the signals of engine speed and battery voltage.

When the engine is running at low or medium speed, the power valve is fully closed. Under this condition, the effective suction port length is equivalent to the total length of the intake manifold collector's suction port including the intake valve. This long suction port provides increased air intake which results in improved suction efficiency and higher torque generation.


The surge tank and one-way valve are provided. When engine is running at high speed, the ECM sends the signal to the VIAS control solenoid valve. This signal introduces the intake manifold vacuum into the power valve actuator and therefore opens the power valve to two suction passages together in the collector.

Under this condition, the effective port length is equivalent to the length of the suction port provided independently for each cylinder. This shortened port length results in enhanced engine output with reduced suction resistance under high speeds.

COMPONENT DESCRIPTION


Power Valve

The power valve is installed in intake manifold collector and used to control the suction passage of the variable induction air control system. It is set in the fully closed or fully opened position by the power valve actuator operated by the vacuum stored in the surge tank. The vacuum in the surge tank is controlled by the VIAS control solenoid valve.

VIAS Control Solenoid Valve

The VIAS control solenoid valve cuts the intake manifold vacuum signal for power valve control. It responds to ON/OFF signals from the ECM. When the solenoid is off, the vacuum signal from the intake manifold is cut. When the ECM sends an ON signal the coil pulls the plunger downward and feeds the vacuum signal to the power valve actuator.

CONSULT-II Reference Value in Data Monitor Mode

UBS002LY

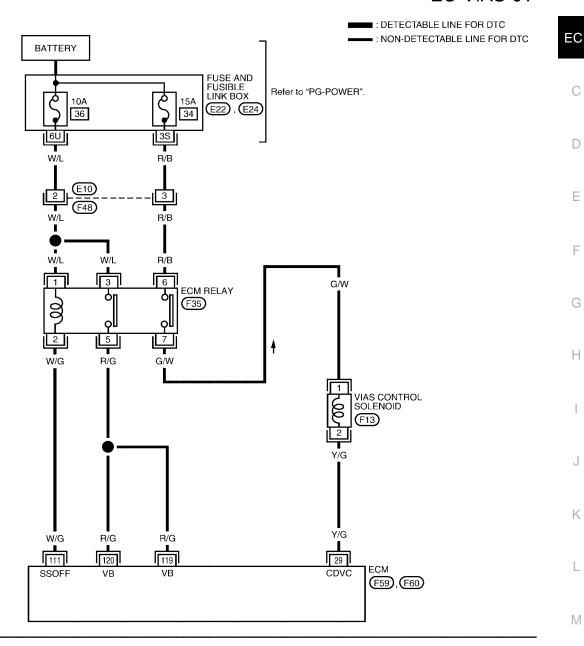
MONITOR ITEM	CONDITION		SPECIFICATION
VIAS S/V • Engine: After w	Engine: After warming up	Idle	OFF
VIAG O/ V	VIAS 5/V Engine. After warming up	More than 5,000 rpm	ON

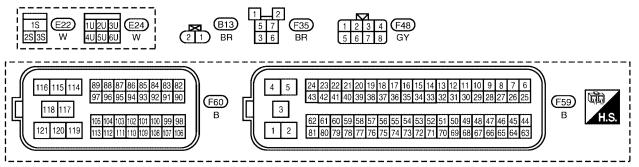
Α

C

D

Е


Н


K

M

Wiring Diagram

EC-VIAS-01

BBWA0869E

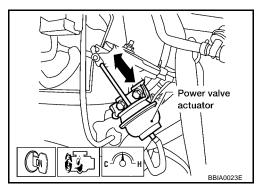
Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

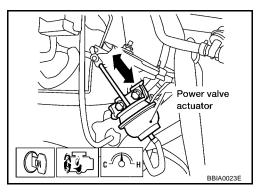
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
29 Y/G VIAS control solenoid valve	VIAS control solenoid	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)	
	[Engine is running] ● Engine speed is above 5,000 rpm	0 - 1.0V		

Diagnostic Procedure


1. CHECK OVERALL FUNCTION

(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode with CONSULT-II.


ACTIVE TE	ACTIVE TEST	
VIAS SOL VALVE	OFF	
MONITO	R	
ENG SPEED	XXX rpm	

3. Turn VIAS control solenoid valve "ON" and "OFF", and make sure that power valve actuator rod moves.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Rev engine quickly up to above 5,000 rpm and make sure that power valve actuator rod moves.

OK or NG

OK >> **INSPECTION END**NG (With CONSULT-II)>>GO TO 2.

NG (Without CONSULT-II)>>GO TO 3.

EC

Α

D

C

Е

F

G

Н

J

K

L

2. CHECK VACUUM EXISTENCE

(P) With CONSULT-II

- Stop engine and disconnect vacuum hose connected to power valve actuator.
- 2. Start engine and let it idle.
- 3. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode with CON-SULT-II.
- Turn VIAS control solenoid valve "ON" and "OFF", and check vacuum existence under the following conditions.

VIAS SOL VALVE	Vacuum	
ON	Should exist.	
OFF	Should not exist.	
014		

ACTIVE TEST VIAS SOL VALVE MONITOR **ENG SPEED** XXX rpm PBIB0844E

DISCONNECT CON

OK or NG

OK >> Repair or replace power valve actuator.

NG >> GO TO 4.

3. CHECK VACUUM EXISTENCE

Without CONSULT-II

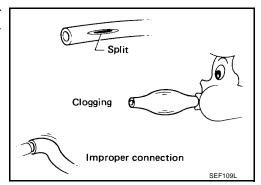
- 1. Stop engine and disconnect vacuum hose connected to power valve actuator.
- 2. Disconnect VIAS control solenoid valve harness connector.
- 3. Start engine and let it idle.
- 4. Apply 12V of direct current between VIAS control solenoid valve terminals 1 and 2.
- 5. Check vacuum existence under the following conditions.

Condition	Vacuum
12V direct current supply	Should exist.
No supply	Should not exist.

OK or NG

OK >> Repair or replace power valve actuator.

>> GO TO 4. NG


4. CHECK VACUUM HOSE

- 1. Stop engine.
- 2. Check hoses and tubes between intake manifold and power valve actuator for crack, clogging, improper connection or disconnection. Refer to EC-654, "Vacuum Hose Drawing".

OK or NG

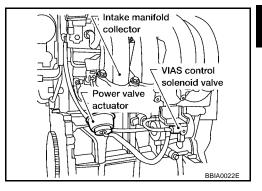
OK >> GO TO 5.

NG >> Repair hoses or tubes.

PBIB0845F

5. CHECK VACUUM TANK

Refer to EC-1256, "Component Inspection".

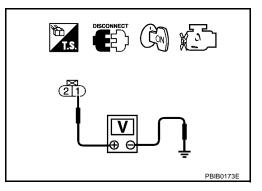

OK or NG

OK >> GO TO 6.

NG >> Replace vacuum tank.

6. CHECK VIAS CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch ON.
- 2. Disconnect VIAS control solenoid valve harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between VIAS control solenoid valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

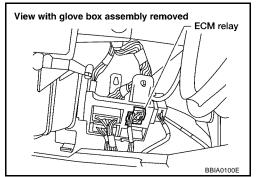
OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. CHECK VIAS CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM relay.
- Check harness continuity between ECM relay terminal 7 and VIAS control solenoid valve terminal 1. Refer to Wiring Diagram.

Continuity should exist.

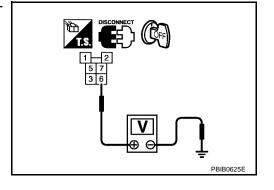

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power

in harness or connectors.


8. CHECK VIAS CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT-III

Check voltage between ECM relay terminal 6 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10. NG >> GO TO 9.

EC

C

D

Е

F

G

Н

9. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E10, F48
- Fuse and fusible link box connector E22
- 15A fuse
- Harness for open or short between ECM relay and battery
 - >> Repair or replace harness or connectors.

10. CHECK ECM RELAY

Refer to EC-1247, "Component Inspection".

OK or NG

OK >> GO TO 13.

NG >> Replace ECM relay.

11. CHECK VIAS CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 29 and VIAS control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 12.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

12. CHECK VIAS CONTROL SOLENOID VALVE

Refer to EC-1256, "Component Inspection".

OK or NG

OK >> GO TO 13.

NG >> Replace VIAS control solenoid valve.

13. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection VIAS CONTROL SOLENOID VALVE

(P) With CONSULT-II

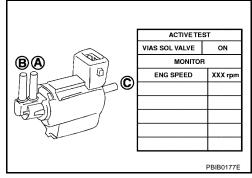
- 1. Reconnect harness connectors disconnected.
- 2. Turn ignition switch ON.
- 3. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode.

UBS002M1

Α

EC

D

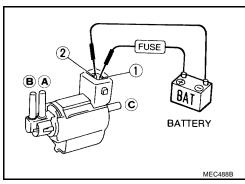

Е

Н

4. Check air passage continuity and operation delay time under the following conditions.

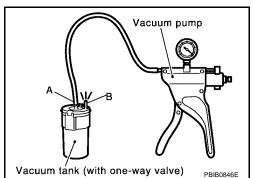
Condition VIAS SOL VALVE	Air passage continuity between A and B	Air passage continuity between A and C
ON	Yes	No
OFF	No	Yes

Operation takes less than 1 second.



With GST

Check air passage continuity and operation delay time under the following conditions.


Condition	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes

Operation takes less than 1 second.

VACUUM TANK

- 1. Disconnect vacuum hose connected to vacuum tank.
- 2. Connect a vacuum pump to the port **A** of vacuum pump.
- 3. Apply vacuum and make sure that vacuum exists at the port ${\bf B}$.

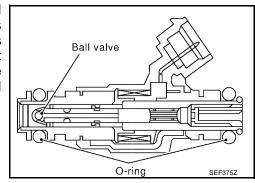
Removal and Installation VIAS CONTROL SOLENOID VALVE

Refer to EM-103, "INTAKE MANIFOLD".

UBS002M2

M

EC-1257


INJECTOR CIRCUIT

PFP:16600

UBS002M3

Component Description

The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the injector circuit, the coil in the injector is energized. The energized coil pulls the needle valve back and allows fuel to flow through the injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.

CONSULT-II Reference Value in Data Monitor Mode

UBS002M4

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	2.5 - 3.5 msec
B/FUEL SCHDL	Shift lever: NAir conditioner switch: OFFNo-load	2,000 rpm	2.5 - 3.5 msec
INJ PULSE-B1	Engine: After warming up	Idle	2.0 - 3.0 msec
	Shift lever: NAir conditioner switch: OFFNo-load	2,000 rpm	1.9 - 2.9 msec

Wiring Diagram Α **EC-INJECT-01** IGNITION SWITCH ON OR START : DETECTABLE LINE FOR DTC EC : NON-DETECTABLE LINE FOR DTC FUSE BLOCK (J/B) REFER TO "PG-POWER". 10A 17 M1C 7K B/R 7 B/R M19 D (F48) Е (F101) INJECTOR NO. 1 INJECTOR NO. 3 INJECTOR NO. 2 INJECTOR NO. 4 (F102) (F103) (F104) (F105) Н 2 3 (F12) Y/B G/B L/B R/B 23 G/B L/B Y/B 41 22 42 ECM INJ #1 INJ #2 INJ #3 INJ #4 (F60) M 3 (F60)

BBWA0755E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
23 42	R/B Y/B	Injector No. 1 Injector No. 2	[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)★ → 10.0 V/Div 50 ms/Div T
22 41	G/B L/B	Injector No. 3 Injector No. 4	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ → 10.0 V/Div 50 ms/Div T PBIB0530E

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

UBS002M6

1. INSPECTION START

Turn ignition switch to START. Is any cylinder ignited?

Yes or No

Yes >> GO TO 2. No >> GO TO 3.

Α

EC

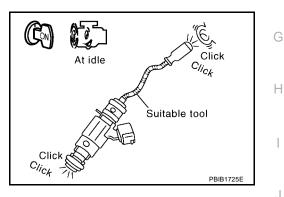
C

 D

Е

F

$\overline{2}$. CHECK OVERALL FUNCTION


(II) With CONSULT-II

- Start engine. 1.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Make sure that each circuit produces a momentary engine speed drop.

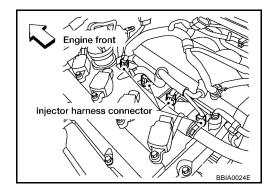
ACTIVE TEST		
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		PBIB0133E

⊗ Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound. Clicking noise should be heard.

OK or NG

OK >> INSPECTION END

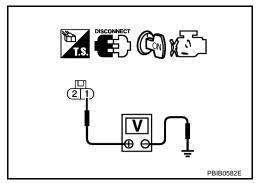

NG >> GO TO 3.

K

M

3. CHECK INJECTOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect injector harness connector.
- 3. Turn ignition switch ON.



Check voltage between injector terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M19, E108
- Harness connectors E10, F48
- Harness connectors F12, F101
- Fuse block (J/B) connector M1
- 10A fuse
- Harness for open or short between injector and fuse
 - >> Repair harness or connectors.

5. CHECK INJECTOR OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between injector terminal 2 and ECM terminals 22, 23, 41, 42.
 Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

INJECTOR CIRCUIT

[QR25DE]

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F12, F101
- Harness for open or short between injector and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK INJECTOR

Refer to EC-1263, "Component Inspection".

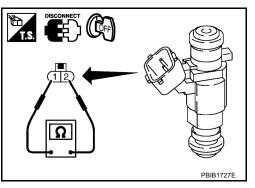
OK or NG

OK >> GO TO 8.

NG >> Replace injector.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection INJECTOR

1. Disconnect injector harness connector.

2. Check resistance between terminals as shown in the figure.

Resistance: 12.1 - 12.9 Ω [at 20°C (68°F)]

Removal and Installation INJECTOR

Refer to EM-116, "FUEL INJECTOR AND FUEL TUBE" .

UBS002M8

EC

D

Е

UBS002M7

Н

M

FUEL PUMP CIRCUIT

Description SYSTEM DESCRIPTION

PFP:17042

Sensor	Input Signal to ECM	ECM Function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*	Fuel pump	Fuel pump relay
Battery*	Battery voltage*	COILLOI	


^{*:} ECM determines the start signal status by the signals of engine speed and battery voltage.

The ECM activates the fuel pump for several seconds after the ignition switch is turned on to improve engine start ability. If the ECM receives a engine speed signal from the crankshaft position sensor (POS) and camshaft position sensor (PHASE), it knows that the engine is rotating, and causes the pump to operate. If the engine speed signal is not received when the ignition switch is ON, the engine stalls. The ECM stops pump operation and prevents battery discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

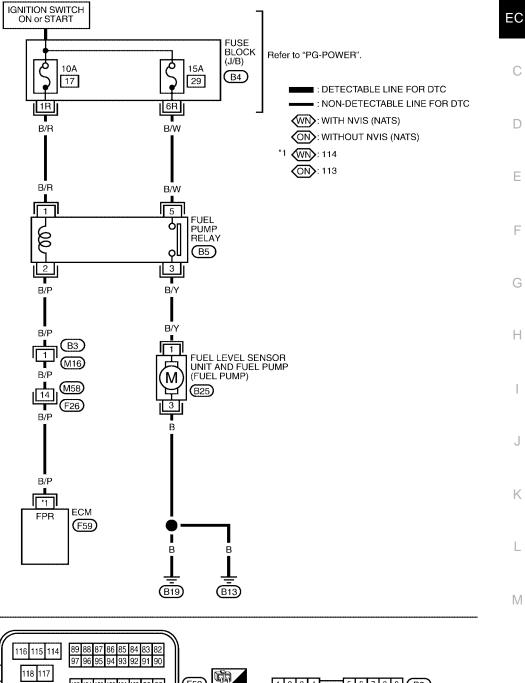
Condition	Fuel pump operation
Ignition switch is turned to ON.	Operates for 1 second.
Engine running and cranking	Operates.
When engine is stopped	Stops in 1.5 seconds.
Except as shown above	Stops.

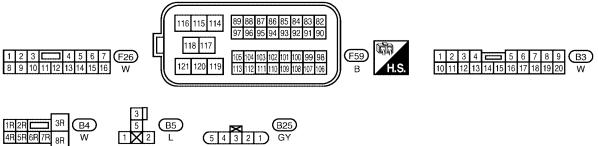
COMPONENT DESCRIPTION

A turbine type design fuel pump is used in the fuel tank.

CONSULT-II Reference Value in Data Monitor Mode

UBS002MD


Specification data are reference values.


MONITOR ITEM	CONDITION	SPECIFICATION
FUEL PUMP RLY	For 1 seconds after turning ignition switch ONEngine running or cranking	ON
	Except above conditions	OFF

Wiring Diagram

Α

EC-F/PUMP-01

BBWA0756E

Specification data are reference values and are measured between each terminal and ground.

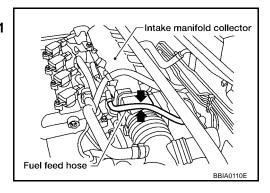
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
113 (Without NVIS)	B/P	Fuel pump relay	[Ignition switch: ON] • For 1 second after turning ignition switch ON [Engine is running]	0 - 1.0V
114 (With NVIS)		. ac. pap rolay	[Ignition switch: ON] • More than 1 second after turning ignition switch ON.	BATTERY VOLTAGE (11 - 14V)

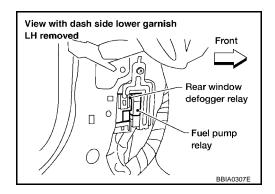
Diagnostic Procedure

1. CHECK OVERALL FUNCTION


UBS002MF

- 1. Turn ignition switch ON.
- Pinch fuel feed hose with two fingers.
 Fuel pressure pulsation should be felt on the fuel hose for 1 second after ignition switch is turned ON.

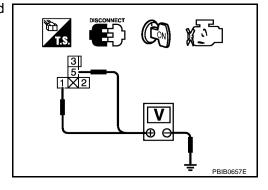
OK or NG


OK >> INSPECTION END

NG >> GO TO 2.

2. CHECK FUEL PUMP RELAY POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect fuel pump relay.
- 3. Turn ignition switch ON.



4. Check voltage between fuel pump relay terminals 1, 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. detect malfunctioning part

Check the following.

- Fuse block (J/B) connector B4
- 10A fuse
- 15A fuse
- Harness for open or short between fuse and fuel pump relay
 - >> Repair harness or connectors.

4. CHECK FUEL PUMP POWER SUPPLY AND GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect "fuel level sensor unit and fuel pump" harness connector.
- 3. Check harness continuity between fuel pump relay terminal 3 and fuel pump terminal 1, fuel pump terminal 3 and body ground.

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

$5.\,$ CHECK FUEL PUMP RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector. 1.
- 2. Check harness continuity between ECM terminal 113 or 114 and fuel pump relay terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B3, M16
- Harness connectors M58, F26
- Harness for open or short between ECM and fuel pump relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK FUEL PUMP RELAY

Refer to EC-1268, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace fuel pump relay. Rear seat access Fuel level sensor unit and fuel pump harness connector BBIA0132E

EC

Е

D

Н

UBS002MG

8. CHECK FUEL PUMP

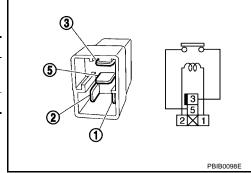
Refer to EC-1268, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace fuel pump.

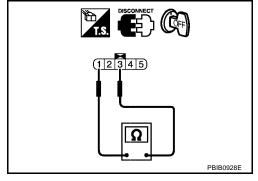
9. CHECK INTERMITTENT INCIDENT


Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection FUEL PUMP RELAY

Check continuity between terminals 3 and 5 under the following conditions.


Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

FUEL PUMP

- 1. Disconnect fuel level sensor unit and fuel pump harness connector.
- 2. Check resistance between "fuel level sensor unit and fuel pump" terminals 1 and 3.

Resistance: Approximately 1.0 Ω [at 25°C (77°F)]

Removal and Installation FUEL PUMP

UBS002MH

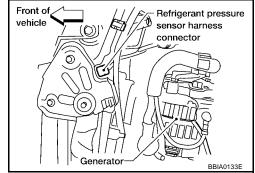
Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

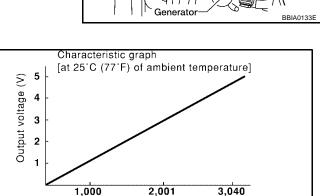
REFRIGERANT PRESSURE SENSOR

PFP:92136

Component Description

UBS002MO


Α


EC

D

Е

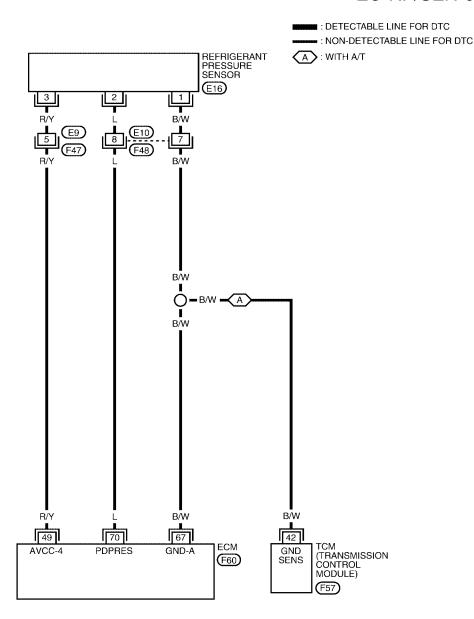
The refrigerant pressure sensor is installed at the liquid tank of the air conditioner system. The sensor uses an electrostatic volume pressure transducer to convert refrigerant pressure to voltage. The voltage signal is sent to ECM, and ECM controls cooling fan system.

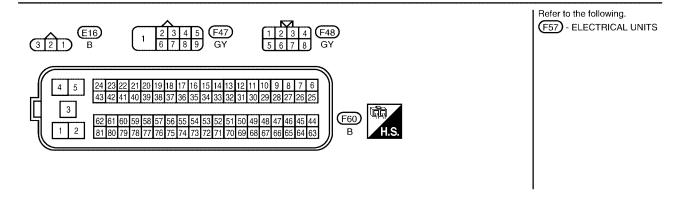
(10.00, 10.2, 145) (20.01, 20.4, 290) (30.40, 31.0, 441) Refrigerant pressure kPa (bar, kg/cm², psi) SEF099X

Connector portion

Signal processing portion
(electric circuit)

Pressure detecting portion


Pressure


Н

Wiring Diagram

JBS002MF

EC-RP/SEN-01

BBWA0712E

REFRIGERANT PRESSURE SENSOR

[QR25DE]

Specification data are reference values and are measured between each terminal and ground.

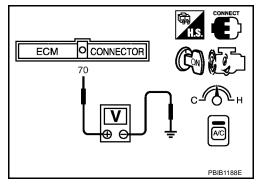
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
49	R/Y	Sensor power supply (Refrigerant pressure sensor)	[Ignition switch: ON]	Approximately 5V
67	B/W	Sensor's ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
70	L	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower switch are ON (Compressor operates.) 	1.0 - 4.0V

Diagnostic Procedure

1. CHECK REFRIGERANT PRESSURE SENSOR OVERALL FUNCTION


- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn A/C switch and blower switch ON.
- Check voltage between ECM terminal 70 and ground with CON-SULT-II or tester.

Voltage: 1.0 - 4.0V

OK or NG

OK >> INSPECTION END

NG >> GO TO 2.

Α

EC

C

D

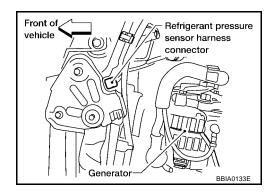
Е

_ F

UBS002MQ

Н

ı

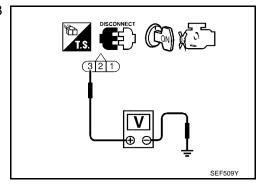

J

K

M

2. CHECK REFRIGERANT PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn A/C switch and blower switch OFF.
- 2. Stop engine.
- 3. Disconnect refrigerant pressure sensor harness connector.
- 4. Turn ignition switch ON.



5. Check voltage between refrigerant pressure sensor terminal 3 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E9, F47
- Harness for open or short between ECM and refrigerant pressure sensor
 - >> Repair harness or connectors.

4. CHECK REFRIGERANT PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect TCM harness connector (A/T models).
- 4. Check harness continuity between refrigerant pressure sensor terminal 1 and ECM terminal 67, TCM terminal 42.

Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

REFRIGERANT PRESSURE SENSOR

[QR25DE]

M

5. detect malfunctioning part	Δ
Check the following.	
 Harness connectors E10, F48 	
 Harness for open or short between ECM and refrigerant pressure sensor 	EC
Harness for open or short between TCM and refrigerant pressure sensor	
>> Repair open circuit or short to ground or short to power in harness or connectors.	С
6. CHECK REFRIGERANT PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	D
Disconnect ECM harness connector.	
Check harness continuity between ECM terminal 70 and refrigerant pressure sensor terminal 2. Refer to Wiring Diagram.	Е
Continuity should exist.	
3. Also check harness for short to ground and short to power.	F
OK or NG	
OK >> GO TO 8. NG >> GO TO 7.	
	G
7. DETECT MALFUNCTIONING PART	
Check the following.	Н
 Harness connectors E10, F48 	
Harness for open or short between ECM and refrigerant pressure sensor	1
>> Repair open circuit or short to ground or short to power in harness or connectors.	
8. CHECK INTERMITTENT INCIDENT	J
Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	
OK or NG	K
OK >> Replace refrigerant pressure sensor. NG >> Repair or replace.	
	SS002MR
REFRIGERANT PRESSURE SENSOR	
Refer to MTC-82, "REFRIGERANT LINES".	M

[QR25DE]

ELECTRICAL LOAD SIGNAL

PFP:25350

CONSULT-II Reference Value in Data Monitor Mode

UBS002MS

Specification data are reference values.

MONITOR ITEM	MONITOR ITEM CONDITION		SPECIFICATION
LOAD SIGNAL	Ignition switch: ON	Rear window defogger switch is ON and/or lighting switch is in 2nd.	ON
		Rear window defogger switch is OFF and lighting switch is OFF.	ON

Wiring Diagram UBS002MT A/T MODELS ULEV AND M/T MODELS Α EC-LOAD-01 **BATTERY** EC : DETECTABLE LINE FOR DTC FUSE AND REFER TO "PG-POWER". FUSIBLE LINK BOX : NON-DETECTABLE LINE FOR DTC 40 **E**23 C 8 D COMBINATION SWITCH (LIGHTING SWITCH) OFF 2ND (E114), (E115) Е 1ST LOW HIGH PASS 10 9 R/B Н K P/U (M58) DIODE-3 (M55) 84 ECM M LOAD 1 (F59) P/U **1** 4 5 6 7 **F**26 1 2 3 3 1 9 6 2 BR 11 5 10 12 BR 116 115 114 118 117 (F59) 121 120 119

BBWA0765E

[QR25DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

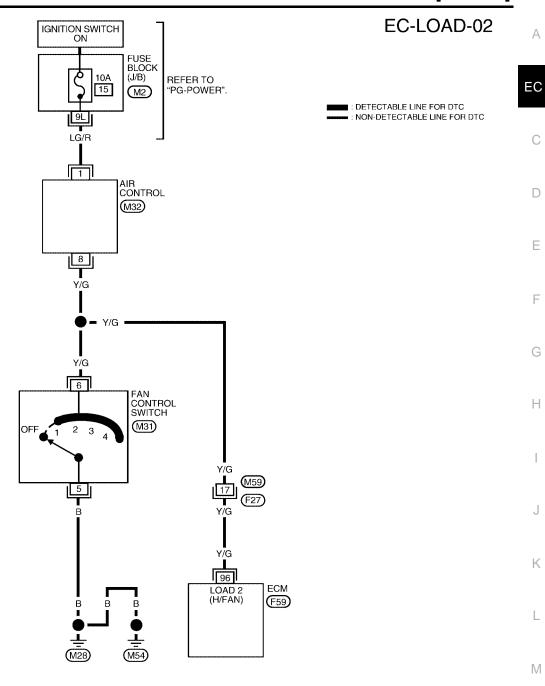
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
84 P/U	P/U	Electrical load signal	[Ignition switch: ON] • Lighting switch is 2ND position	BATTERY VOLTAGE (11 - 14V)
04	F/0	(Headlamp signal)	[Ignition switch: ON] • Lighting switch is OFF	Approximately 0V

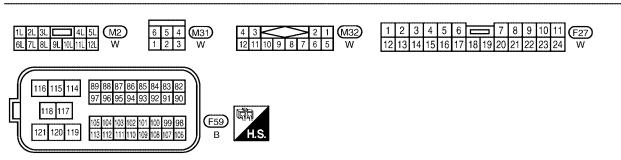
[QR25DE]

Α

C

D


Е

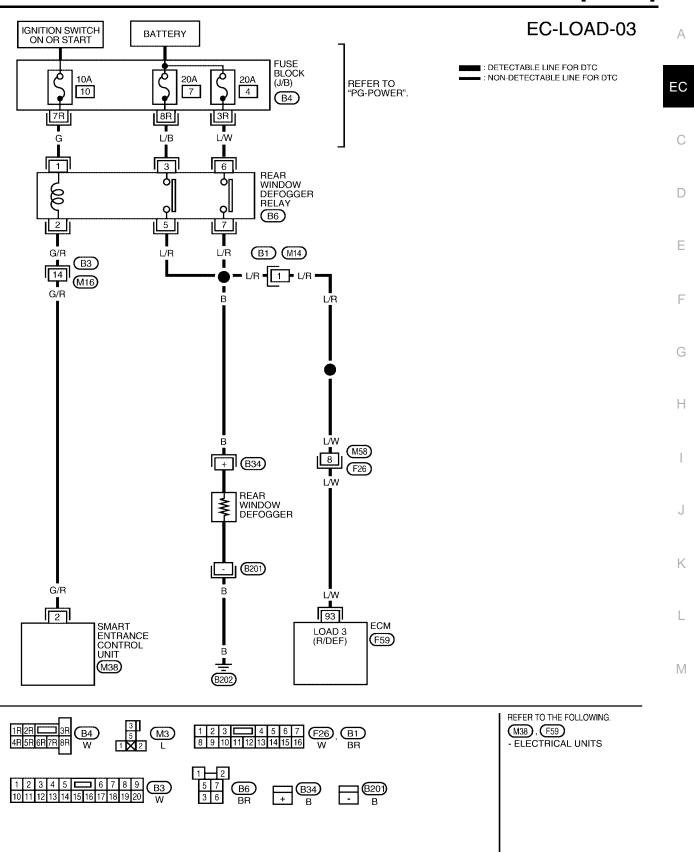

F

Н

K

M

BBWA0758E


[QR25DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
00 1/10		[Engine is running] ● Heater fan switch ON	Approximately 0V	
96	Y/G	Heater fan switch	[Engine is running] • Heater fan switch OFF	Approximately 5V

BBWA0766E

[QR25DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
93 L/	L/W	Electrical load signal	[Ignition switch: ON] • Rear window defogger switch is ON	BATTERY VOLTAGE (11 - 14V)
93	L/VV	(Rear window defogger signal)	[Ignition switch: ON] • Rear window defogger switch is OFF	Approximately 0V

A/T MODELS EXCEPT ULEV Α EC-LOAD-01 BATTERY ■ : DETECTABLE LINE FOR DTC **FUSE AND** REFER TO "PG-POWER". FUSIBLE LINK BOX EC ■ : NON-DETECTABLE LINE FOR DTC 40 (E23) U : FOR USA N: FOR CANADA C COMBINATION SWITCH (LIGHTING SWITCH) D OFF 2ND E114), E115) 1ST Е LOW HIGH PASS 10 R/Y R/B R/B 5_ DAYTIME LIGHT Н CONTROL (E105) 6 $\langle \overline{N} \rangle$ R/L U __ R/B __ (R/B: (U) $R/L: \langle N \rangle$ 14 K P/U (M58) (F26) DIODE-3 P/U (M55) 84 ECM 2 LOAD 1 (F59) M P/U 6 5 E105 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1T 2T **E23** 4 5 6 7 E108 8 - 7 E114 **E**115 3 1 9 6 2 BR 11 5 10 12 BR GY w 89 88 87 86 85 84 83 82 116 115 114

BBWA0763E

(F59)

1 4 5 6 7 **F**26

8 9 10 11 12 13 14 15 16

118 117

121 120 119

[QR25DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

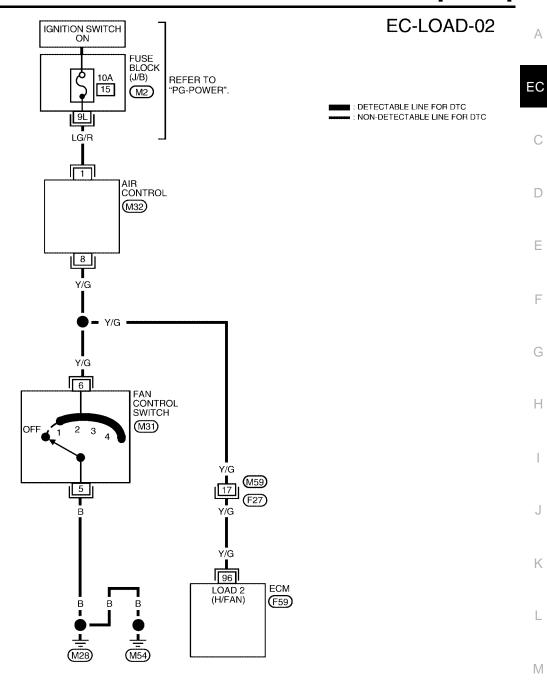
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
84	P/U Electrical load signal (Headlamp signal)	Electrical load signal	[Ignition switch: ON] • Lighting switch is 2ND position	BATTERY VOLTAGE (11 - 14V)
		[Ignition switch: ON] • Lighting switch is OFF	Approximately 0V	

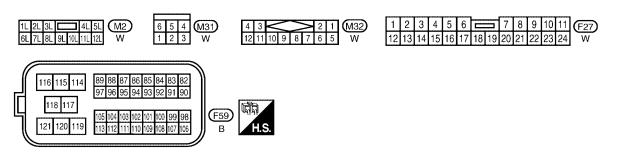
[QR25DE]

Α

C

D


Е

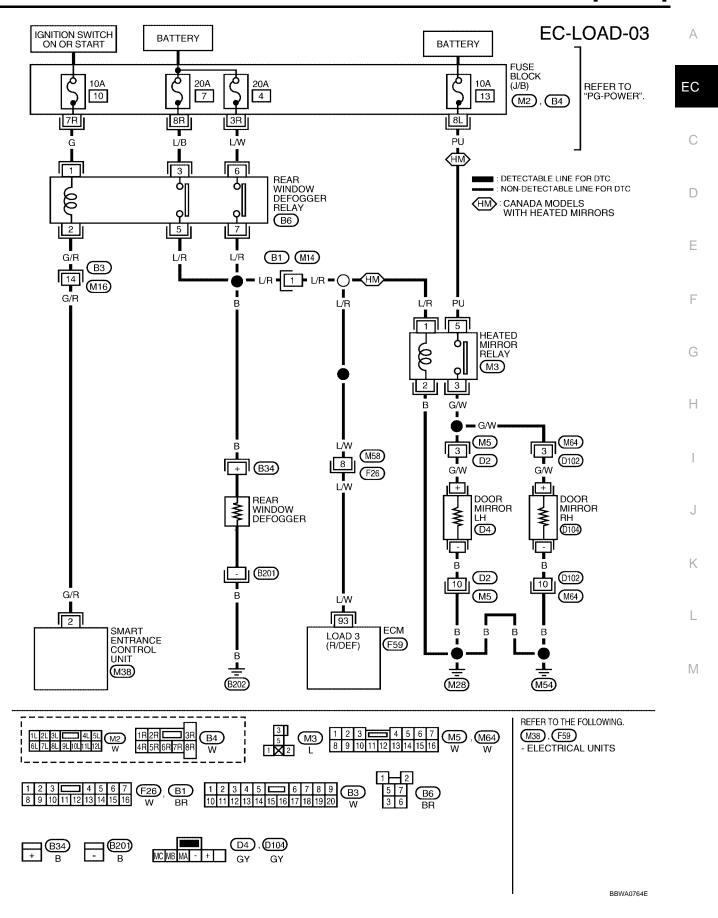

F

Н

K

M

BBWA0758E


[QR25DE]

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
96 Y/G	V/C	Y/G Heater fan switch	[Engine is running] ● Heater fan switch ON	Approximately 0V
	neater fair Switch	[Engine is running] • Heater fan switch OFF	Approximately 5V	

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
93	Electrical load signal (Rear window defogger signal)	j j	[Ignition switch: ON] • Rear window defogger switch is ON	BATTERY VOLTAGE (11 - 14V)
		[Ignition switch: ON] • Rear window defogger switch is OFF	Approximately 0V	

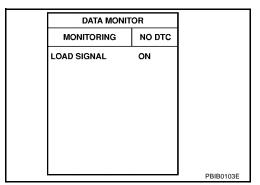
Diagnostic Procedure

LIBS002MLI

1. INSPECTION START

Do you have CONSULT-II?

Yes or No


Yes >> GO TO 2. No >> GO TO 3.

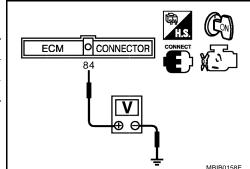
2. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-1

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Check "LOAD SIGNAL" in "DATA MONITOR" mode with CON-SULT-II under the following conditions.

Condition	LOAD SIGNAL
Lighting switch: ON at 2nd position	ON
Lighting switch: OFF	OFF

OK or NG


OK >> GO TO 4. NG >> GO TO 8.

3. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-1

Without CONSULT-II

- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminal 84 and ground under the following conditions.

Condition	Voltage
Lighting switch: ON at 2nd position	BATTERY VOLTAGE
Lighting switch: OFF	0V

OK or NG

OK >> GO TO 5. NG >> GO TO 8.

4. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-2

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Check "LOAD SIGNAL" in "DATA MONITOR" mode with CON-SULT-II under the following conditions.

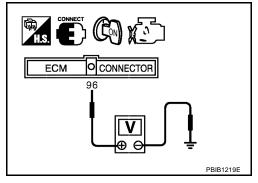
Condition	LOAD SIGNAL
FAN control switch: ON in any position	ON
FAN control switch: OFF	OFF

DATA MONITOR MONITORING NO DTC LOAD SIGNAL ON PBIB0103E

OK or NG

>> GO TO 6. OK NG >> GO TO 13.

5. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-2


⋈ Without CONSULT-II

- 1. Turn ignition switch ON.
- Check voltage between ECM terminal 96 and ground under the following conditions.

Condition	Voltage
FAN control switch: ON in any position	Approximately 0V
FAN control switch: OFF	Approximately 5V

OK or NG

OK >> GO TO 7. NG >> GO TO 13.

6. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-3

(II) With CONSULT-II

- 1. Turn ignition switch ON.
- Check "LOAD SIGNAL" in "DATA MONITOR" mode with CON-SULT-II under the following conditions.

Condition	LOAD SIGNAL
Rear window defogger switch: ON	ON
Rear window defogger switch: OFF	OFF

OK or NG

OK >> INSPECTION END.

NG >> GO TO 16.

DATA MONITOR		
MONITORING	NO DTC	
LOAD SIGNAL	ON	
		PBIB0103

EC

Α

D

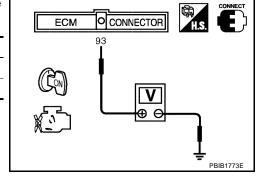
Е

Н

M

7. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-3

Without CONSULT-II


- Turn ignition switch ON.
- Check voltage between ECM terminal 93 and ground under the following conditions.

Condition	Voltage
Rear window defogger switch: ON	BATTERY VOLTAGE
Rear window defogger switch: OFF	Approximately 0V

OK or NG

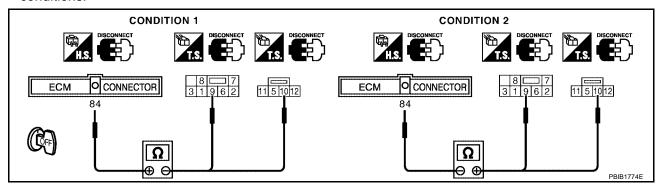
OK >> INSPECTION END.

NG >> GO TO 16.

8. CHECK HEADLAMP FUNCTION

- Start engine. 1.
- Turn the lighting switch ON at 2nd position.
- 3. Check that headlamps are illuminated.

OK or NG


OK (Models for USA)>>GO TO 9.

OK (Models for Canada)>>GO TO 11.

>> Refer to LT-6, "HEADLAMP (FOR USA)" or LT-10, "HEADLAMP (FOR CANADA) — DAYTIME NG LIGHT SYSTEM —".

9. CHECK HEADLAMP INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Stop engine.
- 2. Disconnect ECM harness connector.
- 3. Disconnect lighting switch harness connectors.
- 4. Check harness continuity between ECM terminal 84 and lighting switch terminal 9, 10 under the following conditions.

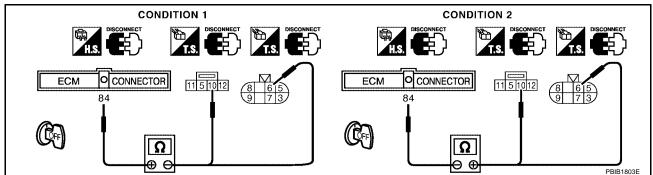
Condition	Continuity
1	Should exist
2	Should not exist

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 19.

NG >> GO TO 10.


10. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M19
- Harness connectors M58, F26
- Diode M55
- Harness for open and short between ECM and lighting switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

11. CHECK HEADLAMP INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Stop engine.
- 2. Disconnect ECM harness connector.
- Disconnect lighting switch harness connector E114.
 Disconnect daytime light control unit harness connector.
- 4. Check harness continuity between ECM terminal 84 and lighting switch terminal 10, daytime light control unit terminal 6 under the following conditions.

Condition	Continuity
1	Should exist
2	Should not exist

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 19. NG >> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E108, M19
- Harness connectors M58, F26
- Diode M55
- Harness for open and short between ECM and lighting switch
- Harness for open and short between ECM and daytime light control unit
- Harness for open and short between daytime light control unit and lighting switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

Е

D

_

Н

<

M

13. CHECK HEATER FAN SWITCH FUNCTION

- 1. Start engine.
- 2. Turn the heater fan switch ON in any position.
- 3. Check that heater fan turns properly.

OK or NG

OK >> GO TO 14.

NG >> Refer to MTC-19, "TROUBLE DIAGNOSIS"

14. CHECK HEATER FAN INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Stop engine.
- 2. Disconnect ECM harness connector.
- 3. Disconnect air control connector.
- 4. Check harness continuity between ECM terminal 96 and air control terminal 8, fan control switch terminal 6.

Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 19. NG >> GO TO 15.

15. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness for open or short between ECM and air control, fan control switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

16. CHECK REAR WINDOW DEFOGGER FUNCTION

- 1. Start engine.
- 2. Turn ON the rear window defogger switch.
- 3. Check the rear windshield. Is the rear windshield heated up?

Yes or No

Yes >> GO TO 17.

No >> Refer to <u>GW-17</u>, "<u>REAR WINDOW DEFOGGER</u>"

17. CHECK REAR WINDOW DEFOGGER INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Stop engine.
- 2. Disconnect ECM harness connector.
- Disconnect rear window defogger relay.
- 4. Check harness continuity between ECM terminal 93 and rear window defogger relay terminals 5, 7. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 19.

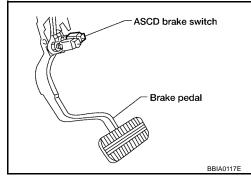
NG >> GO TO 18.

[QR25DE]

 \mathbb{N}

[4:/-05-]	i
18. DETECT MALFUNCTIONING PART	A
Check the following. Harness connectors B1, M14 Harness connectors M58, F26 Harness for open or short between ECM and rear window defogger relay.	EC
>> Repair open circuit or short to ground or short to power in harness or connectors.	С
19. CHECK INTERMITTENT INCIDENT	D
Perform EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .	- D
>> INSPECTION END	Е
	F
	G
	Н
	I
	J
	K
	L

ASCD BRAKE SWITCH


PFP:25320

Component Description

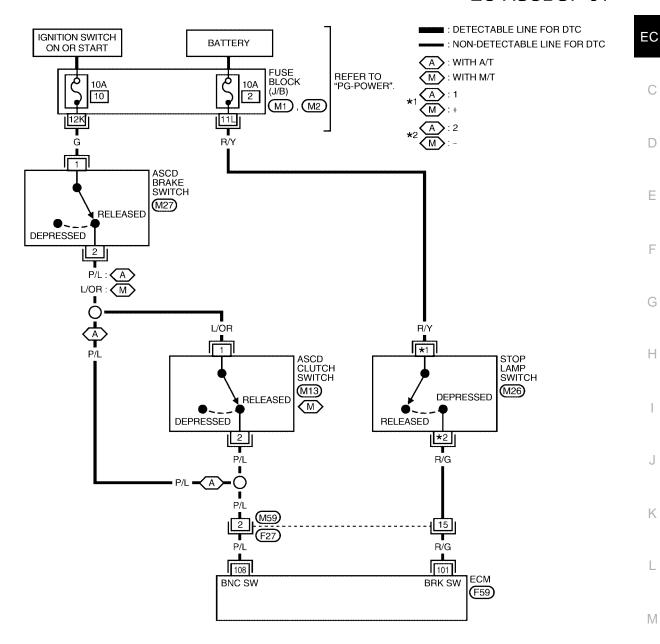
UBS002MV

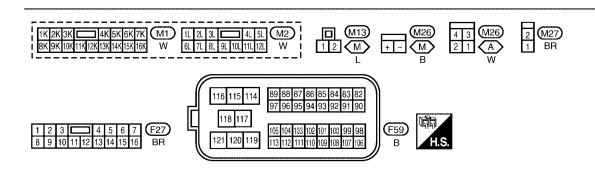
When depress on the brake pedal, ASCD brake switch is turned OFF and stop lamp switch is turned ON. ECM detects the state of the brake pedal by this input of two kinds (ON/OFF signal)

Refer to <u>EC-1319</u>, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for the ASCD function.

CONSULT-II Reference Value in Data Monitor Mode

UBS002MW


Specification data are reference values.


MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW1		Brake pedal: Fully released	ON
(ASCD brake switch)	Ignition switch: ON	Brake pedal: Slightly depressed	OFF
BRAKE SW2	Ignition switch: ON	Brake pedal: Fully released	OFF
(Stop lamp switch)		Brake pedal: Depressed	ON

Wiring Diagram

Α

EC-ASCBOF-01

BBWA0316E

UBS002MY

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)		
			[Engine is running]	Approximately 0V		
101	R/G	Stop lamp switch	Brake pedal fully released			
101	100	Ctop lamp ownor	[Engine is running]	BATTERY VOLTAGE		
			Brake pedal slightly depressed	(11 - 14V)		
			[Ignition switch: ON]			
			Brake pedal is depressed	Approximately 0V		
108	ASCD broke quitch		B P/L	ASCD brake switch	Clutch pedal is depressed (M/T)	
100	F/L	ASCD blake switch	[Ignition switch: ON]			
			Brake pedal is fully released	BATTERY VOLTAGE (11 - 14V)		
			Clutch pedal is fully released (M/T)	(11 - 14 v)		

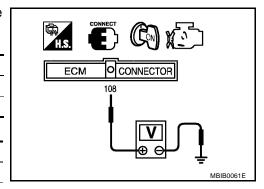
Diagnostic Procedure

1. CHECK OVERALL FUNCTION-I

(I) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "BRAKE SW1" in "DATA MONITOR" mode with CON-SULT-II.
- Check "BRAKE SW1" indication under the following conditions.
 M/T models

INDICATION
OFF
ON
INDICATION
OFF
ON


DATA MONITOR	
MONITOR	NO DTC
BRAKE SW1	OFF

⋈ Without CONSULT-II

- Turn ignition switch ON.
- 2. Check voltage between ECM terminal 108 and ground under the following conditions.

M/T models

CONDITION	VOLTAGE
When clutch pedal or brake pedal is depressed	Approximately 0V
When clutch pedal and brake pedal are fully released	Battery voltage
A/T models	
CONDITION	VOLTAGE
When brake pedal is depressed	Approximately 0V
When brake pedal is fully released	Battery voltage

OK or NG

OK >> GO TO 2.

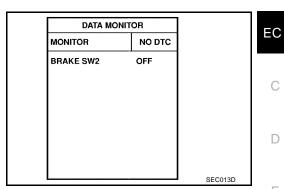
NG (M/T models) >>GO TO 3.

NG (A/T models) >>GO TO 4.

Α

D

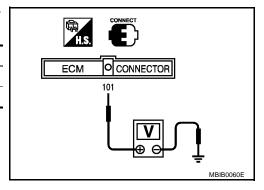
Е


Н

2. CHECK OVERALL FUNCTION-II

(P) With CONSULT-II

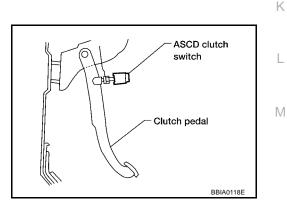
Check "BRAKE SW2" indication in "DATA MONITOR" mode.


CONDITION	INDICATION
When brake pedal is released	OFF
When brake pedal is depressed	ON

⋈ Without CONSULT-II

Check voltage between ECM terminal 101 and ground under the following conditions.

CONDITION	VOLTAGE
When brake pedal is released	Approximately 0V
When brake pedal is depressed	Battery voltage

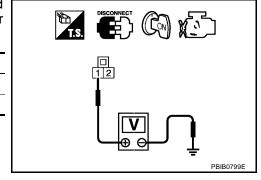

OK or NG

OK >> INSPECTION END

NG >> GO TO 13.

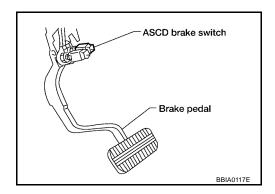
3. CHECK ASCD BRAKE SWITCH CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD clutch switch harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between ASCD clutch switch terminal 1 and ground under the following conditions with CONSULT-II or tester.

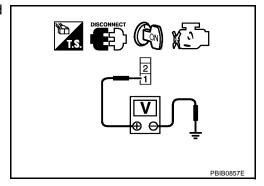
CONDITION	VOLTAGE
When brake pedal is released	Battery voltage
When brake pedal is depressed	Approx. 0V


OK or NG

OK >> GO TO 10. NG >> GO TO 4.

4. CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch harness connector.
- Turn ignition switch ON.



4. Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK (M/T models)>>GO TO 6. OK (A/T models)>> GO TO 7. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector M1
- 10A fuse
- Harness for open or short between ASCD brake switch and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

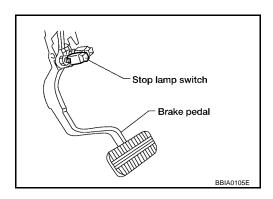
- Turn ignition switch OFF.
- Check harness continuity between ASCD brake switch terminal 2 and ASCD clutch switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

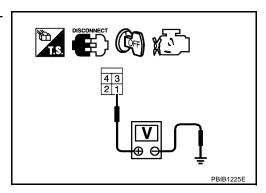
3. Also check harness for short to ground and short to power.

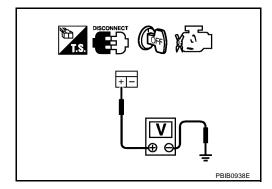
OK or NG

OK >> GO TO 9.


NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	_
Turn ignition switch OFF.	
2. Disconnect ECM harness connector.	
Check harness continuity between ECM terminal 108 and ASCD brake switch terminal 2. Refer to Wiring Diagram.	
Continuity should exist.	
4. Also check harness for short to ground or short to power.	
OK or NG	
OK >> GO TO 9. NG >> GO TO 8.	
8. detect malfunctioning part	
Check the following.	
Harness connectors M59, F27	
Harness for open or short between ECM and ASCD brake switch	
>> Repair open circuit or short to ground or short to power in harness or connectors.	
9. CHECK ASCD BRAKE SWITCH	
Refer to EC-1190, "Component Inspection" .	
OK or NG	
OK >> GO TO 18. NG >> Replace ASCD brake switch.	
10. CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	
Turn ignition switch OFF.	
2. Disconnect ECM harness connector.	
Check harness continuity between ECM terminal 108 and ASCD clutch switch terminal 2. Refer to Wiring Diagram.	
Continuity should exist.	
 Also check harness for short to ground or short to power. OK or NG 	
OK >> GO TO 12.	
NG >> GO TO 11.	
11. DETECT MALFUNCTIONING PART	
Check the following.	
Harness connectors M59, F27	
Harness for open or short between ECM and ASCD clutch switch	
>> Repair open circuit or short to ground or short to power in harness or connectors.	
12. CHECK ASCD CLUTCH SWITCH	
Refer to EC-1190, "Component Inspection".	
OK or NG	


OK NG >> GO TO 18. >> Replace ASCD clutch switch.


13. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch harness connector.

3. Check voltage between stop lamp switch terminal 1 (A/T models) or + (M/T models) and ground with CONSULT -II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 15. NG >> GO TO 14.

14. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector M2
- 10A fuse
- Harness for open or short between stop lamp switch and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

ASCD BRAKE SWITCH

[QR25DE]

 \mathbb{N}

15. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	А
 Disconnect ECM harness connector. Check harness continuity between ECM terminal 101 and stop lamp switch terminal 2 (A/T models) or - (M/T models). Refer to Wiring Diagram. 	EC
Continuity should exist. 3. Also check harness for short to ground and short to power. OK or NG	С
OK >> GO TO 17. NG >> GO TO 16.	D
16. DETECT MALFUNCTIONING PART	Е
 Check the following. Harness connectors M59, F27 Harness for open or short between ECM and stop lamp switch 	F
>> Repair open circuit or short to ground or short to power in harness or connectors. 17. CHECK STOP LAMP SWITCH	G
Refer to EC-1190, "Component Inspection" . OK or NG	Н
OK >> GO TO 18. NG >> Replace stop lamp switch.	I
18. CHECK INTERMITTENT INCIDENT	
Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .	J
>> INSPECTION END	K
	L

ASCD INDICATOR

PFP:24814

Component Description

UBS002MZ

ASCD indicator lamp illuminates to indicate ASCD operation status. Lamp has two indicators, CRUISE and SET, and is integrated in unified meter and A/C amp.

CRUISE indicator illuminates when CRUISE switch on ASCD steering switch is turned ON to indicated that ASCD system is ready for operation.

SET indicator illuminates when following conditions are met.

- CRUISE indicator is illuminated.
- SET switch on ASCD steering switch is turned ON while vehicle speed is within the range of ASCD setting.

SET indicator remains lit during ASCD control.

Refer to EC-1319, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for the ASCD function.

CONSULT-II Reference Value in Data Monitor Mode

UBS002N0

Specification data are reference value.

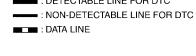
MONITOR ITEM	CONDITION		SPECIFICATION
CRUISE LAMP	Ignition switch: ON	CRUISE switch: Pressed	Illuminated
		CRUISE switch: Released	Not illmivnated
SET LAMP	Ignition switch: ON	COAST/SET switch: Pressed	Illuminated
		COAST/SET switch: Released	Not illmivnated

IGNITION SWITCH ON or START

Wiring Diagram

EC-ASCIND-01

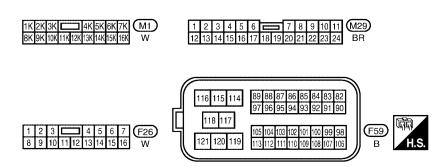
: DETECTABLE LINE FOR DTC


EC

C

D

Е


Α

FUSE BLOCK (J/B) Refer to "PG-POWER". 10A 30 M1) COMBINATION METER M29, M30 CRUISE SET

Н

M

94

CAN-H

BBWA0759E

86

CAN-L

ECM

(F59)

Diagnostic Procedure

1. CHECK OVERALL FUNCTION

Check ASCD indicator under the following conditions.

ASCD INDICATOR	CONDITION		SPECIFICATION
CRUISE LAMP	Ignition switch: ON	CRUISE switch: Pressed	Illuminated
		CRUISE switch: Released	Not illmivnated
SET LAMP	Ignition switch: ON	COAST/SET switch: Pressed	Illuminated
		COAST/SET switch: Released	Not illmivnated

OK or NG

OK >> INSPECTION END

NG >> GO TO 2.

2. CHECK DTC

Check that DTC U1000 or U1001 is not displayed.

Yes or No

Yes >> Perform trouble diagnoses for DTC U1000, U1001, refer to <u>EC-789, "DTC U1000, U1001 CAN COMMUNICATION LINE"</u>.

No >> GO TO 3.

3. CHECK COMBINATION METER OPERATION

Does combination meter operate normally?

Yes or No

Yes >> GO TO 4.

No >> Check combination meter circuit. Refer to DI-6, "Combination Meter".

4. CHECK INTERMITTENT INCIDENT

Refer to EC-781, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

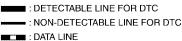
DATA LINK CONNECTOR

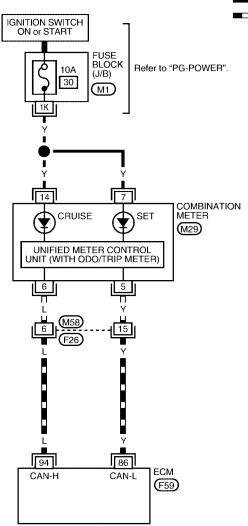
[QR25DE]

DATA LINK CONNECTOR Wiring Diagram

PFP:24814

UBS002N3


Α


EC

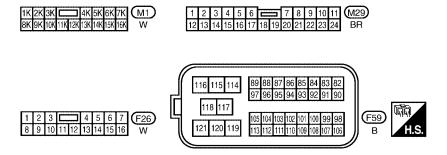
C

D

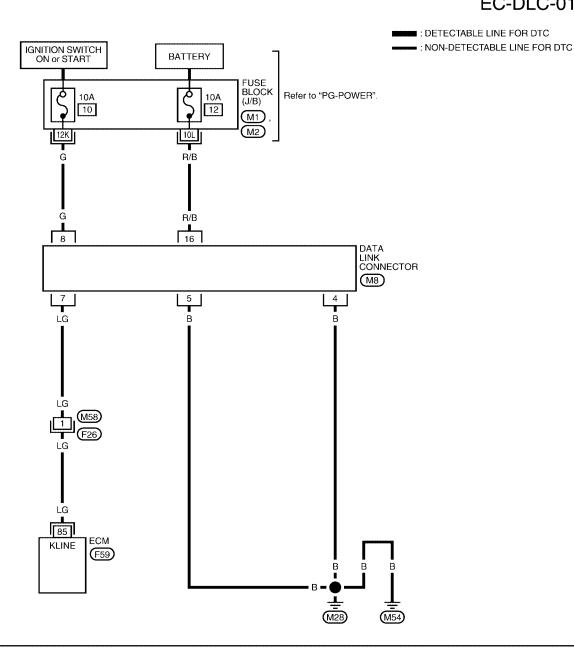
EC-MIL-01

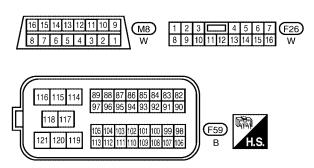
Е

F


Н

I


J

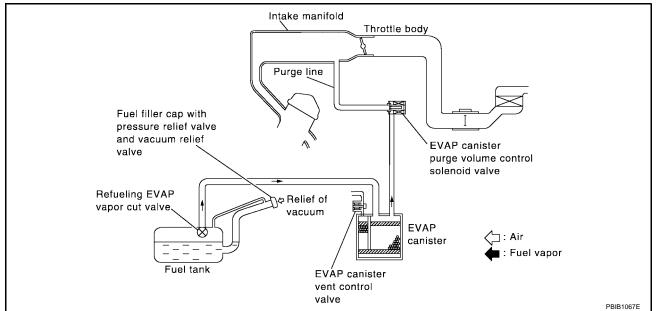

K

L

EC-DLC-01

REFER TO THE FOLLOWING. M1, M2 - FUSE BLOCK-JUNCTON BOX (J/B)

BBWA0318E


[QR25DE]

EVAPORATIVE EMISSION SYSTEM

PFP:14950

Description SYSTEM DESCRIPTION

UBS002N4

The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.

The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the vapor is stored there when the engine is not operating or when refueling to the fuel tank.

The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the engine is operating. EVAP canister purge volume control solenoid valve is controlled by ECM. When the engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is proportionally regulated as the air flow increases.

EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating and idling.

EC

Α

__

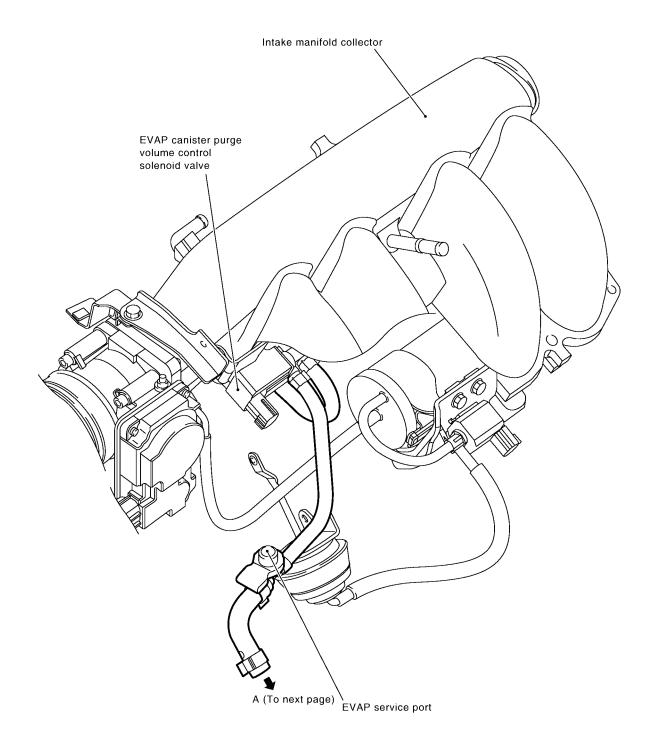
С

D

Е

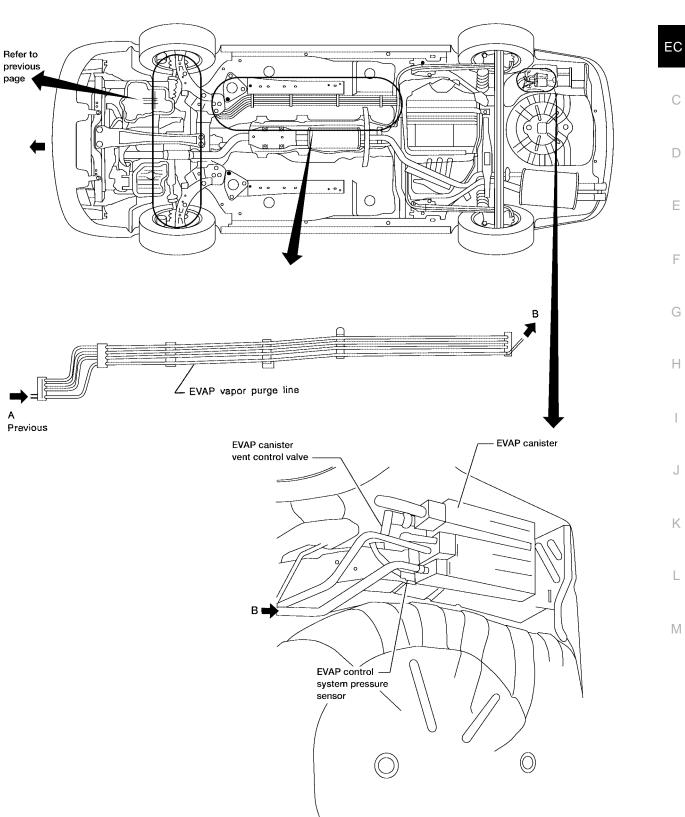
F

G


Н

ı

K

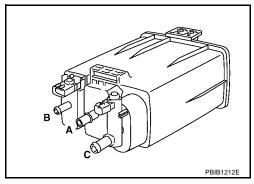

L

EVAPORATIVE EMISSION LINE DRAWING

BBIA0293E

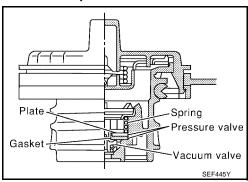
NOTE: Do not use soapy water or any type of solvent while installing vacuum hose or purge hoses.

Α


С

Component Inspection EVAP CANISTER

UBS002N5


Check EVAP canister as follows:

- 1. Block port **B**.
- 2. Blow air into port A and check that it flows freely out of port C.
- 3. Release blocked port B.
- 4. Apply vacuum pressure to port ${\bf B}$ and check that vacuum pressure exists at the ports ${\bf A}$ and ${\bf C}$.
- 5. Block port A and B.
- 6. Apply pressure to port **C** and check that there is no leakage.

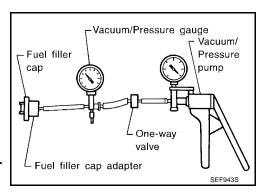
FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FULLER CAP)

1. Wipe clean valve housing.

2. Check valve opening pressure and vacuum.

Pressure: 15.3 - 20.0 kPa

(0.156 - 0.204 kg/cm², 2.22 - 2.90 psi)


Vacuum: -6.0 to -3.3 kPa

 $(-0.061 \text{ to } -0.034 \text{ kg/cm}^2, -0.87 \text{ to } -0.48 \text{ psi})$

3. If out of specification, replace fuel filler cap as an assembly.

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-963

FUEL TANK TEMPERATURE SENSOR

Refer to EC-904.

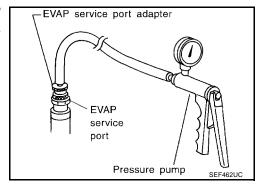
EVAP CANISTER VENT CONTROL VALVE

Refer to EC-969.

EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-976.

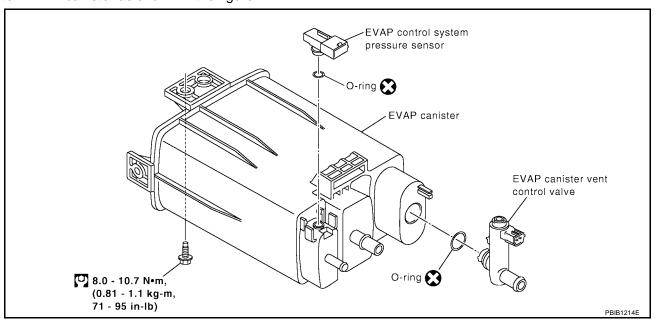
Α


EC

Е

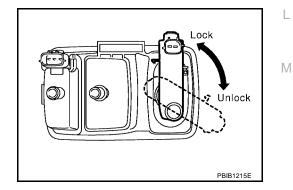
Н

EVAP SERVICE PORT


Positive pressure is delivered to the EVAP system through the EVAP service port. If fuel vapor leakage in the EVAP system occurs, use a leak detector to locate the leak.

UBS00BJG

Removal and Installation EVAP CANISTER


Tighten EVAP canister as shown in the figure.

EVAP CANISTER VENT CONTROL VALVE

- 1. Turn EVAP canister vent control valve counterclockwise.
- 2. Remove the EVAP canister vent control valve.

Do not reuse the O-ring, replace it with a new one.

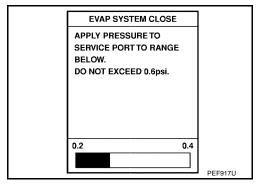
How to Detect Fuel Vapor Leakage

CAUTION:

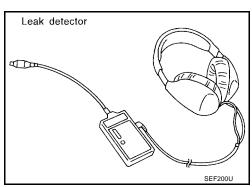
- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in EVAP system.

NOTE:

- Do not start engine.
- Improper installation of EVAP service port adapter to the EVAP service port may cause a leak.

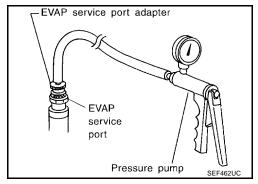

UBS002N6

(P) WITH CONSULT-II


- 1. Attach the EVAP service port adapter securely to the EVAP service port.
- 2. Also attach the pressure pump and hose to the EVAP service port adapter.
- 3. Turn ignition switch ON.
- Select the "EVAP SYSTEM CLOSE" of "WORK SUPPORT MODE" with CONSULT-II.
- 5. Touch "START". A bar graph (Pressure indicating display) will appear on the screen.

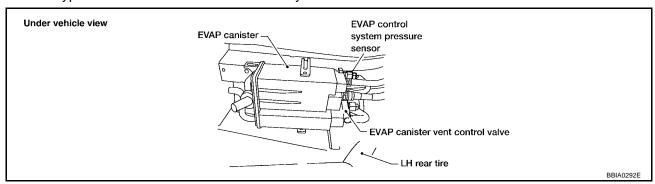
APPLY PRESSURE TO EVAP
SYSTEM FROM SERVICE
PORT USING HAND PUMP
WITH PRESSURE GAUGE AT
NEXT SCREEN.
NEVER USE COMPRESSED
AIR OR HIGH PRESSURE
PUMP!
DO NOT START ENGINE.
TOUCH START.

- 6. Apply positive pressure to the EVAP system until the pressure indicator reaches the middle of the bar graph.
- 7. Remove EVAP service port adapter and hose with pressure pump.



8. Locate the leak using a leak detector. Refer to EC-1306, "EVAP-ORATIVE EMISSION LINE DRAWING".

WITHOUT CONSULT-II


- 1. Attach the EVAP service port adapter securely to the EVAP service port.
- 2. Also attach the pressure pump with pressure gauge to the EVAP service port adapter.

EVAPORATIVE EMISSION SYSTEM

[QR25DE]

3. Apply battery voltage to between the terminals of both EVAP canister vent control valve and vacuum cut valve bypass valve to make a closed EVAP system.

- To locate the leak, deliver positive pressure to the EVAP system until pressure gauge points reach 1.38 to 2.76 kPa (0.014 to 0.028 kg/cm², 0.2 to 0.4 psi).
- 5. Remove EVAP service port adapter and hose with pressure pump.
- 6. Locate the leak using a leak detector. Refer to EC-1306, "EVAPORATIVE EMISSION LINE DRAWING" .

EC

D

_

Е

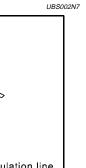
_

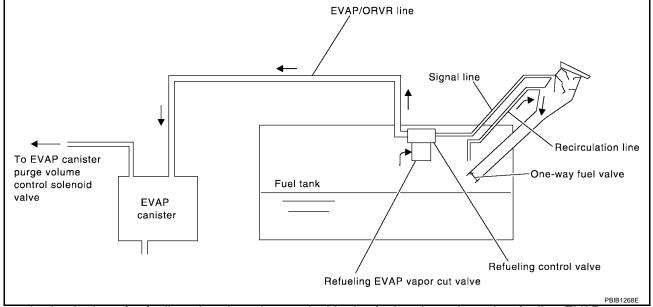
G

Н

J

<


ı


[QR25DE]

ON BOARD REFUELING VAPOR RECOVERY (ORVR)

PFP:00032

System Description

From the beginning of refueling, the air and vapor inside the fuel tank go through refueling EVAP vapor cut valve and EVAP/ORVR line to the EVAP canister. The vapor is absorbed by the EVAP canister and the air is released to the atmosphere.

When the refueling has reached the full level of the fuel tank, the refueling EVAP vapor cut valve is closed and refueling is stopped because of auto shut-off. The vapor which was absorbed by the EVAP canister is purged during driving.

WARNING:

When conducting inspections below, be sure to observe the following:

- Put a "CAUTION: INFLAMMABLE" sign in workshop.
- Do not smoke while servicing fuel system. Keep open flames and sparks away from work area.
- Be sure to furnish the workshop with a CO₂ fire extinguisher.

CAUTION:

- Before removing fuel line parts, carry out the following procedures:
- Put drained fuel in an explosion-proof container and put lid on securely.
- Release fuel pressure from fuel line. Refer to EC-687, "FUEL PRESSURE RELEASE".
- Disconnect battery ground cable.
- Always replace O-ring when the fuel gauge retainer is removed.
- Do not kink or twist hose and tube when they are installed.
- Do not tighten hose and clamps excessively to avoid damaging hoses.
- After installation, run engine and check for fuel leaks at connection.
- Do not attempt to top off the fuel tank after the fuel pump nozzle shuts off automatically. Continued refueling may cause fuel overflow, resulting in fuel spray and possibly a fire.

ON BOARD REFUELING VAPOR RECOVERY (ORVR)

[QR25DE]

Diagnostic Procedure SYMPTOM: FUEL ODOR FROM EVAP CANISTER IS STRONG.

JBS002N8

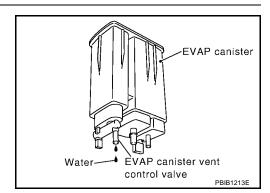
1. CHECK EVAP CANISTER

- 1. Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- or EC

Α

- 2. Weigh the EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
 - The weight should be less than 1.9 kg (4.2 lb).

OK or NG


OK >> GO TO 2. NG >> GO TO 3. D

Е

2. CHECK IF EVAP CANISTER SATURATED WITH WATER

Yes or No

Yes >> GO TO 3. No >> GO TO 5.

3. REPLACE EVAP CANISTER

Replace EVAP canister with a new one.

Does water drain from the EVAP canister?

>> GO TO 4.

J

Н

4. DETECT MALFUNCTIONING PART

Check the EVAP hose between EVAP canister and vehicle frame for clogging or poor connection.

>> Repair or replace EVAP hose.

L

5. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-1315, "Component Inspection".

OK or NG

OK >> INSPECTION END.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

EC-1313

ON BOARD REFUELING VAPOR RECOVERY (ORVR)

[QR25DE]

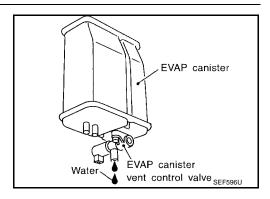
SYMPTOM: CANNOT REFUEL/FUEL ODOR FROM THE FUEL FILLER OPENING IS STRONG WHILE REFUELING.

1. CHECK EVAP CANISTER

- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- Weigh the EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 1.9 kg (4.2 lb).

OK or NG


OK >> GO TO 2. NG >> GO TO 3.

2. CHECK IF EVAP CANISTER SATURATED WITH WATER

Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 3. No >> GO TO 5.

3. REPLACE EVAP CANISTER

Replace EVAP canister with a new one.

>> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the EVAP hose between EVAP canister and vehicle frame for clogging or poor connection.

>> Repair or replace EVAP hose.

5. CHECK VENT HOSES AND VENT TUBES

Check hoses and tubes between EVAP canister and refueling control valve for clogging, kink, looseness and improper connection.

OK or NG

OK >> GO TO 6.

NG >> Repair or replace hoses and tubes.

6. CHECK FILLER NECK TUBE

Check signal line and recirculation line for clogging, dents and cracks.

OK or NG

OK >> GO TO 7.

NG >> Replace filler neck tube.

ON BOARD REFUELING VAPOR RECOVERY (ORVR)

[QR25DE]

EC

D

Е

Н

7. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-1315, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

8. CHECK FUEL FILLER TUBE

Check filler neck tube and hose connected to the fuel tank for clogging, dents and cracks.

OK or NG

OK >> GO TO 9.

NG >> Replace fuel filler tube.

9. CHECK ONE-WAY FUEL VALVE-I

Check one-way valve for clogging.

OK or NG

OK >> GO TO 10.

NG >> Repair or replace one-way fuel valve with fuel tank.

10. CHECK ONE-WAY FUEL VALVE-II

- 1. Make sure that fuel is drained from the tank.
- Remove fuel filler tube and hose.
- 3. Check one-way fuel valve for operation as follows. When a stick is inserted, the valve should open, when removing stick it should close.

Do not drop any material into the tank.

OK or NG

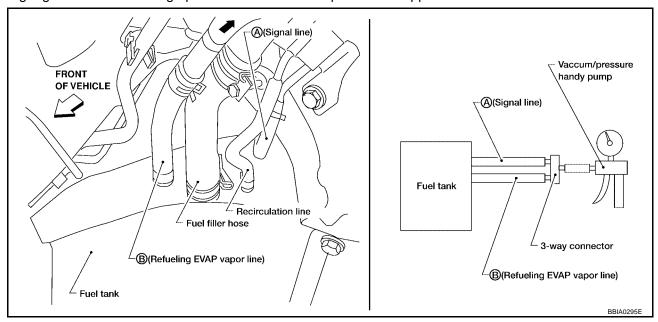
OK >> INSPECTION END

NG >> Replace fuel filler tube or replace one-way fuel valve with fuel tank.

After removing filler tube One-way fuel valve Fuel tank SEF665U

UBS002N9

Component Inspection REFUELING EVAP VAPOR CUT VALVE

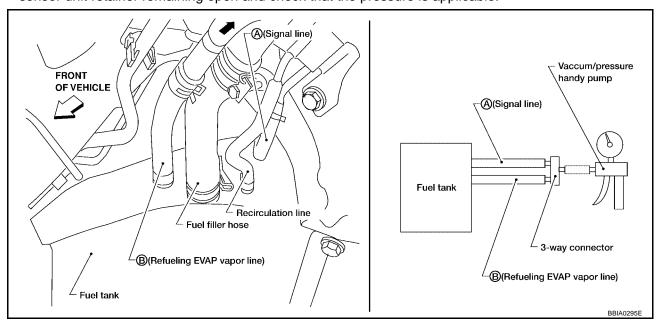

With CONSULT-II

- 1. Remove fuel tank. Refer to FL-7, "FUEL TANK".
- Drain fuel from the tank as follows:
- Remove fuel feed hose located on the fuel gauge retainer.
- Connect a spare fuel hose, one side to fuel gauge retainer where the hose was removed and the other side to a fuel container.
- Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-II.
- Check refueling EVAP vapor cut valve for being stuck to close as follows. Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- Connect vacuum pump to hose ends **A** and **B** using a suitable 3-way connector.
- Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

Put fuel tank upside down.

- Apply vacuum pressure to both hose ends **A** and **B** [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.



With GST

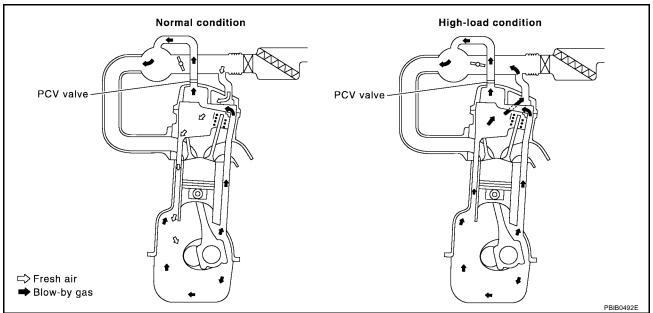
- Remove fuel tank. Refer to <u>FL-7</u>, "<u>FUEL TANK</u>".
- 2. Drain fuel from the tank as follows:
- Remove fuel level sensor unit retainer.
- Drain fuel from the tank using a handy pump into a fuel container.
- Check refueling EVAP vapor cut valve for being stuck closed as follows.
 Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck open as follows.
- Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- Remove fuel level sensor unit retainer with fuel level sensor unit.

Always replace O-ring with new one.

- Put fuel tank upside down.
- Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel level sensor unit retainer remaining open and check that the pressure is applicable.

[QR25DE]

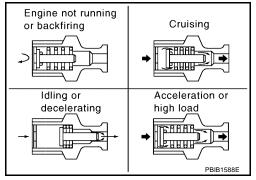
POSITIVE CRANKCASE VENTILATION


PFP:11810

Description SYSTEM DESCRIPTION

UBS002NA

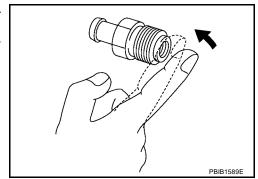
EC


Е

This system returns blow-by gas to the intake manifold.

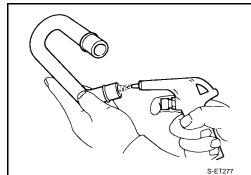
The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake manifold. During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve. Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air. The ventilating air is then drawn from the air inlet tubes into the crankcase. In this process the air passes through the hose connecting air inlet tubes to rocker cover. Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve. The flow goes through the hose connection in the reverse direction.

On vehicles with an excessively high blow-by, the valve does not meet the requirement. This is because some of the flow will go through the hose connection to the air inlet tubes under all conditions.



UBS002NB

M


Component Inspection PCV (POSITIVE CRANKCASE VENTILATION) VALVE

With engine running at idle, remove PCV valve from rocker cover. A properly working valve makes a hissing noise as air passes through it. A strong vacuum should be felt immediately when a finger is placed over valve inlet.

PCV VALVE VENTILATION HOSE

- 1. Check hoses and hose connections for leaks.
- 2. Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

[QR25DE]

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

PFP:18930

System Description INPUT/OUTPUT SIGNAL CHART

UBS002NC

Sensor	Input signal to ECM	ECM function	Actuator		
ASCD brake switch	Brake pedal operation	ASCD vehicle speed control			
Stop lamp switch	Brake pedal operation				
ASCD clutch switch (MT models)	Clutch pedal operation				
ASCD steering switch	ASCD steering switch operation		ASCD vehicle speed control	Electric throttle control	
Park/Neutral position (PNP) switch (AT models)	Gear position		actuator		
Combination meter	Vehicle speed				
TCM	Power train revolution				

BASIC ASCD SYSTEM

Refer to Owner's Manual for ASCD operating instructions.

Automatic Speed Control Device (ASCD) allows a driver to keep vehicle at predetermined constant speed without depressing accelerator pedal. Driver can set vehicle speed in advance between approximately 40 km/ h (25 MPH) and 144 km/h (89 MPH).

ECM controls throttle angle of electric throttle control actuator to regulate engine speed.

Operation status of ASCD is indicated by CRUISE indicator and SET indicator in combination meter. If any malfunction occurs in ASCD system, it automatically deactivates control.

Always drive vehicle in safe manner according to traffic conditions and obey all traffic laws.

SET OPERATION

Press ASCD CRUISE switch (Main switch). (The CRUISE indicator in combination meter illuminates.) When vehicle speed reaches a desired speed between approximately 40 km/h (25 MPH) and 144 km/h (89 MPH), press SET switch. (Then SET indicator in combination meter illuminates.)

ACCEL OPERATION

If the RESUME/ACCEL switch is depressed during cruise control driving, increase the vehicle speed until the switch is released or vehicle speed reaches maximum speed controlled by the system. And then ASCD will keep the new set speed.

CANCEL OPERATION

When any of following conditions exist, cruise operation will be canceled.

- CANCEL switch is pressed
- Brake pedal is depressed
- Clutch pedal is depressed (M/T models)
- A/T selector lever is shifted to P or N position (A/T models)

If MAIN switch is turned to OFF during ASCD is activated, all of ASCD operations will be canceled and vehicle speed memory will be erased.

COAST OPERATION

When the SET/COAST switch is pressed during cruise control driving, decrease vehicle set speed until the switch is released. And then ASCD will keep the new set speed.

RESUME OPERATION

When the RESUME/ACCEL switch is pressed after cancel operation other than pressing MAIN switch is performed, vehicle speed will return to last set speed. To resume vehicle set speed, vehicle condition must meet following conditions.

- Brake pedal is released.
- Clutch pedal is released (M/T models)
- A/T selector lever is in other than P and N positions (A/T models)
- Vehicle speed is greater than 40 km/h (25 MPH) and less than 144 km/h (89 MPH)

EC-1319

ΞC

Α

D

Е

Н

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

[QR25DE]

UBS002ND

Component Description ASCD STEERING SWITCH

Refer to EC-1174.

ASCD BRAKE SWITCH

Refer to EC-1181.

ASCD CLUTCH SWITCH

Refer to EC-1181.

STOP LAMP SWITCH

Refer to <u>EC-1181</u>.

ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EC-1043.

ASCD INDICATOR

Refer to EC-1300.

SERVICE DATA AND SPECIFICATIONS (SDS)

[QR25DE]

SERVICE DATA AND SPECIFICATIONS (SDS) PFP:00030 Α **Fuel Pressure** UBS002NE Fuel pressure at idle Approximately 350 kPa (3.57kg/cm², 51psi) EC Idle Speed and Ignition Timing UBS002NE Target idle speed No-load*1 (in P or N position) 700±50 rpm Air conditioner: ON In P or N position 800 rpm or more Ignition timing In P or N position 15°±5° BTDC *1: Under the following conditions: Air conditioner switch: OFF Electric load: OFF (Lights, heater fan & rear window defogger) Steering wheel: Kept in straight-ahead position Calculated Load Value UBS002NG Calculated load value % (Using CONSULT-II or GST) At idle 10 - 35 10 - 35 At 2,500 rpm **Mass Air Flow Sensor** UBS002NH Supply voltage Battery voltage (11 - 14V) 0.8 - 1.3*V Output voltage at idle 1.0 - 4.0 g·m/sec at idle* Mass air flow (Using CONSULT-II or GST) 4.0 - 10.0 g·m/sec at 2,500 rpm* *: Engine is warmed up to normal operating temperature and running under no-load. Intake Air Temperature Sensor UBS002NI Temperature °C (°F) Resistance $k\Omega$ 25 (77) 1.9 - 2.180 (176) 0.31 - 0.37**Engine Coolant Temperature Sensor** UBS002NJ Temperature °C (°F) Resistance $k\Omega$ 20 (68) 2.1 - 2.950 (122) 0.68 - 1.0090 (194) 0.236 - 0.260 Heated Oxygen Sensor 1 Heater UBS002NK Resistance [at 25°C (77°F)] $3.3 - 4.0\Omega$ Air Fuel Ratio (A/F) Sensor 1 Heater UBS00BJH Resistance [at 25°C (77°F)] Ω 2.3 - 4.3Heated Oxygen Sensor 2 Heater UBS002NL Resistance [at 25°C (77°F)] $5.0 - 7.0\Omega$ Air-fuel ratio (A/F) sensor 1 UBS00BJ6

Crankshaft Position Sensor (POS)

UBS002NM

 $2.3 - 4.3\Omega$

Refer to EC-934, "Component Inspection".

Resistance [at 25°C (77°F)]

SERVICE DATA AND SPECIFICATIONS (SDS)

[QR25DE]

	-	-
Camshaft Position Sensor (PHASE)		UBS002NN
Refer to EC-940, "Component Inspection".		
Throttle Control Motor		UBS002NO
Resistance [at 25°C (77°F)]	Approximately 1 - 15Ω	
Injector		UBS002NP
Resistance [at 20°C (68°F)]	12.1 - 12.9Ω	
Fuel Pump		UBS002NQ
Resistance [at 25°C (77°F)]	Approximately 1.0Ω	