ENGINE CONTROL SYSTEM

SECTION EC

G[

MA

LC

EC

FE

CONTENTS

KA24DE	
TROUBLE DIAGNOSIS - INDEX	
Alphabetical & P No. Index for DTC	13
PRECAUTIONS	
Supplemental Restraint System (SRS) "AIR	
BAG" and "SEAT BELT PRE-TENSIONER"	17
Precautions for On Board Diagnostic (OBD)	
System of Engine and A/T	
Engine Fuel & Emission Control System	18
Precautions	
Wiring Diagrams and Trouble Diagnosis	20
PREPARATION	
Special Service Tools	21
Commercial Service Tools	21
ENGINE AND EMISSION CONTROL OVERALL	
SYSTEM	_
Engine Control Component Parts Location	
Circuit Diagram	
System Diagram	
Vacuum Hose Drawing	
System Chart	28
ENGINE AND EMISSION BASIC CONTROL	
SYSTEM DESCRIPTION	
Multiport Fuel Injection (MFI) System	
Distributor Ignition (DI) System	
Air Conditioning Cut Control	33
Fuel Cut Control (at no load & high engine	
speed)	
Evaporative Emission System	
On Board Refueling Vapor Recovery (ORVR)	
Positive Crankcase Ventilation	
BASIC SERVICE PROCEDURE	
Fuel Pressure Release	
Fuel Pressure Check	
Fuel Pressure Regulator Check	
Injector	
Fast Idle Cam (FIC)	53

Idle Speed/Ignition Timing/Idle Mixture Ratio	CL
Adjustment53	
ON BOARD DIAGNOSTIC SYSTEM	MT
DESCRIPTION67	
Introduction67	ΛS2
Two Trip Detection Logic67	AT
Emission-related Diagnostic Information68	
Malfunction Indicator Lamp (MIL)80	TF
OBD System Operation Chart81	шш
CONSULT-II86	
Generic Scan Tool (GST)98	PD
TROUBLE DIAGNOSIS - INTRODUCTION100	
Introduction100	Ω V /7
Work Flow102	$\mathbb{A}\mathbb{X}$
TROUBLE DIAGNOSIS - BASIC INSPECTION104	
Basic Inspection104	SU
TROUBLE DIAGNOSIS - GENERAL	00
DESCRIPTION118	
DTC Inspection Priority Chart	BR
Fail-safe Chart	
Symptom Matrix Chart120	@E
CONSULT-II Reference Value in Data Monitor	ST
Mode	
Major Sensor Reference Graph in Data Monitor	RS
Mode	1110
ECM Terminals and Reference Value129 TROUBLE DIAGNOSIS - SPECIFICATION	
VALUE138	BT
Description	
Testing Condition	ппл
Inspection Procedure	HA
Diagnostic Procedure	
TROUBLE DIAGNOSIS FOR INTERMITTENT	SC
INCIDENT142	
Description	
Diagnostic Procedure142	EL
TROUBLE DIAGNOSIS FOR POWER SUPPLY143	
Main Power Supply and Ground Circuit143	
DTC P0100 MASS AIR FLOW SENSOR (MAFS)150	
• ,	

Component Description	150	On Board Diagnosis Logic	193
CONSULT-II Reference Value in Data Monitor		DTC Confirmation Procedure	194
Mode	150	Overall Function Check	195
ECM Terminals and Reference Value	150	Wiring Diagram	196
On Board Diagnosis Logic	151	Diagnostic Procedure	197
DTC Confirmation Procedure	151	DTC P0131 HEATED OXYGEN SENSOR 1	
Overall Function Check	153	(FRONT) (LEAN SHIFT MONITORING)	200
Wiring Diagram	154	Component Description	
Diagnostic Procedure		CONSULT-II Reference Value in Data Monitor	
DTC P0105 ABSOLUTE PRESSURE SENSOR		Mode	200
Component Description	160	ECM Terminals and Reference Value	200
On Board Diagnosis Logic	160	On Board Diagnosis Logic	201
DTC Confirmation Procedure		DTC Confirmation Procedure	
Diagnostic Procedure		Overall Function Check	
DTC P0110 INTAKE AIR TEMPERATURE		Diagnostic Procedure	
SENSOR	162	DTC P0132 HEATED OXYGEN SENSOR 1	
Component Description		(FRONT) (RICH SHIFT MONITORING)	207
On Board Diagnosis Logic		Component Description	
DTC Confirmation Procedure		CONSULT-II Reference Value in Data Monitor	0.
Wiring Diagram		Mode	207
Diagnostic Procedure		ECM Terminals and Reference Value	
DTC P0115 ENGINE COOLANT		On Board Diagnosis Logic	
TEMPERATURESENSOR (ECTS) (CIRCUIT)	168	DTC Confirmation Procedure	
Component Description		Overall Function Check	
CONSULT-II Reference Value in Data Monitor		Diagnostic Procedure	
Mode	168	DTC P0133 HEATED OXYGEN SENSOR 1	200
On Board Diagnosis Logic		(FRONT) (RESPONSE MONITORING)	214
DTC Confirmation Procedure		Component Description	
Wiring Diagram		CONSULT-II Reference Value in Data Monitor	∠ ۱¬
Diagnostic Procedure		Mode	21/
DTC P0120 THROTTLE POSITION SENSOR		ECM Terminals and Reference Value	
Component Description		On Board Diagnosis Logic	
CONSULT-II Reference Value in Data Monitor	173	DTC Confirmation Procedure	
Mode	172	Overall Function Check	
ECM Terminals and Reference Value		Wiring Diagram	
		Diagnostic Procedure	
On Board Diagnosis Logic DTC Confirmation Procedure		DTC P0134 HEATED OXYGEN SENSOR 1	∠10
			225
Wiring Diagram		(FRONT) (HIGH VOLTAGE)	
Diagnostic Procedure	179	CONSULT II Reference Value in Data Maritar	220
DTC P0125 ENGINE COOLANT TEMPERATURE	407	CONSULT-II Reference Value in Data Monitor	225
(ECT) SENSOR		Mode	
Component Description		ECM Terminals and Reference Value	
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Wiring Diagram		Wiring Diagram	
Diagnostic Procedure	190	Diagnostic Procedure	228
DTC P0130 HEATED OXYGEN SENSOR 1	465	DTC P0135 HEATED OXYGEN SENSOR 1	
(FRONT) (CIRCUIT)		HEATER (FRONT)	
Component Description	192	Description	232
CONSULT-II Reference Value in Data Monitor	465	CONSULT-II Reference Value in Data Monitor	
Mode		Mode	
ECM Terminals and Reference Value	192	ECM Terminals and Reference Value	232

On Board Diagnosis Logic	232	CONSULT-II Reference Value in Data Monitor		G[
DTC Confirmation Procedure	233	Mode	275	
Wiring Diagram	234	ECM Terminals and Reference Value	275	
Diagnostic Procedure	235	On Board Diagnosis Logic	275	MZ
DTC P0137 HEATED OXYGEN SENSOR 2		DTC Confirmation Procedure	276	
(REAR) (MIN. VOLTAGE MONITORING)	237	Wiring Diagram	277	
Component Description		Diagnostic Procedure	278	
CONSULT-II Reference Value in Data Monitor		DTC P0171 FUEL INJECTION SYSTEM		
Mode	237	FUNCTION (LEAN SIDE)	280	LC
ECM Terminals and Reference Value	237	On Board Diagnosis Logic		
On Board Diagnosis Logic	237	DTC Confirmation Procedure	280	
DTC Confirmation Procedure		Wiring Diagram		EC
Overall Function Check		Diagnostic Procedure		
Wiring Diagram		DTC P0172 FUEL INJECTION SYSTEM		
Diagnostic Procedure		FUNCTION (RICH SIDE)	287	FE
DTC P0138 HEATED OXYGEN SENSOR 2		On Board Diagnosis Logic		
(REAR) (MIN. VOLTAGE MONITORING)	247	DTC Confirmation Procedure		(C)L
Component Description		Wiring Diagram		WL.
CONSULT-II Reference Value in Data Monitor		Diagnostic Procedure		
Mode	247	DTC P0180 FUEL TANK TEMPERATURE		M٦
ECM Terminals and Reference Value		SENSOR	294	
On Board Diagnosis Logic		Component Description		
DTC Confirmation Procedure		On Board Diagnosis Logic		AT
Overall Function Check		DTC Confirmation Procedure		
Wiring Diagram		Wiring Diagram		576
Diagnostic Procedure		Diagnostic Procedure		TF
DTC P0139 HEATED OXYGEN SENSOR 2		DTC P0300 - P0304 NO. 4 - 1 CYLINDER		
(REAR) (RESPONSE MONITORING)	257	MISFIRE, MULTIPLE CYLINDER MISFIRE	300	PC
Component Description		On Board Diagnosis Logic		
CONSULT-II Reference Value in Data Monitor		DTC Confirmation Procedure		
Mode	257	Diagnostic Procedure		AX
ECM Terminals and Reference Value		DTC P0325 KNOCK SENSOR (KS)		
On Board Diagnosis Logic		Component Description		ெ
DTC Confirmation Procedure		ECM Terminals and Reference Value		SU
Overall Function Check		On Board Diagnosis Logic		
Wiring Diagram		DTC Confirmation Procedure		BF
Diagnostic Procedure		Wiring Diagram		
DTC P0140 HEATED OXYGEN SENSOR 2		Diagnostic Procedure		
(REAR) (HIGH VOLTAGE)	267	DTC P0335 CRANKSHAFT POSITION SENSOR		ST
Component Description		(CKPS) (OBD)	313	-
CONSULT-II Reference Value in Data Monitor	0.	Component Description		
Mode	267	ECM Terminals and Reference Value		RS
ECM Terminals and Reference Value		On Board Diagnosis Logic		
On Board Diagnosis Logic		DTC Confirmation Procedure		D-1
DTC Confirmation Procedure		Wiring Diagram		BT
Overall Function Check				
Wiring Diagram			316	
	268	Diagnostic Procedure	316	H/A
Diagnostic Procedure	268 269	Diagnostic Procedure DTC P0340 CAMSHAFT POSITION SENSOR		HÆ
DIG P0141 HEATED OXYGEN SENSOR 2	268 269	Diagnostic Procedure DTC P0340 CAMSHAFT POSITION SENSOR (CMPS)	319	HA
DTC P0141 HEATED OXYGEN SENSOR 2	268 269 270	Diagnostic Procedure DTC P0340 CAMSHAFT POSITION SENSOR (CMPS) Component Description	319	HA SC
DTC P0141 HEATED OXYGEN SENSOR 2 HEATER (REAR)	268 269 270	Diagnostic Procedure	319 319 319	
DTC P0141 HEATED OXYGEN SENSOR 2	268 269 270	Diagnostic Procedure DTC P0340 CAMSHAFT POSITION SENSOR (CMPS) Component Description	319 319 319 320	

Wiring Diagram	322	DTC Confirmation Procedure	387
Diagnostic Procedure	323	Wiring Diagram	388
DTC P0400 EGR FUNCTION (CLOSE)	327	Diagnostic Procedure	389
Description	327	DTC P0455 EVAP CONTROL SYSTEM (GROSS	
On Board Diagnosis Logic	328	LEAK)	400
DTC Confirmation Procedure	329	On Board Diagnosis Logic	400
Overall Function Check	330	DTC Confirmation Procedure	401
Wiring Diagram	331	Diagnostic Procedure	402
Diagnostic Procedure	332	DTC P0460 FUEL LEVEL SENSOR FUNCTION	
DTC P0402 EGRC-BPT VALVE FUNCTION	339	(SLOSH)	413
Description	339	Component Description	413
On Board Diagnosis Logic	339	On Board Diagnostic Logic	413
DTC Confirmation Procedure		Possible Cause	
Overall Function Check	341	DTC Confirmation Procedure	
Diagnostic Procedure	342	Wiring Diagram	414
DTC P0420 THREE WAY CATALYST FUNCTION		Diagnostic Procedure	
On Board Diagnosis Logic		DTC P0461 FUEL LEVEL SENSOR FUNCTION	
DTC Confirmation Procedure		Component Description	
Overall Function Check		On Board Diagnostic Logic	
Diagnostic Procedure		Possible Cause	
DTC P0440 EVAP CONTROL SYSTEM (SMALL		Overall Function Check	
LEAK)(NEGATIVE PRESSURE)	352	DTC P0464 FUEL LEVEL SENSOR CIRCUIT	
On Board Diagnosis Logic		Component Description	
DTC Confirmation Procedure		On Board Diagnostic Logic	
Diagnostic Procedure		Possible Cause	
DTC P0443 EVAP CANISTER PURGE VOLUME		DTC Confirmation Procedure	
CONTROL SOLENOID VALVE (CIRCUIT)	369	Wiring Diagram	
Description		Diagnostic Procedure	
CONSULT-II Reference Value in Data Monitor		DTC P0500 VEHICLE SPEED SENSOR (VSS)	
Mode	369	Component Description	
ECM Terminals and Reference Value		ECM Terminals and Reference Value	
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Wiring Diagram		Overall Function Check	
Diagnostic Procedure		Wiring Diagram	
DTC P0446 EVAPORATIVE EMISSION (EVAP)		Diagnostic Procedure	
CANISTER VENT CONTROL VALVE (CIRCUIT)	377	DTC P0505 IDLE AIR CONTROL VALVE (IACV)	
Component Description		- AUXILIARY AIR CONTROL (AAC) VALVE	427
CONSULT-II Reference Value in Data Monitor		Description	
Mode	377	CONSULT-II Reference Value in Data Monitor	
ECM Terminals and Reference Value		Mode	428
On Board Diagnosis Logic	377	ECM Terminals and Reference Value	
DTC Confirmation Procedure		On Board Diagnosis Logic	
Wiring Diagram		DTC Confirmation Procedure	
Diagnostic Procedure		Wiring Diagram	
DTC P0450 EVAPORATIVE EMISSION (EVAP)		Diagnostic Procedure	
CONTROL SYSTEM PRESSURE SENSOR	385	DTC P0510 CLOSED THROTTLE POSITION	
Component Description		SWITCH	433
CONSULT-II Reference Value in Data Monitor		Component Description	
Mode	385	ECM Terminals and Reference Value	
ECM Terminals and Reference Value		On Board Diagnosis Logic	
On Board Diagnosis Logic		DTC Confirmation Procedure	

Overall Function Check	434	Possible Cause	474	G[
Wiring Diagram	435	DTC Confirmation Procedure	475	
Diagnostic Procedure	436	Diagnostic Procedure	475	
DTC P0605 ECM	440	DTC P1441 EVAP CONTROL SYSTEM (VERY		MA
Component Description	440	SMALL LEAK)	476	
On Board Diagnosis Logic	440	On Board Diagnosis Logic	476	EM
DTC Confirmation Procedure		Possible Cause		
Diagnostic Procedure	441	DTC Confirmation Procedure	477	
DTC P1126 THERMOSTAT FUNCTION	442	Diagnostic Procedure	479	LC
On Board Diagnosis Logic	442	DTC P1444 EVAP CANISTER PURGE VOLUME		
Possible Cause	442	CONTROL SOLENOID VALVE	491	
DTC Confirmation Procedure	442	Description	491	EC
Diagnostic Procedure	443	CONSULT-II Reference Value in Data Monitor		
DTC P1148 CLOSED LOOP CONTROL		Mode	491	
On Board Diagnosis Logic		ECM Terminals and Reference Value	492	FE
DTC Confirmation Procedure		On Board Diagnosis Logic	492	
Overall Function Check	445	DTC Confirmation Procedure		GL
Diagnostic Procedure	445	Wiring Diagram		
DTC P1336 CRANKSHAFT POSITION SENSO		Diagnostic Procedure		
(CKPS) (OBD) (COG)	446	DTC P1446 EVAPORATIVE EMISSION (EVAP)		Mī
Component Description		CANISTER VENT CONTROL VALVE (CLOSE)	503	
ECM Terminals and Reference Value		Component Description		
On Board Diagnosis Logic		CONSULT-II Reference Value in Data Monitor		AT
DTC Confirmation Procedure		Mode	503	
Wiring Diagram		ECM Terminals and Reference Value		TF
Diagnostic Procedure		On Board Diagnosis Logic		
DTC P1400 EGRC-SOLENOID VALVE		DTC Confirmation Procedure		
Component Description		Diagnostic Procedure		PD
CONSULT-II Reference Value in Data Monito		DTC P1447 EVAPORATIVE EMISSION (EVAP)		
Mode		CONTROL SYSTEM PURGE FLOW		
ECM Terminals and Reference Value		MONITORING	509	$\mathbb{A}\mathbb{X}$
On Board Diagnosis Logic		System Description		
DTC Confirmation Procedure		On Board Diagnosis Logic		@n n
Overall Function Check		DTC Confirmation Procedure		SU
Wiring Diagram		Overall Function Check		
Diagnostic Procedure		Diagnostic Procedure		BR
DTC P1401 EGR TEMPERATURE SENSOR	459	DTC P1448 EVAPORATIVE EMISSION (EVAP)		ווש
Component Description		CANISTER VENT CONTROL VALVE (OPEN)	519	
On Board Diagnosis Logic		Component Description		ST
DTC Confirmation Procedure		CONSULT-II Reference Value in Data Monitor		
Overall Function Check		Mode	519	
Wiring Diagram		ECM Terminals and Reference Value		RS
Diagnostic Procedure		On Board Diagnosis Logic		
DTC P1402 EGR FUNCTION (OPEN)		DTC Confirmation Procedure		D7
Description		Overall Function Check		BT
On Board Diagnosis Logic		Diagnostic Procedure		
DTC Confirmation Procedure		DTC P1464 FUEL LEVEL SENSOR CIRCUIT		HA
Wiring Diagram		(GROUND SIGNAL)	527	רשם ה
Diagnostic Procedure		Component Description		
DTC P1440 EVAP CONTROL SYSTEM (SMAL		On Board Diagnostic Logic		SC
LEAK) (POSITIVE PRESSURE)		Possible Cause		
On Board Diagnosis Logic		DTC Confirmation Procedure		
	· · ·			EL

Wiring Diagram	528	CONSULT-II Reference Value in Data Monitor	
Diagnostic Procedure	529	Mode	572
DTC P1490 VACUUM CUT VALVE BYPASS		ECM Terminals and Reference Value	572
VALVE (CIRCUIT)	530	Wiring Diagram	573
Description	530	Diagnostic Procedure	574
CONSULT-II Reference Value in Data Monitor		FUEL PUMP	576
Mode	530	System Description	576
ECM Terminals and Reference Value	530	Component Description	576
On Board Diagnosis Logic	531	CONSULT-II Reference Value in Data Monitor	
DTC Confirmation Procedure	531	Mode	576
Wiring Diagram	532	ECM Terminals and Reference Value	577
Diagnostic Procedure		Wiring Diagram	578
DTC P1491 VACUUM CUT VALVE BYPASS		Diagnostic Procedure	
VALVE	537	POWER STEERING OIL PRESSURE SWITCH	
Description		Component Description	
CONSULT-II Reference Value in Data Monitor		CONSULT-II Reference Value in Data Monitor	
Mode		Mode	
ECM Terminals and Reference Value	537	ECM Terminals and Reference Value	
On Board Diagnosis Logic	538	Wiring Diagram	585
DTC Confirmation Procedure	538	Diagnostic Procedure	586
Overall Function Check	539	IACV-FICD SOLENOID VALVE	588
Wiring Diagram	540	Component Description	588
Diagnostic Procedure	541	ECM Terminals and Reference Value	588
DTC P1706 PARK/NEUTRAL POSITION (PNP)		Wiring Diagram	589
SWITCH	548	Diagnostic Procedure	590
Component Description	548	MIL & DATA LINK CONNECTORS	594
CONSULT-II Reference Value in Data Monitor		Wiring Diagram	594
Mode	548	SERVICE DATA AND SPECIFICATIONS (SDS)	
ECM Terminals and Reference Value	548	Fuel Pressure Regulator	
On Board Diagnosis Logic	548	Idle Speed and Ignition Timing	
DTC Confirmation Procedure		Ignition Coil	
Overall Function Check		Mass Air Flow Sensor	
Wiring Diagram		Engine Coolant Temperature Sensor	
Diagnostic Procedure For M/T Models		EGR Temperature Sensor	
TROUBLE DIAGNOSIS FOR OVERHEAT		Fuel Pump	
On Board Diagnosis Logic		IACV-AAC Valve	
Overall Function Check		Injector	
Diagnostic Procedure		Resistor	
Main 11 Causes of Overheating		Throttle Position Sensor	
IGNITION SIGNAL		Heated Oxygen Sensor 1 Heater (Front)	
Component Description		Calculated Load Value	
CONSULT-II Reference Value in Data Monitor	000	Intake Air Temperature Sensor	
Mode	550	Heated Oxygen Sensor 2 Heater (Rear)	
ECM Terminals and Reference Value		Crankshaft Position Sensor (OBD)	
Wiring Diagram		Fuel Tank Temperature Sensor	
Diagnostic Procedure		Tuer fank femperature Sensor	590
INJECTOR			
		VG33E	
Component Description		TROUBLE DIAGNOSIS - INDEX	597
ECM Terminals and Reference Value		Alphabetical & P No. Index for DTC	
Wiring Diagram		PRECAUTIONS	
Diagnostic Procedure		Supplemental Restraint System (SRS) "AIR	
START SIGNAL	5/2	BAG" and "SEAT BELT PRE-TENSIONER"	603

Precautions for On Board Diagnostic (OBD)	CONSULT-II Reference Value in Data Monitor	31
System of Engine and A/T603	Mode714	
Engine Fuel & Emission Control System604	Major Sensor Reference Graph in Data Monitor	
Precautions605	Mode716	MZ
Wiring Diagrams and Trouble Diagnosis606	ECM Terminals and Reference Value719	
PREPARATION607	TROUBLE DIAGNOSIS - SPECIFICATION	= n.
Special Service Tools607	VALUE 728	
Commercial Service Tools607	Description728	
ENGINE AND EMISSION CONTROL OVERALL	Testing Condition728	<u>_(C</u>
SYSTEM 609	Inspection Procedure728	= ©
Engine Control Component Parts Location609	Diagnostic Procedure729	
Circuit Diagram611	TROUBLE DIAGNOSIS FOR INTERMITTENT	ΕC
System Diagram612	INCIDENT732	
Vacuum Hose Drawing613	Description 732	
System Chart614	Diagnostic Procedure732	=[=
ENGINE AND EMISSION BASIC CONTROL	TROUBLE DIAGNOSIS FOR POWER SUPPLY733	
SYSTEM DESCRIPTION615		வ
Multiport Fuel Injection (MFI) System615	DTC P0100 MASS AIR FLOW SENSOR (MAFS)739	GL
Distributor Ignition (DI) System617	Component Description739	
Air Conditioning Cut Control618		Mi
Fuel Cut Control (at no load & high engine	Mode	UU I
speed)619	ECM Terminals and Reference Value739	
Evaporative Emission System619	On Board Diagnosis Logic739	41
On Board Refueling Vapor Recovery (ORVR)625	DTC Confirmation Procedure739	
Positive Crankcase Ventilation635	0 " 5 " 0 1	
BASIC SERVICE PROCEDURE		ſF
	Wiring Diagram	
Fuel Pressure Cheek 637	Diagnostic Procedure744 DTC P0105 ABSOLUTE PRESSURE SENSOR748	JIE
Fuel Pressure Check		
Fuel Pressure Regulator Check	Component Description	
Injector638	On Board Diagnosis Logic	
Fast Idle Cam (FIC)		7.22/1
Idle Speed/Ignition Timing/Idle Mixture Ratio	Diagnostic Procedure749	
Adjustment641	DTC P0110 INTAKE AIR TEMPERATURE	3U
ON BOARD DIAGNOSTIC SYSTEM	SENSOR750	_
DESCRIPTION	Component Description	
Introduction653	On Board Diagnosis Logic	36
Two Trip Detection Logic653	DTC Confirmation Procedure	
Emission-related Diagnostic Information654	Wiring Diagram752	25-
Malfunction Indicator Lamp (MIL)668	ě .	3T
OBD System Operation Chart669	DTC P0115 ENGINE COOLANT TEMPERATURE	
CONSULT-II675	SENSOR (ECTS) (CIRCUIT)755	28
Generic Scan Tool (GST)688	Component Description	ЛG
TROUBLE DIAGNOSIS - INTRODUCTION690	On Board Diagnosis Logic755	
Introduction690	DTC Confirmation Procedure756	31
Work Flow692	Wiring Diagram757	<u>ل</u> ر
TROUBLE DIAGNOSIS - BASIC INSPECTION694	Diagnostic Procedure758	
Basic Inspection694	DTC P0120 THROTTLE POSITION SENSOR760	
TROUBLE DIAGNOSIS - GENERAL	Description760	
DESCRIPTION 708	CONSULT-II Reference Value in Data Monitor	
DTC Inspection Priority Chart708	Mode760	30
Fail-safe Chart709	ECM Terminals and Reference Value761	
Symptom Matrix Chart710	On Board Diagnosis Logic761	= n
	- -	ĒL

DTC Confirmation Procedure	762	Overall Function Check	809
Wiring Diagram	765	Wiring Diagram	810
Diagnostic Procedure	766	Diagnostic Procedure	812
DTC P0125 ENGINE COOLANT TEMPERATUR		DTC P0134, P0154 HEATED OXYGEN SENSOR	1
SENSOR (ECTS)		(FRONT) (BANK 1)/(BANK 2) (HIGH VOLTAGE).	
Description		Component Description	
On Board Diagnosis Logic		CONSULT-II Reference Value in Data Monitor	
DTC Confirmation Procedure		Mode	821
Wiring Diagram		ECM Terminals and Reference Value	
Diagnostic Procedure		On Board Diagnosis Logic	
DTC P0130, P0150 HEATED OXYGEN SENSOR		DTC Confirmation Procedure	
(FRONT) (BANK 1)/(BANK 2) (CIRCUIT)		Wiring Diagram	
Component Description		Diagnostic Procedure	
CONSULT-II Reference Value in Data Monitor	110	DTC P0135, P0155 HEATED OXYGEN SENSOR	
Mode	770	HEATER (FRONT) (BANK 1)/(BANK 2)	
ECM Terminals and Reference Value		Description	
		CONSULT-II Reference Value in Data Monitor	023
On Board Diagnosis Logic			000
DTC Confirmation Procedure		Mode	
Overall Function Check		ECM Terminals and Reference Value	
Wiring Diagram		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
DTC P0131, P0151 HEATED OXYGEN SENSOF	₹ 1	Wiring Diagram	
(FRONT) (BANK 1)/(BANK 2) (LEAN SHIFT		Diagnostic Procedure	
MONITORING)		DTC P0137, P0157 HEATED OXYGEN SENSOR	2
Component Description	789	(REAR) (BANK 1)/(BANK 2) (MIN. VOLTAGE	
CONSULT-II Reference Value in Data Monitor		MONITORING)	
Mode		Component Description	836
ECM Terminals and Reference Value		CONSULT-II Reference Value in Data Monitor	
On Board Diagnosis Logic		Mode	
DTC Confirmation Procedure		ECM Terminals and Reference Value	
Overall Function Check	792	On Board Diagnosis Logic	
Diagnostic Procedure	792	DTC Confirmation Procedure	837
DTC P0132, P0152 HEATED OXYGEN SENSOR	₹ 1	Overall Function Check	838
(FRONT) (BANK 1)/(BANK 2) (RICH SHIFT		Wiring Diagram	839
MONITORING)	798	Diagnostic Procedure	841
Component Description	798	DTC P0138, P0158 HEATED OXYGEN SENSOR	2
CONSULT-II Reference Value in Data Monitor		(REAR) (BANK 1)/(BANK 2) (MAX. VOLTAGE	
Mode	798	MONITORING)	846
ECM Terminals and Reference Value	798	Component Description	846
On Board Diagnosis Logic	799	CONSULT-II Reference Value in Data Monitor	
DTC Confirmation Procedure		Mode	846
Overall Function Check		ECM Terminals and Reference Value	846
Diagnostic Procedure		On Board Diagnosis Logic	
DTC P0133, P0153 HEATED OXYGEN SENSOR		DTC Confirmation Procedure	
(FRONT) (BANK 1)/(BANK 2) (RESPONSE	•	Overall Function Check	
MONITORING)	807	Wiring Diagram	
Component Description		Diagnostic Procedure	
CONSULT-II Reference Value in Data Monitor		DTC P0139, P0159 HEATED OXYGEN SENSOR	
Mode	807	(REAR) (BANK 1)/(BANK 2) (RESPONSE	-
ECM Terminals and Reference Value		MONITORING)	056
		Component Description	
On Board Diagnosis Logic		Component Description	000
DTC Confirmation Procedure	ŏ∪ŏ		

CONSULT-II Reference Value in Data Monitor	CONSULT-II Reference Value in Data Monitor	GI
Mode856	Mode900	_
ECM Terminals and Reference Value856	On Board Diagnosis Logic906	ŝ
On Board Diagnosis Logic856	Possible Cause90	13/11/3
DTC Confirmation Procedure857	Overall Function Check908	3
Overall Function Check858	Wiring Diagram91	1 _{ED/1}
Wiring Diagram859	Diagnostic Procedure912	'EM
Diagnostic Procedure861	Main 12 Causes of Overheating919	9
DTC P0140, P0160 HEATED OXYGEN SENSOR 2	DTC P0217 COOLANT OVERTEMPERATURE	LC
(REAR) (BANK 1)/(BANK 2) (HIGH VOLTAGE)866	ENRICHMENT PROTECTION (WITHOUT	
Component Description866	ELECTRIC COOLING FAN)920)
CONSULT-II Reference Value in Data Monitor	On Board Diagnosis Logic920	o EC
Mode866	Possible Cause920	ე 💻
ECM Terminals and Reference Value866	Overall Function Check92	1
On Board Diagnosis Logic866	Diagnostic Procedure923	3 FE
DTC Confirmation Procedure867	Main 12 Causes of Overheating926	3
Overall Function Check867	DTC P0300 - P0306 NO. 6 - 1 CYLINDER	GL
Wiring Diagram869	MISFIRE, MULTIPLE CYLINDER MISFIRE927	7
Diagnostic Procedure871	On Board Diagnosis Logic927	7
DTC P0141, P0161 HEATED OXYGEN SENSOR 2	DTC Confirmation Procedure928	B MT
HEATER (REAR) (BANK 1)/(BANK 2)876	Diagnostic Procedure928	3
Description876	DTC P0325 KNOCK SENSOR (KS)936	3 0=
CONSULT-II Reference Value in Data Monitor	Component Description936	6 AT
Mode876	ECM Terminals and Reference Value936	3
ECM Terminals and Reference Value876	On Board Diagnosis Logic936	6 TF
On Board Diagnosis Logic877	DTC Confirmation Procedure936	3
DTC Confirmation Procedure877	Wiring Diagram93	7
Wiring Diagram878	Diagnostic Procedure938	8 PD
Diagnostic Procedure880	DTC P0335 CRANKSHAFT POSITION SENSOR	
DTC P0171 (RIGHT, -B1), P0174 (LEFT, -B2)	(CKPS) (OBD)940)
FUEL INJECTION SYSTEM FUNCTION (LEAN)884	Component Description940	o AX
On Board Diagnosis Logic884	ECM Terminals and Reference Value940)
DTC Confirmation Procedure885	On Board Diagnosis Logic94	1 SU
Wiring Diagram886	DTC Confirmation Procedure94	1
Diagnostic Procedure888	Wiring Diagram942	2
DTC P0172 (RIGHT, -B1), P0175 (LEFT, -B2)	Diagnostic Procedure943	3 BR
FUEL INJECTION SYSTEM FUNCTION (RICH)893	DTC P0340 CAMSHAFT POSITION SENSOR	
On Board Diagnosis Logic893	(CMPS)946	
DTC Confirmation Procedure894	Component Description946	
Wiring Diagram895	ECM Terminals and Reference Value946	3
Diagnostic Procedure897	On Board Diagnosis Logic947	10)(<
DTC P0180 FUEL TANK TEMPERATURE	DTC Confirmation Procedure948	3 179
SENSOR 901	Wiring Diagram94	Э
Component Description901	Diagnostic Procedure950	O BT
On Board Diagnosis Logic901	DTC P0420 (RIGHT BANK, -B1), P0430 (LEFT	
DTC Confirmation Procedure902	BANK, -B2) THREE WAY CATALYST FUNCTION953	
Wiring Diagram903	On Board Diagnosis Logic953	
Diagnostic Procedure904	DTC Confirmation Procedure953	
DTC P0217 COOLANT OVERTEMPERATURE	Overall Function Check954	@@
ENRICHMENT PROTECTION (WITH ELECTRIC	Diagnostic Procedure958	5 SC
COOLING FAN) 906	DTC P0440 EVAP CONTROL SYSTEM (SMALL	
System Description906	LEAK) (NEGATIVE PRESSURE)958	8 EL

On Board Diagnosis Logic	958	ECM Terminals and Reference Value	1018
DTC Confirmation Procedure	960	On Board Diagnosis Logic	1018
Diagnostic Procedure	961	DTC Confirmation Procedure	1019
DTC P0443 EVAP CANISTER PURGE VOLUME		Wiring Diagram	1020
CONTROL SOLENOID VALVE (CIRCUIT)	973	Diagnostic Procedure	1021
Description		DTC P0500 VEHICLE SPEED SENSOR (VSS)	
CONSULT-II Reference Value in Data Monitor		Component Description	
Mode	973	ECM Terminals and Reference Value	
ECM Terminals and Reference Value	974	On Board Diagnosis Logic	
On Board Diagnosis Logic	975	DTC Confirmation Procedure	
DTC Confirmation Procedure		Overall Function Check	
Wiring Diagram		Wiring Diagram	
Diagnostic Procedure		Diagnostic Procedure	
DTC P0446 EVAPORATIVE EMISSION (EVAP)		DTC P0505 IDLE AIR CONTROL VALVE (IACV)	
CANISTER VENT CONTROL VALVE (CIRCUIT)	980	- AUXILIARY AIR CONTROL (AAC) VALVE	1027
Component Description		Description	
CONSULT-II Reference Value in Data Monitor		CONSULT-II Reference Value in Data Monitor	
Mode	980	Mode	1028
ECM Terminals and Reference Value		ECM Terminals and Reference Value	
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Wiring Diagram		Wiring Diagram	
Diagnostic Procedure		Diagnostic Procedure	
DTC P0450 EVAPORATIVE EMISSION (EVAP)		DTC P0510 CLOSED THROTTLE POSITION	
CONTROL SYSTEM PRESSURE SENSOR	986	SWITCH	1033
Component Description		Component Description	
CONSULT-II Reference Value in Data Monitor		CONSULT-II Reference Value in Data Monitor	
Mode	986	Mode	1033
ECM Terminals and Reference Value		ECM Terminals and Reference Value	
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Wiring Diagram		Overall Function Check	
Diagnostic Procedure		Wiring Diagram	
DTC P0455 EVAP CONTROL SYSTEM (GROSS		Diagnostic Procedure	
LEAK)	997	DTC P0600 A/T CONTROL	
On Board Diagnosis Logic		System Description	
DTC Confirmation Procedure		ECM Terminals and Reference Value	
Diagnostic Procedure		On Board Diagnosis Logic	
DTC P0460 FUEL LEVEL SENSOR FUNCTION		DTC Confirmation Procedure	
(SLOSH)	1011	Overall Function Check	
Component Description		Wiring Diagram	
ECM Terminals and Reference Value		Diagnostic Procedure	
On Board Diagnosis Logic		DTC P0605 ECM	
DTC Confirmation Procedure		Component Description	
Wiring Diagram		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
DTC P0461 FUEL LEVEL SENSOR FUNCTION		Diagnostic Procedure	
Component Description		DTC P1126 THERMOSTAT FUNCTION	
On Board Diagnosis Logic		On Board Diagnosis Logic	
Overall Function Check		DTC Confirmation Procedure	
DTC P0464 FUEL LEVEL SENSOR CIRCUIT		Diagnostic Procedure	
Component Description		2.5g	

DTC P1148 (RIGHT BANK, -B1), P1168 (LEFT		Diagnostic Procedure	1096	GI
BANK, -B2) CLOSED LOOP CONTROL	1049	DTC P1446 EVAPORATIVE EMISSION (EVAP)		
On Board Diagnosis Logic	1049	CANISTER VENT CONTROL VALVE (CLOSE)	1104	
DTC Confirmation Procedure	1049	Component Description	1104	MA
Overall Function Check	1050	CONSULT-II Reference Value in Data Monitor		
Diagnostic Procedure	1050	Mode	1104	EM
DTC P1217 ENGINE OVERTEMPERATURE		ECM Terminals and Reference Value	1104	
(OVERHEAT) (WITH ELECTRIC COOLING FAN)	1051	On Board Diagnosis Logic	1105	
System Description	1051	DTC Confirmation Procedure	1105	LC
CONSULT-II Reference Value in Data Monitor		Wiring Diagram	1106	
Mode	1051	Diagnostic Procedure	1107	
ECM Terminals and Reference Value	1051	DTC P1447 EVAPORATIVE EMISSION (EVAP)		EC
On Board Diagnosis Logic	1052	CONTROL SYSTEM PURGE FLOW		
Overall Function Check	1053	MONITORING	1111	PP
Wiring Diagram	1054	System Description	1111	FE
Diagnostic Procedure	1055	On Board Diagnosis Logic	1111	
Main 12 Causes of Overheating	1062	DTC Confirmation Procedure	1112	GL
DTC P1217 ENGINE OVERTEMPERATURE		Overall Function Check	1113	
(OVERHEAT) (WITHOUT ELECTRIC COOLING		Diagnostic Procedure	1114	
FAN)	1063	DTC P1448 EVAPORATIVE EMISSION (EVAP)		Mī
On Board Diagnosis Logic	1063	CANISTER VENT CONTROL VALVE (OPEN)	1123	
Overall Function Check	1063	Component Description	1123	^=
Diagnostic Procedure	1064	CONSULT-II Reference Value in Data Monitor		AT
Main 12 Causes of Overheating	1067	Mode	1123	
DTC P1336 CRANKSHAFT POSITION SENSOR		ECM Terminals and Reference Value	1123	TF
(CKPS) (OBD) (COG)	1068	On Board Diagnosis Logic	1123	
Component Description	1068	DTC Confirmation Procedure	1124	
ECM Terminals and Reference Value	1068	Overall Function Check	1125	PD
On Board Diagnosis Logic	1069	Wiring Diagram	1126	
DTC Confirmation Procedure		Diagnostic Procedure		
Wiring Diagram	1070	DTC P1464 FUEL LEVEL SENSOR CIRCUIT		AX
Diagnostic Procedure		(GROUND SIGNAL)	1131	
DTC P1440 EVAP CONTROL SYSTEM (SMALL		Component Description	1131	வா
LEAK) (POSITIVE PRESSURE)	1075	ECM Terminals and Reference Value	1131	SU
On Board Diagnosis Logic	1075	On Board Diagnosis Logic	1131	
DTC Confirmation Procedure	1076	DTC Confirmation Procedure	1131	BR
Diagnostic Procedure		Wiring Diagram	1133	
DTC P1441 EVAP CONTROL SYSTEM (VERY		Diagnostic Procedure		
SMALL LEAK)	1077	DTC P1490 VACUUM CUT VALVE BYPASS		ST
On Board Diagnosis Logic	1077	VALVE (CIRCUIT)	1135	
DTC Confirmation Procedure	1078	Description	1135	<u></u>
Overall Function Check	1079	CONSULT-II Reference Value in Data Monitor		RS
Diagnostic Procedure	1080	Mode	1135	
DTC P1444 EVAP CANISTER PURGE VOLUME		ECM Terminals and Reference Value	1135	BT
CONTROL SOLENOID VALVE	1092	On Board Diagnosis Logic		
Description		DTC Confirmation Procedure		
CONSULT-II Reference Value in Data Monitor		Wiring Diagram		HA
Mode	1092	Diagnostic Procedure		2 00 (
ECM Terminals and Reference Value		DTC P1491 VACUUM CUT VALVE BYPASS		
On Board Diagnosis Logic		VALVE	1141	SC
DTC Confirmation Procedure		Description		
Wiring Diagram		•		
3 - 3				EL

CONSULT-II Reference Value in Data Monitor		ECM Terminals and Reference Value	1173
Mode	1141	Wiring Diagram	
ECM Terminals and Reference Value	1141	Diagnostic Procedure	1175
On Board Diagnosis Logic	1142	FUEL PUMP	1177
DTC Confirmation Procedure	1142	System Description	1177
Overall Function Check	1143	Component Description	1177
Wiring Diagram	1144	CONSULT-II Reference Value in Data Monitor	
Diagnostic Procedure	1145	Mode	1177
DTC P1605 A/T DIAGNOSIS COMMUNICATION		ECM Terminals and Reference Value	1178
LINE	1150	Wiring Diagram	1179
Component Description	1150	Diagnostic Procedure	1180
ECM Terminals and Reference Value	1150	POWER STEERING OIL PRESSURE SWITCH	1184
On Board Diagnosis Logic	1150	Component Description	1184
DTC Confirmation Procedure		CONSULT-II Reference Value in Data Monitor	
Wiring Diagram	1151	Mode	1184
Diagnostic Procedure	1152	ECM Terminals and Reference Value	1184
DTC P1706 PARK/NEUTRAL POSITION (PNP)		Wiring Diagram	1185
SWITCH	1153	Diagnostic Procedure	
Component Description	1153	IACV-FICD SOLENOID VALVE	
CONSULT-II Reference Value in Data Monitor		Component Description	1189
Mode	1153	ECM Terminals and Reference Value	1189
ECM Terminals and Reference Value	1153	Wiring Diagram	1190
On Board Diagnosis Logic	1153	Diagnostic Procedure	1191
DTC Confirmation Procedure	1154	MIL & DATA LINK CONNECTORS	1195
Overall Function Check	1155	Wiring Diagram	1195
Wiring Diagram	1156	SERVICE DATA AND SPECIFICATIONS (SDS)	1196
Diagnostic Procedure	1157	Fuel Pressure Regulator	1196
IGNITION SIGNAL	1162	Idle Speed and Ignition Timing	1196
Component Description	1162	Ignition Coil	1196
ECM Terminals and Reference Value		Mass Air Flow Sensor	1196
Wiring Diagram	1163	Engine Coolant Temperature Sensor	1196
Diagnostic Procedure		Heated Oxygen Sensor 1 Heater (Front)	1196
INJECTOR	1168	Fuel Pump	1196
Component Description	1168	IACV-AAC Valve	1196
CONSULT-II Reference Value in Data Monitor		Injector	1197
Mode	1168	Throttle Position Sensor	1197
ECM Terminals and Reference Value	1168	Calculated Load Value	1197
Wiring Diagram	1169	Intake Air Temperature Sensor	1197
Diagnostic Procedure		Heated Oxygen Sensor 2 Heater (Rear)	
START SIGNAL		Crankshaft Position Sensor (OBD)	
CONSULT-II Reference Value in Data Monitor		Fuel Tank Temperature Sensor	
Mode	1172	·	

TROUBLE DIAGNOSIS — INDEX

Alphabetical & P No. Index for DTC

Alphabetical & P No. Index for DTC

NGEC0001

	DTC*4		
Items (CONSULT-II screen terms)	CONSULT-II GST*2	Reference page	R
Unable to access ECM	_	EC-119	
*COOLAN T SEN/CIRC	P0125	EC-187	
ABSL PRES SEN/CIRC	P0105	EC-160	
AIR TEMP SEN/CIRC	P0110	EC-162	
CKP SENSOR (COG)	P1336	EC-446	
CKP SEN/CIRCUIT	P0335	EC-313	
CLOSED LOOP-B1	P1148	EC-444	
CLOSED TP SW/CIRC	P0510	EC-433	
CMP SEN/CIRCUIT	P0340	EC-319	(
COOLANT T SEN/CIRC	P0115	EC-168	
CYL 1 MISFIRE	P0301	EC-300	_
CYL 2 MISFIRE	P0302	EC-300	
CYL 3 MISFIRE	P0303	EC-300	/
CYL 4 MISFIRE	P0304	EC-300	
ECM	P0605	EC-440	
EGR SYSTEM	P0400	EC-327	
EGR SYSTEM	P1402	EC-465	[
EGR TEMP SEN/CIRC	P1401	EC-459	
EGRC SOLENOID/V	P1400	EC-452	— <i>[</i>
EGRC-BPT VALVE	P0402	EC-339	— — (
EVAP GROSS LEAK	P0455	EC-400	<u> </u>
EVAP PURG FLOW/MON	P1447	EC-509	<u> </u>
EVAP SMALL LEAK	P0440	EC-352	
EVAP SMALL LEAK	P1440	EC-474	
EVAP SYS PRES SEN	P0450	EC-385	
EVAP VERY SML LEAK	P1441	EC-476	[
FUEL LEVEL SENSOR	P0461	EC-417	
FUEL LEVL SEN/CIRC	P0464	EC-215	[
FUEL LEV SEN SLOSH	P0460	EC-413	
FUEL LEVL SEN/CIRC	P1464	EC-527	
FUEL SYS LEAN/BK1	P0171	EC-280	_
FUEL SYS RICH/BK1	P0172	EC-287	
FUEL TEMP SEN/CIRC	P0180	EC-294	
HO2S1 (B1)	P0130	EC-192	_

Alphabetical & P No. Index for DTC (Cont'd)

	DTC*4	
Items	CONSULT-II	Reference page
(CONSULT-II screen terms)	GST*2	
HO2S1 (B1)	P0131	EC-200
HO2S1 (B1)	P0132	EC-207
HO2S1 (B1)	P0133	EC-214
HO2S1 (B1)	P0134	EC-225
HO2S1 HTR (B1)	P0135	EC-232
HO2S2 (B1)	P0137	EC-237
HO2S2 (B1)	P0138	EC-247
HO2S2 (B1)	P0139	EC-257
HO2S2 (B1)	P0140	EC-267
HO2S2 HTR (B1)	P0141	EC-275
IACV/AAC VLV/CIRC	P0505	EC-427
KNOCK SEN/CIRC-B1	P0325	EC-309
MAF SEN/CIRCUIT*2	P0100	EC-150
MULTI CYL MISFIRE	P0300	EC-300
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	_
OVERHEAT	_	EC-554
P-N POS SW/CIRCUIT	P1706	EC-548
PURG VOLUME CONT/V	P0443	EC-369
PURG VOLUME CONT/V	P1444	EC-491
THERMSTAT FNCTN	P1126	EC-442
THRTL POS SEN/CIRC*2	P0120	EC-173
TW CATALYST SYS-B1	P0420	EC-347
VC CUT/V BYPASS/V	P1491	EC-537
VC/V BYPASS/V	P1490	EC-530
VEH SPEED SEN/CIRC*3	P0500	EC-423
VENT CONTROL VALVE	P0446	EC-377
VENT CONTROL VALVE	P1446	EC-503
VENT CONTROL VALVE	P1448	EC-519

^{*1:} These numbers are prescribed by SAE J2012.

^{*2:} When the fail-safe operation occurs, the MIL illuminates.

^{*3:} The MIL illuminates when the "Revolution sensor signal" and the "Vehicle speed sensor signal" meet the fail-safe condition at the same time.

^{*4: 1}st trip DTC No. is the same as DTC No.

TROUBLE DIAGNOSIS — INDEX

Alphabetical & P No. Index for DTC (Cont'd)

DTC*4		
CONSULT-II GST*1	ltems (CONSULT-II screen terms)	Reference page
	Unable to access ECM	EC-119
P0000	NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	_
P0100	MAF SEN/CIRCUIT*2	EC-150
P0105	ABSL PRES SEN/CIRC	EC-160
P0110	AIR TEMP SEN/CIRC	EC-162
P0115	COOLANT T SEN/CIRC	EC-168
P0120	THRTL POS SEN/CIRC*2	EC-173
P0125	*COOLAN T SEN/CIRC	EC-187
P0130	HO2S1 (B1)	EC-192
P0131	HO2S1 (B1)	EC-200
P0132	HO2S1 (B1)	EC-207
P0133	HO2S1 (B1)	EC-214
P0134	HO2S1 (B1)	EC-225
P0135	HO2S1 HTR (B1)	EC-232
P0137	HO2S2 (B1)	EC-237
P0138	HO2S2 (B1)	EC-247
P0139	HO2S2 (B1)	EC-257
P0140	HO2S2 (B1)	EC-267
P0141	HO2S2 HTR (B1)	EC-275
P0171	FUEL SYS LEAN/BK1	EC-280
P0172	FUEL SYS RICH/BK1	EC-287
P0180	FUEL TEMP SEN/CIRC	EC-294
P0300	MULTI CYL MISFIRE	EC-300
P0301	CYL 1 MISFIRE	EC-300
P0302	CYL 2 MISFIRE	EC-300
P0303	CYL 3 MISFIRE	EC-300
P0304	CYL 4 MISFIRE	EC-300
P0325	KNOCK SEN/CIRC-B1	EC-309
P0335	CKP SEN/CIRCUIT	EC-313
P0340	CMP SEN/CIRCUIT	EC-319
P0400	EGR SYSTEM	EC-327
P0402	EGRC-BPT VALVE	EC-339
P0420	TW CATALYST SYS-B1	EC-347
P0440	EVAP SMALL LEAK	EC-352
P0443	PURG VOLUME CONT/V	EC-369

Alphabetical & P No. Index for DTC (Cont'd)

DTC*4	Items	D (
CONSULT-II GST*1	(CONSULT-II screen terms)	Reference page
P0446	VENT CONTROL VALVE	EC-377
P0450	EVAP SYS PRES SEN	EC-385
P0455	EVAP GROSS LEAK	EC-400
P0460	FUEL LEV SEN SLOSH	EC-413
P0461	FUEL LEVEL SENSOR	EC-417
P0464	FUEL LEVL SEN/CIRC	EC-419
P0500	VEH SPEED SEN/CIRC*3	EC-423
P0505	IACV/AAC VLV/CIRC	EC-427
P0510	CLOSED TP SW/CIRC	EC-433
P0605	ECM	EC-440
P1126	THERMSTAT FNCTN	EC-442
P1148	CLOSED LOOP-B1	EC-444
P1336	CKP SENSOR (COG)	EC-446
P1400	EGRC SOLENOID/V	EC-452
P1401	EGR TEMP SEN/CIRC	EC-459
P1402	EGR SYSTEM	EC-465
P1440	EVAP SMALL LEAK	EC-474
P1441	EVAP VERY SML LEAK	EC-476
P1444	PURG VOLUME CONT/V	EC-491
P1446	VENT CONTROL VALVE	EC-503
P1447	EVAP PURG FLOW/MON	EC-509
P1448	VENT CONTROL VALVE	EC-519
P1464	FUEL LEVL SEN/CIRC	EC-527
P1490	VC/V BYPASS/V	EC-530
P1491	VC CUT/V BYPASS/V	EC-537
P1706	P-N POS SW/CIRCUIT	EC-548
_	OVERHEAT	EC-554

^{*1:} These numbers are prescribed by SAE J2012.

^{*2:} When the fail-safe operation occurs, the MIL illuminates.

^{*3:} The MIL illuminates when the "Revolution sensor signal" and the "Vehicle speed sensor signal" meet the fail-safe condition at the same time.

^{*4: 1}st trip DTC No. is the same as DTC No.

PRECAUTIONS

KA24DE

Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

The Supplemental Restraint System "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a seat belt, help to reduce the risk or severity of injury to the driver and front passenger in a frontal collision. The Supplemental Restraint System consists of air bag modules (located in the center of the steering wheel and on the instrument panel on the passenger side), seat belt pre-tensioners, a diagnosis sensor unit, warning lamp, wiring harness and spiral cable.

In addition to the supplemental air bag modules for a frontal collision, the supplemental side air bag used along with the seat belt helps to reduce the risk or severity of injury to the driver and front passenger in a side collision. The supplemental side air bag consists of air bag modules (located in the outer side of front seats), satellite sensor, diagnosis sensor unit (one of components of supplemental air bags for a frontal collision), wiring harness, warning lamp (one of components of supplemental air bags for a frontal collision). Information necessary to service the system safely is included in the **RS section** of this Service Manual.

WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses (except "SEAT BELT PRE-TENSIONER" connector) can be identified with yellow harness connector (and with yellow harness protector or yellow insulation tape before the harness connectors).

Precautions for On Board Diagnostic (OBD) System of Engine and A/T

The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the driver of a malfunction causing emission deterioration.

CAUTION:

- Be sure to turn the ignition switch OFF and disconnect the negative battery terminal before any repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves, etc. will cause the MIL to light up.
- Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will
 cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease,
 dirt, bent terminals, etc.)
- Certain systems and components, especially those related to OBD, may use a new style slidelocking type harness connector.
 - For description and how to disconnect, refer to "Description", "HARNESS CONNECTOR", EL-5.
- Be sure to route and secure the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MIL to light up due to the short circuit.
- Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
 may cause the MIL to light up due to the malfunction of the EGR system or fuel injection system,
 etc.
- Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and TCM (Transmission Control Module) before returning the vehicle to the customer.

Г

EC

FE

GL

MT

AT

TF

PD

AX

SU

ST

KS

BT

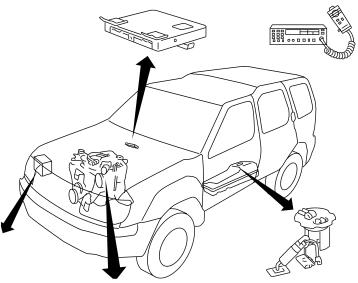
HA

SC

EL

Engine Fuel & Emission Control System

NGEC0004


ECM

- Do not disassemble ECM.
- Do not turn on board diagnostic test mode selector forcibly.
- If a battery terminal is disconnected, the memory will return to the ECM value

The ECM will now start to self-control at its initial value. Engine operation can vary slightly when the terminal is disconnected. However, this is not an indication of a problem. Do not replace parts because of a slight variation.

WIRELESS EQUIPMENT

- When installing CB ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on its installation location.
- 1) Keep the antenna as far away as possible from the electronic control units.
- Keep the antenna feeder line more than 20 cm (7.9 in) away from the harness of electronic controls.
 Do not let them run parallel for a long distance.
- Adjust the antenna and feeder line so that the standing-wave ratio can be kept smaller.
- 4) Be sure to ground the radio to vehicle body.

BATTERY

- Always use a 12 volt battery as power source.
- Do not attempt to disconnect battery cables while engine is running.

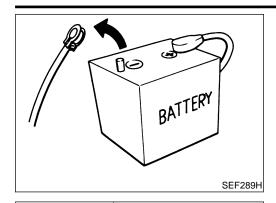
WHEN STARTING

- Do not depress accelerator pedal when starting.
- Immediately after starting, do not rev up engine unnecessarily.
- Do not rev up engine just prior to shutdown.

ECM PARTS HANDLING

- Handle mass air flow sensor carefully to avoid damage.
- Do not disassemble mass air flow sensor.
- Do not clean mass air flow sensor with any type of detergent.
- Do not disassemble IACV-AAC valve.
- Even a slight leak in the air intake system can cause serious problems.
- Do not shock or jar the camshaft position sensor or crankshaft position sensor (OBD).

FUEL PUMP


- Do not operate fuel pump when there is no fuel in lines.
- Tighten fuel hose clamps to the specified torque. (Refer to MA section.)

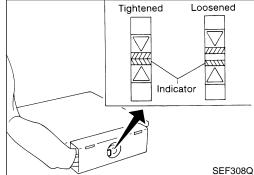
ECM HARNESS HANDLING

- Securely connect ECM harness connectors.
 - A poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs.
- Keep ECM harness at least 10 cm (3.9 in.) away from adjacent harnesses to prevent an ECM system malfunction due to receiving external noise, degraded operation of ICs, etc.
- Keep ECM parts and harnesses dry.
- Before removing parts, turn off ignition switch and then disconnect battery ground cable.

AEC045B

PRECAUTIONS

Precautions


Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect negative battery terminal. Failure to do so may damage the ECM because battery voltage is applied to ECM even if ignition switch is turned off.

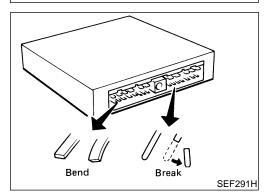
MA

EM

LC

When connecting ECM harness connector, tighten securing bolt until the gap between orange indicators disappears.

: 3 - 5 N·m (0.3 - 0.5 kg-m, 26 - 43 in-lb)


FE

GL

MT

AT

TF

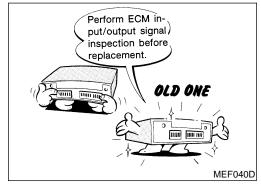
When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).

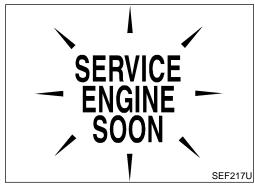
Make sure that there are not any bends or breaks on ECM pin terminals when connecting pin connectors.

PD

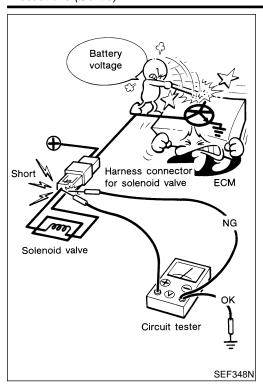
AX

Before replacing ECM, perform Terminals and Reference Value inspection and make sure ECM functions properly.





SC



After performing each TROUBLE DIAGNOSIS, perform "Overall Function Check" or "DTC Confirmation Procedure".

The DTC should not be displayed in the "DTC Confirmation Procedure" if the repair is completed. The "Overall Function Check" should be a good result if the repair is completed.

Refer to EC-129.

- When measuring ECM signals with a circuit tester, never allow the two tester probes to contact.
 Accidental contact of probes will cause a short circuit and damage the ECM power transistor.
- Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

Wiring Diagrams and Trouble Diagnosis

NGEC0006

When you read Wiring diagrams, refer to the following:

- "HOW TO READ WIRING DIAGRAMS", GI-10.
- "POWER SUPPLY ROUTING", EL-9.

When you perform trouble diagnosis, refer to the following:

- "HOW TO FOLLOW TEST GROUPS IN TROUBLE DIAGNOSES" in *GI-33*.
- "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT", *GI-22*.

PREPARATION

Special Service Tools One actual shapes of Kept Moore tools may differ from those of special source tools illustrated here

ool number Kent-Moore No.) ool name	Description		
CV10117100 J36471-A) leated oxygen sensor rrench		Loosening or tightening front heated oxygen sensor with 22 mm (0.87 in) hexagon nut	
	NT379		
CV10114400 J-38365) leated oxygen sensor vrench	a a	Loosening or tightening rear heated oxygen sensor a: 22 mm (0.87 in)	
	NT636		((
J-44321) uel pressure gauge kit	8	Checking fuel pressure	
			L

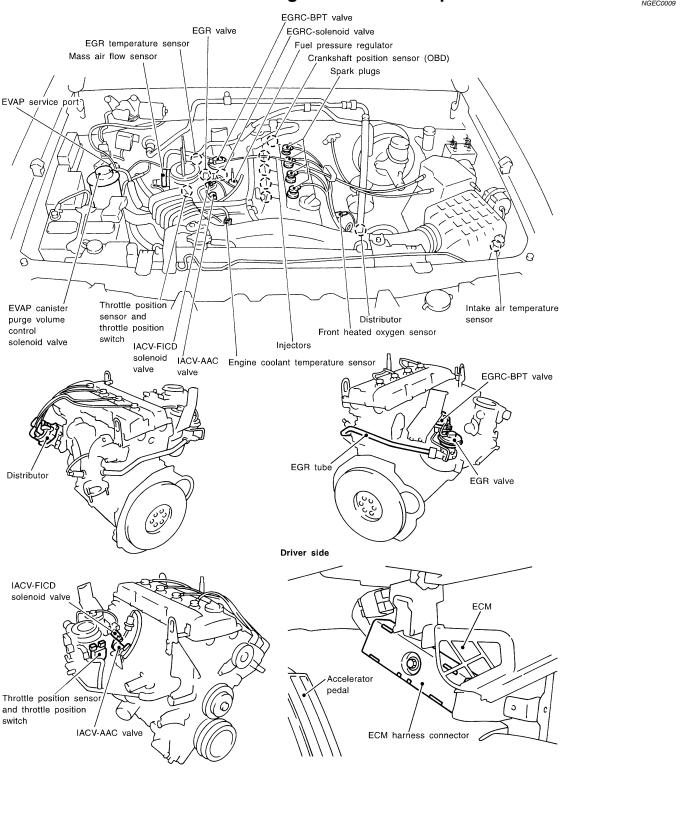
	LEC642		

Commercial Service Tools

	ூரா
NGEC0008	9)(U)

 $\mathbb{A}\mathbb{X}$

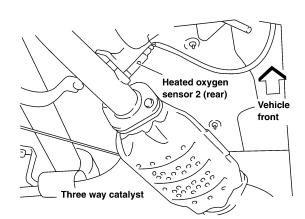
		NGEC0008	90
Tool name	Description		
Fuel filler cap adapter		Checking fuel tank vacuum relief valve opening pressure	BR
			ST
			RS
	NT653		
Leak detector (J41416)		Locating the EVAP leak	BT
,			HA
			SC
	NT703		EL

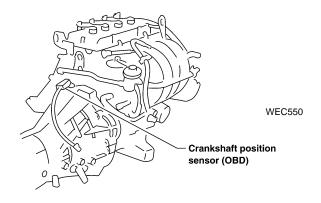

Tool name	Description	
EVAP service port adapter (J41413-OBD)	NT704	Applying positive pressure through EVAP service port
Hose clipper (—)	Approx. 20 mm (0.79 in)	Clamping the EVAP purge hose between the fuel tank and EVAP canister applied to DTC P1440 [EVAP control system (Small leak — Positive pressure)]
Socket wrench	19 mm (0.75 in) More than More than 32 mm (1.26 in)	Removing and installing engine coolant temperature sensor
Oxygen sensor thread cleaner (J-43897-18) (J-43897-12)	AEM488	Reconditioning the exhaust system threads before installing a new oxygen sensor. Use with anti-seize lubricant shown in "Commercial Service tools". a: J-43897-18 18 mm diameter, for Zirconia Oxygen Sensor b: J-43897-12 12 mm diameter, for Titania Oxygen Sensor
Anti-seize lubricant (Permatex® 133AR or equivalent meeting MIL specification MIL-A- 907)	AEM489	Lubricating oxygen sensor thread cleaning tool when reconditioning exhaust system threads.

ENGINE AND EMISSION CONTROL OVERALL SYSTEM

Engine Control Component Parts Location

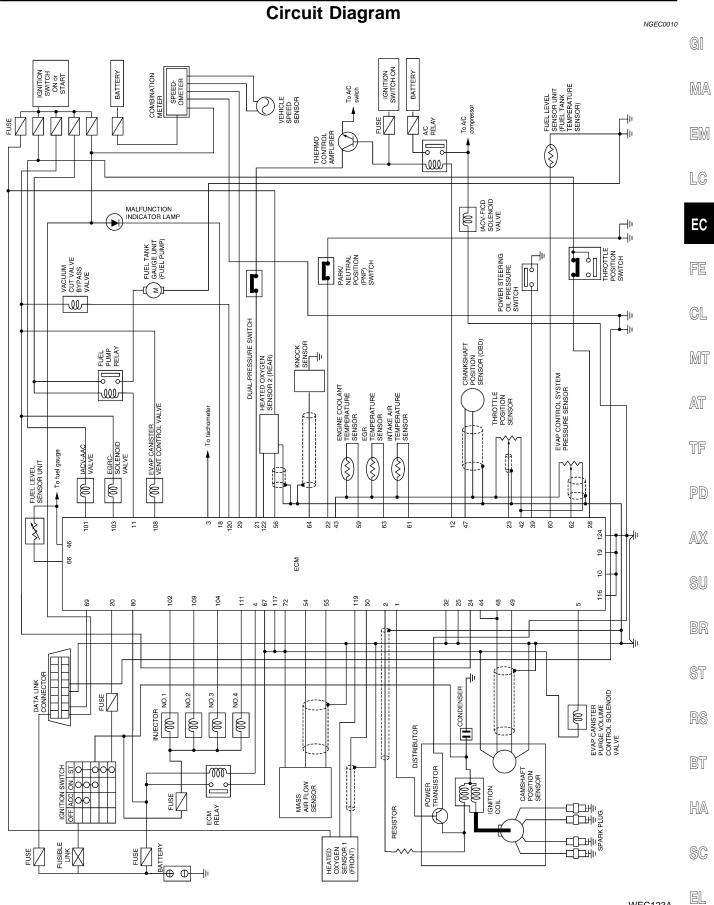
Engine Control Component Parts Location


SC

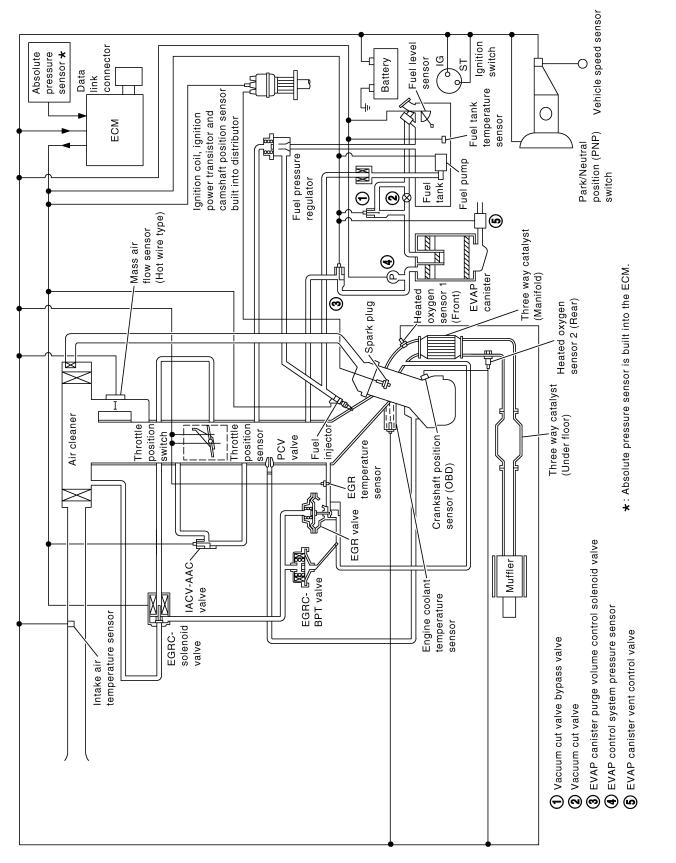

SEF711Z

RS

BT


HA

ENGINE AND EMISSION CONTROL OVERALL SYSTEM



WEC123A

System Diagram

NGEC0011

Vacuum Hose Drawing

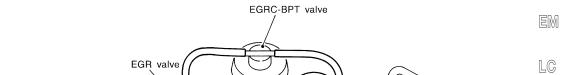
Fuel pressure

Vacuum Hose Drawing

Refer to "System Diagram" on EC-26 for vacuum control system.

View Y

EVAP service port


NOTE: Do not use soapy water or any type of solvent while

installing vacuum hoses or purge hoses.

NGEC0012

MA

GI

EC

FE

GL

EVAP canister purge volume control

View Y

solenoid valve

To air cleane

MT

AT

TF

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

WEC551

WEC551

ENGINE AND EMISSION CONTROL OVERALL SYSTEM

System Chart

System Chart NGE			
Input (Sensor)	ECM Function	Output (Actuator)	
Camshaft position sensor	Fuel injection & mixture ratio control	Injectors	
 Mass air flow sensor Engine coolant temperature sensor Heated oxygen sensor 1 (front) Ignition switch Throttle position sensor 	Distributor ignition system	Power transistor	
	Idle air control system	IACV-AAC valve and IACV-FICD solenoid valve	
PNP switch	Fuel pump control	Fuel pump relay	
 Air conditioner switch Knock sensor EGR temperature sensor*1 	Heated oxygen sensor 1 (front) monitor & on board diagnostic system	Malfunction indicator lamp (On the instrument panel)	
 Crankshaft position sensor (OBD) EVAP control system pressure sensor*1 	EGR control	EGRC-solenoid valve	
 Fuel tank temperature sensor Battery voltage Power steering oil pressure switch Vehicle speed sensor Intake air temperature sensor Heated oxygen sensor 2 (rear)*2 Closed throttle position switch*3 	Heated oxygen sensors 1, 2 (front and rear) heater control	Heated oxygen sensor heater	
	EVAP canister purge flow control	EVAP canister purge volume control valve EVAP canister purge control solenoid valve	
	Air conditioning cut control	Air conditioner relay	
	ON BOARD DIAGNOSIS for EVAP system	EVAP canister vent control valve Vacuum cut valve bypass valve	

^{*1:} These sensors are not used to control the engine system. They are used only for the on board diagnosis.

^{*2:} Under normal conditions, this sensor is not for engine control operation.

^{*3:} This switch will operate in place of the throttle position sensor to control EVAP parts if the sensor malfunctions.

ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

KA24DE

Multiport Fuel Injection (MFI) System

Multiport Fuel Injection (MFI) System

DESCRIPTION Input/Output Signal Chart

NGEC0014 NGEC0014S01

GI

Sensor	Input Signal to ECM	ECM func- tion	Actuator	MA
Camshaft position sensor	Engine speed and piston position			ED A
Mass air flow sensor	Amount of intake air			EM
Engine coolant temperature sensor	Engine coolant temperature			LC
Heated oxygen sensor 1 (front)	Density of oxygen in exhaust gas			LV
Throttle position sensor	Throttle position Throttle valve idle position			EC
PNP switch	Gear position	Fuel injec-		
Vehicle speed sensor	Vehicle speed	ture ratio	Injector	FE
Ignition switch	Start signal	control		@I
Air conditioner switch	Air conditioner operation			CL
Knock sensor	Engine knocking condition			MT
Battery	Battery voltage			UVU U
Power steering oil pressure switch	Power steering operation			AT
Heated oxygen sensor 2 (rear)*	Density of oxygen in exhaust gas			<i>\</i> -_1

^{*} Under normal conditions, this sensor is not for engine control operation.

Basic Multiport Fuel Injection System

The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from both the camshaft position sensor and the mass air flow sensor.

Various Fuel Injection Increase/Decrease Compensation

In addition, the amount of fuel injected is compensated to improve engine performance under various operating conditions as listed below.

<Fuel increase>

- During warm-up
- When starting the engine
- During acceleration
- Hot-engine operation
- High-load, high-speed operation

<Fuel decrease>

- During deceleration
- During high engine speed operation

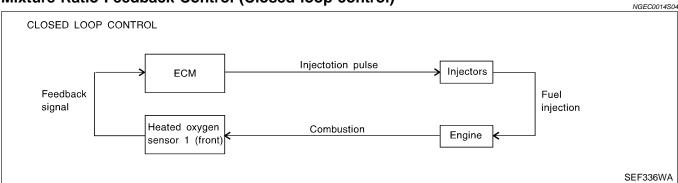
TF

ST

BT

HA

SC


EL

ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

KA24DE

Multiport Fuel Injection (MFI) System (Cont'd)

Mixture Ratio Feedback Control (Closed loop control)

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The three way catalyst can then better reduce CO, HC and NOx emissions. This system uses a front heated oxygen sensor in the exhaust manifold to monitor if the engine operation is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about the heated oxygen sensor 1 (front), refer to EC-192. This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition.

Heated oxygen sensor 2 (rear) is located downstream of the three way catalyst. Even if the switching characteristics of the heated oxygen sensor 1 (front) shift, the air-fuel ratio is controlled to stoichiometric by the signal from the heated oxygen sensor 2 (rear).

Open Loop Control

NGEC0014S05

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

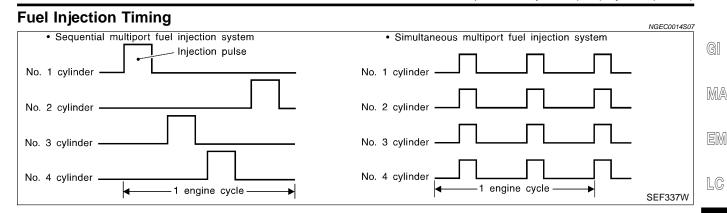
- Deceleration and acceleration
- High-load, high-speed operation
- Malfunction of heated oxygen sensor 1 (front) or its circuit
- Insufficient activation of heated oxygen sensor 1 (front) at low engine coolant temperature
- High engine coolant temperature
- During warm-up
- When starting the engine

Mixture Ratio Self-learning Control

NGEC0014S06

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from the heated oxygen sensor 1 (front). This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both manufacturing differences (i.e., mass air flow sensor hot film) and characteristic changes during operation (i.e., injector clogging) directly affect mixture ratio.

Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.


"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short term fuel trim and long term fuel trim.

"Short term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from the front heated oxygen sensor indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean.

"Long term fuel trim" is overall fuel compensation carried out long-term to compensate for continual deviation of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences, wear over time and changes in the usage environment.

ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

Multiport Fuel Injection (MFI) System (Cont'd)

Two types of systems are used.

Sequential Multiport Fuel Injection System

EC

FE

GL

MT

AT

TF

PD

AX

SU

ST

BT

HA

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

Simultaneous Multiport Fuel Injection System

Fuel is injected simultaneously into all four cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.

The four injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

Fuel Shut-off

Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.

Distributor Ignition (DI) System

DESCRIPTION

NGEC0015

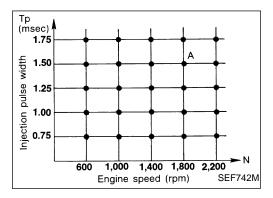
Input/Output Signal Chart

NGEC0015S01

			NGEC00103		
Sensor	Input Signal to ECM	ECM func- tion	Actuator	-	
Camshaft position sensor	Engine speed and piston position			_	
Mass air flow sensor	Amount of intake air				
Engine coolant temperature sensor	Engine coolant temperature				
Throttle position sensor	Throttle position Throttle valve idle position	- Ignition tim	tion Ignition tim-		
Vehicle speed sensor	Vehicle speed	ing control	Power transistor		
Ignition switch	Start signal Engine knocking				
Knock sensor					
PNP switch	Gear position				
Battery	Battery voltage				

SC

EL


ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

KA24DE

Distributor Ignition (DI) System (Cont'd)

System Description

NGEC0015S02

The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the engine. The ignition timing data is stored in the ECM. This data forms the map shown above.

The ECM receives information such as the injection pulse width and camshaft position sensor signal. Computing this information, ignition signals are transmitted to the power transistor.

e.g., N: 1,800 rpm, Tp: 1.50 msec A°BTDC

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.

- At starting
- During warm-up
- At idle
- At low battery voltage
- During acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions.

If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

KA24DE

Air Conditioning Cut Control

Air Conditioning Cut Control

DESCRIPTION Input/Output Signal Chart

=NGEC0016

GI NGEC0016S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator	MA
Air conditioner switch	Air conditioner "ON" signal	- Air condi- tioner cut control	Air conditioner relay	ED/A
Throttle position sensor	Throttle valve opening angle			EM
Camshaft position sensor	Engine speed			LC
Engine coolant temperature sensor	Engine coolant temperature			
Ignition switch	Start signal			EC
Vehicle speed sensor	Vehicle speed			
Power steering oil pressure switch	Power steering operation			FE

NGEC0016S02

MT

AT

TF

PD

SU

System Description

This system improves engine operation when the air conditioner is used.

Under the following conditions, the air conditioner is turned off.

- When the accelerator pedal is fully depressed.
- When cranking the engine.
- When the engine coolant temperature becomes excessively high.
- When operating power steering and air conditioner during low engine speed or when fully releasing accelerator pedal.
- When engine speed is excessively low.

Fuel Cut Control (at no load & high engine speed)

DESCRIPTION **Input/Output Signal Chart**

NGFC0017

NGEC0017S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Vehicle speed sensor	Vehicle speed	Fuel cut	Injectors
PNP switch	Neutral position		
Throttle position sensor	Throttle position		
Camshaft position sensor	Engine speed		

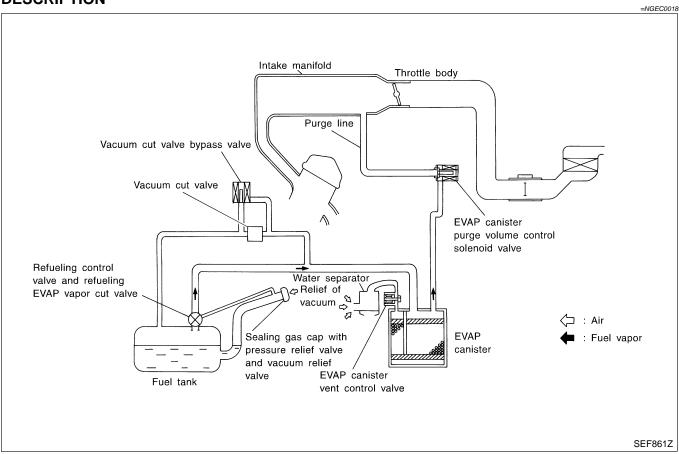
If the engine speed is above 3,000 rpm with no load, (for example, in Neutral and engine speed over 3,000 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed. Fuel cut will operate until the engine speed reaches 1,500 rpm, then fuel cut is cancelled.

This function is different from deceleration control listed under "Multiport Fuel Injection (MFI) System", EC-29.

BT

HA

SC

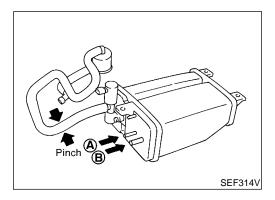

ST

EL

KA24DE

Evaporative Emission System

DESCRIPTION


The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.

The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the vapor is stored there when the engine is not operating or when refueling to the fuel tank.

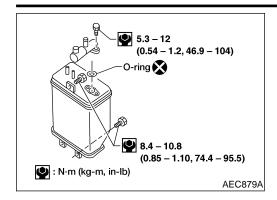
The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the engine is operating.

EVAP canister purge volume control solenoid valve is controlled by ECM. When the engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is proportionally regulated as the air flow increases.

EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating and idling.

INSPECTION EVAP Canister

NGEC0019


NGEC0019S01

Check EVAP canister as follows:

- 1. Pinch the fresh air hose.
- Blow air into port A and check that air flows freely through port B.

ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

Evaporative Emission System (Cont'd)

Tightening Torque

NGEC0019S02

Tighten EVAP canister as shown in the figure.

Make sure new O-ring is installed properly between EVAP canister and EVAP canister vent control valve.

MA

LC

EC

Wipe clean valve housing.

Check valve opening pressure and vacuum.

Pressure:

16.0 - 20.0 kPa (0.163 - 0.204 kg/cm², 2.32 - 2.90 psi)

Vacuum:

-6.0 to -3.5 kPa (-0.061 to -0.036 kg/cm², -0.87 to -0.51 psi)

If out of specification, replace fuel filler cap as an assembly.

CAUTION:

Valve B

Vacuum/

Pressure

pump

SEF427N

SEF943S

Valve A

Vacuum/Pressure gauge

One-way valve

Fuel tank side

-Fuel filler

Fuel filler cap adapter

cap

Use only a genuine NISSAN fuel filler cap as a replacement. If

MT

an incorrect fuel filler cap is used, the MIL may come on.

AT

PD

TF

AX

Vacuum Cut Valve and Vacuum Cut Valve Bypass Valve Refer to EC-537.

SU

Evaporative Emission (EVAP) Canister Purge Volume Control Solenoid Valve

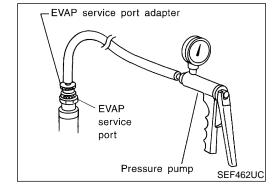
NGEC0019S06

Refer to EC-491.

Refer to EC-294.

Fuel Tank Temperature Sensor

NGEC0019508

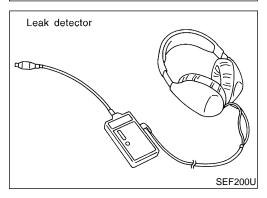

EVAP Service Port

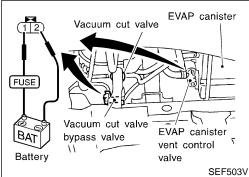
Positive pressure is delivered to the EVAP system through the EVAP service port. If fuel vapor leakage in the EVAP system occurs, use a leak detector to locate the leak.

HA

SC

EL




ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

KA24DE

Evaporative Emission System (Cont'd)

EVAP SYSTEM CLOSE APPLY PRESSURE TO EVAP SYSTEM FROM SERVICE PORT USING HAND PUMP WITH PRESSURE GAUGE AT NEXT SCREEN. NEVER USE COMPRESSED AIR OR HIGH PRESSURE PUMP! DO NOT START ENGINE. TOUCH START.

How to Detect Fuel Vapor Leakage

NGEC0019S10

CAUTION:

- Never use compressed air or a high pressure pump.
- Do not start engine.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in EVAP system.

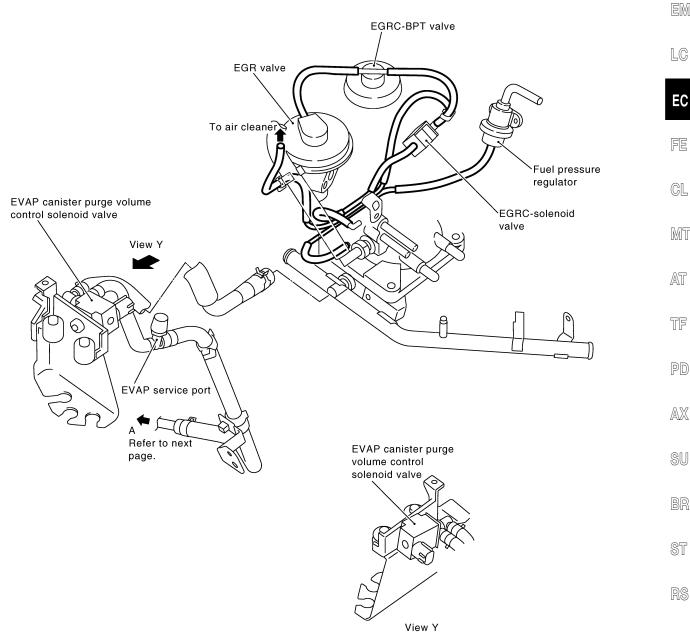
NOTE:

Improper installation of adapter to the service port may cause a leak.

(P) With CONSULT-II

- Attach the EVAP service port adapter securely to the EVAP service port.
- 2) Also attach the pressure pump and hose.
- 3) Turn ignition switch "ON".
- Select the "EVAP SYSTEM CLOSE" of "WORK SUPPORT MODE" with CONSULT-II.
- 5) Touch "START". A bar graph (Pressure indicating display) will appear on the screen.
- 6) Apply positive pressure to the EVAP system until the pressure indicator reaches the middle of the bar graph.
- 7) Remove the EVAP service port adapter and hose with pressure pump.
- 8) Locate the leak using a leak detector. Refer to "Evaporative Emission Line Drawing", EC-37.

⋈ Without CONSULT-II


- 1) Attach the EVAP service port adapter securely to the EVAP service port and pressure pump with pressure gauge to the EVAP service port.
- Apply battery voltage to between the terminals of both EVAP canister vent control valve and vacuum cut valve bypass valve to make a closed EVAP system.
- 3) To locate the leak, deliver positive pressure to the EVAP system until pressure gauge points reach 1.38 to 2.76 kPa (0.014 to 0.028 kg/cm², 0.2 to 0.4 psi).
- 4) Remove the EVAP service port adapter and hose with pressure pump.
- 5) Locate the leak using a leak detector. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-37.

Evaporative Emission System (Cont'd)

EVAPORATIVE EMISSION LINE DRAWING

Do not use soapy water or any type of solvent while installing vacuum hoses or purge hoses.

GI

EM

LC

EC

GL

MT

AT

TF

 $\mathbb{A}\mathbb{X}$

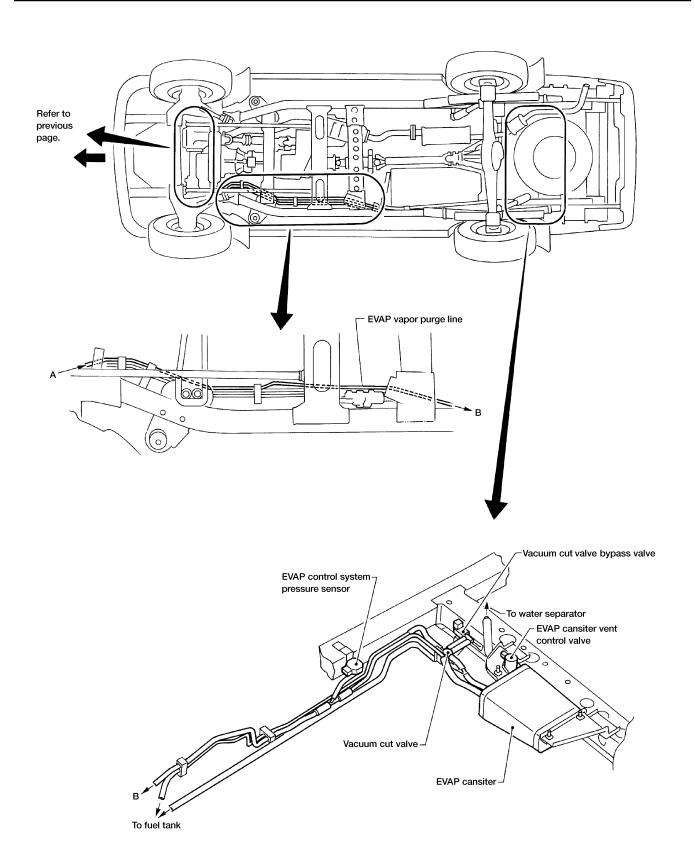
SU

BR

ST

RS

BT

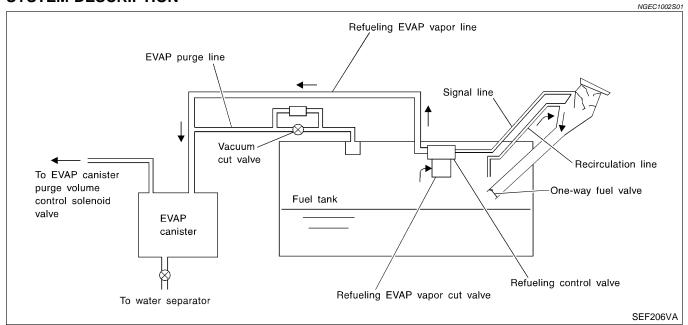

HA

SC

EL

SEF712Z

KA24DE


WEC555

KA24DE

On Board Refueling Vapor Recovery (ORVR)

On Board Refueling Vapor Recovery (ORVR)

SYSTEM DESCRIPTION

From the beginning of refueling, the fuel tank pressure goes up. When the pressure reaches the setting value of the refueling control valve (RCV) opening pressure, the RCV is opened. After RCV opens, the air and vapor inside the fuel tank go through refueling EVAP vapor cut valve, RCV and refueling vapor line to the EVAP canister. The vapor is absorbed by the EVAP canister and the air is released to the atmosphere.

When the refueling has reached the full level of the fuel tank, the refueling EVAP vapor cut valve is closed TF and refueling is stopped because of auto shut-off. The vapor which was absorbed by the EVAP canister is

purged during driving.

The RCV is always closed during driving and the evaporative emission control system is operated the same as conventional system.

WARNING:

When conducting inspections below, be sure to observe the following:

- Put a "CAUTION: INFLAMMABLE" sign in workshop.
- Do not smoke while servicing fuel system. Keep open flames and sparks away from work area.
- Be sure to furnish the workshop with a CO₂ fire extinguisher.

CAUTION:

- Before removing fuel line parts, carry out the following procedures:
- a) Put drained fuel in an explosion-proof container and put lid on securely.
- b) Release fuel pressure from fuel line. Refer to "Fuel Pressure Release", EC-51.
- c) Disconnect battery ground cable.
- Always replace O-ring when the fuel gauge retainer is removed.
- Do not kink or twist hose and tube when they are installed.
- Do not tighten hose and clamps excessively to avoid damaging hoses.
- After installation, run engine and check for fuel leaks at connection.
- Do not attempt to top off the fuel tank after the fuel pump nozzle shuts off automatically. Continued refueling may cause fuel overflow, resulting in fuel spray and possibly a fire.

GI

MA

LC

EC

GL

MT

AX

PD

ST

HA

SC

KA24DE

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

DIAGNOSTIC PROCEDURE

Symptom: Fuel Odor from EVAP Canister Is Strong.

NGEC1002S02

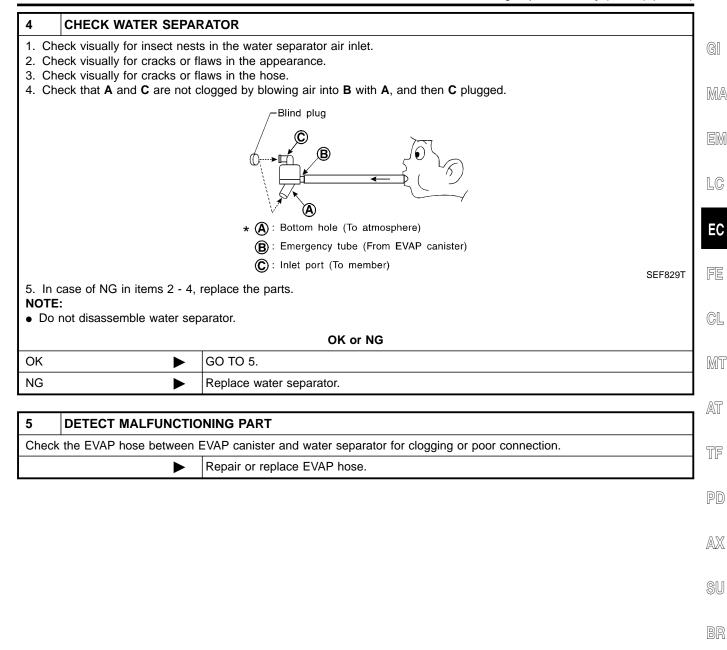
NGEC1002S0201

- Does water drain from the EVAP canister?

 EVAP canister

 Ves or No

 No (With CONSULT-II)


 No (Without CONSULT-II)

 FOR The April 19 Consult of the EVAP canister (Consult of the EVAP cani

3	REPLACE EVAP CANISTER	
Replace EVAP canister with a new one.		
	>	GO TO 4.

EC

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

ST

BT

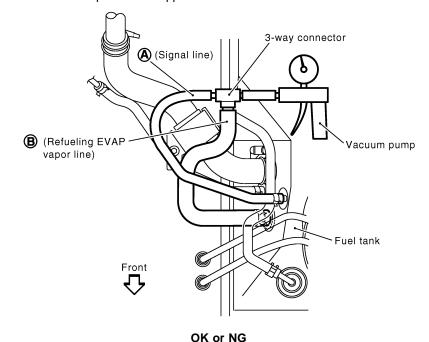
HA

SC

KA24DE

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CHECK REFUELING EVAP VAPOR CUT VALVE


(P) With CONSULT-II

6

- 1. Remove fuel tank. Refer to FE-4, "FUEL SYSTEM.
- 2. Drain fuel from the tank as follows:
- a. Remove fuel feed hose located on the fuel gauge retainer.
- b. Connect a spare fuel hose, one side to fuel gauge retainer where the hose was removed and the other side to a fuel container.
- c. Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.
 - Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

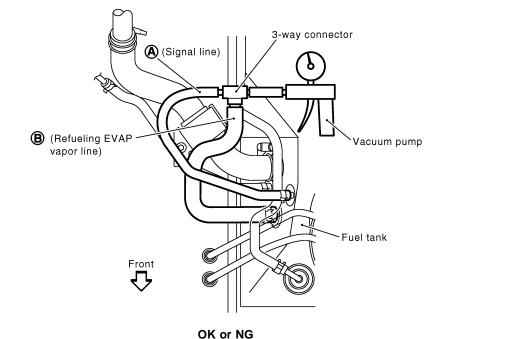
- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

SEF707Z

OK •	>	GO TO 8.
NG •	>	Replace refueling EVAP vapor cut valve with fuel tank.

KA24DE

On Board Refueling Vapor Recovery (ORVR) (Cont'd)


CHECK REFUELING EVAP VAPOR CUT VALVE

Without CONSULT-II

- 1. Remove fuel tank. Refer to FE-4, "FUEL SYSTEM".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel gauge retainer.
- b. Drain fuel from the tank using a hand pump into a fuel container.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.
- Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

OK >	GO TO 8.
NG •	Replace refueling EVAP vapor cut valve with fuel tank.

GI

MA

=IMI

LC

EC

FE

GL

MT

AT

TF PD

SU

SEF707Z

ST

RS

BT

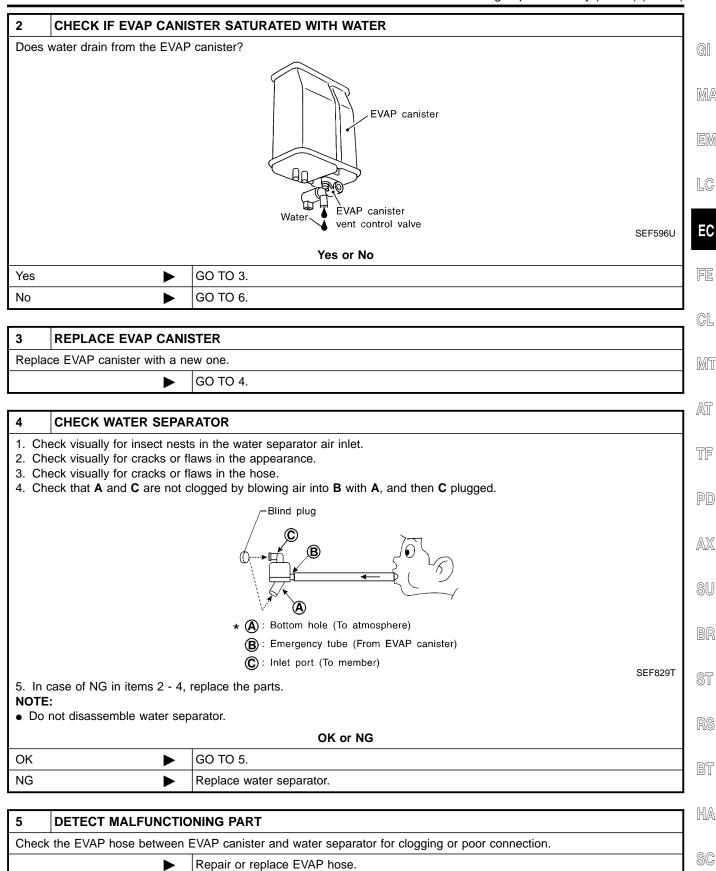
HA

SC

EL

KA24DE

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

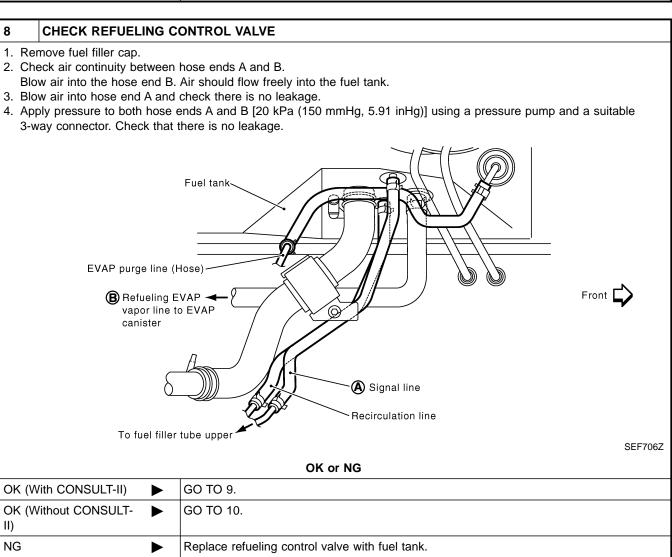

8 **CHECK REFUELING CONTROL VALVE** 1. Remove fuel filler cap. 2. Check air continuity between hose ends A and B. Blow air into the hose end B. Air should flow freely into the fuel tank. 3. Blow air into hose end A and check there is no leakage. 4. Apply pressure to both hose ends A and B [20 kPa (150 mmHg, 5.91 inHg)] using a pressure pump and a suitable 3-way connector. Check that there is no leakage. Fuel tank-EVAP purge line (Hose) Front Refueling EVAP ■ vapor line to EVAP canister (A) Signal line Recirculation line To fuel filler tube upper SEF706Z OK or NG **INSPECTION END** OK NG Replace refueling control valve with fuel tank.

Symptom: Cannot Refuel/Fuel Odor From The Fuel Filler Opening Is Strong While Refueling.

Refue	ling.	NGEC10023	50202		
1	CHECK EVAP CANIST	R			
2. We	 Remove EVAP canister with EVAP canister vent control valve attached. Weigh the EVAP canister with EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb). 				
	OK or NG				
ОК	>	GO TO 2.			
NG	>	GO TO 3.			

KA24DE

On Board Refueling Vapor Recovery (ORVR) (Cont'd)



KA24DE

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

6	CHECK VENT HOSES	AND VENT TUBES		
	Check hoses and tubes between EVAP canister and refueling control valve for clogging, kink, looseness and improper connection.			
	OK or NG			
OK	•	GO TO 7.		
NG	>	Repair or replace hoses and tubes.		

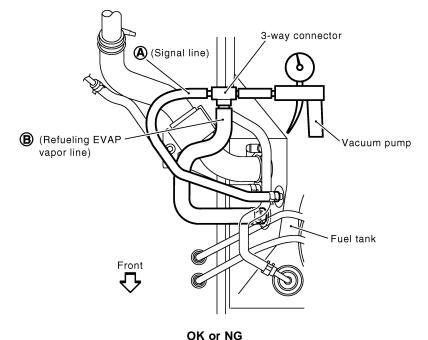
7	CHECK FILLER NECK	TUBE	
Check signal line and recirculation line for clogging, dents and cracks.			
OK or NG			
OK	>	GO TO 8.	
NG	>	Replace filler neck tube.	

KA24DE

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CHECK REFUELING EVAP VAPOR CUT VALVE

(P) With CONSULT-II


9

- 1. Remove fuel tank. Refer to FE-4, "FUEL SYSTEM".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel feed hose located on the fuel gauge retainer.
- b. Connect a spare fuel hose, one side to fuel gauge retainer where the hose was removed and the other side to a fuel container.
- c. Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.

 Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

ОК	>	GO TO 11.
NG	>	Replace refueling EVAP vapor cut valve with fuel tank.

GI

MA

EM

LG

EC

FE

CL

MT

AT

TF

PD

SU

SEF707Z

BK

ST

RS

BT

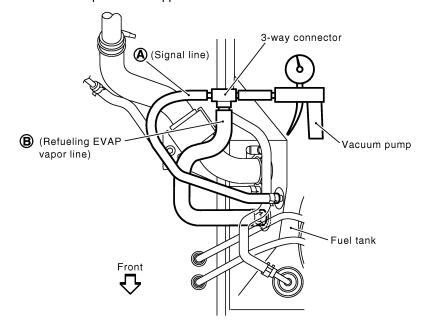
HA

SC

EL

KA24DE

On Board Refueling Vapor Recovery (ORVR) (Cont'd)


10 CHECK REFUELING EVAP VAPOR CUT VALVE

Without CONSULT-II

- 1. Remove fuel tank. Refer to FE-4, "FUEL SYSTEM".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel gauge retainer.
- b. Drain fuel from the tank using a hand pump into a fuel container.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.
 - Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

SEF707Z

OK	>	GO TO 11.

NG Replace refueling EVAP vapor or	cut valve with fuel tank.
------------------------------------	---------------------------

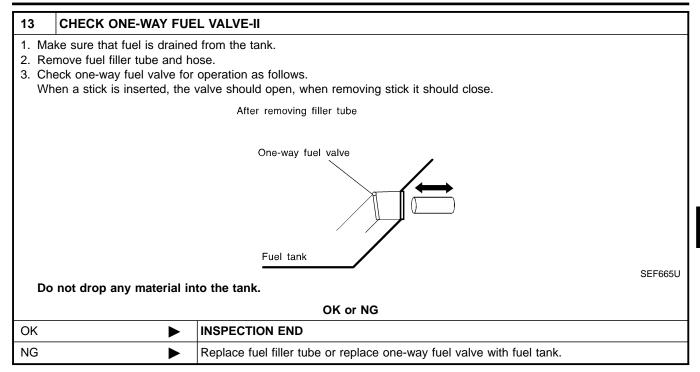
11	CHECK FUEL FILLER	ГИВЕ		
Check filler neck tube and hose connected to the fuel tank for clogging, dents and cracks.				
	OK or NG			
OK	•	GO TO 12.		
NG	>	Replace fuel filler tube.		

OK or NG

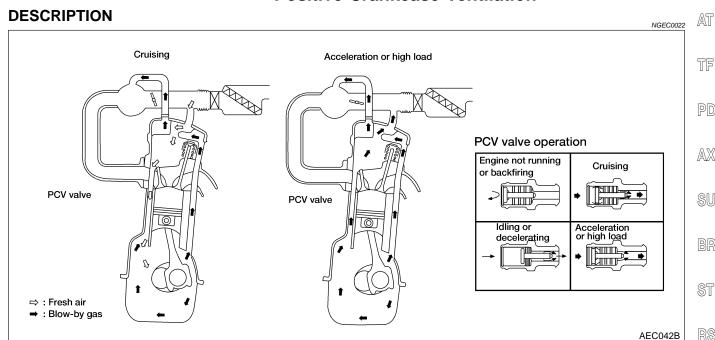
12	CHECK ONE-WAY FUE	L VALVE-I		
Check	Check one-way valve for clogging.			
OK or NG				
OK	>	GO TO 13.		
NG	>	Repair or replace one-way fuel valve with fuel tank.		

KA24DE

GI


MA

LC


EC

MT

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

Positive Crankcase Ventilation

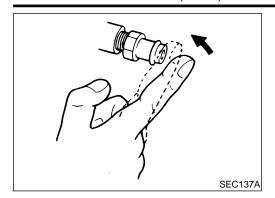
This system returns blow-by gas to the intake collector.

The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake manifold.

During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve.

Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air. The ventilating air is then drawn from the air duct into the crankcase. In this process the air passes through the hose connecting air inlet tubes to rocker cover.

Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve. The flow goes through the hose connection in the reverse direction.

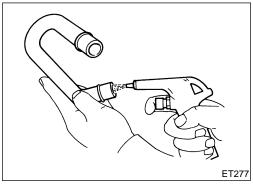

On vehicles with an excessively high blow-by, the valve does not meet the requirement. This is because some of the flow will go through the hose connection to the intake collector under all conditions.

HA

SC

KA24DE

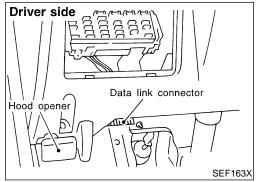
Positive Crankcase Ventilation (Cont'd)

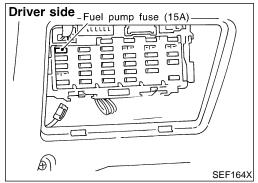

INSPECTION

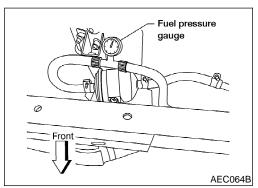
PCV (Positive Crankcase Ventilation) Valve

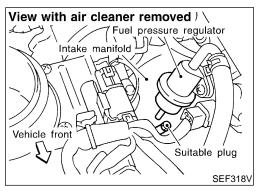
NGEC0023

NGEC0023S01


With engine running at idle, remove PCV valve from breather separator. A properly working valve makes a hissing noise as air passes through it. A strong vacuum should be felt immediately when a finger is placed over the valve inlet.


Ventilation Hose


NGEC0023S02


- 1. Check hoses and hose connections for leaks.
- 2. Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.

FUEL PRES RELEASE FUEL PUMP WILL STOP BY TOUCHING START DURING IDLE. **CRANK A FEW TIMES AFTER** ENGINE STALL.

Fuel Pressure Release

Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger.

(P) WITH CONSULT-II

1. Start engine.

- Perform "FUEL PRESSURE RELEASE" in "WORK SUP-PORT" mode with CONSULT-II.
- After engine stalls, crank it two or three times to release all fuel pressure.
- Turn ignition switch OFF.

EC

LC

GI

MA

NGEC0024S01

GL

MT

AT

PD

AX

NGFC0024S02

N WITHOUT CONSULT-II

Remove fuse for fuel pump.

Start engine.

PEF823K

- After engine stalls, crank it two or three times to release all fuel pressure.
- Turn ignition switch OFF and reconnect fuel pump fuse.

Fuel Pressure Check

When reconnecting fuel line, always use new clamps.

Make sure that clamp screw does not contact adjacent parts.

Use a torque driver to tighten clamps.

Use Pressure Gauge to check fuel pressure.

Do not perform fuel pressure check with system operating. Fuel pressure gauge may indicate false readings.

1. Release fuel pressure to zero.

Disconnect fuel hose between fuel filter and fuel tube (engine side)...

Install fuel pressure gauge between the fuel filter and fuel tube..

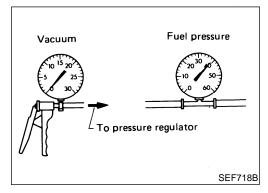
4. Start engine and check for fuel leakage.

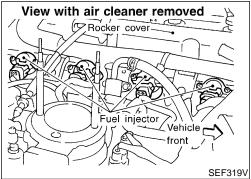
Read the indication of fuel pressure gauge.

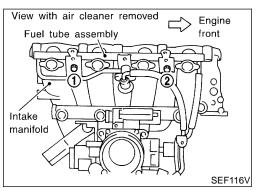
At idle speed:

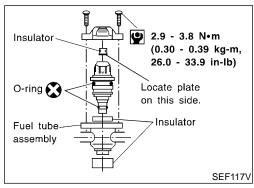
With vacuum hose connected Approximately 235 kPa (2.4 kg/cm², 34 psi) With vacuum hose disconnected

Approximately 294 kPa (3.0 kg/cm², 43 psi)


HA


SC


EL



If results are unsatisfactory, perform Fuel Pressure Regulator Check, EC-52.

Fuel Pressure Regulator Check

VGEC0026

- 1. Stop engine and disconnect fuel pressure regulator vacuum hose from intake manifold.
- Plug intake manifold with a rubber cap.
- 3. Connect variable vacuum source to fuel pressure regulator.
- 4. Start engine and read indication of fuel pressure gauge as vacuum is changed.

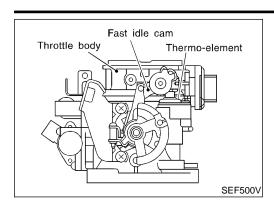
Fuel pressure should decrease as vacuum increases. If results are unsatisfactory, replace fuel pressure regulator.

Injector

REMOVAL AND INSTALLATION

NGEC0027

- 1. Release fuel pressure to zero.
- Remove injector tube assembly with injectors from intake manifold.
- Remove injectors from injector tube assembly.
- Push injector tail piece.
- Do not pull on the connector.
- Install injector to fuel tube assembly.
- a. Clean exterior of injector tail piece.
- b. Use new O-rings.


Always replace O-rings with new ones. Lubricate O-rings with a smear of engine oil.

- 5. Install injectors with fuel tube assembly to intake manifold. **Tighten in numerical order shown in the figure.**
- a. First, tighten all bolts to 9.3 to 10.8 N·m (0.95 to 1.1 kg-m, 6.9 to 8.0 ft-lb).
- b. Then, tighten all bolts to 21 to 26 N·m (2.1 to 2.7 kg-m, 15 to 20 ft-lb).
- Install fuel hoses to fuel tube assembly.
- 7. Reinstall any parts removed in reverse order of removal.

CAUTION

After properly connecting injectors to fuel tube assembly, check connections for fuel leakage.

Fast Idle Cam (FIC) **COMPONENT DESCRIPTION**

The FIC is installed on the throttle body to maintain adequate engine speed while the engine is cold. It is operated by a volumetric change in wax located inside the thermo-element. The thermoelement is operated by engine coolant temperature.

inspection refer to "TROUBLE **DIAGNOSIS-BASIC** INSPECTION", "Basic Inspection", EC-104.

LC

EC

Idle Speed/Ignition Timing/Idle Mixture Ratio

Adjustment **PREPARATION** NGEC0028S01

- Make sure that the following parts are in good order.
- **Battery**
- b) Ignition system
- **Engine oil and coolant levels**
- d) Fuses
- e) ECM harness connector
- Vacuum hoses
- g) Air intake system (Oil filler cap, oil level gauge, etc.)
- h) Fuel pressure
- **Engine compression**
- **EGR** valve operation j)
- k) Throttle valve
- **EVAP** system
- On models equipped with air conditioner, checks should be carried out while the air conditioner is "OFF".
- When measuring "CO" percentage, insert probe more than 40 cm (15.7 in) into tail pipe.
- Turn off headlamps, heater blower, rear window defogger.
- Keep front wheels pointed straight ahead.

FE

GL

MT

AT

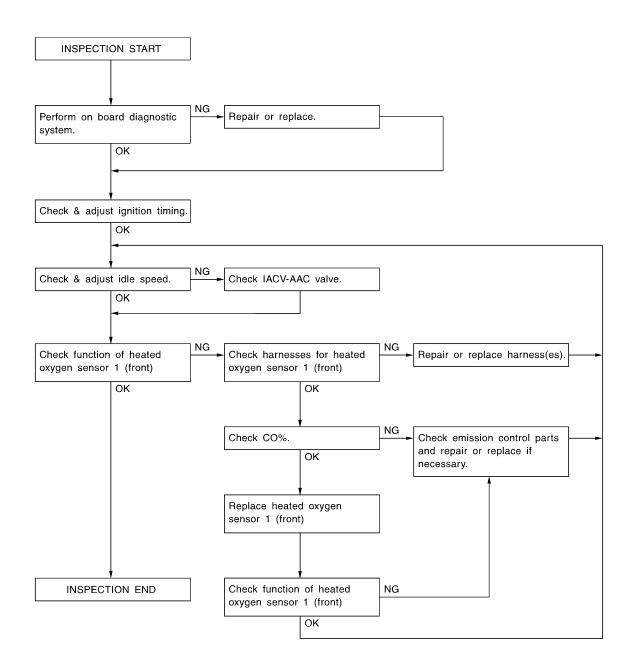
TF

PD

SU

ST

BT


HA

SC

EL

Overall Inspection Sequence

NGEC0028S0101

SEF554Y

NOTE:

If a vehicle contains a part which is operating outside of design specifications with no MIL illumination, the part shall not be replaced prior to emission testing unless it is determined that the part has been tampered with or abused in such a way that the diagnostic system cannot reasonably be expected to detect the resulting malfunction.

KA24DE

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

INSPECTION PROCEDURE

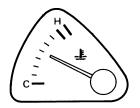
=NGEC0028S02

GI

MA

EC

FE


MT

AT

TF

1	INSPECTION START	•
---	------------------	---

- 1. Visually check the following:
- Air cleaner clogging
- Hoses and duct for leaks
- EGR valve operation
- Electrical connectors
- Gasket (intake manifold, cylinder head, exhaust system)
- Throttle valve and throttle position sensor operation
- 2. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge. Ensure engine speed stays below 1,000 rpm.

SEF810K

- 3. Open engine hood and run engine at about 2,000 rpm for about 2 minutes under no-load.
- 4. Make sure that no DTC is displayed with CONSULT-II or GST.

OI	K	or	Ν	G

OK ▶	GO TO 2. (With CONSULT-II)GO TO 3. (Without CONSULT-II)
NG	 Repair or replace components as necessary. GO TO 2. (With CONSULT-II) GO TO 3. (Without CONSULT-II)

AX

PD

SU

BR

ST

RS

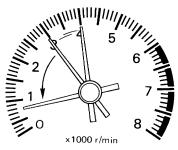
BT

HA

SC

FI

 \mathbb{N}


Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

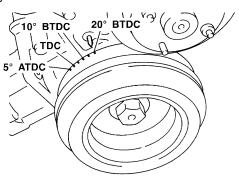
CHECK IGNITION TIMING

(P) With CONSULT-II

2

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine two or three times under no-load, then run engine at idle speed for about 1 minute.

SEF978U


- 3. Select "IGNITION TIMING ADJ" in WORK SUPPORT mode.
- 4. Touch "START".

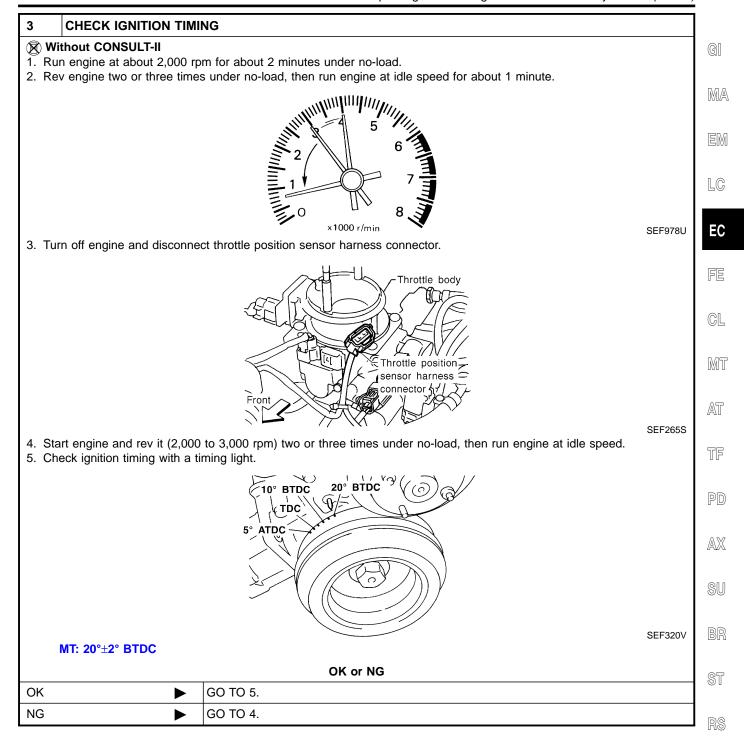
IGNITION TIMING ADJ

IGNITION TIMING FEEDBACK CONTROL WILL BE HELD BY TOUCHING START.
AFTER DOING SO, ADJUST IGNITION TIMING WITH A TIMING LIGHT BY TURNING THE CAMSHAFT POSITION SENSOR.

PEF546N

- 5. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed.
- 6. Check ignition timing with a timing light.

SEF320V


MT: 20°±2° BTDC

OK or NG

OK •	GO TO 5.
NG ►	GO TO 4.

KA24DE

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

 $\mathbb{D}\mathbb{X}$

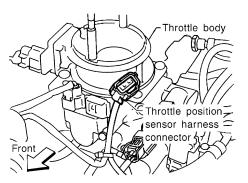
BT

HA

SC

KA24DE

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)


ADJUST IGNITION TIMING

(P) With CONSULT-II

1. Adjust ignition timing to the specified value by turning distributor after loosening bolts which secure distributor.

⋈ Without CONSULT-II

- 1. Adjust ignition timing to the specified value by turning distributor after loosening bolts which secure distributor.
- 2. Turn off engine and connect throttle position sensor harness connector to throttle position sensor.

SEF265S

Models with CONSULT-II		GO TO 2.
Models without CON- SULT-II	>	GO TO 3.

CHECK BASE IDLE SPEED

(F) With CONSULT-II

1. Read idle speed in "IGNITION TIMING ADJ" in "WORK SUPPORT" mode.

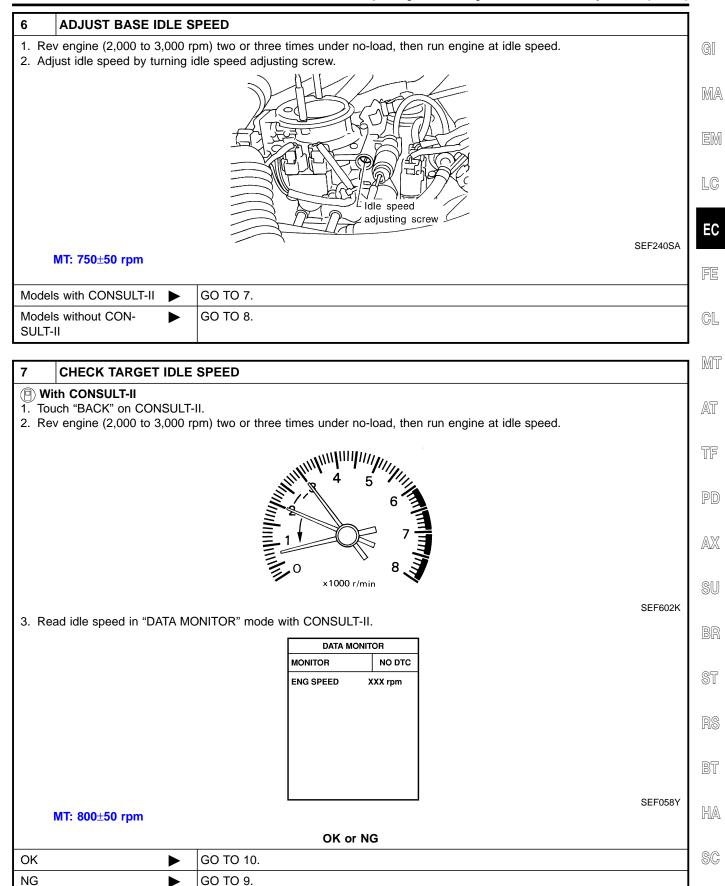
IGNITION TIMING ADJ				
CONDITION	SET	TING		
IGN/T FEEDBACK	HOLD			
MONI	TOR			
ENG SPEED	XXX rpm			
IGN TIMING	XXX BTDC			
CLSD THL PC	ON			

SEF713Z

MT: 750±50 rpm

Without CONSULT-II

1. Check idle speed.


MT: 750±50 rpm

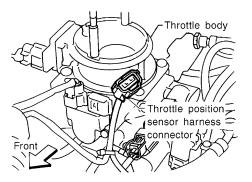
OK or NG

OK (With CONSULT-II)	>	GO TO 7.
OK (Without CONSULT-II)	•	GO TO 8.
NG	>	GO TO 6.

KA24DE

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

KA24DE


Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

CHECK TARGET IDLE SPEED

Without CONSULT-II

8

1. Turn off engine and connect throttle position sensor harness connector.

SEF265S

- 2. Start engine.
- 3. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed.
- 4. Check target idle speed.

MT: 800±50 rpm

OK or NG

OK		GO TO 10.
NG	•	GO TO 9.

9 DETECT MALFUNCTIONING PART

Check the following.

- 1. Check IACV-AAC valve and replace if necessary. Refer to EC-427.
- 2. Check IACV-AAC valve harness and repair if necessary. Refer to EC-427.
- 3. Check ECM function by substituting another known good ECM. (ECM may be the cause of a problem, but this is rarely the case.)

▶ GO TO 10.

KA24DE

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

10 CHECK HEATED OXYGEN SENSOR 1 (FRONT) SIGNAL

(P) With CONSULT-II

- 1. See "HO2S1 MNTR (B1)" in "DATA MONITOR" mode.
- 2. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 3. Maintain engine at 2,000 rpm under no-load (engine is warmed up to normal operating temperature) and check that the monitor fluctuates between "LEAN" and "RICH" more than five times during 10 seconds.

DATA MONIT	OR
MONITOR	NO DTC
ENG SPEED X HO2S1 MNTR (B1)	OXX rpm RICH

SEF820Y

1 cycle: RICH \rightarrow LEAN \rightarrow RICH

2 cycles: RICH ightarrow LEAN ightarrow RICH ightarrow LEAN ightarrow RICH

Without CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Set voltmeter probe between ECM terminal 50 and ground.
- 3. Make sure that the voltage fluctuates between 0 0.3V and 0.6 1.0V more than 5 times during 10 seconds at 2,000 rpm.

1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

OK or NG

OK •	INSPECTION END
NG •	GO TO 11.

GI

MA

FM

LG

EC

GL

MT

AT

TF

PD

SU

ST

RS

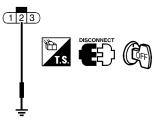
BT

HA

SC

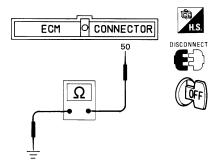
EL

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)


CHECK HEATED OXYGEN SENSOR 1 (FRONT) HARNESS

- 1. Turn off engine and disconnect battery ground cable.
- 2. Disconnect ECM harness connector.

11

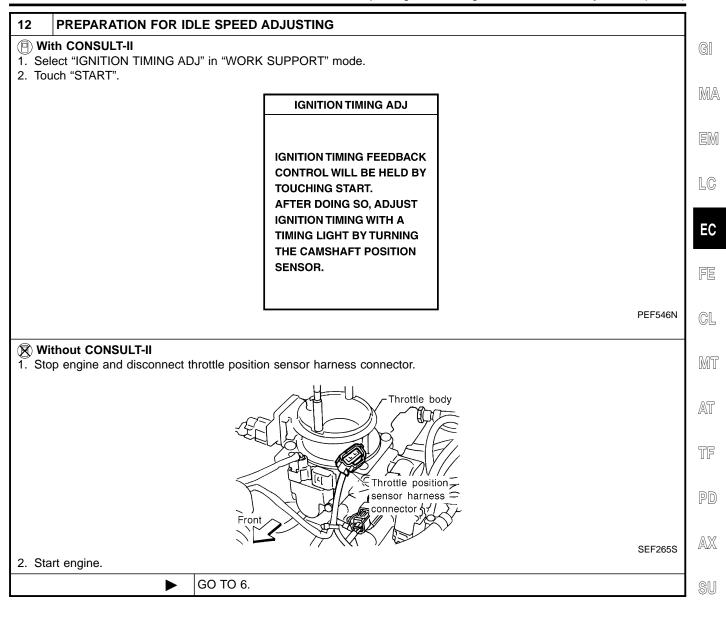

- 3. Disconnect heated oxygen sensor 1 (front) harness connector.
- 4. Then connect harness connector terminal for heated oxygen sensor 1 (front) to ground with a jumper wire.

Heated oxygen sensor 1 (front) harness connector

SEF508VA

5. Check for continuity between terminal 50 of ECM harness connector and body ground.

SEF250P


Continuity exists...OK
Continuity does not exist...NG

OK or NG

OK ►	 Connect ECM harness connector to ECM. Connect battery ground cable. GO TO 13.
NG	 Repair or replace harness. GO TO 12.

KA24DE

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

BR

ST

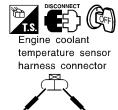
BT

HA

SC

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

13 PREPARATION FOR "CO" % CHECK


(II) With CONSULT-II

- 1. Select "ENGINE COOLANT TEMP" in "ACTIVE TEST" mode.
- 2. Set "COOLANT TEMP" to 5°C (41°F) by touching "Qu" and "Qd" and "UP", "DOWN".

ACTIVE TEST					
ENG COOLANT TEMP	XXX °C				
MONITOF	1				
ENG SPEED	XXX rpm				
INJ PULSE-B1	XXX msec				
IGN TIMING	XXX BTDC				

SEF172Y

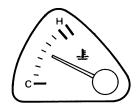
- 1. Connect ECM harness connector to ECM.
- 2. Disconnect engine coolant temperature sensor harness connector.
- 3. Connect a resistor (4.4 k Ω) between terminals of engine coolant temperature sensor harness connector.

SEF053RA

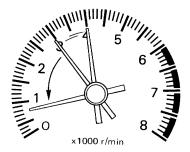
4. Connect battery ground cable.

 \triangleright

GO TO 14.


KA24DE

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)


14 CHECK "CO" %

Without CONSULT-II

1. Start engine and warm it up until engine coolant temperature indicator points to middle of gauge. (Be sure to start engine after setting "COOLANT TEMP" or installing a 4.4 kΩ resistor.)

2. Rev engine two or three times under no-load, then run engine at idle speed.

SEF978U

3. Check "CO"%.

Idle CO: 2.9 - 10.8% and engine runs smoothly.

4. (P) With CONSULT-II

After checking CO%, touch "BACK".

5. Without CONSULT-II

After checking CO%,

- a. Disconnect the resistor from terminals of engine coolant temperature sensor harness connector.
- b. Connect engine coolant temperature sensor harness connector to engine coolant temperature sensor.

OK	or	NG
----	----	----

OK •	>	GO TO 15.
NG	>	GO TO 16.

G[

MA

. □Ω.Ω

I @

EC

SEF810K

FE

GL

MT

AT

TF

PD

SU

ST

D@

BT

HA

SC

SIL

KA24DE

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

15 CHECK HEATED OXYGEN SENSOR 1 (FRONT) SIGNAL

(P) With CONSULT-II

- 1. Replace heated oxygen sensor 1 (front).
- 2. See "HO2S1 MNTR (B1)" in "DATA MONITOR" mode.
- 3. Maintain engine at 2,000 rpm under no-load (engine is warmed up to normal operating temperature.). Check that the monitor fluctuates between "LEAN" and "RICH" more than five times during 10 seconds.

1 cycle: RICH \rightarrow LEAN \rightarrow RICH

2 cycles: RICH ightarrow LEAN ightarrow RICH ightarrow LEAN ightarrow RICH

Without CONSULT-II

- 1. Stop engine.
- 2. Replace heated oxygen sensor 1 (front).
- 3. Start engine and warm it up to normal operating temperature.
- 4. Run engine at approx. 2,000 rpm for approx. 2 minutes under no-load.
- 5. Set voltmeter probe between ECM terminal 50 and ground.
- 6. Make sure that voltage fluctuates between 0 0.3V and 0.6 1.0V more than 5 times during 10 seconds at 2,000 rpm.

1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

OK or NG

OK •	GO TO 12.
NG ►	GO TO 16.

16 DETECT MALFUNCTIONING PART

- 1. Connect heated oxygen sensor 1 (front) harness connector to heated oxygen sensor 1 (front).
- 2. Check fuel pressure regulator. Refer to EC-52.
- 3. Check mass air flow sensor and its circuit.

Refer to EC-150.

4. Check injector and its circuit.

Refer to EC-567.

Clean or replace if necessary.

- 5. Check engine coolant temperature sensor and its circuit. Refer to EC-168, 187.
- 6. Check ECM function by substituting another known-good ECM.

(ECM may be the cause of a problem, but this is rarely the case.)

► GO TO 12.

If a vehicle contains a part which is operating outside of design specifications with no MIL
illumination, the part shall not be replaced prior to emission testing unless it is determined that
the part has been tampered with or abused in such a way that the diagnostic system cannot reasonably be expected to detect the resulting malfunction.

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION

Introduction

The ECM has an on board diagnostic system which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

GI

Diagnostic Trouble Code (DTC)	Mode 3 of SAE J1979
Freeze Frame data	Mode 2 of SAE J1979
System Readiness Test (SRT) code	Mode 1 of SAE J1979
1st Trip Diagnostic Trouble Code (1st Trip DTC)	Mode 7 of SAE J1979
1st Trip Freeze Frame data	
Test values and Test limits	Mode 6 of SAE J1979

MA

EC

The above information can be checked using procedures listed in the table below.

X: Applicable —: Not applicable

	DTC	1st trip DTC	Freeze Frame data	1st trip Freeze Frame data	SRT code	Test value
ECM*3	Х	X*1	_	_	_	_
CONSULT-II	×	×	×	X	×	_
GST	Х	X*2	Х	_	Х	Х

MT

AT

TF

The malfunction indicator lamp (MIL) on the instrument panel lights up when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode. (Refer to EC-119.)

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the ECM memory. The MIL will not light up at this stage. <1st trip>

Two Trip Detection Logic

PD

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in the ECM memory, and the MIL lights up. The MIL lights up at the same time when the DTC is stored. <2nd trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to light up or blink the MIL, and store DTC and Freeze Frame data, even in the 1st trip, as shown below.

X: Applicable —: Not applicable

ST

BT

HA

SC

	MIL				DTC		1st trip DTC	
Items	1st trip		2nd trip		1st trip	2nd trip	1st trip	2nd trip
	Blinking	Lighting up	Blinking	Lighting up	displaying	displaying	displaying	displaying
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0304 is being detected	х	_	_	_	_		х	_
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0304 is being detected	_	_	Х	_	_	Х	_	_
Closed loop control — DTC: P1148	_	x	_	_	X		x	_
Fail-safe items (Refer to EC-119.)	_	Х	_	_	X*1		X*1	_
Except above	_	_	_	Х	_	Х	Х	_

^{*1:} Except "ECM"

^{*1:} When DTC and 1st trip DTC simultaneously appear on the display, they cannot be clearly distinguished from each other.

^{*2: 1}st trip DTCs for self-diagnoses concerning SRT items cannot be shown on the GST display.

^{*3:} In diagnostic test mode II (Self-diagnostic results)

Emission-related Diagnostic Information

Emission-related Diagnostic Information

DTC AND 1ST TRIP DTC

NGEC0031

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip DTC will not be displayed. If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MIL will not light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory and the MIL lights up. In other words, the DTC is stored in the ECM memory and the MIL lights up when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MIL during the 1st trip, the DTC and 1st trip DTC are stored in the ECM memory.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION". Refer to EC-79.

For malfunctions in which 1st trip DTCs are displayed, refer to EC-77. These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-II.

1st trip DTC is specified in Mode 7 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a problem. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in "Work Flow" procedure Step II, refer to page EC-102. Then perform "DTC Confirmation Procedure" or "Overall Function Check" to try to duplicate the problem. If the malfunction is duplicated, the item requires repair.

How to read DTC and 1st Trip DTC

NGEC0031S0101

DTC and 1st trip DTC can be read by the following methods.

- (P) With CONSULT-II
- With GST

CONSULT-II or GST (Generic Scan Tool) Examples: P0340, P1320, P0705, P0750, etc.

These DTCs are prescribed by SAE J2012.

(CONSULT-II also displays the malfunctioning component or system.)

- 1st trip DTC No. is the same as DTC No.
- Output of a DTC indicates a malfunction. However, Mode II and GST do not indicate whether the
 malfunction is still occurring or has occurred in the past and has returned to normal.
 CONSULT-II can identify malfunction status as shown below. Therefore, using CONSULT-II (if available) is recommended.

A sample of CONSULT-II display for DTC is shown below. DTC or 1st trip DTC of a malfunction is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-II. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be "0".

If a 1st trip DTC is stored in the ECM, the time data will be "[1t]".

	SELF DIAG RESU	LTS TIME		SELF DIAG RESU	LTS TIME
DTC	MAF SEN/CIRCUIT [P0100]	0	1st trip	MAF SEN/CIRCUIT [P0100]	1t
display			DTC display		

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

NGEC0031SC

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed and absolute pressure sensor at the moment a malfunction is detected.

Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data.

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION

KA24DE

Emission-related Diagnostic Information (Cont'd)

The data, stored together with the DTC data, are called freeze frame data and displayed on CONSULT-II or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-II screen, not on the GST. For details, see EC-89.

G[

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the following priorities to update the data.

MA

	<u> </u>						
Priority		Items					
1	Freeze frame data	Misfire — DTC: P0300 - P0304 Fuel Injection System Function — DTC: P0171, P0172					
2		Except the above items (Includes A/T related items)					
3	1st trip freeze frame data						

I @

EC

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was stored in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is stored in the ECM memory, 1st trip freeze data is no longer stored (because only one freeze frame data or 1st trip freeze frame data can be stored in the ECM). If freeze frame data is stored in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

=15

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION". Refer to EC-79.

MT

TF

SYSTEM READINESS TEST (SRT) CODE

NGEC0031S03

System Readiness Test (SRT) code is specified in Mode 1 of SAE J1979.

h o oto

As part of enhanced emissions test for Inspection and Maintenance (I/M), certain states require that the status of srt be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

ΔW

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "incomplete", use the information in this service manual to set the SRT to "complete".

. s _{su}

In most cases, the ECM will automatically complete its self-diagnosis cycle during normal usage and the SRT status will indicate "complete" for each application system. Once set as "complete", the SRT status remains "complete" until the self-diagnosis memory is erased.

r's

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern and the SRT will indicate "incomplete" for these items.

)Ā(Q

NOTE:

The SRT will also indicate "incomplete" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

T

If, during the state emissions inspection, the SRT indicates "complete" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "incomplete" for one or more of the SRT items, the vehicle is returned to the customer untested.

শ্ৰি

NOTE:

If MIL is "ON" during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "complete" for all test items. Therefore, it is important to check SRT ("complete") and DTC (No DTCs) before the inspection.

37

This service manual contains the service procedure and support information to perform a comprehensive road test that enables the ECM to complete the SRT.

SC

HA

EL

 \mathbb{N}

KA24DE

Emission-related Diagnostic Information (Cont'd)

Self-diagnosis resu	lt	NGEC0031S0308 Example						
Sell-diagnosis result								
		Diagnosis	Ignition OFF – ON – OFF	Ignition OFF – ON – OFF	Ignition OFF – ON – OFF	Ignition OFF – ON – OFF		
All OK		P0400	OK (1)	- (1)	OK (2)	- (2)		
	Case 1	P0402	OK (1)	– (1)	- (1)	OK (2)		
	Case 1	P1402	OK (1)	OK (2)	- (2)	- (2)		
		SRT of EGR	"complete"	"complete"	"complete"	"complete"		
	Case 2	P0400	OK (1)	– (1)	- (1)	– (1)		
		P0402	- (0)	- (0)	OK (1)	– (1)		
		P1402	OK (1)	OK (2)	- (2)	- (2)		
		SRT of EGR	"incomplete"	"incomplete"	"complete"	"complete"		
NG exists		P0400	ОК	ОК	_	_		
		P0402	_	_	_	_		
	Case 3	P1402	NG	-	NG	NG (Consecutive NG)		
		(1st trip) DTC	1st trip DTC	_	1st trip DTC	DTC (=MIL "ON")		
		SRT of EGR	"incomplete"	"incomplete"	"incomplete"	"complete"		

OK: Self-diagnosis is carried out and the result is OK.

NG: Self-diagnosis is carried out and the result is OK.

SRT Set Timing

SRT is set as "complete" after self-diagnosis has been performed one or more times. Completion of SRT will occur if the result is OK or NG. The set timing is different between them and is shown in the following table. When all SRT related self-diagnoses showed OK results in a same cycle (Ignition OFF – ON – OFF), the SRT will indicate "complete".

→ Case 1 above

When all SRT related self-diagnoses show OK results through several different cycles, the SRT will indicate "complete" at the time the respective self-diagnoses have at least one OK result.

→ Case 2 above

If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indicate "complete".

→ Case 3 above

The previous table shows that the minimum number of cycles for setting SRT as "incomplete" is one (1) for each self-diagnosis (Case 1 and 2) or two (2) for one self-diagnosis (Case 3). However, in preparation for the State emissions inspection, it is unnecessary of each self-diagnosis to be executed twice (Case 3) because of the following reasons;

- The SRT will indicate "complete" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "complete" of the SRT only with OK self-diagnosis result.
- When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to "complete" of SRT, the self-diagnosis memory must be erased from ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "incomplete".

NOTE:

SRT can be set as "complete" together with the DTC(s). Therefore, DTC check must always be carried out prior to the State emission inspection even though the SRT indicates "complete".

How to Display SRT Code

1. (II) With CONSULT-II

Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-II.

NGEC0031S0301

^{-:} Self-diagnosis is not carried out.

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION

KA24DE

Emission-related Diagnostic Information (Cont'd)

For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-II screen; for items whose SRT codes are not set, "INCMP" is displayed.

2. With GST

Selecting Mode 1 with GST (Generic Scan Tool)

A sample of CONSULT-II display for SRT code is shown below.

"INCMP" means the self-diagnosis is incomplete and SRT is not set. "CMPLT" means the self-diagnosis is complete and SRT is set.

SRT STAT		
CATALYST EVAP SYSTEM HO2S HTR HO2S EGR SYSTEM	CMPLT INCMP CMPLT CMPLT INCMP	
		SEF713Y

GI

EM

MA

LC

EC

FE

CL

MT

AT

TF PD

AX

SU

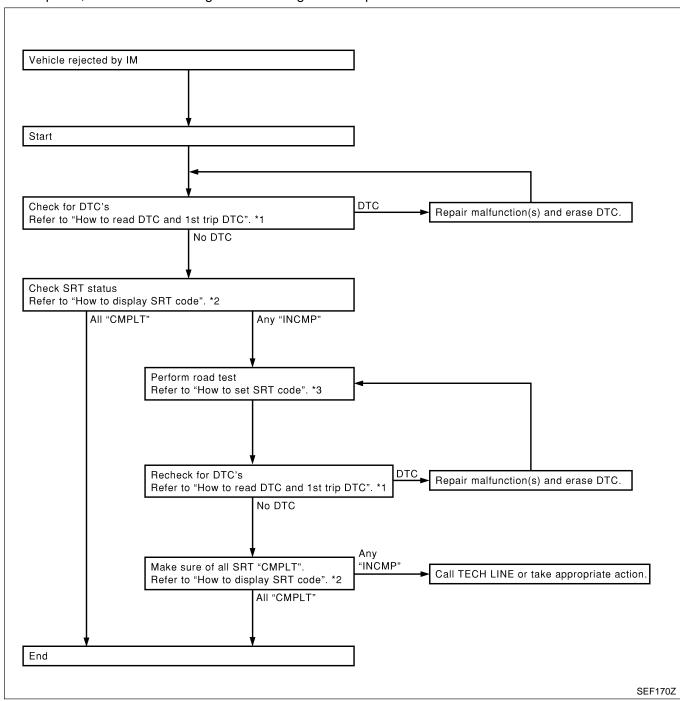
BR

ST

BT

HA

SC


EL

 \mathbb{N}

Emission-related Diagnostic Information (Cont'd)

SRT Service Procedure

If a vehicle has been rejected for the State emissions inspection due to one or more SRT items indicating "incomplete" review the following flower and a state of the state of "incomplete", review the following flowchart diagnostic sequence.

*1 EC-68 *2 EC-70 *3 EC-73

KA24DE

Emission-related Diagnostic Information (Cont'd)

How to Set SRT Code

To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

GI

With CONSULT-II

Perform corresponding DTC confirmation procedure one by one based on "Performance Priority" in the table on EC-70.

MA

⋈ Without CONSULT-II

The most efficient driving pattern in which SRT codes can be properly set is explained on EC-74. The driving pattern should be performed one or more times to set all SRT codes.

LC

EC

FE

GL

MT

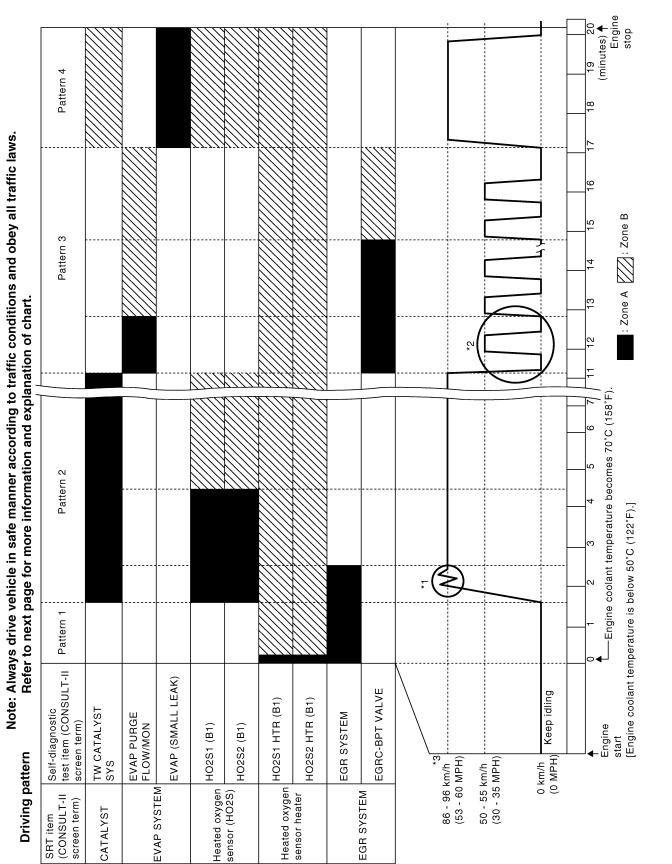
AT

TF

PD

SU

ST


BT

HA

SC

EL

Driving Pattern

SEF906Z

KA24DE

Emission-related Diagnostic Information (Cont'd)

The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.

Zone A refers to the range where the time required, for the diagnosis under normal conditions*, is the shortest.

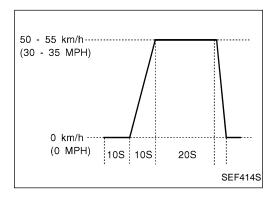
Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.

- *: Normal conditions refer to the following:
- Sea level
- Flat road
- Ambient air temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions.
 Under different conditions [For example: ambient air temperature other than 20 30°C (68 86°F)], diagnosis may also be performed.

Pattern 1:

- The engine is started at the engine coolant temperature of −10 to 35°C (14 to 95°F) (where the voltage between the ECM terminals 59 and ground is 3.0 - 4.3V).
- The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminals 59 and ground is lower than 1.4V).
- The engine is started at the tank fuel temperature of warmer than 0°C (32°F) (where the voltage between the ECM terminal 60 and ground is less than 4.1V).

Pattern 2


• When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted. In this case, the time required for diagnosis may be extended.

Pattern 3:

The driving pattern outlined in *2 must be repeated at least 3 times.

Pattern 4:

- Tests are performed after the engine has been operated for at least 17 minutes.
- The accelerator pedal must be held very steady during steady-state driving.
- If the accelerator pedal is moved, the test must be conducted all over again.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Operate the vehicle in the following driving pattern.
- 1) Decelerate vehicle to 0 km/h (0 MPH) and let engine idle.
- Repeat driving pattern shown below at least 10 times.
- During acceleration, hold the accelerator pedal as steady as possible.
- 3) Repeat steps 1 and 2 until the EGR system SRT is set.

*3: Checking the vehicle speed with GST is advised.

Suggested Transmission Gear Position for A/T Models

Set the selector lever in the "D" position with the overdrive switch turned ON.

EC

LC

MA

FE

CL

MT

AT

TF

PD

 $\mathbb{N} \mathbb{V}$

SU

ST

řið

BT

HA

Inl/A

SC

EL

KA24DE

Emission-related Diagnostic Information (Cont'd)

Suggested upshift speeds for M/T models

Shown below are suggested vehicle speeds for shifting into a higher gear. These suggestions relate to fuel economy and vehicle performance. Actual upshift speeds will vary according to road conditions, the weather and individual driving habits.

	For normal accelerati [less than 1,2	For quick acceleration in low altitude areas and high altitude areas [over 1,219 m (4,000 ft)]:	
Gear change	ACCEL shift point km/h (MPH)	CRUISE shift point km/h (MPH)	km/h (MPH)
1st to 2nd	24 (15)	24 (15)	24 (15)
2nd to 3rd	40 (25)	29 (18)	40 (25)
3rd to 4th	58 (36)	48 (30)	64 (40)
4th to 5th	64 (40)	63 (39)	72 (45)

TEST VALUE AND TEST LIMIT (GST ONLY — NOT APPLICABLE TO CONSULT-II)

NGEC0031S04

The following is the information specified in Mode 6 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is "OK" or "NG" while being monitored by the ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored.

Items for which these data (test value and test limit) are displayed are the same as SRT code items (9 test items).

These data (test value and test limit) are specified by Test ID (TID) and Component ID (CID) and can be displayed on the GST screen.

X: Applicable —: Not applicable

SRT item	Colf diagnostic test item	Test value (0	GST display)	Test limit	Application	
SKI Itelli	Self-diagnostic test item	TID	CID	iest iiiiiit	Application	
CATALYST	Three way establish function	01H	01H	Max.	Х	
CATALTST	Three way catalyst function	02H	81H	Min.	Х	
EVAP SYSTEM	EVAP control system (Small leak)	05H	03H	Max.	х	
EVAP STSTEIN	EVAP control system purge flow monitoring	06H	83H	Min.	х	
		09H	04H	Max.	Х	
		0AH	84H	Min.	Х	
	Heated oxygen sensor 1 heater (front)	0BH	04H	Max.	Х	
		0CH	04H	Max.	Х	
O2 SENSOR		0DH	04H	Max.	Х	
		19H	86H	Min.	Х	
	Heated oxygen sensor 2	1AH	86H	Min.	Х	
	heater (rear)	1BH	06H	Max.	Х	
		1CH	06H	Max.	Х	
	Heated oxygen sensor 1	29H	08H	Max.	Х	
O2 SENSOR HEATER	heater (front)	2AH	88H	Min.	Х	
OZ SENSOK HEATEK	Heated oxygen sensor 2	2DH	0AH	Max.	Х	
	heater (rear)	2EH	8AH	Min.	Х	

KA24DE

GI

MA

EM

LC

EC

Emission-related Diagnostic Information (Cont'd)

CDT item	C-15 diagnostic test item	Test value (GST display)	Took limit	Application
SRT item	Self-diagnostic test item	TID	CID	Test limit	Application
		31H	8CH	Min.	Х
	[32H	8CH	Min.	Х
!	EGR function	33H	8CH	Min.	X
EGR SYSTEM		34H	8CH	Min.	X
!	[35H	0CH	Max.	X
	EGRC-BPT valve function	36H	0CH	Max.	Х
	EGRC-BPT valve function	37H	8CH	Min.	Х

EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS

X: Applicable —: Not applicable

				X: Applicable	e —: Not applicable	F
Items (CONSULT-II screen terms)	DTC*3 CONSULT-II GST*1	SRT code	Test value/Test limit (GST only)	1st trip DTC*3	Reference page	G.
NO SELF DIAGNOSTIC FAIL- URE INDICATED	P0000	_	_	_	_	M
MAF SEN/CIRCUIT	P0100	_	_	Х	EC-150	
ABSL PRES SEN/CIRC	P0105	_	_	Х	EC-160	
AIR TEMP SEN/CIRC	P0110	_	_	Х	EC-162	
COOLANT T SEN/CIRC	P0115	_	_	Х	EC-168	T
THRTL POS SEN/CIRC	P0120	_	_	Х	EC-173	
*COOLAN T SEN/CIRC	P0125	_	_	Х	EC-187	P
HO2S1 (B1)	P0130	Х	Х	X*2	EC-192	
HO2S1 (B1)	P0131	Х	Х	X*2	EC-200	A
HO2S1 (B1)	P0132	Х	Х	X*2	EC-207	
HO2S1 (B1)	P0133	Х	Х	X*2	EC-214	S
HO2S1 (B1)	P0134	Х	Х	X*2	EC-225	[B]
HO2S1 HTR (B1)	P0135	Х	Х	X*2	EC-232	B
HO2S2 (B1)	P0137	Х	Х	X*2	EC-237	S
HO2S2 (B1)	P0138	Х	Х	X*2	EC-247	9)
HO2S2 (B1)	P0139	Х	Х	X*2	EC-257	R
HO2S2 (B1)	P0140	Х	Х	X*2	EC-267	шш
HO2S2 HTR (B1)	P0141	Х	Х	X*2	EC-275	B
FUEL SYS LEAN/BK1	P0171	_	_	Х	EC-280	
FUEL SYS RICH/BK1	P0172	_	_	Х	EC-287	H
FUEL TEMP SEN/CIRC	P0180	_	_	Х	EC-294	
MULTI CYL MISFIRE	P0300	_	_	Х	EC-300	S
CYL 1 MISFIRE	P0301	_	_	Х	EC-300	
CYL 2 MISFIRE	P0302	_	_	Х	EC-300	E
CYL 3 MISFIRE	P0303	_	_	Х	EC-300	

Emission-related Diagnostic Information (Cont'd)

Items	DTC*3		Test value/Test		Reference page	
(CONSULT-II screen terms)	CONSULT-II GST*1	SRT code	limit (GST only)	1st trip DTC*3		
CYL 4 MISFIRE	P0304	_	_	Х	EC-300	
KNOCK SEN/CIRC-B1	P0325	_	_		EC-309	
CKP SEN/CIRCUIT	P0335	_	_	Х	EC-313	
CMP SEN/CIRCUIT	P0340	_	_	Х	EC-319	
EGR SYSTEM	P0400	Х	Х	X*2	EC-327	
EGRC-BPT VALVE	P0402	Х	Х	X*2	EC-339	
TW CATALYST SYS-B1	P0420	Х	Х	X*2	EC-347	
EVAP SMALL LEAK	P0440	Х	Х	X*2	EC-352	
PURG VOLUME CONT/V	P0443	_	_	Х	EC-369	
VENT CONTROL VALVE	P0446	_	_	Х	EC-377	
EVAP SYS PRES SEN	P0450	_	_	Х	EC-385	
EVAP GROSS LEAK	P0455	Х	Х	X*2	EC-400	
FUEL LEV SEN SLOSH	P0460	_	_	Х	EC-413	
FUEL LEVEL SENSOR	P0461	_	_	Х	EC-417	
FUEL LEVL SEN/CIRC	P0464	_	_	Х	EC-419	
VEH SPEED SEN/CIRC	P0500	_	_	Х	EC-423	
IACV/AAC VLV/CIRC	P0505	_	_	Х	EC-427	
CLOSED TP SW/CIRC	P0510	_	_	X	EC-433	
ECM	P0605	_	_	Х	EC-440	
THERMSTAT FNCTN	P1126	_	_	Х	EC-442	
CLOSED LOOP-B1	P1148	_	_	_	EC-444	
CKP SENSOR (COG)	P1336	_	_	Х	EC-446	
EGRC SOLENOID/V	P1400	_	_	Х	EC-452	
EGR TEMP SEN/CIRC	P1401	_	_	Х	EC-459	
EGR SYSTEM	P1402	Х	Х	X*2	EC-465	
EVAP SMALL LEAK	P1440	Х	Х	X*2	EC-474	
EVAP VERY SML LEAK	P1441	X*4	Х	X*2	EC-476	
PURG VOLUME CONT/V	P1444	_	_	Х	EC-491	
VENT CONTROL VALVE	P1446	_	_	Х	EC-503	
EVAP PURG FLOW/MON	P1447	Х	Х	X*2	EC-509	
VENT CONTROL VALVE	P1448	_	_	Х	EC-519	
FUEL LEVEL SEN/CIRC	P1464	_	_	Х	EC-527	
VC/V BYPASS/V	P1490	_	_	Х	EC-530	
VC CUT/V BYPASS/V	P1491	_	_	Х	EC-537	
P-N POS SW/CIRCUIT	P1706	_	_	X	EC-548	

^{*1:} These numbers are prescribed by SAE J2012.

^{*2:} These are not displayed with GST.

Emission-related Diagnostic Information (Cont'd)

HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION

NGEC0031506

GI

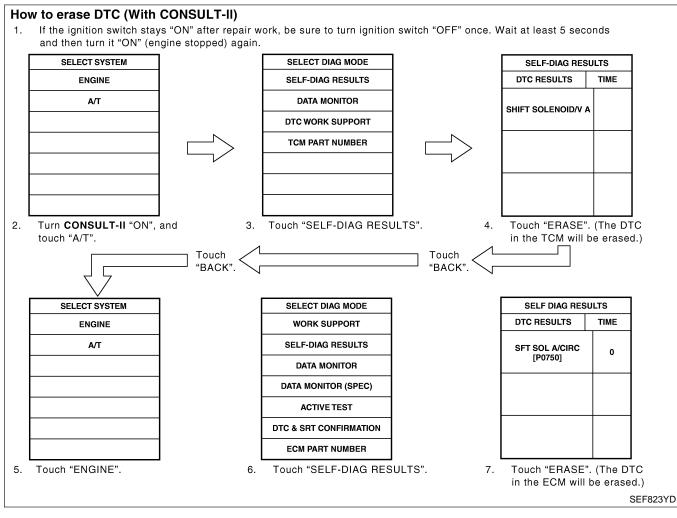
MA

EC

FE

MT

AT


TF

PD

NGEC0031S0601

How to Erase DTC (With CONSULT-II)

- 1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 5 seconds and then turn it ON (engine stopped) again.
- Turn CONSULT-II "ON" and touch "ENGINE".
- Touch "SELF-DIAG RESULTS".
- 4. Touch "ERASE". (The DTC in the ECM will be erased.)

The emission-related diagnostic information can be erased by selecting "ERASE" in the "SELF-DIAG RESULTS" mode with CONSULT-II.

How to Erase DTC (With GST)

1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 5 seconds and then turn it ON (engine stopped) again.

2. Select Mode 4 with GST (Generic Scan Tool).

The emission-related diagnostic information in the ECM can be erased by selecting Mode 4 with GST (Generic Scan Tool).

NOTE:

- If the battery is disconnected, the emission-related diagnostic information will be lost after approx.
- The following data are cleared when the ECM memory is erased.
- Diagnostic trouble codes
- 1st trip diagnostic trouble codes

BT

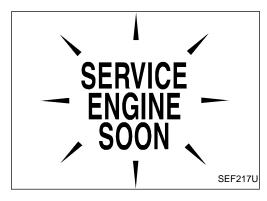
HA

^{*3: 1}st trip DTC No. is the same as DTC No.

^{*4:} SRT code will not be set if the self-diag result is NG.

KA24DE

Emission-related Diagnostic Information (Cont'd)


- 3) Freeze frame data
- 4) 1st trip freeze frame data
- 5) System readiness test (SRT) codes
- 6) Test values
- 7) Others

Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

Malfunction Indicator Lamp (MIL)

DESCRIPTION

NGEC0032

The MIL is located on the instrument panel.

- 1. The MIL will light up when the ignition switch is turned ON without the engine running. This is a bulb check.
- If the MIL does not light up, refer to "WARNING LAMPS", EL-89 or see EC-594.
- 2. When the engine is started, the MIL should go off.

 If the MIL remains on, the on board diagnostic system has detected an engine system malfunction.

On Board Diagnostic System Function

The on board diagnostic system has the following two functions.

NGEC0032S01

Diagnostic Test Mode	KEY and ENG. Status	Function	Explanation of Function
Mode I	Ignition switch in "ON" position Engine stopped	BULB CHECK	This function checks the MIL bulb for damage (blown, open circuit, etc.). If the MIL does not come on, check MIL circuit.
	Engine running	MALFUNCTION WARNING	This is a usual driving condition. When a malfunction is detected twice in two consecutive driving cycles (two trip detection logic), the MIL will light up to inform the driver that a malfunction has been detected. The following malfunctions will light up or blink the MIL in the 1st trip. Coolant overtemperature enrichment protection "Misfire (Possible three way catalyst damage)" "Closed loop control" Fail-safe mode

Diagnostic Test Mode I — Bulb Check

NGEC0032S03

In this mode, the MIL on the instrument panel should stay ON. If it remains OFF, check the bulb. Refer to *EL-89*, "WARNING LAMPS" or see EC-594.

Malfunction Indicator Lamp (MIL) (Cont'd)

Diagnostic Test Mode I — Malfunction Warning							
MIL	Condition	GI					
ON	When the malfunction is detected or the ECM's CPU is malfunctioning.						
OFF	No malfunction.	MA					

OBD System Operation Chart

EC

FE

MT

AT

TF

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DETECTABLE ITEMS

- When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.
 - LC When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MIL will come on. For details, refer to "Two Trip Detection Logic" on
- EC-67. The MIL will go off after the vehicle is driven 3 times with no malfunction. The drive is counted only when the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting,
- the counter will reset. The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driv-

ing pattern C) without the same malfunction recurring. The "TIME" in "SELF-DIAGNOSTIC RESULTS"

The 1st trip DTC is not displayed when the self-diagnosis results in "OK" for the 2nd trip.

mode of CONSULT-II will count the number of times the vehicle is driven.

SUMMARY CHART

			NGEC0033S02
Items	Fuel Injection System	Misfire	Other
MIL (goes off)	3 (pattern B)	3 (pattern B)	3 (pattern B)
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)

For details about patterns "B" and "C" under "Fuel Injection System" and "Misfire", see EC-83.

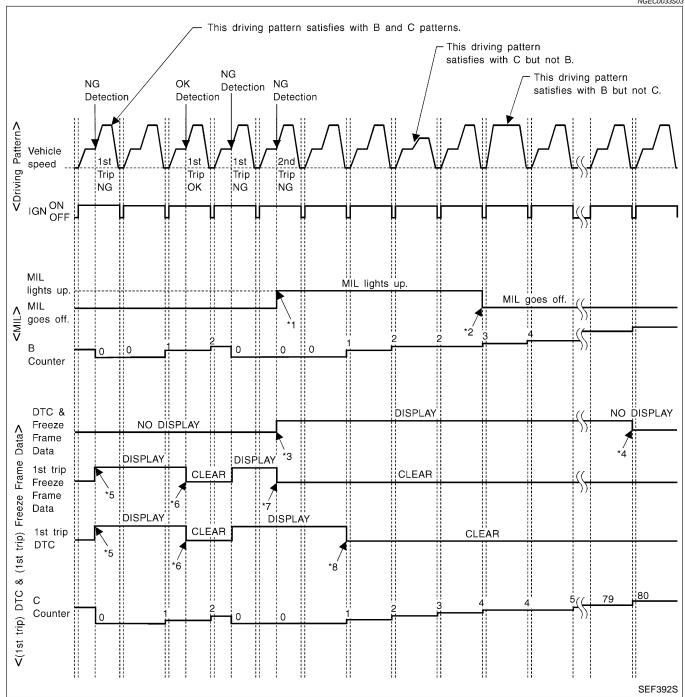
For details about patterns "A" and "B" under "Other", see EC-85.

PD

BT

HA

SC


^{*1:} Clear timing is at the moment OK is detected.

^{*2:} Clear timing is when the same malfunction is detected in the 2nd trip.

OBD System Operation Chart (Cont'd)

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR "MISFIRE" <EXHAUST QUALITY DETERIORATION>, "FUEL INJECTION SYSTEM"

NGEC0033S0

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *4: The DTC and the freeze frame

- data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction.
- (The DTC and the freeze frame data still remain in ECM.)
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *6: The 1st trip DTC and the 1st trip

- freeze frame data will be cleared at the moment OK is detected.
- When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.
- 1st trip DTC will be cleared when vehicle is driven once (pattern C) without the same malfunction after DTC is stored in ECM.

KA24DE

OBD System Operation Chart (Cont'd)

EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

Driving Pattern B

NGEC0033S04

GI

MA

NGEC0033S0401

NGEC0033S0402

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunction.
- The MIL will go off when the B counter reaches 3. (*2 in "OBD SYSTEM OPERATION CHART")

LSUVL

Driving Pattern C

Driving pattern C means the vehicle operation as follows:

 The following conditions should be satisfied at the same time: Engine speed: (Engine speed in the freeze frame data) ±375 rpm Calculated load value: (Calculated load value in the freeze frame data) × (1±0.1) [%] Engine coolant temperature (T) condition:

When the freeze frame data shows lower than 70°C (158°F), "T" should be lower than 70°C (158°F).

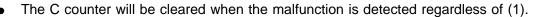
• When the freeze frame data shows higher than or equal to 70°C (158°F), "T" should be higher than or equal to 70°C (158°F).

EC

GL

MT

LC


Example:

If the stored freeze frame data is as follows:

Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F)

To be satisfied with driving pattern C, the vehicle should run under the following conditions:

Engine speed: 475 - 1,225 rpm, Calculated load value: 27 - 33%, Engine coolant temperature: more than 70°C (158°F)

- The C counter will be counted up when (1) is satisfied without the same malfunction.
- The DTC will not be displayed after C counter reaches 80.

 The 1st trip DTC will be cleared when C counter is counted once without the same malfunction after DTC is stored in ECM.

PD

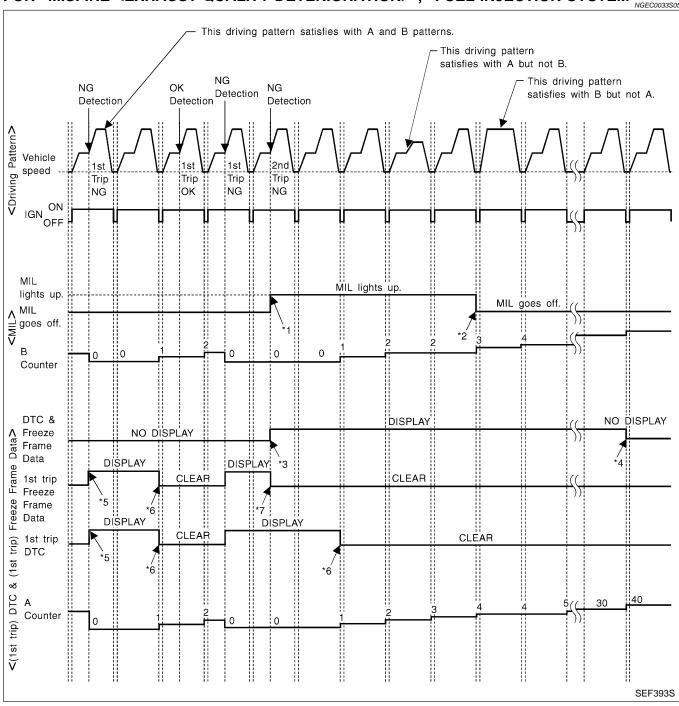
AX

ST

RS

BT

HA

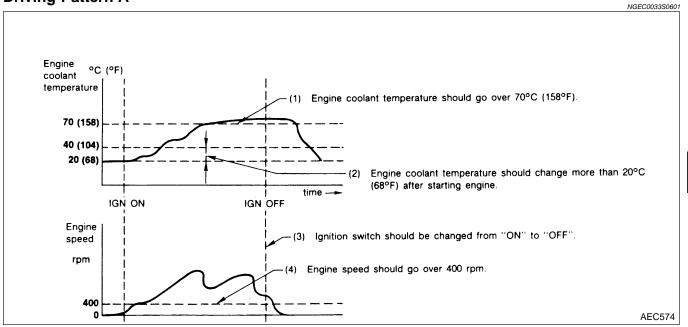

SC

EL

 \mathbb{Z}

OBD System Operation Chart (Cont'd)

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"


- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction. (The DTC and the freeze frame
 - data still remain in ECM.)
- 5: When a malfunction is detected for the first time, the 1st trip DTC
- and the 1st trip freeze frame data will be stored in ECM.
- *6: 1st trip DTC will be cleared after vehicle is driven once (pattern B) without the same malfunction.
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

KA24DE

OBD System Operation Chart (Cont'd)

EXPLANATION FOR DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

- The A counter will be cleared when the malfunction is detected regardless of (1) (4).
- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

Driving Pattern B

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MIL will go off when the B counter reaches 3 (*2 in "OBD SYSTEM OPERATION CHART").

NGEC0033S06 G

MA

er/u

LG

EC

FE

CL

MT AT

TF

NGEC0033S0602

. . . .

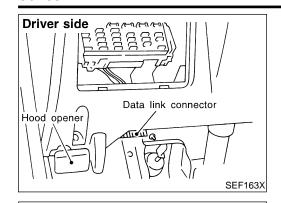
PD

AX

SU

ST

RS

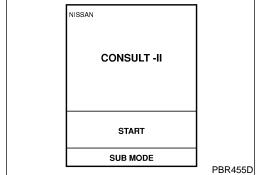

BT

HA

SC

EL

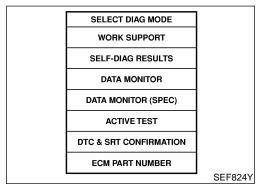
CONSULT-II


CONSULT-II

CONSULT-II INSPECTION PROCEDURE

=NGEC0034

NGEC0034S01


- 1. Turn ignition switch OFF.
- Connect "CONSULT-II" to data link connector which is located behind the fuse box cover.

- 3. Turn ignition switch ON.
- 4. Touch "START".

DIAGNOSIS SYSTEM SELECTION	
ENGINE	
	PEF895K

5. Touch "ENGINE".

Perform each diagnostic test mode according to each service procedure.

For further information, see the CONSULT-II Operation Manual.

KA24DE CONSULT-II (Cont'd)

ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION

		DIAGNOSTIC TEST MODE							
	ltem		SELF-DIAGNOSTIC RESULTS			DATA		DTC & SRT CONFIRMATION	
			DTC*1	FREEZE FRAME DATA*2	DATA MONI- TOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STA- TUS	DTC WORK SUP- PORT
	Camshaft position sensor		Х	Х	Х	Х			
	Mass air flow sensor		Х		Х	Х			
	Engine coolant temperature sensor		х	х	Х	х	Х		
	Heated oxygen sensor 1 (front)		х		Х	х		Х	Х
	Heated oxygen sensor 2 (rear)		х		Х	х		Х	X
	Vehicle speed sensor		Х	Х	Х	Х			
	Throttle position sensor	Х	Х		Х	Х			
	Fuel tank temperature sensor		х		Х	х	Х		
	EVAP control system pressure sensor		x		X	х			
	Absolute pressure sensor		Х	Х	X	Х			
	EGR temperature sensor		Х		Х	Х			
	Intake air temperature sensor		х		Х	х			
INPUT	Crankshaft position sensor (OBD)		х						
3	Knock sensor		Х						
	Fuel level sensor		Х		Х	Х			
	Ignition switch (start signal)				Х	Х			
INPUT	Closed throttle position switch		х		Х	х			
	Closed throttle position switch (throttle position sensor signal)				Х	х			
	Air conditioner switch				Х	Х			
	Park/Neutral position (PNP) switch		Х		Х	Х			
	Power steering oil pressure switch				Х	Х			
	Air conditioner pressure switch				Х	Х			
	Battery voltage				Х	Х			
	Ambient air temperature switch				Х	Х			

CONSULT-II (Cont'd)

	ltem			DIAGNOSTIC TEST MODE							
			SELF-DIAGNO RESULTS			DATA	DATA		DTC & SRT CONFIRMATION		
			WORK SUP- PORT	DTC*1	FREEZE FRAME DATA*2	MONI- TOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STA- TUS	DTC WORK SUP- PORT	
		Injectors				Х	Х	Х			
		Power transistor (Ignition timing)	Х	Х		х	Х	х			
		IACV-AAC valve	Х	Х		Х	Х	Х			
ARTS		EVAP canister purge volume control solenoid valve		Х		х	Х	Х		Х	
<u>7</u>		Air conditioner relay				Х	Х				
ONE		Fuel pump relay	Х			Х	Х	Х			
MPC		EGRC-solenoid valve		Х		Х	Х	Х			
SOL CC	OUT- PUT	Heated oxygen sensor 1 heater (front)		Х		х	Х		Х		
ENGINE CONTROL COMPONENT PARTS		Heated oxygen sensor 2 heater (rear)		Х		х	х		Х		
NGINE		Torque converter clutch sole- noid valve		Х		х	Х			Х	
Ш		EVAP canister vent control valve		Х		х	Х	х			
		Vacuum cut valve bypass valve		Х		Х	Х	Х		Х	
		Calculated load value			Х	Х	Х				

X: Applicable

FUNCTION

NGEC0034S03

Diagnostic test mode	Function
Work support	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-II unit.
Self-diagnostic results	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly. *1
Data monitor	Input/Output data in the ECM can be read.
Data monitor (SPEC)	Input/Output of the specification for the basic fuel schedule, AFM, A/F, feedback control valve and the other data monitor items can be read.
Active test	Diagnostic Test Mode in which CONSULT-II drives some actuators apart from the ECMs and also shifts some parameters in a specified range.
DTC confirmation	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.
ECM part number	ECM part numbers can be read.

^{*1} The following emission-related diagnostic information is cleared when the ECM memory is erased.

^{*1:} This item includes 1st trip DTCs.

^{*2:} This mode includes 1st trip freeze frame data or freeze frame data. The items appear on CONSULT-II screen in freeze frame data mode only if a 1st trip DTC or DTC is detected. For details, refer to EC-68.

¹⁾ Diagnostic trouble codes

^{2) 1}st trip diagnostic trouble codes

- Freeze frame data
- 4) 1st trip freeze frame data
- 5) System readiness test (SRT) codes
- Test values
- 7) Others

WORK SUPPORT MODE

NGEC0034S04

GI

MA

WORK ITEM	CONDITION	USAGE	- [
TP SW/TP SEN IDLE POSI ADJ	FOLLOW THE BASIC INSPECTION IN THE SERVICE MANUAL.	When adjusting the idle throttle position	
IGNITION TIMING ADJ	IGNITION TIMING FEEDBACK CONTROL WILL BE HELD BY TOUCHING "START". AFTER DOING SO, ADJUST IGNITION TIMING WITH A TIMING LIGHT BY TURNING THE CRANKSHAFT POSITION SENSOR.	When adjusting initial ignition timing	
FUEL PRESSURE RELEASE	FUEL PUMP WILL STOP BY TOUCHING "START" DURING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.	When releasing fuel pressure from fuel line	-
SELF-LEARNING CONT	THE COEFFICIENT OF SELF-LEARNING CONTROL MIXTURE RATIO RETURNS TO THE ORIGINAL COEFFICIENT.	When releasing fuel pressure from fuel line	-
EVAP SYSTEM CLOSE	OPEN THE VACUUM CUT VALVE BYPASS VALVE AND CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN ORDER TO MAKE EVAP SYSTEM CLOSE UNDER THE FOLLOWING CONDITIONS. • BATTERY VOLTAGE IS SUFFICIENT. • IGN SW "ON" • ENGINE NOT RUNNING	When detecting EVAP vapor leak point of EVAP system	_
	 AMBIENT TEMPERATURE IS ABOVE 0°C (32°F). NO VACUUM AND NO HIGH PRESSURE IN EVAP SYSTEM TANK FUEL TEMP. IS MORE THAN 0°C (32°F). WITHIN 10 MINUTES AFTER STARTING "EVAP SYSTEM OF ORDER" 		
	TEM CLOSE" WHEN TRYING TO EXECUTE "EVAP SYSTEM CLOSE" UNDER THE CONDITIONS ABOVE, CONSULT-II WILL DISCONTINUE AND DISPLAY INSTRUCTIONS.		
	NOTE: WHEN STARTING ENGINE, CONSULT-II MAY DISPLAY "BATTERY VOLTAGE IS LOW. CHARGE BATTERY", EVEN WHEN USING A CHARGED BATTERY.		
TARGET IDLE RPM ADJ	IDLE CONDITION	When setting target idle speed	-

SELF DIAGNOSTIC MODE DTC and 1st Trip DTC

NGEC0034S05

Regarding items of "DTC and 1st trip DTC", refer to "TROUBLE DIAGNOSIS — INDEX", EC-13.

0034S0502

Freeze	Frame	Data	and	1st	Trip	Freeze	Frame	Data
--------	-------	------	-----	-----	------	--------	-------	------

Freeze frame data item*	Description
DIAG TROUBLE CODE [PXXXX]	• Engine Control component part/control system has a trouble code, it is displayed as "PXXXX". [Refer to "Alphabetical & P No. Index for DTC" (EC-13).]

SC

EL

HA

ST

KA24DE

CONSULT-II (Cont'd)

Freeze frame data item*	Description
FUEL SYS-B1	"Fuel injection system status" at the moment a malfunction is detected is displayed. One mode in the following is displayed. "MODE 2": Open loop due to detected system malfunction "MODE 3": Open loop due to driving conditions (power enrichment, deceleration enrichment) "MODE 4": Closed loop - using oxygen sensor(s) as feedback for fuel control "MODE 5": Open loop - has not yet satisfied condition to go to closed loop
CAL/LD VALUE [%]	The calculated load value at the moment a malfunction is detected is displayed.
COOLANT TEMP [°C] or [°F]	The engine coolant temperature at the moment a malfunction is detected is displayed.
S-FUEL TRIM-B1 [%]	 "Short-term fuel trim" at the moment a malfunction is detected is displayed. The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel schedule.
L-FUEL TRIM-B1 [%]	 "Long-term fuel trim" at the moment a malfunction is detected is displayed. The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule than short-term fuel trim.
ENGINE SPEED [rpm]	The engine speed at the moment a malfunction is detected is displayed.
VEHICLE SPEED [km/h] or [mph]	The vehicle speed at the moment a malfunction is detected is displayed.
ABSOL TH-P/S [%]	The throttle valve opening angle at the moment a malfunction is detected is displayed.
B/FUEL SCHDL [msec]	The base fuel schedule at the moment a malfunction is detected is displayed.
INT/A TEMP SE [°C] or [°F]	The intake air temperature at the moment a malfunction is detected is displayed.

^{*:} The items are the same as those of 1st trip freeze frame data.

DATA MONITOR MODE

NGEC0034S0

				NGEC0034S06
Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
ENG SPEED [rpm]	0	0	Indicates the engine speed computed from the REF signal (180° signal) of the camshaft position sensor.	 Accuracy becomes poor if engine speed drops below the idle rpm. If the signal is interrupted while the engine is running, an abnormal value may be indicated.
MAS A/F SE-B1 [V]	0	0	The signal voltage of the mass air flow sensor is displayed.	When the engine is stopped, a certain value is indicated.
B/FUEL SCHDL [msec]		0	"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	
A/F ALPHA-B1 [%]			Indicates the mean value of the air-fuel ratio feedback correction factor per cycle.	 When the engine is stopped, a certain value is indicated. This data also includes the data for the air-fuel ratio learning control.
COOLAN TEMP/S [°C] or [°F]	0	0	The engine coolant temperature (determined by the signal voltage of the engine coolant temperature sensor) is displayed.	When the engine coolant temperature sensor is open or short-circuited, ECM enters fail-safe mode. The engine coolant temperature deter- mined by the ECM is displayed.

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
HO2S1 (B1) [V]	0	0	 The signal voltage of the heated oxy- gen sensor 1 (front) is displayed. 	
HO2S2 (B1) [V]	0	0	 The signal voltage of the heated oxy- gen sensor 2 (rear) is displayed. 	
HO2S1 MNTR (B1) [RICH/LEAN]	0	0	Display of heated oxygen sensor 1 (front) signal during air-fuel ratio feedback control: RICH means the mixture became "rich", and control is being affected toward a leaner mixture. LEAN means the mixture became "lean", and control is being affected toward a rich mixture.	 After turning ON the ignition switch, "RICH" is displayed until air-fuel mixture ratio feedback control begins. When the air-fuel ratio feedback is clamped, the value just before the clamping is displayed continuously.
HO2S2 MNTR (B1) [RICH/LEAN]	0		 Display of heated oxygen sensor 2 (rear) signal: RICH means the amount of oxygen after three way catalyst is relatively small. LEAN means the amount of oxygen after three way catalyst is relatively large. 	When the engine is stopped, a certain value is indicated.
VHCL SPEED SE [km/h] or [mph]	0	0	 The vehicle speed computed from the vehicle speed sensor signal is dis- played. 	
BATTERY VOLT [V]	0	0	 The power supply voltage of ECM is displayed. 	
THRTL POS SEN [V]	0	0	The throttle position sensor signal voltage is displayed.	
FUEL T/TMP SE [°C] or [°F]	0		 The fuel temperature judged from the fuel tank temperature sensor signal voltage is displayed. 	
INT/A TEMP SE [°C] or [°F]	0		The intake air temperature determined by the signal voltage of the intake air temperature sensor is indicated.	
EGR TEMP SEN [V]	0		 The signal voltage of the EGR tem- perature sensor is displayed. 	
EVAP SYS PRES [V]		0	The signal voltage of EVAP control system pressure sensor is displayed.	
ABSOL PRES/SE [V]			The signal voltage of the absolute pressure sensor is displayed.	
FULL LEVEL SE [V]			The signal voltage of the fuel level sensor is displayed.	
START SIGNAL [ON/OFF]	0	0	Indicates [ON/OFF] condition from the starter signal.	 After starting the engine, [OFF] is dis- played regardless of the starter sig- nal.
CLSD THL POS [ON/OFF]	0	0	 Indicates idle position [ON/OFF] computed by ECM according to the throttle position sensor signal. 	
CLSD THL/P SW [ON/OFF]			 Indicates mechanical contact [ON/OFF] condition of the closed throttle position switch. 	

KA24DE

CONSULT-II (Cont'd)

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
AIR COND SIG [ON/OFF]	0	0	 Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioning signal. 	
P/N POSI SW [ON/OFF]	0	0	Indicates [ON/OFF] condition from the PNP switch signal.	
PW/ST SIGNAL [ON/OFF]	0	0	 Indicates [ON/OFF] condition of the power steering oil pressure switch determined by the power steering oil pressure switch signal. 	
IGNITION SW [ON/OFF]	0		Indicates [ON/OFF] condition from ignition switch.	
INJ PULSE-B1 [msec]		0	Indicates the actual fuel injection pulse width compensated by ECM according to the input signals.	When the engine is stopped, a certain computed value is indicated.
IGN TIMING [BTDC]		0	Indicates the ignition timing computed by ECM according to the input signals.	
CAL/LD VALUE [%]			"Calculated load value" indicates the value of the current airflow divided by peak airflow.	
ABSOL TH·P/S [%]			"Absolute throttle position sensor" indicates the throttle opening computed by ECM according to the signal voltage of the throttle position sensor.	
MASS AIRFLOW [g·m/s]			Indicates the mass airflow computed by ECM according to the signal voltage of the mass air flow sensor.	
IACV-AAC/V [%]		0	Indicates the IACV-AAC valve control value computed by ECM according to the input signals.	
PURG VOL C/V [%]		0	 Indicates the EVAP canister purge volume control value computed by the ECM according to the input signals. The opening becomes larger as the value increases. 	
AIR COND RLY [ON/OFF]			Indicates the air conditioner relay control condition determined by ECM according to the input signals.	
EGRC SOL/V [ON/OFF] (FLOW/CUT)			 Indicates the control condition of the EGRC-solenoid valve determined by ECM according to the input signals. ON EGR valve is operational OFF EGR valve operation is cut-off 	
FUEL PUMP RLY [ON/OFF]			Indicates the fuel pump relay control condition determined by ECM accord- ing to the input signals.	
VC/V BYPASS/V [ON/OFF]		_	 The control condition of the vacuum cut valve bypass valve (determined by ECM according to the input signal) is indicated. ON Open OFF Closed 	

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks	GI
VENT CONT/V [ON/OFF]			 The control condition of the EVAP canister vent control valve (determined by ECM according to the input signal) is indicated. ON Closed OFF Open 		MA EM
HO2S1 HTR (B1) [ON/OFF]			 Indicates [ON/OFF] condition of front heated oxygen sensor heater deter- mined by ECM according to the input signals. 		LG
HO2S2 HTR (B1) [ON/OFF]			 Indicates [ON/OFF] condition of rear heated oxygen sensor heater deter- mined by ECM according to the input signals. 		EC
VOLTAGE [V]			Voltage measured by the voltage probe.		GL
Frequency [msec] or [Hz] or [%]			Pulse width, frequency or duty cycle measured by the pulse probe.	 Only "#" is displayed if item is unable to be measured. Figures with "#"s are temporary ones. They are the same figures as an actual piece of data which was just previously measured. 	MT AT

NOTE:

Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

KA24DE

CONSULT-II (Cont'd)

DATA MONITOR (SPEC) MODE =NGEC0034S11 **ECM** Main Monitored item [Unit] input Description Remarks signals signals • Indicates the engine speed computed from the REF signal (180° signal) of the ENG SPEED [rpm] \bigcirc \bigcirc camshaft position sensor (PHASE). • The signal voltage of the mass air flow • When engine is running specification MAS A/F SE-B1 [V] \bigcirc \bigcirc sensor specification is displayed. range is indicated. • "Base fuel schedule" indicates the fuel B/FUEL SCHDL injection pulse width programmed into • When engine is running specification [msec] ECM, prior to any learned on board range is indicated. correction. • When engine is running specification • The mean value of the air-fuel ratio range is indicated. A/F ALPHA-B1 [%] \bigcirc feedback correction factor per cycle is • This data also includes the data for the indicated. air-fuel ratio learning control.

NOTE:

Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

ACTIVE TEST MODE

	7.0		NGEC0034S07
TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
FUEL INJECTION	 Engine: Return to the original trouble condition Change the amount of fuel injection using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	 Harness and connector Fuel injectors Front heated oxygen sensor
IGNITION TIMING	 Engine: Return to the original trouble condition Timing light: Set Retard the ignition timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Adjust initial ignition timing
IACV-AAC/V OPENING	 Engine: After warming up, idle the engine. Change the IACV-AAC valve opening percent using CON- SULT-II. 	Engine speed changes according to the opening percent.	Harness and connectorIACV-AAC valve
POWER BAL- ANCE	 Engine: After warming up, idle the engine. Air conditioner switch "OFF" Shift lever "N" Cut off each injector signal one at a time using CONSULT-II. 	Engine runs rough or dies.	 Harness and connector Compression Injectors Power transistor Spark plugs Ignition coils
ENG COOLANT TEMP	 Engine: Return to the original trouble condition Change the engine coolant tem- perature indication using CON- SULT-II. 	If trouble symptom disappears, see CHECK ITEM.	 Harness and connector Engine coolant temperature sensor Fuel injectors
FUEL PUMP RELAY	Ignition switch: ON (Engine stopped) Turn the fuel pump relay "ON" and "OFF" using CONSULT-II and listen to operating sound.	Fuel pump relay makes the operating sound.	Harness and connector Fuel pump relay
EGRC SOLE- NOID VALVE	Ignition switch: ON Turn EGRC-solenoid valve "ON" and "OFF" using CONSULT-II and listen to operating sound.	EGRC-solenoid valve makes an operating sound.	Harness and connector EGRC-solenoid valve

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)	
PURG VOL CONT/V	 Engine: After warming up, run engine at 1,500 rpm. Change the EVAP canister purge volume control valve opening step using CONSULT-II. 	Engine speed changes according to the opening step.	Harness and connector EVAP canister purge volume control valve	
FUEL T/TEMP SEN	Change the fuel tank temperature	using CONSULT-II.		
VENT CONTROL/V	 Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" using CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connector Solenoid valve	
VC/V BYPASS/V	 Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" using CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connector Solenoid valve	

G[

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

DTC & SRT CONFIRMATION MODE SRT STATUS Mode

=NGEC0034S08

For details, refer to "SYSTEM READINESS TEST (SRT) CODE", EC-69.

SRT Work Support Mode

NGEC0034S0803

This mode enables a technician to drive a vehicle to set the SRT while monitoring the SRT status.

DTC Work Support Mode

NGEC0034S0802

TEST MODE	TEST ITEM	CONDITION	REFERENCE PAGE
	EVAP SML LEAK P0440		EC-352
	EVAP SML LEAK P1440		EC-474
	EVAP V/S LEAK P1441		EC-476
EVAPORATIVE SYSTEM	PURG VOL CN/V P1444		EC-491
	PURGE FLOW P1447		EC-509
	VC CUT/V BP/V P1491		EC-537
	PURG CN/V & S/V P1493		EC-369
	HO2S1 (B1) P0130	Refer to corresponding	EC-192
HEATED OXYGEN SEN-	HO2S1 (B1) P0131	trouble diagnosis for	EC-200
SOR 1 (FRONT)	HO2S1 (B1) P0132	DTC.	EC-207
	HO2S1 (B1) P0133		EC-214
	HO2S2 (B1) P0137		EC-237
HEATED OXYGEN SEN- SOR 2 (REAR)	HO2S2 (B1) P0138		EC-247
	HO2S2 (B1) P0139		EC-257
EGR SYSTEM	EGR SYSTEM P0400		EC-327
	EGRC-BPT/VLV P0402		EC-339
	EGR SYSTEM P1402		EC-465

REAL TIME DIAGNOSIS IN DATA MONITOR MODE (RECORDING VEHICLE DATA)

NGEC0034S10

CONSULT-II has two kinds of triggers and they can be selected by touching "SETTING" in "DATA MONITOR" mode.

- 1) "AUTO TRIG" (Automatic trigger):
- The malfunction will be identified on the CONSULT-II screen in real time.

In other words, DTC/1st trip DTC and malfunction item will be displayed if the malfunction is detected by ECM.

At the moment a malfunction is detected by ECM, "MONITOR" in "DATA MONITOR" screen is changed to "Recording Data ... xx%" as shown at left, and the data after the malfunction detection is recorded. Then the percentage reached 100%, "REALTIME DIAG" screen is displayed. If "STOP" is touched on the screen during "Recording Data ... xx%", "REAL-TIME DIAG" screen is also displayed.

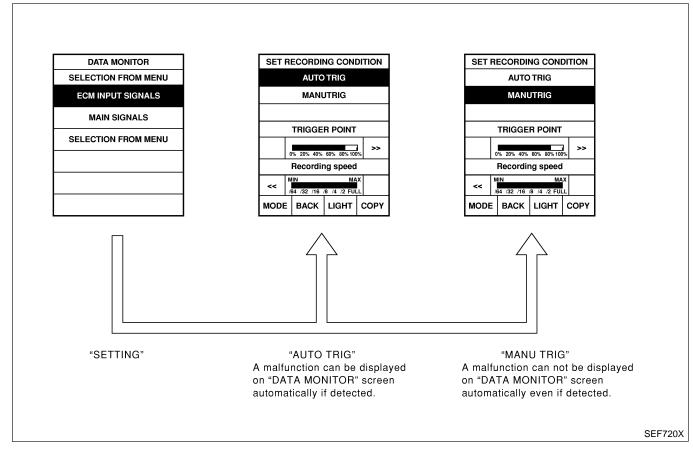
The recording time after the malfunction detection and the recording speed can be changed by "TRIGGER POINT" and "RECORDING Speed". Refer to CONSULT-II OPERATION MANUAL.

2) "MANU TRIG" (Manual trigger):

KA24DE CONSULT-II (Cont'd)

 DTC/1st trip DTC and malfunction item will not be displayed automatically on CONSULT-II screen even though a malfunction is detected by ECM.

DATA MONITOR can be performed continuously even though a malfunction is detected.


Use these triggers as follows:

- 1) "AUTO TRIG"
- While trying to detect the DTC/1st trip DTC by performing the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE", be sure to select to "DATA MONITOR (AUTO TRIG)" mode. You can confirm the malfunction at the moment it is detected.
- While narrowing down the possible causes, CONSULT-II should be set in "DATA MONITOR (AUTO TRIG)" mode, especially in case the incident is intermittent.
 When you are inspecting the circuit by gently shaking (or twisting) the suspicious connectors, components and harness in "DIACNOSTIC TROUBLE CONFIDMATION."

the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE", the moment a malfunction is found the DTC/1st trip DTC will be displayed. (Refer to "Incident Simulation Tests" in "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT", *GI-23*.

"MANU TRIG"

 If the malfunction is displayed as soon as "DATA MONITOR" is selected, reset CONSULT-II to "MANU TRIG". By selecting "MANU TRIG" you can monitor and store the data. The data can be utilized for further diagnosis, such as a comparison with the value for the normal operating condition.

G[

MA

LC.

EC

GL

MT

Λ.

AT

TF

PD

. _

SU

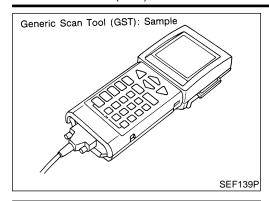
BR

ST

<u></u>

BT

. . .

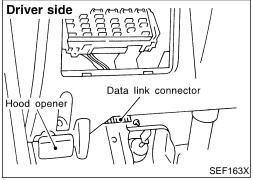

HA

SC

 $\mathbb{D}\mathbb{X}$

KA24DE

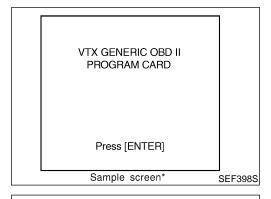
Generic Scan Tool (GST)


Generic Scan Tool (GST) DESCRIPTION

NGEC0035

NGEC0035S01

Generic Scan Tool (OBDII scan tool) complying with SAE J1978 has 8 different functions explained on the next page. ISO9141 is used as the protocol.


The name "GST" or "Generic Scan Tool" is used in this service manual.

GST INSPECTION PROCEDURE

NGEC0035S02

- Turn ignition switch OFF.
- 2. Connect "GST" to data link connector for GST which is located under LH dash panel near the fuse box cover.

OBD II FUNCTIONS

F9: UNIT CONVERSION

Sample screen*

- Turn ignition switch ON.
- 4. Enter the program according to instruction on the screen or in the operation manual.
- (*: Regarding GST screens in this section, sample screens are shown.)

F0: DATA LIST
F1: FREEZE DATA
F2: DTCS
F3: SNAPSHOT
F4: CLEAR DIAG INFO
F5: O2 TEST RESULTS
F6: READINESS TESTS
F7: ON BOARD TESTS
F8: EXPAND DIAG PROT

SEF416S

Perform each diagnostic mode according to each service procedure.

For further information, see the GST Operation Manual of the tool maker.

GI

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

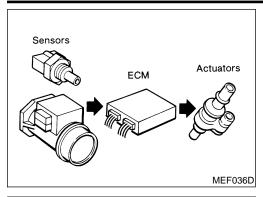
ST

RS

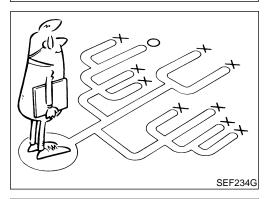
BT

HA

SC


EL

Generic Scan Tool (GST) (Cont'd)


	FUNCTION NGEC0035S03				
Dia	agnostic test mode	Function			
MODE 1	READINESS TESTS	This mode gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, and system status information.			
MODE 2	(FREEZE DATA)	This mode gains access to emission-related data value which were stored by ECM during the freeze frame. [For details, refer to "Freeze Frame Data" (EC-89).]			
MODE 3	DTCs	This mode gains access to emission-related power train trouble codes which were stored by ECM.			
MODE 4	CLEAR DIAG INFO	This mode can clear all emission-related diagnostic information. This includes: Clear number of diagnostic trouble codes (MODE 1) Clear diagnostic trouble codes (MODE 3) Clear trouble code for freeze frame data (MODE 1) Clear freeze frame data (MODE 2) Reset status of system monitoring test (MODE 1) Clear on board monitoring test results (MODE 6 and 7)			
MODE 6	(ON BOARD TESTS)	This mode accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.			
MODE 7	(ON BOARD TESTS)	This mode enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.			
MODE 8					
MODE 9	(CALIBRATION ID)	This mode is to enable the off-board to request vehicle specific information such as Vehicle Identification Number (VIN) and Calibration ID.			

TROUBLE DIAGNOSIS — INTRODUCTION

KA24DE

Introduction

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no problems such as vacuum leaks, fouled spark plugs, or other problems with the engine.

It is much more difficult to diagnose a problem that occurs intermittently rather than continuously. Most intermittent problems are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.

A visual check only may not find the cause of the problems. A road test with CONSULT-II (or GST) or a circuit tester connected should be performed. Follow the "Work Flow" on EC-102.

Before undertaking actual checks, take a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such problems, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A "Diagnostic Worksheet" like the example on next page should be used.

Start your diagnosis by looking for "conventional" problems first. This will help troubleshoot driveability problems on an electronically controlled engine vehicle.

KEY POINTS

WHAT Vehicle & engine model WHEN Date, Frequencies WHERE Road conditions Operating conditions,

Weather conditions,

Symptoms

SEF907L

DIAGNOSTIC WORKSHEET

There are many operating conditions that lead to the malfunction of engine components. A good grasp of such conditions can make trouble-shooting faster and more accurate.

In general, each customer feels differently about a problem. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one on the next page in order to organize all the information for troubleshooting.

Some conditions may cause the malfunction indicator lamp to come on steady or blink and DTC to be detected. Examples:

- Vehicle ran out of fuel, which caused the engine to misfire.
- Fuel filler cap was left off or incorrectly screwed on, allowing fuel to evaporate into the atmosphere [for the models with EVAP (SMALL LEAK) diagnosis].

TROUBLE DIAGNOSIS — INTRODUCTION

Worksheet Sample

NGEC0036S0101

GI

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

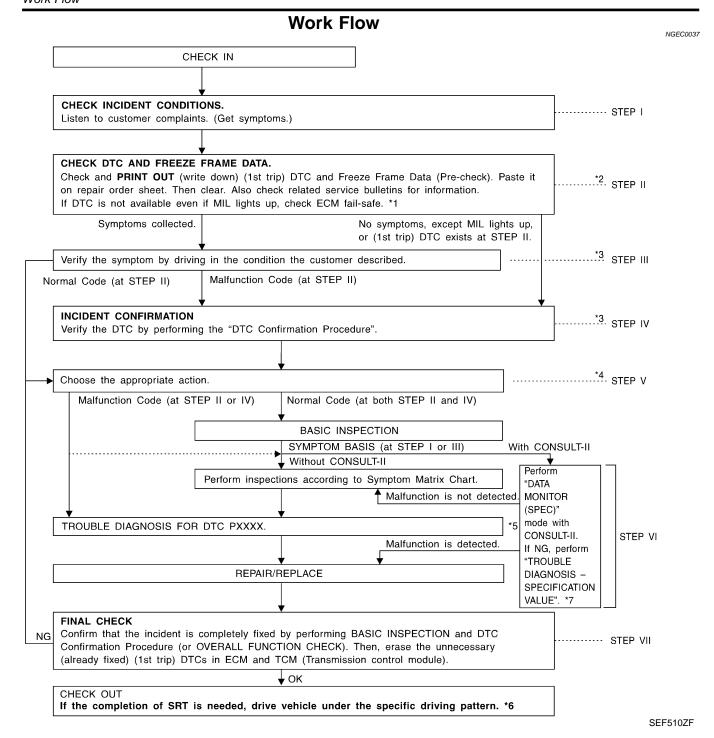
BR

ST

RS

BT

HA


SC

EL

Customer name MR/MS		Model & Year	VIN		
Engine #		Trans.	Mileage		
Incident Date		Manuf. Date	In Service Date		
Fuel and fuel filler cap		☐ Vehicle ran out of fuel causing misfire ☐ Fuel filler cap was left off or incorrectly screwed on.			
	☐ Startability	☐ Inpossible to start ☐ No combustion ☐ Partial combustion ☐ Partial combustion affected by throttle position ☐ Partial combustion NOT affected by throttle position ☐ Possible but hard to start ☐ Others []			
Symptoms	□ Idling	☐ No fast idle ☐ Unstable ☐ High idle ☐ Low idle ☐ Others []			
	☐ Driveability	☐ Stumble ☐ Surge ☐ Knock ☐ Lack of power ☐ Intake backfire ☐ Exhaust backfire ☐ Others []			
	☐ Engine stall	☐ At the time of start ☐ While idling ☐ While accelerating ☐ While decelerating ☐ Just after stopping ☐ While loading			
Incident occurrence		☐ Just after delivery ☐ Recently ☐ In the morning ☐ At night ☐ In the daytime			
Frequency		☐ All the time ☐ Under certain conditions ☐ Sometimes			
Weather conditions		☐ Not affected			
Weather Temperature		☐ Fine ☐ Raining ☐ Snowing ☐ Others []			
		☐ Hot ☐ Warm ☐ Cool ☐ Cold ☐ Humid °F			
· ·		☐ Cold ☐ During warm-up ☐ /	After warm-up		
Engine conditions		Engine speed0 2,000	4,000 6,000 8,000 rpm		
Road conditions		☐ In town ☐ In suburbs ☐ Hig	hway		
Driving conditions		□ Not affected □ At starting □ While idling □ At racing □ While accelerating □ While cruising □ While decelerating □ While turning (RH/LH) Vehicle speed □ □ □ □ □ □ □			
Malford Start and Start and Start		0 10 20 30 40 50 60 MPH			
Malfunction indicator lamp		☐ Turned on ☐ Not turned on			

MTBL0017

- *1: If the incident cannot be duplicated, refer to "TROUBLE DIAGNOSIS FOR INTERMIT-TENT INCIDENT", EC-142.
- *2: If the on board diagnostic system cannot be performed, check main power supply and ground circuit.
- Refer to "TROUBLE DIAGNOSIS FOR POWER SUPPLY", EC-143.
- *3: If time data of "SELF-DIAG RESULTS" is other than "0" or "1t" refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT", EC-142.
- *4: If the malfunctioning part cannot

be found, refer to "TROUBLE DIAGNOSIS FOR INTERMIT-TENT INCIDENT", EC-142.

- *5: EC-119
- *6: EC-74
- *7: EC-138

TROUBLE DIAGNOSIS — INTRODUCTION

	DESCRIPTION FOR WORK FLOW
STEP	DESCRIPTION
STEP I	Get detailed information about the conditions and the environment when the incident/symptom occurred using the "DIAGNOSTIC WORK SHEET", EC-101.
STEP II	Before confirming the concern, check and write down (print out using CONSULT-II or Generic Scan Tool) the (1st trip) Diagnostic Trouble Code (DTC) and the (1st trip) freeze frame data, then erase the code and the data. (Refer to EC-79.) The (1st trip) DTC and the (1st trip) freeze frame data can be used when duplicating the incident at STEP III & IV. Study the relationship between the cause, specified by (1st trip) DTC, and the symptom described by the customer. (The "Symptom Matrix Chart" will be useful. See EC-120.) Also check related service bulletins for information.
STEP III	Try to confirm the symptom and under what conditions the incident occurs. The "DIAGNOSTIC WORK SHEET" and the freeze frame data are useful to verify the incident. Connect CON-SULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform INCIDENT SIMULATION TESTS. (Refer to GI section.) If the malfunction code is detected, skip STEP IV and perform STEP V.
STEP IV	Try to detect the (1st trip) Diagnostic Trouble Code by driving in (or performing) the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE". Check and read the (1st trip) DTC and (1st trip) freeze frame data by using CONSULT-II or Generic Scan Tool. During the (1st trip) DTC verification, be sure to connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results.
	If the incident cannot be verified, perform INCIDENT SIMULATION TESTS. (Refer to GI section.) In case the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" is not available, perform the "OVERALL FUNCTION CHECK" instead. The (1st trip) DTC cannot be displayed by this check, however, this simplified "check" is an effective alternative. The "NG" result of the "OVERALL FUNCTION CHECK" is the same as the (1st trip) DTC detection.
STEP V	Take the appropriate action based on the results of STEP I through IV. If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC PXXXX. If the normal code is indicated, proceed to the BASIC INSPECTION. (Refer to EC-104.) If CONSULT-II is available, perform "DATA MONITOR (SPEC)" mode with CONSULT-II and proceed to the "TROUBLE DIAGNOSIS — SPECIFICATION VALUE", EC-138. (If malfunction is detected, proceed to "REPAIR/REPLACE".) Then perform inspections according to the Symptom Matrix Chart. (Refer to EC-120.)
	Identify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the system for mechanical binding, loose connectors or wiring damage using (tracing) "Harness Layouts". Gently share the related connectors, components or wiring harness with CONSULT-II set in "DATA MONITOR"
STEP VI	(AUTO TRIG)" mode. Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CON-SULT-II. Refer to EC-129. The "DIAGNOSTIC PROCEDURE" in EC section contains a description based on open circuit inspection. A short circuit inspection is also required for the circuit check in the DIAGNOSTIC PROCEDURE. For details, refer to "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT", "Circuit Inspection", GI-25. Repair or replace the malfunction parts.
STEP VII	Once you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and circumstances which resulted in the customer's initial complaint. Perform the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" and confirm the normal code [Diagnostic trouble code No. P0000 or 0505] is detected. If the incident is still detected in the final check, perform STEP VI by using a different method from the previous one. Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) (1st trip) DTC in ECM. (Refer to EC-79.)

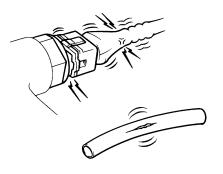
EL

HA

SC

NGEC0038

Basic Inspection


Precaution:

Perform Basic Inspection without electrical or mechanical loads applied;

- Headlamp switch is OFF,
- Air conditioner switch is OFF,
- Rear window defogger switch is OFF,
- Steering wheel is in the straight-ahead position, etc.

INSPECTION START

- 1. Check service records for any recent repairs that may indicate a related problem, or the current need for scheduled maintenance.
- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Vacuum hoses for splits, kinks, or improper connections
- Wiring for improper connections, pinches, or cuts

SEF142I

With CONSULT-II	GO TO 2.
With GST	GO TO 4.
No tools	GO TO 5.

2 CONNECT CONSULT-II TO THE VEHICLE Connect "CONSULT-II" to the data link connector and select "ENGINE" from the menu. Refer to EC-86. Driver side Data link connector Hood opener GO TO 3.

TROUBLE DIAGNOSIS — BASIC INSPECTION

GI

MA

LC

EC

FE

GL

MT

AT

TF

PD

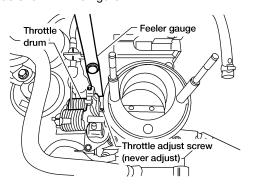
AX

ST

BT

HA

SC


Basic Inspection (Cont'd)

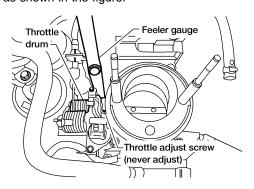
CHECK FI CAM FUNCTION

(P) With CONSULT-II

3

- 1. Adjust accelerator wire. Refer to "Adjust Accelerator Wire", FE-3.
- 2. Warm up engine to 75°C (167°F).
- 3. Stop engine and wait at least 5 seconds, then turn ignition switch ON.
- 4. Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- 5. When the engine coolant temp is 75 to 85°C (167 to 185°F), confirm the clearance is less than 0.05mm (0.002in), between stopper and throttle drum as shown in the figure.

AEC871A


OK or NG

ОК	>	GO TO 6.
NG	•	 Replace throttle body assembly. Refer to "OUTER COMPONENT PARTS", <i>EM-68</i>. GO TO 6.

CHECK FI CAM FUNCTION

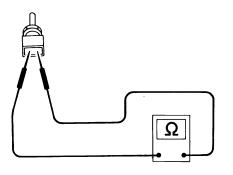
(a) With GST

- 1. Adjust accelerator wire. Refer to "Adjust Accelerator Wire", FE-3.
- 2. Warm up engine to 75°C (167°F).
- 3. Stop engine and wait at least 10 seconds, then turn ignition switch ON.
- 4. Select "MODE 1" with GST.
- 5. When the engine coolant temp is 75 to 85°C (167 to 185°F), confirm the clearance is less than 0.05mm (0.002in), between stopper and throttle drum as shown in the figure.

AEC871A

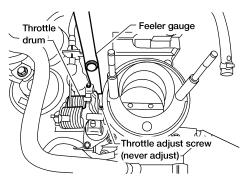
OK or NG

OK (With CONSULT-II)	•	GO TO 6.
OK (Without CONSULT-II)	•	GO TO 14.
NG		 Replace throttle body assembly. Refer to "OUTER COMPONENT PARTS", <i>EM-68</i>. With CONSULT-II: GO TO 6. Without CONSULT-II: GO TO 14.


Basic Inspection (Cont'd)

CHECK FI CAM FUNCTION

$\stackrel{\text{\tiny NO}}{\text{\tiny (TOOLS)}}$ No Tools

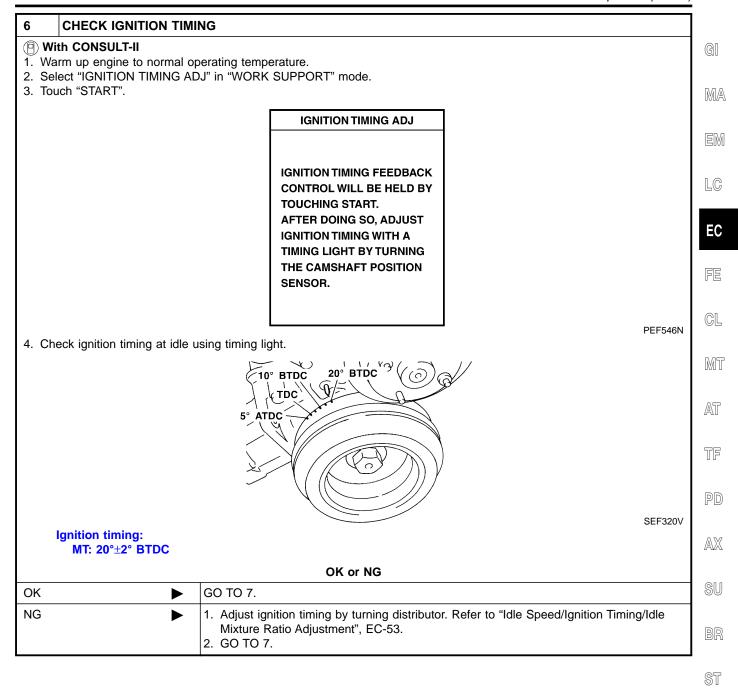

5

- 1. Adjust accelerator wire. Refer to "Adjust Accelerator Wire", FE-3.
- 2. Disconnect engine coolant temperature sensor harness connector and check resistance as shown in the figure.

SEF536H

- 3. Warm up engine until the resistance of coolant temperature sensor is 0.26 to 0.39 k Ω .
- 4. Turn ignition switch OFF.
- 5. When engine coolant temperature is 75 to 85°C (167 to 185°F), with the voltage between 1.10 to 1.36V, make sure that the clearance is less than 0.05 mm (0.002 in), between stopper and throttle adjusting screw as shown in figure.

AEC871A


OK or NG

OK •	GO TO 14.
NG ►	 Replace throttle body assembly. Refer to "OUTER COMPONENT PARTS", <i>EM-68</i>. GO TO 14.

TROUBLE DIAGNOSIS — BASIC INSPECTION

KA24DE

Basic Inspection (Cont'd)

BT

HA

SC

EL

TROUBLE DIAGNOSIS — BASIC INSPECTION

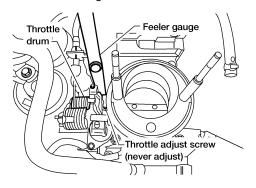
KA24DE

Basic Inspection (Cont'd)

7	CHECK BASE IDLE SPEED				
With CONSULT-II Select "IGNITION TIMING ADJ" in "WORK SUPPORT" mode and touch "START".					
			IACV-AAC/V	ADJ]
			ADJ MONITOR		
		ENG SPEED 700 rpm			
			CONDITION SETTING		
			IACV-ACC/V	FIXED	
					_
		MONITOR			
			COOLAN TEMP/S	XXX.C	
			CLSD THL POS	XXX N	
					J SEF714Z
	eck idle speed. MT: 750±50 rpm				
OK or NG					
OK	•	GO TO 8.			
NG	•	 Adjust base idle speed by turning idle speed adjusting screw. Refer to "Idle Speed/ Ignition Timing/Idle Mixture Ratio Adjustment", EC-53. GO TO 8. 			

Basic Inspection (Cont'd)

CHECK CLOSED THROTTLE POSITION SWITCH IDLE POSITION (CHECK THROTTLE POSITION SENSOR IDLE POSITION)


(P) With CONSULT-II

NOTE:

8

Always check ignition timing and base idle speed before performing the following.

- 1. Warm up engine to normal operating temperature.
- 2. Check FI cam. Refer to procedure 3.
- 3. Stop engine.
- 4. Turn ignition switch ON.
- 5. Select "DATA MONITOR" mode with CONSULT-II.
- 6. Select "CLSD THL/P SW" from the menu.
- 7. Read "CLSD THL/P SW" signal under the following conditions.
- Insert a 0.1 mm (0.004 in) and 0.3 mm (0.012 in) feeler gauge alternately between the throttle adjust screw (TAS) and throttle drum as shown in the figure and check the signal.

AEC871A

DATA MON	ITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm
COOLAN TEMP/S	XXX °C
CLSD THL/P SW	ON

SEF197Y

"CLSD THL/P SW" signal should remain "ON" while inserting 0.1 mm (0.004 in) feeler gauge.

"CLSD THL/P SW" signal should remain "OFF" while inserting 0.3 mm (0.012 in) feeler gauge.

OK	or	NG

OK •	GO TO 12.
NG ►	GO TO 9.

GI

MA

LC

EC

FE

GL

MT

AT

TF PD

MΜ

@I

BF

ST

BT

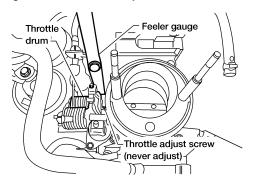
HA

SC

DW.

KA24DE

Basic Inspection (Cont'd)


ADJUSTMENT THROTTLE POSITION SENSOR IDLE POSITION-1

(P) With CONSULT-II

NOTE:

9

- Never adjust throttle adjust screw (TAS).
- Do not touch throttle drum when checking "CLSD THL/P SW" signal.
 Doing so may cause an incorrect adjustment.
- 1. Warm engine up to normal operating temperature.
- 2. Check FI cam. Refer to procedure 3.
- 3. Stop engine.
- 4. Loosen throttle position sensor fixing bolts.
- 5. Turn ignition switch ON.
- 6. Select "CLSD THL/P SW" in "DATA MONITOR" mode.
- 7. Insert a 0.1 mm (0.004 in) feeler gauge between throttle adjust screw and throttle drum as shown in the figure.

AEC871A

- 8. Open throttle valve and then close.
- 9. Check "CLSD THL/P SW" signal.

DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
COOLAN TEMP/S	XXX °C	
CLSD THL/P SW	ON	

SEF197Y

"CLSD THL/P SW" signal should remain "OFF" when the throttle valve is closed.

If it is impossible to adjust closed throttle position switch, replace throttle position sensor.

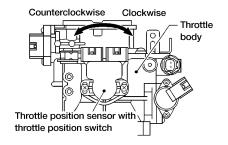
OK or NG

OK ►	GO TO 11.
NG ►	GO TO 10.

Basic Inspection (Cont'd)

10 ADJUSTMENT THROTTLE POSITION SENSOR IDLE POSITION-2 (B) With CONSULT-II Turn throttle position sensor body counterclockwise until "CLSD THL/P SW" signal switches to "OFF". Counterclockwise Clockwise Throttle body Throttle position sensor with

throttle position switch


AEC872A

GO TO 11.

11 ADJUSTMENT THROTTLE POSITION SENSOR IDLE POSITION-3

(P) With CONSULT-II

- 1. Temporarily tighten sensor body fixing bolts as follows.
- Gradually move the sensor body clockwise and stop it when "CLSD THL/P SW" signal switches from "OFF" to "ON" when tightening sensor body fixing bolts.

AEC872A

- 2. Make sure two or three times that the signal is "ON" when the throttle valve is closed and "OFF" when it is opened.
- 3. Remove 0.1 mm (0.004 in) feeler gauge then insert 0.3 mm (0.012 in) feeler gauge.
- 4. Make sure two or three times that the signal remains "OFF" when the throttle valve is closed.
- 5. Tighten throttle position sensor.
- 6. Check "CLSD THL/P SW" signal again.

The signal remains "OFF" while closing throttle valve.

OK or NG

	 Remove 0.3 mm (0.012 in) feeler gauge. GO TO 12.
NG ▶	GO TO 9.

GI

MA

LC

EC

FE

GL

MT

AT

TF

AX

PD

ST

RS

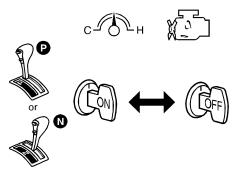
BT

HA

SC

KA24DE

Basic Inspection (Cont'd)


12 RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY

(P) With CONSULT-II

NOTE:

Always warm up engine to normal operating temperature. If engine is cool, the throttle position sensor idle position memory will not be reset correctly.

- 1. Start engine.
- 2. Warm up engine to normal operating temperature.
- 3. Select "CLSD THL POS" in "DATA MONITOR" mode manual trigger.
- 4. Stop engine. (Turn ignition switch OFF.)
- 5. Turn ignition switch ON and wait at least 5 seconds.

SEF864V

- 6. Turn ignition switch OFF and wait at least 5 seconds.
- 7. Repeat steps 5 and 6 until "CLSD THL POS" in "DATA MONITOR" mode with CONSULT-II changes to "ON".

DATA MONITOR		
MONITORING	NO DTC	
CLSD THL/P SW	ON	

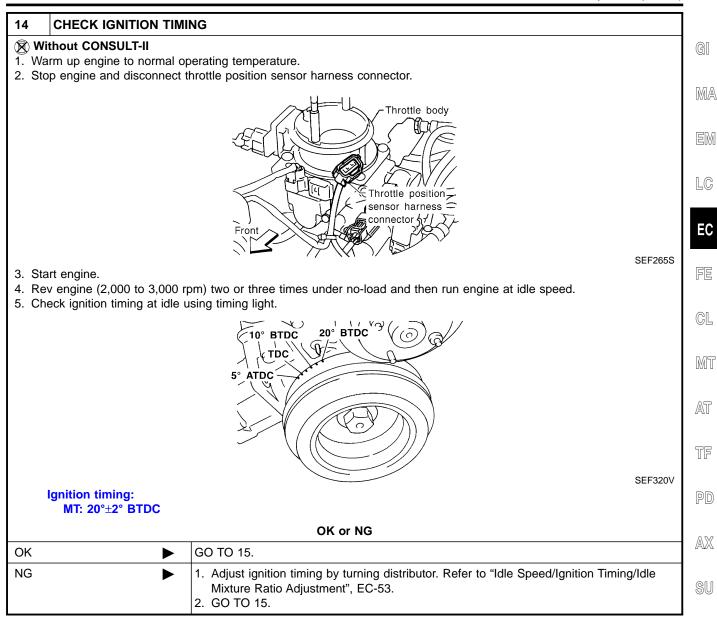
SEF715Z

GO TO 13.

13 CHECK TARGET IDLE SPEED

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "ENG SPEED" in "DATA MONITOR" mode.
- 3. Check idle speed.


MT: 800±50 rpm

OK or NG

ОК	•	INSPECTION END
NG	-	Adjust idle speed. Refer to "Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment", EC-53. Inspection end after adjust idle speed.

KA24DE

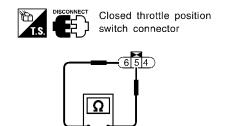
Basic Inspection (Cont'd)

15	CHECK BASE IDLE SP	EED	BR
Make	ithout CONSULT-II sure that engine speed fall T: 750±50 rpm	s to the following speed.	ST
	OK or NG		RS
OK	•	GO TO 16.	
NG	•	 Adjust base idle speed by turning idle speed adjusting screw. Refer to "Idle Speed/ Ignition Timing/Idle Mixture Ratio Adjustment", EC-53. GO TO 16. 	BT

HA

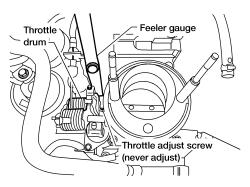
SC

Basic Inspection (Cont'd)


16 CHECK CLOSED THROTTLE POSITION SWITCH IDLE POSITION (CHECK THROTTLE POSITION SENSOR IDLE POSITION)

Without CONSULT-II

NOTE:


Always check ignition timing and base idle speed before performing the following.

- 1. Warm up engine to normal operating temperature.
- 2. Check FI cam. Refer to procedure 5.
- 3. Stop engine.
- 4. Disconnect closed throttle position switch harness connector .
- 5. Connect the tester probe to closed throttle position switch terminals 5 and 6.
- 6. Check harness continuity under the following conditions.

SEF862V

• Insert the 0.1 mm (0.004 in) and 0.3 mm (0.012 in) feeler gauge alternately between the throttle adjust screw (TAS) and throttle drum as shown in the figure.

AEC871A

OK or NG

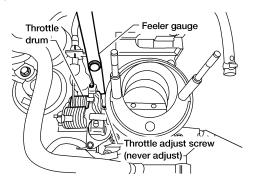
OK •	GO TO 20.
NG ►	GO TO 17.

[&]quot;Continuity should exist" while inserting 0.1 mm (0.004 in) feeler gauge.

[&]quot;Continuity should not exist" while inserting 0.3 mm (0.012 in) feeler gauge.

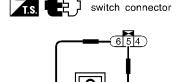
KA24DE

Basic Inspection (Cont'd)


ADJUSTMENT THROTTLE POSITION SENSOR IDLE POSITION-1

Without CONSULT-II

NOTE:


17

- Never adjust throttle adjust screw (TAS).
- Do not touch throttle drum when checking "continuity".
 Doing so may cause an incorrect adjustment.
- 1. Warm engine up to normal operating temperature.
- 2. Check FI cam. Refer to procedure 5.
- 3. Stop engine.
- 4. Loosen throttle position sensor fixing bolts.
- 5. Disconnect closed throttle position sensor harness connector.
- 6. Insert 0.1 mm (0.004 in) feeler gauge between the throttle adjust screw and throttle drum as shown in the figure.

AEC871A

- 7. Open throttle valve then close.
- 8. Check continuity between closed throttle position switch terminal 5 and 6.

Closed throttle position

SEF862V

The continuity should not exist while closing the throttle position sensor body.

If it is impossible to adjust closed throttle position switch, replace throttle position sensor.

OK or NG

OK •	GO TO 19.
NG ►	GO TO 18.

GI

MA

LC

EC

FE

CL

MT

AT

TF

PD

90

BF

ST

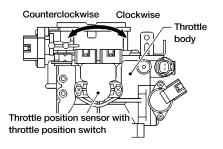
RS

BT

HA

SC

Basic Inspection (Cont'd)


ADJUSTMENT THROTTLE POSITION SENSOR IDLE POSITION-2 Without CONSULT-II Turn throttle position sensor body counterclockwise until continuity does not exist. Counterclockwise Clockwise Throttle body Throttle position sensor with throttle position switch

19 ADJUSTMENT THROTTLE POSITION SENSOR IDLE POSITION-3

GO TO 19.

Without CONSULT-II

- 1. Temporarily tighten sensor body fixing bolts as follows.
- Gradually move the sensor body clockwise and stop it when the continuity comes to exist, then tighten sensor body fixing bolts.

AEC872A

- 2. Make sure two or three times that the continuity exists when the throttle valve is closed and continuity does not exist when it is opened.
- 3. Remove 0.1 mm (0.004 in) feeler gauge then insert 0.3 mm (0.012 in) feeler gauge.
- 4. Make sure two or three times that continuity does not exist when the throttle valve is closed.
- 5. Tighten throttle position sensor.
- 6. Check the continuity again.

Continuity does not exist while closing the throttle valve.

OK or NG

OK ►	GO TO 20.
NG ►	GO TO 17.

20 REINSTALLATION

(Without CONSULT-II

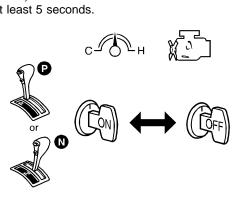
- 1. Remove 0.3 mm (0.012 in) feeler gauge.
- 2. Reconnect throttle position sensor harness connector and closed throttle position switch harness connector.
- 3. Rev engine (2,000 to 3,000 rpm) two or three times under no-load and then run engine at idle speed.

■ GO TO 21.

KA24DE

Basic Inspection (Cont'd)

RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY


♥ Without CONSULT-II

NOTE:

21

Always warm up engine to normal operating temperature. If engine is cool, the throttle position sensor idle position memory will not be reset correctly.

- 1. Start engine.
- 2. Warm up engine to normal operating temperature.
- 3. Stop engine. (Turn ignition switch "OFF".)
- 4. Turn ignition switch "ON" and wait at least 5 seconds.

SEF864V

- 5. Turn ignition switch "OFF" and wait at least 5 seconds.
- 6. Repeat steps 4 and 5, 20 times.

► GO TO 22.

22	CHECK TARGET IDLE	SPEED								
1. Sta 2. Ch	Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Check idle speed. MT: 800±50 rpm									
		OK or NG								
OK	•	GO TO 23.								
NG	>	 Adjust target idle speed. Refer to "Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment", EC-53. GO TO 23. 								

23	ERASE UNNECESSARY DTC								
Erase	After this inspection, unnecessary DTC No. might be displayed. Erase the stored memory in ECM and TCM.								
Kelei	Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", (EC-79).								
		INSPECTION END							

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

/A\ \\

SU

BR

ST

KI S

BT

HA

SC

DTC Inspection Priority Chart

DTC Inspection Priority Chart

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

Priority	Detected items (DTC)
1	 P0100 Mass air flow sensor P0110 Intake air temperature sensor P0115, P0125 Engine coolant temperature sensor P0120 Throttle position sensor P0180 Fuel tank temperature sensor P0325 Knock sensor P0340 Camshaft position sensor P0460, P0461, P0464, P1464 Fuel level sensor P0500 Vehicle speed sensor P0605 ECM P1126 Thermostat function P1400 EGRC-solenoid valve P1706 Park/neutral position switch
2	 P0105 Absolute pressure sensor P0130 - P0134 Heated oxygen sensor 1 (front) P0135 Heated oxygen sensor 1 heater (front) P0137 - P0140 Heated oxygen sensor 2 (rear) P0141 Heated oxygen sensor 2 heater (rear) P0335, P1336 Crankshaft position sensor (OBD) P0443, P1444 EVAP canister purge volume control solenoid valve P0446, P1446, P1448 EVAP canister vent control valve P0450 EVAP control system pressure sensor P0510 Closed throttle position switch P1401 EGR temperature sensor P1447 EVAP control system purge flow monitoring P1490, P1491 Vacuum cut valve bypass valve P1775 TORQUE CONVERTER CLUTCH SOLENOID VALVE (CIRCUIT) P1776 TORQUE CONVERTER CLUTCH SOLENOID VALVE (CIRCUIT)
3	 P0172, P0171 Fuel injection system function P0300 - P0304 Misfire P0400, P1402 EGR function P0402 EGRC-BPT valve function P0420 Three way catalyst function P0440, P1440 EVAP control system (SMALL LEAK) P0455 EVAP control system (GROSS LEAK) P1441 EVAP control system (VERY SMALL LEAK) P0505 IACV-AAC valve P1148 Closed loop control

Fail-safe Chart

The ECM enters fail-safe mode if any of the following malfunctions is detected due to the open or short circuit. When the ECM enters the fail-safe mode, the MIL illuminates.

0	Г
((5	
(0)	ı

DTC No.				_							
CONSULT-II GST	Detected items	Engine operatii	ng condition in fail-safe mode	N							
P0100	Mass air flow sensor cir- cuit	Engine speed will not rise more than	n 2,400 rpm due to the fuel cut.								
P0110	Intake air temperature sensor	The ECM functions on the assumpti	he ECM functions on the assumption that the intake air temperature is 25°C (77°F).								
P0115	Engine coolant temperature sensor circuit	Engine coolant temperature will be or ing ignition switch to ON or START. CONSULT-II displays the engine cool	determined by ECM based on the time after turn- plant temperature decided by ECM.	=							
		Condition	Engine coolant temperature decided (CONSULT-II display)	F							
		Just as ignition switch is turned to ON or Start	40°C (104°F)	0							
		More than approx. 4 minutes after ignition ON or Start	80°C (176°F)	R							
		Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)								
P0120	Throttle position sensor circuit	Throttle position will be determined I speed. Therefore, acceleration will be	based on the injected fuel amount and the engine be poor.	Ŀ							
		Condition	Driving condition	٦							
		When engine is idling	Normal								
		When accelerating	Poor acceleration								
Unable to access ECM	ECM	the CPU of ECM), the MIL on the in However it is not possible to access Engine control with fail-safe	was judged to be malfunctioning. (i.e., if the ECM detects a malfunction condition in strument panel lights to warn the driver. ECM and DTC cannot be confirmed. el injection, ignition timing, fuel pump operation	(
			ECM fail-safe operation	Į							
		Engine speed	Engine speed will not rise more than 3,000 rpm	7							
		Fuel injection	Simultaneous multiport fuel injection system	,							
		Ignition timing	Ignition timing is fixed at the preset valve								
		Fuel pump	Fuel pump relay is "ON" when engine is running and "OFF" when engine stalls								
		IACV-AAC valve	Full open								
		Replace ECM, if ECM fail-safe cond	lition is confirmed.	[

Symptom Matrix Chart

Symptom Matrix Chart SYSTEM — ENGINE CONTROL SYSTEM

NGEC0041

															NGEC0041S01
							S	YMPT	ОМ						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty	symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Fuel	Fuel pump circuit	1	1	2	3	2		2	2			3		2	EC-576
	Fuel pressure regulator system	3	3	4	4	4	4	4	4	4		4			EC-52
	Injector circuit	1	1	2	3	2		2	2			2			EC-568
	Evaporative emission system	3	3	4	4	4	4	4	4	4		4			EC-34
Air	Positive crankcase ventilation system	3	3	4	4	4	4	4	4	4		4	1		EC-49
	Incorrect idle speed adjustment	3	3				1	1	1	1		1			EC-53
	IACV-AAC valve circuit	1	1	2	3	3	2	2	2	2		2		2	EC-427
	IACV-FICD solenoid valve circuit	2	2	3	3	3	3	3	3	3		3			EC-589
Ignition	Incorrect ignition timing adjustment	3	3	1	1	1		1	1			1			EC-53
	Ignition circuit	1	1	2	2	2		2	2			2			EC-559
EGR	EGRC-solenoid valve circuit		2	2	3	3						3			EC-452
	EGR system	2	1	2	3	3	3	2	2	3		3			EC-327, 339, 465
Main pov	wer supply and ground circuit	2	2	3	3	3		3	3		2	3		2	EC-143
Air condi	itioner circuit	2	2	3	3	3	3	3	3	3		3		2	HA-11

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

Symptom Matrix Chart (Cont'd)

				I	ı	S\	MPTC	DM	1	1	I	T		_	
	HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	DLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	
Warranty symptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	HA	_	
Camshaft position sensor circuit	2	2	3	3	3		3	3			3			EC-319	C[
Mass air flow sensor circuit	1	1	2	2	2		2	2			2			EC-150	
Heated oxygen sensor 1 (front) circuit		1	2	3	2		2	2			2			EC-192, 200	M
Engine coolant temperature sensor circuit	1	1	2	3	2	3	2	2	3		2			EC-168, 187	A1
Throttle position sensor circuit		1	2		2	2	2	2	2		2			EC-173	TF
Incorrect throttle position sensor adjustment		3	1		1	1	1	1	1		1			EC-104	
Vehicle speed sensor circuit		2	3		3						3			EC-423	P
Knock sensor circuit			2								3			EC-309	Δ 7/
ECM	2	2	3	3	3	3	3	3	3	3	3			EC-440, 119	A
Start signal circuit	2													EC-573	Sl
PNP switch circuit			3		3		3	3			3			EC-548	90
Power steering oil pressure switch circuit		2					3	3						EC-585	BI

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

ST

RS

BT

HA

SC

KA24DE

Symptom Matrix Chart (Cont'd)

			S	YST	EM	<u> </u>	ENG	INE I	MEC	HAN	IICA	L &	ОТН	ER	NGEC0041S03
			SYMPTOM												
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warrant	y symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Fuel	Fuel tank	5								-					FE-4
	Fuel piping			5	5	5		5	5			5			
	Vapor lock		5												
	Valve deposit	_ ا		_	_	_		اِ اِ	_			_			
	Poor fuel (Heavy weight gasoline, Low octane)	5		5	5	5		5	5			5			_
Air	Air duct														
	Air cleaner														
	Air leakage from air duct (Mass air flow sensor — throttle body)		5	5		5		5	5			5			
	Throttle body, Throttle wire	5			5		5			5					FE-3
	Air leakage from intake manifold/Collector/Gasket														_
Crank-	Battery								_						
ing	Alternator circuit	1	1	1		1		1	1					1	SC-2
	Starter circuit	3										1			
	Flywheel	6													EM-52
	PNP switch	4													

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

KA24DE

Symptom Matrix Chart (Cont'd)

							S	YMPT	ОМ							
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	
					ļ · ·										-	F
	symptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА		a
Engine	Cylinder head	5	5	5	5	5		5	5		_	5			-	(
	Cylinder head gasket						-				4		3			
	Cylinder block															Ц
	Piston	_											4	EM-29, EM-44	L	
	Piston ring Connecting rod	6	6	6	6	6		6	6			6				
	Bearing															1
	Crankshaft															
Valve	Timing chain															
mecha-	Camshaft	-														
nism	Intake valve	5	5	5	5	5		5	5			5			EM-18, EM-29	Ŀ
	Exhaust valve												3			
Exhaust	Exhaust manifold/Tube/ Muffler/Gasket	5	5	5	5	5		5	5			5			FE-9	0
	Three way catalyst					5									, L-3	1
Lubrica- tion	Oil pan/Oil strainer/Oil pump/ Oil filter/Oil gallery	5	5	5	5	5		5	5			5			MA-20, LC-6	00
	Oil level (Low)/Filthy oil															
Cooling	Radiator/Hose/Radiator filler cap															
	Thermostat									5					LC-11	
	Water pump	5	5	5	5	5		5	5		4	5				_
	Water gallery															
	Coolant level (low)/ Contaminated coolant														MA-17	0

^{1 - 6:} The numbers refer to the order of inspection.

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode

Remarks:

- Specification data are reference values.
- Specification data are output/input values which are detected or supplied by the ECM at the connector.
 - * Specification data may not be directly related to their components signals/values/operations.

(i.e., Adjust ignition timing with a timing light before monitoring IGN TIMING. Specification data might be displayed even when ignition timing is not adjusted to specification. This IGN TIMING monitors the data calculated by the ECM according to the input signals from the camshaft position sensor and other ignition timing related sensors.)

• If the real-time diagnosis results are NG, and the on board diagnostic system results are OK, when diagnosing the mass air flow sensor, first check to see if the fuel pump control circuit is normal.

MONITOR ITEM	COI	NDITION	SPECIFICATION		
ENG SPEED	Tachometer: Connect Run engine and compare tachor value.	neter indication with the CONSULT-II	Almost the same speed as the CONSULT-II value.		
MACA/E CE D1	Engine: After warming upAir conditioner switch: "OFF"	Idle	0.9 - 1.8V		
MAS A/F SE-B1	Shift lever: "N"No-load	2,500 rpm	1.9 - 2.3V		
B/FUEL SCHDL	Engine: After warming up Air conditioner switch: OFF	Idle	0.8 - 1.2 msec		
B/FUEL SCHUL	Shift lever: "N"No-load	2,000 rpm	0.8 - 1.2 msec		
A/F ALPHA-B1	Engine: After warming up	Maintaining engine speed at 2,000 rpm	50 - 159%		
COOLAN TEMP/S	Engine: After warming up		More than 70°C (158°F)		
HO2S1 (B1)			0 - 0.3V ←→ Approx. 0.6 - 1.0V		
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.		
HO2S2 (B1)		Revving engine from idle to 3,000	0 - 0.3V ←→ Approx. 0.6 - 1.0V		
HO2S2 MNTR (B1)	Engine: After warming up	rpm quickly	LEAN ←→ RICH		
VHCL SPEED SE	Turn drive wheels and compare SULT-II value	speedometer indication with the CON-	Almost the same speed as the CONSULT-II value		
BATTERY VOLT	Ignition switch: ON (Engine stop)	ped)	11 - 14V		
	Engine: After warming up	Throttle valve fully closed	0.2 - 0.8V		
THRTL POS SEN	Ignition switch: ON (Engine stopped)	Throttle valve fully opened	3.5 - 4.5V		
EGR TEMP SEN	Engine: After warming up		Less than 4.5V		
EVAP SYS PRES	Ignition switch: ON		Approx. 3.4V		
ABSOL PRES/SE	 Ignition switch: ON Engine: For 5 seconds after stat	ing engine	Approx. 4.4V		
	Engine: More than 5 seconds af	ter starting engine (After warming up)	Approx. 1.2V		
START SIGNAL	ullet Ignition switch: ON $ o$ START $ o$	ON	$OFF \to ON \to OFF$		
CLSD THL POS	Engine: After warming up Ignition switch: ON	Throttle valve: Idle position	ON		
	(Engine stopped)	Throttle valve: Slightly open	OFF		
CLSD THL/P SW	Engine: After warming upIgnition switch: ON	Throttle valve: Idle position	ON		
OLOD HIL/F OW	(Engine stopped)	Throttle valve: Slightly open	OFF		

KA24DE

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	COI	NDITION	SPECIFICATION	
		A/C switch: OFF	OFF	
AIR COND SIG	Engine: After warming up, idle the engine	A/C switch: ON (Compressor operates.)	ON	
P/N POSI SW	- Ignition quitable ON	Shift lever: "P" or "N"	ON	
7/N POSI 3W	Ignition switch: ON	Except above	OFF	
PW/ST SIGNAL	Engine: After warming up, idle the engine	Steering wheel in neutral position (forward direction)	OFF	
	the engine	The steering wheel is turned	ON	
GNITION SW	 Ignition switch: ON → OFF → O 	N	$ON \to OFF \to ON$	
NJ PULSE-B1	Engine: After warming up Air conditioner switch: OFF	Idle	2.5 - 3.3 msec	
	Shift lever: "N"No-load	2,000 rpm	2.4 - 3.2 msec	
GN TIMING	Engine: After warming up Air conditioner switch: OFF	Idle	Approx. 20° BTDC	
OIV TIMILVO	Shift lever: "N"No-load	2,000 rpm	More than 25° BTDC	
CAL/LD VALUE	Engine: After warming up Air conditioner switch: OFF	Idle	9.5 - 34.0%	
DAL/LD VALUE	Shift lever: "N"No-load	2,500 rpm	13.9 - 24.9%	
ADOOL THEN	Engine: After warming up,	Throttle valve: fully closed	0.0%	
ABSOL TH-P/S	engine stoppedIgnition switch: ON	Throttle valve: fully opened	Approx. 80%	
AACC AIRELOW	Engine: After warming up Air conditioner switch: OFF	Idle	0.9 - 5.8 g·m/s	
MASS AIRFLOW	Shift lever: "N"No-load	2,500 rpm	7.5 - 13.2 g·m/s	
ACV-AAC/V	Engine: After warming upAir conditioner switch: OFF	Idle	Approx. 30%	
AO V-AAO/ V	Shift lever: "N"No-load	2,000 rpm	_	
	Engine: After warming up	Idle	0%	
PURG VOL C/V	Air conditioner switch: OFFNo-load	2,000 rpm (More than 200 seconds after starting engine)	_	
AIR COND RLY	 Air conditioner switch: OFF → C 	N	OFF → ON	
	Engine: After warming up Air conditioner quitable OFF	Idle	ON (Cut)	
EGRC SOL/V	Air conditioner switch: OFFShift lever: "N"No-load	Engine speed: Revving engine from idle to 3,000 rpm quickly.	OFF (Flow)	
UEL PUMP RLY	Ignition switch is turned to ON (0 Engine running and cranking	Operates for 5 seconds)	ON	
	Except as shown above		OFF	
/C/V BYPASS/V	Ignition switch: ON		OFF	
/ENT CONT/V	Ignition switch: ON		OFF	

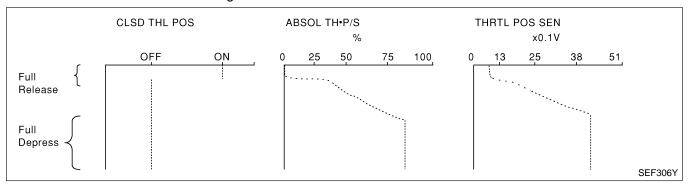
KA24DE

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONDITION	SPECIFICATION
UOSSA LITE (BA)	Engine speed: Below 3,000 rpm (All models) For 6 seconds after engine speed exceeds 3,000 rpm (4WD models only)	ON
HO2S1 HTR (B1)	 Engine speed: Above 3,000 rpm (2WD models) More than 6 seconds after engine speed exceeds 3,000 rpm (4WD models) 	OFF
LIOSES LITE (B4)	• Engine speed: Idle after driving 2 minutes at 70 km/h (43 MPH) or more	ON
HO2S2 HTR (B1)	Ignition switch: ON (Engine stopped)	OFF

Major Sensor Reference Graph in Data Monitor Mode

NGEC0043

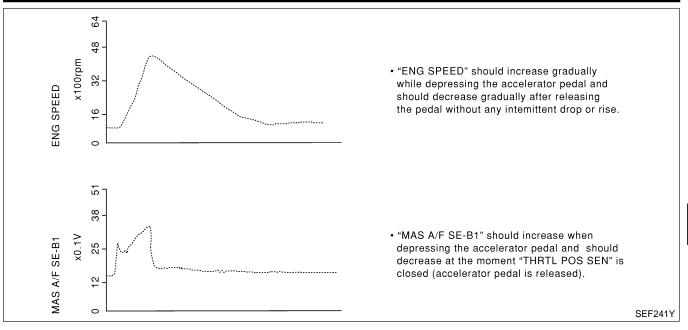

The following are the major sensor reference graphs in "DATA MONITOR" mode. (Select "MANU TRIG" in "DATA MONITOR" with CONSULT-II. "Trigger Point" is set to 100%, "Recording Speed" is set to MAX..)

THRTL POS SEN, ABSOL TH-P/S, CLSD THL POS

IGEC0043S01

Below is the data for "THRTL POS SEN", "ABSOL TH-P/S" and "CLSD THL POS" when depressing the accelerator pedal with the ignition switch ON.

The signal of "THRTL POS SEN" and "ABSOL TH-P/S" should rise gradually without any intermittent drop or rise after "CLSD THL POS" is changed from "ON" to "OFF".


ENG SPEED, MAS A/F SE-B1, THRTL POS SEN, HO2S2 (B1), HO2S1 (B1), INJ PULSE-B1

Below is the data for "ENG SPEED", "MAS A/F SE-B1", "THRTL POS SEN", "HO2S2 (B1)", "HO2S1 (B1)" and "INJ PULSE-B1" when revving engine quickly up to 4,800 rpm under no load after warming up engine to normal operating temperature.

Each value is for reference, the exact value may vary.

KA24DE

Major Sensor Reference Graph in Data Monitor Mode (Cont'd)

GI

MA

LC

EC

FE

Y GL

MT

AT

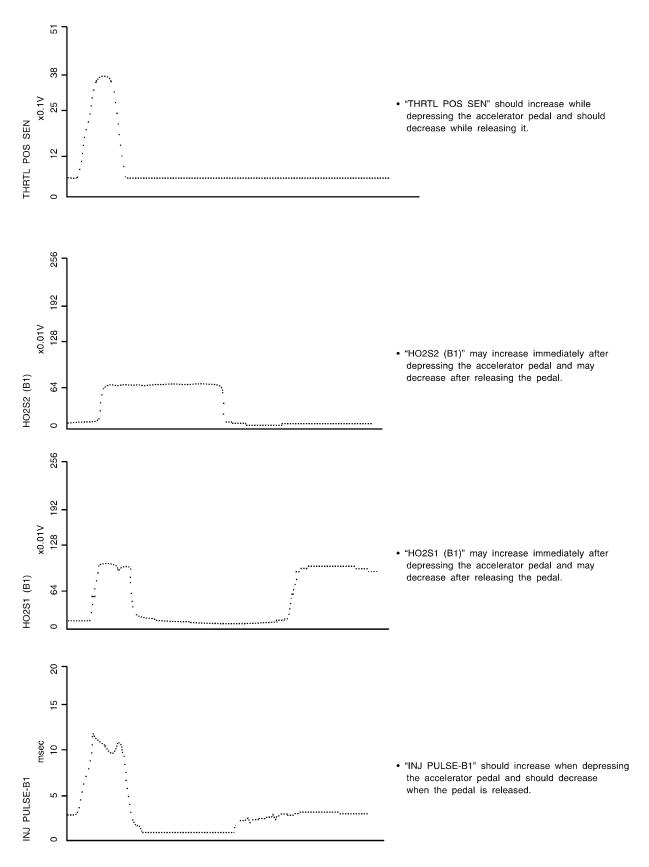
TF PD

AX

SU

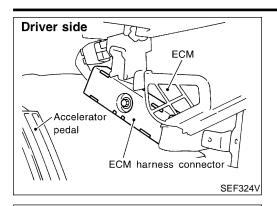
BR

ST


RS

BT

HA


SC

EL

SEF242YA

ECM Terminals and Reference Value

ECM Terminals and Reference Value PREPARATION

NGEC0044

ECM is located behind the instrument lower cover. For this inspection:

MA

GI

Remove instrument lower cover.

2. Remove ECM harness protector.

LC

EC

FE

GL

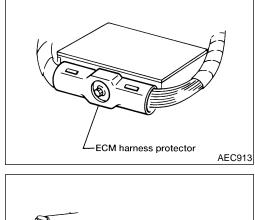
MT

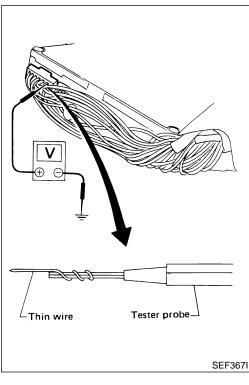
Perform all voltage measurements with the connector connected. Extend tester probe as shown to perform tests easily.

AT

TF

PD


SU


ST

BT

HA

SC

ECM Terminals and Reference Value (Cont'd)

ECM HARNESS CONNECTOR TERMINAL LAYOUT 23 44 45 46 47 64 65 66 67 20 21 22 1 2 3 24 25 4 101 102 103 104 |105|106|107|108 48 49 50 51 52 53 68 69 70 71 26 27 28 29 30 5 6 7 8 9 10 31 32 72 113 114 115 116 110 111 109 112 54 55 56 57 58 73 74 75 76 33 34 35 36 37 11 12 13 14 42 43 80 117 118 119 120 121 122 123 124 19 59 60 61 62 63 77 78 79 40 41 15 16 17 18 |38|39|

ECM INSPECTION TABLE

VGEC0044503

SEF533P

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
1	PU/W	Ignition signal	[Engine is running] • Warm-up condition • Idle speed	0 - 0.5V (V) 4 2 0
·	1 6/44	igililori Sigilal	[Engine is running] ● Engine speed is 2,000 rpm	0.2 - 1.0V (V) 4 2 0 20ms

KA24DE

ECM Terminals and Reference Value (Cont'd)

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	GI
			[Engine is running] • Warm-up condition • Idle speed	12 - 14V (V) 40 20 0 20ms	M E
2	В	B Ignition check	[Engine is running] ● Engine speed is 2,000 rpm	12 - 13V (V) 40 20 0	F
			[Engine is running] • Warm-up condition • Idle speed	0 - 1V (V) 10 5 0 20ms	M At
3	P/L	Tachometer	[Engine is running] ● Engine speed is 2,000 rpm	0.5 - 2V (V) 10 5 0 20ms	PI A
4	LG/R	ECM relay (Self shut-off)	[Engine is running] [Ignition switch OFF] • For a few seconds after turning ignition switch OFF	0 - 1V	B
1 25/10			[Ignition switch OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	R

EL IDX

BT

HA

SC

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
	R/Y	EVAP canister purge	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 20 10 0 50 ms
5		volume control sole- noid valve	 [Engine is running] ● Engine speed is 2,000 rpm (More than 200 seconds after starting engine) 	12 - 13V (V) 20 10 0 50 ms
10	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground
44		/R Fuel pump relay	[Ignition switch ON] • For 5 seconds after turning ignition switch ON. [Engine is running]	0 - 1V
11 W/R	W/K		[Ignition switch ON] ■ More than 5 seconds after turning ignition switch ON	BATTERY VOLTAGE (11 - 14V)
12	Р	Air conditioner relay	 [Engine is running] Both A/C switch and blower switch are ON* *: Any mode except "OFF", ambient air temperature above 10°C (50°F). 	Approximately 0V
			[Engine is running] • A/C switch is OFF	BATTERY VOLTAGE (11 - 14V)
		Mark and a district Product	[Ignition switch ON]	0 - 1V
18	R/W	Malfunction indicator lamp	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)
19	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground
			[Ignition switch ON]	Approximately 0V
20	L/OR	Start signal	[Ignition switch START]	BATTERY VOLTAGE (11 - 14V)
21	G/R	Air conditioner dual- pressure switch	[Engine is running] ■ Both air conditioner switch and blower switch are ON (Compressor operates)	Approximately 0V
		Picoonic omitori	[Engine is running] • Air conditioner switch is OFF	BATTERY VOLTAGE (11 - 14V)
00	1./5	Park/neutral position	[Ignition switch ON] • Gear position is "N" or "P"	Approximately 0V
22	L/B	(PNP) switch	[Ignition switch ON] • Except the above gear position	Approximately 5V

KA24DE

				als and Neierence value (Contu)	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	G[
23	L	Throttle position sensor	[Ignition switch ON] • Warm-up condition • Accelerator pedal fully released	0.2 - 0.8V	M
			[Ignition switch ON] • Accelerator pedal fully depressed	3.5 - 4.5V	
			[Ignition switch OFF]	0V	
24	W/G	Ignition switch	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)	L(
25	В/Ү	ECM ground	[Engine is running] • Idle speed	Engine ground	E
28	BR/W	Throttle position switch (Closed position)	[Ignition switch ON] • Warm-up condition • Accelerator pedal released	BATTERY VOLTAGE (11 - 14V)	FE
		(Closed position)	[Ignition switch ON] • Accelerator pedal depressed	Approximately 0V	CI
29	G/B	Vehicle speed sensor	[Engine is running] Lift up the vehicle In 2nd gear position 40 km/h (25 MPH)	1 - 4V (V) 10 5 0 50 ms	M'
32	В/Ү	ECM ground	[Engine is running] • Idle speed	Engine ground	P[
20	OV/D	Power steering oil	[Engine is running] • Steering wheel is fully turned	Approximately 0V	A
39	GY/R	pressure switch	[Engine is running] • Steering wheel is not turned	Approximately 5V	SI
42	BR	Sensors' power supply	[Ignition switch ON]	Approximately 5V	0
43	B/W	Sensors' ground	[Engine is running] • Idle speed	Approximately 0V	B
		Camshaft position sen-	[Engine is running] • Warm-up condition • Idle speed	0.2 - 0.5V (V) 10 5 0 10 ms	S' R
44	PU	sor (Reference signal)	[Engine is running] ● Engine speed is 2,000 rpm	0 - 0.5V (V) 10 5 0	H S

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
45	B/R	Absolute pressure sen-	[Ignition switch ON] ■ Engine is not running [Engine is running] ■ For 5 seconds after starting engine	Approximately 4.4V Approximately 1.2V	
		sor	 [Engine is running] Warm-up condition More than 5 seconds after starting engine 		
46	OR/B	Fuel level sensor	[Ignition switch ON]	Approximately 0 - 4.8V Output voltage varies with fuel level.	
		Crankshaft position	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V (V) 10 5 0.2 ms	
47	L	sensor (OBD)	[Engine is running] ● Engine speed is 2,000 rpm	Approximately 0V (V) 10 5 0 0.2 ms	
		Camshaft position sen-	[Engine is running] • Warm-up condition • Idle speed	Approximately 2.6V (V) 10 5 0.2ms	
49	LG	sor (Position signal)	[Engine is running] ● Engine speed is 2,000 rpm	Approximately 2.5 - 2.6V (V) 10 5 0.2ms	
50	В	Heated oxygen sensor 1 (front)	 [Engine is running] After warning up to normal operating temperature and engine speed is 2,000 rpm. 	0 - Approximately 1.0V	

KA24DE

ECM Terminals and Reference Value (Cont'd)

					_
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	_
F.4	Б	Mass air flow sensor	[Engine is running] • Warm-up condition • Idle speed	0.9 - 1.8V	_
54	R	Mass all flow sensor	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm	1.8 - 2.3V	_
55	G	Mass air flow sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	_
56	OR	Heated oxygen sensor 2 (rear)	[Engine is running] • After warming up to normal operating temperature and revving engine from idle to 3,000 rpm quickly	0 - Approximately 1.0V	
59	LG/R	Engine coolant tem- perature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with engine coolant temperature	_
60	Y/B	Fuel tank temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with fuel temperature	_
61	PU/R	Intake air temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with intake air temperature	_
62	Υ	EVAP control system pressure sensor	[Ignition switch ON]	Approximately 3.4V	_
62	G/OR	EGR temperature sen-	[Engine is running] • Warm-up condition • Idle speed	Less than 4.5V	_
63	G/OR	sor	[Engine is running]Warm-up conditionEGR system is operating	0 - 1.5V	_
64	w	Knock sensor	[Engine is running] • Idle speed	Approximately 2.4V	_
66	В	Fuel level sensor ground	[Engine is running] • Idle speed	Approximately 0V	_
67	B/P	Dower ountly for EOM	Florition quitab ONI	BATTERY VOLTAGE	_
72	B/P	Power supply for ECM	[Ignition switch ON]	(11 - 14V)	_
69	LG/R	Data link connector	[Ignition switch ON] • CONSULT-II or GST is disconnected.	Approximately 2V	
80	SB	Power supply (Back-up)	[Ignition switch OFF]	BATTERY VOLTAGE (11 - 14V)	-

 $\mathbb{H}\mathbb{A}$

SC

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running] • Warm-up condition • Idle speed	10.5 - 11.5V (V) 10 5 0 2 ms
101	OR/L	IACV-AAC valve	[Engine is running] • Warm-up condition • Engine speed is 2,000 rpm	1 - 13V (V) 10 5 0 2 ms
102	W/B	Injector No. 1	[Engine is running]	BATTERY VOLTAGE (11 - 14V)
104	W/R	Injector No. 3	Warm-up condition Idle speed	20 0 20ms
109	W/L	Injector No. 2	[Engine is running]	BATTERY VOLTAGE (11 - 14V)
111	W/PU	Injector No. 4	Warm-up condition Engine speed is 2,000 rpm	20 0 20ms
103 G/A	CAM	ECPC colonaid valve	[Engine is running] • Warm-up condition • Idle speed	0 - 1V
	G/VV	EGRC-solenoid valve	 [Engine is running] Warm-up condition Revving engine from idle to 3,000 rpm quickly 	BATTERY VOLTAGE (11 - 14V)
108	R/G	EVAP canister vent control valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)
116	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground
117	B/P	Current return	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)

KA24DE

ECM Terminals and Reference Value (Cont'd)

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running] • Engine speed is below 3,000 rpm. (All models)	Approximately 0.4V
119	BR/Y	Heated oxygen sensor heater 1 (front)	 [Engine is running] Engine speed is above 3,000 rpm. (2WD models) More than 6 seconds after engine speed exceeds 3,000 rpm (4WD models) 	BATTERY VOLTAGE (11 - 14V)
120	P/B	Vacuum cut valve bypass valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)
122	R/B	Heated oxygen sensor	[Engine is running] ■ Idle speed after driving 2 minutes at 70 km/h (43 MPH) or more	Approximately 0.4V
		heater 2 (rear)	[Ignition switch ON] ● Engine is not running	BATTERY VOLTAGE (11 - 14V)
124	B/R	ECM ground	[Engine is running] ● Idle speed	Engine ground

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF PD

AX

SU

BR

ST

RS

BT

HA

SC

EL

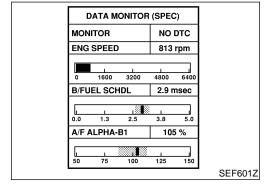
Description

The specification (SP) value indicates the tolerance of the value that is displayed in "DATA MONITOR (SPEC)" mode of CONSULT-II during normal operation of the Engine Control System. When the value in "DATA MONITOR (SPEC)" mode is within the SP value, the Engine Control System is confirmed OK. When the value in "DATA MONITOR (SPEC)" mode is NOT within the SP value, the Engine Control System may have one or more malfunctions.

The SP value is used to detect malfunctions that may affect the Engine Control System, but will not light the MII

The SP value will be displayed for the following three items:

- B/FUEL SCHDL (The fuel injection pulse width programmed into ECM prior to any learned on board correction)
- A/F ALPHA-B1/B2 (The mean value of air-fuel ratio feedback correction factor per cycle)
- MAS A/F SE-B1 (The signal voltage of the mass air flow sensor)


Testing Condition

NGEC:1004

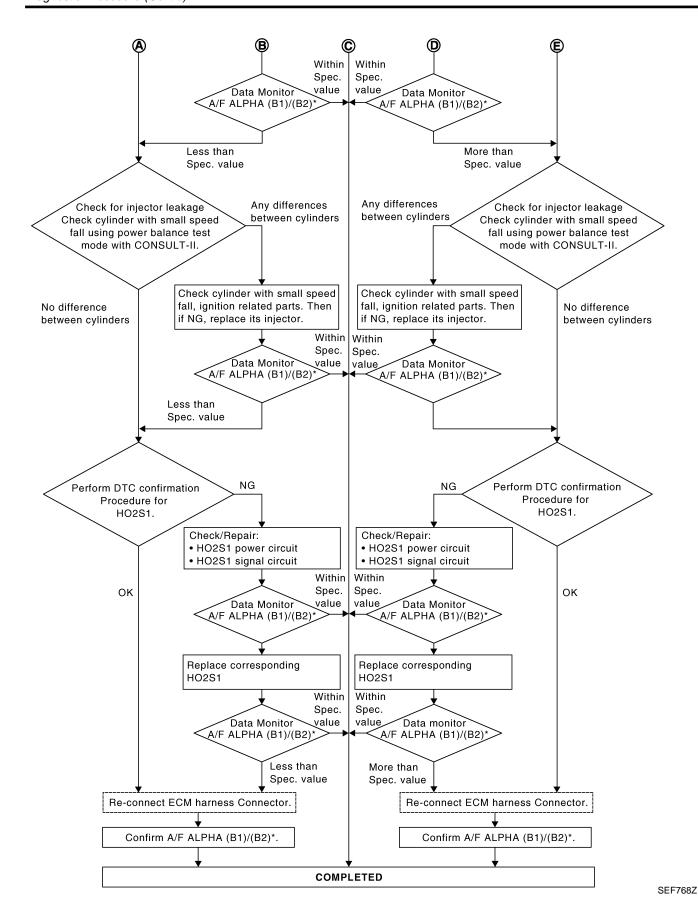
- Vehicle driven distance: More than 5,000 km (3,100 miles)
- Barometric pressure: 101.3 kPa (760.0 mmHg, 29.92 inHg)±3 kPa (22.5 mmHg, 0.89 inHg)
- Atmospheric temperature: 20 30°C (68 86°F)
- Engine coolant temperature: 75 95°C (167 203°F)
- Transmission: Warmed-up*1Electrical load: Not applied*2
- Engine speed: Idle

*1: For A/T or CVT models, after the engine is warmed up to normal operating temperature, drive vehicle until "FLUID TEMP SE" (A/T or CVT fluid temperature sensor signal) indicates less than 0.9V. For M/T models, drive vehicle for 5 minutes after the engine is warmed up to normal operating temperature.

*2: Rear window defogger switch, air conditioner switch, lighting switch are "OFF". Cooling fans are not operating. Steering wheel is straight ahead.

Inspection Procedure

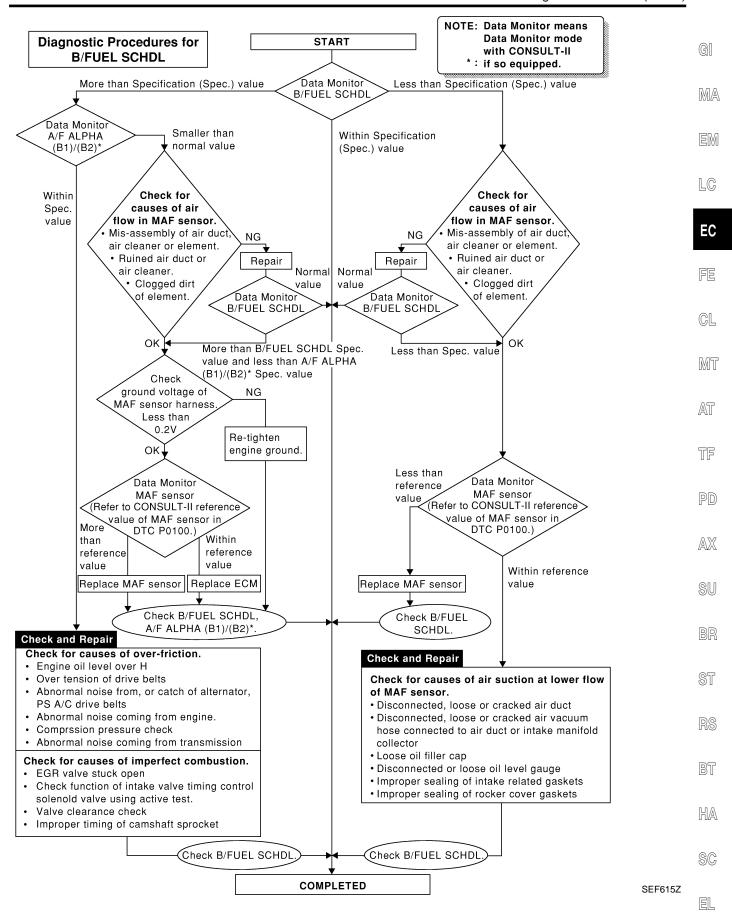

NGEC1005


NOTE:

Perform "DATA MONITOR (SPEC)" mode in maximum scale display.

- 1. Perform "Basic Inspection", EC-104.
- 2. Confirm that the testing conditions indicated above are met.
- Select "B/FUEL SCHDL", "A/F ALPHA-B1", "A/F ALPHA-B2" and "MAS A/F SE-B1" in "DATA MONITOR (SPEC)" mode with CONSULT-II.
- 4. Make sure that monitor items are within the SP value.
- 5. If NG, go to "Diagnostic Procedure", EC-139.

TROUBLE DIAGNOSIS — SPECIFICATION VALUE



TROUBLE DIAGNOSIS — SPECIFICATION VALUE

KA24DE

Diagnostic Procedure (Cont'd)

Description

IGEC0045

Intermittent incidents (I/I) may occur. In many cases, the problem resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on DTC (1st trip) visits. Realize also that the most frequent cause of I/I occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific problem area.

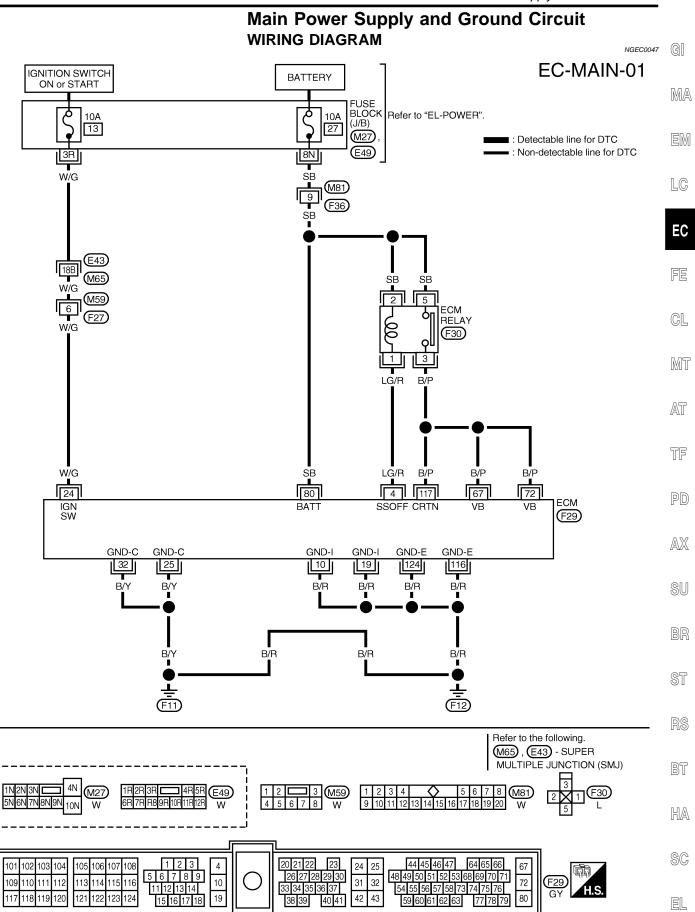
COMMON I/I REPORT SITUATIONS

NGEC0045S01

STEP in Work Flow	Situation
II	The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other than "0" or "1t".
III	The symptom described by the customer does not recur.
IV	(1st trip) DTC data does not appear during the DTC CONFIRMATION PROCEDURE.
VI	The TROUBLE DIAGNOSIS for PXXXX does not indicate the problem area.

Diagnostic Procedure

NGEC004


1	INSPECTION START		
Erase	Erase (1st trip) DTCs. Refer to "HOW TO ERASE EMISSION-RELATED INFORMATION", EC-79.		
	>	GO TO 2.	

2	CHECK GROUND TERMINALS				
Check	Check ground terminals for corroding or loose connection. Refer to "Circuit Inspection", "GROUND INSPECTION", GI-28.				
		OK or NG			
OK	OK ▶ GO TO 3.				
NG	>	Repair or replace.			

3	SEARCH FOR ELECTRICAL INCIDENT				
Perfor	Perform "Incident Simulation Tests", <i>GI-23</i> .				
	OK or NG				
ОК	OK ▶ GO TO 4.				
NG	>	Repair or replace.			

4	CHECK CONNECTOR TERMINALS					
Refer to "How to Check Enlarged Contact Spring of Terminal", GI-20.						
OK or NG						
ОК	>	INSPECTION END				
NG	>	Repair or replace connector.				

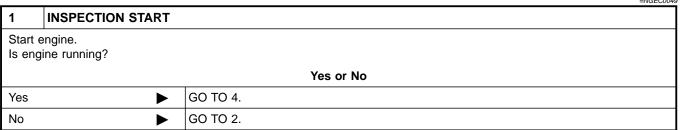
Main Power Supply and Ground Circuit

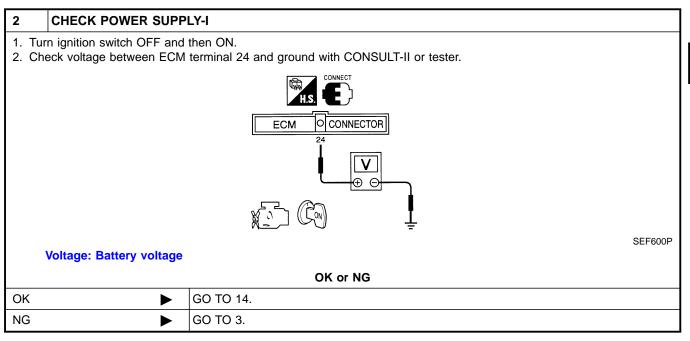
TROUBLE DIAGNOSIS FOR POWER SUPPLY

KA24DE

Main Power Supply and Ground Circuit (Cont'd)

ECM TERMINALS AND REFERENCE VALUE


Specification data are reference values and are measured between each terminal and 32 (ECM ground).


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
4	LG/R	ECM relay (Self shut-off)	[Engine is running] [Ignition switch OFF] ● For a few seconds after turning ignition switch OFF	0 - 1V
			[Ignition switch OFF] ■ A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
10	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground
19	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground
	W/G	Ignition switch	[Ignition switch OFF]	OV
24			[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)
25	B/Y	ECM ground	[Engine is running] • Idle speed	Engine ground
32	B/Y	ECM ground	[Engine is running] • Idle speed	Engine ground (Probe this terminal with (–) tester probe when measuring)
67	B/P	D	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)
72	B/P	Power supply for ECM		
80	SB	Power supply (Back-up)	[Ignition switch OFF]	BATTERY VOLTAGE (11 - 14V)
116	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground
117	B/P	Current return	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)
124	B/R	ECM ground	[Engine is running] ● Idle speed	Engine ground

Main Power Supply and Ground Circuit (Cont'd)

DIAGNOSTIC PROCEDURE

3 **DETECT MALFUNCTIONING PART**

Check the following.

- Harness connectors M65, E43
- Harness connectors M59, F27
- 10A fuse
- Harness for open or short between ECM and ignition switch
 - Repair harness or connectors.

GI

MA

EM

EC

FE

GL

MT

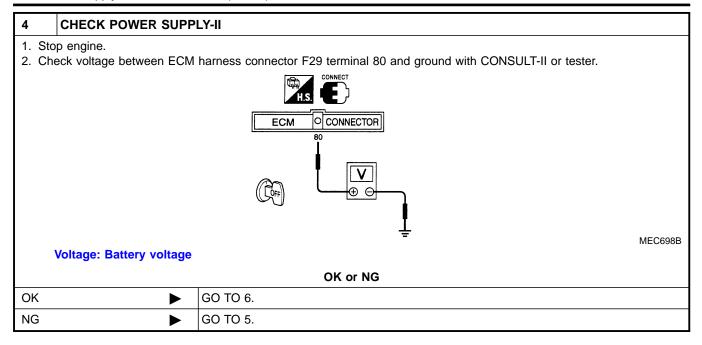
AT

TF

PD

SU

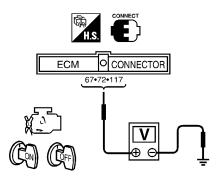
ST


BT

HA

SC

KA24DE


Main Power Supply and Ground Circuit (Cont'd)

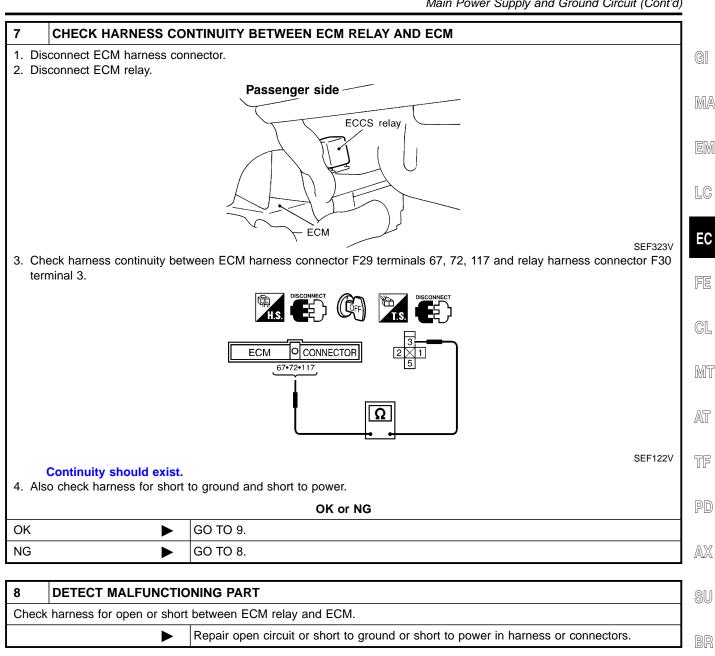
5	DETECT MALFUNCTIONING PART		
	Check the following. • Harness connectors F27, M59		
10A fuse Harness for open or short between ECM and fuse			
	Repair harness or connectors.		

6 CHECK POWER SUPPLY-III

- 1. Turn ignition switch ON and then OFF.
- 2. Check voltage between ECM harness connector F29 terminals 67, 72, 117 and ground with CONSULT-II or tester.

SEF121V

Voltage:

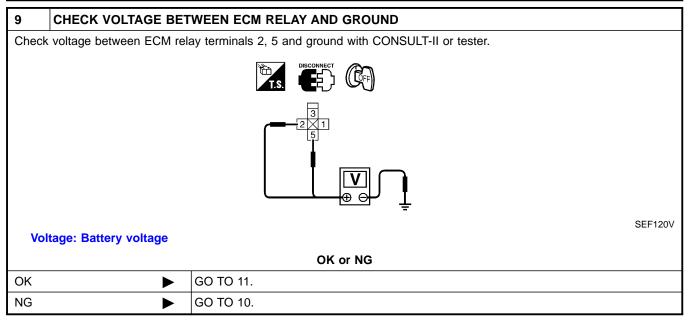

After turning ignition switch OFF, battery voltage will exist for a few seconds, then drop to approximately 0V.

OK	or	NG
----	----	----

OK		GO TO 14.
NG (Battery voltage does not exist.)	•	GO TO 7.
NG (Battery voltage exists for more than a few seconds.)	•	GO TO 13.

Main Power Supply and Ground Circuit (Cont'd)

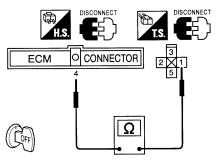
ST


BT

HA

SC

KA24DE


Main Power Supply and Ground Circuit (Cont'd)

10	DETECT MALFUNCTIO	NING PART
Har10A	t the following. Thess connectors F27, M59 Thess for open or short between	
	>	Repair harness or connectors.

11 CHECK OUTPUT SIGNAL CIRCUIT

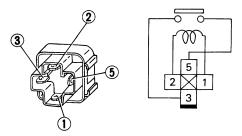
1. Check harness continuity between ECM harness connector F29 terminal 4 and relay harness connector F30 terminal 1.

SEF605P

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

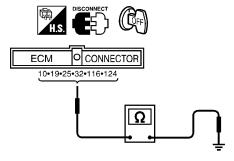

OK •	GO TO 12.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

KA24DE

Main Power Supply and Ground Circuit (Cont'd)

- 1. Apply 12V direct current between ECM relay terminals 1 and 2.
- 2. Check continuity between ECM relay terminals 3 and 5.

12V (1 - 2) applied: Continuity exists.


No voltage applied: No continuity

О	K	or	N	G
---	---	----	---	---

OK	>	GO TO 13.
NG	>	Replace ECM relay.

13 CHECK GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM harness connector F29 terminals 10, 19, 25, 32, 116, 124 and engine ground.

Continuity should exist.

4. Also check harness for short to power.

OK	~"	NC
L J N		14(3

OK	>	GO TO 14.
NG	>	Repair open circuit or short to power in harness or connectors.

14 CHECK INTERMITTENT INCIDENT

Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.

INSPECTION END

GI

MA

LC

EC

SEF511P

FE

GL

MT

AT

TF

PD

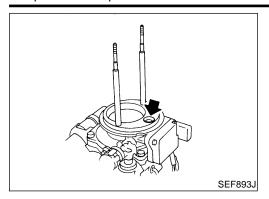
SU

SEF119V

ST

KI S

BT


HA

SC

EL

 $\mathbb{D}\mathbb{X}$

Component Description

Component Description

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot wire that is supplied with electric current from the ECM. The temperature of the hot wire is controlled by the ECM a certain amount. The heat generated by the hot wire is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the ECM must supply more electric current to maintain the temperature of the hot wire as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0051

MONITOR ITEM	CONDITION		SPECIFICATION
MAS AIR/FL SE	Engine: After warming up Air conditioner switch: OFF	Idle	0.9 - 1.8V
WAS AIIVI E SE	Shift lever: "N"No-load	2,500 rpm	1.9 - 2.3V
CAL/LD VALUE	 Engine: After warming up Air conditioner switch: OFF Shift lever: "N" No-load 	Idle	9.5 - 34.0%
CAL/LD VALUE		2,500 rpm	13.9 - 24.9%
MASS AIRFLOW	Engine: After warming up Air conditioner switch: OFF	Idle	0.9 - 5.8 g·m/s
WASS AIRFLOW	Shift lever: "N"No-load	2,500 rpm	7.5 - 13.2 g·m/s

ECM Terminals and Reference Value

NGEC0052

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
54	R	Mass air flow sensor	[Engine is running] ■ Warm-up condition ■ Idle speed	0.9 - 1.8V	
54	K	iviass all flow serisor	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm	1.9 - 2.3V	
55	G	Mass air flow sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	

On Board Diagnosis Logic

On Board Diagnosis Logic

NGEC0053

EC

GL

MT

PD

AX

ST

HA

DTC No.		Malfunction is detected when	Check Items (Possible Cause)	GI
P0100	A)	An excessively high voltage from the sensor is sent to ECM when engine is not running.	(The sensor circuit is open or shorted.)	- MA
	C)	A high voltage from the sensor is sent to ECM under light load driving condition.	Mass air flow sensor	
В)		An excessively low voltage from the sensor is sent to ECM* when engine is running.	Harness or connectors (The sensor circuit is open or shorted.)	- EM
	D)	A low voltage from the sensor is sent to ECM under heavy load driving condition.	Intake air leaks Mass air flow sensor	LC

*: When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.

DTC Confirmation Procedure

Perform "PROCEDURE FOR MALFUNCTION A" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B". If there is no problem on "PROCEDURE

FOR MALFUNCTION B", perform "PROCEDURE FOR MAL-FUNCTION C". If there is no problem on "PROCEDURE FOR MALFUNCTION C", perform "PROCEDURE FOR MALFUNC-TION D".

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted,

always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

3 DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm

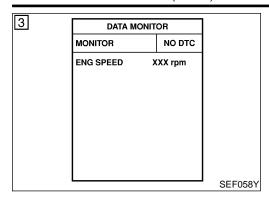
PROCEDURE FOR MALFUNCTION A

NGEC0054S01

- (P) With CONSULT-II
- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 6 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-155.

With GST

SEF058Y


Follow the procedure "With CONSULT-II".

EL

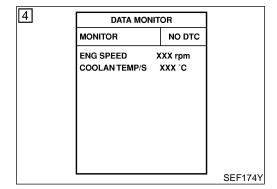
KA24DE

NGEC0054S02

DTC Confirmation Procedure (Cont'd)

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II


- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait 5 seconds at most.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-155.

With GST

Follow the procedure "With CONSULT-II".

NOTE:

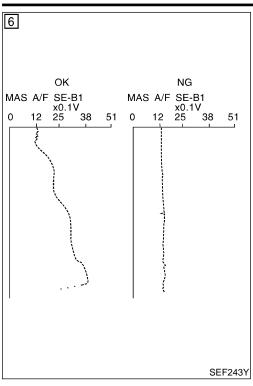
If 1st trip DTC is confirmed after more than 5 seconds, there may be malfunction C.

PROCEDURE FOR MALFUNCTION C

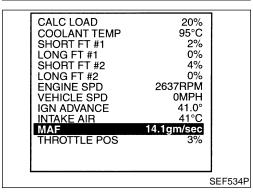
NGEC0054S03

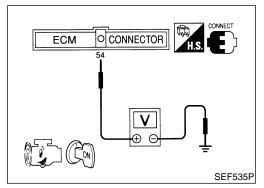
NOTE:

If engine will not start or stops soon wait at least 10 seconds with engine stopped (Ignition switch "ON") instead of running engine at idle speed.


(P) With CONSULT-II

- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and warm it up to normal operating temperature.
- 4) Run engine for at least 10 seconds at idle speed.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-155.


With GST


Follow the procedure "With CONSULT-II".

DTC Confirmation Procedure (Cont'd)

7	DATA MON	DATA MONITOR		
	MONITOR		NO DTC	
	ENG SPEED	Х	XX rpm	
	VHCL SPEED SE			
	THRTL POS SEN		XXX V	
				SEF175Y

PROCEDURE FOR MALFUNCTION D

(P) With CONSULT-II

Turn ignition switch ON.

Start engine and warm it up to normal operating temperature. If engine cannot be started, go to "Diagnostic Procedure", EC-155.

Select "DATA MONITOR" mode with CONSULT-II.

- Check the voltage of "MAS A/F SE-B1" with "DATA MONITOR".
- Increases engine speed to about 4,000 rpm.
- Monitor the linear voltage rise in response to engine speed increases.

If NG, go to "Diagnostic Procedure", EC-155. If OK, go to following step.

Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	More than 2,000 rpm
THRTL POS SEN	More than 3V
Selector lever	Suitable position
	·
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-155.

Overall Function Check

Use this procedure to check the overall function of the mass air flow sensor circuit. During this check, a 1st trip DTC might not be confirmed.

PROCEDURE FOR MALFUNCTION D

■ With GST

- 1) Turn ignition switch ON.
- Start engine and warm it up to normal operating temperature.
- 3) Select "MODE 1" with GST.
- 4) Check the mass air flow sensor signal with "MODE 1".
- Check for linear mass air flow rise in response to increases to about 4,000 rpm in engine speed.
- If NG, go to "Diagnostic Procedure", EC-155. 6)

No Tools

- Turn ignition switch ON.
- Start engine and warm it up to normal operating temperature.
- Check the voltage between ECM terminal 54 (Mass air flow sensor signal) and ground.
- Check for linear voltage rise in response to increases to about 4,000 rpm in engine speed.
- If NG, go to "Diagnostic Procedure", EC-155.

NGEC0054S04

GI

LC

EC

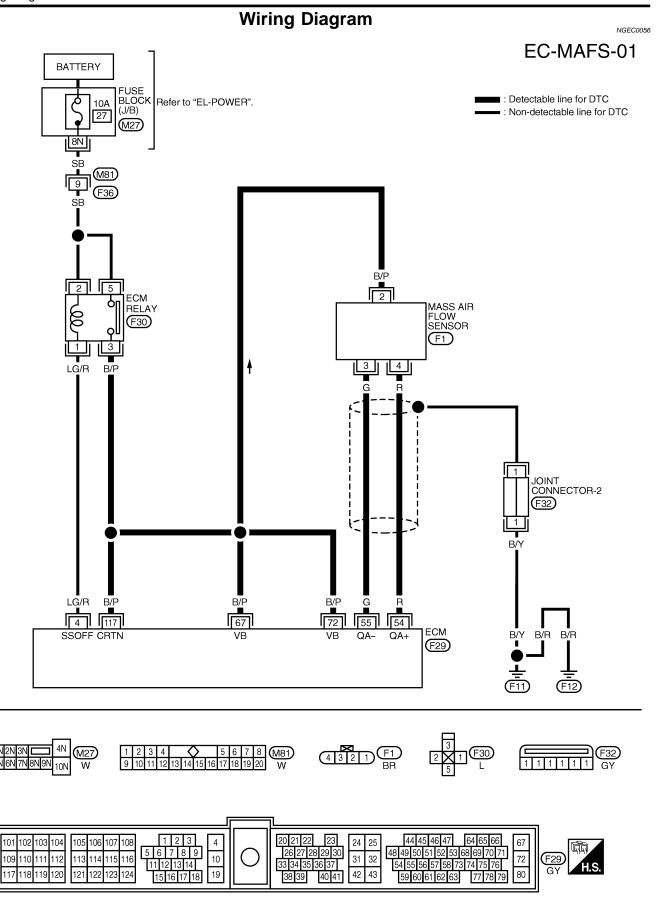
FE

GL

MT

TF

PD


AX

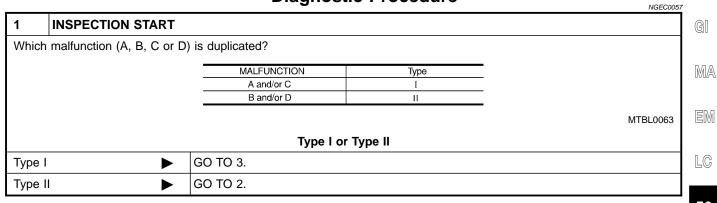
NGEC0055S01

HA

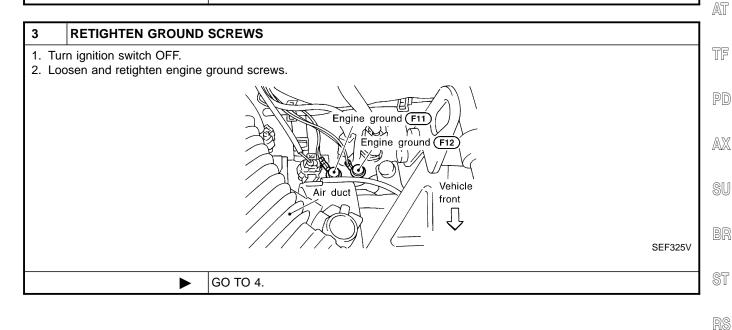
SC

AEC981A

GI


EC

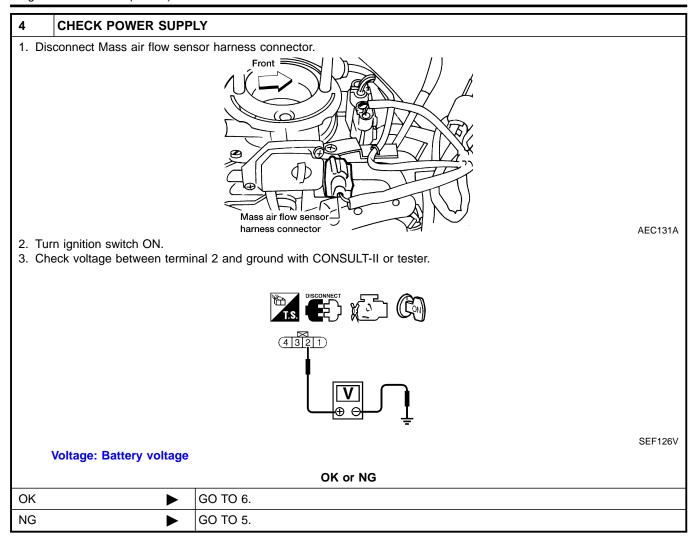
FE


GL

MT

Diagnostic Procedure

2	CHECK INTAKE SYSTEM		
Air oVac	Check the followings for connection. Air duct Air cleaner Vacuum hoses Intake air passage between air duct to collector		
	OK or NG		
OK	•	GO TO 3.	
NG		Reconnect the parts.	


BT

HA

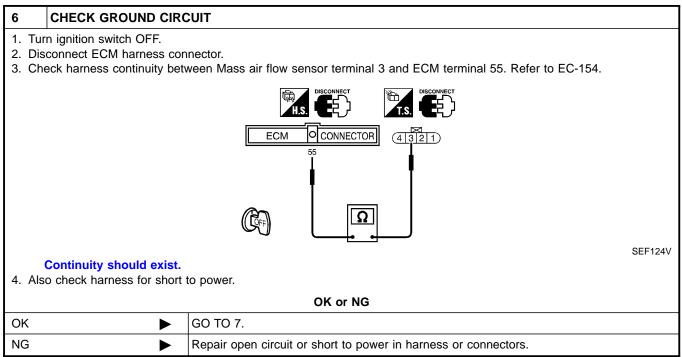
SC

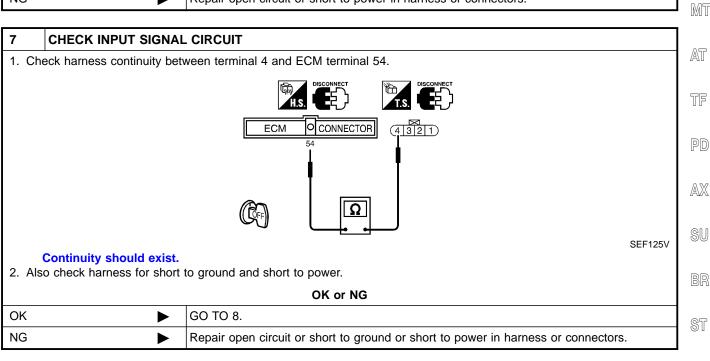
EL

Diagnostic Procedure (Cont'd)

5	DETECT MALFUNCTIONING PART	
Har	Check the following. • Harness for open or short between ECM relay and mass air flow sensor • Harness for open or short between Mass air flow sensor and ECM	
	•	Repair harness or connectors.

KA24DE


GI


MA

EC

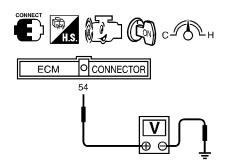
GL

Diagnostic Procedure (Cont'd)

DW

BT

HA


SC

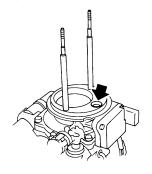
CHECK MASS AIR FLOW SENSOR

1. Turn ignition switch ON.

8

- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 54 (Mass air flow sensor signal) and ground.

SEF326V


Conditions	Voltage V
Ignition switch "ON" (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up to normal operating temperature.)	0.9 - 1.8
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.9 - 2.3
Idle to about 4,000 rpm*	1.3 - 1.7 to Approx. 3.0

^{*:} Check for linear voltage rise in response to increases to about 4,000 rpm in engine speed.

MTBL0326

4. If the voltage is out of specification, disconnect Mass air flow sensor harness connector and connect it again. Repeat above check.

5. If NG, remove Mass air flow sensor from air duct. Check hot wire for damage or dust.

SEF893J

OK or NG

OK •	GO TO 9.
NG ▶	Replace mass air flow sensor.

CHECK SHIELD CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect joint connector-2.
- 3. Check the following.
- Continuity between joint connector-1 terminal 1 and ground
- Joint connector-2

(Refer to "HARNESS LAYOUT", EL-254.)

Continuity should exist.

4. Also check harness for short to power.

OK	or	NG
----	----	----

OK •	GO TO 10.
NG ►	Repair open circuit or short to power in harness or connectors.

KA24DE

Diagnostic Procedure (Cont'd)

10	10 CHECK INTERMITTENT INCIDENT	
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	► INSPECTION END	

G[

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

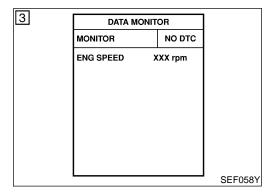
RS

BT

HA

SC

EL


Component Description

The absolute pressure sensor detects ambient barometric pressure and sends the voltage signal to the ECM. As the pressure increases, the voltage rises. The absolute pressure sensor is built into ECM.

On Board Diagnosis Logic

NGEC1008

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0105	An excessively low or high voltage from the sensor is sent to the micro computer.	• ECM

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

- 1) Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 6 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-161.

 $\ensuremath{\mathfrak{P}}$ With GST Follow the procedure "With CONSULT-II" above.

DTC P0105 ABSOLUTE PRESSURE SENSOR

Diagnostic Procedure

	Diagnostic Procedure	NGEC1011	
1 INSPECTI	ON START	GI	
(P) With CONSUL	With CONSULT-II		
1. Turn ignition sv		NA)	
	DIAG RESULTS" mode with CONSULT-II.	MA	
3. Touch "ERASE	". Confirmation Procedure".		
See previous p			
•	TC P0105 displayed again?		
With GST		L©	
•	Turn ignition switch ON.		
2. Select MODE			
Touch "ERASEPerform "DTC	Confirmation Procedure".	EC	
See previous p		ļ.	
	TC P0105 displayed again?		
Yes or No			
Yes	Yes ▶ Replace ECM.		
No	INSPECTION END		

AT

MT

PD

 $\mathbb{A}\mathbb{X}$

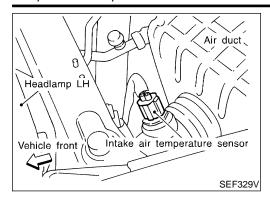
TF

SU

BR

ST

RS


BT

HA

SC

EL

Component Description

20 | Acceptable |

Component Description

The intake air temperature sensor is mounted to the air duct housing. The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.1 - 2.9
80 (176)	1.23	0.27 - 0.38

^{*:} These data are reference values and are measured between ECM terminal 61 (Intake air temperature sensor) and ground.

CALITION

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

NGEC0067

DTC No.	Malfunction is detected when		Check Items (Possible Cause)
P0110	A)	An excessively low or high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
	В)	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signal from engine coolant temperature sensor.	Intake air temperature sensor

Engine operating condition in fail-safe mode

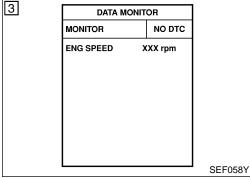
The ECM functions on the assumption that the intake air temperature is 25°C (77°F).

DTC Confirmation Procedure

DTC Confirmation Procedure

Perform "PROCEDURE FOR MALFUNCTION A" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B".

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

MA

LC

EC

FE

DATA MONITOR

COOLAN TEMP/S XXX °C

VHCL SPEED SE XXX km/h

NO DTC

MONITOR

5

SEF176Y

PROCEDURE FOR MALFUNCTION A

NGEC0068S01

(P) With CONSULT-II

1) Turn ignition switch ON.

Select "DATA MONITOR" mode with CONSULT-II.

Wait at least 5 seconds.

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-165.

GL

With GST

Follow the procedure "With CONSULT-II".

MT

AT

NGEC0068S02

PROCEDURE FOR MALFUNCTION B

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

PD

TF

(P) With CONSULT-II

Wait until engine coolant temperature is less than 90°C (194°F).

AX

Turn ignition switch ON.

Select "DATA MONITOR" mode with CONSULT-II.

Check the engine coolant temperature.

SU

If the engine coolant temperature is not less than 90°C (194°F), turn ignition switch "OFF" and cool down engine.

Perform the following steps before engine coolant temperature is above 90°C (194°F).

ST

Turn ignition switch ON.

Select "DATA MONITOR" mode with CONSULT-II.

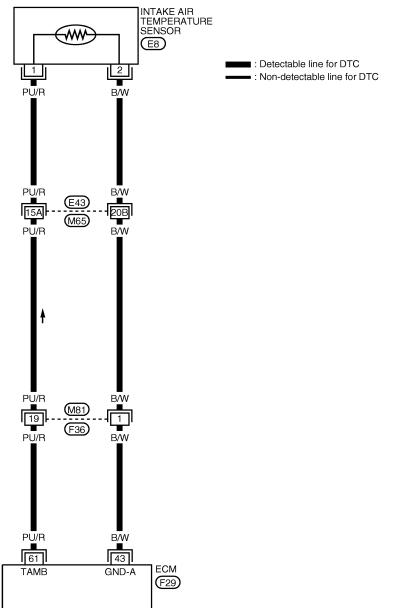
Start engine.

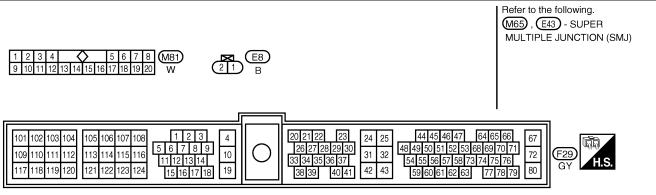
5) Hold vehicle speed more than 70 km/h (43 MPH) for 100 consecutive seconds.

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-165.

Follow the procedure "With CONSULT-II".

HA

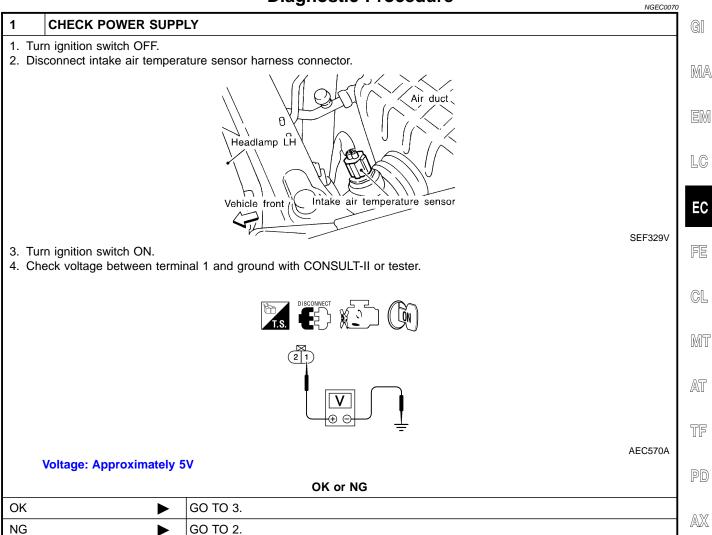

SC



Wiring Diagram

NGEC0069

EC-IATS-01



AEC983A

KA24DE

Diagnostic Procedure

2	DETECT MALFUNCTIONING PART	l			
Check	Check the following.				
• Har	Harness connectors E43, M65				
• Har	Harness connectors M58, F28				
• Har	Harness connectors M59, F27				
• Har	Harness for open or short between ECM and intake air temperature sensor				
	Repair harness or connectors.	1			

EL

SU

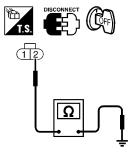
BR

ST

RS

BT

HA


SC

KA24DE

Diagnostic Procedure (Cont'd)

3 CHECK GROUND CIRCUIT

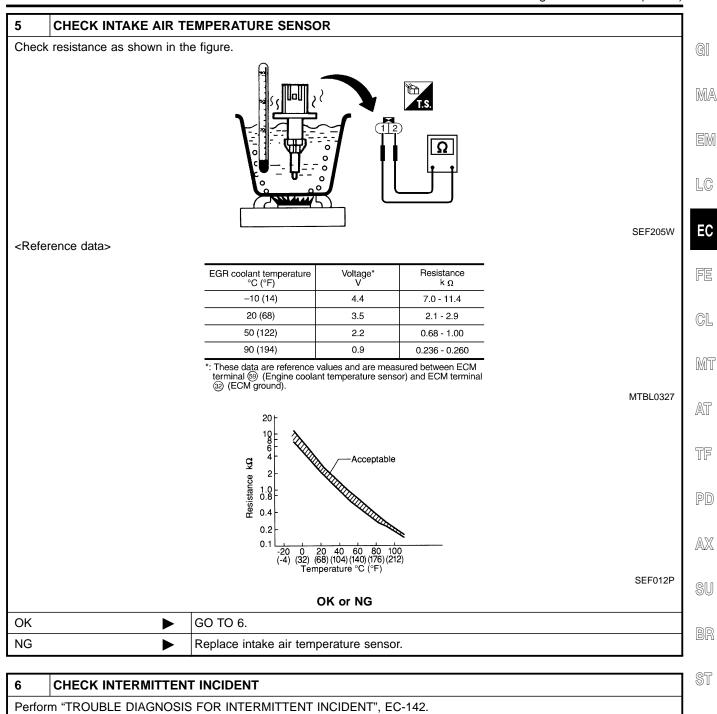
- 1. Turn ignition switch OFF.
- 2. Check harness continuity between intake air temperature sensor terminal 2 and engine ground. Refer to the wiring diagram.

SEF102S

Continuity should exist.

3. Also check harness for short to power.

OK or NG


OK	>	GO TO 5.
NG	•	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

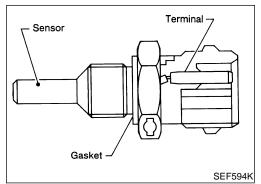
- Harness connectors E43, M65
- Harness connectors M58, F28
- Harness connectors M59, F27
- Harness for open or short between ECM and intake air temperature sensor
 - Repair open circuit or short to ground or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)

6 CHECK INTERMITTENT INCIDENT			
Perforr	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	► INSPECTION END		

BT

HA


SC

EL

DTC P0115 ENGINE COOLANT TEMPERATURE SENSOR (ECTS) (CIRCUIT)

KA24DE

Component Description

Component Description

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance $k\Omega$
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 59 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

CONSULT-II Reference Value in Data Monitor Mode

		NGEC0073
MONITOR ITEM	CONDITION	SPECIFICATION
COOLAN TEMP/S	Engine: After warming up	More than 70°C (158°F)

On Board Diagnosis Logic

NCECOOZ

		NGEC0074
DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0115	An excessively high or low voltage from the sensor is sent to ECM.*	 Harness or connectors (The sensor circuit is open or shorted.) Engine coolant temperature sensor

^{*:} When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

DTC P0115 ENGINE COOLANT TEMPERATURE SENSOR (ECTS) (CIRCUIT)

KA24DE

On Board Diagnosis Logic (Cont'd)

Detected items	Engine operating condition in fail-safe mode		
	Engine coolant temperature will be determined by ECM based on the time after turning ignition switch to ON or START. CONSULT-II displays the engine coolant temperature decided by ECM.		_
Engine coolant tempera-	Condition	Engine coolant temperature decided (CONSULT-II display)	- 10
ture sensor circuit	Just as ignition switch is turned to ON or Start	40°C (104°F)	-
	More than approx. 4 minutes after ignition ON or Start	80°C (176°F)	- _ [l
	Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)	

3	DATA M	DATA MONITOR	
	MONITOR	MONITOR NO DTC	
	ENG SPEED	XXX rpm	
			SEF058Y

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(II) With CONSULT-II

- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-171.

With GST Follow the procedure "With CONSULT-II".

EC

GL MT

AT

TF

PD

SU

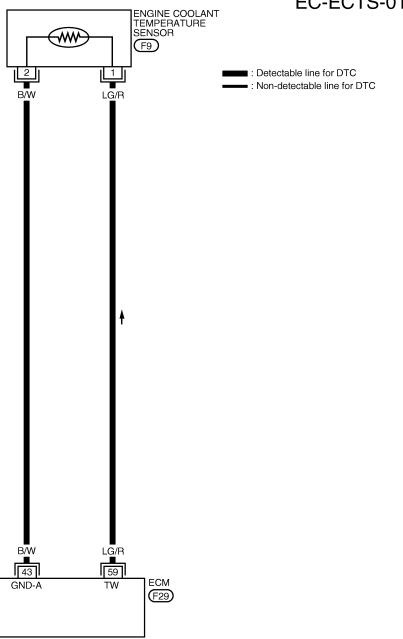
BR

ST

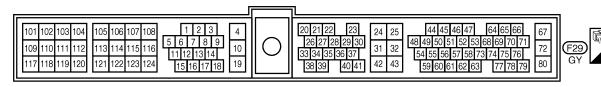
BT

HA

SC


EL

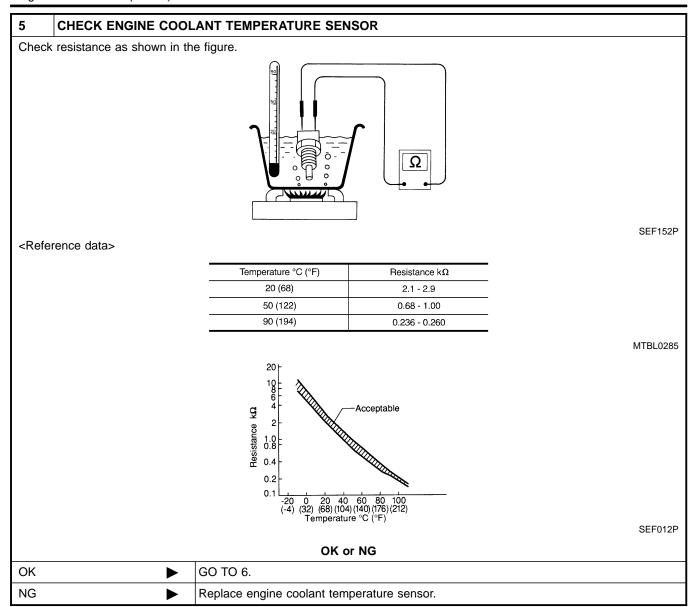
KA24DE


Wiring Diagram

NGEC0076

AEC984A

DTC P0115 ENGINE COOLANT TEMPERATURE **SENSOR (ECTS) (CIRCUIT)**


Diagnostic Procedure

Diagnostic Procedure NGEC0077 **CHECK POWER SUPPLY** GI 1. Turn ignition switch OFF. 2. Disconnect engine coolant temperature sensor harness connector. MA Engine coolant temperature sensor harness connector Vehicle front EC SEF330V 3. Turn ignition switch ON. FE 4. Check voltage between engine coolant temperature sensor terminal 1 and ground with CONSULT-II or tester. MT AT SEF206W TF Voltage: Approximately 5V OK or NG PD GO TO 3. OK NG GO TO 2. **DETECT MALFUNCTIONING PART** 2 Check the harness for open or short between ECM and engine coolant temperature sensor. Repair harness or connectors. **CHECK GROUND CIRCUIT** 3 1. Turn ignition switch OFF. 2. Check harness continuity between engine coolant temperature sensor terminal 2 and engine ground. Refer to EL-140. Continuity should exist. 3. Also check harness for short to power. OK or NG OK GO TO 5. NG GO TO 4. HA **DETECT MALFUNCTIONING PART** Check the harness for open or short between ECM and engine coolant temperature sensor. Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0115 ENGINE COOLANT TEMPERATURE SENSOR (ECTS) (CIRCUIT)

KA24DE

Diagnostic Procedure (Cont'd)

6	CHECK INTERMITTENT INCIDENT			
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.			
	INSPECTION END			

Component Description

NOTE:

If DTC P0120 (0403) is displayed with DTC P0510 (0203), first perform trouble diagnosis for DTC P0510, EC-433.

G

NGEC0079

The throttle position sensor responds to the accelerator pedal movement. This sensor is a type of potentiometer which transforms the throttle position into output voltage, and emits the voltage signal to the ECM. In addition, the sensor detects the opening and closing speed of the throttle valve and feeds the voltage signal to the ECM.

MA

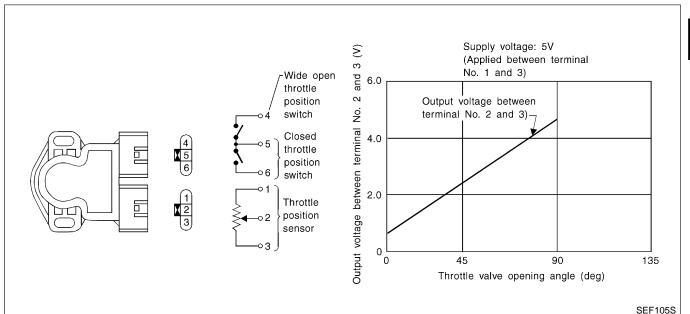
Idle position of the throttle valve is determined by the ECM receiving the signal from the throttle position sensor. This sensor controls engine operation such as fuel cut. On the other hand, the "Wide open and closed throttle position switch", which is built into the throttle position sensor unit, is not used for engine control.

LC

EC

FE

GL


MT

AT

TF

PD

AX

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0080

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL POS SEN (Engine stopped)	Ignition switch: ON (Engine stopped)	Throttle valve: fully closed	0.2 - 0.8V
	Engine stopped) Engine: After warming up	Throttle valve: fully opened	3.5 - 4.5V
ABSOL TH-P/S Ignition switch: ON (Engine stopped) Engine: After warming up	Throttle valve: fully closed	0.0%	
	\ 0 11 /	Throttle valve: fully opened	Approx. 80%

ST

KS

BT

HA

SC

EL

KA24DE

ECM Terminals and Reference Value

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

=NGEC0081

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
23	L	Throttle position sensor	[Ignition switch ON] • Warm-up condition • Accelerator pedal fully released	0.2 - 0.8V
			[Ignition switch ON] • Accelerator pedal fully depressed	3.5 - 4.5V
42	BR	Sensors' power supply	[Ignition switch ON]	Approximately 5V
43	B/W	Sensors' ground	[Engine is running] • Idle speed	Approximately 0V

On Board Diagnosis Logic

NGEC0082

DTC No.		Malfunction is detected when	Check Items (Possible Cause)	
P0120	A)	An excessively low or high voltage from the sensor is sent to ECM.*	Harness or connectors (The throttle position sensor circuit is open or shorted.) Throttle position sensor	
	В)	A high voltage from the sensor is sent to ECM under light load driving condition.	 Harness or connectors (The throttle position sensor circuit is open or shorted.) Throttle position sensor Fuel injector Camshaft position sensor Mass air flow sensor 	
	C)	A low voltage from the sensor is sent to ECM under heavy load driving condition.	 Harness or connectors (The throttle position sensor circuit is open or shorted.) Intake air leaks Throttle position sensor 	

^{*:} When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating cond	dition in fail-safe mode
	Throttle position will be determined based on the in Therefore, acceleration will be poor.	jected fuel amount and the engine speed.
Throttle position sensor circuit	Condition	Driving condition
Circuit	When engine is idling	Normal
	When accelerating	Poor acceleration

KA24DE

DTC Confirmation Procedure

DTC Confirmation Procedure

Perform "PROCEDURE FOR MALFUNCTION A" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B". If there is no problem on "PROCEDURE FOR MALFUNCTION B", perform "PROCEDURE FOR MALFUNCTION C".

MA

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A

LC NGEC0083S01

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

FE

EC

battery voltage is more than 10V at idle.
 This test may be conducted with the drive wheels lifted in

Before performing the following procedure, confirm that

• This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

MT

DATA MONITOR MONITOR NO DTC ENG SPEED XXXX rpm VHCL SPEED SE XXXX km/h P/N POSI SW OFF

(II) With CONSULT-II

) Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.

2) Start engine and maintain the following conditions for at least 5 consecutive seconds.

TF

VHCL SPEED SE	More than 4 km/h (2 MPH)
	Suitable position except "P" or "N" position

PD

 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-179.

AX

With GST

Follow the procedure "With CONSULT-II".

No Tools

1) Start engine and maintain the following conditions for at least 5 consecutive seconds.

ST

Vehicle speed	More than 4 km/h (2 MPH)
	Suitable position except "P" or "N" position

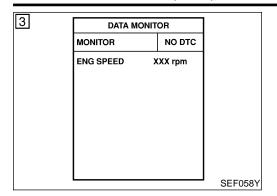
- Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON and perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.

BT

4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-179.

HA

SC


EL

 \mathbb{N}

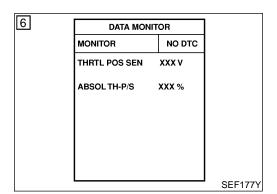
KA24DE

NGEC0083S02

DTC Confirmation Procedure (Cont'd)

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II


- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and let it idle for at least 10 seconds.
 If idle speed is over 1,100 rpm, maintain the following conditions for at least 10 seconds to keep engine speed below 1,100 rpm.

Selector lever	Suitable position except "N" (Higher gear position such as 3rd or 4th is better to keep low engine rpm.)
Accelerator pedal	Released
Vehicle speed	As slow as possible

 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-179.

With GST

Follow the procedure "With CONSULT-II".

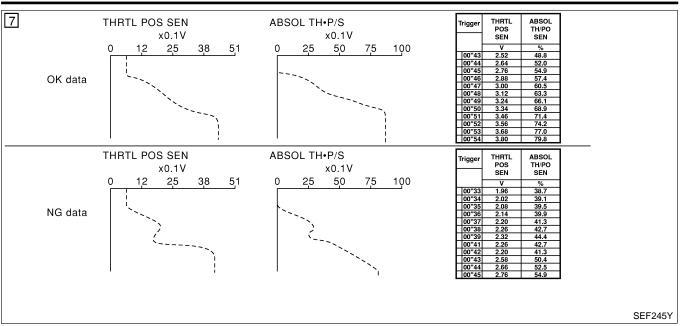
PROCEDURE FOR MALFUNCTION C

NGEC0083S03

CAUTION:

Always drive vehicle at a safe speed.

(P) With CONSULT-II


- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON.
- Select "MANU TRIG" in "DATA MONITOR" mode with CON-SULT-II.
- 5) Select "THRTL POS SEN" and "ABSOL TH-P/S" in "DATA MONITOR" mode with CONSULT-II.
- 6) Press RECORD on CONSULT-II SCREEN at the same time accelerator pedal is depressed.
- 7) Print out the recorded graph and check the following:
- The voltage rise is linear in response to accelerator pedal depression.
- The voltage when accelerator pedal is fully depressed is approximately 4V.

If NG, go to "Diagnostic Procedure", EC-179.

If OK, go to following step.

KA24DE

DTC Confirmation Procedure (Cont'd)

۵			7
	DATA MON	IIIOR	_
	MONITOR	NO DTC	
	ENG SPEED	XXX rpm	
	MAS A/F SE-B1	XXX V	1
	COOLAN TEMP/S	XXX °C	1
			1
			1
			1
			1
			1
			1
			J SEF178Y

- Select "AUTO TRIG" in "DATA MONITOR" mode with CON-SULT-II.
- 9) Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	More than 2,000 rpm
MAS A/F SE-B1	More than 3V
COOLAN TEMP/S	More than 70°C (158°F)
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

10) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-179.

With GST

Follow the procedure "With CONSULT-II".

G[

MA

EM

LC

EC

FE

SY GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

BR

SU

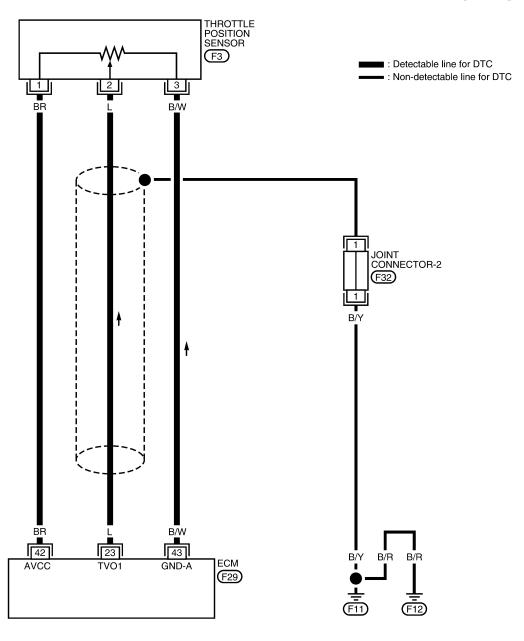
ST

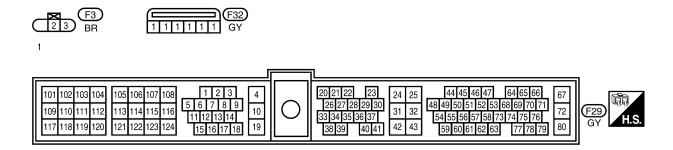
RS

BT

HA

SC


EL



Wiring Diagram

NGEC0084

EC-TPS-01

LEC474

GI

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

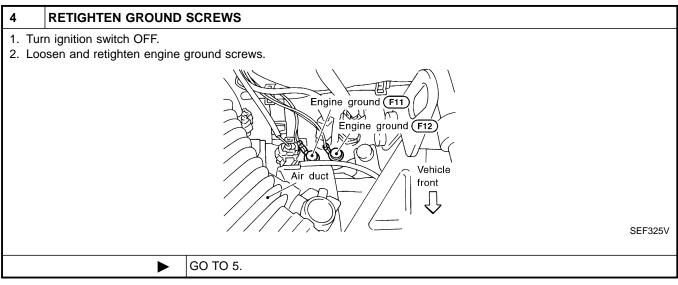
RS

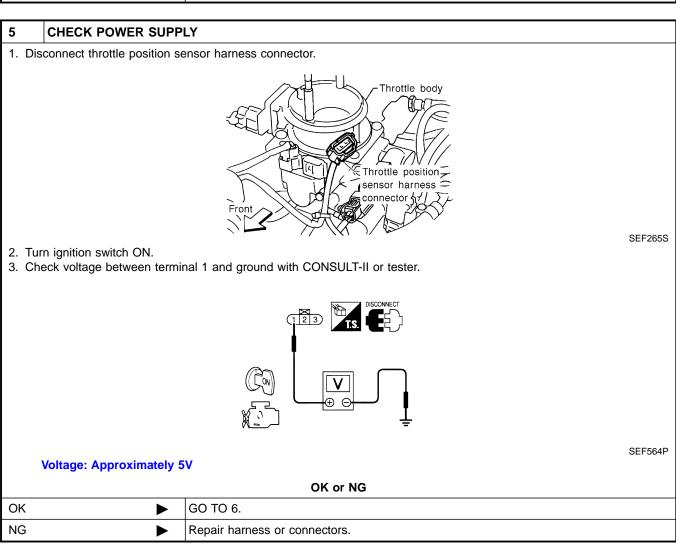
BT

HA

SC

EL


Diagnostic Procedure


NGEC0085 **INSPECTION START** Which malfunction A, B or C is duplicated? MALFUNCTION Туре Α В В С С MTBL0066 Type A, B or C GO TO 4. Type A or B GO TO 2. Type C

2	ADJUST THROTTLE PO	OSITION SENSOR			
1. Ch	eck the following items. Re	fer to "Basic Inspection",	EC-104.		
		Items	Specifications	-	
		Ignition timing	20° ± 2° BTDC	-	
		Base idle speed	750 ± 50 rpm (in "P" or "N" position)	-	
		Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.1 mm (0.004 in): ON 0.3 mm (0.012 in): OFF	-	
		Target idle speed	800 ± 50 rpm (in "P" or "N" position)	-	
				MTE	3L0328
		0	K or NG		
OK	>	GO TO 3.			

3	CHECK INTAKE SYSTI	EM	
Check the following for connection. Air duct Air cleaner Vacuum hoses Intake air passage between air duct to intake manifold collector			
OK or NG			
OK	>	GO TO 4.	
NG	>	Reconnect the parts.	

Diagnostic Procedure (Cont'd)

GI

MA

EC

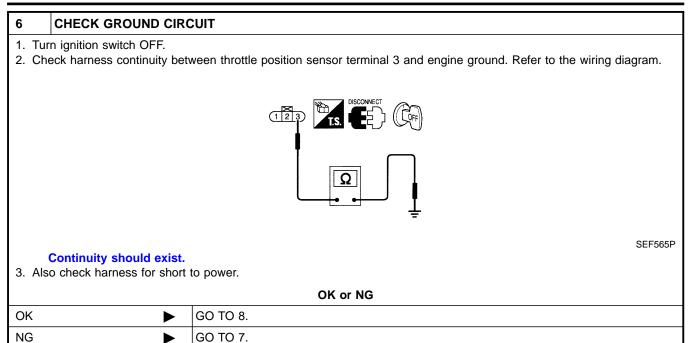
FE

MT

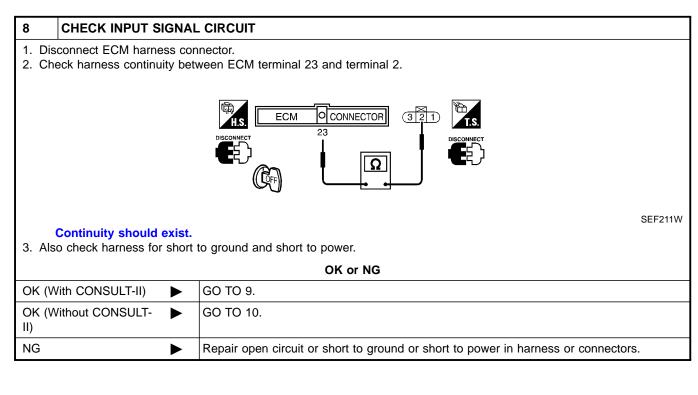
AT

TF

PD


SU

ST


HA

SC

Diagnostic Procedure (Cont'd)

7	7 DETECT MALFUNCTIONING PART		
Check	Check harness for open or short between ECM and throttle position sensor.		
	Repair open circuit or short to ground or short to power in harness or connectors.		

KA24DE

Diagnostic Procedure (Cont'd)

9 CHECK THROTTLE POSITION SENSOR

(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine and turn ignition switch ON.
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- 4. Check voltage of "THRTL POS SEN" under the following conditions.

DATA MONITOR				
MONITOR	MONITOR NO DTO			
ENG SPEED	NG SPEED XXX rpm			
COOLAN TEMP/S	XXX °	С		
THRTL POS SEN	RTL POS SEN XXX V			

SEF179Y

NOTE:

Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	Voltage V	
Completely closed	0.2 - 0.8 (a)	
Partially open	Between (a) and (b)	
Completely open	3.5 - 4.5 (b)	

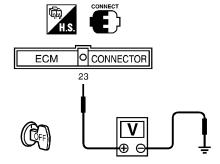
MTBL0579

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-104.

OK or NG

OK (Type B in step 1)		GO TO 11.
OK (Type A or C in step		GO TO 14.
1)		
NG	•	Replace throttle position sensor. To adjust it, perform "Basic Inspection", EC-104.

KA24DE


Diagnostic Procedure (Cont'd)

CHECK THROTTLE POSITION SENSOR

Without CONSULT-II

10

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine and turn ignition switch ON.
- 3. Check voltage between ECM terminal 23 (Throttle position sensor signal) and ground under the following conditions.

NOTE:

Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	Voltage V	
Completely closed	0.2 - 0.8 (a)	
Partially open	Between (a) and (b)	
Completely open	3.5 - 4.5 (b)	

MTBL0579

SEF767W

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-104.

OK or NG

OK (Type B in step 1)	>	GO TO 11.
OK (Type A or C in step 1)	•	GO TO 14.
NG	>	Replace throttle position sensor. To adjust it, perform "Basic Inspection", EC-104.

G[

MA

EM

1 @

EC

GL

MT

A1

TF

PD

AX

SU

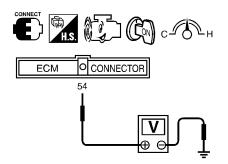
BR

ST

RS

BT

HA


SC

EL

Diagnostic Procedure (Cont'd)

11 **CHECK MASS AIR FLOW SENSOR**

- 1. Turn ignition switch ON.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 54 (Mass air flow sensor signal) and ground.



SEF326V

Conditions	Voltage V	
Ignition switch "ON" (Engine stopped.)	Less than 1.0	
Idle (Engine is warmed-up to normal operating temperature.)	0.9 - 1.8	
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.9 - 2.3	
Idle to about 4,000 rpm*	1.3 - 1.7 to Approx. 3.0	

^{*:} Check for linear voltage rise in response to increases to about 4,000 rpm in engine speed.

- 4. If the voltage is out of specification, disconnect mass air flow sensor harness connector and connect it again. Repeat above check.
- 5. If NG, remove mass air flow sensor from air duct. Check hot wire for damage or dust.

SEF893J

OK or NG

OK •	GO TO 12.
NG ▶	Replace mass air flow sensor.

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

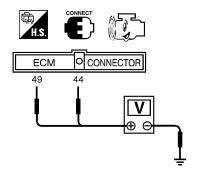
AX

SU

BR

ST

BT


HA

SC

Diagnostic Procedure (Cont'd)

12 CHECK CAMSHAFT POSITION SENSOR

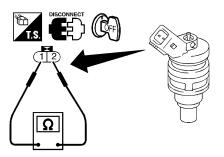
- 1. Start engine and warm it up to normal operating temperature.
- 2. Check voltage between ECM terminals 49 and engine ground, ECM terminal 44 and engine ground.

Terminal 44 and engine ground

Condition	Idle	2,000 rpm
Voltage	0.2 - 0.5V	0 - 0.5V
Pulse signal	(V) 10 5 0	(V) 10 5 0

Terminal 49 and engine ground

Condition	Idle	2,000 rpm
Voltage	Approximately 2.6V	Approximately 2.5 - 2.6V
Pulse signal	(V) 10 5 0	(V) 10 5 0 0.2 ms


SEF868Z

OK or NG

OK ▶	GO TO 13.
NG ▶	Replace distributor assembly with camshaft position sensor.

13 CHECK FUEL INJECTOR

- 1. Disconnect injector harness connector.
- 2. Check resistance between terminals as shown in the figure.

SEF273W

Resistance: 10 - 14 Ω [at 25°C (77°F)]

OK	or	Ν	G
----	----	---	---

OK	>	GO TO 14.
NG •	>	Replace fuel injector.

 $\mathbb{D}\mathbb{X}$

KA24DE

Diagnostic Procedure (Cont'd)

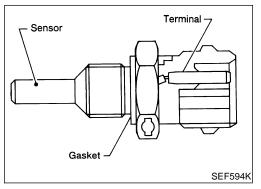
14	4 CHECK SHIELD CIRCUIT			
1. Tur	n ignition switch OFF.			
2. Rei	move joint connector-1.			
3. Ch	eck the following.			
Con	ntinuity between joint conne	ctor-1 terminal 1 and ground		
Join	nt connector-1			
(Re	(Refer to "HARNESS LAYOUT", <i>EL-245</i> .)			
	Continuity should exist.			
	o check harness for short t	·		
5. The	5. Then reconnect joint connector.			
	OK or NG			
OK	OK 🕨 GO TO 15.			
NG	NG Repair open circuit or short to power in harness or connectors.			

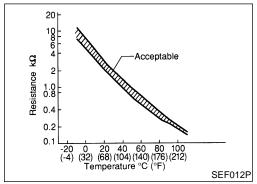
15	CHECK INTERMITTENT INCIDENT		
Perfor	orm "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	► INSPECTION END		

DTC P0125 ENGINE COOLANT TEMPERATURE (ECT) SENSOR

NGEC0087

LC


EC


MT

TF

PD

Component Description

Component Description

If DTC P0125 (0908) is displayed with P0115 (0103), first perform trouble diagnosis for DTC P0115, EC-168.

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance $k\Omega$
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 59 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

	On Board Diagnosis Logic				
DTC No.	Malfunction is detected when	Check Items (Possible Cause)			
P0125	Voltage sent to ECM from the sensor is not practical, even when some time has passed after starting the engine.	 Harness or connectors (High resistance in the circuit) Engine coolant temperature sensor 		BR	
	Engine coolant temperature is insufficient for closed loop fuel control.	Thermostat		ST	

3 DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm COOLAN TEMP/S XXX °C SEF174Y

DTC Confirmation Procedure

NGEC0090

CAUTION:

Be careful not to overheat engine.

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.

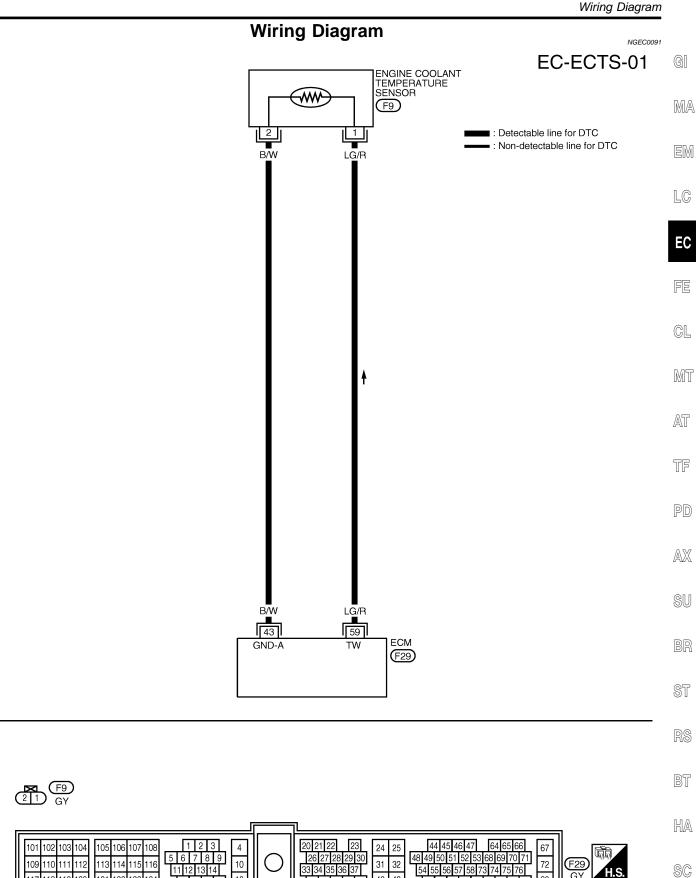
HA

SC

EIL

DTC P0125 ENGINE COOLANT TEMPERATURE (ECT) SENSOR

KA24DE


DTC Confirmation Procedure (Cont'd)

- 3) Start engine and run it for 65 minutes at idle speed. If "COOLAN TEMP/S" increases to more than 10°C (50°F) within 65 minutes, stop engine because the test result will be OK.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-190.
- **With GST**

Follow the procedure "With CONSULT-II".

DTC P0125 ENGINE COOLANT TEMPERATURE (ECT) SENSOR

AEC984A

SC

EL

42 43

19

121 122 123 124

117 118 119 120

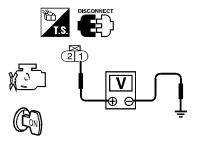
DTC P0125 ENGINE COOLANT TEMPERATURE (ECT) SENSOR

Diagnostic Procedure


KA24DE

Diagnostic Procedure

NGEC0092


1 CHECK POWER SUPPLY

- 1. Turn ignition switch OFF.
- 2. Disconnect engine coolant temperature sensor harness connector.

SEF330V

- 3. Turn ignition switch ON.
- 4. Check voltage between coolant temperature sensor connector F9 terminal 1 and ground with CONSULT-II or tester.

SEF206W

Voltage: Approximately 5V

ΩK	or	NG

OK ►	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the harness for open or short between ECM and engine coolant temperature sensor.

Repair harness or connectors.

3 CHECK GROUND CIRCUIT

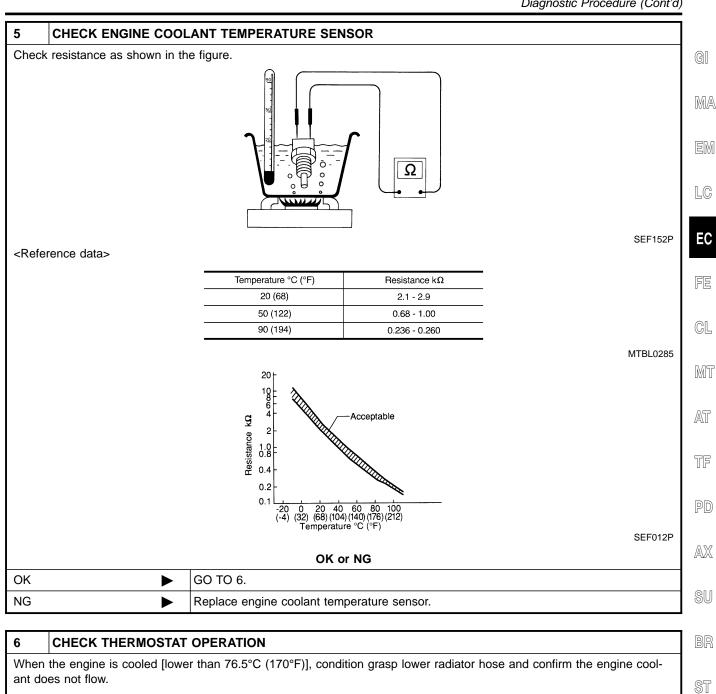
- 1. Turn ignition switch OFF.
- 2. Check harness continuity between engine coolant temperature sensor connector F9 terminal 2 and engine ground. Refer to the wiring diagram.

Continuity should exist.

3. Also check harness for short to power.

OK	or	NG

OK •	GO TO 5.
NG ▶	GO TO 4.


4 DETECT MALFUNCTIONING PART

Check the harness for open or short between ECM and engine coolant temperature sensor.

Repair open circuit or short to ground or short to power in harness or connectors.

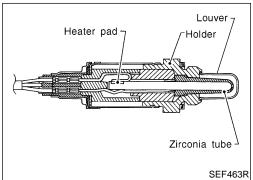
DTC P0125 ENGINE COOLANT TEMPERATURE (ECT) SENSOR

Diagnostic Procedure (Cont'd)

-			
When the engine is cooled [lower than 76.5°C (170°F)], condition grasp lower radiator hose and confirm the engine coolant does not flow.			
	OK or NG		
OK ▶ GO TO 7.		GO TO 7.	
NG Repair or replace thermostat. Refer to "Thermostat", "ENGINE COOLING SYSTEM", <i>LC-13</i> .			

7	CHECK INTERMITTENT INCIDENT		
Perfor	erform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
► INSPECTION END		INSPECTION END	

EL


RS

BT

HA

SC

Component Description

SEF463R | SEF467R | SEF46

Component Description

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

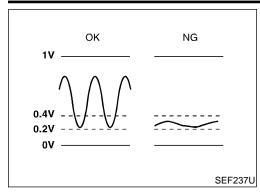
SEF288D

MONITOR ITEM	CONE	SPECIFICATION	
HO2S1 (B1)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
50	В	Heated oxygen sensor 1 (front)	 [Engine is running] After warming up to normal operating temperature and engine speed is 2,000 rpm 	0 - Approximately 1.0V (V) 2 1 0 1 s SEF008W

NGEC0095

NGEC0096

On Board Diagnosis Logic

On Board Diagnosis Logic

Under the condition in which the heated oxygen sensor 1 (front) signal is not input, the ECM circuits will read a continuous approximately 0.3V. Therefore, for this diagnosis, the time that output voltage is within 200 to 400 mV range is monitored, and the diagnosis checks that this time is not inordinately long.

MA

LC

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	
P0130	The voltage from the sensor is constantly approx. 0.3V.	Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 1 (front)	

EC

CL

MT

AT

TF

AX

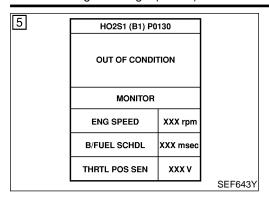
PD

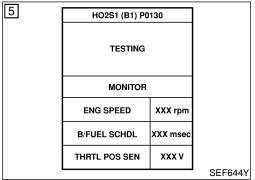
SU

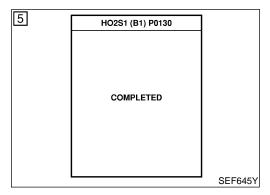
BR

ST

RS


BT


HA


SC

EL

On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

=NGEC0098

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

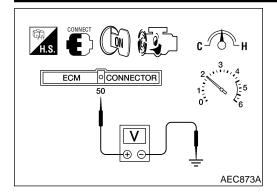
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- Select "HO2S1 (B1) P0130" of "HO2S1 (front)" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START".
- 4) Let it idle for at least 3 minutes.

Never raise engine speed above 3,000 rpm after this step. If the engine speed limit is exceeded, return to step 4.

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 10 to 60 seconds.)


ENG SPEED	1,400 - 4,000 rpm	
Vehicle speed	64 - 130 km/h (40 - 81 MPH)	
B/FUEL SCHDL	3.5 - 17 msec	
Selector lever	Suitable position	

If "TESTING" is not displayed after 5 minutes, retry from step 2.

Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-197.

During this test, P1148 may be displayed on CONSULT-II screen.

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 50 [Heated oxygen sensor 1 (front) signal] and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage does not remain in the range of 0.2 0.4V.
- If NG, go to "Diagnostic Procedure", EC-197.

MA

LC

EC

FE

GL

MT

AT

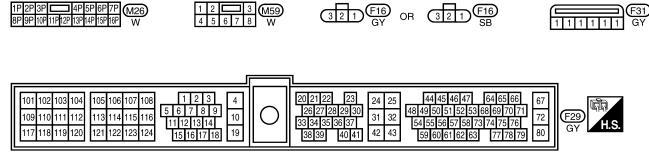
TF

PD

SU

ST

BT


HA

SC

EL

Wiring Diagram NGEC0100 EC-HO2S1-01 IGNITION SWITCH ON or START **FUSE** BLOCK (J/B) Refer to "EL-POWER". 15A 14 ■ : Detectable line for DTC (M26) : Non-detectable line for DTC HEATED OXYGEN SENSOR 1 (FRONT) (F16) BR/Y 2 B JOINT CONNECTOR-1 BR/Y 119 50 32 25 ECM B/R B/R B/Y O2HF O2SF GND-C GND-C (F29) (F11) (F12)

WEC936

Diagnostic Procedure

GI

MA

EC

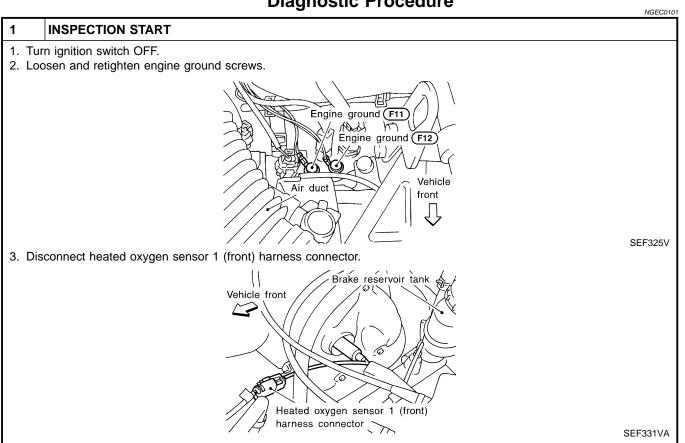
FE

MT

AT

TF

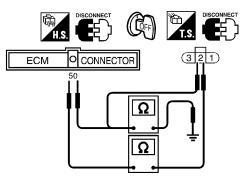
PD


ST

HA

SC

SEF141V



- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM harness connector F29 terminal 50 and terminal 2.

GO TO 2.

Continuity should exist.

- 3. Check harness continuity between ECM harness connector F29 terminal 50 (or terminal 2) and ground. Continuity should not exist.
- 4. Also check harness for short to power.

OK (With CONSULT-II)	>	GO TO 3.
OK (Without CONSULT-II)	•	GO TO 4.
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 1 (FRONT)

(P) With CONSULT-II

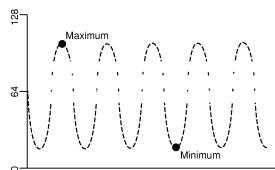
3

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" in "DATA MONITOR" mode, and the trigger point is adjusted to 100%.
- 3. Select "HO2S1 (B1)" AND "HO2S1 MNTR (B1)" in Item Selection.
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "START" on CONSULT-II screen.

DATA MONITOR			
MONITOR	NO DTC		
ENG SPEED	XXX rpm		
MAS A/F SE-B1	xxx v		
COOLAN TEMP/S	XXX °C		
HO2S1 (B1)	xxx v		
HO2S1 MNTR (B1)	LEAN		

SEF646Y

- 6. Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below:


R means HO2S1 MNTR (B1) indicates RICH L means HO2S1 MNTR (B1) indicates LEAN

SEF217YA

R = "HO2S1 MNTR (B1)", "RICH" L = "HO2S1 MNTR (B1)", "LEAN"

- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

Trigger	ENG SPEED	HO2S1 (B1)
	rpm	V
XXX	XXX	XXX
XXX	XXX	XXX
XXX	XXX XXX	XXX
XXX	XXX	XXX
XXX	XXX	XXX
XXX	XXX	XXX
XXX	XXX	XXX
XXX	XXX	XXX
XXX	XXX	XXX
XXX	XXX	XXX
XXX	XXX	XXX
XXX	XXX	XXX

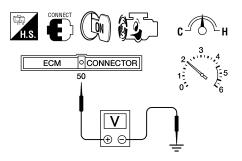
- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V
 at least one time.

SEF648Y

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG


OK ▶	GO TO 5.
NG •	Replace heated oxygen sensor 1 (front).

Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 1 (FRONT)

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 50 [Heated oxygen sensor 1 (front) signal] and engine ground.

AEC873A

GI

MA

EC

FE

MT

AT

TF

PD

- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than five times within 10 seconds.
 - 1 time: 0 0.3V \rightarrow 0.6 1.0V \rightarrow 0 0.3V
 - 2 times: 0 0.3V \rightarrow 0.6 1.0V \rightarrow 0 0.3V \rightarrow 0.6 1.0V \rightarrow 0 0.3V
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 5.
NG •	Replace heated oxygen sensor 1 (front).

5 CHECK SHIELD CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Remove joint connector-1.
- 3. Check the following.
- Continuity between joint connector-1 terminal 1 and ground
- Joint connector-1

(Refer to "HARNESS LAYOUT", EL-254.)

Continuity should exist.

- 4. Also check harness for short to power.
- 5. Then reconnect joint connector.

ΟK	or	NG
----	----	----

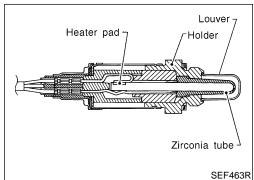
OK •	GO TO 6.
NG ►	Repair open circuit, short to power in harness or connectors.

6 CHECK INTERMITTENT INCIDENT

Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.

► INSPECTION END

BT


HA

SC

EC-199

KA24DE

Component Description

Component Description

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

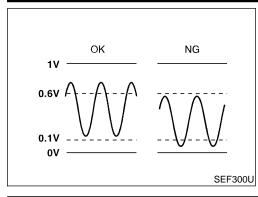
MONITOR ITEM	CONE	SPECIFICATION	
HO2S1 (B1)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

SEF288D

NGEC0105


CALITION

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
50	В	Heated oxygen sensor 1 (front)	 [Engine is running] After warming up to normal operating temperature and engine speed is 2,000 rpm 	0 - Approximately 1.0V (V) 2 1 0 SEF008W

KA24DE

On Board Diagnosis Logic

On Board Diagnosis Logic

To judge the malfunction, the output from the heated oxygen sensor 1 (front) is monitored to determine whether the "rich" output is sufficiently high and whether the "lean" output is sufficiently low. When both the outputs are shifting to the lean side, the malfunction will be detected.

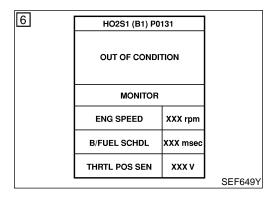
. . Gi

MA

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0131	The maximum and minimum voltages from the sensor are not reached to the specified voltages.	 Heated oxygen sensor 1 (front) Heated oxygen sensor 1 heater (front) Fuel pressure Injectors Intake air leaks

EC

FE


GL

MT

AT

TF

NGEC0107

HO2S1 (B1) P0131

TESTING

MONITOR

XXX rpm

XXX mse

XXX V

SEF651Y

ENG SPEED

B/FUEL SCHDL

THRTL POS SEN

6

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

PD

TESTING CONDITION:

- Always perform at a temperature above -10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

AX

SU

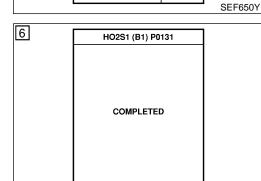
- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 5 seconds.
- Turn ignition switch ON and select "HO2S1 (B1) P0131" of "HO2S1 (front)" in "DTC WORK SUPPORT" mode with CON-SULT-II.
 - V-

ST

- 4) Touch "START".
- 5) Start engine and let it idle for at least 3.0 minutes.

NOTE:

Never raise engine speed above 3,000 rpm after this step. If the engine speed limit is exceeded, return to step 5.

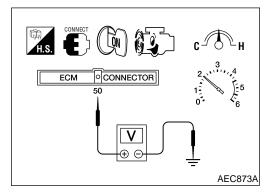

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)

[H	A	

SC

BT

ENG SPEED	1,200 - 3,150 rpm
Vehicle speed	Less than 100 km/h (62 MPH)
B/FUEL SCHDL	3.5 - 15 msec
Selector lever	Suitable position



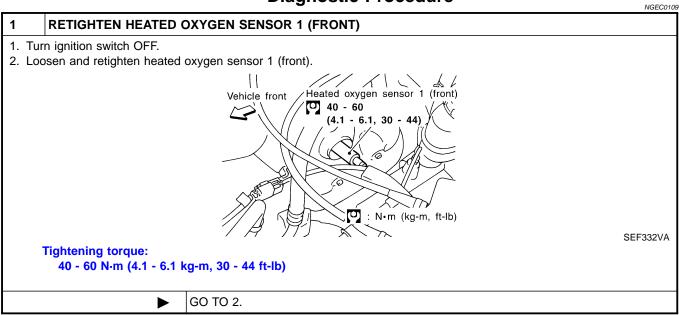
KA24DE

DTC Confirmation Procedure (Cont'd)

If "TESTING" is not displayed after 5 minutes, retry from step 2.

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-202.

Overall Function Check


GEC01

Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.

⊗ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 50 [Heated oxygen sensor 1 (front) signal] and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is over 0.1V at least one time.
- 4) If NG, go to "Diagnostic Procedure", EC-202.

Diagnostic Procedure

KA24DE

Diagnostic Procedure (Cont'd)

CLEAR THE SELF-LEARNING DATA. ③ With CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II. 3. Clear the self-learning control coefficient by touching "CLEAR". WORK SUPPORT SELF-LEARNING CONT SELF-LEARNING CONT B1 100% WORK SUPPORT SELF-LEARNING CONT B1 100% VORK SUPPORT SELF-LEARNING CONT B1 100% WORK SUPPORT SELF-LEARNING CONT SELF-LEARNING CONT SELF-LEARNING CONT 100% WORK SUPPORT SELF-LEARNING CONT SELF
1. Start engine and warm it up to normal operating temperature. 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II. 3. Clear the self-learning control coefficient by touching "CLEAR". WORK SUPPORT B1 100%
2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II. 3. Clear the self-learning control coefficient by touching "CLEAR". WORK SUPPORT B1 100% SELF-LEARNING CONT B1 100% SEF215Z 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine? Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Turn ignition switch OFF. 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
3. Clear the self-learning control coefficient by touching "CLEAR". WORK SUPPORT B1 100% SELF-LEARNING CONT B1 100% CLEAR SEF215Z 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine? Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Turn ignition switch OFF. 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
WORK SUPPORT SELF-LEARNING CONT B1 100% 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine? Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Turn ignition switch OFF. 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
SELF-LEARNING CONT CLEAR SEF215Z 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine? Without CONSULT-II Start engine and warm it up to normal operating temperature. Turn ignition switch OFF. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine? Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Turn ignition switch OFF. 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine? Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Turn ignition switch OFF. 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine? Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Turn ignition switch OFF. 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine? Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Turn ignition switch OFF. 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine? Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Turn ignition switch OFF. 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine? Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Turn ignition switch OFF. 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine? Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Turn ignition switch OFF. 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine? Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Turn ignition switch OFF. 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine? Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Turn ignition switch OFF. 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine? Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Turn ignition switch OFF. 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
Is the 1st trip DTC P0171 detected? Is it difficult to start engine? Without CONSULT-II Start engine and warm it up to normal operating temperature. Turn ignition switch OFF. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Turn ignition switch OFF. 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
 Start engine and warm it up to normal operating temperature. Turn ignition switch OFF. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
 Turn ignition switch OFF. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
Mass air flow sensor— harness connector AEC131A
4. Stop engine and reconnect mass air flow sensor harness connector.
5. Make sure 1st trip DTC P0100 is displayed.
6. Erase the 1st trip DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION",
EC-79.
7. Make sure DTC P0000 is displayed.
8. Run engine for at least 10 minutes at idle speed.
Is the 1st trip DTC P0171 detected? Is it difficult to start engine?
Yes or No

BT

HA

SC

EL

Perform trouble diagnosis for DTC P0171. Refer to EC-280.

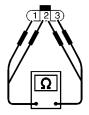
GO TO 3.

Yes

No

KA24DE

Diagnostic Procedure (Cont'd)


3 CHECK HEATED OXYGEN SENSOR 1 HEATER (FRONT)

Check resistance between terminals 3 and 1.

SEF220W

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

Check continuity between terminals 2 and 1, 3 and 2.

Continuity should not exist.

CAUTION:

Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK (With CONSULT-II)	>	GO TO 4.
OK (Without CONSULT-II)	>	GO TO 5.
NG		Replace heated oxygen sensor 1 (front).

KA24DE

GI

MA

EC

FE

GL

MT

AT

TF

PD

Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 1 (FRONT)

(P) With CONSULT-II

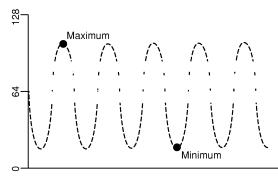
- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" in "DATA MONITOR" mode, and the trigger point is adjusted to 100%.
- 3. Select "HO2S1 (B1)" AND "HO2S1 MNTR (B1)" in Item Selection.
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "START" on CONSULT-II screen.

DATA MON	ITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm
MAS A/F SE-B1	XXX V
COOLAN TEMP/S	XXX °C
HO2S1 (B1)	xxx v
HO2S1 MNTR (B1)	LEAN

SEF646Y

- 6. Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.
 5 times (cycles) are counted as shown below:

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R


R means HO2S1 MNTR (B1) indicates RICH L means HO2S1 MNTR (B1) indicates LEAN

SEF217YA

R = "HO2S1 MNTR (B1)", "RICH" L = "HO2S1 MNTR (B1)", "LEAN"

- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

Trigger	ENG	HO2S1
	SPEED	(B1)
	rpm	V
XXX	XXX	XXX

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

CAUTION:

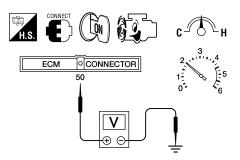
- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK	or	NG
\mathbf{v}	vı	146

OK •	GO TO 6.
NG ►	Replace heated oxygen sensor 1 (front).

HA

SC


KA24DE

Diagnostic Procedure (Cont'd)

5 CHECK HEATED OXYGEN SENSOR 1 (FRONT)

Without CONSULT-II

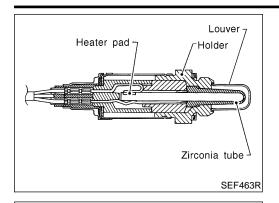
- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 50 [Heated oxygen sensor 1 (front) signal] and engine ground.

AEC873A

- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than five times within 10 seconds.
 - 1 time: 0 0.3V \rightarrow 0.6 1.0V \rightarrow 0 0.3V
 - 2 times: 0 0.3V \rightarrow 0.6 1.0V \rightarrow 0 0.3V \rightarrow 0.6 1.0V \rightarrow 0 0.3V
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.


OK or NG

OK •	GO TO 6.
NG ▶	Replace heated oxygen sensor 1 (front).

6	CHECK INTERMITTENT INCIDENT		
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142. Refer to "Wiring Diagram", EC-196, for circuit.			
	INSPECTION END		

KA24DE

Component Description

Component Description

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

MA

C

EC

GL

MT

AT

TF

PD

AX

ST

BT

HA

SC

CONSULT-II Reference Value in Data Monitor Mode

NGEC0112

Specification data are reference values.

Ideal ratio

Mixture ratio

Lean

SEF288D

MONITOR ITEM	CONE	SPECIFICATION		
HO2S1 (B1)			0 - 0.3V ←→ Approx. 0.6 - 1.0V	
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.	

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

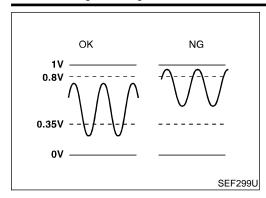
NGEC0113

CAUTION:

 \geq

Output voltage V_s

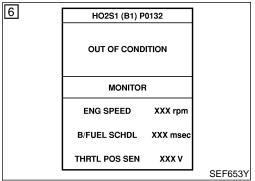
Rich

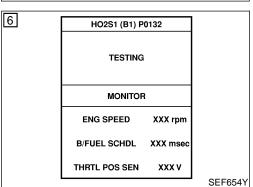

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

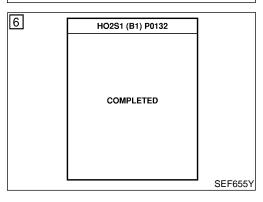
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
50	В	Heated oxygen sensor 1 (front)	 [Engine is running] ◆ After warming up to normal operating temperature and engine speed is 2,000 rpm 	0 - Approximately 1.0V (V) 2 1 0	

EL

KA24DE


On Board Diagnosis Logic




On Board Diagnosis Logic

To judge the malfunction, the output from the heated oxygen sensor 1 (front) is monitored to determine whether the "rich" output is sufficiently high. The "lean" output is sufficiently low. When both the outputs are shifting to the rich side, the malfunction will be detected.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0132	The maximum and minimum voltages from the sensor are beyond the specified voltages.	 Heated oxygen sensor 1 (front) Heated oxygen sensor 1 heater (front) Fuel pressure Injectors

DTC Confirmation Procedure

NGEC0115

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above -10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Stop engine and wait at least 5 seconds.
- Turn ignition switch ON and select "HO2S1 (front) P0132" of "HO2S1 (front)" in "DTC WORK SUPPORT" mode with CON-SULT-II.
- 4) Touch "START".
- 5) Start engine and let it idle for at least 3.0 minutes.

NOTE:

Never raise engine speed above 3,000 rpm after this step. If the engine speed limit is exceeded, return to step 5.

6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)

ENG SPEED	1,200 - 3,150 rpm
Vehicle speed	Less than 100 km/h (62 MPH)
B/FUEL SCHDL	3.5 - 15 msec
Selector lever	Suitable position

KA24DE

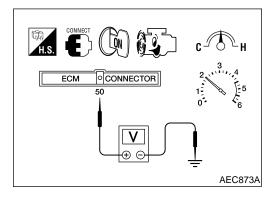
DTC Confirmation Procedure (Cont'd)

If "TESTING" is not displayed after 5 minutes, retry from step 2.

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-209.

MA

LC


EC

FE

GL

MT

AT

Overall Function Check

NGEC0116

Use this procedure to check the overall function of the front heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

1) Start engine and warm it up to normal operating temperature.

- Set voltmeter probes between ECM terminal 50 [Heated oxygen sensor 1 (front) signal] and ECM ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is below 0.8V at least one time.
- The minimum voltage is below 0.35V at least one time.
- 4) If NG, go to "Diagnostic Procedure", EC-209.

TF

PD

 $\mathbb{A}\mathbb{X}$

Diagnostic Procedure

BF

ST

NGEC0117

Turn ignition switch OFF.

2. Loosen and retighten heated oxygen sensor 1 (front).

RETIGHTEN HEATED OXYGEN SENSOR 1 (FRONT)

Vehicle front Heated oxygen sensor 1 (front)

40 - 60

(4.1 - 6.1, 30 - 44)

P: N·m (kg-m, ft-lb)

BT

Tightening torque: 40 - 60 N·m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)

0.1 kg iii, 00 44 it ib)

▶ GO TO 2.

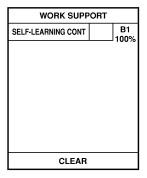
SEF332VA

SC

EL

 \mathbb{Z}

KA24DE

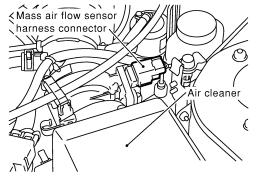

Diagnostic Procedure (Cont'd)

CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

2

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".


SEF215Z

4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.

SEF293W

- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC P0100 is displayed.
- Erase the 1st trip DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-79.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

Yes or No

Yes	Perform trouble diagnosis for DTC P0172. Refer to EC-287.
No •	GO TO 3.

3 CHECK HARNESS CONNECTOR

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 1 (front) harness connector.
- 3. Check harness connector for water.

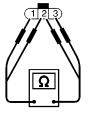
Water should not exit.

OK or NG

OK •	GO TO 4.
NG ▶	Repair or replace harness connector.

KA24DE

Diagnostic Procedure (Cont'd)


CHECK HEATED OXYGEN SENSOR 1 HEATER (FRONT)

Check resistance between terminals 3 and 1.

SEF220W

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

Check continuity between terminals 2 and 1, 3 and 2.

Continuity should not exist.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK (With CONSULT-II)		GO TO 5.
OK (Without CONSULT-		GO TO 6.
II)		
NG	>	Replace heated oxygen sensor 1 (front).

GI

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

 \mathbb{A}

SU

ST

28

BT

HA

SC

EL

KA24DE

Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 1 (FRONT)

(P) With CONSULT-II

5

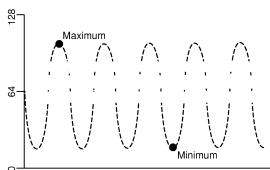
- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" in "DATA MONITOR" mode, and the trigger point is adjusted to 100%.
- 3. Select "HO2S1 (B1)" and "HO2S1 MNTR (B1)" in item selection.
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
COOLAN TEMP/S	XXX °C	
HO2S1 (B1)	xxx v	
HO2S1 MNTR (B1)	LEAN	

SEF646Y

- 6. Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below:

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R


R means HO2S1 MNTR (B1) indicates RICH L means HO2S1 MNTR (B1) indicates LEAN

SEF217YA

R = "HO2S1 MNTR (B1)", "RICH" L = "HO2S1 MNTR (B1)", "LEAN"

- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

Trigger	ENG SPEED	HO2S1 (B1)
	rpm	V
XXX	XXX	XXX

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK ▶	GO TO 7.
NG •	Replace heated oxygen sensor 1 (front).

GI

MA

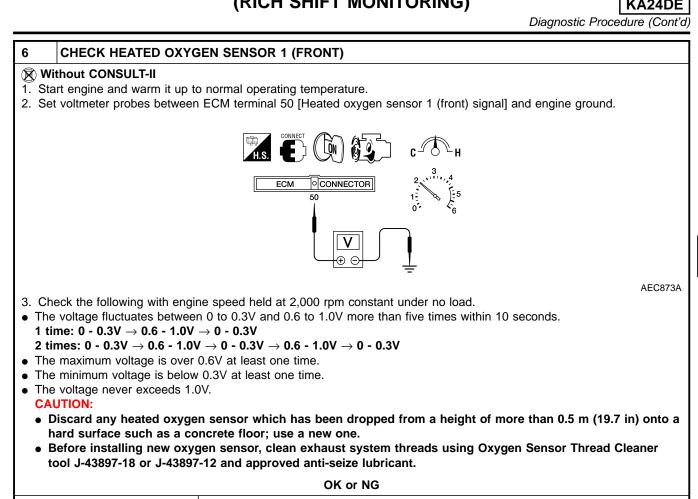
EC

GL

MT

AT

TF

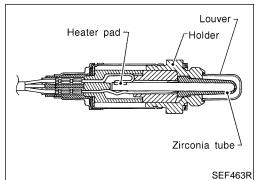

PD

ST

BT

HA

SC


7	CHECK INTERMITTENT INCIDENT	
NG	>	Replace heated oxygen sensor 1 (front).
OK	>	GO TO 7.

		The place meaned explain content. I (meanly)	1 " "
			_
7	CHECK INTERMITTEN	T INCIDENT	A)
	rm "TROUBLE DIAGNOSIS to "Wiring Diagram", EC-19	FOR INTERMITTENT INCIDENT", EC-142. 96, for circuit.	@II
	>	INSPECTION END	: Sl

DTC P0133 HEATED OXYGEN SENSOR 1 (FRONT) (RESPONSE MONITORING)

KA24DE

Component Description

Component Description

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

Output voltage V_s [v] Rich Ideal ratio Lean Mixture ratio SEF288D

CONSULT-II Reference Value in Data Monitor Mode

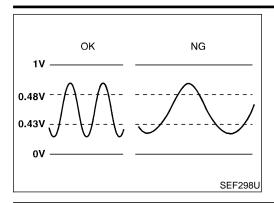
Specification data are reference values.

NGEC0120

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value

NGEC0121


Specification data are reference values and are measured between each terminal and ground.

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
50	В	Heated oxygen sensor 1 (front)	 [Engine is running] After warming up to normal operating temperature and engine speed is 2,000 rpm 	0 - Approximately 1.0V (V) 2 1 0 SEF008W

DTC P0133 HEATED OXYGEN SENSOR 1 (FRONT) (RESPONSE MONITORING)

On Board Diagnosis Logic

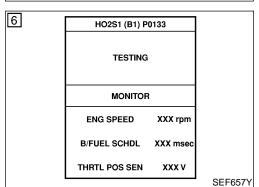
On Board Diagnosis Logic

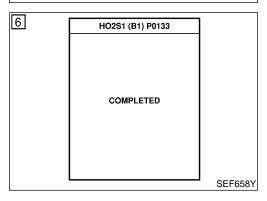
To judge the malfunction of heated oxygen sensor 1 (front), this diagnosis measures response time of heated oxygen sensor 1 (front) signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and heated oxygen sensor 1 (front) temperature index. Judgment is based on whether the compensated time [heated oxygen sensor 1 (front) cycling time index] is inordinately long or not.

MA

NGEC0123

TF


PD


SU

ST

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	
P0133	The response of the voltage signal from the sensor takes more than the specified time.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 1 (front) Heated oxygen sensor 1 heater (front) Fuel pressure Injectors Intake air leaks Exhaust gas leaks PCV Mass air flow sensor 	FE GL

6 HO2S1 (B1) P0133 **OUT OF CONDITION** MONITOR XXX rpm **ENG SPEED** B/FUEL SCHDL XXX msec THRTL POS SEN SEF656Y

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above -10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 5 seconds.
- Turn ignition switch ON and select "HO2S1 (B1) P0133" of "HO2S1 (front)" in "DTC WORK SUPPORT" mode with CON-SULT-II.
- Touch "START".
- Start engine and let it idle for at least 3.0 minutes.

NOTE:

Never raise engine speed above 3,000 rpm after this step. If the engine speed limit is exceeded, return to step 5.

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 20 seconds.)

ENG SPEED	1,750 - 3,750 rpm
Vehicle speed	More than 80 km/h (50 MPH)
B/FUEL SCHDL	3.5 - 15.5 msec
Selector lever	Suitable position

HA

SC

DTC P0133 HEATED OXYGEN SENSOR 1 (FRONT) (RESPONSE MONITORING)

DTC Confirmation Procedure (Cont'd)

KA24DE

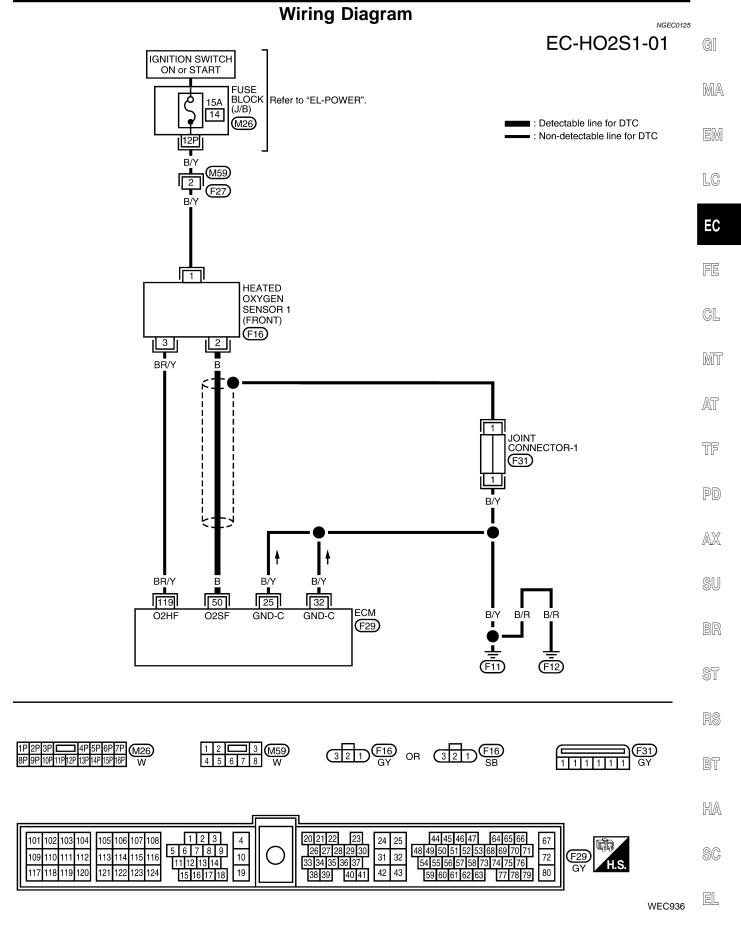
If "TESTING" is not displayed after 5 minutes, retry from step 2.

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-218.

Overall Function Check

IGEC012

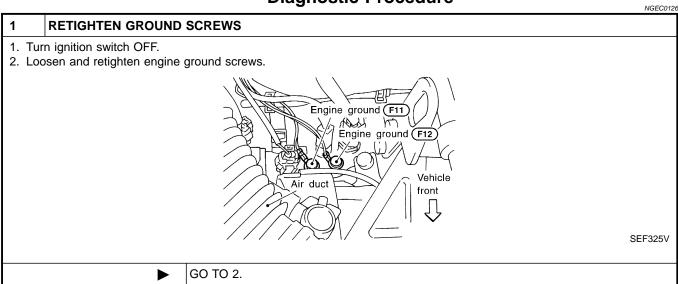
Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.

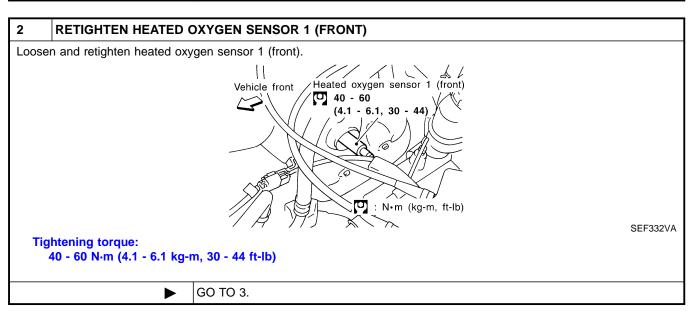

With GST

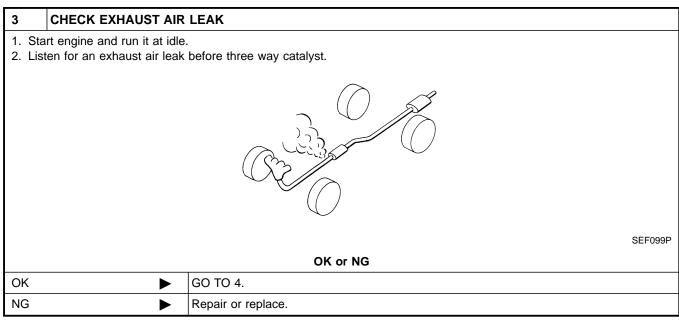
- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 50 [Heated oxygen sensor 1 (front) signal] and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than five times within 10 seconds.

1 time: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V 2 times: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V

4) If NG, go to "Diagnostic Procedure", EC-218.



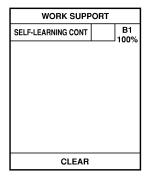



Diagnostic Procedure

KA24DE

Diagnostic Procedure

KA24DE

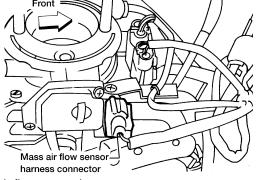

Diagnostic Procedure (Cont'd)

4	CHECK FOR INTAKE A	IR LEAK
Listen for an intake air leak between the mass air flow sensor and the intake manifold.		
OK or NG		
ОК	>	GO TO 5.
NG	>	Repair or replace.

5 CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".


SEF215Z

4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.

AEC131A

- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC P0100 is displayed.
- 6. Erase the 1st trip DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-79
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Yes or No

Yes	Perform trouble diagnosis for DTC P0171, P0172. Refer to EC-280, 287.
No >	GO TO 6.

GI

MA

LC

EC

FE

GL

MT

AT

TF

PD

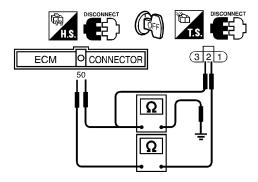
51

BT

HA

II II/√7

SC


EL

KA24DE

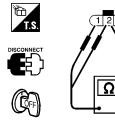
Diagnostic Procedure (Cont'd)

6 CHECK INPUT SIGNAL CIRCUIT

- 1. Disconnect heated oxygen sensor 1 (front) harness connector and ECM harness connector.
- 2. Check harness continuity between ECM terminal 50 and terminal 2.

SEF141V

Continuity should exist.


- Check harness continuity between ECM terminal 50 (or terminal 2) and ground.Continuity should not exist.
- 4. Also check harness for short to power.

OK or NG

ОК		GO TO 7.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

7 CHECK HEATED OXYGEN SENSOR 1 HEATER (FRONT)

Check resistance between terminals 3 and 1.

SEF220W

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

Check continuity between terminals 2 and 1, 3 and 2.

Continuity should not exist.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK (With CONSULT-II)	>	GO TO 8.
OK (Without CONSULT-II)	>	GO TO 9.
NG	•	Replace heated oxygen sensor 1 (front).

KA24DE

GI

MA

EC

FE

GL

MT

AT

TF

PD

Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 1 (FRONT)

(P) With CONSULT-II

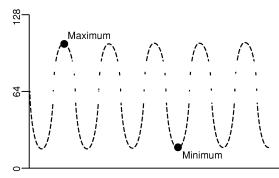
- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" in "DATA MONITOR" mode, and the trigger point is adjusted to 100%.
- 3. Select "HO2S1 (B1)" and "HO2S1 MNTR (B1)" in item selection.
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "START" on CONSULT-II screen.

DATA MON	TOR
MONITOR	NO DTC
ENG SPEED	XXX rpm
MAS A/F SE-B1	xxx v
COOLAN TEMP/S	XXX °C
HO2S1 (B1)	xxx v
HO2S1 MNTR (B1)	LEAN

SEF646Y

- 6. Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below:

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R


R means HO2S1 MNTR (B1) indicates RICH L means HO2S1 MNTR (B1) indicates LEAN

SEF217YA

R = "HO2S1 MNTR (B1)", "RICH" L = "HO2S1 MNTR (B1)", "LEAN"

- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

Trigger	ENG SPEED	HO2S1 (B1)
	rpm	V
XXX	XXX	XXX

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

CAUTION:

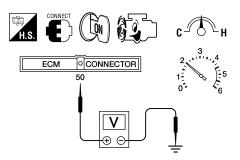
- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK	or	NG

OK •	GO TO 10.
NG ►	Replace heated oxygen sensor 1 (front).

HA

SC


KA24DE

Diagnostic Procedure (Cont'd)

9 CHECK HEATED OXYGEN SENSOR 1 (FRONT)

Without CONSULT-II

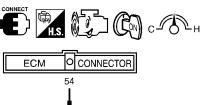
- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 50 [Heated oxygen sensor 1 (front) signal] and engine ground.

AEC873A

- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than five times within 10 seconds.
 - 1 time: 0 0.3V \rightarrow 0.6 1.0V \rightarrow 0 0.3V
 - 2 times: 0 0.3V \rightarrow 0.6 1.0V \rightarrow 0 0.3V \rightarrow 0.6 1.0V \rightarrow 0 0.3V
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

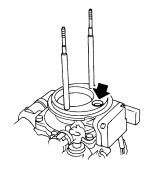

OK or NG

OK •	GO TO 10.
NG ►	Replace heated oxygen sensor 1 (front).

Diagnostic Procedure (Cont'd)

10 **CHECK MASS AIR FLOW SENSOR**

- 1. Turn ignition switch ON.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 54 (Mass air flow sensor signal) and ground.



SEF326V

Conditions	Voltage V
Ignition switch "ON" (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up to normal operating temperature.)	0.9 - 1.8
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.9 - 2.3
Idle to about 4,000 rpm*	1.3 - 1.7 to Approx. 3.0

^{*:} Check for linear voltage rise in response to increases to about 4,000 rpm in engine speed.

- 4. If the voltage is out of specification, disconnect mass air flow sensor harness connector and connect it again. Repeat above check.
- 5. If NG, remove mass air flow sensor from air duct. Check hot wire for damage or dust.

SEF893J

OK or NG

ОК	>	GO TO 11.
NG	>	Replace mass air flow sensor.

GI

MA

EM

EC

GL

MT

AT

PD

TF

SU

ST

BT

HA

SC

KA24DE

Diagnostic Procedure (Cont'd)

1. With engine running at idle, remove PCV valve from breather separator. 2. A properly working valve makes a hissing noise as air passes through it. A strong vacuum should be felt immediately when a finger is placed over the valve inlet. SEC137A OK or NG Repair or replace PCV valve.

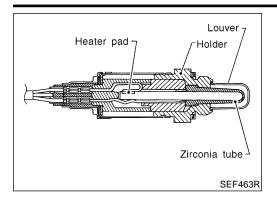
12	CHECK SHIELD CIRCUIT
14	CHECK SHILLD CINCOH

- 1. Turn ignition switch OFF.
- 2. Remove joint connector-1.
- 3. Check the following.
- Continuity between joint connector-1 terminal 1 and ground
- Joint connector-1

(Refer to "HARNESS LAYOUT", EL-254.)

Continuity should exist.

- 4. Also check harness for short to power.
- 5. Then reconnect joint connector.


OK or	NG
-------	----

OK	>	GO TO 13.
NG J	>	Repair open circuit, short to power in harness or connectors.

13	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	•	INSPECTION END	

KA24DE

Component Description

Component Description

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

(ii

 $\mathbb{M}\mathbb{A}$

EM

LC

EC

FE

GL

MT

AT

TF

PD

CONSULT-II Reference Value in Data Monitor Mode

NGEC0129

Specification data are reference values.

Ideal ratio
 Mixture ratio

Lean

SEF288D

MONITOR ITEM	CONE	SPECIFICATION	
HO2S1 (B1)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NGEC0130

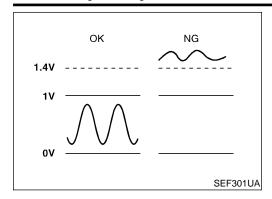
CAUTION:

 \geq

Output voltage V_s

Rich

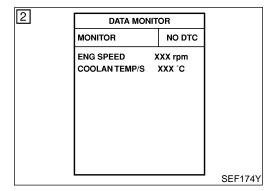
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	ST
50	В	Heated oxygen sensor 1 (front)	 [Engine is running] After warming up to normal operating temperature and engine speed is 2,000 rpm 	0 - Approximately 1.0V (V) 2 1 0 SEF008W	RS BT HA

SC

EL

KA24DE


On Board Diagnosis Logic

On Board Diagnosis Logic

To judge the malfunction, the diagnosis checks that the heated oxygen sensor 1 (front) output is not inordinately high.

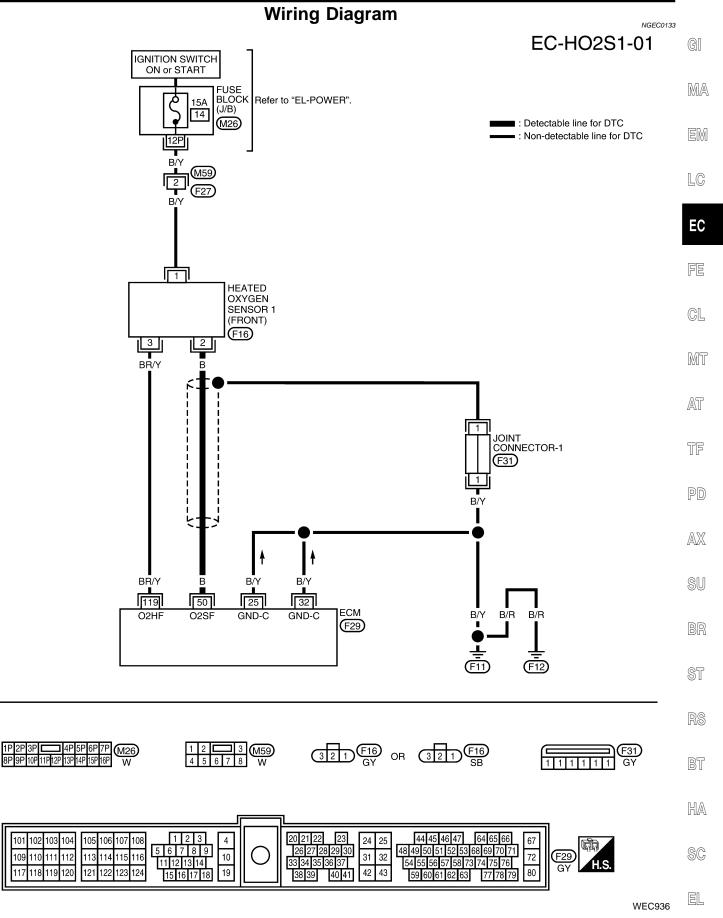
DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0134	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 1 (front)

DTC Confirmation Procedure

NGEC0132

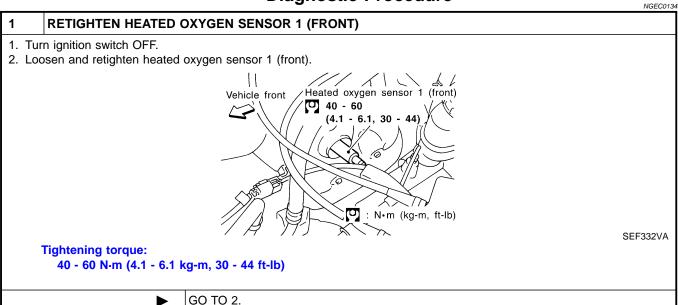
NOTE:

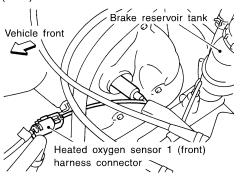
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.


(II) With CONSULT-II

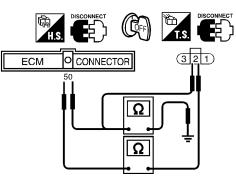
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Restart engine and let it idle for 35 seconds.
- 6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-228.

With GST


- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Restart engine and let it idle for 35 seconds.
- 4) Turn ignition switch OFF and wait at least 5 seconds.
- 5) Restart engine and let it idle for 35 seconds.
- 6) Select "MODE 3" with GST.
- 7) If DTC is detected, go to "Diagnostic Procedure", EC-228.
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II or ECM (Diagnostic Test Mode II) because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II or ECM (Diagnostic Test Mode II) is recommended.


KA24DE

Diagnostic Procedure



1. Disconnect heated oxygen sensor 1 (front) harness connector and ECM harness connector.

2. Check harness continuity between ECM terminal 50 and terminal 2.

SEF141V

SEF331VA

Continuity should exist.

- 3. Check harness continuity between ECM terminal 50 (or terminal 2) and ground. Continuity should not exist.
- 4. Also check harness for short to power.

OK or NG

OK	•	GO TO 3.
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.

KA24DE

Diagnostic Procedure (Cont'd)

3	CHECK HARNES	ss co	NNECTOR	
	heated oxygen ser should not exist.	nsor 1	(front) harness connector for water.	G
			OK or NG	l M
OK (V	Vith CONSULT-II)		GO TO 4.	
OK (W II)	Vithout CONSULT-	>	GO TO 5.	
NG			Repair or replace harness connector.	1
				L(

EC

.0

FE

 \mathbb{GL}

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

KA24DE

Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 1 (FRONT)

(P) With CONSULT-II

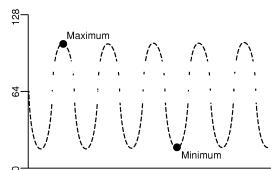
- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" in "DATA MONITOR" mode, and the trigger point is adjusted to 100%.
- 3. Select "HO2S1 (B1)" and "HO2S1 MNTR (B1)" in item selection.
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "START" on CONSULT-II screen.

DATA MON	ITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm
MAS A/F SE-B1	xxx v
COOLAN TEMP/S	XXX °C
HO2S1 (B1)	xxx v
HO2S1 MNTR (B1)	LEAN

SEF646Y

- 6. Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below:

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R


R means HO2S1 MNTR (B1) indicates RICH L means HO2S1 MNTR (B1) indicates LEAN

SEF217YA

R = "HO2S1 MNTR (B1)", "RICH" L = "HO2S1 MNTR (B1)", "LEAN"

- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

Trigger	ENG	HO2S1
	SPEED	(B1)
	rpm	V
XXX	XXX	XXX

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK	>	GO TO 6.
NG	>	Replace heated oxygen sensor 1 (front).

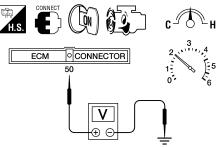
KA24DE

GI

MA

EC

MT


AT

TF

PD

Diagnostic Procedure (Cont'd)

5 CHECK HEATED OXYGEN SENSOR 1 (FRONT) Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Set voltmeter probes between ECM terminal 50 [Heated oxygen sensor 1 (front) signal] and engine ground.

AEC873A

- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than five times within 10 seconds.
 - 1 time: 0 0.3V \rightarrow 0.6 1.0V \rightarrow 0 0.3V
 - 2 times: 0 0.3V \rightarrow 0.6 1.0V \rightarrow 0 0.3V \rightarrow 0.6 1.0V \rightarrow 0 0.3V
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 6.
NG •	Replace heated oxygen sensor 1 (front).

6 CHECK SHIELD CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Remove joint connector-1.
- 3. Check the following.
- Continuity between joint connector-1 terminal 1 and ground
- Joint connector-1

(Refer to "HARNESS LAYOUT", EL-254.)

Continuity should exist.

4. Also check harness for short to ground and short to power. Then reconnect joint connector.

OK	or	NG

OK •	GO TO 7.
NG ►	Repair open circuit, short to power in harness or connectors.

	CHECK INTERMITTENT INCIDENT	
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
► INSPECTION END		

HA

SC

DTC P0135 HEATED OXYGEN SENSOR 1 HEATER (FRONT) KA24DE

Description

Description

SYSTEM DESCRIPTION

NGEC0136

NGEC0136S01

			110200130001
Sensor	Input Signal to ECM	ECM func- tion	Actuator
Camshaft position sensor	Engine speed	Heated oxygen sensor 1 heater (front) con- trol	Heated oxygen sensor 1 heater (front)

The ECM performs ON/OFF control of the heated oxygen sensor 1 heater (front) corresponding to the engine operating condition.

OPERATION

NGEC0136S02

Engine speed	Heated oxygen sensor 1 heater (front)
Above 3,000 rpm	OFF
Below 3,000 rpm	ON

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0137

MONITOR ITEM	CONDITION	SPECIFICATION
• Engine speed: Below 3,000 rpm ON		ON
HO2S1 HTR (B1)	Engine speed: Above 3,000 rpm	OFF

ECM Terminals and Reference Value

NGEC0138

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
Heated oxygen sensor 1 heater (front)	DD/V	Heated oxygen sensor 1	[Engine is running] • Engine speed is below 3,000 rpm.	Approximately 0.4V
	[Engine is running] • Engine speed is above 3,000 rpm.	BATTERY VOLTAGE (11 - 14V)		

On Board Diagnosis Logic

NGEC0139

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0135	The current amperage in the heated oxygen sensor 1 heater (front) circuit is out of the normal range. [An improper voltage drop signal is sent to ECM through the heated oxygen sensor 1 heater (front).]	 Harness or connectors [The heated oxygen sensor 1 heater (front) circuit is open or shorted.] Heated oxygen sensor 1 heater (front)

DTC P0135 HEATED OXYGEN SENSOR 1 HEATER (FRONT) KA24DE

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

NGEC0140

ucted, G

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

MA

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

LC

DATA MONITOR
MONITOR
NO DTC
ENG SPEED XXX rpm

SEF058Y

(II) With CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 6 seconds at idle speed.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-235.

With GST

- 1) Start engine and run it for at least 6 seconds at idle speed.
- Turn ignition switch OFF and wait least 6 seconds at idle speed.
- 3) Select "MODE 3" with GST.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-235.
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II or ECM (Diagnostic Test Mode II) because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II or ECM (Diagnostic Test Mode II) is recommended.

EC

MT

GL

Æ

TF

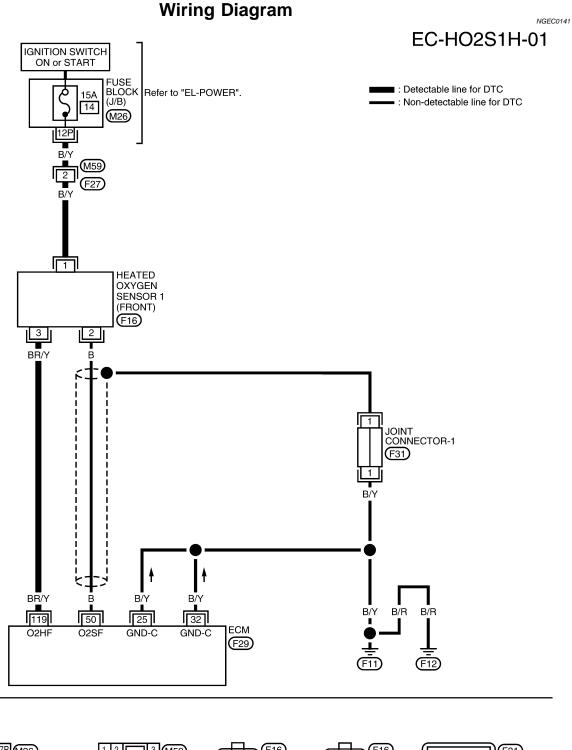
PD

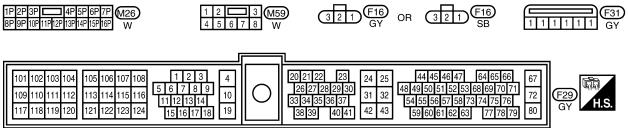
SU

BR

ST

RS


BT


HA

SC

EL

WEC937

DTC P0135 HEATED OXYGEN SENSOR 1 HEATER (FRONT) KA24DE

Diagnostic Procedure

NGEC0142

MA

LC

EC

FE

MT

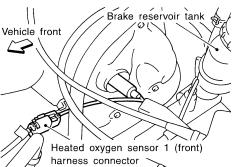
AT

TF

PD

ST

BT


HA

SC

1. Turn ignition switch OFF.

CHECK POWER SUPPLY

2. Disconnect heated oxygen sensor 1 (front) harness connector.

SEF331VA

SEF213W

3. Turn ignition switch ON.

4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK •	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- 15A fuse
- Harness for open or short between heated oxygen sensor 1 (front) and 15A fuse

Repair harness or connectors.

3 CHECK GROUND CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between heated oxygen sensor 1 (front) terminal 3 and ECM terminal 119. Refer to the wiring diagram.

Continuity should exist.

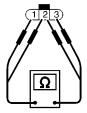
4. Also check harness for short to ground or short to power.

OK	or	NG
UN	OI	ING

OK		GO TO 4.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0135 HEATED OXYGEN SENSOR 1 HEATER (FRONT) KA24DE

Diagnostic Procedure (Cont'd)


CHECK HEATED OXYGEN SENSOR 1 HEATER (FRONT)

Check resistance between terminals 3 and 1.

SEF220W

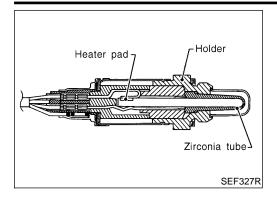
Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

Check continuity between terminals 2 and 1, 3 and 2.

Continuity should not exist.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.


OK or NG

OK •	GO TO 5.
NG ▶	Replace heated oxygen sensor 1 (front).

5	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	► INSPECTION END		

KA24DE

Component Description

Component Description

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

MA

GI

FM

LC

EC

CONSULT-II Reference Value in Data Monitor Mode

عميياه

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	FE
HO2S2 (B1)	Engine: After warming up	Revving engine from idle to 3,000	0 - 0.3V ←→ Approx. 0.6 - 1.0V	
HO2S2 MNTR (B1)		rpm	LEAN ←→ RICH	CL

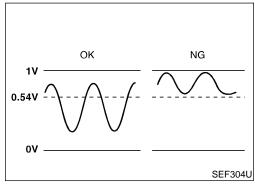
ECM Terminals and Reference Value

NGEC0146

MT

AT

TF


PD

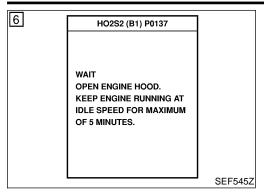
Specification data are reference values and are measured between each terminal and ground.

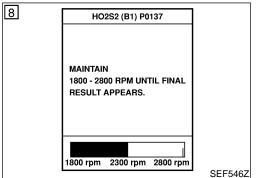
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
56	OR	Heated oxygen sensor 2 (rear)	 [Engine is running] After warming up to normal operating temperature and revving engine from idle to 3,000 rpm quickly 	0 - Approximately 1.0V

On Board Diagnosis Logic


The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of rear heated oxygen sensor, ECM monitors whether the minimum voltage of the sensor is sufficiently low during various driving conditions such as fuel-cut.


DTC No.	Malfunction is detected when	Check Items (Possible Cause)	BT
P0137	The minimum voltage from the sensor does not reach the specified voltage.	(The sensor circuit is open or shorted.) • Heated oxygen sensor 2 (rear)	HA
		Fuel pressureInjectors	SC

EL

KA24DE

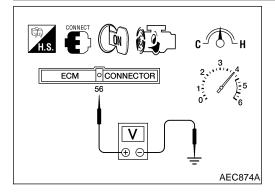
On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

NGEC0148

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.


TESTING CONDITION:

Open engine hood before conducting following procedure With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure the "COOLANT TEMP/S" is more then 70°C (158°F).
- Select "HO2S2 (B1) P0137", of "HO2S2" in "DTC WORK SUP-PORT" mode with CONSULT-II.
- Start engine and follow the instructions of CONSULT-II.
- 8) Make sure the "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If NG is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-241.
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- a) Stop engine and cool down "COOLANT TEMP/SE" to less then 70°C (158°F).
- b) Turn ignition switch ON
- c) Select "DATA MONITOR" mode with CONSULT-II.
- d) Start engine.
- e) Perform from step 6) again when the "COOLANT TEMP/S" reach to 70°C (158°F).

KA24DE

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 2 (rear) circuit. During this check, a 1st trip DTC might not be confirmed.

yht GI

CAUTION:

Always drive vehicle at a safe speed.

⊗ Without CONSULT-II

- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminals 56 [Heated oxygen sensor 2 (rear) signal] and ECM ground.
- Check the voltage when revving engine up to 4,000 rpm under no load at least 10 times.
 (Depress and release accelerator pedal as soon as possible.)
 - The voltage should be below 0.54V at least once during this procedure.
 - If the voltage can be confirmed in step 4, step 5 is not necessary.
- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position.
 - The voltage should be below 0.54V at least once during this procedure.
- 6) If NG, go to "Diagnostic Procedure", EC-241.

MA

EC

CL

MT

AT

TF PD

SU

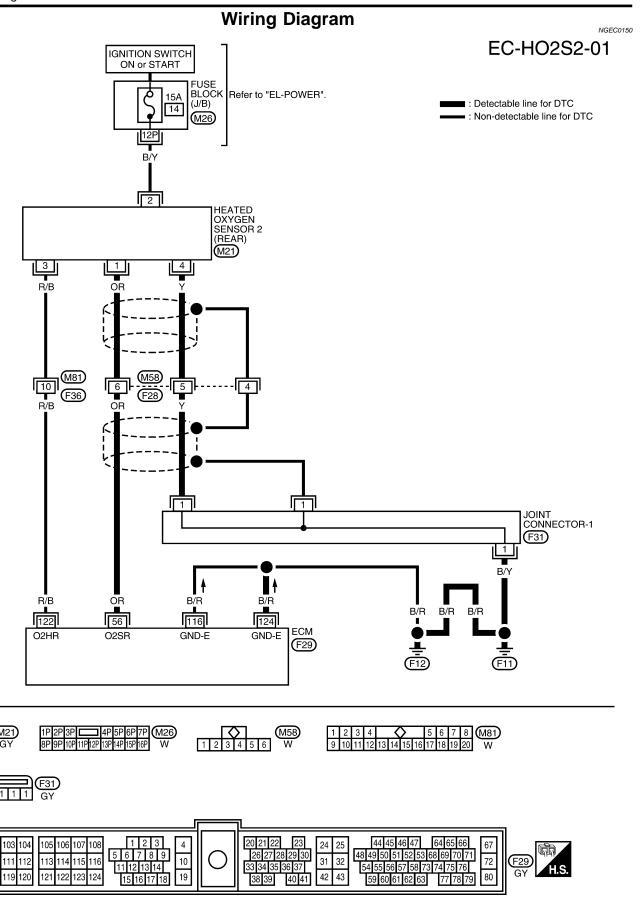
BR

ST

RS

BT

HA


SC

EL

 $\mathbb{D}\mathbb{X}$

109

KA24DE

LEC477

RETIGHTEN GROUND SCREWS

2. Loosen and retighten engine ground screws.

1. Turn ignition switch OFF.

KA24DEDiagnostic Procedure

Diagnostic Procedure

Engine ground (F11)

Air duct

GO TO 2.

Engine ground F12

Vehicle

front

NGEC0151

MA

EM

LC

EC

FE

CL

SEF325V

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

EC-241

KA24DE

Diagnostic Procedure (Cont'd)

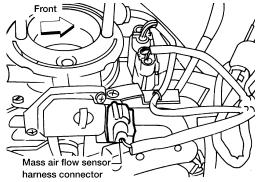
CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

2

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

WORK SUPP	ORT	
SELF-LEARNING CONT		B1 100%
		100%
CLEAR		
CLEAR		


SEF215Z

4. Run engine for at least 10 minutes at idle speed.

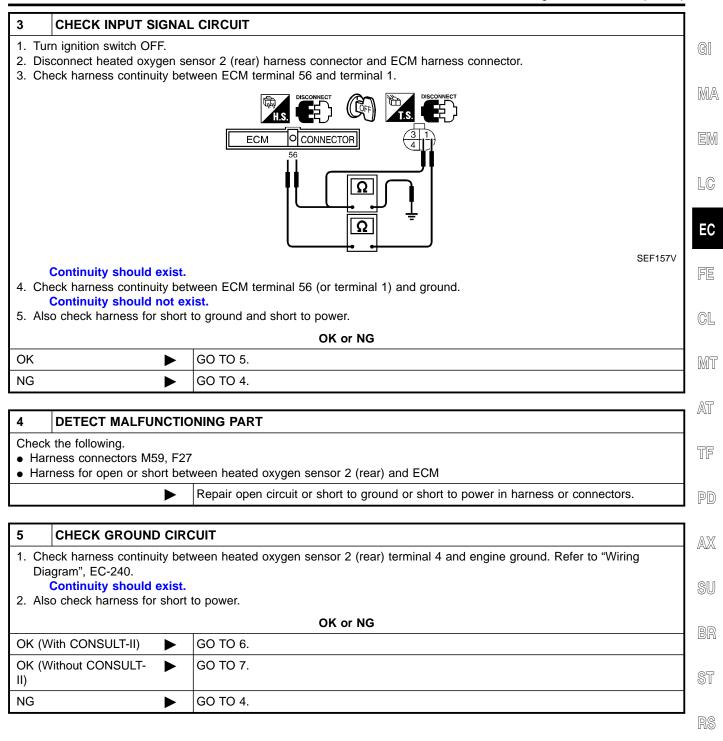
Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.

AEC131A

- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC P0100 is displayed.
- 6. Erase the 1st trip DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-79.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.


Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Yes or No

Yes	Perform trouble diagnosis for DTC P0172. Refer to EC-287.
No •	GO TO 3.

KA24DE

Diagnostic Procedure (Cont'd)

 $\mathbb{D}\mathbb{X}$

BT

HA

SC

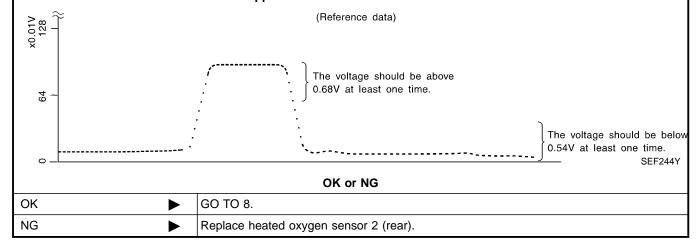
KA24DE

Diagnostic Procedure (Cont'd)

6 CHECK HEATED OXYGEN SENSOR 2 (REAR)

(P) With CONSULT-II

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.
- 4. Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.


ACTIVE TEST			
FUEL INJECTION	25 %		
MONITOR			
ENG SPEED	XXX rpm		
HO2S1 (B1)	xxx v		
HO2S2 (B1)	xxx v		
HO2S1 MNTR (B1)	RICH		
HO2S2 MNTR (B1)	RICH		

SEF662Y

"HO2S2 (B1)" should be above 0.56V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)" should be below 0.54V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

KA24DE

GI

MA

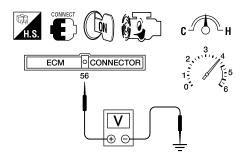
EC

MT

AT

TF

PD


AX

Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 2 (REAR)

Without CONSULT-II

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminals 56 [Heated oxygen sensor 2 (rear) signal] and ECM ground.

AEC874A

4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times. (Depress and release accelerator pedal as soon as possible.)

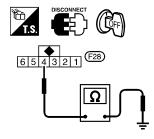
The voltage should be above 0.56V at least once.

If the voltage is above 0.56V at step 4, step 5 is not necessary.

5. Check the voltage when revving up to 5,000 rpm under no load. Or keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position.

The voltage should be below 0.54V at least once.

CAUTION:


- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK ►	GO TO 8.
NG ►	Replace heated oxygen sensor 2 (rear).

8 CHECK SHIELD CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect harness connectors F28.
- 3. Check harness continuity between harness connector F28 terminal 4 and ground.

SEF698Z

Continuity should exist.

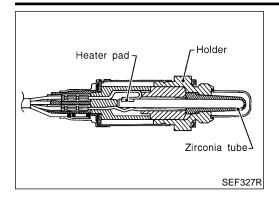
- 4. Also check harness for short to power.
- 5. Then reconnect harness connectors.

OK	or	NG

OK •	GO TO 10.
NG ►	GO TO 9.

 $\mathbb{D}\mathbb{X}$

KA24DE


Diagnostic Procedure (Cont'd)

9	DETECT MALFUNCTIONING PART	
Check the following.		
 Joint connector-1 (Refer to "HARNESS LAYOUT", <i>EL-254</i>.) Harness for open or short between harness connector F28 and engine ground 		
	•	Repair open circuit, short to ground or short to power in harness or connectors.

10	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	► INSPECTION END		

KA24DE

Component Description

Specification data are reference values.

Component Description

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

GI

LC

EC

GL

AT

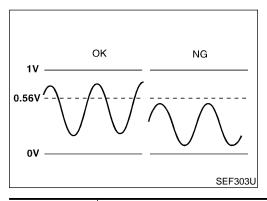
TF

PD

CONSULT-II Reference Value in Data Monitor Mode

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1)	Engine: After warming up	Revving engine from idle to 3,000	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1)			LEAN ←→ RICH

ECM Terminals and Reference Value


MT

NGEC0155

Specification data are reference values and are measured between each terminal and ground.

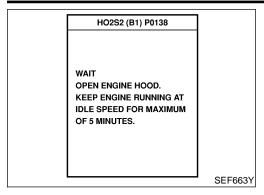
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

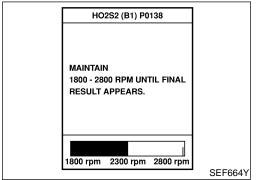
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
56	OR	Heated oxygen sensor 2 (rear)	 [Engine is running] After warming up to normal operating temperature and revving engine from idle to 3,000 rpm quickly 	0 - Approximately 1.0V

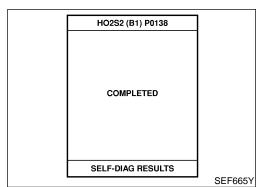
On Board Diagnosis Logic

NGEC0156 The heated ox time between (front). The ox causes the lo heated oxyger mum voltage of ing conditions

exygen sensor 2 (rear) has a much longer switching	_
rich and lean than the heated oxygen sensor 1	
xygen storage capacity before the three way catalyst	2
onger switching time. To judge the malfunctions of	
en sensor 2 (rear), ECM monitors whether the maxi-	
of the sensor is sufficiently high during various driv-	S
s such as fuel-cut.	


DTC No.	Malfunction is detected when	Check Items (Possible Cause)	_ 81
P0138	The maximum voltage from the sensor does not reach the specified voltage.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 (rear) Fuel pressure 	HA
		InjectorsIntake air leaks	SC -


EL

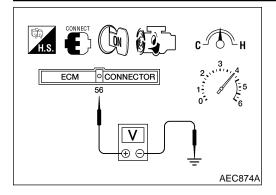

KA24DE

NGEC0157

On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.


TESTING CONDITION:

Open engine hood before conducting following procedure With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- Make sure the "COOLANT TEMP/S" is more then 70°C (158°F).
- Select "HO2S1 (B1) P0138", of "HO2S2" in "DTC WORK SUP-PORT" mode with CONSULT-II.
- 7) Start engine and follow the instructions of CONSULT-II.
- 8) Make sure the "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If NG is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-251.
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- Stop engine and cool down "COOLANT TEMP/SE" to less then 70°C (158°F).
- b) Turn ignition switch ON.
- c) Select "DATA MONITOR" mode with CONSULT-II.
- d) Start engine.
- e) Perform from step 6) again when the "COOLANT TEMP/S" reach to 70°C (158°F).

KA24DE

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the rear heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

GI

CAUTION:

Always drive vehicle at a safe speed.

⊗ Without CONSULT-II

- Start engine and drive vehicle at a speed of 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminals 56 [Heated oxygen sensor 2 (rear) signal] and ECM ground.
- Check the voltage when revving engine up to 4,000 rpm under no load at least 10 times.
 (Depress and release accelerator pedal as soon as possible.)
 - The voltage should be above 0.56V at least once during this procedure.
 - If the voltage can be confirmed in step 4, step 5 is not necessary.
- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position.
 - The voltage should be above 0.56V at least once during this procedure.
- 6) If NG, go to "Diagnostic Procedure", EC-251.

. .

MA

EC

FE

CL

.

MT

AT

TF

PD

AX

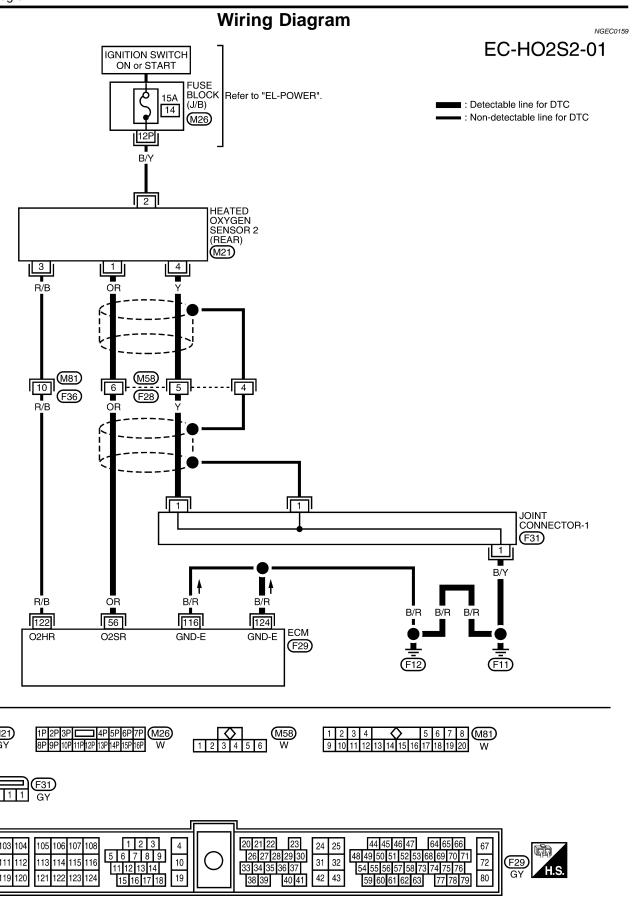
SU

BR

ST

RS

BT


HA

SC

EL

109

KA24DE

LEC477

1. Turn ignition switch OFF.

KA24DE Diagnostic Procedure

Diagnostic Procedure

NGEC0160 GI MA EM LC EC

RETIGHTEN GROUND SCREWS 2. Loosen and retighten engine ground screws. Engine ground (F11) Engine ground F12 Vehicle Air duct front SEF325V GO TO 2.

FE

CL

MT

AT

PD

TF

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

KA24DE

Diagnostic Procedure (Cont'd)

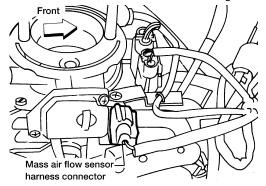
CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

2

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

WORK SUPP	ORT	
SELF-LEARNING CONT		B1 100%
		100 /8
CLEAR		·


SEF215Z

4. Run engine for at least 10 minutes at idle speed.

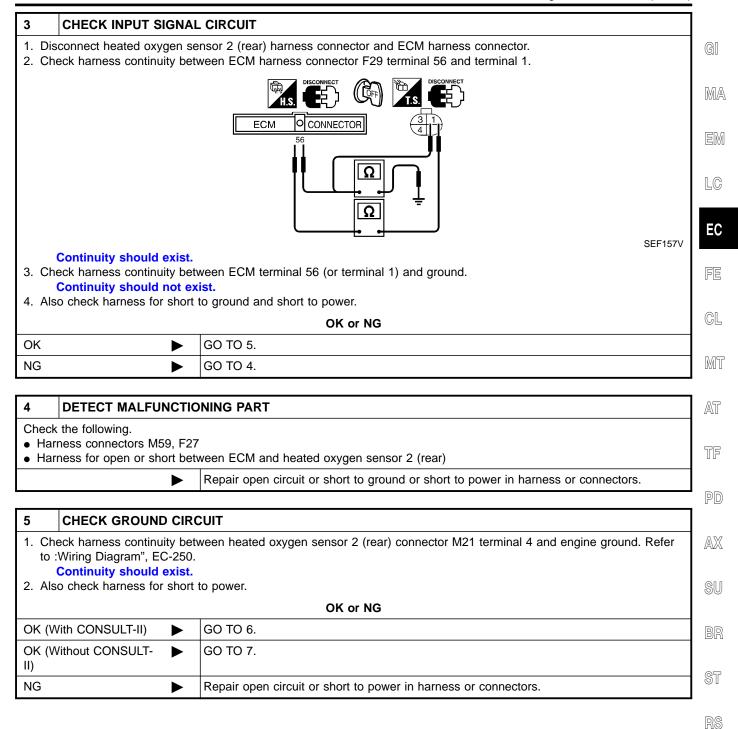
Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.

AEC131A

- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC P0100 is displayed.
- 6. Erase the 1st trip DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-79.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.


Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Yes or No

Yes	Perform trouble diagnosis for DTC P0171. Refer to EC-280.
No >	GO TO 3.

KA24DE

Diagnostic Procedure (Cont'd)

 $\mathbb{D}\mathbb{X}$

BT

HA

SC

KA24DE

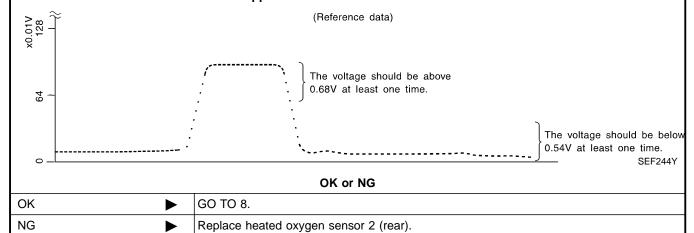
Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 2 (REAR)

(P) With CONSULT-II

6

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.
- 4. Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.


ACTIVE TEST			
FUEL INJECTION	N 25 %		
MONITOR			
ENG SPEED	XXX rpm		
HO2S1 (B1) XXX			
HO2S2 (B1)	xxx v		
HO2S1 MNTR (B1)	RICH		
HO2S2 MNTR (B1) RICH			

SEF662Y

"HO2S2 (B1)" should be above 0.56V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)" should be below 0.54V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

KA24DE

GI

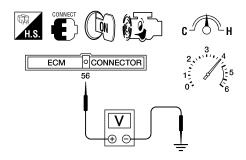
MA

EC

MT

AT

TF


PD

Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 2 (REAR)

⋈ Without CONSULT-II

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminals 56 [Heated oxygen sensor 2 (rear) signal] and ECM ground.

AEC874A

4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times. (Depress and release accelerator pedal as soon as possible.)

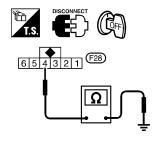
The voltage should be above 0.56V at least once.

If the voltage is above 0.56V at step 4, step 5 is not necessary.

5. Check the voltage when revving up to 5,000 rpm under no load. Or keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "O/D" OFF (A/T).

The voltage should be below 0.54V at least once.

CAUTION:


- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 8.
NG •	Replace heated oxygen sensor 2 (rear).

8 CHECK SHIELD CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect harness connectors F28.
- 3. Check harness continuity between harness connector F28 terminal 4 and ground.

SEF698Z

Continuity should exist.

- 4. Also check harness for short to power.
- 5. Then reconnect harness connectors.

OK c	r N	G
------	-----	---

OK ▶	GO TO 10.
NG ►	GO TO 9.

BT

SC

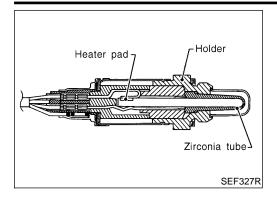
KA24DE

Diagnostic Procedure (Cont'd)

9	DETECT MALFUNCTIONING PART		
Check	Check the following.		
Join	• Joint connector-1 (Refer to "HARNESS LAYOUT", <i>EL-244</i> .)		
Hari	 Harness for open or short between harness connector F28 and engine ground 		
	•	Repair open circuit, short to ground or short to power in harness or connectors.	

10	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	► INSPECTION END		

KA24DE


GI

MA

LC

EC

Component Description

Component Description

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

NOFCOACO

Specification data are reference values.

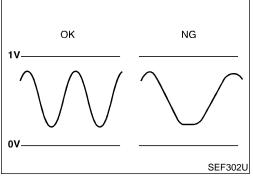
MONITOR ITEM	CONDITION		SPECIFICATION	FE
HO2S2 (B1)		Revving engine from idle to 3,000	0 - 0.3V ←→ Approx. 0.6 - 1.0V	
HO2S2 MNTR (B1)	Engine: After warming up	rpm	LEAN ←→ RICH	CL

ECM Terminals and Reference Value

NGEC0164

AT

TF


PD

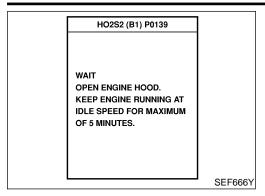
Specification data are reference values and are measured between each terminal and ground.

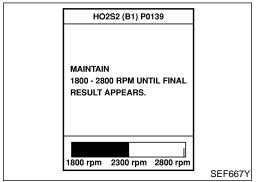
CAUTION:

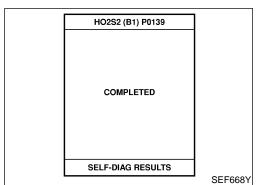
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM CONDITION		DATA (DC Voltage)
56	OR	Heated oxygen sensor 2 (rear)	 [Engine is running] After warming up to normal operating temperature and revving engine from idle to 3,000 rpm 	0 - Approximately 1.0V

On Board Diagnosis Logic


The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether the switching response of the sensor's voltage is faster than specified during various driving conditions such as fuel-cut.


DTC No.	Malfunction is detected when	Check Items (Possible Cause)	- B1
P0139	It takes more than the specified time for the sensor to respond between rich and lean.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 (rear) Fuel pressure Injectors Intake air leaks 	 H <i>l</i> S(


KA24DE

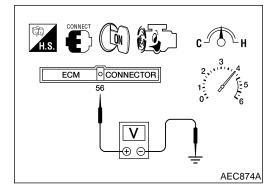
NGEC0166

On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.


TESTING CONDITION:

Open engine hood before conducting following procedure With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- Make sure the "COOLANT TEMP/S" is more then 70°C (158°F).
- Select "HO2S2 (B1) P0139", of "HO2S2" in "DTC WORK SUP-PORT" mode with CONSULT-II.
- Start engine and follow the instructions of CONSULT-II.
- 8) Make sure the "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If NG is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-261.
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- Stop engine and cool down "COOLANT TEMP/SE" to less then 70°C (158°F).
- b) Turn ignition switch ON
- c) Select "DATA MONITOR" mode with CONSULT-II.
- d) Start engine.
- Perform from step 6) again when the "COOLANT TEMP/S" reach to 70°C (158°F).

KA24DE

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 2 (rear) circuit. During this check, a 1st trip DTC might not be confirmed.

/nt Gl

CAUTION:

Always drive vehicle at a safe speed.

⊗ Without CONSULT-II

- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminals 56 [Heated oxygen sensor 2 (rear) signal] and engine ground.
- 4) Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should change at more than 0.06V for 1 second during this procedure.
 - If the voltage can be confirmed in step 4, step 5 is not necessary.
- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position.
 - The voltage should change at more than 0.06V for 1 second during this procedure.
- 6) If NG, go to "Diagnostic Procedure", EC-261.

MA

EC

CL

MT

AT

TF PD

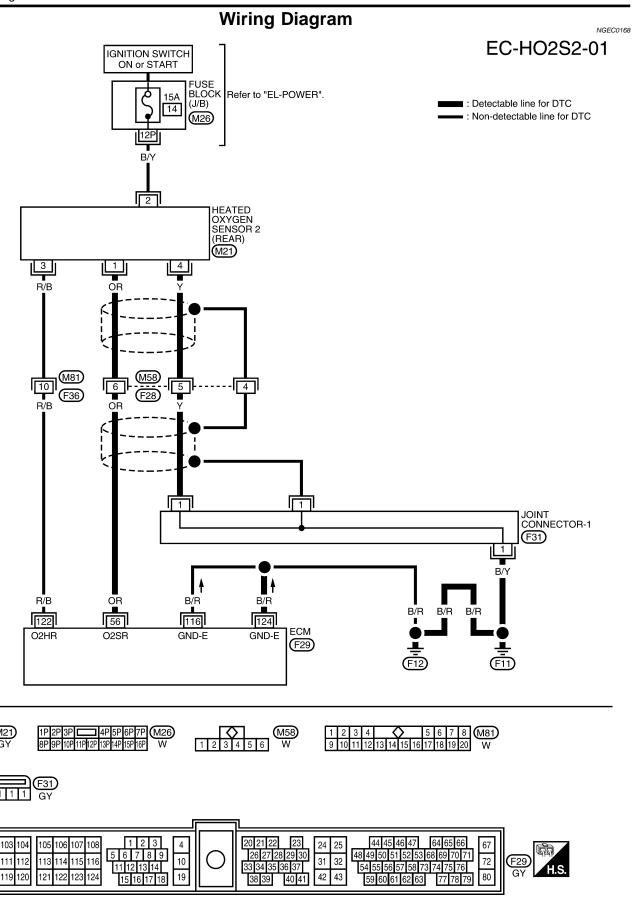
SU

BR

ST

KS

BT


HA

SC

EL

109

KA24DE

LEC477

KA24DE Diagnostic Procedure

GI

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

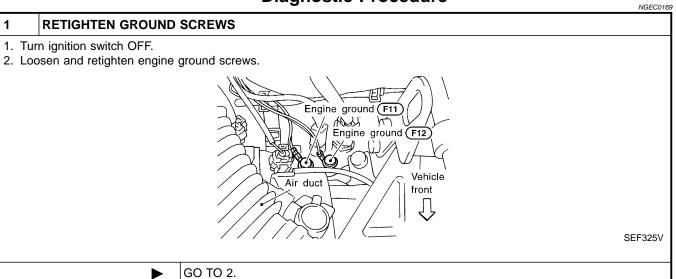
 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS


BT

HA

SC

EL

Diagnostic Procedure

KA24DE

Diagnostic Procedure (Cont'd)

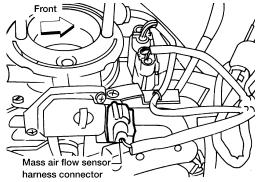
CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

2

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

WORK SUPP	ORT	
SELF-LEARNING CONT		B1 100%
		100%
CLEAR		


SEF215Z

4. Run engine for at least 10 minutes at idle speed.

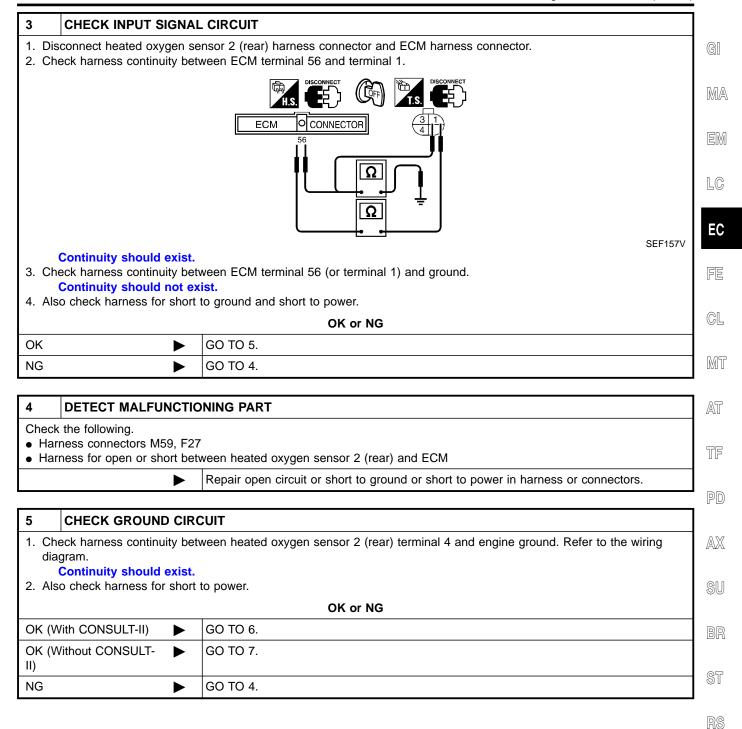
Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.

AEC131A

- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC P0100 is displayed.
- 6. Erase the 1st trip DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-79.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.


Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Yes or No

Yes	>	Perform trouble diagnosis for DTC P0171 or P0172. Refer to EC-280 or EC-287.
No		GO TO 3.

KA24DE

Diagnostic Procedure (Cont'd)

 $\mathbb{D}\mathbb{X}$

BT

HA

SC

KA24DE

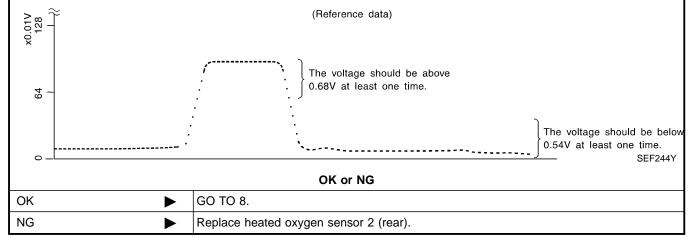
Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 2 (REAR)

(P) With CONSULT-II

6

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.
- 4. Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.


ACTIVE TEST			
FUEL INJECTION	TION 25 %		
MONITOF	l		
ENG SPEED	XXX rpm		
HO2S1 (B1)	xxx v		
HO2S2 (B1)	xxx v		
HO2S1 MNTR (B1) RICI			
HO2S2 MNTR (B1)	RICH		

SEF662Y

"HO2S2 (B1)" should be above 0.56V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)" should be below 0.54V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

KA24DE

GI

MA

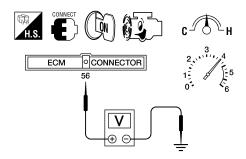
EC

MT

AT

TF

PD


AX

Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 2 (REAR)

⋈ Without CONSULT-II

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminals 56 [Heated oxygen sensor 2 (rear) signal] and engine ground.

AEC874A

4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times. (Depress and release accelerator pedal as soon as possible.)

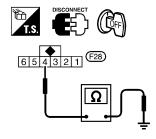
The voltage should be above 0.56V at least once.

If the voltage is above 0.56V at step 4, step 5 is not necessary.

5. Check the voltage when revving up to 5,000 rpm under no load. Or keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position.

The voltage should be below 0.54V at least once.

CAUTION:


- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK ►	GO TO 8.
NG ►	Replace heated oxygen sensor 2 (rear).

8 CHECK SHIELD CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect harness connectors F28.
- 3. Check harness continuity between harness connector F28 terminal 4 and ground.

SEF698Z

Continuity should exist.

- 4. Also check harness for short to power.
- 5. Then reconnect harness connectors.

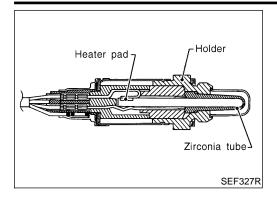
OK	or	NG

OK •	GO TO 10.
NG ►	GO TO 9.

DX

SC

KA24DE


Diagnostic Procedure (Cont'd)

9	DETECT MALFUNCTIONING PART		
Check	Check the following.		
	Joint connector-1 (Refer to "HARNESS LAYOUT", EL-254.)		
• Har	 Harness for open or short between harness connector F28 and engine ground 		
	Repair open circuit, short to ground or short to power in harness or connectors.		

10	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	► INSPECTION END		

KA24DE

Component Description

Component Description

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

MA

GI

LC

EC

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

				•
MONITOR ITEM	CONDITION		SPECIFICATION	
HO2S2 (B1)		Revving engine from idle to 3,000	0 - 0.3V ←→ Approx. 0.6 - 1.0V	
HO2S2 MNTR (B1)	Engine: After warming up	rnm	LEAN ←→ RICH	. (

ECM Terminals and Reference Value

MT NGEC0173

AT

TF

PD

Specification data are reference values and are measured between each terminal and ground.

DTC No.

P0140

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

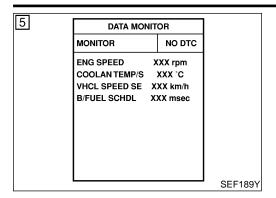
TERMI- NAL NO.	NAL WIRE ITEM		CONDITION	DATA (DC Voltage)
56	OR	Heated oxygen sensor 2 (rear)	 [Engine is running] After warming up to normal operating temperature and revving engine from idle to 3,000 rpm 	0 - Approximately 1.0V

On Board Diagnosis Logic

The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether or not the voltage is too high during various driving conditions such as fuelcut.

SEF305UA		RS
Malfunction is detected when	Check Items (Possible Cause)	- BT
An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)	- HA

Heated oxygen sensor 2 (rear)


HA

SC

KA24DE

NGEC0175

DTC Confirmation Procedure

DTC Confirmation Procedure

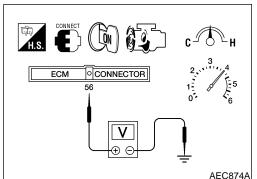
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

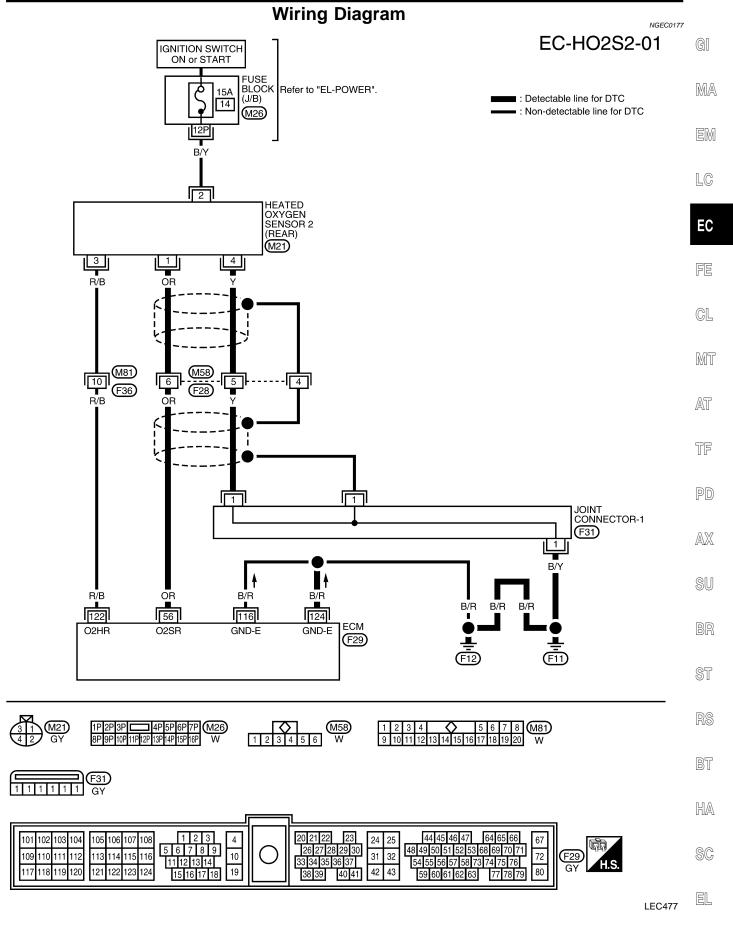
(P) With CONSULT-II

NOTE:

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Maintain the following conditions for at least 5 consecutive seconds.

ENG SPEED	1,100 - 3,600 rpm
VHCL SPEED SE	32 - 120 km/h (20 - 75 MPH)
B/FUEL SCHDL	3.5 - 15.5 msec
COOLAN TEMP/S	More than 70°C (158°F)
Selector lever	Suitable position


 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-270.

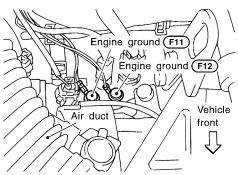

Use this procedure to check the overall function of the rear heated oxygen sensor circuit. During this check, a 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeter probes between ECM terminals 56 [Heated oxygen sensor 2 (rear) signal] and ECM ground.
- 4) Check the voltage after revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be below 1.4V during this procedure.
- 5) If NG, go to "Diagnostic Procedure", EC-270.

EC-269

KA24DE

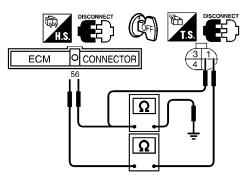

Diagnostic Procedure

Diagnostic Procedure

NGEC0178

RETIGHTEN GROUND SCREWS Turn ignition switch OFF.

2. Loosen and retighten engine ground screws.



SEF325V

■ GO TO 2.

2 CHECK INPUT SIGNAL CIRCUIT

- 1. Disconnect heated oxygen sensor 2 (rear) harness connector and ECM harness connector.
- 2. Check harness continuity between ECM terminal 56 and terminal 1.

SEF157V

Continuity should exist.

- 3. Check harness continuity between ECM terminal 56 (or terminal 1) and ground.

 Continuity should not exist.
- 4. Also check harness for short to ground and short to power.

OK or NG

OK >	GO TO 4.
NG ►	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Harness for open or short between heated oxygen sensor 2 (rear) and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

KA24DE

Diagnostic Procedure (Cont'd)

4	CHECK GROUND CIRC	CUIT	1
Dia	eck harness continuity beto gram", EC-269. Continuity should exist. o check harness for short	ween heated oxygen sensor 2 (rear) terminal 4 and engine ground. Refer to "Wiring to power.	GI MA
		OK or NG	
OK	>	GO TO 5.	
NG	•	GO TO 4.	

5	CHECK HARNESS	s co	NNECTOR	l ^{LC}
	k heated oxygen sens r should not exist.	or 2	(rear) harness connector for water.	EC
			OK or NG	
OK (V	Vith CONSULT-II)		GO TO 6.	FE
OK (V II)	Vithout CONSULT-	>	GO TO 7.	CL
NG			Repair or replace harness connector.	

MT

AT

TF PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

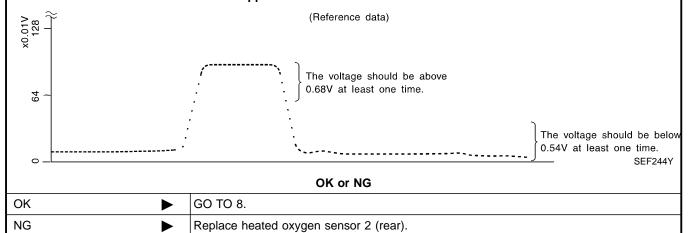
KA24DE

Diagnostic Procedure (Cont'd)

6 CHECK HEATED OXYGEN SENSOR 2 (REAR)

(P) With CONSULT-II

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.
- 4. Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

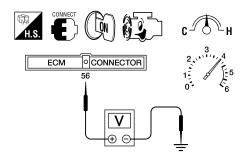

ACTIVE TEST		
FUEL INJECTION	25 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S1 (B1)	xxx v	
HO2S2 (B1)	xxx v	
HO2S1 MNTR (B1)	RICH	
HO2S2 MNTR (B1)	RICH	
TIO232 MINTA (B1)	RICH	

SEF662Y

"HO2S2 (B1)" should be above 0.56V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)" should be below 0.54V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.


KA24DE

Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 2 (REAR)

Without CONSULT-II

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminals 56 [Heated oxygen sensor 2 (rear) signal] and ECM ground.

AEC874A

4. Check the voltage when revving up to 4,000 rpm under no load at least 10 times. (Depress and release accelerator pedal as soon as possible.)

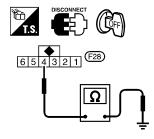
The voltage should be above 0.56V at least once.

If the voltage is above 0.56V at step 4, step 5 is not necessary.

5. Check the voltage when revving up to 5,000 rpm under no load. Or keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position.

The voltage should be below 0.54V at least once.

CAUTION:


- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK ►	GO TO 8.
NG ►	Replace heated oxygen sensor 2 (rear).

8 CHECK SHIELD CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect harness connectors F28.
- 3. Check harness continuity between harness connector F28 terminal 4 and ground.

SEF698Z

Continuity should exist.

- 4. Also check harness for short to power.
- 5. Then reconnect harness connectors.

OK	or	NG

OK •	GO TO 10.
NG ►	GO TO 9.

 $\mathbb{D}\mathbb{X}$

EC-273

GI

MA

LC

EC

| | |

FE

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

KA24DE

Diagnostic Procedure (Cont'd)

9	DETECT MALFUNCTIONING PART		
Join	Check the following. • Joint connector-1 (Refer to "HARNESS LAYOUT", <i>EL-254</i> .) • Harness for open or short between harness connector F28 and engine ground		
	Repair open circuit, short to ground or short to power in harness or connectors.		

10	CHECK INTERMITTENT INCIDENT		
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.			
	► INSPECTION END		

DTC P0141 HEATED OXYGEN SENSOR 2 HEATER (REAR)

	Description
SYSTEM DESCRIPTION	

NGEC0180

NGEC0180S01

NGEC0180S02

Note		NGEC0180301		
Sensor	Input Signal to ECM	ECM func- tion	Actuator	MA
Camshaft position sensor	Engine speed	Heated oxygen sensor 2 heater (rear) con-	Heated oxygen sensor 2 heater (rear)	
		trol		

The ECM performs ON/OFF control of the heated oxygen sensor 2 (rear) heater corresponding to the engine speed.

EC

OPERATION

Engine condition	Heated oxygen sensor 2 heater (rear)
Ignition switch ON Engine stopped	OFF
Engine is running.	ON

FE

MT

GL

CONSULT-II Reference Value in Data Monitor Mode

NGEC0181

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S2 HTR (B1)	• Engine speed: Idle [After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more]	ON
	Ignition switch ON (Engine stopped)	OFF

TF

PD

AT

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NGEC0182

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

SU

ST

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	-
122	R/B	Heated oxygen sensor 2	[Engine is running] ● After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more	Approximately 0.4V	_) 7
		heater (rear)	[Ignition switch "ON"] ● Engine stopped	BATTERY VOLTAGE (11 - 14V)	- [

On Board Diagnosis Logic

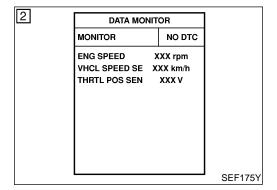
DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0141	The current amperage in the heated oxygen sensor 2 heater (rear) circuit is out of the normal range. [An improper voltage drop signal is sent to ECM through the heated oxygen sensor 2 heater (rear).]	Harness or connectors [The heated oxygen sensor 2 heater (rear) circuit is open or shorted.] Heated oxygen sensor 2 heater (rear)

EL

SC

HA

NGEC0184


DTC Confirmation Procedure

NOTE:

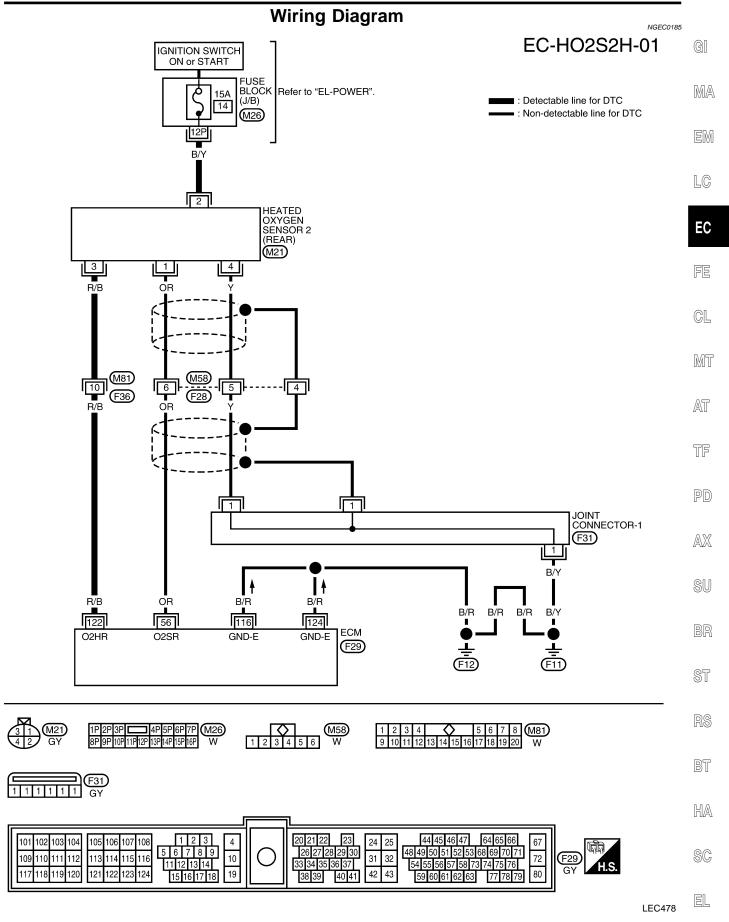
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is in between 10.5V at idle.

(P) With CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-278.

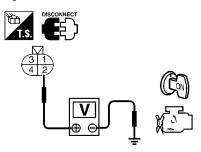

With GST

-) Start engine.
- Drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 3) Stop vehicle and let engine idle for at least 6 seconds.
- 4) Turn ignition switch OFF and wait at least 10 seconds.
- 5) Start engine.
- 6) Drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes
- Stop vehicle and let engine idle for at least 6 seconds.
- 8) Select "MODE 3" with GST.
- 9) If DTC is detected, go to "Diagnostic Procedure", EC-278.

When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II or ECM (Diagnostic Test Mode II) because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II or ECM (Diagnostic Test Mode II) is recommended.

DTC P0141 HEATED OXYGEN SENSOR 2 HEATER (REAR)

DTC P0141 HEATED OXYGEN SENSOR 2 HEATER (REAR) KA24DE


Diagnostic Procedure

Diagnostic Procedure

NGEC0186

1 CHECK POWER SUPPLY

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 2 (rear) harness connector.
- 3. Turn ignition switch ON.
- 4. Check voltage between terminal 2 and ground.

Voltage: Battery voltage

SEF218W

OK or NG
GO TO 3.

OK	>	GO TO 3.
NG	•	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- 15A fuse
- Harness for open or short between heated oxygen sensor 2 (rear) and 15A fuse
 - Repair harness or connectors.

3 CHECK GROUND CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between heated oxygen sensor 2 (rear) terminal 3 and ECM terminal 122. Refer to the wiring diagram.

Continuity should exist.

4. Also check harness for short to power.

OK	or	NG
----	----	----

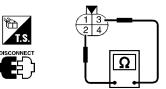
OK ▶	GO TO 5.
NG ►	GO TO 4.

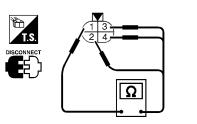
4 DETECT MALFUNCTIONING PART

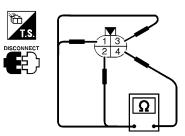
Check the following.

- Harness connectors M58, F28
- Harness for open or short between heated oxygen sensor 2 (rear) heater and ECM
 - Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0141 HEATED OXYGEN SENSOR 2 HEATER (REAR) KA24DE


Diagnostic Procedure (Cont'd)


CHECK HEATED OXYGEN SENSOR 2 HEATER (REAR)


Check the following.

5

1. Check resistance between terminals 2 and 3.

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

2. Check continuity.

Terminal No.	Continuity
1 and 2, 3, 4	No
4 and 1, 2, 3	INO

CAUTION:

• Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

• Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

ΟK	or	NG	
----	----	----	--

OK •	GO TO 6.
NG 🕨	Replace heated oxygen sensor 2 (rear).

6	CHECK INTERMITTENT	T INCIDENT	[
Perforr	m "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-142.	
	>	INSPECTION END	[

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

SEF221W

MTBL0330

PD

SU

ST

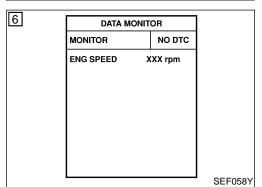
BT

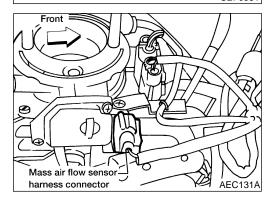
HA

SC

EL

On Board Diagnosis Logic


With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensor 1 (front). The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios.


In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Heated oxygen sensor 1 (front)	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection & mixture ratio	Injectors

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0171	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too lean.) 	 Intake air leaks Heated oxygen sensor 1 (front) Injectors Exhaust gas leaks Incorrect fuel pressure Lack of fuel Mass air flow sensor

WORK SUPPORT SELF-LEARNING CONT B1 100% CLEAR SEF215Z

DTC Confirmation Procedure

NGFC0189

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON and select "SELF-LEARN CONTROL" in "WORK SUPPORT" mode with CONSULT-II.
- 4) Clear the self-learning control coefficient by touching "CLEAR".
- Select "DATA MONITOR" mode with CONSULT-II.
- 6) Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-283.
- 7) If it is difficult to start engine at step 6, the fuel injection system has a malfunction.
- 8) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-283. If engine does not start, visually check for exhaust and intake air leak.

With GST

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 3 seconds at idle speed.
- 4) Stop engine and reconnect mass air flow sensor harness connector.
- Select "MODE 7" with GST. Make sure 1st trip DTC P0100 is detected.
- 6) Select "MODE 4" with GST and erase the 1st trip DTC P0100.

DTC P0171 FUEL INJECTION SYSTEM FUNCTION (LEAN SIDE)

KA24DE

DTC Confirmation Procedure (Cont'd)

- 7) Start engine again and run it for at least 10 minutes at idle speed.
- 8) Select "MODE 7" with GST. The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-283.
- 9) If it is difficult to start engine at step 8, the fuel injection system has a malfunction.
- 10) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-283. If engine does not start, visually check for exhaust and intake air leak.

MA

EM

LC

EC

FE

GL MT

AT

PD

TF

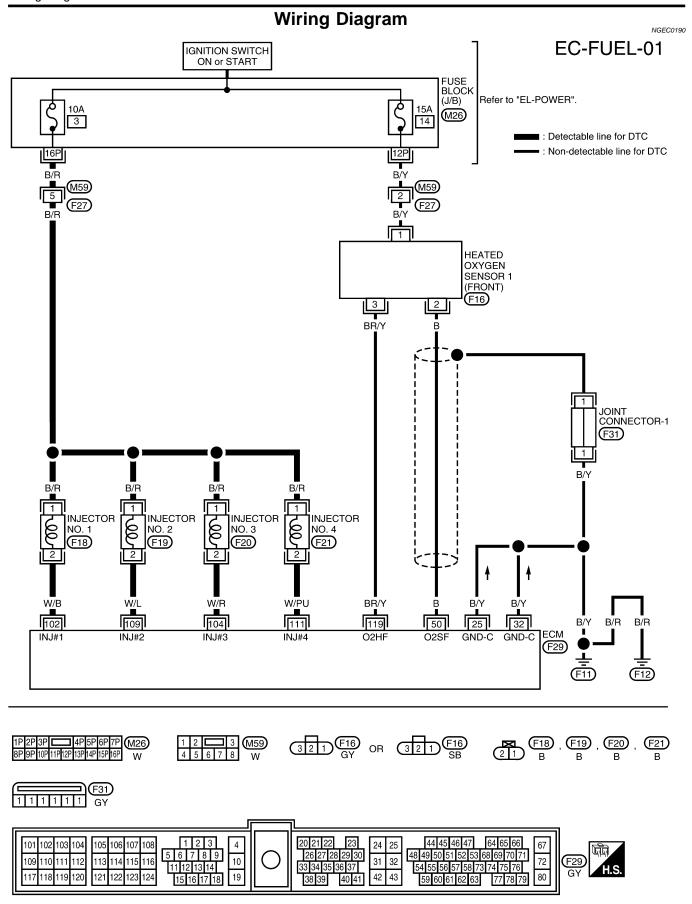
AX

SU

BR

ST

BT


HA

SC

EL

 \mathbb{N}

KA24DE

WEC938

DTC P0171 FUEL INJECTION SYSTEM FUNCTION (LEAN SIDE)

KA24DEDiagnostic Procedure

Diagnostic Procedure

NGEC0191

GI

MA

EM

LC

EC

FE

CL

1	CHECK EXHAUST AIR LEAK
	art engine and run it at idle.
2. Lis	ten for an exhaust air leak before three way catalyst.
	SEF099P

OK or NG

GO TO 2.

Repair or replace.

OK

NG

2	CHECK FOR INTAKE A	IR LEAK	MT
Listen	for an intake air leak betw	een the mass air flow sensor and the intake manifold. OK or NG	AT
ОК	>	GO TO 3.	-
NG	>	Repair or replace.	TF

SU

BR

ST

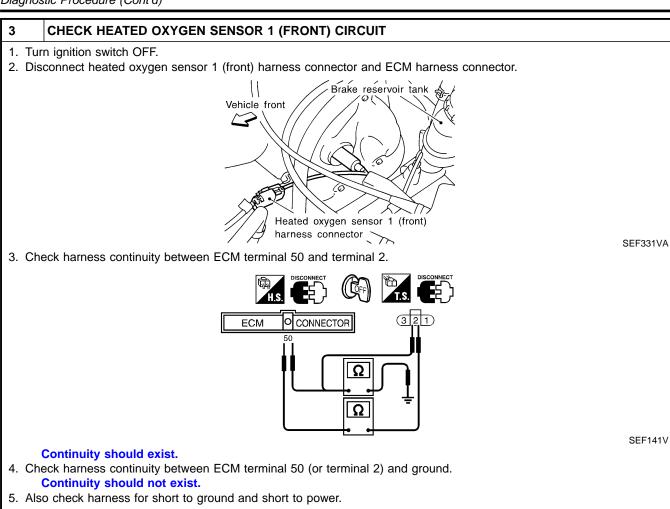
PD

 $\mathbb{A}\mathbb{X}$

RS

BT

HA


SC

EL

DTC P0171 FUEL INJECTION SYSTEM FUNCTION (LEAN SIDE)

KA24DE

Diagnostic Procedure (Cont'd)

OK	•	GO TO 4.	

OK		JGO 10 4.
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.

OK or NG

4	CHECK FUEL PRESSU	RE	
F	1. Release fuel pressure to zero. Refer to EC-51. 2. Install fuel pressure gauge and check fuel pressure. At idling: When fuel pressure regulator valve vacuum hose is connected. 235 kPa (2.4 kg/cm², 34 psi) When fuel pressure regulator valve vacuum hose is disconnected. 294 kPa (3.0 kg/cm², 43 psi)		
	OK or NG		
OK	>	GO TO 6.	
NG	>	GO TO 5.	

DETECT MALFUNCTIONING PART Check the following. • Fuel pump and circuit Refer to EC-576. • Fuel pressure regulator Refer to EC-52. • Fuel lines Refer to "ENGINE MAINTENANCE", MA-19. • Fuel filter for clogging Repair or replace.

DTC P0171 FUEL INJECTION SYSTEM FUNCTION (LEAN SIDE)

KA24DE

Diagnostic Procedure (Cont'd)

6 CHECK MASS AIR FLOW SENSOR (a) With CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II. at idling: 0.9 - 5.8 g-m/sec at 2,500 rpm: 7.5 - 13.2 g-m/sec (a) With GST 1. Start engine and warm it up to normal operating temperature. 2. Check mass air flow sensor signal in MODE 1 with GST. at idling: 0.9 - 5.8 g-m/sec at 2,500 rpm: 7.5 - 13.2 g-m/sec OK or NG

circuit or engine grounds. Refer to EC-150.

7	CHECK FUNCTION OF INJECTORS
---	-----------------------------

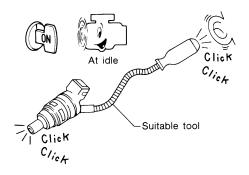
(P) With CONSULT-II

- 1. Install all parts removed.
- 2. Start engine.

OK NG

3. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.

GO TO 7.


ACTIVE TEST		
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
IACV-AAC/V	XXX step	

Check connectors for rusted terminals or loose connections in the mass air flow sensor

4. Make sure that each circuit produces a momentary engine speed drop.

Without CONSULT-II

- 1. Install all parts removed.
- 2. Start engine.
- 3. Listen to each injector operating sound.

Clicking noise should be heard.

OK or NG

OK •	>	GO TO 8.
NG •	•	Perform trouble diagnosis for "INJECTORS", EC-568.

G[

MA

LG

EC

. .

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SEF190Y

BR

ST

RS

BT

HA

MEC703B

SC

EL

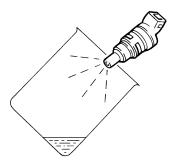
 \mathbb{Z}

DTC P0171 FUEL INJECTION SYSTEM FUNCTION (LEAN SIDE)

KA24DE

SEF595Q

Diagnostic Procedure (Cont'd)


8 REMOVE INJECTOR

- 1. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 2. Turn ignition switch OFF.
- Remove injector with fuel tube assembly. Refer to EC-52.
 Keep fuel hose and all injectors connected to injector gallery. The injector harness connectors should remain connected.

▶ GO TO 9.

9 CHECK INJECTOR

- 1. Disconnect all ignition coil harness connectors.
- 2. Place pans or saucers under each injector.
- 3. Crank engine for about 3 seconds. Make sure that fuel sprays out from injectors.

Fuel should be sprayed evenly for each cylinder.

OK or NG

OK •	GO TO 10.
NG ►	Replace injectors from which fuel does not spray out. Always replace O-ring with new one.

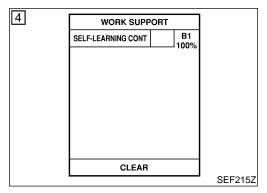
10	10 CHECK INTERMITTENT INCIDENT	
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.	
	► INSPECTION END	

DTC P0172 FUEL INJECTION SYSTEM FUNCTION (RICH SIDE)

On Board Diagnosis Logic

On Board Diagnosis Logic

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensor 1 (front). The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios.


In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

n n	Δ
IMI	A

Sensor	Input Signal to ECM	ECM func- tion	Actuator	
Heated oxygen sensor 1 (front)	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection & mixture ratio	Injectors	

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too rich.) 	 Heated oxygen sensor 1 (front) Injectors Exhaust gas leaks Incorrect fuel pressure Mass air flow sensor

MT

DATA MONITOR

NO DTC

XXX rpm

MONITOR

ENG SPEED

6

DTC Confirmation Procedure

NOTE: If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TF

(P) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON and select "SELF-LEARN CONTROL" in "WORK SUPPORT" mode with CONSULT-II.

- Clear the self-learning control coefficient by touching "CLEAR".
- 5) Select "DATA MONITOR" mode with CONSULT-II.

SU

Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0172 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-290.

If it is difficult to start engine at step 6, the fuel injection system has a malfunction.

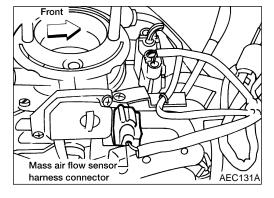
ST

Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-290. If engine does not start, remove ignition plugs and check for fouling, etc.

SEF058Y

- Start engine and warm it up to normal operating temperature. 1)
- 2) Turn ignition switch OFF and wait at least 5 seconds. 3) Disconnect mass air flow sensor harness connector. Then

HA


restart and run engine for at least 3 seconds at idle speed. Stop engine and reconnect mass air flow sensor harness con-

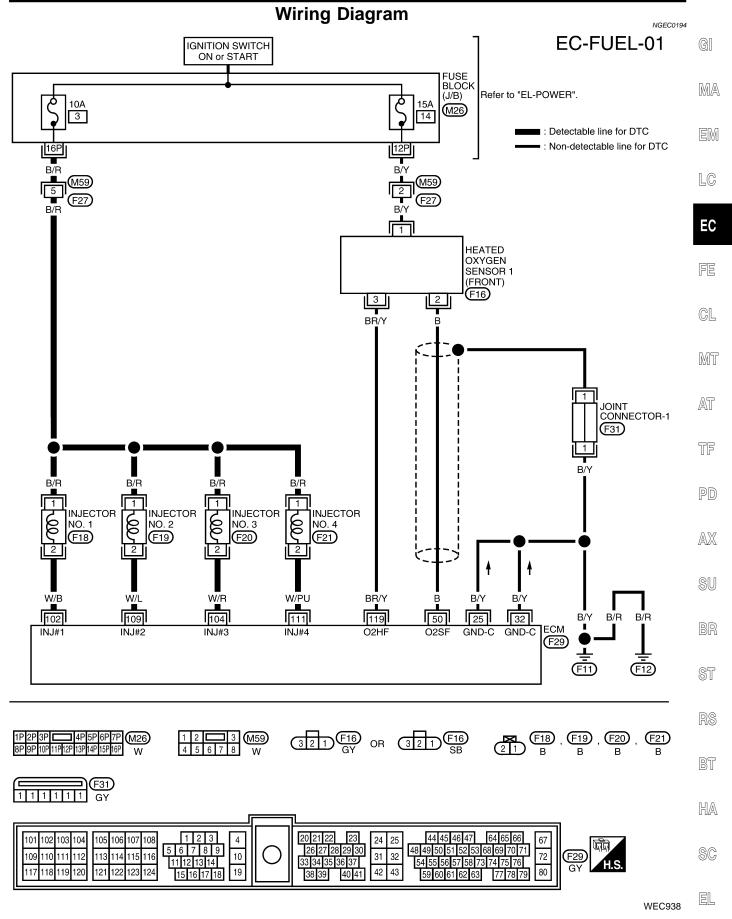
SC

EL

Select "MODE 7" with GST. Make sure 1st trip DTC P0100 is detected.

- nector. 5)
 - Select "MODE 4" with GST and erase the 1st trip DTC P0100.

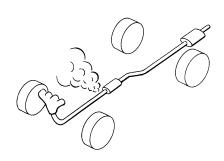
DTC P0172 FUEL INJECTION SYSTEM FUNCTION (RICH SIDE)


KA24DE

DTC Confirmation Procedure (Cont'd)

- 7) Start engine again and run it for at least 10 minutes at idle speed.
- 8) Select "MODE 7" with GST. The 1st trip DTC P0172 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-290.
- 9) If it is difficult to start engine at step 8, the fuel injection system has a malfunction.
- 10) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-290. If engine does not start, remove ignition plugs and check for fouling, etc.

DTC P0172 FUEL INJECTION SYSTEM FUNCTION (RICH SIDE)

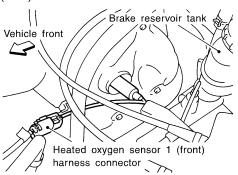

KA24DE

NGEC0195

Diagnostic Procedure

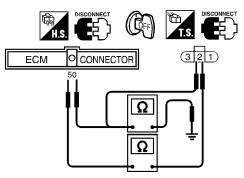
CHECK FOR EXHAUST AIR LEAK
 Start engine and run it at idle.

2. Listen for an exhaust air leak before three way catalyst.


SEF099P

OK or NG

OK	GO TO 2.
NG	Repair or replace.


2 CHECK HEATED OXYGEN SENSOR 1 (FRONT) CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 1 (front) harness connector and ECM harness connector.

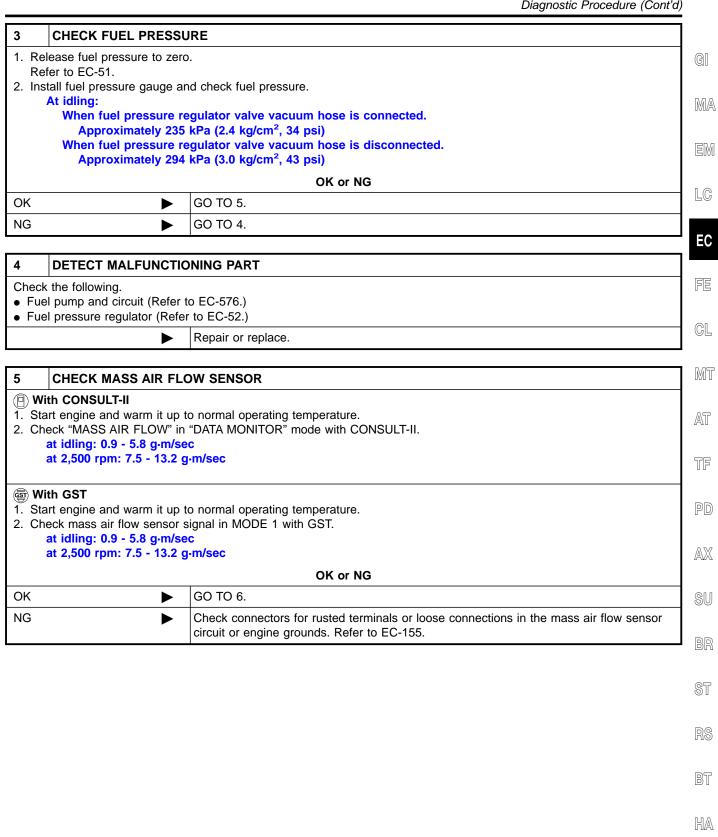
SEF331VA

3. Check harness continuity between ECM terminal 50 and terminal 2.

SEF141V

Continuity should exist.

4. Check harness continuity between ECM terminal 50 (or terminal 2) and ground. Continuity should not exist.


5. Also check harness for short to ground and short to power.

OK or NG

ОК		GO TO 3.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0172 FUEL INJECTION SYSTEM FUNCTION (RICH SIDE)

Diagnostic Procedure (Cont'd)

SC

DTC P0172 FUEL INJECTION SYSTEM FUNCTION (RICH SIDE)

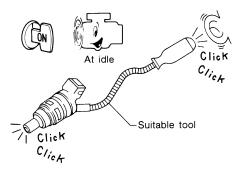
Diagnostic Procedure (Cont'd)

KA24DE

6 CHECK FUNCTION OF INJECTORS

(P) With CONSULT-II

- 1. Install all parts removed.
- 2. Start engine.
- 3. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.


ACTIVE TEST		
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
IACV-AAC/V	XXX step	

SEF190Y

4. Make sure that each circuit produces a momentary engine speed drop.

Without CONSULT-II

- 1. Install all parts removed.
- 2. Start engine.
- 3. Listen to each injector operating sound.

MEC703B

Clicking noise should be heard.

OK	or	Ν	G
----	----	---	---

OK •	GO TO 7.
NG Perform trouble diagnosis for "INJECTORS", EC-568.	

7 REMOVE INJECTOR

- 1. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 2. Turn ignition switch OFF.
- Remove injector assembly. Refer to EC-52.Keep fuel hose and all injectors connected to injector gallery.

► GO TO 8.

8 CHECK INJECTOR

- 1. Disconnect all injector harness connectors.
- 2. Disconnect all ignition coil harness connectors.
- 3. Prepare pans or saucers under each injectors.
- 4. Crank engine for about 3 seconds.

Make sure fuel does not drip from injector.

OK or NG

OK (Does not drip)		GO TO 9.
NG (Drips)	>	Replace the injectors from which fuel is dripping. Always replace O-ring with new one.

DTC P0172 FUEL INJECTION SYSTEM FUNCTION (RICH SIDE)

KA24DE

Diagnostic Procedure (Cont'd)

9 CHECK INTERMITTENT INCIDENT			
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
► INSPECTION END			

G[

MA

EM

LC

EC

_

FE

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

KA24DE

Component Description

Acceptable ĝ 1.0 0.8 0.4 0.2 0.1 0 20 40 60 80 100 (32) (68) (104) (140) (176) (212) Temperature °C (°F) SEF012P

Component Description

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Fluid temperature °C (°F)	Voltage* V	Resistance $k\Omega$
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} These data are reference values and are measured between ECM terminal 60 (Fuel tank temperature sensor) and ground.

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

NGEC0197

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0180	 An excessively high or low voltage is sent to ECM. Rationally incorrect voltage is sent to ECM, compared with the voltage signals from engine coolant temperature sensor and intake air temperature sensor. 	 Harness or connectors (The sensor circuit is open or shorted.) Fuel tank temperature sensor

KA24DE

=NGEC0198

DTC Confirmation Procedure

DATA MONITOR

MONITOR

NO DTC

ENG SPEED XXX rpm

COOLAN TEMP/S XXX 'C

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 10 seconds.
 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-297.

If the result is OK, go to following step.

NOTE:

If "COOLAN TEMP/S" is already less than 60°C (140°F) before step 4), the result will be OK. If "COOLAN TEMP/S" is above 60°C (140°F), go to the following step.

- 4) Check "COOLAN TEMP/S" signal.

 If the signal is less than 60°C (140°F), the result will be OK.

 If the signal is above 60°C (140°F), go to the following step.
- 5) Cool engine down until "COOLAN TEMP/S" signal is less than 60°C (140°F).
- Wait at least 10 seconds.
- 7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-297.

With GST

Follow the procedure "With CONSULT-II".

EC

MA

FE

GL

MT

AT

TF PD

SU

BR

ST

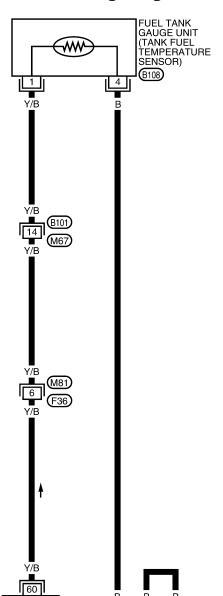
RS

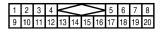
BT

HA

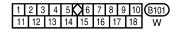
SC

EL

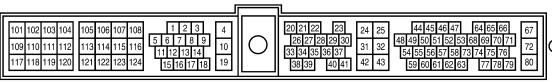

 $\mathbb{D}\mathbb{X}$


Wiring Diagram

NGEC0199


EC-FTTS-01

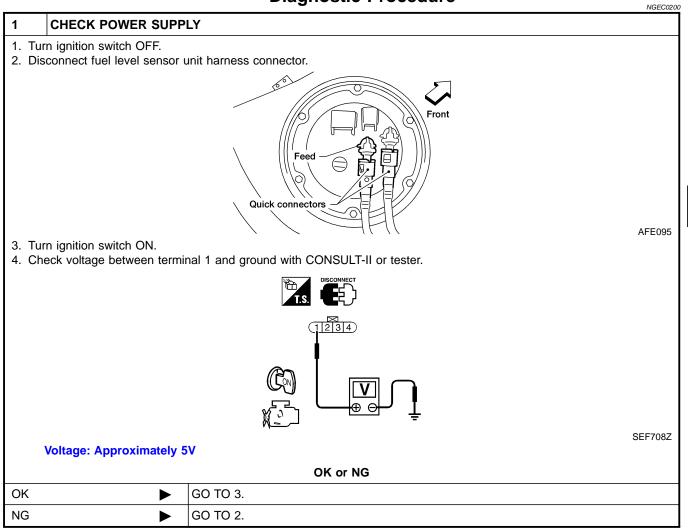
: Detectable line for DTC : Non-detectable line for DTC



<u>■</u> B116

ECM

(F29)


TFUEL

LEC480

Diagnostic Procedure

2	DETECT MALFUNCTIONING PART
---	----------------------------

Check the following.

- Harness connectors B101, M67
- Harness connectors M81, F36
- Harness for open or short between ECM and fuel tank temperature sensor

Repair harness or connector.

GI

MA

LC

EC

FE

MT

AT

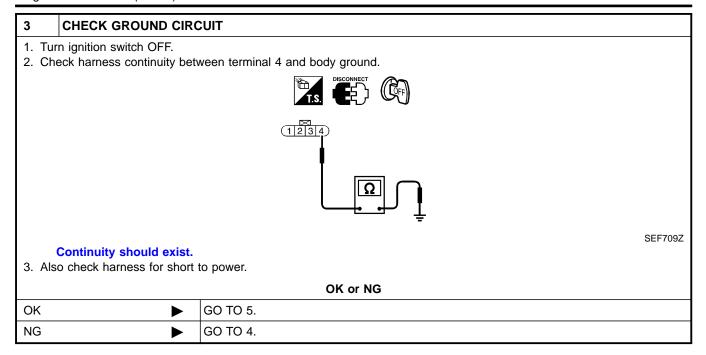
TF

PD

SU

ST

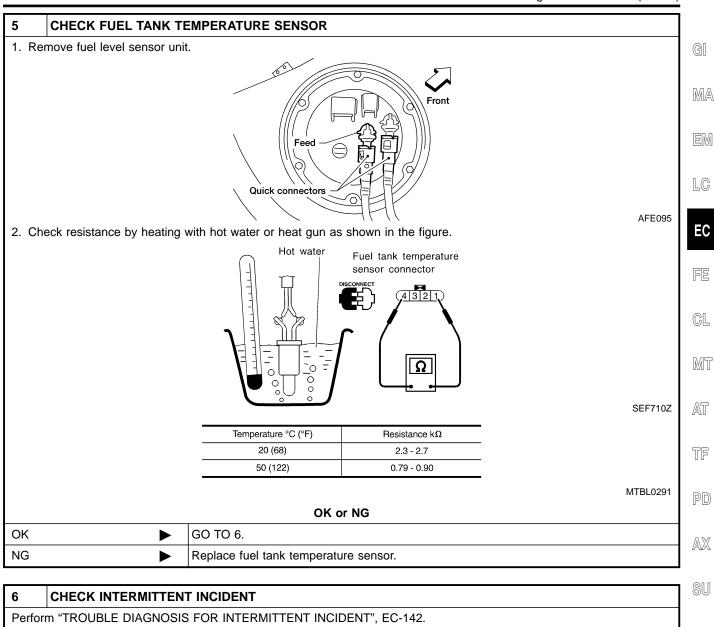
BT


HA

SC

EL

KA24DE


Diagnostic Procedure (Cont'd)

4 DETECT MALFUNCTIONING PART Check the following. • Harness connectors B101, M67 • Harness for open or short between ECM and body ground Repair open circuit or short to power in harness or connectors.

KA24DE

Diagnostic Procedure (Cont'd)

BT

ST

HA

SC

EL

INSPECTION END

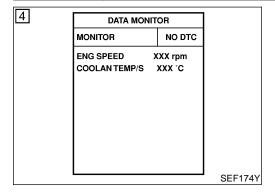
KA24DE

On Board Diagnosis Logic

On Board Diagnosis Logic

When a misfire occurs, engine speed will fluctuate. If the engine speed fluctuates enough to cause the CKP sensor signal to vary, the ECM can determine that a misfire is occurring.

Sensor	Input Signal to ECM	ECM function
Crankshaft position sensor (OBD)	Engine speed	On board diagnosis of misfire


The misfire detection logic consists of the following two conditions.

- 1. One Trip Detection Logic (Three Way Catalyst Damage)
 - On the first trip that a misfire condition occurs that can damage the three way catalyst (TWC) due to overheating, the MIL will blink.
 - When a misfire condition occurs, the ECM monitors the CKP sensor signal every 200 engine revolutions for a change.
 - When the misfire condition decreases to a level that will not damage the TWC, the MIL will turn off.
 - If another misfire condition occurs that can damage the TWC on a second trip, the MIL will blink.
 - When the misfire condition decreases to a level that will not damage the TWC, the MIL will remain on.
- If another misfire condition occurs that can damage the TWC, the MIL will begin to blink again.
- 2. Two Trip Detection Logic (Exhaust quality deterioration)

For misfire conditions that will not damage the TWC (but will affect vehicle emissions), the MIL will only light when the misfire is detected on a second trip. During this condition, the ECM monitors the CKP sensor signal every 1,000 engine revolutions.

A misfire malfunction can be detected on any one cylinder or on multiple cylinders.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0300	Multiple cylinders misfire.	Improper spark plugInsufficient compression
P0301	No. 1 cylinder misfires.	Incorrect fuel pressure EGR valve The injector circuit is open or shorted
P0302	No. 2 cylinder misfires.	InjectorsIntake air leak
P0303	No. 3 cylinder misfires.	The ignition secondary circuit is open or shorted Lack of fuel Flywheel
P0304	No. 4 cylinder misfires.	Heated oxygen sensor 1 (front) Incorrect distributor rotor

DTC Confirmation Procedure

NGEC0203

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

- Turn ignition switch ON, and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- 4) Start engine again and drive at 1,500 to 3,000 rpm for at least 3 minutes.

Hold the accelerator pedal as steady as possible.

NOTE:

Refer to the freeze frame data for the test driving conditions.

5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-301.

With GST

Follow the procedure "With CONSULT-II".

Diagnostic Procedure

KA24DE

Diagnostic	Procedure
------------	-----------

		NGEC020	4	
1	1 CHECK FOR INTAKE AIR LEAK			
	Start engine and run it at idle speed. Listen for the sound of the intake air leak. OK or NG			
ОК	>	GO TO 2.		
NG	>	Discover air leak location and repair.		

2	CHECK FOR EXHAUST	SYSTEM CLOGGING	
Stop engine and visually check exhaust tube, three way catalyst and muffler for dents.			
	OK or NG		
OK	>	GO TO 3.	
NG	>	Repair or replace it.	

3	CHECK EGR FUNCTIO	N	GL
	Perform DTC Confirmation Procedure for DTC P1402 EGR FUNCTION (OPEN).		
Refer	Refer to EC-465.		
	OK or NG		
OK	>	GO TO 4.	۸۶۰
NG	>	Repair EGR system.	AT

SU

LC

EC

FE

TF

PD

 $\mathbb{A}\mathbb{X}$

ST

BR

RS

BT

HA

SC

EL

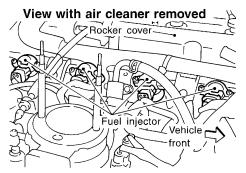
Diagnostic Procedure (Cont'd)

KA24DE

PERFORM POWER BALANCE TEST

(P) With CONSULT-II

1. Perform "POWER BALANCE" in "ACTIVE TEST" mode.


ACTIVE TEST		
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
IACV-AAC/V	XXX step	

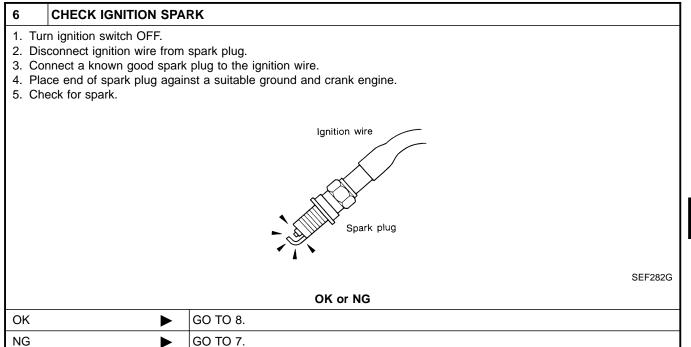
SEF190Y

2. Is there any cylinder which does not produce a momentary engine speed drop?

⋈ Without CONSULT-II

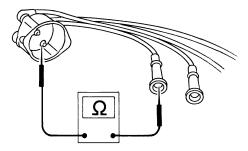
When disconnecting each injector harness connector one at a time, is there any cylinder which does not produce a momentary engine speed drop?

SEF319V


Yes or No

Yes	GO TO 5.
No •	GO TO 8.

Does each injector make an operating sound at idle? At idle Click C/ich Suitable tool Yes ► GO TO 6. No ► Check injector(s) and circuit(s). Refer to EC-568.


KA24DE

Diagnostic Procedure (Cont'd)

7 CHECK IGNITION WIRES

- 1. Inspect wires for cracks, damage, burned terminals and for improper fit.
- 2. Measure the resistance of wires to their distributor cap terminal. Move each wire while testing to check for intermittent breaks.

SEF174P

Resistance:

13.6 - 18.4 kΩ/m (4.15 - 5.61 kΩ/ft) at 25°C (77°F)

If the resistance exceeds the above specification, inspect ignition wire to distributor cap connection. Clean connection or replace the ignition wire with a new one.

OK	or	NG
----	----	----

OK •	Check distributor rotor head for incorrect parts. Check ignition coil, power transistor and their circuits. Refer to EC-559.	
NG ►	Replace.	

 \mathbb{G}

MA

LC

EC

FE

CL

MT

AT

TF

PD

ΛV

SU

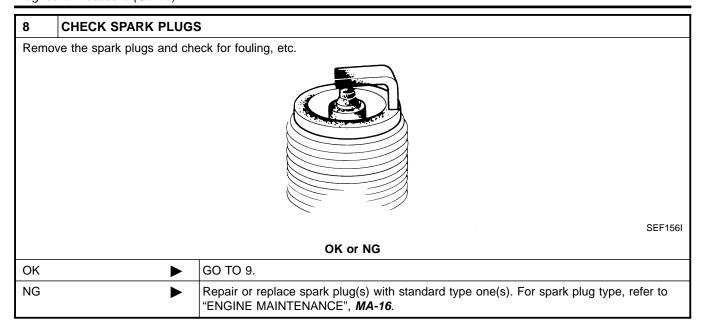
BR

ST

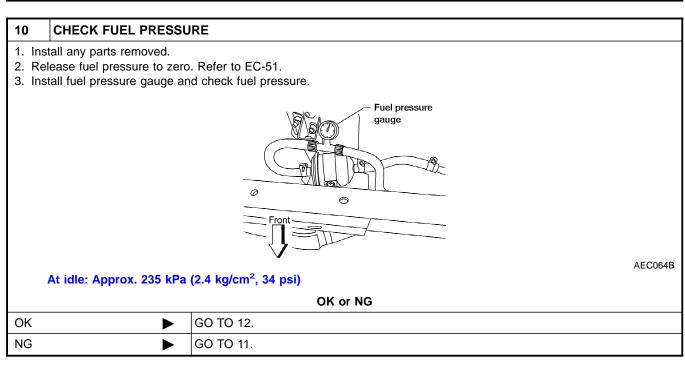
RS

BT

HA


SC

 $\mathbb{D}\mathbb{X}$


CYLINDER MISFIRE

Diagnostic Procedure (Cont'd)

KA24DE

9	CHECK COMPRESSION	N PRESSURE		
• Ch	Refer to <i>EM-15</i> . Check compression pressure. Standard: 1,226 kPa (12.5 kg/cm², 178 psi)/300 rpm Minimum: 1,030 kPa (10.5 kg/cm², 149 psi)/300 rpm Difference between each cylinder: 98 kPa (1.0 kg/cm², 14 psi)/300 rpm			
	OK or NG			
ОК	>	GO TO 10.		
NG	>	Check pistons, piston rings, valves, valve seats and cylinder head gaskets.		

KA24DE

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

Diagnostic Procedure (Cont'd)

11	DETECT MALFUNCTIO	NING PART	
• Fu	ck the following. It is pump and circuit Refer to the pressure regulator Refer		GI
• Fu	tel lines Refer to "ENGINE I tel filter for clogging		MA
	>	Repair or replace.	EM

12	CHECK IGNITION TIM	IING			
1. Ch	neck the following items. F	Refer to "Basic Inspection",	EC-104.		LC
		Items	Specifications		
		Ignition timing	20° ± 2° BTDC		EC
		Base idle speed	750 ± 50 rpm (in "P" or "N" position)		
		Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.1 mm (0.004 in): ON 0.3 mm (0.012 in): OFF		FE
		Target idle speed	800 ± 50 rpm (in "P" or "N" position)		⊚ ⊓
				MTBL0328	GL
		0	K or NG		M
OK (V	Vith CONSULT-II)	GO TO 13.			UVU
OK (V II)	Vithout CONSULT-	GO TO 14.			AT
NG	•	Adjust ignition timing.			
		_ L			77F

KA24DE

Diagnostic Procedure (Cont'd)

13 CHECK HEATED OXYGEN SENSOR 1 (FRONT)

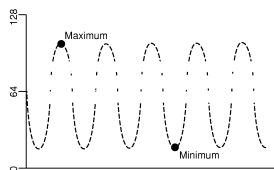
(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" in "DATA MONITOR" mode, and the trigger point is adjusted to 100%.
- 3. Select "HO2S1 (B1)" and "HO2S1 MNTR (B1)" in item selection.
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "START" on CONSULT-II screen.

DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
COOLAN TEMP/S	XXX °C	
HO2S1 (B1)	xxx v	
HO2S1 MNTR (B1)	LEAN	

SEF646Y

- 6. Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below:


R means HO2S1 MNTR (B1) indicates RICH L means HO2S1 MNTR (B1) indicates LEAN

SEF217YA

R = "HO2S1 MNTR (B1)", "RICH" L = "HO2S1 MNTR (B1)", "LEAN"

- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

Trigger	ENG SPEED	HO2S1 (B1)
	rpm	V
XXX	XXX	XXX

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK	>	GO TO 15.
NG	>	Replace heated oxygen sensor 1 (front).

KA24DE

GI

MA

LC

EC

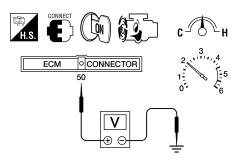
FE

GL

MT

AT

TF


PD

Diagnostic Procedure (Cont'd)

14 CHECK HEATED OXYGEN SENSOR 1 (FRONT)

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 50 [Heated oxygen sensor 1 (front) signal] and ECM ground.

AEC873A

- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
- Malfunction indicator lamp goes on more than five times within 10 seconds in Diagnostic Test Mode II [HEATED OXY-GEN SENSOR 1 MONITOR].
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 15.
NG ▶	Replace heated oxygen sensor 1 (front).

15 CHECK MASS AIR FLOW SENSOR

(P) With CONSULT-II

Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II.

at idling: 0.9 - 5.8 g-m/sec at 2,500 rpm: 7.5 - 13.2 g-m/sec

(a) With GST

Check mass air flow sensor signal in MODE 1 with GST.

at idling: 0.9 - 5.8 g-m/sec at 2,500 rpm: 7.5 - 13.2 g-m/sec

OK or NG

OK ▶	GO TO 17.
NG ►	GO TO 16.

16 CHECK CONNECTORS

Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-150.

OK or NG

NG	Repair or replace it.

EL

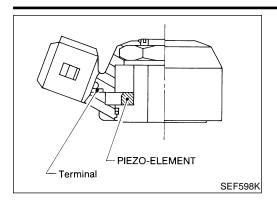
BT

HA

SC

KA24DE

Diagnostic Procedure (Cont'd)


17	7 CHECK SYMPTOM MATRIX CHART			
Check items on the rough idle symptom in "Symptom Matrix Chart", EC-120.				
	OK or NG			
ОК	>	GO TO 18.		
NG	>	Repair or replace.		

18	18 ERASE THE 1ST TRIP DTC		
	Some tests may cause a 1st trip DTC to be set. Erase the 1st trip DTC from the ECM memory after performing the tests. Refer to EC-79.		
>		GO TO 19.	

19	9 CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
► INSF		INSPECTION END	

DTC P0325 KNOCK SENSOR (KS)

Component Description

The knock sensor is attached to the cylinder block. It senses engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM. Freeze frame data will not be stored in the ECM for the knock sensor. The MIL will not light for knock sensor malfunction.

MA

LC

ECM Terminals and Reference Value

The knock sensor has one trip detection logic.

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

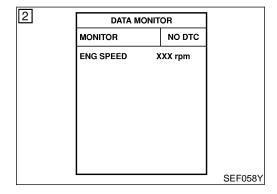
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

EC

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	(
64	W	Knock sensor	[Engine is running] ● Idle speed	Approximately 2.4V	

MT

GL


On Board Diagnosis Logic

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0325	An excessively low or high voltage from the knock sensor is sent to ECM.	 Harness or connectors (The knock sensor circuit is open or shorted.) Knock sensor

TF

DTC Confirmation Procedure

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- (P) With CONSULT-II
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.

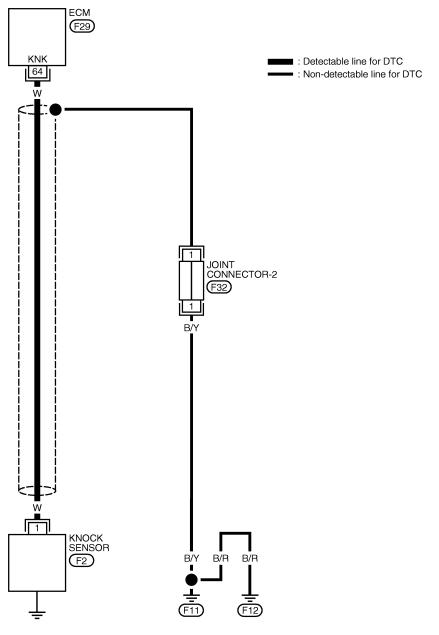
BT

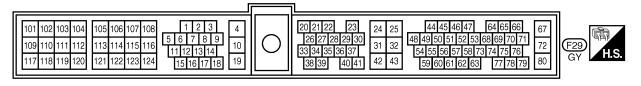
- Start engine and run it for at least 5 seconds at idle speed.
- 3) If DTC is detected, go to "Diagnostic Procedure", EC-311.

Follow the procedure "With CONSULT-II".

SC

HA


EL


Wiring Diagram

NGEC0210

EC-KS-01

AEC992A

GI

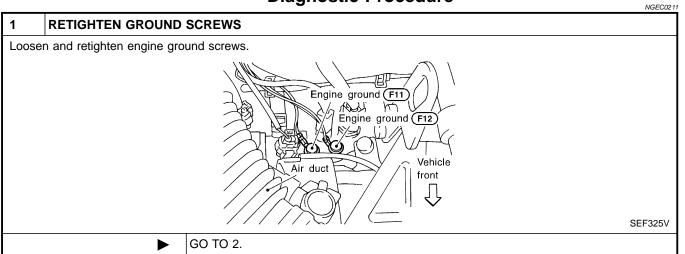
MA

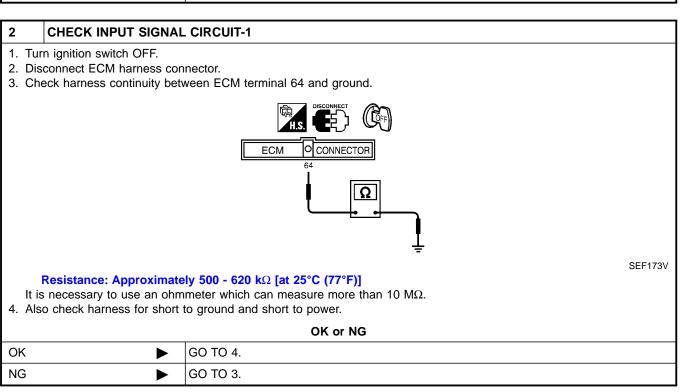
EM

LC

EC

MT


AT


TF

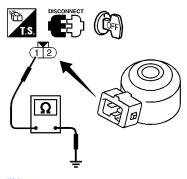
PD

SU

3	DETECT MALFUNCTION	DNING PART	7
Check	the harness for open or s	short between knock sensor and ECM.	
		OK or NG	R
OK	•	GO TO 4.	
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.	B

 $\mathbb{D}\mathbb{X}$

HA


SC

Diagnostic Procedure (Cont'd)

4 CHECK KNOCK SENSOR

Use an ohmmeter which can measure more than 10 M Ω .

- 1. Disconnect knock sensor harness connector.
- 2. Check resistance between terminal 1 and ground.

SEF174V

Resistance: 500 - 620 k Ω [at 25°C (77°F)]

CAUTION:

Discard any knock sensors that have been dropped or physically damaged. Use only new ones.

OK or NG

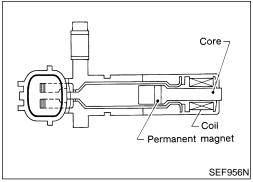
OK •	GO TO 5.
NG ►	Replace knock sensor.

5 CHECK SHIELD CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Remove joint connector-1.
- 3. Check the following. Refer to the wiring diagram.
- Continuity between joint connector-1 terminal 2 and ground
- Joint connector-1 (Refer to "HARNESS LAYOUT", EL-254.)

Continuity should exist.

- 4. Also check harness for short to power.
- 5. Then reconnect harness connectors.


OK or NG

OK •	GO TO 7.
NG ▶	GO TO 6.

6	DETECT MALFUNCTIONING PART		
Check	Check the joint connector-2. (Refer to "HARNESS LAYOUT", <i>EL-254</i> .)		
	► Repair open circuit or short to ground or short to power in harness or connectors.		

7	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	► INSPECTION END		

Component Description

Component Description

The crankshaft position sensor (OBD) is located on the transaxle housing facing the gear teeth (cogs) of the flywheel or drive plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet, core and coil.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

This sensor is not directly used to control the engine system. It is used only for the on board diagnosis.

EC

GL

MT

Specification data are reference values and are measured between each terminal and ground.

Crankshaft position sensor (OBD)

SEF335V

AT

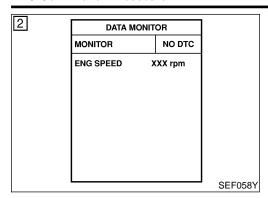
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (AC Voltage)	PD
				(V)	$\mathbb{A}\mathbb{X}$
			[Engine is running]Warm-up conditionIdle speed	5 0	SU
		Crankshaft position		0.2 ms	BR
47	L	sensor (OBD)		(V) 10	ST
			[Engine is running] • Engine speed is 2,000 rpm	5 0 / \	RS
				0.2 ms	BT

On Board Diagnosis Logic

se)			

NGEC0215


DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0335	 The proper pulse signal from the crankshaft position sensor (OBD) is not sent to ECM while the engine is running at the specified engine speed. 	Harness or connectors (The crankshaft position sensor (OBD) circuit is open.) Crankshaft position sensor (OBD) Dead battery

HA

SC

EIL

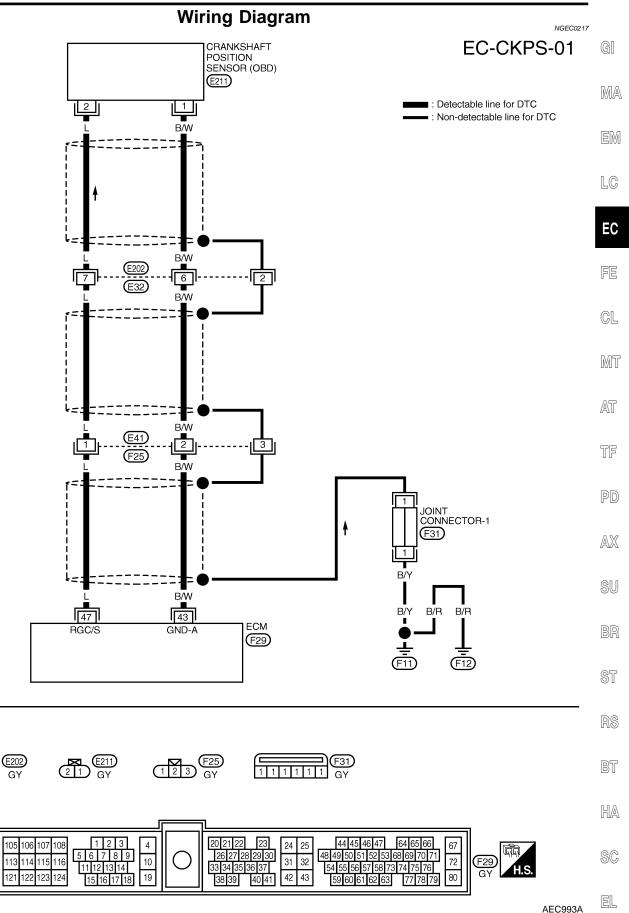
DTC Confirmation Procedure

DTC Confirmation Procedure

NGEC0216

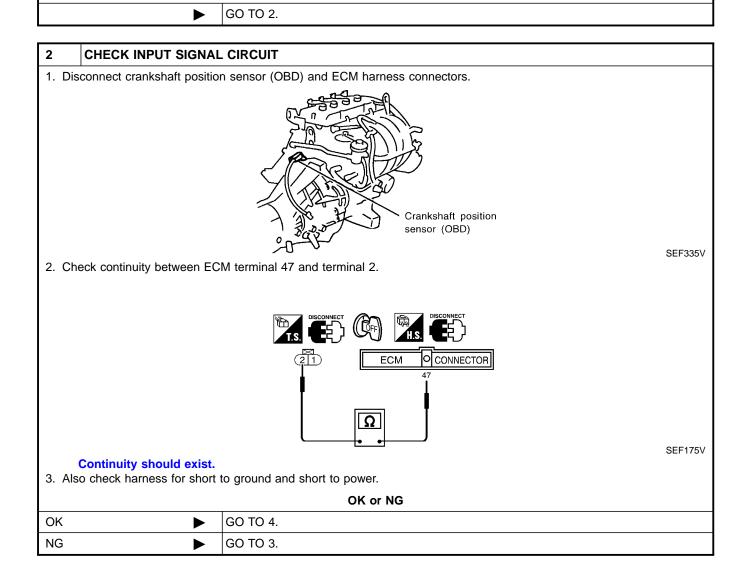
NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.


(P) With CONSULT-II

- 1) Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and run it for at least 15 seconds at idle speed.
- 3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-316.

With GST


Follow the procedure "With CONSULT-II".

Wiring Diagram

109 110 111 112

Diagnostic Procedure 1 RETIGHTEN GROUND SCREWS 1. Turn ignition switch OFF. 2. Loosen and retighten engine ground screws. Engine ground F12 Vehicle front SEF325V

Diagnostic Procedure (Cont'd)

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E202, E32
- Harness connectors E41, F25
- Harness for open or short between crankshaft position sensor (OBD) and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK GROUND CIRCUIT

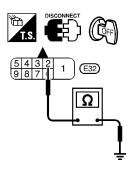
- 1. Reconnect ECM harness connector.
- 2. Check harness continuity between crankshaft position sensor (OBD) terminal 1 and engine ground. Refer to the wiring diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK	>	GO TO 6.
NG	>	GO TO 5.


5 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E202, E32
- Harness connectors E41, F25
- Harness for open or short between crankshaft position sensor (OBD) and ECM
 - Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK SHIELD CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect harness connector E32.
- 3. Check harness continuity between harness connector E32 terminal 2 and ground.

SEF177V

Continuity should exist.

- 4. Also check harness for short to power.
- 5. Then reconnect harness connectors.

OK	or	NG

L	OK	>	GO TO 8.
	NG		GO TO 7.

MA

GI

LC

EC

ை

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BK

ST

RS

BT

HA

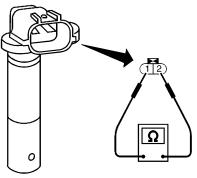
SC

Diagnostic Procedure (Cont'd)

DETECT MALFUNCTIONING PART


Check the following.

- Harness connectors E41, F25
- Joint connector-1 (Refer to "HARNESS LAYOUT", EL-254.)
- Harness for open or short between harness connector E32 and Engine ground


▶ Repair open circuit or short to power in harness or connectors.

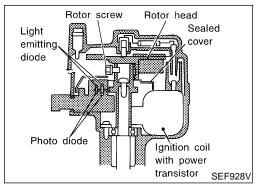
8 CHECK CRANKSHAFT POSITION SENSOR (OBD)

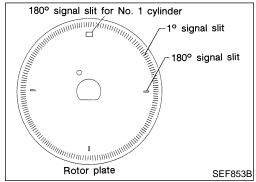
- 1. Disconnect crankshaft position sensor (OBD) harness connector.
- 2. Loosen the fixing bolt of the sensor.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.

5. Check resistance as shown in the figure.

SEF960N

SEF231W


Resistance: Approximately 512 - 632 Ω [at 20°C (68°F)]


OK or NG

OK	>	GO TO 9.
NG		Replace crankshaft position sensor (OBD).

9	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	► INSPECTION END		

Component Description

Component Description

The camshaft position sensor is a basic component of the engine control system. It monitors engine speed and piston position. These input signals to the engine control system are used to control fuel injection, ignition timing and other functions.

The camshaft position sensor has a rotor plate and a wave-forming circuit. The rotor plate has 360 slits for a 1° (POS) signal and 4 slits for a 180° (REF) signal. The wave-forming circuit consists of Light Emitting Diodes (LED) and photo diodes.

The rotor plate is positioned between the LED and the photo diode. The LED transmits light to the photo diode. As the rotor plate turns, the slits cut the light to generate rough-shaped pulses. These pulses are converted into on-off signals by the wave-forming circuit and sent to the ECM.

The distributor is not repairable and must be replaced as an assembly except distributor cap and rotor head.

G[

MA

LC

EC

FE

GL

MT

AT

TF

ECM Terminals and Reference Value

NGEC0221

Specification data are reference values and are measured between each terminal and ground.

CAUTION

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	PD
4	LG/R	ECCS relay (Self shut-	[Engine is running] [Ignition switch OFF] ● For a few seconds after turning ignition switch OFF	0 - 1V	AX SU
1	20/11	off)	[Ignition switch OFF] ■ More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	BR
				0.2 - 0.5V	ST
44	PU		[Engine is running] (Warm-up condition) ■ Idle speed	5 0	RS
		Camshaft position sen-		10 ms	BT
48	PU	sor (Reference signal)	[Engine is running] ● Engine speed is 2,000 rpm	0 - 0.5V (V)	HA
				10 5 0	SC
				10ms	EL

KA24DE

ECM Terminals and Reference Value (Cont'd)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
49	LG	Camshaft position sensor (Position signal)	[Engine is running] • Warm-up condition • Idle speed	Approximately 2.6V (V) 10 5 0.2ms
			[Engine is running] ● Engine speed is 2,000 rpm	Approximately 2.5 - 2.6V (V) 10 5 0 0.2ms
67	B/P	Power supply for ECM	[Ignition switch ON]	BATTERY VOLTAGE
72	B/P			(11 - 14V)
117	B/P	Current return	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

NGEC0222

DTC No.		Malfunction is detected when	Check Items (Possible Cause)
P0340	A)	Either 1° or 180° signal is not sent to ECM for the first few seconds during engine cranking.	 Harness or connectors (The camshaft position sensor circuit is open of shorted.) Camshaft position sensor Starter motor (Refer to EL section.) Starting system circuit (Refer to EL section.)
	B)	Either 1° or 180° signal is not sent to ECM often enough while the engine speed is higher than the specified engine speed.	
	C)	The relation between 1° and 180° signal is not in the normal range during the specified engine speed.	Dead (Weak) battery

DTC Confirmation Procedure

DTC Confirmation Procedure

Perform "Procedure for malfunction A" first. If DTC cannot be confirmed, perform "Procedure for malfunction B and C".

GI

NOTE:

2

3

DATA MONITOR

DATA MONITOR

NO DTC

NO DTC

XXX rpm

XXX rpm

MONITOR

MONITOR

ENG SPEED

ENG SPEED

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

MA

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V.

LC

EC

FE

PROCEDURE FOR MALFUNCTION A

NGEC0223S01

NGFC0223S02

1) Turn ignition switch ON.

- Select "DATA MONITOR" mode with CONSULT-II.
- Crank engine for at least 2 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-323.

GL

With GST

Follow the procedure "With CONSULT-II".

MT

SEF058Y

SEF058Y

AT

PROCEDURE FOR MALFUNCTION B AND C

(P) With CONSULT-II

1) Turn ignition switch ON.

Select "DATA MONITOR" mode with CONSULT-II.

TF Start engine and run it for at least 2 seconds at idle speed.

- If 1st trip DTC is detected, go to "Diagnostic Procedure",
- EC-323.

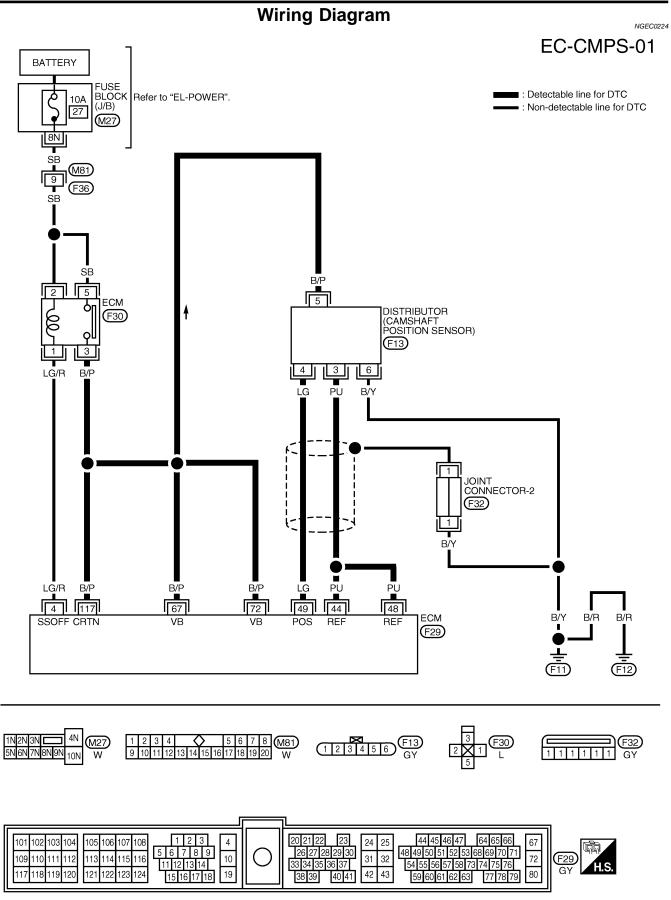
PD

With GST

Follow the procedure "With CONSULT-II".

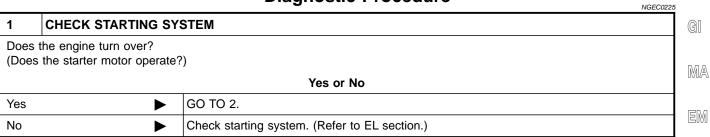
AX

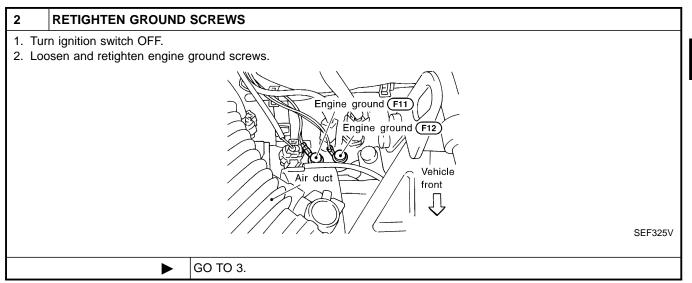
ST


BT

HA

SC





Diagnostic Procedure

Diagnostic Procedure

LC

GI

EC

FE

GL

MT

AT

PD

TF

 $\mathbb{A}\mathbb{X}$

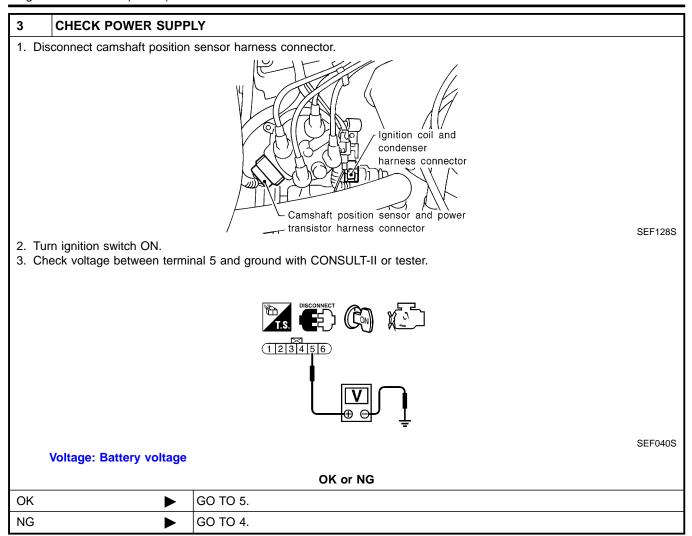
SU

BR

ST

RS

BT


HA

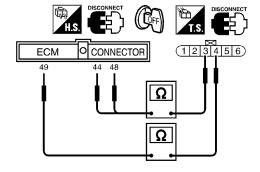
SC

EL

KA24DE

Diagnostic Procedure (Cont'd)

4 DETECT MALFUNCTIONING PART Check the following. ● Harness for open or short between camshaft position sensor and ECM relay ● Harness for open or short between camshaft position sensor and ECM Repair open circuit or short to ground or short to power in harness or connectors.


DTC P0340 CAMSHAFT POSITION SENSOR (CMPS)

KA24DE

Diagnostic Procedure (Cont'd)

CHECK INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between sensor terminal 4 and ECM terminal 49, sensor terminal 3 and ECM terminals 44, 48.

Continuity should exist.

4. Also check harness for short to ground and short to power.

\sim	v	or	NG
u	n	OI	IAI.

OK		GO TO 6.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK GROUND CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Check harness continuity between distributor (camshaft position sensor) terminal 6 and engine ground. Refer to the wiring diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK		GO TO 7.
NG	▼	Repair open circuit or short to power in harness or connectors.

GI

MA

EM

LC

EC

SEF178V

GL

MT

AT

TF

PD

MΜ

SU

מוש

ST

DS

BT

HA

SC

DTC P0340 CAMSHAFT POSITION SENSOR (CMPS)

KA24DE

Diagnostic Procedure (Cont'd) **CHECK CAMSHAFT POSITION SENSOR** 1. Start engine and warm it up to normal operating temperature. 2. Check voltage between ECM terminal 49 and engine ground, ECM terminal 44 and engine ground. Terminal 44 and engine ground 2,000 rpm Condition Idle OCONNECTOR ECM 0.2 - 0.5V Voltage 0 - 0.5V 49 10 10 5 Pulse signal 0 10 ms 10 ms Terminal 49 and engine ground 2,000 rpm Condition Idle Approximately 2.6V Approximately 2.5 - 2.6V Voltage 10 10 5 Pulse signal

SEF868Z

0.2 ms

OK or NG

0.2 ms

OK •	GO TO 8.
NG •	Replace camshaft position sensor.

8 **CHECK SHIELD CIRCUIT**

- 1. Turn ignition switch OFF.
- 2. Disconnect joint connector-1.
- 3. Check the following.
- Continuity between joint connector-1 terminal 2 and ground
- Joint connector-1

(Refer to "HARNESS LAYOUT", EL-254.)

Continuity should exist.

- 4. Also check harness for short to power.
- 5. Then reconnect joint connector-1.

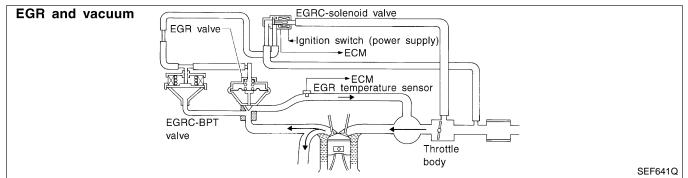
OK or NG

OK •	GO TO 9.
NG ►	Repair open circuit, short to power in harness or connectors.

9	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	► INSPECTION END		

DTC P0400 EGR FUNCTION (CLOSE)

Description SYSTEM DESCRIPTION


NGEC0227

NGEC0227S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator	- - MA
Camshaft position sensor	Engine speed			
Mass air flow sensor	Amount of intake air			EM
Engine coolant temperature sensor	Engine coolant temperature			
Intake air temperature sensor	Intake air temperature	EGR control	EGRC-solenoid valve	LC
Ignition switch	Start signal			
Throttle position sensor	Throttle position			EC
Vehicle speed sensor	Vehicle speed			

This system cuts and controls vacuum applied to the EGR valve to suit engine operating conditions. This cut-and-control operation is accomplished through the ECM and the EGRC-solenoid valve. When the ECM detects any of the following conditions, current flows through the solenoid valve is cut. This causes the vacuum to be discharged into the atmosphere. The EGR valve remains closed.

- Low engine coolant temperature
- Engine starting
- High-speed engine operation
- Engine idling
- Excessively high engine coolant temperature
- Mass air flow sensor malfunction
- Low intake air temperature

SEF783K

COMPONENT DESCRIPTION Exhaust Gas Recirculation (EGR) Valve

NGEC0227S02

105000750004

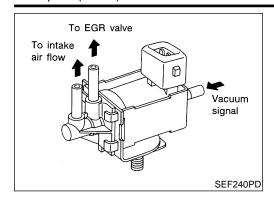
The EGR valve controls the amount of exhaust gas routed to the intake manifold. Vacuum is applied to the EGR valve in response to throttle valve opening. The vacuum controls the movement of a taper valve connected to the vacuum diaphragm in the EGR valve.

SC

MT

AT

TF

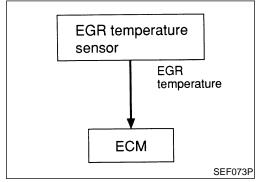

PD

AX

EL

 \mathbb{Z}

Description (Cont'd)



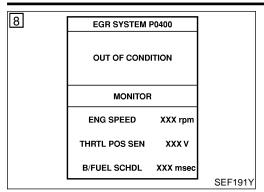
EGRC-Solenoid Valve

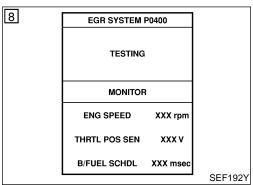
The EGRC-solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the coil in the sole-

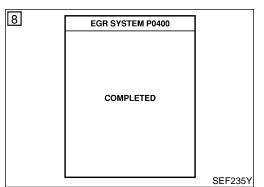
When the ECM sends an ON (ground) signal, the coil in the solenoid valve is energized. The vacuum signal passes through the solenoid valve. The signal then reaches the EGR valve.

When the ECM sends an OFF signal, a plunger will then move to cut the vacuum signal from the intake manifold collector to the EGR valve.

On Board Diagnosis Logic


IGEC0


If the absence of EGR flow is detected by EGR temperature sensor under the condition that calls for EGR, a low-flow malfunction is diagnosed.


DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0400	No EGR flow is detected under conditions that call for EGR.	 EGR valve stuck closed EGRC-BPT valve Vacuum hose EGRC-solenoid valve EGR passage EGR temperature sensor Exhaust gas leaks

DTC P0400 EGR FUNCTION (CLOSE)

On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

P0400 will not be displayed at "SELF-DIAG RESULTS" mode with CONSULT-II even though DTC work support test result is "NG".

TESTING CONDITION:

For best results, perform the test at a temperature above 5°C (41°F).

(P) With CONSULT-II

- Turn ignition switch ON.
- Check "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II and confirm it is within the range listed below.

COOLAN TEMP/S: Less than 40°C (104°F)

If the value is out of range, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to lower the coolant temperature with a fan or means other than ambient air. Doing so may produce an inaccurate diagnostic result.

- Start engine and let it idle monitoring "COOLAN TEMP/S" value. When the "COOLAN TEMP/S" value reaches 70°C (158°F), immediately go to the next step.
- Select "EGR SYSTEM P0400" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START".
- Accelerate vehicle to a speed of 40 km/h (25 MPH) once and then stop vehicle with engine running. If "COMPLETED" appears on CONSULT-II screen, go to step

If "COMPLETED" does not appear on CONSULT-II screen, go to the following step.

- Check the output voltage of "THRTL POS SEN" (at closed throttle position) and note it.
- When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions until "TESTING" changes to "COMPLETED". (It will take approximately 30 seconds or more.)

ENG SPEED	2,000 - 2,800 rpm
Vehicle speed	10 km/h (6 MPH) or more
B/FUEL SCHDL	7 - 10 msec
THRTL POS SEN	(X + 0.23) - (X + 0.74) V X = Voltage value measured at step 7
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from

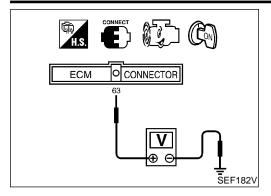
9) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-332.

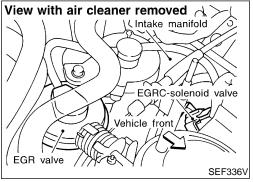
GI

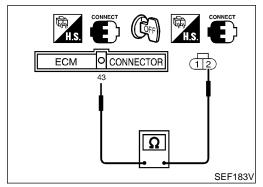
NGEC0229

LC

EC


MIT


BT


HA

SC

DTC Confirmation Procedure (Cont'd)

Overall Function Check

Use this procedure to check the overall EGR function. During this

check, a 1st trip DTC might not be confirmed.

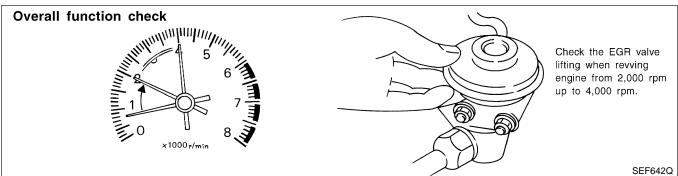
⋈ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Check the EGR valve lifting when revving engine from 2,000 rpm to 4,000 rpm quickly under no load using the following methods.
- Disconnect EGRC-solenoid valve harness connector. (The DTC for EGRC-solenoid valve will be displayed, however, ignore it.)

EGR valve should lift up and down without sticking.

If NG, go to "Diagnostic Procedure", EC-332.

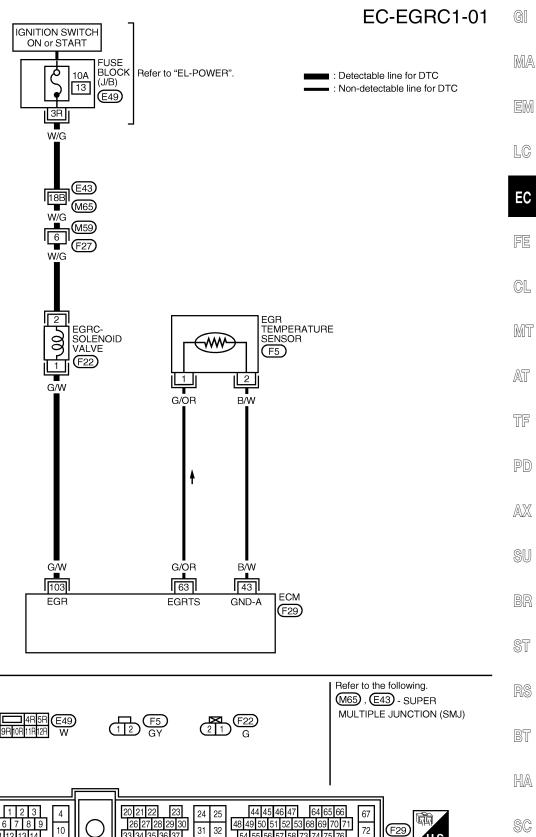
3) Check voltage between ECM terminal 63 (EGR temperature sensor signal) and ground at idle speed.


Less than 4.5V should exist.

If NG, go to next step.

- Turn ignition switch OFF.
- Check harness continuity between EGR temperature sensor harness connector terminal 2 and ECM terminal 43 (ECM ground).

Continuity should exist.


6) Check "EGR TEMPERATURE SENSOR". Refer to "CHECK EGR TEMPERATURE SENSOR" in "Diagnostic Procedure".

NGEC0231

54 55 56 57 58 73 74 75 76

59 60 61 62 63

AEC995A

EL

33 34 35 36 37

40 41

38 39

43 42

102 103 104

109 110 111

107 108

115 116

15 16 17 18

NG

Diagnostic Procedure

1 CHECK EXHAUST SYSTEM

1. Start engine.
2. Check exhaust pipes and muffler for leaks.

SEF099P

OK or NG

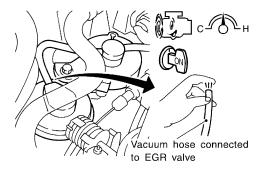
OK (With CONSULT-II)
GO TO 2.

OK (Without CONSULT- GO TO 3.

II)

Repair or replace exhaust system.

DTC P0400 EGR FUNCTION (CLOSE)


Diagnostic Procedure (Cont'd)

CHECK VACUUM SOURCE TO EGR VALVE

(II) With CONSULT-II

2

- 1. Warm engine up to normal operating temperature.
- 2. Disconnect vacuum hose to EGR valve.
- 3. Check for vacuum existence at idle.

Vacuum should not exist at idle.

- 4. Select "EGRC SOLENOID VALVE" in "ACTIVE TEST" mode with CONSULT-II and turn the solenoid valve ON.
- 5. Check for vacuum existence when revving engine from 2,000 rpm up to 4,000 rpm.

ACTIVE TEST				
EGRC SOL/V		ON		
(EGR)		CUT		
MONITO	3			
ENG SPEED		XXX rpm		

Vacuum should exist when revving engine.

OK or NG

OK	>	GO TO 4.
NG	•	GO TO 5.

GI

MA

EM

LC

EC

FE

SEF337V

. .

GL

MT

AT

TF

PD

SEF716Z

AX

SU

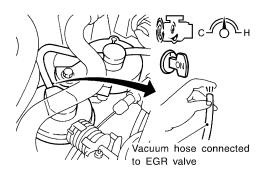
BR

ST

D@

BT

HA


SC

51

3 CHECK VACUUM SOURCE TO EGR VALVE

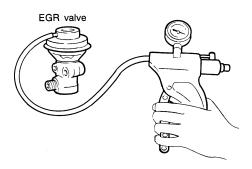
⋈ Without CONSULT-II

- 1. Warm engine up to normal operating temperature.
- 2. Disconnect vacuum hose to EGR valve.
- 3. Check for vacuum existence at idle.

SEF337V

Vacuum should not exist at idle.

- 4. Disconnect EGRC-solenoid valve harness connector. (The 1st trip DTC for EGRC-solenoid valve will be displayed, but ignore it.)
- 5. Check for vacuum existence when revving engine from 2,000 rpm up to 4,000 rpm.


Vacuum should exist when revving engine.

OK or NG

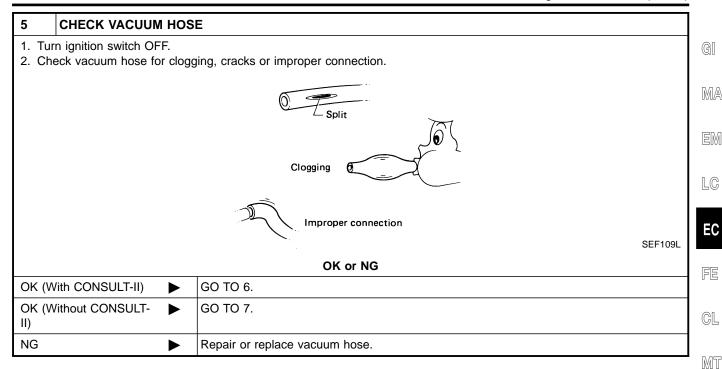
OK •	GO TO 4.
NG ►	GO TO 5.

4 CHECK EGR VALVE

• Apply vacuum to EGR vacuum port with a hand vacuum pump.

MEF137D

EGR valve spring should lift.


· Check for sticking.

OK or NG

OK •	GO TO 11.
NG •	Repair or replace EGR valve.

DTC P0400 EGR FUNCTION (CLOSE)

Diagnostic Procedure (Cont'd)

6 CHECK EGRC-SOLENOID VALVE OPERATION

(P) With CONSULT-II

1. Turn ignition switch ON.

2. Turn EGRC-solenoid valve "ON" and "OFF" in "ACTIVE TEST" mode with CONSULT-II and check operating sound.

ACTIVE TEST		
EGRC SOL/V	OI	7
(EGR)	CU	Ā
MONITO	₹	
ENG SPEED	ххх	rpm

SEF716Z

AT

TF

PD

ST

Clicking noise should be heard.

OK or NG

OK •	GO TO 8.
NG •	Repair or replace EGRC-solenoid valve or repair circuit.

7 CHECK EGRC-SOLENOID VALVE OPERATION

Without CONSULT-II

Check operating sound of the solenoid valve when disconnecting and reconnecting EGRC-solenoid valve harness connector. (The DTC or the 1st trip DTC for the EGRC-solenoid valve will be displayed, however, ignore it.)

Clicking noise should be heard.

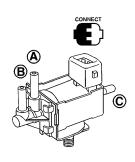
OK ►	GO TO 9.
NG ▶	GO TO 8.

HA

8 DETECT MALFUNCTION PART

Check the following.

- Harness connectors E43, M65
- Harness connectors M59, F27
- 10A fuse
- Harness for open or short between fuse block and EGRC-solenoid valve
- Harness for open or short between ECM and EGRC-solenoid valve

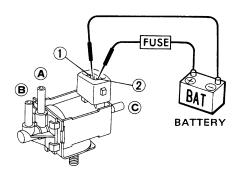

Repair open circuit or short to ground or short to power in harness or connectors.

CHECK EGRC-SOLENOID VALVE

(P) With CONSULT-II

Check air passage continuity.

Perform "EGRC SOLENOID VALVE" in "ACTIVE TEST" mode.


ACTIVE TEST		
	ON	
	CUT	
3		
	XXX rpm	
	·	

Condition EGRC SOLENOID VALVE	Air passage continuity between A and B	Air passage continuity between A and C
ON	Yes	No
OFF	No	Yes

SEF717Z

Without CONSULT-II

Čheck air passage continuity shown in the figure.

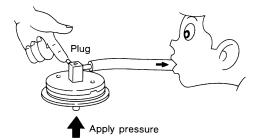
AEC919

Condition	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes

MTBL0283

If NG or operation takes more than 1 second, replace solenoid valve.

OK or NG


OK •	GO TO 10.	
NG ►	If NG or operation takes more than 1 second, replace solenoid valve.	

DTC P0400 EGR FUNCTION (CLOSE)

Diagnostic Procedure (Cont'd)

10 CHECK EGRC-BPT VALVE

- 1. Plug one of two ports of EGRC-BPT valve.
- 2. Vacuum from the other port and check for leakage while applying a pressure above 0.981 kPa (100 mm H_2O , 3.94 in H_2O) from under EGRC-BPT valve.

3. If a leakage is noted, replace the valve.

OK or NG

ОК	>	GO TO 11.
NG	>	Replace EGRC-BPT valve.

GI

MA

EM

EC

SEF083P

FE

CL

MT

AT

PD

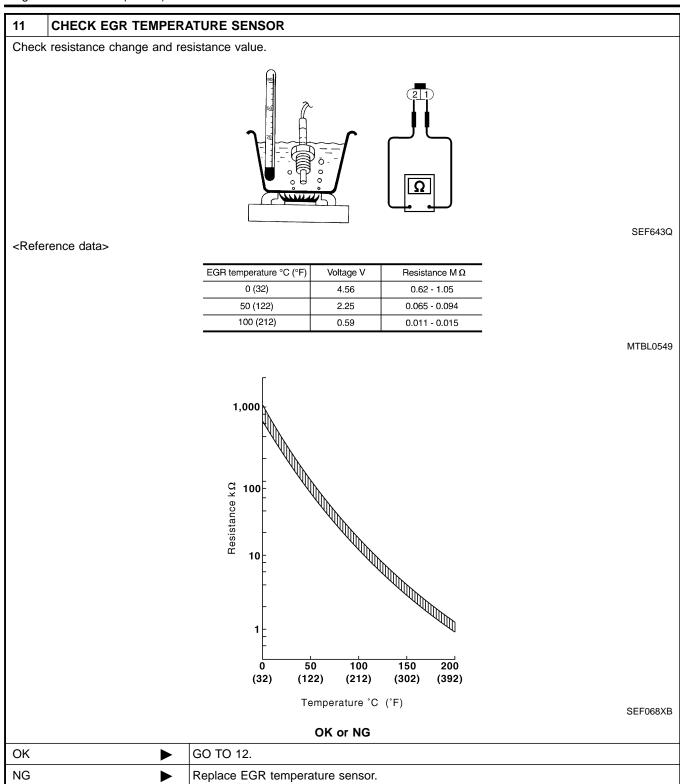
TF

AX

SU

BR

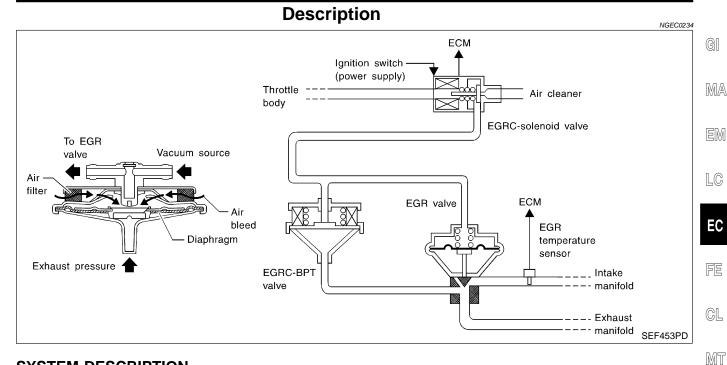
ST


RS

BT

HA

SC


EL

12	CHECK INTERMITTENT INCIDENT	
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	>	INSPECTION END

DTC P0402 EGRC-BPT VALVE FUNCTION

SYSTEM DESCRIPTION

GEC0234S01

The EGRC-BPT valve monitors exhaust pressure to activate the diaphragm, controlling throttle body vacuum applied to the EGR valve. In other words, recirculated exhaust gas is controlled in response to positioning of the EGR valve or to engine operation.

On Board Diagnosis Logic

VGEC023

If too much EGR flow exists due to an EGRC-BPT valve malfunction, off idle engine roughness will increase. If the roughness is large, then the vacuum to the EGR valve is interrupted through the EGRC-solenoid valve. If the engine roughness is reduced at that time, the EGRC-BPT valve malfunction is indicated.

e.	
	PD

AT

TF

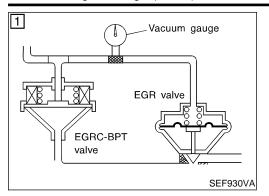
AX

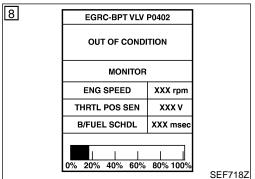
SU

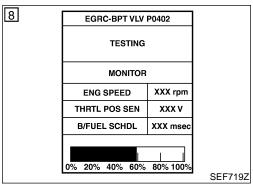
ST

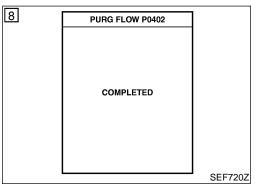
BT

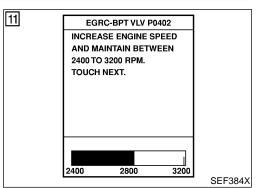
HA


DTC No. Malfunction is	Check Items (Possible Cause)
P0402 • The EGRC-BPT valve do	Properly. EGRC-BPT valve EGR valve Loose or disconnected rubber tube Blocked rubber tube Camshaft position sensor Blocked exhaust system Orifice Mass air flow sensor EGRC-solenoid valve


SC


EIL


NGEC0236


On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTF:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

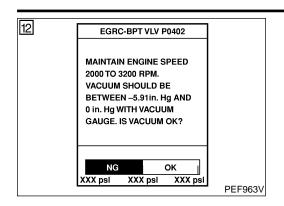
TESTING CONDITION:

- Always perform at a temperature above 5°C (41°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) With CONSULT-II

- 1) Install vacuum gauge between EGRC-BPT valve and EGR valve as shown in the illustration.
- 2) Start engine and warm it up to normal operating temperature.
- 3) Stop engine and wait at least 5 seconds.
- Turn ignition switch ON and select "EGRC-BPT/V P0402" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CON-SULT-II.
- 5) Start engine and let it idle.
- Touch "START".
- 7) Check the output voltage of "THRTL POS SEN" (at closed throttle position) and note it.
- 8) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen and the bar chart may increase. Maintain the conditions many times until "COMPLETED" appears.

Selector lever	Suitable position
ENG SPEED	1,400 - 2.000 rpm
Vehicle speed	30 - 100 km/h (19 - 62 MPH)
B/FUEL SCHDL	5 - 7.5 msec
THRTL POS SEN	(X-(X+0.88) V X = Voltage value measured at step 7


NOTE:

- The bar chart on CONSULT-II screen indicates the status of this test. However, the test may be finished before the bar chart becomes full scale.
- If the bar chart indication does not continue to progress, completely release accelerator pedal once and try to meet the conditions again.
- If "TESTING" does not appear on CONSULT-II screen, retry from step 2.
- If CONSULT-II instructs to carry out "Overall Function Check", go to next step. If "NG" is displayed, refer to "Diagnostic Procedure", EC-342.
- 10) Open engine hood.
- 11) Raise engine speed to 2,400 to 3,200 rpm under no-load and hold it. Then touch "NEXT" on CONSULT-II screen.

DTC P0402 EGRC-BPT VALVE FUNCTION

KA24DE

DTC Confirmation Procedure (Cont'd)

12) Check vacuum gauge while keeping engine speed at 2,400 to 3,200 rpm.

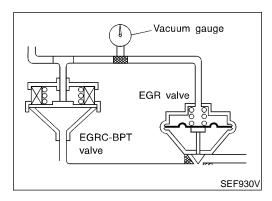
Vacuum should be 0 to -20 kPa (0 to -150 mmHg, 0 to -5.91 inHg).

If NG, go to "Diagnostic Procedure", EC-342.

If OK, touch "YES" on the CONSULT-II screen.

13) Check the EGR valve lifting when revving from 2,000 rpm to 4,000 rpm quickly under no load.

EGR valve should lift up, and go down without sticking when the engine is returned to idle.


If NG, check EGR valve.

If OK, touch "YES" or the CONSULT-II screen.

14) Check the rubber tube between intake manifold collector, EGRC-solenoid valve, EGR valve and EGRC-BPT valve for cracks, blockages or twisting.

If NG, repair or replace.

If OK, touch "YES" on the CONSULT-II screen.

Overall Function Check

Use this procedure to check the overall function of the EGRC-BPT valve. During this check, a 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

 Install vacuum gauge between EGRC-BPT valve and EGR valve as shown in the illustration.

2) Lift up vehicle.

3) Start engine and shift to 1st gear position.

4) Check vacuum gauge while keeping engine speed at 2,400 to 3,200 rpm.

Vacuum should be 0 to -20 kPa (0 to -150 mmHg, 0 to -5.91 inHg).

If NG, go to "Diagnostic Procedure", EC-342.

If OK, go to next step.

5) Check the EGR valve lifting when revving from 2,000 rpm to 4,000 rpm quickly under no load.

EGR valve should lift up, and go down without sticking when the engine is returned to idle.

6) Check rubber tube between intake manifold collector, EGRC-solenoid valve, EGR valve and EGRC-BPT valve for misconnection, cracks or blockages.

7) If NG, go to "Diagnostic Procedure", EC-342.

EC

LC

MA

FE

GL

MT

AT

TF

PD

AX

SU

@57

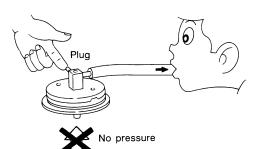
BT

HA

SC

Diagnostic Procedure

=NGFC0238


1	CHECK HOSE		
Check vacuum hose for clogging and improper connection.			
	OK or NG		
OK	>	GO TO 2.	
NG	>	Repair or replace vacuum hose.	

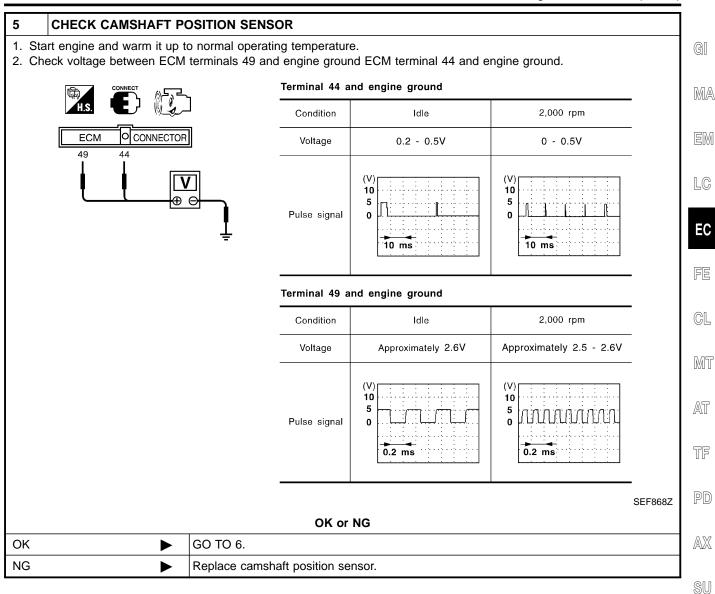
2	CHECK EXHAUST SYS	TEM
Check exhaust system for collapse.		
OK or NG		
OK	>	GO TO 3.
NG	>	Repair or replace exhaust system.

3	CHECK ORIFICE		
Check if orifice is installed in vacuum hose between EGRC-BPT valve and EGRC-solenoid valve.			
OK or NG			
ОК	OK ▶ GO TO 4.		
NG	>	Replace vacuum hose.	

4 CHECK EGRC-BPT VALVE

- 1. Plug one of two ports of EGRC-BPT valve.
- 2. Vacuum from the other port and check leakage without applying any pressure from under EGR-BPT valve. **Leakage should exist.**

SEF172P


OK or NG

OK •	GO TO 5.
NG ►	Replace EGRC-BPT valve.

DTC P0402 EGRC-BPT VALVE FUNCTION

KA24DE

Diagnostic Procedure (Cont'd)

BR

ST

RS

BT


HA

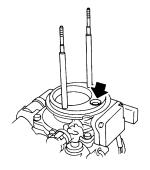
SC

Diagnostic Procedure (Cont'd)

6 CHECK MASS AIR FLOW SENSOR

- 1. Turn ignition switch ON.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 54 (Mass air flow sensor signal) and ground.

SEF326V


Conditions	Voltage V
Ignition switch "ON" (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up to normal operating temperature.)	0.9 - 1.8
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.9 - 2.3
Idle to about 4,000 rpm*	1.3 - 1.7 to Approx. 3.0

^{*:} Check for linear voltage rise in response to increases to about 4,000 rpm in engine speed.

MTBL032

4. If the voltage is out of specification, disconnect mass air flow sensor harness connector and connect it again. Repeat above check.

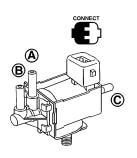
5. If NG, remove mass air flow sensor from air duct. Check hot wire for damage or dust.

SEF893J

OK or NG

OK •	GO TO 7.
NG ►	Replace mass air flow sensor.

DTC P0402 EGRC-BPT VALVE FUNCTION

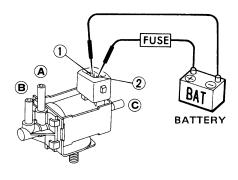

Diagnostic Procedure (Cont'd)

CHECK EGRC-SOLENOID VALVE

(P) With CONSULT-II

Check air passage continuity.

Perform "EGRC SOLENOID VALVE" in "ACTIVE TEST" mode.



ACTIVE TEST		
EGRC SOL/V	ON	
(EGR)	CUT	
MONITO	3	
ENG SPEED	XXX rpm	

Condition EGRC SOLENOID VALVE	Air passage continuity between A and B	Air passage continuity between A and C
ON	Yes	No
OFF	No	Yes

SEF717Z

Without CONSULT-II
Check air passage continuity shown in the figure.

AEC919

Condition	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes

MTBL0283

If NG or operation takes more than 1 second, replace solenoid valve.

OK	or	NG
UΙ	UI.	110

OK ►	GO TO 8.
NG ►	Replace EGRC-solenoid valve.

GI

MA

EM

LC

EC

GL

MT

AT

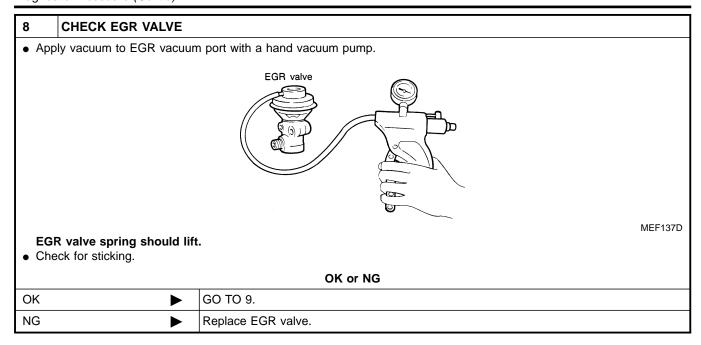
TF

AX

PD

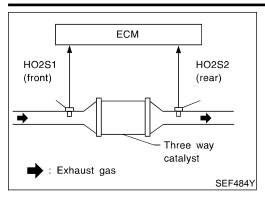
ST

RS


BT

HA

SC


EL

Diagnostic Procedure (Cont'd)

9	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	► INSPECTION END		

On Board Diagnosis Logic

On Board Diagnosis Logic

The ECM monitors the switching frequency ratio of heated oxygen sensor 1 (front) and 2 (rear).

A three way catalyst* with high oxygen storage capacity will indicate a low switching frequency of rear heated oxygen sensor. As oxygen storage capacity decreases, the rear heated oxygen sensor switching frequency will increase.

When the frequency ratio of front and rear heated oxygen sensors approaches a specified limit value, the three way catalyst* malfunction is diagnosed.

*: Warm-up three way catalyst (For California)

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	
P0420 0702	 Three way catalyst does not operate properly. Three way catalyst does not have enough oxygen storage capacity. 	 Three way catalyst* Exhaust tube Intake air leaks Injectors Injector leaks Spark plug Improper ignition timing 	

^{*:} Warm-up three way catalyst (For California)

[3]	SRT WORK SU	IPPORT	
	CATALYST	INCMP	
	EVAP SYSTEM	INCMP	
	O2 SEN HEATER	CMPLT	
	O2 SENSOR	INCMP	
	EGR SYSTEM	INCMP	
	MONITO	R	
	ENG SPEED	XXX rpm	
	MAS A/F SE B1	XXX V	
	B/FUEL SCHDL	XXX msec	
	A/F ALPHA-B1	XXX V	
	COOLAN TEMP/S	XX °C	
	HO2S1 (B1)	XXX V	
			SEF671Y

[7]	SRT WORK SU	JPPORT	
	CATALYST	CMPLT	
	EVAP SYSTEM	INCMP	
	O2 SEN HEATER	CMPLT	
	O2 SENSOR	INCMP	
	EGR SYSTEM	INCMP	
	MONITO	R	
	ENG SPEED	XXX rpm	
	MAS A/F SE B1	xxx v	
	B/FUEL SCHDL	XXX msec	
	A/F ALPHA-B1	XXX V	
	COOLAN TEMP/S	XX °C	
	HO2S1 (B1)	XXX V	
			SEF672Y

SELF DIAG RESI	JLTS	
DTC RESULTS	TIME	
NO DTC IS DETECTED FURTHER TESTING MAY BE REQUIRED.		
MAY BE REQUIRED.		
		SEF560X

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- Do not hold engine speed more than specified minutes below.
- (P) With CONSULT-II
- 1) Turn ignition switch "ON".
- 2) Select "DTC & SRT CONFIRMATION" then "SRT WORK SUP-PORT" mode with CONSULT-II.
- 3) Start engine.
- 4) Rev engine up to 2,500 to 3,500 rpm and hold it for 3 consecutive minutes then release then accelerator pedal completely. If "INCMP" of "CATALYST" changes to "CMPLT", go to step 7.
- 5) Wait 5 seconds at idle.
- 6) Rev engine up to 2,000 to 3,000 rpm and hold it until "INCMP" of "CATALYST" changes to "CMPLT". (It will take maximum of approximately 5 minute.)
- 7) Select "SELF-DIAG RESULTS" mode with CONSULT-II. If the 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-283. If not "COMPLT" stop engine and cool down "COOLANT TEMP/SE" to less than 70°C (158°F) and then retest from step 1).

MA

GI

LC

72

EC

CL

MT AT

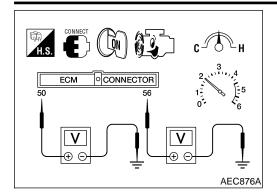
AX

SU

ווש

ST

RS


BT

_ -

HA

SC

Overall Function Check

Overall Function Check

NGEC0242

Use this procedure to check the overall function of the three way catalyst. During this check, a 1st trip DTC might not be confirmed.

Without CONSULT-II

- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3) Set voltmeters probes between ECM terminals 50 [Heated oxygen sensor 1 (front) signal], 56 [Heated oxygen sensor 2 (rear) signal] and engine ground.
 - Keep engine speed at 2,000 rpm constant under no load.
- 5) Make sure that the voltage switching frequency (high & low) between ECM terminal 56 and engine ground is much less than that of ECM terminal 50 and engine ground.

Switching frequency ratio = A/B

A: Heated oxygen sensor 2 (rear) voltage switching frequency

B: Heated oxygen sensor 1 (front) voltage switching frequency

This ratio should be less than 0.75.

If the ratio is greater than above, it means three way catalyst does not operate properly.

NOTE:

If the voltage at terminal 50 does not switch periodically more than 5 times within 10 seconds at step 4, perform trouble diagnosis for DTC P0133 first. (See EC-192.)

Diagnostic Procedure

=NGEC0243

1	1 CHECK EXHAUST SYSTEM			
Visually check exhaust tubes and muffler for dent.				
	OK or NG			
OK ▶ GO TO 2.				
NG	NG Repair or replace.			

GI

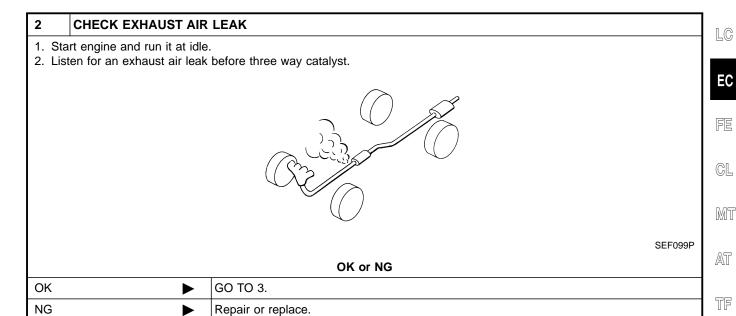
MA

EM

PD

 $\mathbb{A}\mathbb{X}$

SU


BR

ST

RS

BT

HA

3	CHECK INTAKE AIR LEAK		
Listen for an intake air leak after the mass air flow sensor.			
OK or NG			
		OK or NG	
OK	>	OK or NG GO TO 4.	

4	CHECK IGNITION TIME	NG		
1. Ch	eck the following items. Re	efer to "Basic Inspection",	EC-104.	
		Items	Specifications	
		Ignition timing	20° ± 2° BTDC	
		Base idle speed	750 ± 50 rpm (in "P" or "N" position)	
		Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.1 mm (0.004 in): ON 0.3 mm (0.012 in): OFF	
		Target idle speed	800 ± 50 rpm (in "P" or "N" position)	
				MTBL0328
		0	K or NG	
OK	>	GO TO 5.		
NG	•	Adjust ignition timing.		

EL

SC

KA24DE

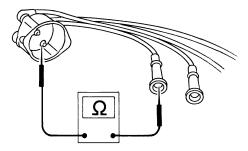
Diagnostic Procedure (Cont'd)

OK

NG

Perform "Diagnostic Procedure" INJECTOR, EC-569.

GO TO 6.



KA24DE

Diagnostic Procedure (Cont'd)

CHECK IGNITION WIRES

- 1. Inspect wires for cracks, damage, burned terminals and for improper fit.
- 2. Measure the resistance of wires to their distributor cap terminal. Move each wire while testing to check for intermittent breaks.

SEF174P

Resistance:

13.6 - 18.4 kΩ/m (4.15 - 5.61 kΩ/ft) at 25°C (77°F)

If the resistance exceeds the above specification, inspect ignition wire to distributor cap connection. Clean connection or replace the ignition wire with a new one.

OK or NG

OK •	>	Check ignition coil, power transistor and their circuits. Refer to EC-559.
NG	>	Replace.

8 CHECK INJECTOR

- 1. Turn ignition switch OFF.
- 2. Remove injector assembly. Refer to EC-52. Keep fuel hose and all injectors connected to injector gallery.
- 3. Disconnect camshaft position sensor harness connector.
- 4. Turn ignition switch ON.

Make sure fuel does not drip from injector.

OK or NG

OK (Does not drip.)	GO TO 9.
NG (Drips.)	Replace the injector(s) from which fuel is dripping.

9	CHECK INTERMITTENT INCIDENT				
Perfori	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.				
Troubl	e is fixed.	>	INSPECTION END		
Trouble	Trouble is not fixed. Replace three way catalyst.				

GI

MA

LC

EC

F174P

GL

FE

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

@11

ST

29

BT

HA

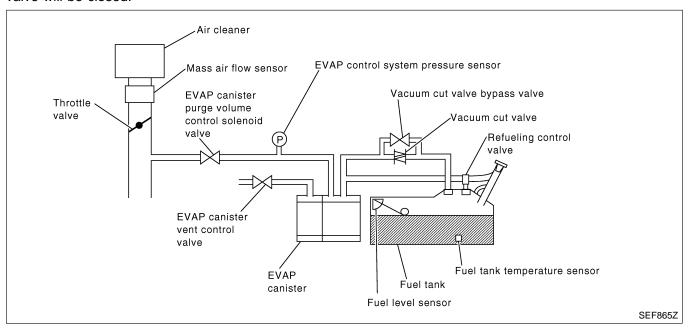
SC

KA24DE

NGEC0244

On Board Diagnosis Logic

NOTE:


On Board Diagnosis Logic

If DTC P0440 OR P1440 is displayed with DTC P1448, perform trouble diagnosis for DTC P1448 first. (See EC-519.)

This diagnosis detects leaks in the EVAP purge line using engine intake manifold vacuum.

If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge volume control solenoid valve under the following "Vacuum test" conditions.

The vacuum cut valve bypass valve is opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP canister vent control valve will then be closed to shut the EVAP purge line off. The EVAP canister purge volume control solenoid valve is opened to depressurize the EVAP purge line using intake manifold vacuum. After this occurs, the EVAP canister purge volume control solenoid valve will be closed.

KA24DE

On Board Diagnosis Logic (Cont'd)

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	
P0440	EVAP control system has a leak.	Incorrect fuel tank vacuum relief valve	
	 EVAP control system does not operate properly. 	 Incorrect fuel filler cap used 	
		 Fuel filler cap remains open or fails to close. 	
		 Foreign matter caught in fuel filler cap. 	
		 Leak is in line between intake manifold and 	
		EVAP canister purge volume control solenoid	
		valve.	
		 Foreign matter caught in EVAP canister vent 	
		control valve.	
		EVAP canister or fuel tank leaks	
		EVAP purge line (pipe and rubber tube) leaks	
		EVAP purge line rubber tube bent.	ı
		Blocked or bent rubber tube to EVAP control sys-	
		tem pressure sensor	
		Loose or disconnected rubber tube Comparison Co	•
		EVAP canister vent control valve and the circuit EVAP conister purpos valves control calcanid.	
		 EVAP canister purge volume control solenoid valve and the circuit 	
		Absolute pressure sensor	
		 Fuel tank temperature sensor 	
		O-ring of EVAP canister vent control valve is	
		missing or damaged.	
		Water separator	
		EVAP canister is saturated with water.	
		EVAP control system pressure sensor	
		Fuel level sensor and the circuit	
		Refueling control valve	
		ORVR system leaks	

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

ont'd)

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

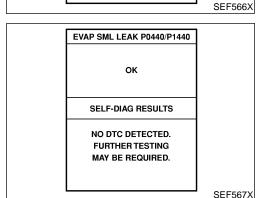
ST

RS

BT

HA

SC


KA24DE

NGEC0245

On Board Diagnosis Logic (Cont'd)

EVAP SML LEAK P0440/P1440 1)FOR BEST RSLT,PERFORM AT FOLLOWING CONDITIONS. -FUEL LEVEL: 1/4-3/4 -AMBIENT TEMP: 0-30 C(32-86F) -OPEN ENGINE HOOD. 2)START ENG WITH VHCL STOPPED. IF ENG IS ON,STOP FOR 5 SEC. THEN RESTART. 3)TOUCH START.

WAIT
2 TO 10 MINUTES.
KEEP ENGINE RUNNING
AT IDLE SPEED.

DTC Confirmation Procedure

NOTE:

If DTC P0440 or P1440 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. Refer to EC-519.

 If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(I) With CONSULT-II TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).
- It is better that the fuel level is low.
- 1) Turn ignition switch ON.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 4) Check that the following conditions are met.

COOLAN TEMP/S	0 - 70°C (32 - 158°F)
INT/A TEMP SE	0 - 60°C (32 - 140°F)

 Select "EVAP SML LEAK P0440" of "EVAPORATIVE SYS-TEM" in "DTC WORK SUPPORT" mode with CONSULT-II. Follow the instruction displayed.

NOTE:

- If the engine cannot be maintained within the range on CONSULT-II screen, go to "Basic Inspection", EC-104.
- Make sure that "OK" is displayed.
 If "NG" is displayed, refer to "Diagnostic Procedure", EC-356.

NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

■ With GST

- Start engine.
- 2) Drive vehicle according to "Driving pattern", EC-74.

NOTE:

Be sure to read the explanation of "Driving pattern" on EC-74 before driving vehicle.

- 3) Stop vehicle.
- 4) Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- 5) Turn ignition switch OFF and wait at least 5 seconds.
- 6) Start engine

It is not necessary to cool engine down before driving.

- 7) Drive vehicle again according to the "Driving pattern", EC-74.
- 8) Stop vehicle.
- 9) Select "MODE 3" with GST.
- If P1447 is displayed on the screen, go to "Diagnostic Procedure", EC-511.
- If P0440 is displayed on the screen, go to "Diagnostic Procedure", EC-356.

KA24DE

DTC Confirmation Procedure (Cont'd)

- If P1440 is displayed on the screen, go to "Diagnostic Procedure", EC-474.
- If P0440, P1440 and P1447 are not displayed on the screen, go to the following step.
- 10) Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 5.

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

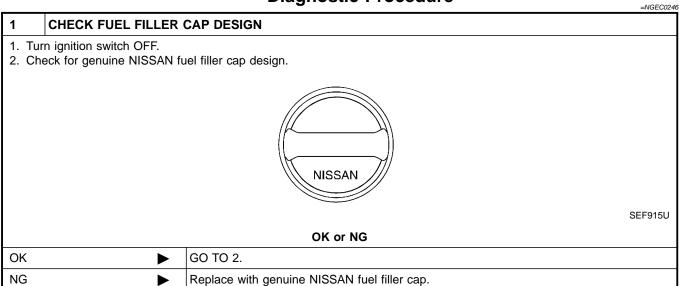
BR

ST

RS

BT

HA

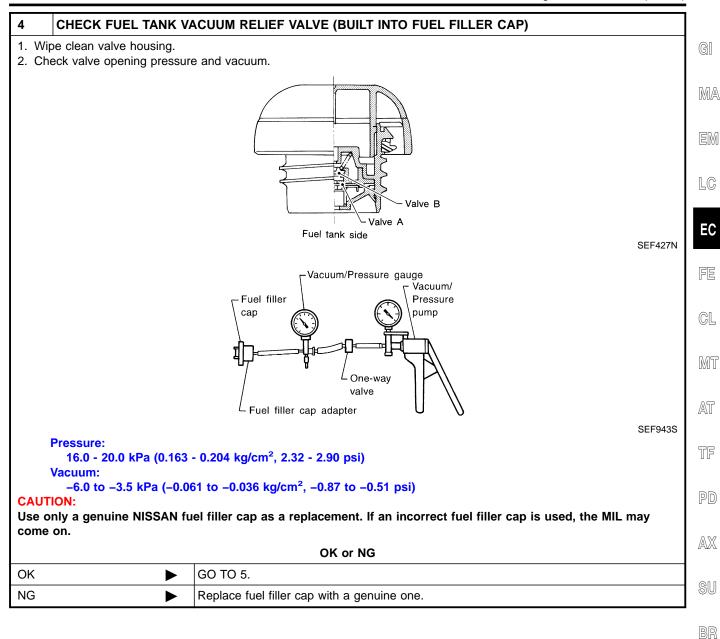

SC

EL

KA24DE

Diagnostic Procedure

Diagnostic Procedure



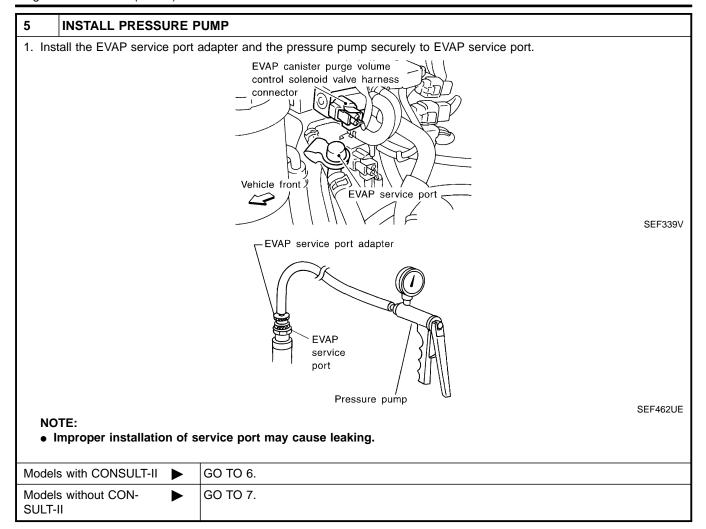
2	CHECK FUEL FILLER	CAP INSTALLATION
Check that the cap is tightened properly rotating the cap clockwise.		
OK or NG		
OK	>	GO TO 3.
NG	>	 Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard.

3	CHECK FUEL FILLER CAP FUNCTION					
Check	Check for air releasing sound while opening the fuel filler cap.					
OK or NG						
OK	>	GO TO 5.				
NG	>	GO TO 4.				

KA24DE

Diagnostic Procedure (Cont'd)

ST


BT

HA

SC

KA24DE

Diagnostic Procedure (Cont'd)

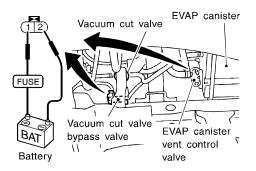
KA24DE

Diagnostic Procedure (Cont'd)

CHECK FOR EVAP LEAK (P) With CONSULT-II GI 1. Turn ignition switch ON. 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II. MA **EVAP SYSTEM CLOSE** APPLY PRESSURE TO EVAP SYSTEM FROM SERVICE PORT USING HAND PUMP WITH PRESSURE GAUGE AT **NEXT SCREEN.** NEVER USE COMPRESSED AIR OR HIGH PRESSURE PUMP! DO NOT START ENGINE. TOUCH START. EC PEF658U 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of bar graph. FE NOTE: • Never use compressed air or a high pressure pump. Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system. GL EVAP SYSTEM CLOSE APPLY PRESSURE TO MT SERVICE PORT TO RANGE BELOW. DO NOT EXCEED 0.6psi. AT TF 0.2 0.4 PD 4. Using EVAP leak detector, locate the leak portion. For the leak detector, refer to instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-37. Leak detector ST SEF200U OK or NG OK GO TO 8. NG Repair or replace.

HA

SC

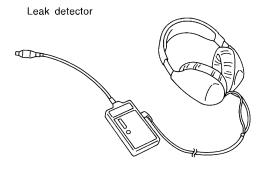

KA24DE

Diagnostic Procedure (Cont'd)

CHECK FOR EVAP LEAK

⋈ Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)

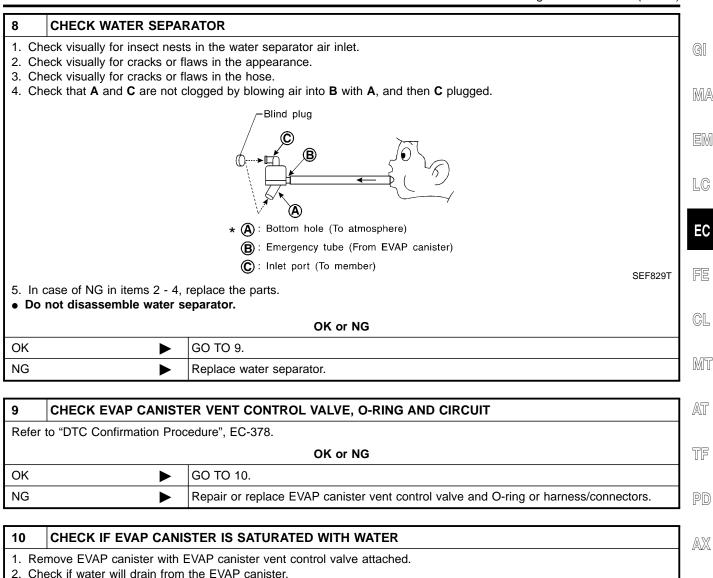


SEF503V

- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12 volts until the end of test.) Shown in the above figure.
- 4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg).

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the leak. For the leak detector, refer to instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-37.


SEF200U

OK or NG

OK •	GO TO 8.
NG ►	Repair or replace.

KA24DE

Diagnostic Procedure (Cont'd)

10	CHECK IF EVAP CA	NISTER IS SATURATED WITH WATER	
	emove EVAP canister will heck if water will drain from	h EVAP canister vent control valve attached. m the EVAP canister.	
		EVAP canister Water vent control valve	SEF596U
		Yes or No	
Yes	•	GO TO 11.	
No (\	With CONSULT-II)	GO TO 13.	
No (Without CONSULT-	GO TO 14.	

SU

ST

BT

HA

SC

KA24DE

Diagnostic Procedure (Cont'd)

11	CHECK EVAP CANISTER				
	Weigh the EVAP canister with EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).				
	OK or NG				
OK (V	Vith CONSULT-II)	•	GO TO 13.		
OK (V II)	Vithout CONSULT-	>	GO TO 14.		
NG		>	GO TO 12.		

12 DETECT MALFUNCTIONING PART

Check the following.

- 1. Visually check the EVAP canister for damage.
- 2. Check hose connection between EVAP canister and water separator for clogging and poor connection.

Repair hose or replace EVAP canister.

13 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.

ACTIVE TEST			
PURG VOL CONT/V	XXX %		
MONITOR			
ENG SPEED	XXX rpm		
A/F ALPHA-B1	XXX %		
HO2S1 MNTR (B1)	LEAN		
THRTL POS SEN	xxx v		

Vacuum should exist.

SEF595Y

- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%.
- 5. Check vacuum hose for vacuum.

Vacuum should exist.

OK or NG

OK •	GO TO 17.
NG •	GO TO 15.

14 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 60 seconds.
- 5. Check vacuum hose for vacuum.

Vacuum should exist.

OK or NG

OK •	GO TO 17.
NG ►	GO TO 15.

KA24DE

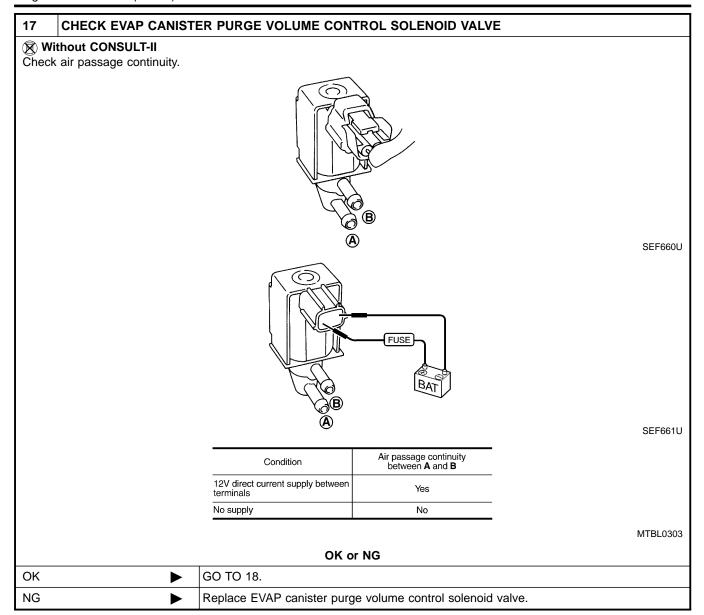
Diagnostic Procedure (Cont'd)

15	CHECK VACUUM	/I HOS	E	
Check	vacuum hoses for	cloggir	ng or disconnection. Refer to "Vacuum Hose Drawing", EC-27.	GI
			OK or NG	
OK (V	Vith CONSULT-II)	>	GO TO 16.	M
OK (V II)	Vithout CONSULT-	>	GO TO 17.	
NG			Repair or reconnect the hose.	E

LC 16 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (II) With CONSULT-II 1. Start engine. EC 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. If OK, inspection end. If NG, go to following step. ACTIVE TEST PURG VOL CONT/V XXX % GL MONITOR **ENG SPEED** XXX rpm A/F ALPHA-B1 XXX % MT HO2S1 MNTR (B1) LEAN THRTL POS SEN XXX V AT SEF801Y TF 3. Check air passage continuity. Condition PURG VOL CONT/V value Air passage continuity between **A** and **B** PD 100.0% Yes 0.0% No AX MTBL0302 OK or NG SU OK GO TO 18. NG Replace EVAP canister purge volume control solenoid valve.

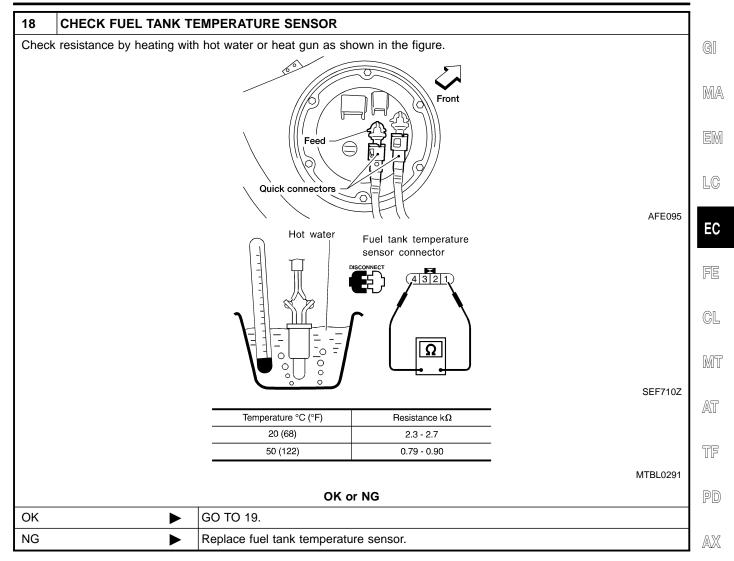
ΞL

ST


BT

HA

SC


KA24DE

Diagnostic Procedure (Cont'd)

KA24DE

Diagnostic Procedure (Cont'd)

SU

BR

ST

RS

BT

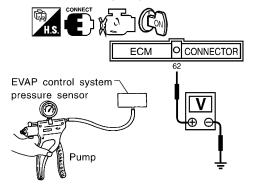
HA

SC

EL

KA24DE

Diagnostic Procedure (Cont'd)

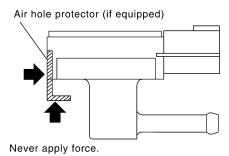

19 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

1. Remove EVAP control system pressure sensor with its harness connector connected.

View with spare tire removed Rear shock absorber (RH) EVAP canister EVAP control system pressure sensor Vehicle front

SEF341V

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 4. Check output voltage between ECM terminal 62 and engine ground.


SEF198V

Pressure (Relative to atomospheric pressure)	Voltage (V)
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

MTBL0295

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.

SEF799W

- Never apply force to the air hole protector of the sensor, if equipped.
- Discard any EVAP control system pressure sensor which has been dropped from height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

വ	Κ	or	NC
()	κ	or	N

OK •	GO TO 20.
NG •	Replace EVAP control system pressure sensor.

KA24DE

		Diagnostic Procedure (Cont'o	d)
20 CH	ECK EVAP PURGE	LINE	7
		bber tube, fuel tank and EVAP canister) for cracks or improper connection. ION LINE DRAWING", EC-37.	GI
		OK or NG	D/11/1
OK	>	GO TO 21.	
NG	•	Repair or reconnect the hose.	
21 CL	EAN EVAP PURGE	LINE	7
Clean EVA	P purge line (pipe and	d rubber tube) using air blower.	
	>	GO TO 22.]
22 CH	ECK REFUELING E	VAP VAPOR LINE	
		between EVAP canister and fuel tank for clogging, kink, looseness and improper connec- OARD REFUELING VAPOR RECOVERY (ORVR)", EC-39.	FE
		OK or NG	l Gl
OK	>	GO TO 23.	
NG	•	Repair or replace hoses and tubes.	
			–
Check sigr		AND RECIRCULATION LINE on line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and OK or NG	T AT
OK	>	GO TO 24.	┨ ""
NG	•	Repair or replace hoses, tubes or filler neck tube.	
			\mathbb{A}
			SI
			S
			R
			00
			H
			S

KA24DE

Diagnostic Procedure (Cont'd)

24 **CHECK REFUELING CONTROL VALVE** 1. Remove fuel filler cap. 2. Check air continuity between hose ends A and B. Blow air into the hose end B. Air should flow freely into the fuel tank. 3. Blow air into hose end A and check there is no leakage. 4. Apply pressure to both hose ends A and B [20 kPa (150 mmHg, 5.91 inHg)] using a pressure pump and a suitable 3-way connector. Check that there is no leakage. 3-way connector (Signal line) (Refueling EVAP Vacuum pump vapor line) Fuel tank Front SEF707Z OK or NG GO TO 25. OK NG Replace refueling control valve with fuel tank.

25	CHECK FUEL LEVEL SENSOR				
	 Remove fuel level sensor assembly. Refer to <i>FE-4</i>. Refer to "FUEL LEVEL SENSOR CHECK", <i>EL-87</i> 				
	OK or NG				
OK	>	GO TO 26.			
NG	>	Replace fuel level sensor.			

26	6 CHECK INTERMITTENT INCIDENT			
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.			
► INSPECTION END				

Description SYSTEM DESCRIPTION

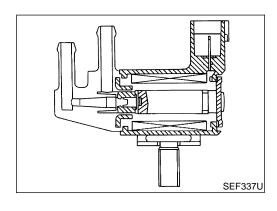
NGEC0248

MA

EC

FE

TF


PD

AX

NGEC0248S01

Sensor	Input Signal to ECM	ECM function	Actuator	•
Camshaft position sensor	Engine speed			-
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Ignition switch	Start signal			
Throttle position sensor	Throttle position	EVAP can- ister purge	EVAP canister purge volume	
Throttle position switch	Closed throttle position	flow control control solenoid valve	control solenoid valve	
Heated oxygen sensor 1 (front)	Density of oxygen in exhaust gas (Mixture ratio feedback signal)			
Fuel tank temperature sensor	Fuel temperature in fuel tank			
Vehicle speed sensor	Vehicle speed			

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

BT

HA

SC

CONSULT-II Reference Value in Data Monitor Mode

NGEC0249

Specification data are reference values.

MONITOR ITEM CONDITION **SPECIFICATION** • Engine: After warming up Idle (Vehicle stopped) 0% · Air conditioner switch "OFF" PURG VOL C/V Shift lever: "N" 2,000 rpm No-load

ECM Terminals and Reference Value

KA24DE

ECM Terminals and Reference Value

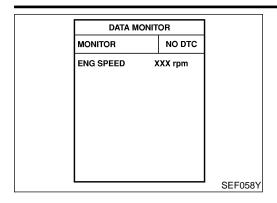
Specification data are reference values and are measured between each terminal and ground.

NGEC0250

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
4	LG/R	G/R ECCS relay (Self-	[Engine is running] [Ignition switch OFF] • For a few seconds after turning ignition switch OFF	0 - 1V
		shutoff)	[Ignition switch OFF] ■ A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
5	R/Y	EVAP canister purge	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 20 10 0 50 ms
5	R/T	volume control sole- noid valve	[Engine is running] ● Engine speed is 2,000 rpm (More than 200 seconds after starting engine)	BATTERY VOLTAGE (11 - 14V) (V) 20 10 0 50 ms
67	B/P	Power supply for	[Ignition switch ON]	BATTERY VOLTAGE
72	B/P	ECM	Industrial Ord	(11 - 14V)
117	B/P	Current return	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)


On Board Diagnosis Logic

NGEC0251

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0443	An improper voltage signal is sent to ECM through the valve.	Harness or connectors (The valve circuit is open or shorted.) EVAP canister purge volume control solenoid valve

KA24DE

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

(II) With CONSULT-II

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for at least 30 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-373

With GST

Follow the procedure "With CONSULT-II".

=NGEC0252

G[

N/I/A

MA

EM

LC

EC

FE

. .

CL

MT

AT

TF PD

SU

ST

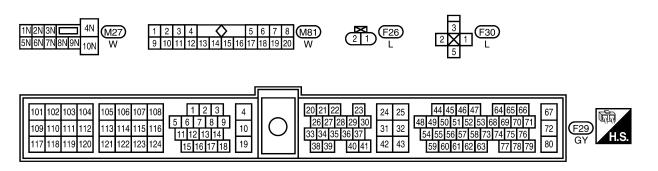
RS

BT

HA

SC

EL


 $\mathbb{D}\mathbb{X}$

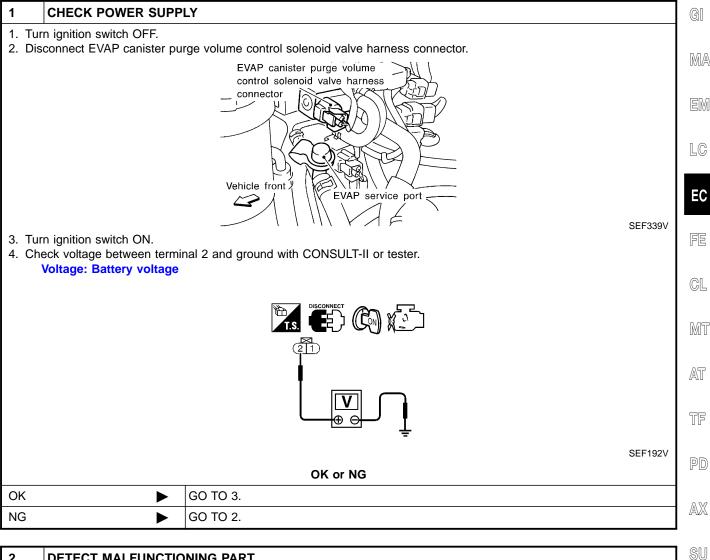
KA24DE

Wiring Diagram NGEC0253 EC-PGC/V-01 BATTERY FUSE BLOCK (J/B) Refer to "EL-POWER". 10A 27 M27 ■ : Detectable line for DTC : Non-detectable line for DTC (M81) RELAY (F30) B/P EVAP CANISTER PURGE VOLUME CONTROL SOLENOID **VALVE** (F26) В/Р B/P B/P LG/R 4 67 72 117 5 ECM

EVAP

€F29

CRTN


LEC484

KA24DE

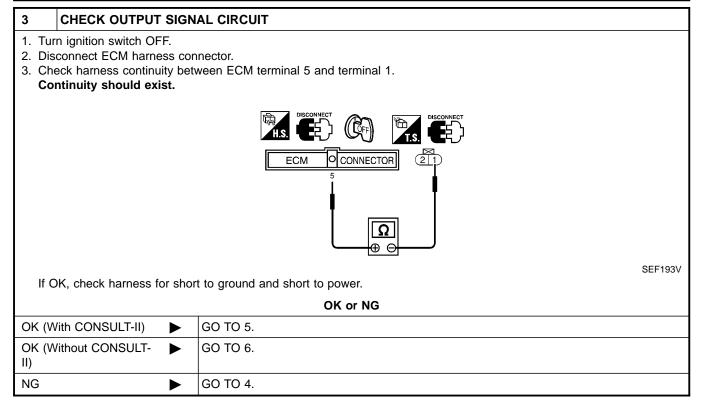
NGEC0254

Diagnostic Procedure

Check the following. Harness for open or short between EVAP canister purge volume control solenoid valve and ECM relay Harness for open or short between EVAP canister purge volume control solenoid valve and ECM Repair harness or connectors.

 $\mathbb{D}\mathbb{X}$

ST


BT

HA

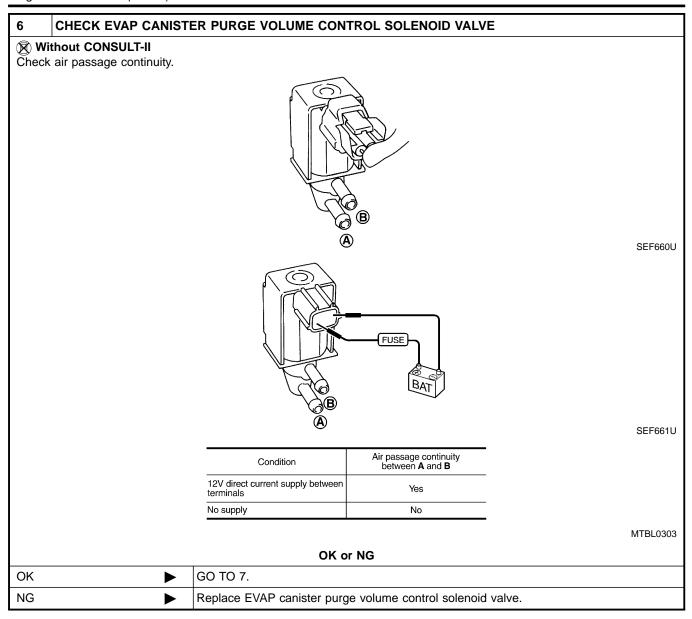
SC

KA24DE

Diagnostic Procedure (Cont'd)

4	DETECT MALFUNCTIONING PART		
Check	Check the harness for open or short between EVAP canister purge volume control solenoid valve and ECM.		
	Repair open circuit or short to ground or short to power in harness or connectors.		

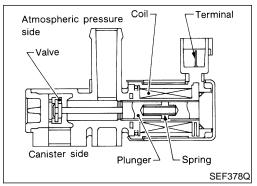
KA24DE

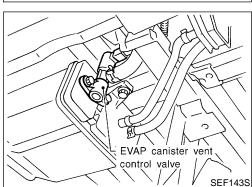

				Diagnostic Procedure (Cont'd	-
5 CHECK EVAP CANISTER	R PURGE VOLUME CON	TROL SOLEN	OID VALV	 ≣]
With CONSULT-II Start engine.					GI
 Perform "PURG VOL CONT/V" to the valve opening. If OK, inspection end. If NG, go 		ith CONSULT-I	I. Check tha	at engine speed varies according	MA
	PURG VOL CON				EM
	ENG SPEEL	D XXX rpm			LG
	HO2S1 MNTR THRTL POS S				EC
					FE
3. Check air passage continuity.	Condition	Air pagagg -	ontinuity	SEF801Y	GL
	Condition PURG VOL CONT/V value 100.0%	Air passage co between A a Yes	and B		MT
	0.0%	No		MTBL0302	
	OK o	r NG			AT
	GO TO 7.				
NG R	Replace EVAP canister purg	e volume contr	ol solenoid	valve.	TF
					PD
					AX
					SU
					BR
					ST
					RS
					BT
					HA

SC

EL

KA24DE


Diagnostic Procedure (Cont'd)



7	CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.	
	► INSPECTION END	

KA24DE

Component Description

Component Description

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid (the EVAP canister vent control valve) responds to signals from the ECM.

When the ECM sends an ON signal, the coil in the solenoid valve is energized.

A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

GI

MA

EC

GL

MT

AT

TF

PD

CONSULT-II Reference Value in Data Monitor Mode

NGEC0257

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

ECM Terminals and Reference Value

NGEC0258

Specification data are reference values and are measured between each terminal and ground.

AX

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
108	R/G	EVAP canister vent control valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)

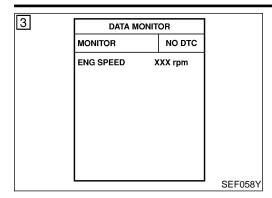
On Board Diagnosis Logic

NGECOS

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0446	canister vent control valve.	Harness or connectors (EVAP canister vent control valve circuit is open or shorted.) EVAP canister vent control valve

HA

BT


ST

SC

DW

KA24DE

DTC Confirmation Procedure

DTC Confirmation Procedure

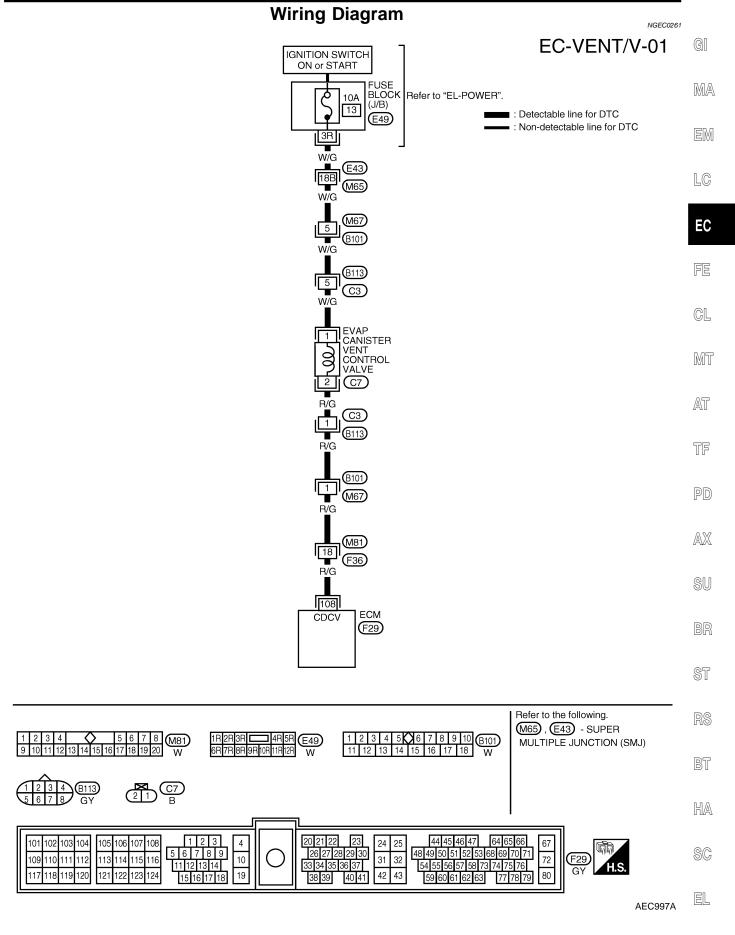
NGEC0260

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.


(P) With CONSULT-II

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-380.

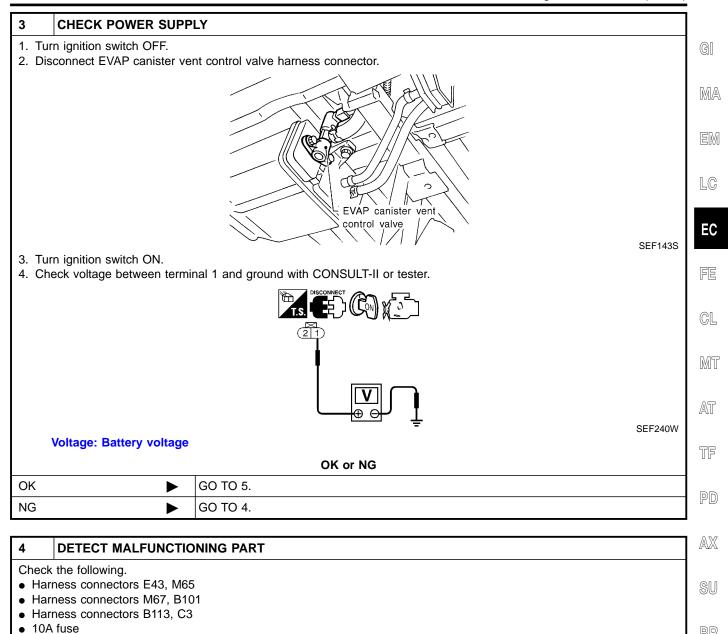
With GST

Follow the procedure "With CONSULT-II".

KA24DE

Diagnostic Procedure

Diagnostic Procedure NGEC0262 INSPECTION START Do you have CONSULT-II? Yes or No GO TO 2. Yes GO TO 3. No 2 CHECK EVAP CANISTER VENT CONTROL VALVE CIRCUIT 1. Turn ignition switch ON. 2. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode. **ACTIVE TEST** VENT CONTROL/V MONITOR **ENG SPEED** XXX rpm A/F ALPHA-B1 XXX % HO2S1 (B1) XXX V THRTL POS SEN XXX V SEF802Y


3. Make sure that ratcheting sound is heard from the vent control valve.

0	ĸ	or	N	C

OK •	GO TO 7.
NG ►	GO TO 3.

KA24DE

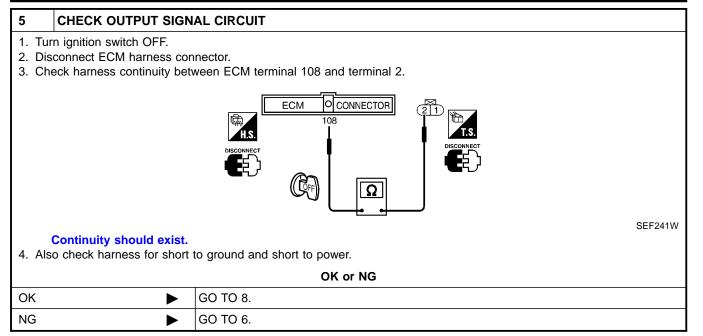
Diagnostic Procedure (Cont'd)

 \mathbb{M}

ST

BT

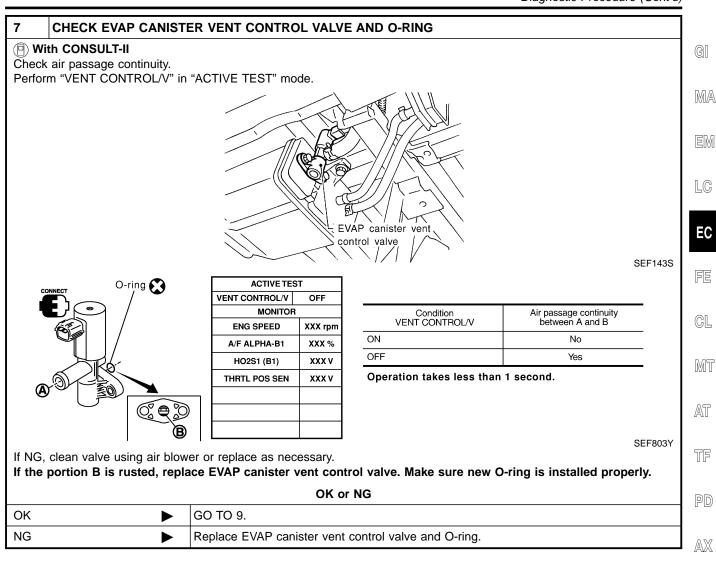
HA


SC

• Harness for open or short between EVAP canister vent control valve and 10A fuse

Repair harness or connectors.

KA24DE


Diagnostic Procedure (Cont'd)

6	DETECT MALFUNCTIONING PART		
Check the following.			
Har	ness connectors B101, M6	7	
Har	Harness connectors M81, F36		
Harness connectors B113, C3			
Harness for open or short between EVAP canister vent control valve and ECM			
		Repair open circuit or short to ground or short to power in harness or connectors.	

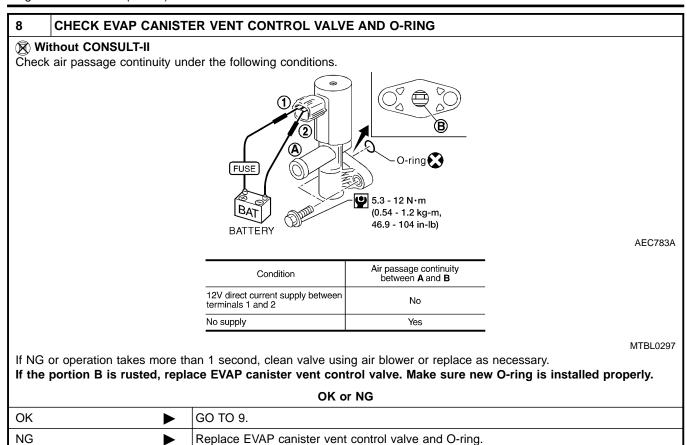
KA24DE

Diagnostic Procedure (Cont'd)

SU

ST

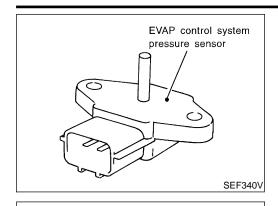
HA


SC

EL

 \mathbb{N}

KA24DE


Diagnostic Procedure (Cont'd)

9	CHECK INTERMITTENT INCIDENT	
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	•	INSPECTION END

KA24DE

Component Description

4.5 4

3.5 3 2.5

1.5 0.5

-9.3

(-70, -2.76, -1.35)

Output voltage

Component Description

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases. The EVAP control system pressure sensor is not used to control the engine system. It is used only for on board diagnosis.

MA

EC

FE

GL

MT

AT

TF

CONSULT-II Reference Value in Data Monitor Mode

NGEC0265

Specification data are reference values.

Pressure kPa (mmHg, inHg, psi)

(Relative to atmospheric pressure)

+4.0

(+30, +1.18, +0.58)

SEF954S

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 3.4V

PD

ECM Terminals and Reference Value

NGEC0266

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

AX

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
42	BR	Sensors' power supply	[Ignition switch ON]	Approximately 5V
43	B/W	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
62	Υ	EVAP control system pressure sensor	[Ignition switch ON]	Approximately 3.4V

SU

ST

BT

HA

SC

EL


KA24DE

On Board Diagnosis Logic

On Board Diagnosis Logic NGEC0267 DTC No. Malfunction is detected when ... Check Items (Possible Cause) P0450 • An improper voltage signal from EVAP control system • Harness or connectors pressure sensor is sent to ECM. (The EVAP control system pressure sensor circuit is open or shorted.) • Rubber hose to EVAP control system pressure is clogged, vent, kinked, disconnected or improper connection. EVAP control system pressure sensor EVAP canister vent control valve EVAP canister purge volume control solenoid EVAP canister • Rubber hose from EVAP canister vent control valve to water separator

KA24DE

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

ed, GI

=NGEC0268

TESTING CONDITION:

- Always perform test at a temperature above 5°C (41°F).
- Before performing the following procedure, confirm battery voltage is more than 11V at idle.

MA

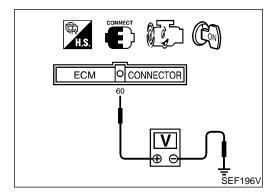
LC

EC

FE

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- Make sure that "TANK F/TEMP SE" is more than 0°C (32°F).
- Start engine and wait at least 20 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-389.



MT

TF

PD

SU

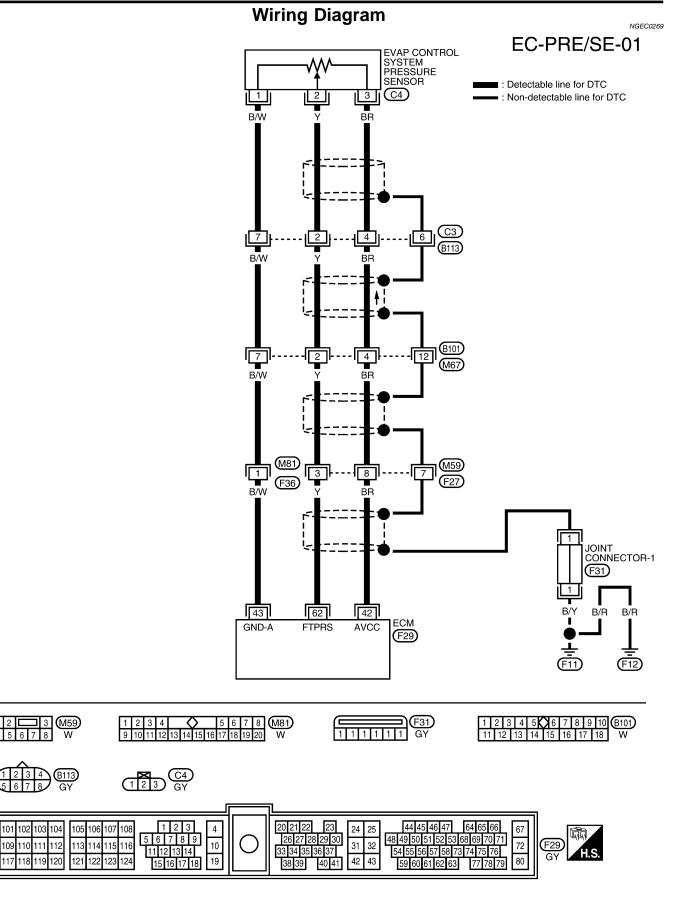
With GST

- 1) Start engine and warm it up to normal operating temperature.
- 2) Check that voltage between ECM terminal 60 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3) Turn ignition switch OFF and wait at least 5 seconds.
- 4) Start engine and wait at least 11 seconds.
- 5) Select "MODE 7" with GST.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-389.

No Tools

- 1) Start engine and warm it up to normal operating temperature.
- 2) Check that voltage between ECM terminal 60 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3) Turn ignition switch OFF and wait at least 5 seconds.
- 4) Start engine and wait at least 11 seconds.
- 5) Turn ignition switch OFF, wait at least 5 seconds and then turn ON.
- Perform "Diagnostic Test Mode II (Self-diagnostic results)" with ECM.
- 7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-389.

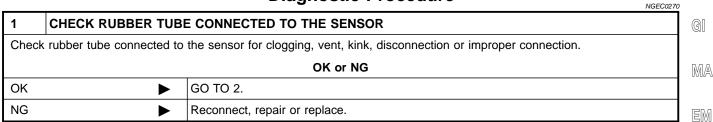
RS

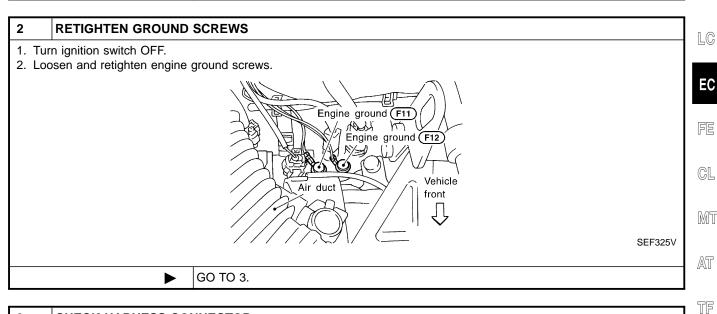

BT

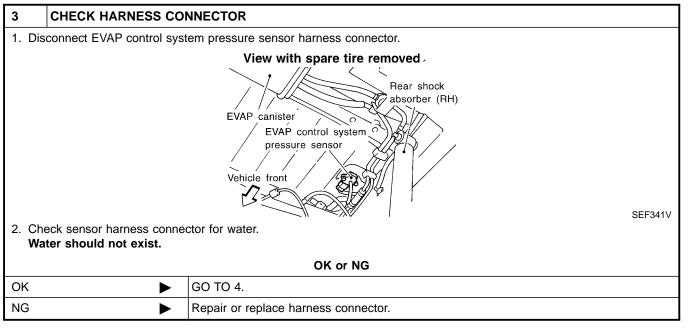
HA

SC

EL


KA24DE




KA24DE

Diagnostic Procedure

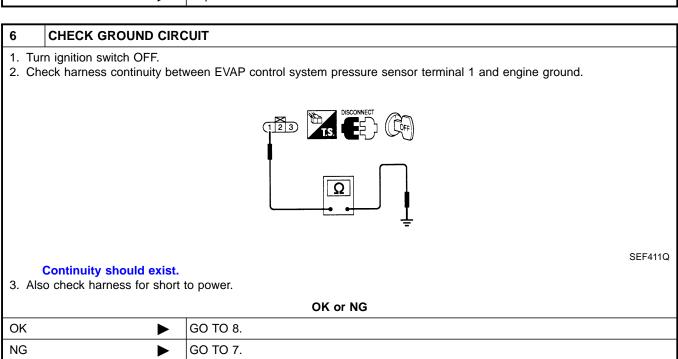
Diagnostic Procedure

BT

HA


SC

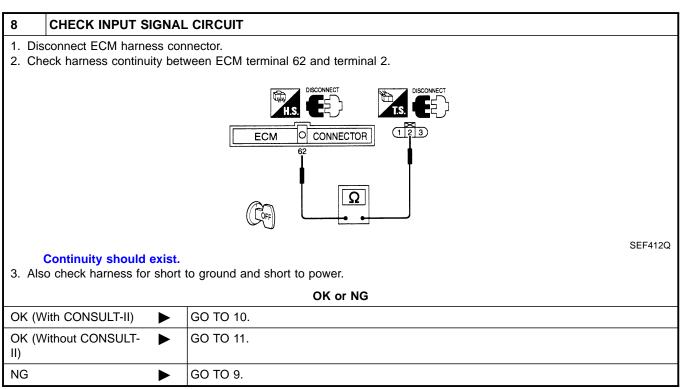
PD


AX

KA24DE

Diagnostic Procedure (Cont'd)

5	DETECT MALFUNCTIONING PART	
Check the following.		
Harness connectors C3, B113		
Harness connectors B101, M67		
Harness connectors M59, F27		
Harness connectors M81, F36		
 Harness for open or short between EVAP control system pressure sensor and ECM 		
	>	Repair harness or connectors.



KA24DE

Diagnostic Procedure (Cont'd)

7 DETECT MALFUNCTIONING PART Check the following. • Harness connectors C3, B113 • Harness connectors B101, M67 • Harness connectors M59, F27 • Harness connectors M81, F36

Harness for open or short between EVAP control system pressure sensor and ECM
 Repair open circuit or short to ground or short to power in harness or connectors.

9 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors C3, B113
- Harness connectors B101, M67
- Harness connectors M59, F27
- Harness connectors M81, F36
- Harness for open or short between EVAP control system pressure sensor and ECM
 - Repair open circuit or short to ground or short to power in harness or connectors.

GI

MA

50

EC

FE

CL

MT

AT

TF

PD

Λ 5\/7

00

BR

ST

BT

HA

SC

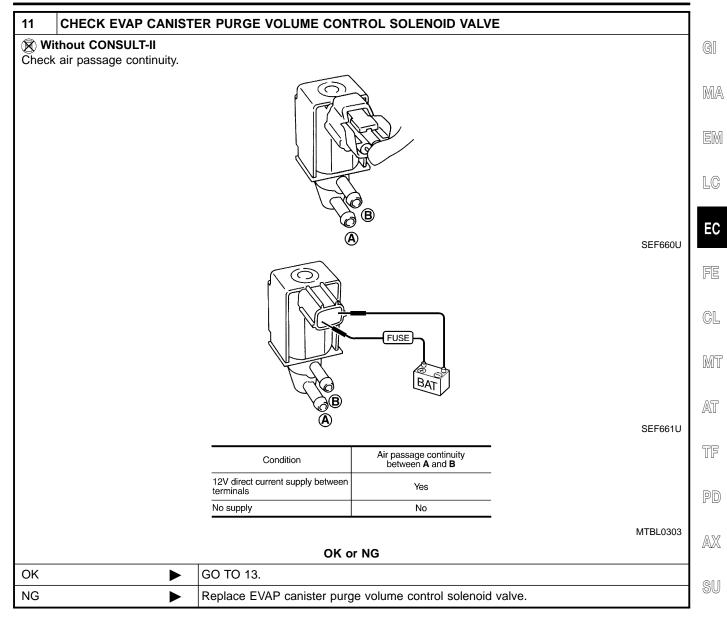
51

KA24DE

Diagnostic Procedure (Cont'd)

OK

NG


10 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (P) With CONSULT-II 1. Start engine. 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. Check air passage continuity. If OK, inspection end. If NG, go to following step. ACTIVE TEST PURG VOL CONT/V MONITOR **ENG SPEED** XXX rpm A/F ALPHA-B1 HO2S1 MNTR (B1) LEAN THRTL POS SEN XXX V SEF801Y 3. Check air passage continuity. Condition PURG VOL CONT/V value Air passage continuity between **A** and **B** 100.0% Yes 0.0% No MTBL0302 OK or NG

Replace EVAP canister purge volume control solenoid valve.

GO TO 12.

KA24DE

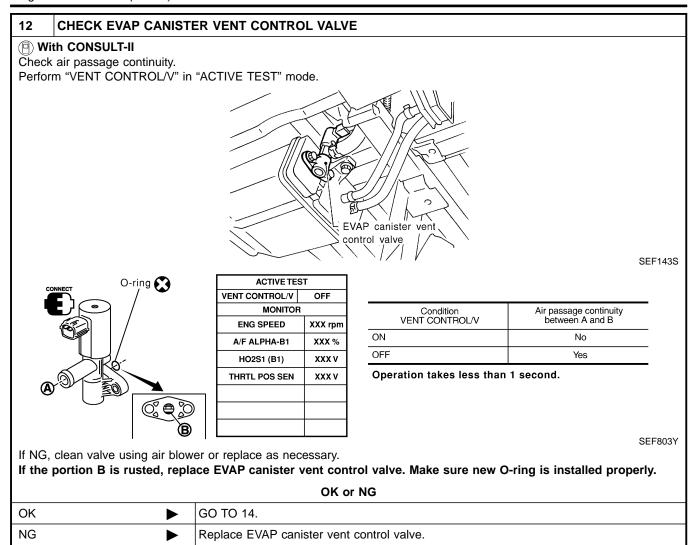
Diagnostic Procedure (Cont'd)

BR

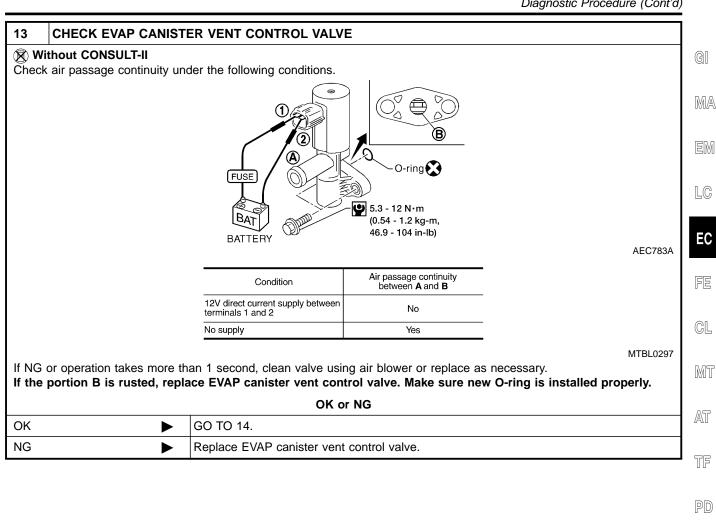
ST

RS

BT


HA

SC


EL

KA24DE

Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)

SU

ST

BT

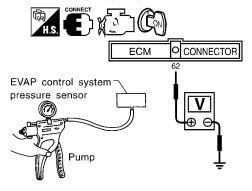
HA

SC

EL

Diagnostic Procedure (Cont'd)

KA24DE

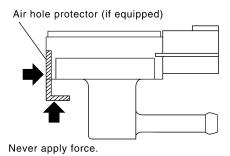

14 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

1. Remove EVAP control system pressure sensor with its harness connector connected.

View with spare tire removed Rear shock absorber (RH) EVAP canister EVAP control system pressure sensor Vehicle front

SEF341V

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 4. Check output voltage between ECM terminal 62 and engine ground.


SEF198V

Pressure (Relative to atomospheric pressure)	Voltage (V)
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

MTBL0295

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.

SEF799W

- Never apply force to the air hole protector of the sensor, if equipped.
- Discard any EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG

OK •	GO TO 15.
NG >	Replace EVAP control system pressure sensor.

DTC P0450 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PRESSURE SENSOR

KA24DE

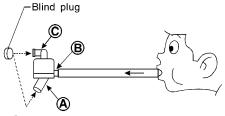
GI

MA

EC

MT

AT


Diagnostic Procedure (Cont'd)

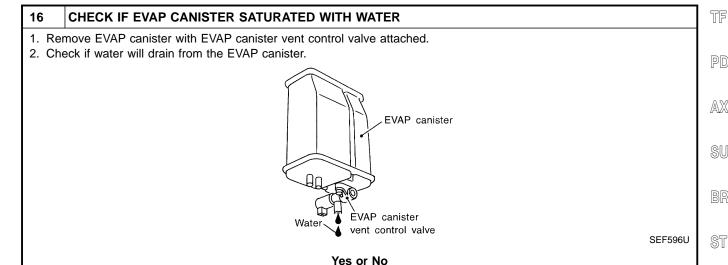
15 CHECK RUBBER TUBE FOR CLOGGING

Check obstructed water separator and rubber tube to EVAP canister vent control valve and clean the rubber tube using air blower.

Check water separator.

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that **A** and **C** are not clogged by blowing air into **B** with **A**, and then **C** plugged.

- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - (C): Inlet port (To member)


SEF829T

5. In case of NG in items 2 - 4, replace the parts.

• Do not disassemble water separator.

OK	or	Ν	G
----	----	---	---

OK ►	GO TO 16.
NG •	Clean, repair or replace rubber tube and/or water separator.

Yes	GO TO 17.
No >	GO TO 19.

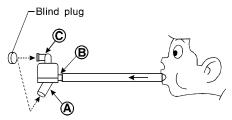
17	17 CHECK EVAP CANISTER			
	Weigh the EVAP canister with EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).			
	OK or NG			
OK	OK ▶ GO TO 19.			
NG	>	GO TO 18.		

BT

HA

SC

DTC P0450 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PRESSURE SENSOR

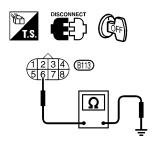

KA24DE

Diagnostic Procedure (Cont'd)

18 DETECT MALFUNCTIONING PART

Check the following.

- 1. Visually check the EVAP canister for damage.
- 2. Check hose connection between EVAP canister and water separator for clogging and poor connection.
- 3. Check water separator.
- a. Check visually for insect nests in the water separator air inlet.
- b. Check visually for cracks or flaws in the appearance.
- c. Check visually for cracks or flaws in the hose.
- d. Check that A and C are not clogged by blowing air into B with A, and then C plugged.


- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - (C): Inlet port (To member)

SEF829T

- e. In case of NG in items 2 4, replace the parts.
- Do not disassemble water separator.
 - Repair hose or replace EVAP canister or water separator.

19 CHECK SHIELD CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Reconnect disconnected harness connectors.
- 3. Disconnect harness connectors B113.
- 4. Check harness continuity between harness connector B113 terminal 6 and ground.

SEF699Z

Continuity should exist.

- 5. Also check harness for short to power.
- 6. Then reconnect harness connectors.

OK or NG

OK •	GO TO 21.
NG ►	GO TO 20.

20 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Joint connector-1 (Refer to "HARNESS LAYOUT", EL-254.)
- Harness for open or short between harness connector M67 and engine ground

Repair open circuit, short to ground or short to power in harness or connectors.

DTC P0450 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PRESSURE SENSOR

KA24DE

Diagnostic Procedure (Cont'd)

21	21 CHECK INTERMITTENT INCIDENT	
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	► INSPECTION END	

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

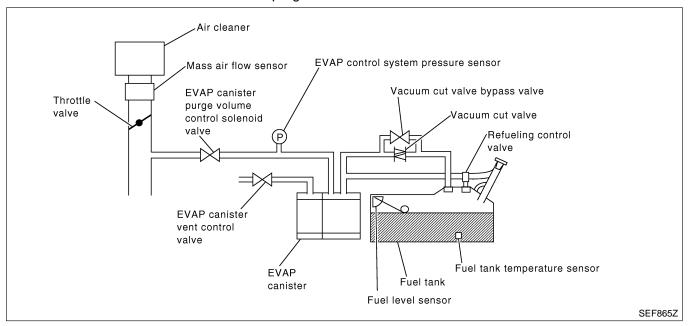
RS

BT

HA

SC

EL


NGEC0951

On Board Diagnosis Logic

NOTE

If DTC P0455 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-510.)

This diagnosis detects a very large leak (fuel filler cap fell off etc.) in the EVAP system between the fuel tank and the EVAP canister purge volume control solenoid valve.

Malfunction is detected when EVAP control system has a very large leak, such as fuel filler cap fell off, EVAP control system does not operate properly.

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

POSSIBLE CAUSE

NGEC0951S01

- Fuel filler cap remains open or fails to close.
- Incorrect fuel tank vacuum relief valve
- Incorrect fuel filler cap used
- Foreign matter caught in fuel filler cap.
- Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.
- Foreign matter caught in EVAP canister vent control valve.
- EVAP canister or fuel tank leaks
- EVAP purge line (pipe and rubber tube) leaks
- EVAP purge line rubber tube bent.
- Blocked or bent rubber tube to EVAP control system pressure sensor
- Loose or disconnected rubber tube
- EVAP canister vent control valve and the circuit
- EVAP canister purge volume control solenoid valve and the circuit
- Absolute pressure sensor

On Board Diagnosis Logic (Cont'd)

- Fuel tank temperature sensor
- O-ring of EVAP canister vent control valve is missing or damaged.

EVAP control system pressure sensor

MA

GI

LC

EC

FE

MT

AT

TF

PD

SU

ST

BT

HA

SC

6 EVAP SML LEAK P0440/P1440 1)FOR BEST RSLT,PERFORM AT FOLLOWING CONDITIONS. -FUEL LEVEL: 1/4-3/4 -AMBIENT TEMP: 0-30 C(32-86F) -OPEN ENGINE HOOD. 2)START ENG WITH VHCL STOPPED. IF ENG IS ON, STOP FOR 5 SEC. THEN RESTART. 3)TOUCH START.

5 EVAP SML LEAK P0440/P1440 WAIT 2 TO 10 MINUTES. **KEEP ENGINE RUNNING** AT IDLE SPEED. SEF566X

5 EVAP SML LEAK P0440/P1440 MAINTAIN 1600 - 2100 RPM UNTIL FINAL RESULT APPEARS. (APPROX. 3 MINUTES) 1600 rpm 1850 rpm 2100 rpm SEF874X

6 EVAP SML LEAK P0440/P1440 OK SELF-DIAG RESULTS NO DTC DETECTED. **FURTHER TESTING** MAY BE REQUIRED. SEF567X

DTC Confirmation Procedure

Never remove fuel filter cap during the DTC confirmation procedure.

NOTE:

SEF565X

CAUTION:

If DTC P0455 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-520.)

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

TESTING CONDITION:

Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level

Open engine hood before conducting the following procedure.

It is better that the fuel level is low.

(P) With CONSULT-II

Tighten fuel filter cap securely until ratcheting sound is heard. AX

Turn ignition switch ON. 2)

3) Turn ignition switch OFF and wait at least 5 seconds.

Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.

Make sure that the following conditions are met. COOLAN TEMP/S: 0 - 70°C (32 - 158°F)

INT/A TEMP SE: 0 - 60°C (32 - 140°F)

Select "EVAP SML LEAK P0440" of "EVAPORATIVE SYS-TEM" in "DTC WORK SUPPORT" mode with CONSULT-II. Follow the instruction displayed.

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to "Basic Inspection", EC-104.

Make sure that "OK" is displayed. If "NG" is displayed, select "SELF-DIAG RESULTS" mode with CONSULT-II and make sure that "EVAP GROSS LEAK [P0455] is displayed. If it is displayed, refer to "Diagnostic Procedure", EC-402.

If P0440 is displayed, perform "Diagnostic Procedure" for DTC P0440.

With GST

NOTE:

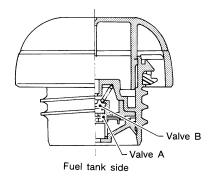
- Be sure to read the explanation of "Driving Pattern" on EC-74 before driving vehicle.
- It is better that the fuel level is low.
- 1) Start engine.
- 2) Drive vehicle according to "Driving Pattern", EC-74.
- Stop vehicle.
- 4) Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- 5) Turn ignition switch "OFF" and wait at least 5 seconds.
- 6) Start engine.

It is not necessary to cool engine down before driving.

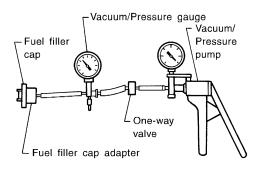
- 7) Drive vehicle again according to the "Driving Pattern", EC-74.
- Stop vehicle.
- 9) Select "MODE 3" with GST.
- If P0455 is displayed on the screen, go to "Diagnostic Procedure", EC-402.
- If P0440 is displayed on the screen, go to "Diagnostic Procedure", EC-356.
- If P1440 is displayed on the screen, go to "Diagnostic Procedure", EC-474.
- If P1447 is displayed on the screen, go to "Diagnostic Procedure", EC-511.
- If P0440, P0455, P1440 and P1447 are not displayed on the screen, go to the following step.
- 10) Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6.

Diagnostic Procedure

KA24DE


Diagnostic Procedure (Cont'd)

2	2 CHECK FUEL FILLER CAP INSTALLATION	
Check that the cap is tightened properly by rotating the cap clockwise.		
OK or NG		
OK	>	GO TO 3.
NG	>	 Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard.


3	CHECK FUEL FILLER CAP FUNCTION			
Check for air releasing sound while opening the fuel filler cap.				
	OK or NG			
OK	OK ▶ GO TO 6.			
NG	>	GO TO 4.		

4 CHECK FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FILLER CAP)

- 1. Wipe clean valve housing.
- 2. Check valve opening pressure and vacuum.

SEF427N

SEF943S

Pressure:

16.0 - 20.0 kPa (0.163 - 0.204 kg/cm², 2.32 - 2.90 psi)

Vacuum:

-6.0 to -3.5 kPa (-0.061 to -0.036 kg/cm², -0.87 to -0.51 psi)

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

OK	^ or	NG
Un	or	140

OK ►	GO TO 5.
NG •	Replace fuel filler cap with a genuine one.

MA

GI

EM

LC

EC

FE

GL

MT

AT

TF

PD

AX

SU

BR

ST

© I

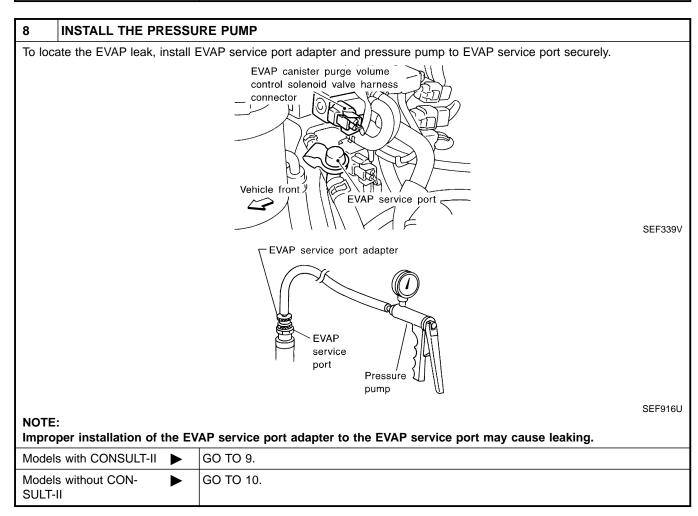
RS

BT

HA

SC

EL


KA24DE

Diagnostic Procedure (Cont'd)

5	5 CHECK EVAP PURGE LINE		
Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection or disconnection. Refer to "Evaporative Emission System", EC-34.			
	OK or NG		
OK	OK ▶ GO TO 6.		
NG	>	Repair or reconnect the hose.	

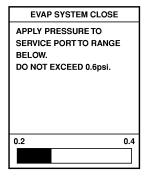
6	CLEAN EVAP PURGE LINE	
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.	
	▶ GO TO 7.	

7	7 CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT	
Refer to "DTC Confirmation Procedure", EC-378.		
OK or NG		
OK	OK ▶ GO TO 8.	
NG	•	Repair or replace EVAP canister vent control valve and O-ring or harness/connector.

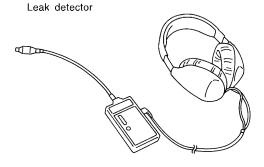
Diagnostic Procedure (Cont'd)

CHECK FOR EVAP LEAK

(P) With CONSULT-II


9

- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.


EVAP SYSTEM CLOSE APPLY PRESSURE TO EVAP SYSTEM FROM SERVICE PORT USING HAND PUMP WITH PRESSURE GAUGE AT **NEXT SCREEN.** NEVER USE COMPRESSED AIR OR HIGH PRESSURE PUMP! DO NOT START ENGINE. TOUCH START.

PEF658U

- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph. NOTE:
 - Never use compressed air or a high pressure pump.
 - Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-37.

OK or NG

SEF200U

(GO TO 11	

OIX		
NG	>	Repair or replace.

GI

MA

EC

FE

GL

MT

AT

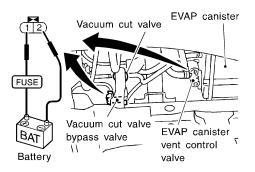
TF

PD

ST

HA

SC

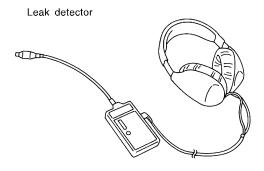

KA24DE

Diagnostic Procedure (Cont'd)

10 CHECK FOR EVAP LEAK

Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)



SEF503V

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-37.

SEF200U

OK or NG

OK	>	GO TO 12.
NG	•	Repair or replace.

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

SU

BR

ST

BT

HA

SC

Diagnostic Procedure (Cont'd)

11 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION (P) With CONSULT-II 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port. 2. Start engine. 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode. 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%. 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm. ACTIVE TEST PURG VOL CONT/V XXX % MONITOR **ENG SPEED** XXX rpm A/F ALPHA-B1 XXX % Vacuum should exist. HO2S1 MNTR (B1) LEAN THRTL POS SEN XXX V

SEF595Y

OK or NG GO TO 14. OK NG GO TO 13.

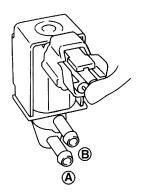
12	CHECK EVAP CANIST	ER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION	
1. Sta		to normal operating temperature.	
 Stop engine. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port. Start engine and let it idle for at least 80 seconds. Check vacuum hose for vacuum when revving engine up to 2,000 rpm. Vacuum should exist. 			
		OK or NG	
OK ▶ GO TO 14.			
NG	•	GO TO 13.	

13	CHECK VACUUN	I HOS	E
Check	Check vacuum hoses for clogging or disconnection. Refer to "Vacuum Hose Drawing", EC-27.		
	OK or NG		
OK (W	/ith CONSULT-II)	>	GO TO 14.
OK (Without CONSULT- GO TO 15.			
NG		>	Repair or reconnect the hose.

Diagnostic Procedure (Cont'd)

14 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(II) With CONSULT-II


- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

ACTIVE TEST		
PURG VOL CONT/V	XXX %	
MONITOF	1	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
HO2S1 MNTR (B1)	LEAN	
THRTL POS SEN	xxx v	

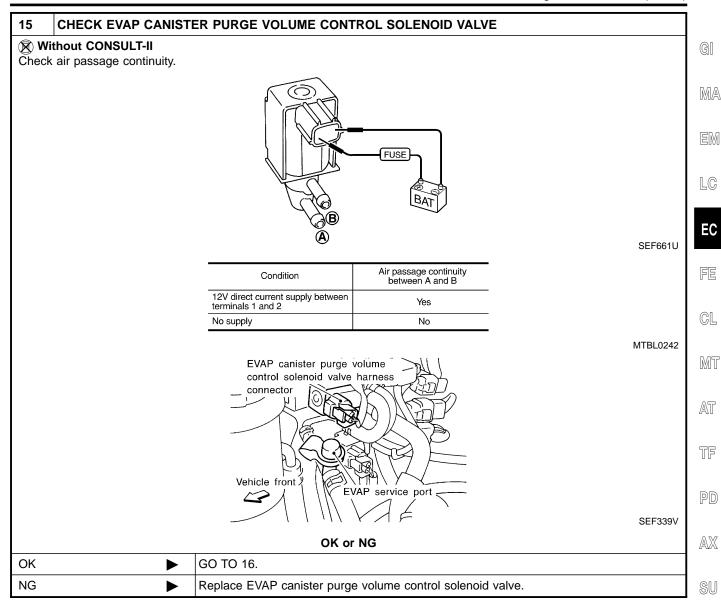
SEF801Y

If OK, inspection end. If NG, go to following step.

3. Check air passage continuity.

SEF660U

Condition PURG VOL CONT/V value	Air passage continuity between A and B
100.0%	Yes
0.0%	No


MTBL0241

OK or NG

OK •	>	GO TO 16.
NG	>	Replace EVAP canister purge volume control solenoid valve.

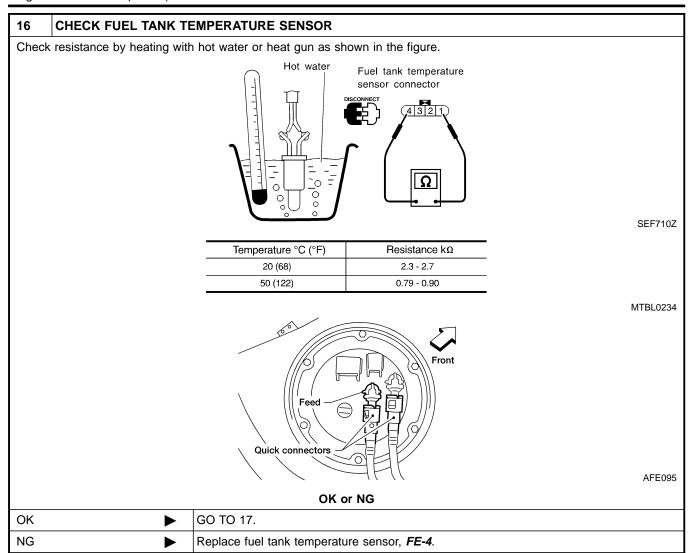
KA24DE

Diagnostic Procedure (Cont'd)

BR

ST

RS


BT

HA

SC

EL

Diagnostic Procedure (Cont'd)

KA24DE

GI

MA

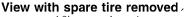
LC

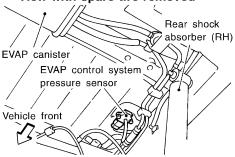
EC

GL

MT

AT

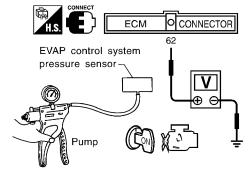

TF


PD

Diagnostic Procedure (Cont'd)

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

1. Remove EVAP control system pressure sensor with its harness connector connected.

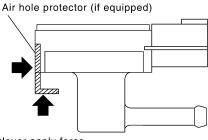


SEF341V

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch ON.

17

- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 5. Check input voltage between ECM terminal 62 and ground.


Pressure (Relative to atmosphericpressure)	Voltage (V)
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

MTBL0246

SEF894U

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below –20 kPa (–150 mmHg, –5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure. CAUTION:
- Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SFF799W

• Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NO	
----------	--

OK ►	GO TO 18.
NG ►	Replace EVAP control system pressure sensor.

 $\mathbb{D}\mathbb{X}$

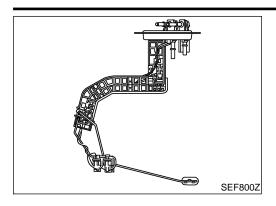
BT

HA

SC

KA24DE

Diagnostic Procedure (Cont'd)


18	CHECK FUEL LEVEL S	ENSOR	
 Remove fuel level sensor assembly. Refer to <i>FE-5</i>. Refer to "FUEL LEVEL SENSOR UNIT CHECK", <i>EL-87</i>. 			
	OK or NG		
OK	>	GO TO 19.	
NG	>	Replace fuel level sensor.	

19	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	► INSPECTION END		

DTC P0460 FUEL LEVEL SENSOR FUNCTION (SLOSH)

KA24DE

Component Description

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

G[

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

MA

FM

LC

On Board Diagnostic Logic

When the vehicle is parked, naturally the fuel level in the fuel tank is stable. It means that output signal of the fuel level sensor does not change. If ECM senses sloshing signal from the sensor, fuel level sensor malfunction is detected.

EC

Malfunction is detected when even though the vehicle is parked, a signal being varied is sent from the fuel level sensor to ECM.

FE

CL

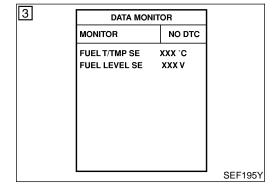
MT

Possible Cause

 Fuel level sensor circuit (The fuel level sensor circuit is open or shorted.)

Fuel level sensor

TF


AT

NGEC1014

PD

0.00

 $\mathbb{A}\mathbb{X}$

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

cted,

(A) WITH CONSULT-II

1) Turn ignition switch "ON".

NGEC1015S01

- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait maximum of 2 consecutive minutes.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-415.

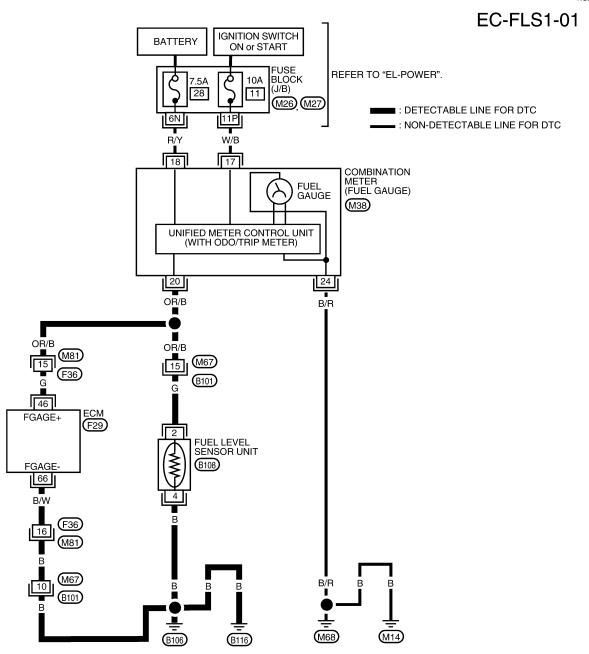
BT

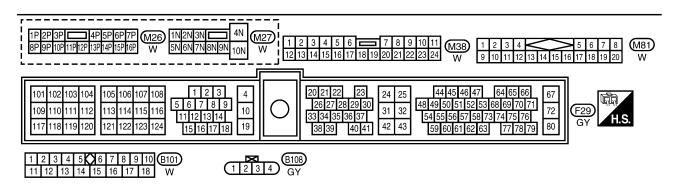
® WITH GST

Follow the procedure "WITH CONSULT-II" above.

NGEC1015S02

SC


HA

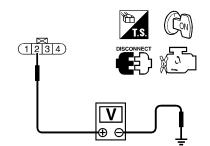

EL

Wiring Diagram

NGEC1016

LEC490

DTC P0460 FUEL LEVEL SENSOR FUNCTION (SLOSH)


Diagnostic Procedure

Diagnostic Procedure

=NGEC1017

CHECK FUEL LEVEL SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect fuel level sensor until harness connector.
- 3. Turn ignition switch "ON".
- 4. Check voltage between fuel level sensor unit and fuel pump terminal 2 and ground with CONSULT-II or a tester.

Voltage: Battery voltage

SEF702ZA

OK or NG

OK	•	GO TO 3.
NG	•	GO TO 2.

2 **DETECT MALFUNCTIONING PART**

Check the following.

- Harness connectors M67, B101
- Harness for open or short between combination meter and fuel level sensor until and fuel pump
 - Repair or replace harness or connectors.

CHECK FUEL LEVEL SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between fuel level sensor unit terminal 4 and body ground. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to power.

oĸ	or	NG
----	----	----

OK ►	GO TO 4.
NG ►	Repair open circuit or short to power in harness or connectors.

CHECK FUEL LEVEL SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 46 and fuel level sensor unit terminal 2, ECM terminal 66 and fuel level sensor unit terminal 4. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK	or	NG
----	----	----

OK •	GO TO 6.
<u> </u>	0.000
NG ▶	GO TO 5.

EC-415

GI

MA

EC

MT

AT

TF

PD

BT

HA

SC

DTC P0460 FUEL LEVEL SENSOR FUNCTION (SLOSH)

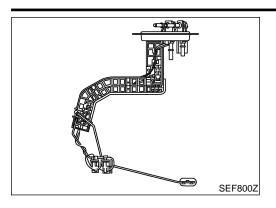
KA24DE

Diagnostic Procedure (Cont'd)

5 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M81, F36
- Harness connectors M67, B101
- Harness connectors F36, M81
- Harness connectors M67, B101
- Harness for open or short between ECM and fuel level sensor


Repair open circuit or short to ground or short to power in harness or connectors.

6	CHECK FUEL LEVEL S	ENSOR	
Refer to <i>EL-87</i> , "Fuel Level Sensor Unit Check".			
	OK or NG		
OK	•	GO TO 7.	
NG	•	Replace fuel level sensor unit.	

7	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	•	INSPECTION END	

DTC P0461 FUEL LEVEL SENSOR FUNCTION

Component Description

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

MA

LC

EC

On Board Diagnostic Logic

Driving long distances naturally affect fuel gauge level.

This diagnosis detects the fuel gauge malfunction of the gauge not moving even after a long distance has been driven.

Malfunction is detected when the output signal of the fuel level sensor does not change within the specified range even though the vehicle has been driven a long distance.

GL

MT

Possible Cause

Harness or connectors (The level sensor circuit is open or shorted.)

TF

AT

Fuel level sensor

PD

Overall Function Check

Use this procedure to check the overall function of the fuel level sensor function. During this check, a 1st trip DTC might not be confirmed.

WARNING:

When performing following procedure, be sure to observe the handling of the fuel. Refer to FE-5, "Fuel Tank".

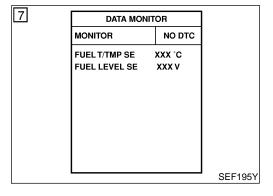
ST

TESTING CONDITION:

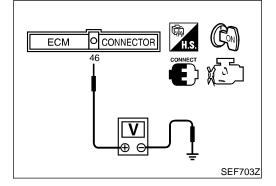
Before starting overall function check, preparation of draining fuel and refilling fuel is required.

(P) WITH CONSULT-II

NGEC1021S01


NOTE:

Start from step 11, if it is possible to confirm that the fuel cannot be drained by 30\ell (7-7/8 US gal, 6-5/8 Imp gal) in advance.


- Prepare a fuel container and a spare hose.
- Release fuel pressure from fuel line, refer to "Fuel Pressure Release", EC-50.
 - EL

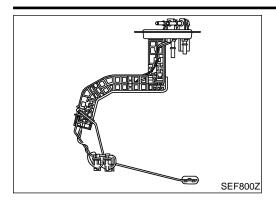
SC

- Remove the fuel feed hose on the fuel level sensor unit.
- Connect a spare fuel hose where the fuel feed hose was removed.

- Turn ignition switch "OFF" and wait at least 10 seconds then turn "ON".
- Select "FUEL LEVEL SE" in "DATA MONITOR" mode with CONSULT-II.
- 7) Check "FUEL LEVEL SE" output voltage and note it.
- 8) Select "FUEL PUMP" in "ACTIVE TEST" mode with CON-SULT-II.
- 9) Touch "ON" and drain fuel approximately 30ℓ (7-7/8 US gal, 6-5/8 Imp gal) and stop it.
- 10) Fill fuel into the fuel tank for 30ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- 11) Check "FUEL LEVEL SE" output voltage and note it.
- 12) Check "FUEL LEVEL SE" output voltage and confirm whether the voltage changes more than 0.03V during step 7 to 11. If NG, check the fuel level sensor, refer to *EL-87*, "FUEL LEVEL SENSOR UNIT CHECK".

WITH GST

NGEC1021S02


NOTE:

Start from step 11, if it is possible to confirm that the fuel cannot be drained by 30ℓ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

- 1) Prepare a fuel container and a spare hose.
- Release fuel pressure from fuel line, refer to "Fuel Pressure Release", EC-50.
- Remove the fuel feed hose on the fuel level sensor unit.
- Connect a spare fuel hose where the fuel feed hose was removed.
- 5) Turn ignition switch "OFF".
- 6) Set voltmeters probe between ECM terminal 46 (fuel level sensor signal) and ground.
- 7) Turn ignition switch "ON".
- 8) Check voltage between ECM terminal 46 and ground and note it.
- 9) Drain fuel by 30ℓ (7-7/8 US gal, 6-5/8 Imp gal) from the fuel tank using proper equipment.
- 10) Fill fuel into the fuel tank for 30ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- 11) Confirm that the voltage between ECM terminal 46 and ground changes more than 0.03V during step 8 - 10. If NG, check component of fuel level sensor, refer to *EL-87*, "FUEL LEVEL SENSOR UNIT CHECK".

DTC P0464 FUEL LEVEL SENSOR CIRCUIT

KA24DE Component Description

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

G[

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

MA

EM

LC

On Board Diagnostic Logic

ECM receives two signals from the fuel level sensor circuit.

One is fuel level sensor power supply circuit, and the other is fuel level sensor ground circuit.

This diagnosis indicates the former, to detect open or short circuit malfunction.

Malfunction is detected when an excessively low or high voltage is sent from the sensor is sent to ECM. EC

GL

MT

Possible Cause

 Fuel level sensor circuit (The fuel level sensor circuit is open or shorted.)

Fuel level sensor

AT

NGEC1024

TF

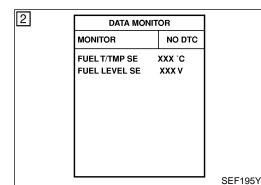
PD

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

nds BR


TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at ignition switch "ON".

RS

HA

SC

(II) WITH CONSULT-II

Turn ignition switch "ON".

2) Select "DATA MONITOR" mode with CONSULT-II.

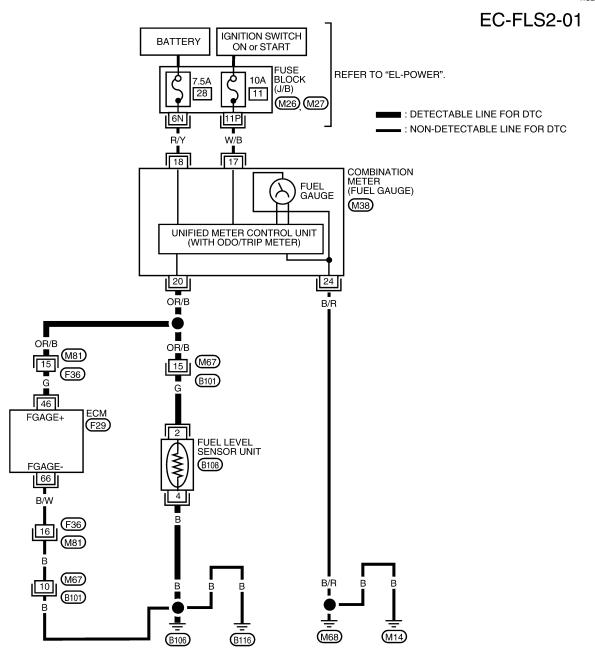
Wait at least 5 seconds.

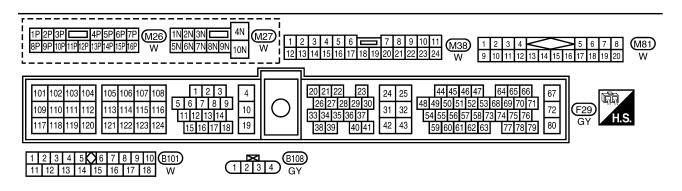
4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-421.

WITH GST

Follow the procedure "WITH CONSULT-II" above.

NGEC1025S02


NGEC1025S01


EL

Wiring Diagram

NGEC1026

LEC491

DTC P0464 FUEL LEVEL SENSOR CIRCUIT

Diagnostic Procedure

=NGEC1027

GI

MA

LC

EC

FE

CL

MT

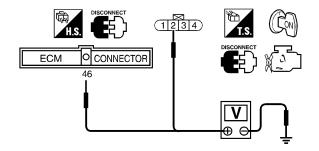
AT

TF

PD

ST

BT


HA

SC

SEF704ZA

1 CHECK FUEL LEVEL SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect fuel level sensor until harness connector.
- 3. Turn ignition switch "ON".
- 4. Check voltage between fuel level sensor unit terminal 2 and ground, ECM terminal 46 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK ►	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M67, B101 and M81, F36
- Harness for open or short between combination meter and fuel level sensor until
 - Repair or replace harness or connectors.

3 CHECK FUEL LEVEL SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Check harness continuity between fuel level sensor unit terminal 4 and body ground. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to power.

OK or NG

OK ►	GO TO 4.
NG ►	Repair open circuit or short to power in harness or connectors.

4 CHECK FUEL LEVEL SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

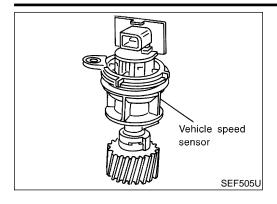
- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 46 and fuel level sensor unit terminal 2. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to power.

OK or NG

OK •	GO TO 6.
NG 🕨	GO TO 5.

DTC P0464 FUEL LEVEL SENSOR CIRCUIT

KA24DE


Diagnostic Procedure (Cont'd)

5	DETECT MALFUNCTIONING PART		
Check	Check the following.		
• Har	Harness connectors M81, F36		
Hart	Harness connectors M67, B101		
• Har	 Harness for open or short between ECM and fuel level sensor 		
	•	Repair open circuit or short to power in harness on connectors.	

6	CHECK FUEL LEVEL SENSOR				
Refer	Refer to <i>EL-87</i> , "Fuel Level Sensor Unit Check".				
	OK or NG				
ОК	OK ▶ GO TO 7.				
NG	>	Replace fuel level sensor unit.			

7	CHECK INTERMITTENT	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.			
	► INSPECTION END			

DTC P0500 VEHICLE SPEED SENSOR (VSS)

Component Description

The vehicle speed sensor is installed in the transaxle. It contains a pulse generator which provides a vehicle speed signal to the speedometer. The speedometer then sends a signal to the ECM.

G[

MA

LC

EC

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

EC0273

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

FE

GL

MT

AT

TF

PD

AX

_	TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
	29	G/B	Vehicle speed sensor	 [Engine is running] Lift up the vehicle In 2nd gear position Vehicle speed is 40 km/h (25 MPH) 	1 - 4V (V) 10 5 0 50 ms SEF003W	

On Board Diagnosis Logic

NGEC0274

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0500	The almost 0 km/h (0 MPH) signal from vehicle speed sensor is sent to ECM even when vehicle is being driven.	Harness or connector (The vehicle speed sensor circuit is open or shorted.) Vehicle speed sensor

SU

ST

RS

DTC Confirmation Procedure

NGEC0275

CAUTION:

Always drive vehicle at a safe speed.

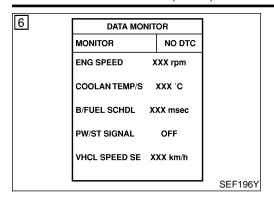
HA

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

SC

TESTING CONDITION:


This procedure may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

EL

DTC P0500 VEHICLE SPEED SENSOR (VSS)

KA24DE

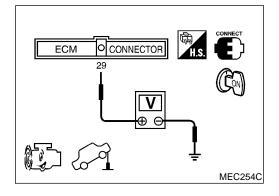
DTC Confirmation Procedure (Cont'd)

(P) With CONSULT-II

- Start engine
- Read vehicle speed sensor signal in "DATA MONITOR" mode with CONSULT-II. The vehicle speed on CONSULT-II should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.
- If NG, go to "Diagnostic Procedure", EC-426.
 If OK, go to following step.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Warm engine up to normal operating temperature.
- Maintain the following conditions for at least 10 consecutive seconds.

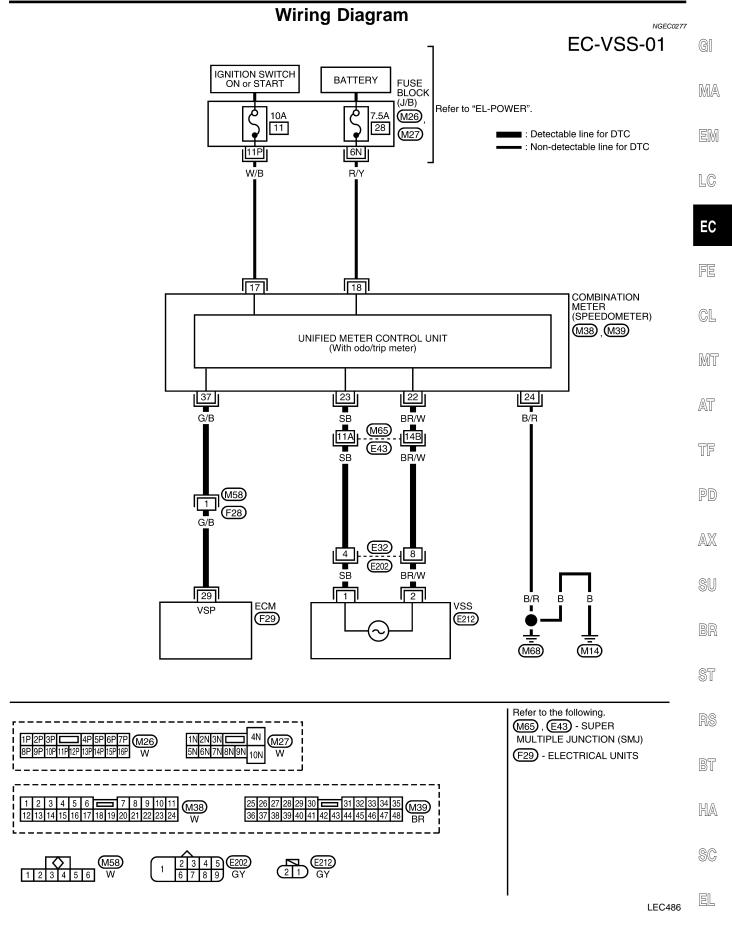
ENG SPEED	1,800 - 6,000 rpm
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	7 - 15msec
Selector lever	Suitable position
PW/ST SIGNAL	OFF

7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-426.


FUEL SYS #1 CLOSED FUEL SYS #2 CALC LOAD CLOSED 19% **COOLANT TEMP** 93°C SHORT FT #1 0% LONG FT #1 SHORT FT #2 3% LONG FT #2 ENGINE SPD 2037RPM VEHICLE SPD 12MPH IGN ADVANCE 43°C INTAKE AIR SEF568P

Overall Function Check

Use this procedure to check the overall function of the EVAP canister vent control valve circuit. During this check, a 1st trip DTC might not be confirmed.

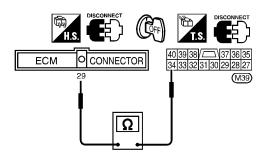

With GST

- 1) Lift up drive wheels.
- 2) Start engine.
- 3) Read vehicle speed sensor signal in "MODE 1" with GST. The vehicle speed sensor on GST should be able to exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.
- 4) If NG, go to "Diagnostic Procedure", EC-426.

No Tools

- 1) Lift up drive wheels.
- 2) Start engine.
- 3) Read the voltage signal between ECM terminal 29 (Vehicle speed sensor signal) and ground with oscilloscope.
- Verify that the oscilloscope screen shows the signal wave as shown at "ECM Terminals and Reference Value", EC-423.
- 5) If NG, go to "Diagnostic Procedure", EC-426.

EC-425


NGEC0278

Diagnostic Procedure

3

1 CHECK INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector and combination meter harness connector M39.
- 3. Check harness continuity between ECM terminal 29 and meter terminal 37.

SEF200V

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK	>	GO TO 3.
NG	>	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M58, F28
- Harness for open or short between ECM and combination meter

Repair open circuit or short to ground or short to power in harness or connectors.

4 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E43, M65
- Harness connectors E32, E202
- · Harness for open or short between combination meter and vehicle speed sensor

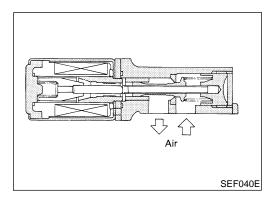
Repair harness or connectors. Check vehicle speed sensor and its circuit. Refer to *EL-84*.

5 CHECK INTERMITTENT INCIDENT Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142. INSPECTION END

DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE

KA24DE

Description


Description SYSTEM DESCRIPTION

NGEC0279

NGEC0279S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator	MA
Camshaft position sensor	Engine speed			
Mass air flow sensor	Amount of intake air			EM
Engine coolant temperature sensor	Engine coolant temperature			
Ignition switch	Start signal			LC
Throttle position sensor	Throttle position			
PNP switch	Park/Neutral position	ECM	IACV-AAC valve	EC
Air conditioner switch	Air conditioner operation	ECIVI	IACV-AAC valve	
Power steering oil pressure switch	Power steering load signal			FE
Battery	Battery voltage			
Vehicle speed sensor	Vehicle speed			GL
Absolute pressure sensor	Ambient barometric pressure			
Intake air temperature sensor	Intake air temperature			MT

This system automatically controls engine idle speed to a specified level. Idle speed is controlled through fine adjustment of the amount of air which bypasses the throttle valve via IACV-AAC valve. The IACV-AAC valve repeats ON/OFF operation according to the signal sent from the ECM. The camshaft position sensor detects the actual engine speed and sends a signal to the ECM. The ECM then controls the ON/OFF time of the IACV-AAC valve so that engine speed coincides with the target value memorized in ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warm up, deceleration, and engine load (air conditioner, power steering and cooling fan operation).

COMPONENT DESCRIPTION

NGEC0279S02

The IAC valve-AAC valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of air that will flow through the valve. The more air that flows through the valve, the higher the idle speed.

HA

BT

AX

SU

ST

SC

EL

 $\mathbb{D}\mathbb{X}$

DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE

CONSULT-II Reference Value in Data Monitor Mode

KA24DE

CONSULT-II Reference Value in Data Monitor Mode

MONITOR ITEM

CONDITION

SPECIFICATION

Approx. 30%

Air conditioner switch: OFF
Shift lever: "N"
No-load

No-load

CONDITION

SPECIFICATION

Approx. 30%

Approx. 30%

—

ECM Terminals and Reference Value

NGEC0281

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running] • Warm-up condition • Idle speed	10.5 - 11.5V (V) 10 5 0 2 ms SEF015W
101	OR/L	IACV-AAC valve	[Engine is running] • Warm-up condition • Engine speed is 2,000 rpm	1 - 13V (V) 10 5 0 2 ms SEF016W

On Board Diagnosis Logic

NGEC0282

DTC No.		Malfunction is detected when	Check Items (Possible Cause)	
P0505	A)	The IACV-AAC valve does not operate properly.	 Harness or connectors (The IACV-AAC valve circuit is open.) IACV-AAC valve 	
	B)	The IACV-AAC valve does not operate properly.	Harness or connectors (The IACV-AAC valve circuit is shorted.) IACV-AAC valve	

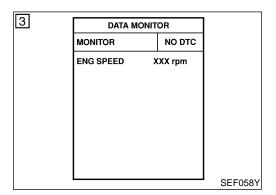
DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE

KA24DE DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

=NGEC0283


"DTC Confirmation Procedure" has been previously lf conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

Perform "Procedure for malfunction A" first. If DTC cannot be confirmed, perform "Procedure for malfunction B".

MA

LC

EC

PROCEDURE FOR MALFUNCTION A

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 10.5V with ignition switch ON.

FE

(P) With CONSULT-II

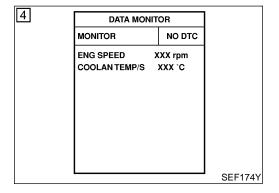
1) Turn ignition switch ON. Select "DATA MONITOR" mode with CONSULT-II.

Start engine and run it at idle at least 2 seconds.

GL

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-431.

MT


With GST

Follow the procedure "With CONSULT-II".

AT

TF

PD

PROCEDURE FOR MALFUNCTION B **TESTING CONDITION:**

NGEC0283S02

Before performing the following procedure, make sure battery voltage is more than 11V at idle.

Always perform at a temperature above -10°C (14°F).

(P) With CONSULT-II

Start engine and warm it up to normal operating temperature.

Turn ignition switch OFF and wait at least 5 seconds.

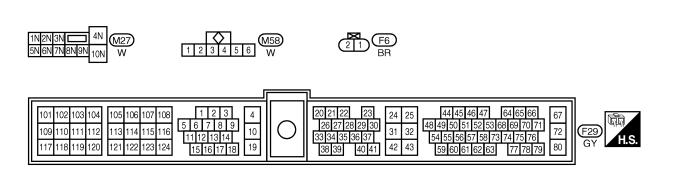
Turn ignition switch ON again and select "DATA MONITOR" 3) mode with CONSULT-II.

Start engine and run it for at least 6 minute at idle speed.

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-431.

HA

With GST


Follow the procedure "With CONSULT-II".

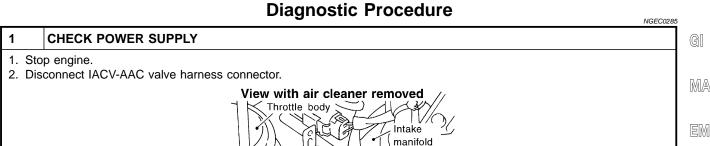
SC

EL

KA24DE

OR/L

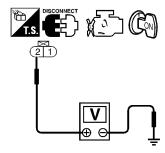
ISC


ECM

(F29)

DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE

KA24DE


Diagnostic Procedure

manifold IACV-AAC Vehicle front harness IACV-FICD solenoid connector valve harness connector

3. Turn ignition switch ON.

4. Check voltage between terminal 2 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK	>	GO TO 3.
NG	>	GO TO 2.

DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M58, F28
- 10A fuse
- Harness for open or short between IACV-AAC valve harness connector and 10A fuse

Repair harness or connectors.

GI

LC

EC

SEF342V

SEF247W

GL

MT

AT

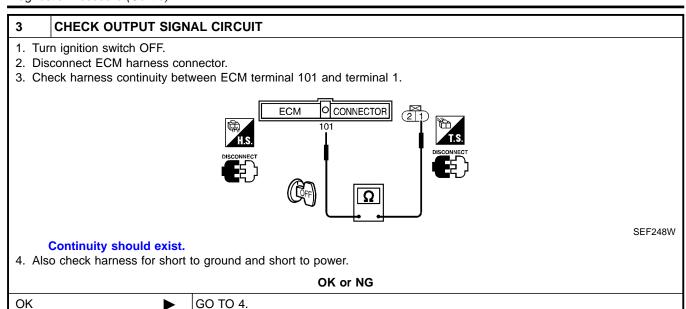
TF

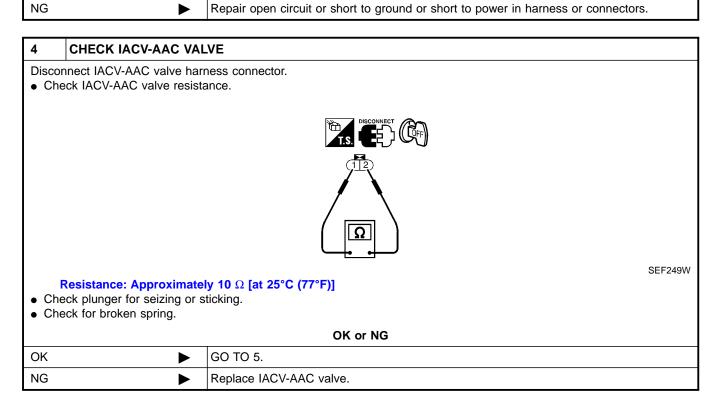
PD

AX

ST

BT

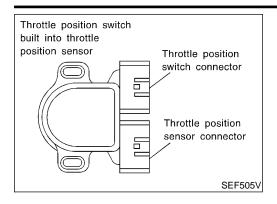

HA


SC

DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE

Diagnostic Procedure (Cont'd)

KA24DE



5	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	► INSPECTION END		

KA24DE

Component Description

Component Description

A closed throttle position switch and wide open throttle position switch are built into the throttle position sensor unit. The wide open throttle position switch is used only for A/T control.

GI

When the throttle valve is in the closed position, the closed throttle position switch sends a voltage signal to the ECM. The ECM only uses this signal to open or close the EVAP canister purge control valve when the throttle position sensor is malfunctioning.

MA

LC

EC

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

FE

GL

MT

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	(
28	BR/W	Throttle position switch (Closed position)	[Ignition switch ON] • Warm-up condition • Accelerator pedal released	BATTERY VOLTAGE (11 - 14V)	[
		(Closed position)	[Ignition switch ON] • Accelerator pedal depressed	Approximately 0V	L

TF

AT

PD

On Board Diagnosis Logic

NGEC0289

S

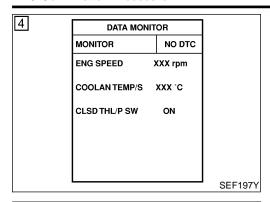
DTC No.	Malfunction is detected when	Check Items (Possible Cause)	
P0510	Battery voltage from the closed throttle position switch is sent to ECM with the throttle valve opened.	Harness or connectors (The closed throttle position switch circuit is shorted.) Closed throttle position switch Throttle position sensor	 B

RS

BT

HA

SC


EL

 $\mathbb{D}\mathbb{X}$

KA24DE

=NGEC0290

DTC Confirmation Procedure

DATA MO	DATA MONITOR	
MONITOR	NO DTC	
COOLAN TEMP/ VHCL SPEED SE THRTL POS SEN	XXX km/h	
		SEF19

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "CLSD THL/P SW" in "DATA MONITOR" mode with CONSULT-II and check the value under the following conditions.

Condition	Voltage
At idle	ON
At 2,000 rpm	OFF

If the result is NG, go to "Diagnostic Procedure", EC-436. If OK, go to following step.

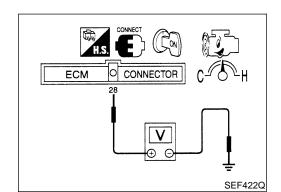
- Select "DATA MONITOR" mode with CONSULT-II.
- 4) Drive the vehicle for at least 5 consecutive seconds under the following condition.

THRTL POS SEN	More than 2.5V
VHCL SPEED SE	More than 4 km/h (2 MPH)
Selector lever	Suitable position
Driving pattern	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

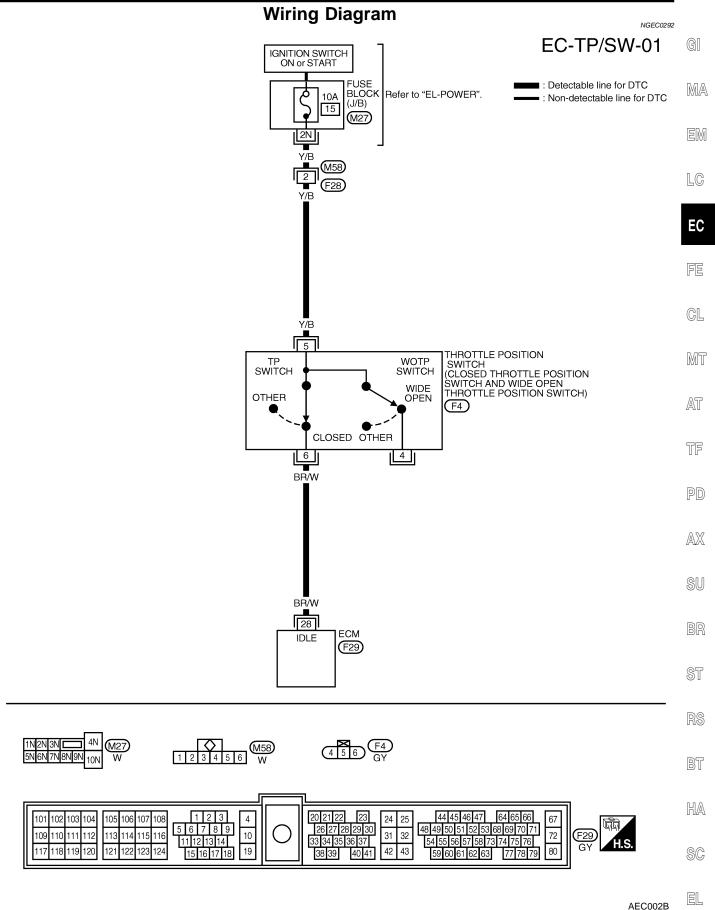
 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-436.

Overall Function Check

NGEC029

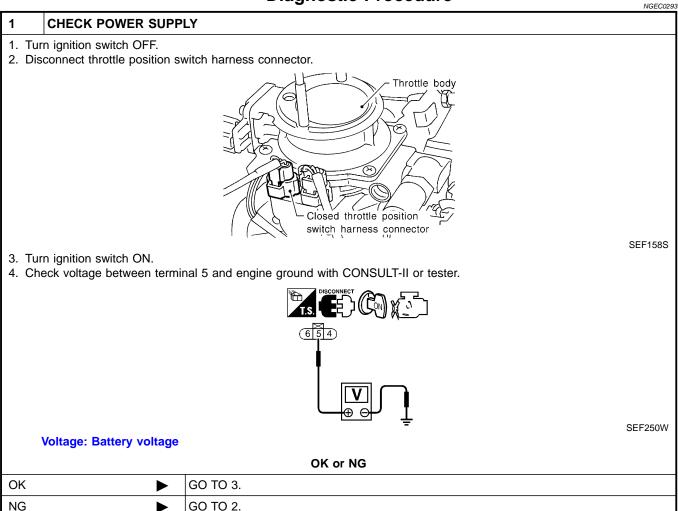

Use this procedure to check the overall function of the closed throttle position switch circuit. During this check, a 1st trip DTC might not be confirmed.

Without CONSULT-II

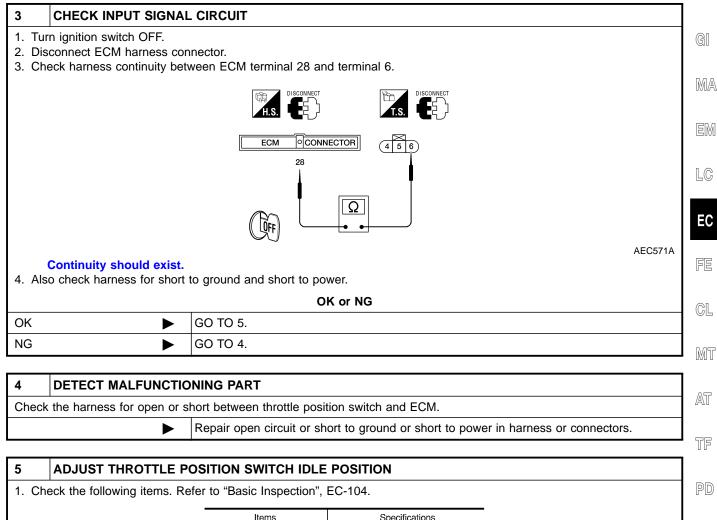

- 1) Start engine and warm it up to normal operating temperature.
- Check the voltage between ECM terminal 28 (Closed throttle position switch signal) and ground under the following conditions.

Condition	Voltage
At idle	Battery voltage
At 2,000 rpm	Approximately 0 - 1V

3) If NG, go to "Diagnostic Procedure", EC-436.



Diagnostic Procedure


2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M58, F28
- 10A fuse
- Harness for open or short between throttle position switch and 10A fuse
 - Repair harness or connectors.

KA24DE

Diagnostic Procedure (Cont'd)

Items	Specifications	-
Ignition timing	20°± 2° BTDC	_
Base idle speed	750 ± 50 rpm (in "P" or "N" position)	_
Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.1 mm (0.004 in): ON 0.3 mm (0.012 in): OFF	-
Target idle speed	800 ± 50 rpm (in "P" or "N" position)	- -
		MTBL032

I D W

SU

BT

HA

SC

KA24DE

Diagnostic Procedure (Cont'd)

CHECK CLOSED THROTTLE POSITION SWITCH

(P) With CONSULT-II

6

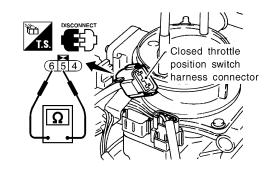
- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine and turn ignition switch ON.
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- 4. Check indication of "CLSD THL/P SW" under the following conditions.

DATA MON	IITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm
COOLAN TEMP/S	xxx °c
CLSD THL/P SW	ON

Throttle valve conditions	CLSD THL/P SW
Completely closed	ON
Partially open or completely open	OFF

SEF721Z

NOTE:


Measurement must be made with closed throttle position switch installed in vehicle.

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-104.

5. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace closed throttle position switch.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect throttle position switch harness connector.
- 4. Check continuity between terminals 5 and 6 under the following conditions.

SEF159S

Throttle valve conditions	Continuity
Completely closed	Yes
Partially open or completely open	No

MTBL0299

NOTE:

Continuity measurement must be made with closed throttle position switch installed in vehicle.

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-104.

5. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace closed throttle position switch.

OK	or	NG	

OK ►	GO TO 7.
NG ▶	Replace throttle position switch.

KA24DE

GI

MA

EC

MT

AT

TF

PD

Diagnostic Procedure (Cont'd)

CHECK THROTTLE POSITION SENSOR

(P) With CONSULT-II

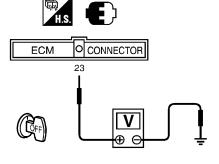
7

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine and turn ignition switch ON.
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- 4. Check voltage of "THRTL POS SEN" under the following conditions.

DATA MONITOR				
MONITOR	NO DTC			
COOLAN TEMP/S VHCL SPEED SE THRTL POS SEN	XXX km/h			

SEF198Y

NOTE:


Voltage measurement must be made with throttle position sensor installed in vehicle.

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-104.

5. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace throttle position sensor.

(R) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine and turn ignition switch ON.
- 3. Check voltage between ECM terminal 23 (Throttle position sensor signal) and ground under the following conditions.

SEF767W

Throttle valve conditions	Voltage V	
Completely closed	0.15 - 0.85 (a)	
Partially open	Between (a) and (b)	
Completely open	3.5 - 4.7 (b)	

MTBL0329

NOTE:

Voltage measurement must be made with throttle position sensor installed in vehicle.

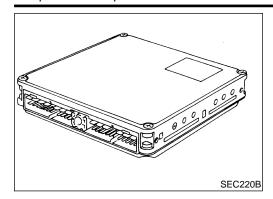
If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-104.

4. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace throttle position sensor.

OK	or	N	G
----	----	---	---

OK •	GO TO 8.
NG ▶	Replace throttle position sensor.

8	CHECK INTERMITTENT INCIDENT

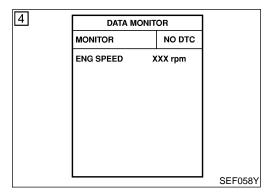

Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.

► INSPECTION END

BT

HA

SC


Component Description

The ECM consists of a microcomputer, diagnostic test mode selector, and connectors for signal input and output and for power supply. The ECM controls the engine.

On Board Diagnosis Logic

NGEC0296

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0605	ECM calculation function is malfunctioning.	• ECM

DTC Confirmation Procedure

NOFOOO

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(I) With CONSULT-II

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Start engine.
- Run engine for at least 30 seconds at idle speed.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-441.

With GST

Follow the procedure "With CONSULT-II".

DTC P0605 ECM

Diagnostic Procedure

MGEC0298			
1 INS	PECTION START	G	
(P) With CO	ONSULT-II		
•	ition switch ON.	ВЛ/	
	SELF DIAG RESULTS" mode with CONSULT-II.	MA	
3. Touch "E	"DTC Confirmation Procedure".		
	vious page.	EM	
-	st trip DTC P0605 displayed again?		
With GS	With GST		
1. Turn ignition switch ON.			
2. Select MODE 4 with GST.			
3. Touch "ERASE". 4. Perform "DTC Confirmation Procedure".			
See previous page.			
5. Is the 1st trip DTC P0605 displayed again?			
Yes or No			
Yes	Yes ▶ Replace ECM.		
No	No INSPECTION END		

MT

AT

TF PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

 $\mathbb{H}\mathbb{A}$

SC

EL

On Board Diagnosis Logic

NGEC1028

Engine coolant temperature has not risen enough to open the thermostat even though the engine has run long enough.

This is due to a leak in the seal or the thermostat open stuck. Malfunction is detected when the engine coolant temperature does not reach to specified temperature even though the engine has run long enough.

Possible Cause

NGEC1029

- Thermostat function
- Leakage from sealing portion of thermostat
- Engine coolant temperature sensor

DTC Confirmation Procedure

NOFOAGO

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- For best results, perform at ambient temperature of -10°C (14°F) or higher.
- For best results, perform at engine coolant temperature of -10°C (14°F) to 60°C (140°F).

(P) WITH CONSULT-II

NGEC1030S

- Replace thermostat with new one. Refer to LC-30, "Thermostat". Use only a genuine NISSAN thermostat as a replacement. If an incorrect thermostat is used, the MIL may come on.
- 2) Turn ignition switch "ON".
- 3) Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- 4) Check that the "COOLAN TEMP/S" is above 60°C (140°F). If it is below 60°C (140°F), go to following step. If it is above 60°C (140°F), stop engine and cool down the engine to less than 60°C (140°F), then retry from step 1.
- 5) Drive vehicle for 10 consecutive minutes under the following conditions.

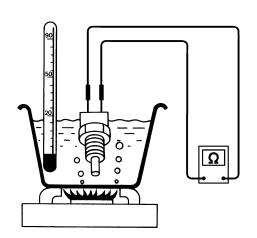
VHCL SPEED SE 80 - 120 km/h (50 - 75 MPH)

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-443.

WITH GST

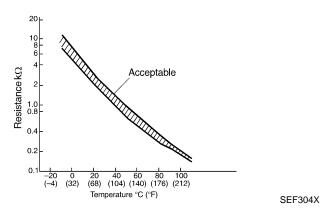
NGEC1030S02

1) Follow the procedure "WITH CONSULT-II" above.


DTC P1126 THERMOSTAT FUNCTION

Diagnostic Procedure

NGEC1031


1 CHECK ENGINE COOLANT TEMPERATURE SENSOR

- 1. Turn ignition switch OFF.
- 2. Remove engine coolant temperature sensor.
- 3. Check resistance between engine coolant temperature sensor terminals under the following conditions.

<Reference data>

Temperature °C (°F)	Resistance k Ω
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

OK or NG

OK •	>	INSPECTION END
NG •	•	Replace engine coolant temperature sensor.

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

AX SU

BR

ST

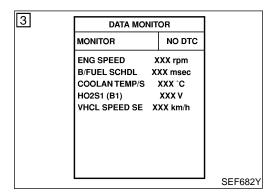
RS

BT

HA

SC

EL



On Board Diagnosis Logic

★ The closed loop control has the one trip detection logic.

NGEC0307

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P1148	The closed loop control function does not operate even when vehicle is driving in the specified condition.	 The heated oxygen sensor 1 (front) circuit is open or shorted. Heated oxygen sensor 1 (front) Heated oxygen sensor 1 heater (front)

DTC Confirmation Procedure

NGEC0308

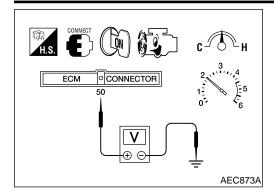
CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:


- Never raise engine speed above 3,000 rpm during the "DTC Confirmation Procedure". If the engine speed limit is exceeded, retry the procedure from step 4.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Hold engine speed at 2,000 rpm and check the following.
- "HO2S1 (B1)" voltage should go above 0.70V at least once.
- "HO2S1 (B1)" voltage should go below 0.21V at least once.
 If the result is NG, perform "Diagnosis Procedure", EC-445.
 If the result is OK, perform the following step.
- 4) Let engine idle at least 3 minutes.
- Maintain the following condition at least 50 consecutive seconds.

B/FUEL SCHDL	4 msec or more
ENG SPEED	1,800 - 3,000 rpm
Selector lever	Suitable position
VHCL SPEED SE	More than 70 km/h (43 MPH)

During this test, P0130 DTC may be displayed on CON-SULT-II screen.

6) If DTC is detected, go to "Diagnostic Procedure", EC-445.

DTC P1148 CLOSED LOOP CONTROL

Overall Function Check

Use this procedure to check the overall function of the closed loop control. During this check, a DTC might not be confirmed.

⊗ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 50 [Heated oxygen sensor 1 (front) signal] and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage should go above 0.70V at least once.
- The voltage should go below 0.21V at least once.
- 4) If NG, go to "Diagnostic Procedure", EC-445.

LC

GI

EC

FE

CL

MT

Diagnostic Procedure

Refer to "Diagnostic Procedure" for DTC P0133, EC-218.

JGFC0310

TF

AT

PD AX

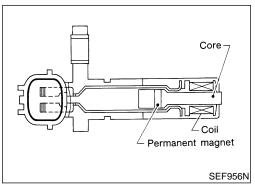
SU

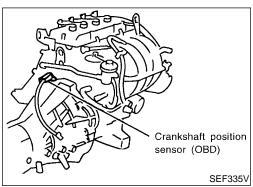
ST

29

BT

HA


SC


EL

 \mathbb{N}

KA24DE

Component Description

Component Description

The crankshaft position sensor (OBD) is located on the transmission housing facing the gear teeth (cogs) of the flywheel or drive plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet, core and coil.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

This sensor is not used to control the engine system.

It is used only for the on board diagnosis.

ECM Terminals and Reference Value

NGEC0328

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

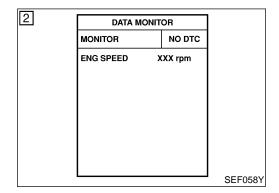
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (AC Voltage)
43	B/W	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
		Crankshaft position sensor (OBD)	[Engine is running] • Warm-up condition • Idle speed	Approx. 0V (V) 10 5 0 0.2 ms
53	L		[Engine is running] ◆ Engine speed is 2,000 rpm	Approx. 0V (V) 10 5 0 0.2 ms

KA24DE

On Board Diagnosis Logic

On Board Diagnosis Logic


NGEC0329

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	((
P1336	 A chipping of the flywheel or drive plate gear tooth (cog) is detected by the ECM. 	 Harness or connectors Crankshaft position sensor (OBD) Drive plate/Flywheel 	

GI

MA

LC

DTC Confirmation Procedure

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

EC

(II) With CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 2 minutes at idle speed.
- 3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-449.

MT

With GST

NOTE:

Follow the procedure "With CONSULT-II".

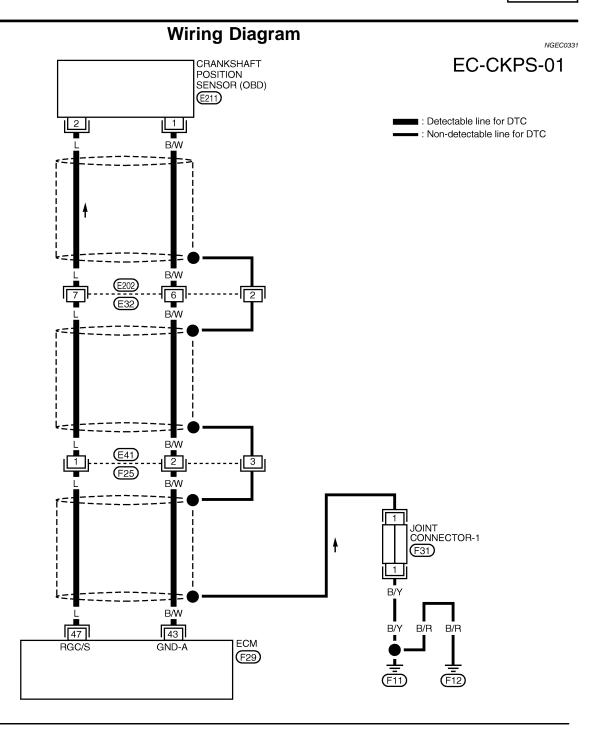
AT TF

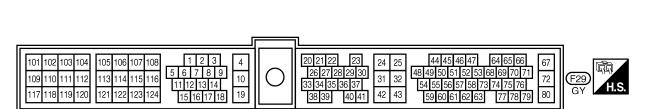
PD

AX

SU

ST


BT


HA

SC

EL

KA24DE

2 1 GY

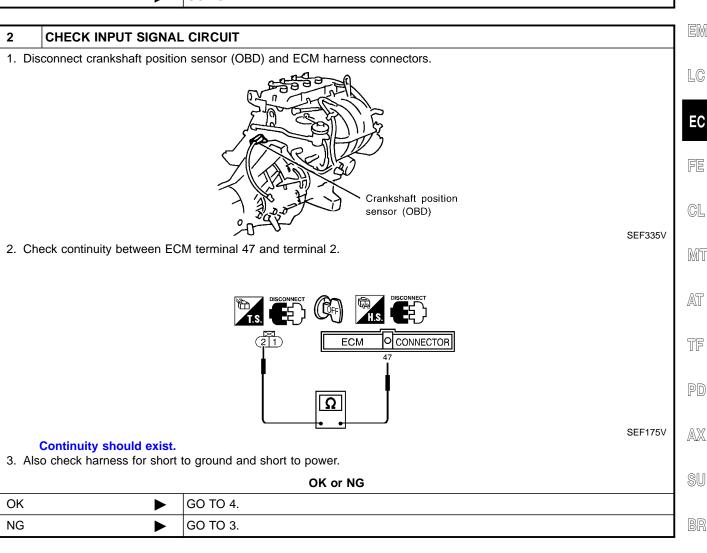
E202

AEC993A

KA24DE

GI

MA


Diagnostic Procedure

Diagnostic Procedure

1 RETIGHTEN GROUND SCREWS

1. Turn ignition switch OFF.
2. Loosen and retighten engine ground screws.

GO TO 2.

3 DETECT MALFUNCTIONING PART Check the following. • Harness connectors E202, E32 • Harness connectors E41, F25 • Harness for open or short between crankshaft position sensor (OBD) and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

ST

HA

SC

ΞL

 \mathbb{N}

KA24DE

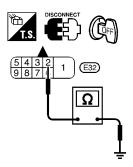
Diagnostic Procedure (Cont'd)

4 CHECK GROUND CIRCUIT 1. Reconnect ECM harness connectors. 2. Check harness continuity between crankshaft position sensor (OBD) terminal 1 and engine ground. Refer to the wiring diagram. Continuity should exist. 3. Also check harness for short to power. OK or NG OK GO TO 6.

5 DETECT MALFUNCTIONING PART

Check the following.

NG


- Harness connectors E202, E32
- Harness connectors E41, F25
- Harness for open or short between crankshaft position sensor (OBD) and ECM

GO TO 5.

Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK SHIELD CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect harness connectors E32.
- 3. Check harness continuity between harness connector E32 terminal 2 and ground.

SEF552V

Continuity should exist

- 4. Also check harness for short to power.
- 5. Then reconnect harness connectors.

OK or NG

OK •	GO TO 8.
NG ►	GO TO 7.

7 DETECT MALFUNCTIONING PART

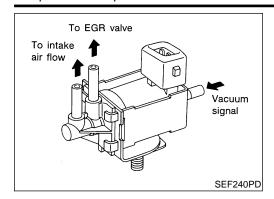
Check the following.


- Harness connectors E41, F25
- Joint connector-1 (Refer to "HARNESS LAYOUT", EL-254.)
- Harness for open or short between harness connector E32 and engine ground

Repair open circuit or short to ground or short to power in harness or connectors.

8 CHECK IMPROPER INSTALLATION Loosen and retighten the fixing bolt of the crankshaft position sensor (OBD). Then retest. Trouble is not fixed. GO TO 9.

KA24DE


Diagnostic Procedure (Cont'd)

HA

SC

Component Description

Component Description

The EGRC-solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the coil in the solenoid valve is energized. The vacuum signal passes through the solenoid valve. The signal then reaches the EGR valve.

When the ECM sends an ON signal, a plunger will then move to cut the vacuum signal from the throttle body to the EGR valve.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0335

MONITOR ITEM	COND	DITION	SPECIFICATION
	Engine: After warming upAir conditioner switch: "OFF"	Idle	ON
EGRC SOL/V	Shift lever: "N" (A/T models) No-load	Rev engine up from idle to 3,000 rpm quickly.	OFF

ECM Terminals and Reference Value

NGEC0336

Specification data are reference values and are measured between each terminal and ground.

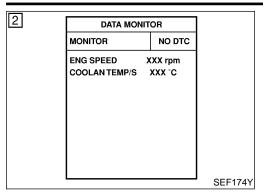
CALITION

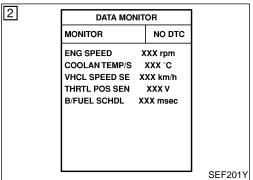
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

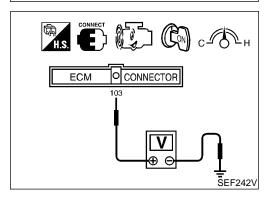
TER- MINAL NO.	WIRE COLOR	ITEM	ITEM CONDITION	
			[Engine is running] ■ Warm-up condition ■ Idle speed	0 - 1V
103	G/W	EGRC-solenoid valve	 [Engine is running] Warm-up condition M/T models: Lift up drive wheels and shift to 1st gear position. Rev engine up from 2,000 to 4,000 rpm. 	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

NGEC0337


DTC No.	Malfunction is detected when	Check Items (Possible Cause)		
P1400	The improper voltage signal is sent to ECM through EGRC-solenoid valve.	Harness or connectors (The EGRC-solenoid valve circuit is open or shorted.) EGRC-solenoid valve		


DTC P1400 EGRC-SOLENOID VALVE


KA24DE

NGEC0338

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Always perform at a temperature above 0°C (32°F).

- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Maintain the following conditions for at least 5 consecutive seconds.

ENG SPEED	Less than 3,000 rpm	
B/FUEL SCHDL	Less than 12.6 msec	
VHCL SPEED SE	Suitable speed	

- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-455.
- With GST
- Follow the procedure with "CONSULT-II".

Overall Function Check

Use this procedure to check the overall function of the EGR temperature sensor. During this check, a 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- Check the voltage between ECM terminal 103 and ground at idle

Voltage: 0 - 1V

- Check that the voltage changes to battery voltage and returns to 0 - 1V when revving the engine from idle to 3,000 rpm quickly.
- If NG, go to "DIAGNOSTIC PROCEDURE", EC-455.

MA

EC

- •

FE

MT

GL

PD

TF

AT

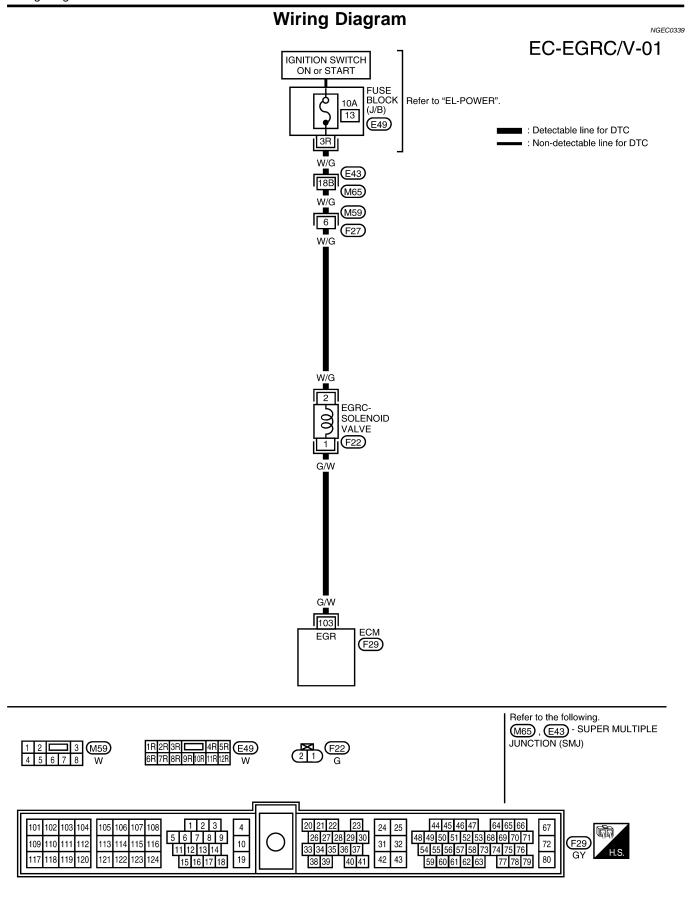
AX

SU

RR

ST

29


BT

HA

SC

EL

DTC P1400 EGRC-SOLENOID VALVE

Diagnostic Procedure

NGEC0340

1	CHECK EGRC-SOLENOID	VALVE
---	---------------------	-------

With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Turn EGRC-solenoid valve "ON" and "OFF" in "ACTIVE TEST" mode with CONSULT-II and check operating sound.

ACTIVE TEST				
EGRC SOL/V		ON		
(EGR)		CUT		
MONITO	R			
ENG SPEED		XXX rpm		

SEF716Z

(X) Without CONSULT-II

1. Start engine and rev engine up to 3,000 rpm quickly.

2. When disconnecting and reconnecting the EGRC-solenoid valve harness connector, make sure that the EGRC-solenoid valve makes operating sound. (The DTC or the 1st trip DTC for the EGRC-solenoid valve will be displayed, however, ignore it.)

OK or NO

OK (With CONSULT-II)	>	GO TO 5.
OK (Without CONSULT	· •	GO TO 6.
NG	>	GO TO 2.

 \mathbb{G}

MA

EM

16

EC

CL MT

AT

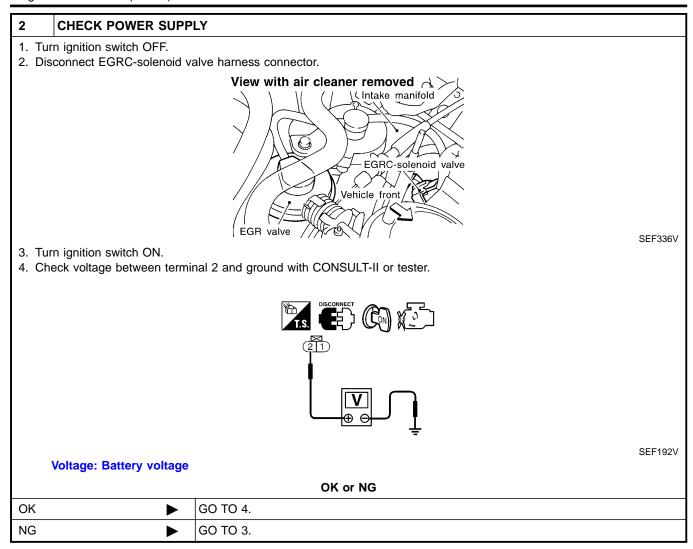
TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

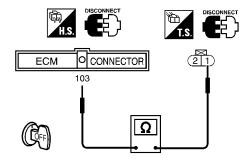

ST

BT

HA

SC

EL


3 DETECT MALFUNCTIONING PART Check the following. Harness connectors E43, M65 Harness connectors M59, F27 10A fuse Harness for open or short between EGRC-solenoid valve and 10A fuse Repair harness or connectors.

DTC P1400 EGRC-SOLENOID VALVE

Diagnostic Procedure (Cont'd)

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 103 and terminal 1.

Continuity should exist.

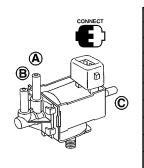
4. Also check harness for short to ground and short to power.

OK or NG

OK (With CONSULT-II)		GO TO 6.
OK (Without CONSULT-II)	•	GO TO 7.
NG	>	GO TO 5.

5 DETECT MALFUNCTIONING PART

Check the harness for open or short between EGRC-solenoid valve and ECM.


Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK EGRC-SOLENOID VALVE

(P) With CONSULT-II

Check air passage continuity.

Perform "EGRC SOLENOID VALVE" in "ACTIVE TEST" mode.

ACTIVE TE	ST	•	
EGRC SOL/V		ON	
(EGR)	CUT		
MONITO	₹		
ENG SPEED		XXX rpm	

Condition EGRC SOLENOID VALVE	Air passage continuity between A and B	Air passage continuity between A and C
ON	Yes	No
OFF	No	Yes

SEF717Z

OK or NG

OK ►	GO TO 8.
NG •	Replace EGRC-solenoid valve.

G[

MA

LC

EC

FE

SEF243V

GL

MT

AT

TF

PD

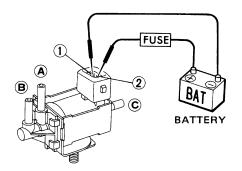
SU

BR

ST

RS

B I


HA

SC

 $\mathbb{D}\mathbb{X}$

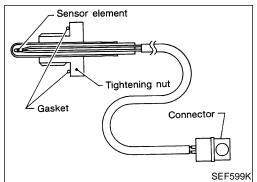
CHECK EGRC-SOLENOID VALVE

Without CONSULT-II
Check air passage continuity shown in the figure.

AEC919

Condition	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes

MTBL0283


If NG or operation takes more than 1 second, replace solenoid valve.

OK or NG

OK •	GO TO 8.
NG ►	Replace EGRC-solenoid valve.

8	CHECK INTERMITTENT INCIDENT	
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.	
	► INSPECTION END	

DTC P1401 EGR TEMPERATURE SENSOR

1,000

100

10

ō

(32)

50

(122)

Resistance kΩ

100

(212)

Temperature °C (°F)

150

(302)

200

(392)

SEF068XB

Component Description

The EGR temperature sensor detects temperature changes in the EGR passageway. When the EGR valve opens, hot exhaust gases flow, and the temperature in the passageway changes. The EGR temperature sensor is a thermistor that modifies a voltage signal sent from the ECM. This modified signal then returns to the ECM as an input signal. As the temperature increases, EGR temperature sensor resistance decreases. This sensor is not used to control the engine system.

It is used only for the on board diagnosis.

<Reference data>

EGR temperature °C (°F)	Voltage* V	Resistance MΩ
0 (32)	4.56	0.62 - 1.05
50 (122)	2.25	0.065 - 0.094
100 (212)	0.59	0.011 - 0.015

^{*:} These data are reference values and are measured between ECM terminal 63 (EGR temperature sensor) and ground.

When EGR system is operating.

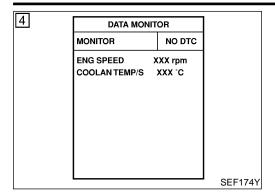
Voltage: 0 - 1.5V

On Board Diagnosis Logic

	MGEC0343				
DTC No.		Malfunction is detected when	Check Items (Possible Cause)		
P1401	A)	An excessively low voltage from the EGR temperature sensor is sent to ECM even when engine coolant temperature is low.	Harness or connectors (The EGR temperature sensor circuit is shorted.) EGR temperature sensor Malfunction of EGR function, EGRC-BPT valve or EGRC-solenoid valve	BR ST	
	В)	An excessively high voltage from the EGR temperature sensor is sent to ECM even when engine coolant temperature is high.	Harness or connectors (The EGR temperature sensor circuit is open.) EGR temperature sensor Malfunction of EGR function, EGRC-BPT valve or EGRC-solenoid valve	RS BT	

EC

TF



DTC Confirmation Procedure

DTC Confirmation Procedure

Perform "PROCEDURE FOR MALFUNCTION A" first. If 1st trip

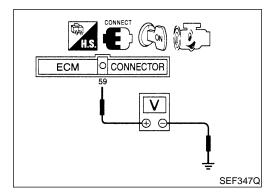
DTC cannot be confirmed, perform "PROCEDURE FOR MAL-FUNCTION B".

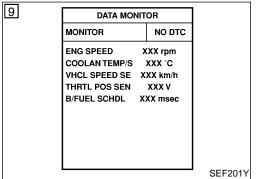
NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A

NGEC0344S01


- (P) With CONSULT-II
- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Verify that engine coolant temperature is less than 50°C (122°F).


If the engine coolant temperature is above the range, cool the engine down.

- 4) Start engine and let it idle for at least 8 seconds.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-463.

With GST

Follow the procedure "With CONSULT-II".

PROCEDURE FOR MALFUNCTION B

NGEC0344S02

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

Always perform the test at a temperature above 5°C (41°F).

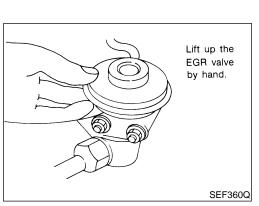
- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- Run engine at idle for at least 2 minutes.
- Confirm that EGR valve is not lifting.
 If the result is NG, perform trouble diagnosis for DTC P1402.
 Refer to EC-465.
- Select "DATA MONITOR" mode with CONSULT-II.
- 5) Read "EGR TEMP SEN" at about 1,500 rpm while holding the EGR valve in full open position by hand.

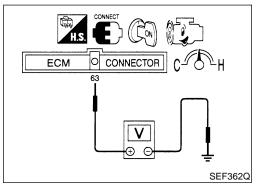
Voltage should decrease to less than 1.0V.

If the result is NG, go to "Diagnostic Procedure", EC-463. If the result is OK, go to following step.

- 6) Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON.
- 8) Check the output voltage of "THRTL POS SEN" (at closed throttle position) and note it.
- 9) Start engine.

DTC P1401 EGR TEMPERATURE SENSOR


KA24DE


DTC Confirmation Procedure (Cont'd)

 Maintain the following conditions for at least 5 consecutive seconds.

ENG SPEED	2,000 - 2,800 rpm
VHCL SPEED SE	10 km/h (6 MPH) or more
B/FUEL SCHDL	7 - 10.5 msec
THRTL POS SEN	(X + 0.23) - (X + 0.74) V X = Voltage value measured at step 7
Selector lever	Suitable position

11) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-463.

Overall Function Check

Use this procedure to check the overall function of the EGR temperature sensor. During this check, a 1st trip DTC might not be confirmed.

PROCEDURE FOR MALFUNCTION B

⊗ Without CONSULT-II

1) Start engine and warm it up to normal operating temperature.

2) Run engine at idle for at least 2 minutes.

 Confirm that EGR valve is not lifting. If NG, perform trouble diagnosis for DTC P1402. Refer to EC-466.

Check voltage between ECM terminal 63 (EGR temperature sensor signal) and ground at about 1,500 rpm with EGR valve lifted up to the full position by hand.

Voltage should decrease to less than 1.0V.

5) If NG, go to "Diagnostic Procedure", EC-463. If OK, perform trouble diagnoses for DTC P0400 and P1400. Refer to EC-327, 452.

GI

MA

LC

EC

FE

GL

MT

AT

TF

PD

NGEC0345S01

AX

SU

ST

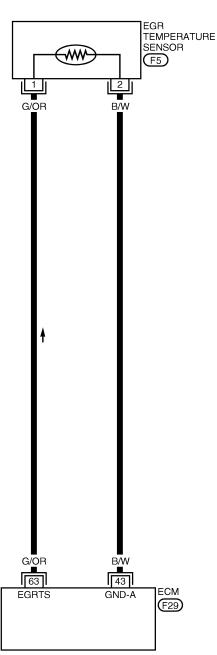
BT

HA

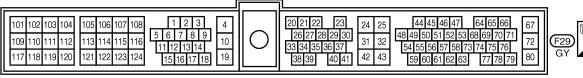
SC

EL

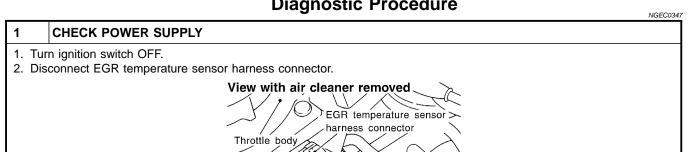
 \mathbb{N}



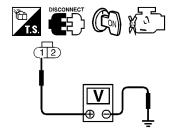
Wiring Diagram


NGEC0346

: Detectable line for DTC : Non-detectable line for DTC



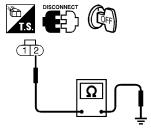
DTC P1401 EGR TEMPERATURE SENSOR



sensor

3. Turn ignition switch ON.

4. Check voltage between terminal 1 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK NG	Repair harness or connectors.
	•

CHECK GROUND CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Check harness continuity between EGR temperature sensor terminal 2 and engine ground. Refer to the wiring diagram.

Continuity should exist.

3. Also check harness for short to power.

OK	>	GO TO 4.
NG		GO TO 3.

3	DETECT MALFUNCTIONING PART		
Check	Check the harness for open or short between EGR temperature sensor and ECM.		
	Repair open circuit or short to ground or short to power in harness or connector.		

OK or NG

MA

EC

SEF345V

SEF263W

FE

MT

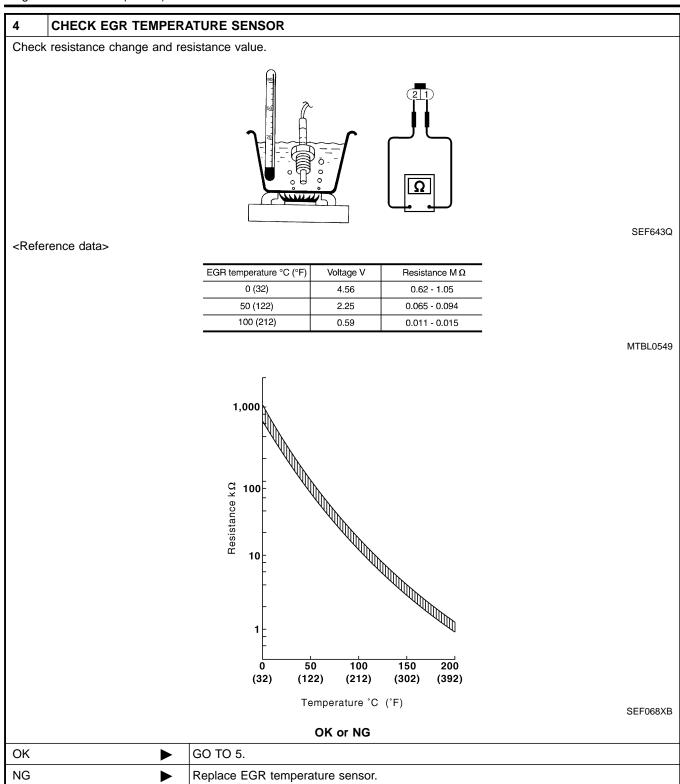
AT

TF

PD

AX

SU


ST

SEF264W

HA

SC

EL

5	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	► INSPECTION END		

DTC P1402 EGR FUNCTION (OPEN)

Description SYSTEM DESCRIPTION

NGEC0349

NGEC0349S01

				CIL
Sensor	Input Signal to ECM	ECM func- tion	Actuator	MA
Camshaft position sensor	Engine speed	EGR control	EGRC-solenoid valve	
Mass air flow sensor	Amount of intake air			EM
Engine coolant temperature sensor	Engine coolant temperature			الالاك
Ignition switch	Start signal			LC
Throttle position sensor	Throttle position			

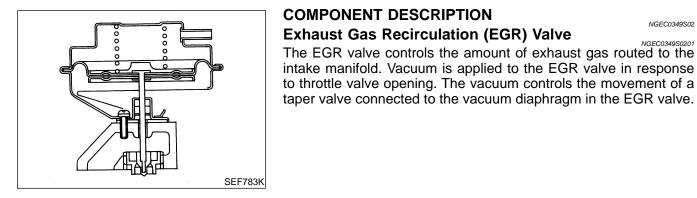
EC

This system cuts and controls vacuum applied to the EGR valve to suit engine operating conditions. This cut-and-control operation is accomplished through the ECM and the EGRC-solenoid valve. When the ECM detects any of the following conditions, current through the solenoid valve is cut. This causes the vacuum to be cut. The EGR valve remains closed.

GL

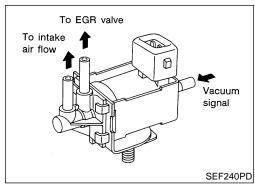
MT

AT


TF

- Low engine coolant temperature
- Engine starting
- High-speed engine operation
- Engine idling
- Excessively high engine coolant temperature
- Mass air flow sensor malfunction

ST


COMPONENT DESCRIPTION Exhaust Gas Recirculation (EGR) Valve

NGEC0349S02

The EGR valve controls the amount of exhaust gas routed to the intake manifold. Vacuum is applied to the EGR valve in response

SC

EL

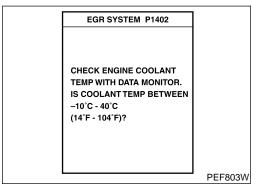
EGR temperature sensor EGR temperature EGR temperature

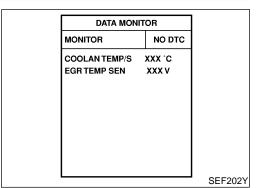
EGRC-solenoid Valve

The EGRC-solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the coil in the solenoid valve is energized. The vacuum signal passes through the solenoid valve. A plunger will then move to cut the vacuum signal (from the throttle body to the EGR valve).

When the ECM sends an OFF signal, a plunger will then move to cut the vacuum signal from the throttle body to the EGR valve.

On Board Diagnosis Logic


If EGR temperature sensor detects EGR flow under the condition that does not call for EGR, a high-flow malfunction is diagnosed.


NOTE:

SEF073P

Diagnosis for this DTC will occur when engine coolant temperature is approx. 50 to 60°C (122 to 140°F). Therefore, it will be better to turn ignition switch "ON" (Start engine) at the engine coolant temperature below 40°C (104°F) when starting DTC confirmation procedure.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	
P1402		 EGRC-solenoid valve EGR valve leaking or stuck open EGR temperature sensor EGRC-BPT valve 	

DTC Confirmation Procedure

NGEC0351

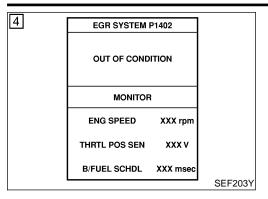
NOTE:

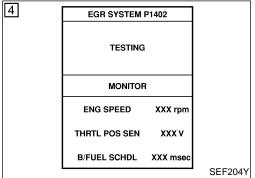
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

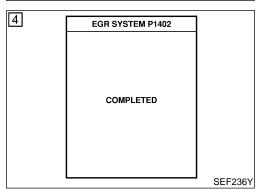
TESTING CONDITION:

 Engine coolant temperature and EGR temperature must be verified in "DATA MONITOR" mode with CONSULT-II before starting DTC WORK SUPPORT test. If it is out of range below, the test cannot be conducted.

COOLAN TEMP/S: -10 to 60°C (14 to 140°F)*


EGR TEMP SEN: Less than 3.7V


If the values are out of the ranges indicated above, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to reduce the engine coolant or EGR temperature with a fan or means other than ambient air. Doing so may produce an inaccurate diagnostic result.


*: Although CONSULT-II screen displays "-10 to 40°C (14 to 104°F)" as a range of engine coolant temperature, ignore it.

DTC P1402 EGR FUNCTION (OPEN)

DTC Confirmation Procedure (Cont'd)

(P) With CONSULT-II

- Turn ignition switch OFF and wait at least 5 seconds, then turn ignition switch ON.
- Select "EGR SYSTEM P1402" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START". Follow instruction of CONSULT-II.
- Start engine and let it idle until "TESTING" on CONSULT-II screen is turned to "COMPLETED". (It will take 60 seconds or

If "TESTING" is not displayed after 5 minutes, turn ignition "OFF" and cool the engine coolant temperature to the range of -10 to 40°C (14 to 104°F). Retry from step 1.

Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-469.

With GST

- 1) Turn ignition switch ON and select "MODE 1" with GST.
- Check that engine coolant temperature is within the range of -10 to 35°C (14 to 95°F).
- Check that voltage between ECM terminal 63 (EGR temperature sensor signal) and ground is less than 4.8V.
- 4) Start engine and let it idle for at least 60 seconds.
- Stop engine. 5)
- 6) Perform from step 1 to 4.
- Select "MODE 3" with GST. 7)
- If DTC is detected, go to "Diagnostic Procedure", EC-469.

MA

GI

LC

EC

FE

GL

MT

AT

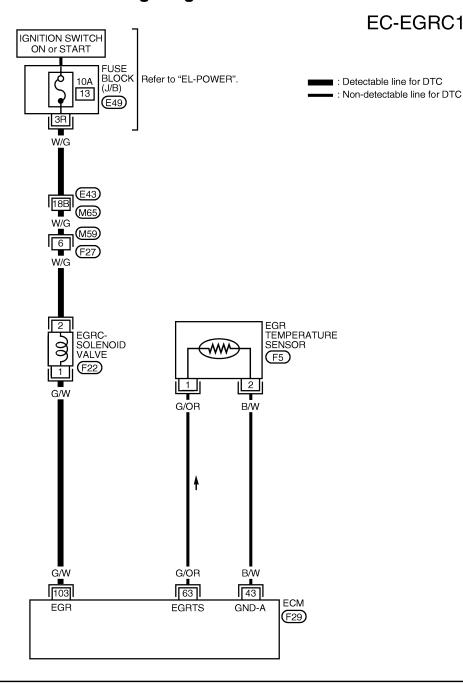
TF

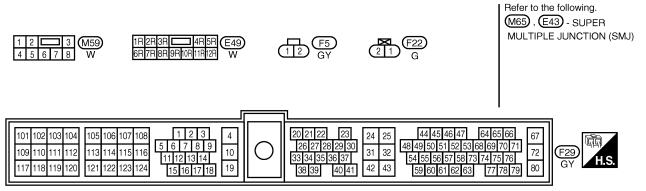
PD

ST

BT

HA


SC



Wiring Diagram

NGEC0352

EC-EGRC1-01

AEC995A

DTC P1402 EGR FUNCTION (OPEN)

Diagnostic Procedure

NGEC0353

GI

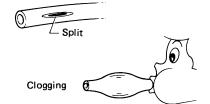
MA

EC

MT

AT

TF


PD

SEF716Z

CHECK VACUUM HOSE

Check vacuum hose for clogging, cracks or improper connection.

Refer to "Vacuum Hose Drawing", EC-27.

OK or NG

SEF109L

OK (With CONSULT-II) GO TO 2. OK (Without CONSULT-GO TO 3. II)

NG Repair or replace vacuum hose.

2 **CHECK EGRC-SOLENOID VALVE CIRCUIT**

With CONSULT-II

1. Turn ignition switch ON.

2. Turn EGRC-solenoid valve "ON" and "OFF" in "ACTIVE TEST" mode with CONSULT-II and check operating sound.

ACTIVE TE	ST	
EGRC SOL/V		ON
(EGR)		CUT
MONITO	₹	
ENG SPEED		XXX rpm

Clicking noise should be heard.

OK or NG

OK		GO TO 5.
NG	>	GO TO 4.

CHECK EGRC-SOLENOID VALVE CIRCUIT

Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Turn ignition switch ON.
- 4. Check operating sound of the solenoid valve when disconnecting and reconnecting EGRC-solenoid valve harness connector. (The DTC or the 1st trip DTC for the EGRC-solenoid valve will be displayed, however, ignore it.)

OK or NG

OK •	GO TO 6.
NG ▶	GO TO 4.

SC

HA

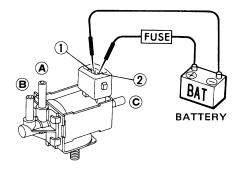
EIL

Diagnostic Procedure (Cont'd)


DETECT MALFUNCTIONING PART Check the following. • Harness connectors E43, M65 • Harness connectors M59, F27 • 10A fuse • Harness for open or short between fuse block and EGRC-solenoid valve • Harness for open or short between ECM and EGRC-solenoid valve OK or NG GO TO 5. OK

5	CHECK EGRC-SOL	ENOID VALV	E				
Check	th CONSULT-II air passage continuity m "EGRC SOLENOID		CTIVE TES	ST" mode.			
	CONNECT	ACTIVE TE					
	()	EGRC SOL/V	ON				
		(EGR)	CUT	Condition			
B	A	MONITO ENG SPEED	XXX rpm	EGRC SOLENOID VALVE	Air passage continuity between A and B	Air passage continuity between A and C	
	C			ON	Yes	No	
7				OFF	No	Yes	
						SEF	717Z
				OK or NG			
OK	<u> </u>	► GO TO 7					

OK OF NG		
ОК	>	GO TO 7.
NG		Replace EGRC-solenoid valve.


DTC P1402 EGR FUNCTION (OPEN)

Diagnostic Procedure (Cont'd)

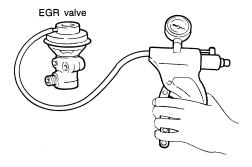
(X) Without CONSULT-II

Check air passage continuity shown in the figure.

AEC919

Condition	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes

MTBL0283


If NG or operation takes more than 1 second, replace solenoid valve.

OK or NG

OK ▶	GO TO 7.
NG •	Replace EGRC-solenoid valve.

7 CHECK EGR VALVE

 $\bullet\,$ Apply vacuum to EGR vacuum port with a hand vacuum pump.

MEF137D

EGR valve spring should lift.

Check for sticking.

OK d	or NG
------	-------

OK ▶	GO TO 8.
NG •	Replace EGR valve.

GI

MA

EM

LC

EC

__

CL

MT

ПЛП

AT

TF PD

AX

SU

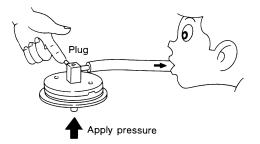
BR

ST

D@

BT

HA


SC

EL

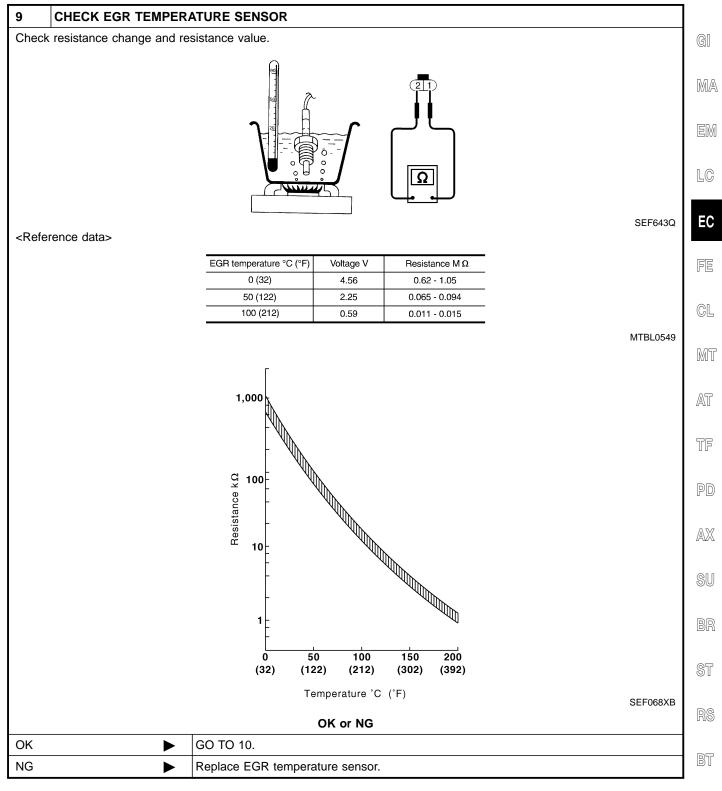
Diagnostic Procedure (Cont'd)

8 CHECK EGRC-BPT VALVE

- 1. Plug one of two ports of EGRC-BPT valve.
- 2. Vacuum from the other port and check for leakage while applying a pressure above 0.981 kPa (100 mm H_2O , 3.94 in H_2O) from under EGRC-BPT valve.

SEF083P

3. If a leakage is noted, replace the valve.


OK or NG

OK •	GO TO 9.
NG ►	Replace EGRC-BPT valve.

DTC P1402 EGR FUNCTION (OPEN)

KA24DE

Diagnostic Procedure (Cont'd)

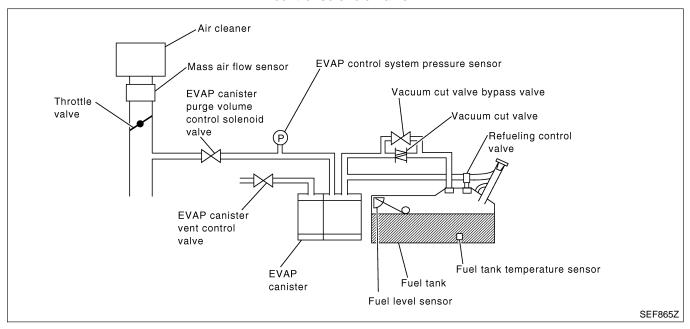
10	CHECK INTERMITTEN	T INCIDENT	HA
Perfor	m "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-142.	
	>	INSPECTION END	SC

EL

KA24DE

NGEC1044

On Board Diagnosis Logic


NOTE:

If DTC P1440 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-519.)

This diagnosis detects leaks in the EVAP purge line using of vapor pressure in the fuel tank.

The EVAP canister vent control valve is closed to shut the EVAP purge line. The vacuum cut valve bypass valve will then be opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP control system pressure sensor can now monitor the pressure inside the fuel tank.

If pressure increases, the ECM will check for leaks in the line between the vacuum cut valve and EVAP canister purge volume control solenoid valve.

Malfunction is detected when EVAP control system has a leak, EVAP control system does not operate properly.

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

Possible Cause

NGEC1045

- Incorrect fuel tank vacuum relief valve
- Incorrect fuel filler cap used
- Fuel filler cap remains open or fails to close
- Foreign matter caught in fuel filler cap
- Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve
- Foreign matter caught in EVAP canister vent control valve
- EVAP canister
- EVAP purge line (pipe and rubber tube) leaks

DTC P1440 EVAP CONTROL SYSTEM (SMALL LEAK) (POSITIVE PRESSURE)

KA24DE

Possible Cause (Cont'd)

- EVAP purge line rubber tube bent
- Blocked or bent rubber tube to EVAP control system pressure sensor

GI

- Loose or disconnected rubber tube
- EVAP canister vent control valve and the circuit

MA

- Fuel tank temperature sensor
- O-ring of EVAP canister vent control valve is missing or damaged

EVAP canister purge volume control solenoid valve

EM

- Water separator
- EVAP canister is saturated with water

EVAP control system pressure sensor

Fuel level sensor and the circuit

LC

EC

Refueling control valve

ORVR system leaks

FE

Foreign matter caught in EVAP canister purge volume control solenoid valve

GL

MT

DTC Confirmation Procedure

Refer to "P1441 EVAP CONTROL SYSTEM (VERY SMALL LEAK) (NEGATIVE PRESSURE)", EC-477.

TF

AT

PD

 $\mathbb{A}\mathbb{X}$

Diagnostic Procedure

Refer to "P1441 EVAP CONTROL SYSTEM (VERY SMALL LEAK) (NEGATIVE PRESSURE)", EC-479.

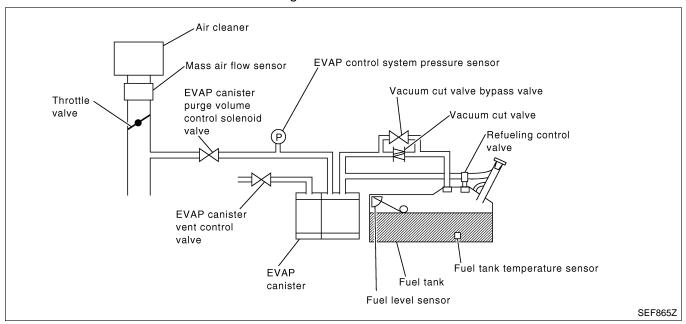
SU

ST

RS

BT

HA


SC

EL

On Board Diagnosis Logic

This diagnosis detects very small leaks in the EVAP line between the fuel tank and the EVAP canister purge volume control solenoid valve using intake manifold vacuum in the same way as conventional EVAP small leak diagnosis.

If the ECM judges a leak equivalent to a very small leak, the very small leak DTC P1441 will be detected. If the ECM judges a leak equivalent to a small leak, the EVAP small leak DTC P0440 will be detected. Correspondingly, if the ECM judges there is no leak, the diagnosis result is OK.

Malfunction is detected when EVAP control system has a very small leak, EVAP control system does not operate properly.

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may
- If the fuel filler cap is not tightened properly, the MIL may
- Use only a genuine NISSAN rubber tube as a replacement.

Possible Cause

NGEC1033

- Incorrect fuel tank vacuum relief valve
- Incorrect fuel filler cap used
- Fuel filler cap remains open or fails to close.
- Foreign matter caught in fuel filler cap.
- Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.
- Foreign matter caught in EVAP canister vent control valve.
- EVAP canister or fuel tank leaks
- EVAP purge line (pipe and rubber tube) leaks

Possible Cause (Cont'd)

EVAP purge line rubber tube bent.

 Blocked or bent rubber tube to EVAP control system pressure sensor

G[

Loose or disconnected rubber tube

EVAP canister vent control valve and the circuit

MA

EVAP canister purge volume control solenoid valve

Absolute pressure sensor

Fuel tank temperature sensor

O-ring of EVAP canister vent control valve is missing or damaged.

LC

Water separator

EVAP canister is saturated with water.

Fuel level sensor and the circuit

EVAP control system pressure sensor

Refueling control valve

ORVR system leaks

Fuel level sensor and the circuit

DTC Confirmation Procedure

FE

EC

GL

MT

SEF881X

EVAP V/S LEAK P1441

CHECK FUEL LEVEL SENSOR(V) SEE SERVICE MANUAL FOR

MONITOR

EVAP V/S LEAK P1441

1800-2800 RPM UNTIL FINAL RESULT

1800 rpm 2300 rpm 2800 rpm

xxx v

SPECIFICATION.

SPECIFICATION?

FUEL LEVEL SE

CAUTION:

Never remove fuel filler cap during the DTC confirmation procedure.

TF

AT

NOTE

 If DTC P1441 is displayed with P0440, perform TROUBLE DIAGNOSIS FOR DTC P1441 first.

PD

 If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

 After repair, make sure that the hoses and clips are installed properly.

2 22 4

SU

TESTING CONDITION:

Open engine hood before conducting following procedure.

 If any of following condition is met just before the DTC confirmation procedure, leave the vehicle for more than 1 hour.

ST

a) Fuel filler cap is removed.

Refilled or drained the fuel.

RS

c) EVAP component parts is/are removed.

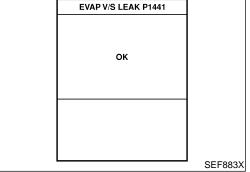
RT

• Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) With CONSULT-II

 Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.

HA SC


Make sure the following conditions are met.

FUEL LEVEL SE: 1.08 - 0.2V

COOLAN TEMP/S: 0 - 32°C (32 - 90°F) FUEL T/TMP SE: 0 - 32°C (32 - 90°F)

INT A/TEMP SE: More than 0°C (32°F)

If NG, turn ignition switch "OFF" and leave the vehicle in a cool

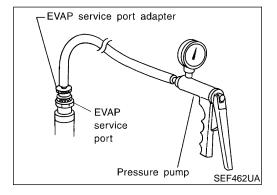
a) b) SEF882X c) •

EL

place (soak the vehicle) or refilling/draining fuel until the output voltage condition of the "FUEL LEVEL SE" meets within the range above and leave the vehicle for more than 1 hour. Then start from step 1).

- 3) Turn ignition switch "OFF" and wait at least 5 seconds.
- 4) Turn ignition switch "ON".
- 5) Select "EVAP VERY/SML LEAK P1441" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-
 - Follow the instruction displayed.
- 6) Make sure that "OK" is displayed. If "NG" is displayed, refer to "Diagnostic Procedure", EC-479.

NOTE:


- If the engine speed cannot be maintained within the range displayed on CONSULT-II screen, go to inspection", EC-104.
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

OVERALL FUNCTION CHECK

NGFC1034S01

With GST

Use this procedure to check the overall function of the EVAP very small leak function. During this check, a 1st trip DTC might not be confirmed.

- Never use compressed air, doing so may damage the **EVAP** system.
- Do not start engine.
- Do not exceeded 4.12 kPa (0.042 kg/cm², 0.6 psi).
- Attach the EVAP service port adapter securely to the EVAP service port.
- 2) Set the pressure pump and a hose.
- 3) Also set a vacuum gauge via 3-way connector and a hose.
- 4) Turn ignition switch "ON".
- 5) Connect GST and select mode 8.
- Using mode 8 control the EVAP canister vent control valve (close) and vacuum cut valve bypass valve (open).
- 7) Apply pressure and make sure the following conditions are satisfied.

Pressure to be applied: 2.7 kPa (20 mmHg, 0.79 inHg) Time to be waited after the pressure drawn in to the EVAP system and the pressure to be dropped: 60 seconds and the pressure should not be dropped more than 0.4 kPa (3 mmHg, 0.12 inHg)

If NG, go to diagnostic procedure, EC-479.

NOTE:

For more information, refer to GST instruction manual.

GI

MA

EM

LC

Diagnostic Procedure

NGEC1035 **CHECK FUEL FILLER CAP DESIGN** 1. Turn ignition switch "OFF". 2. Check for genuine NISSAN fuel filler cap design. NISSAN SEF915U OK or NG OK GO TO 2. Replace with genuine NISSAN fuel filler cap. NG

2	CHECK FUEL FILLER	CAP INSTALLATION
Check	that the cap is tightened p	properly by rotating the cap clockwise.
		OK or NG
OK	>	GO TO 3.
NG	>	 Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard.

3	CHECK FUEL FILLER CAP FUNCTION	
Check for air releasing sound while opening the fuel filler cap.		
OK or NG		
OK	>	GO TO 5.
NG	>	GO TO 4.

EC

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

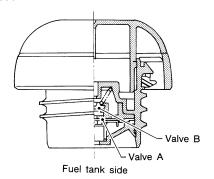
BR

ST

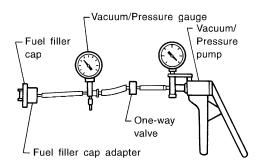
RS

BT

HA


SC

EL


Diagnostic Procedure (Cont'd)

CHECK FUEL TANK VACUUM RELIEF VALVE

- 1. Wipe clean valve housing.
- 2. Check valve opening pressure and vacuum.

SEF427N

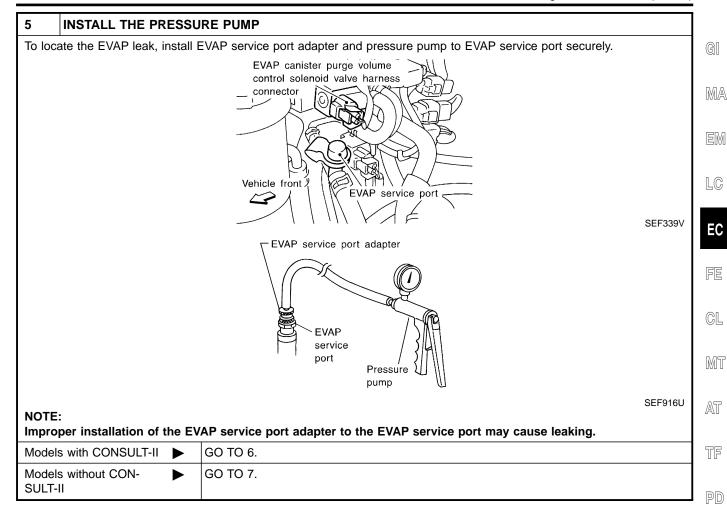
SEF943S

Pressure:

15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 - 2.90 psi)

Vacuum:

-6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm², -0.87 to -0.48 psi)


CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

OK or NG

OK •	>	GO TO 5.
NG	•	Replace fuel filler cap with a genuine one.

Diagnostic Procedure (Cont'd)

 $\mathbb{A}\mathbb{X}$

SU

BR

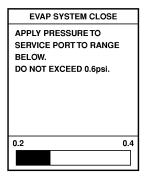
ST

RS

BT

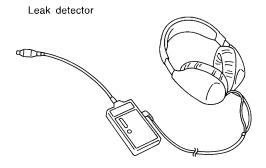
HA

SC


EL

Diagnostic Procedure (Cont'd)

6 **CHECK FOR EVAP LEAK**


(II) With CONSULT-II

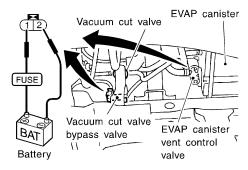
- 1. Turn ignition switch "ON".
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph. NOTE:
 - Never use compressed air or a high pressure pump.
 - Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

PEF917U

4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-37.

SEF200U

OK	or	NG
----	----	----

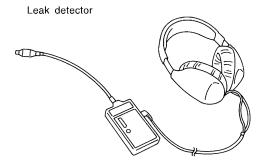

OK ▶	GO TO 8.
NG ►	Repair or replace.

Diagnostic Procedure (Cont'd)

CHECK FOR EVAP LEAK

◯ Without CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)



SEF503V

- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)
- 4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-37.

SEF200U

OK or NG

OK	>	GO TO 8.
NG	>	Repair or replace.

GI

MA

LC

EC

FE

GL

MT

AT TF

PD

SU

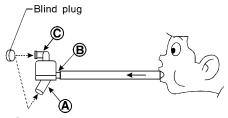
מוש

ST

RS

BT

HA


SC

EL

Diagnostic Procedure (Cont'd)

8 CHECK WATER SEPARATOR

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that A and C are not clogged by blowing air into B with A, and then C plugged.

- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - C: Inlet port (To member)

SEF829T

5. In case of NG in items 2 - 4, replace the parts.

NOTE:

• Do not disassemble water separator.

OK	or	NG
----	----	----

OK •	GO TO 9.
NG •	Replace water separator.

9	CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT		
Refer	Refer to "DTC Confirmation Procedure", EC-332.		
	OK or NG		
ОК	•	GO TO 10.	
NG	•	Repair or replace EVAP canister vent control valve and O-ring or harness/connector.	

NG	<u> </u>	Repair or replace EVAP canister vent control valve and O-ring or harness/co	onnector.
10	CHECK IF EVAP CAN	IISTER SATURATED WITH WATER	
1. Remove EVAP canister with EVAP canister vent control valve attached. 2. Does water drain from the EVAP canister? EVAP canister			
		Water EVAP canister vent control valve Yes or No	SEF596U
Yes	>	GO TO 11.	
No (V	Vith CONSULT-II)	GO TO 13.	
No (V II)	/ithout CONSULT-	GO TO 14.	

EC

MT

AT

TF

PD

ST

Diagnostic Procedure (Cont'd)

11	CHECK EVAP CA	NISTER	
-	•	with the EVAP canister vent control valve attached. ss than 1.8 kg (4.0 lb).	GI
		OK or NG	пл
OK (With CONSULT-II)	▶ GO TO 13.	M
OK (Without CONSULT-	► GO TO 14.	EN
NG		▶ GO TO 12.	
		-	 LC

12 **DETECT MALFUNCTIONING PART**

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection

Repair hose or replace EVAP canister.

13 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

ACTIVE TEST		
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	
THRTL POS SEN	xxx v	

Vacuum should exist.

SEF984Y

OK or NG

OK •	GO TO 16.
NG •	GO TO 15.

14 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

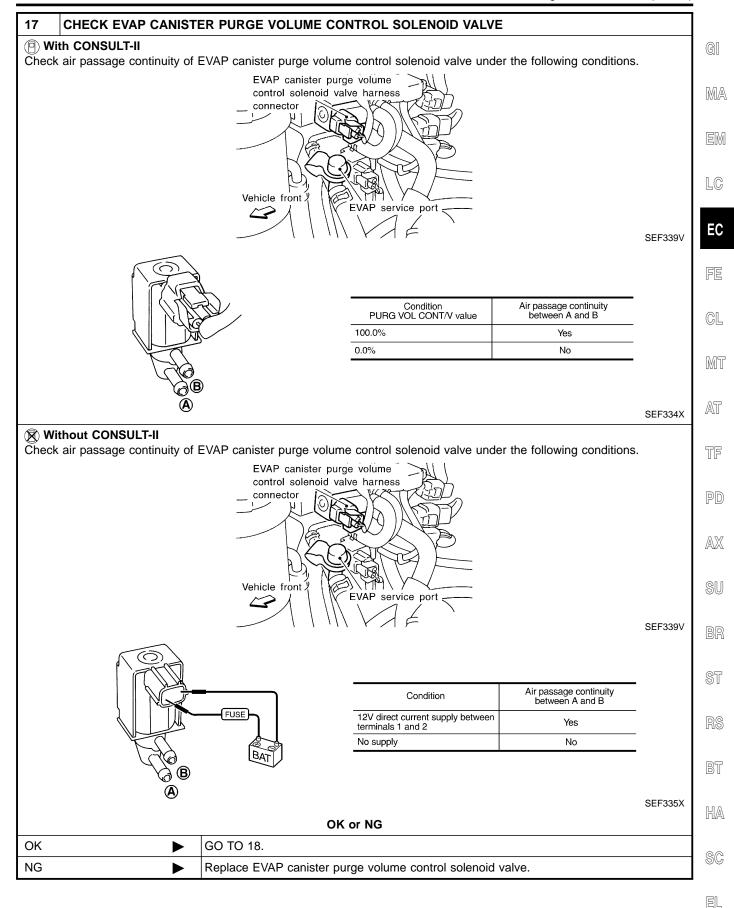
Vacuum should exist.

OK or NG

OK •	GO TO 17.
NG >	GO TO 15.

HA

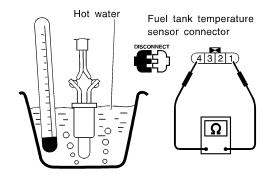
Diagnostic Procedure (Cont'd)


NG

15	CHECK VACUUM	HOS	E
Check	Check vacuum hoses for clogging or disconnection. Refer to "Vacuum Hose Drawing", EC-27.		
	OK or NG		
OK (V	Vith CONSULT-II)	>	GO TO 16.
OK (V II)	Vithout CONSULT-	•	GO TO 17.
NG		>	Repair or reconnect the hose.

16 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (II) With CONSULT-II 1. Start engine. 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. ACTIVE TEST PURG VOL CONT/V 0.0% MONITOR **ENG SPEED** XXX rpm A/F ALPHA-B1 XXX % A/F ALPHA-B2 XXX % HO2S1 MNTR (B1) RICH HO2S1 MNTR (B2) RICH THRTL POS SEN xxx v SEF985Y OK or NG GO TO 18. OK

GO TO 17.


Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)

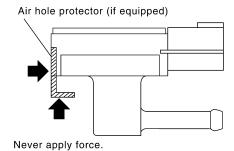
CHECK FUEL TANK TEMPERATURE SENSOR 18

- 1. Remove fuel level sensor unit.
- 2. Check resistance between fuel level sensor unit and fuel pump terminals 1 and 4 by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance kΩ
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

MTBL0291

SEF710Z


OK or NG

OK ►	GO TO 19.
NG ►	Replace fuel level sensor unit.

Diagnostic Procedure (Cont'd)

19 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

- 1. Remove EVAP control system pressure sensor with its harness connector connected.
 - Never apply force to the air hole protector of the sensor if equipped.

SEF799W

GI

MA

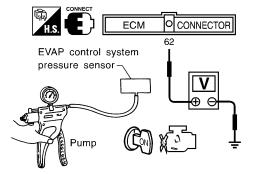
LC

EC

FE

GL

MT


AT

TF

PD

ST

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure. CAUTION:
 - Always calibrate the vacuum pump gauge when using it.
 - Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 5. Check input voltage between ECM terminal 62 and ground.

Pressure (Relative to atmospheric pressure)	Voltage V
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

SEF705Z

CAUTION:

• Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

0	K	or	Ν	G
u	n	OI.	IA	u

OK	>	GO TO 20.
NG	>	Replace EVAP control system pressure sensor.

20 CHECK EVAP PURGE LINE		
Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to "Evaporative Emission System", EC-34. OK or NG		
ОК	>	GO TO 21.
NG	•	Repair or reconnect the hose.

21	CLEAN EVAP PURGE LINE		
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.		
	>	GO TO 22.	

حاکا

HA

SC

Diagnostic Procedure (Cont'd)

22	CHECK FUEL LEVEL S	ENSOR	
Refer	Refer to <i>EL-87</i> , "Fuel Level Sensor Unit Check".		
	OK or NG		
OK	>	GO TO 23.	
NG		Replace fuel level sensor unit.	

23	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	>	INSPECTION END	

Description SYSTEM DESCRIPTION

NGEC0359

NGEC0359S01

Sensor	Input Signal to ECM	ECM function	Actuator	- - MA
Camshaft position sensor	Engine speed			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Ignition switch	Start signal			LG
Throttle position sensor	Throttle position	EVAP can- ister purge	EVAP canister purge volume	
Throttle position switch	Closed throttle position	flow control	' CONTROL SOLENOID VAIVE	EC
Heated oxygen sensor 1 (front)	Density of oxygen in exhaust gas (Mixture ratio feedback signal)			
Fuel tank temperature sensor	Fuel temperature in fuel tank			FE
Vehicle speed sensor	Vehicle speed			_ @1

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

SEF337U

COMPONENT DESCRIPTION

NGEC0359S0

The EVAP canister purge volume control solenoid valve uses a ON/OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

BT

HA

SC

EL

TF

PD

AX

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0360

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up Air conditioner switch "OFF"	Idle (Vehicle stopped)	0%
PURG VOL C/V	Shift lever: "N" No-load	2,000 rpm (200 seconds after starting engine)	_

ECM Terminals and Reference Value

KA24DE

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NGEC0361

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
4	LG/R	ECCS relay (Self-shut-	[Engine is running] [Ignition switch "OFF"] ● For a few seconds after turning ignition switch "OFF"	0 - 1V
		off)	[Ignition switch "OFF"] ■ A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
_	DAY	EVAP canister purge	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 20 10 0 50 ms
5	R/Y	volume control sole- noid valve	[Engine is running] • Engine speed is 2,000 rpm	BATTERY VOLTAGE (11 - 14V) (V) 20 10 0 50 ms
67	B/P	Davier evenly for FOM	Hernitian assistate "ONI"	BATTERY VOLTAGE
72	B/P	Power supply for ECM	[Ignition switch "ON"]	(11 - 14V)
117	В/Р	Current return	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

NGEC0362

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P1444	The canister purge flow is detected during the specified driving conditions, even when EVAP canister purge volume control solenoid valve is completely closed.	 EVAP control system pressure sensor EVAP canister purge volume control solenoid valve (The valve is stuck open.) EVAP canister vent control valve EVAP canister Hoses (Hoses are connected incorrectly or clogged.)

KA24DE

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

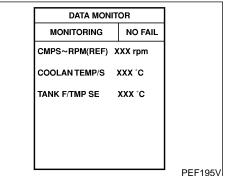
=NGEC0363

ed GI

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

MA

TESTING CONDITION:


Always perform test at a temperature of 5°C (41°F) or more.

=0/0

LC

EC

FE

(II) With CONSULT-II

-) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Check that TANK F/TEMP SE is 0°C (32°F) or more.
- Select "PURG VOL C/V P1444" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
 - Touch "START".
- 8) Start engine and let it idle until "TESTING" on CONSULT-II changes to "COMPLETED". (It will take for at least 10 seconds.)

If "TESTING" is not displayed after 5 minutes, retry from AT step 2.

- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-495.
- With GST Follow the procedure "With CONSULT-II".

PURG VOL CN/V P1444

OUT OF CONDITION

MONITOR

ENG SPEED XXX rpm

THRTL POS SEN XXX V

XXX msec

SEF205Y

B/FUEL SCHDL

PURG VOL CN/V P1444

TESTING

MONITOR

ENG SPEED XXX rpm

THRTL POS SEN XXX V

B/FUEL SCHDL XXX msec

COMPLETED

SEF237Y

90

TF

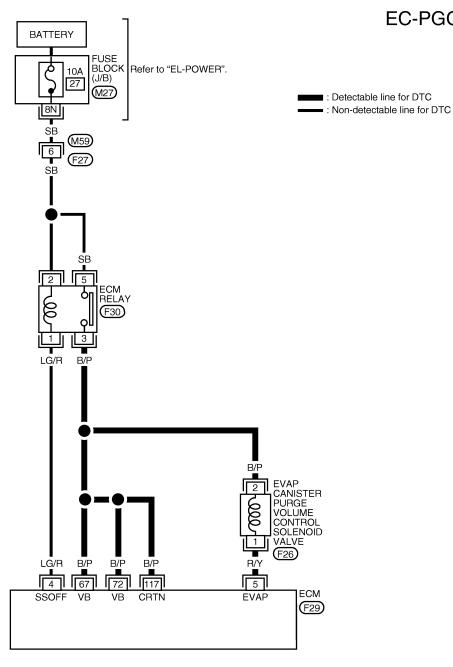
PD

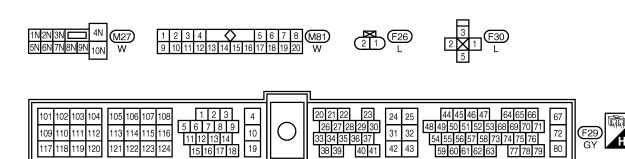
ST

BT

HA

SC

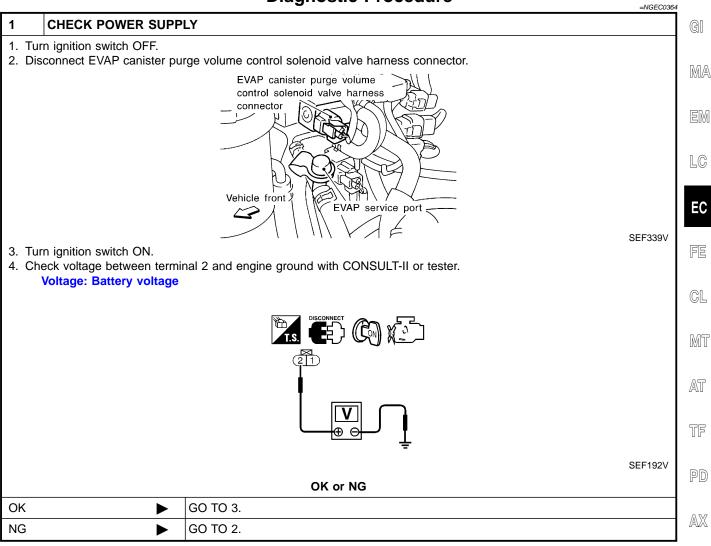

EL


KA24DE

Wiring Diagram

NGEC0504

EC-PGC/V-01



AEC996A

KA24DE

Diagnostic Procedure

2	DETECT MALFUNCTIONING PART		
Check the following.			
	Harness for open or short between EVAP canister purge volume control solenoid valve and ECM relay		
Harness for open or short between EVAP canister purge volume control solenoid valve and ECM			
	•	Repair harness or connectors.	

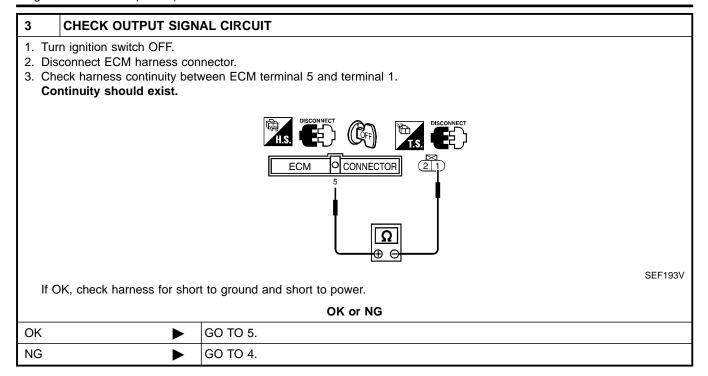
 $\mathbb{D}\mathbb{X}$

SU

BR

ST

BT


HA

SC

EL

KA24DE

Diagnostic Procedure (Cont'd)

4	DETECT MALFUNCTIONING PART	
Check the harness for open or short between EVAP canister purge volume control solenoid valve and ECM.		
Repair open circuit or short to ground or short to power in harness or connectors.		

GI

MA

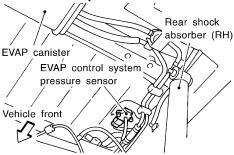
EC

GL

MT

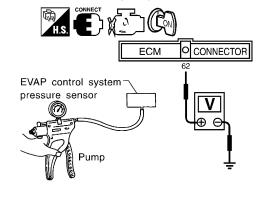
AT


TF


PD

Diagnostic Procedure (Cont'd)

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


1. Remove EVAP control system pressure sensor with its harness connector connected.

SEF341V

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 4. Check output voltage between ECM terminal 62 and engine ground.

Pressure (Relative to atomospheric pressure)	Voltage (V)
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
–9.3 kPa (–70 mmHg, –2.76 inHg)	0.4 - 0.6


MTBL0295

SEF198V

CAUTION:

5

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.

Never apply force.

SEF799W

- Never apply force to the air hole protector of the sensor, if equipped.
- Discard any EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

_				_
റ	Κ	or	Ν	C

OK (With CONSULT-II)	>	GO TO 6.
OK (Without CONSULT-II)	>	GO TO 7.
NG	•	Replace EVAP control system pressure sensor.

HA

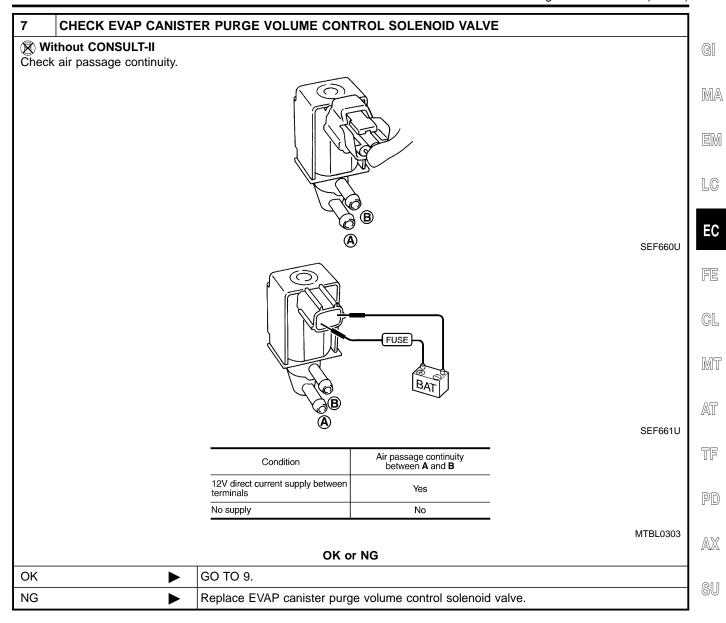
SC

KA24DE

Diagnostic Procedure (Cont'd)

OK

NG


6 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (II) With CONSULT-II 1. Start engine. 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. Check air passage continuity. If OK, inspection end. If NG, go to following step. ACTIVE TEST PURG VOL CONT/V MONITOR **ENG SPEED** XXX rpm A/F ALPHA-B1 HO2S1 MNTR (B1) LEAN THRTL POS SEN XXX V SEF801Y 3. Check air passage continuity. Condition PURG VOL CONT/V value Air passage continuity between **A** and **B** 100.0% Yes 0.0% No MTBL0302 OK or NG

Replace EVAP canister purge volume control solenoid valve.

GO TO 8.

KA24DE

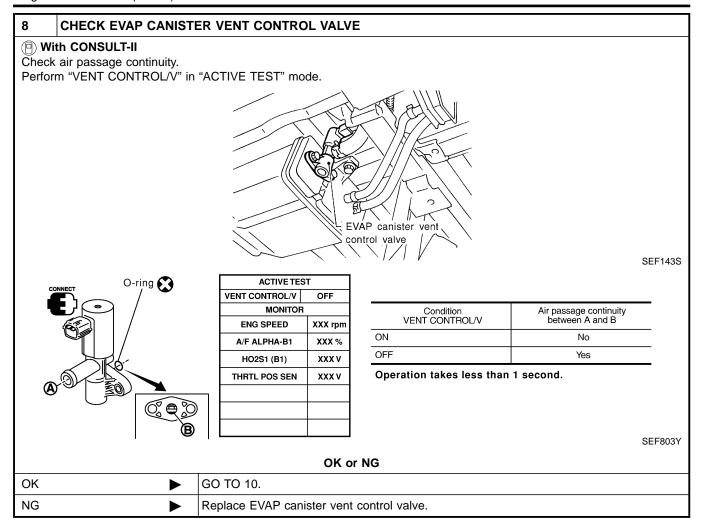
Diagnostic Procedure (Cont'd)

BR

ST

RS

BT


HA

SC

EL

KA24DE

Diagnostic Procedure (Cont'd)

KA24DE

GI

MA

EC

FE

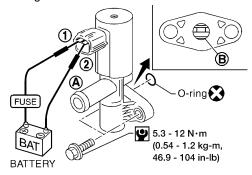
GL

MT

AT

TF

PD


Diagnostic Procedure (Cont'd)

CHECK EVAP CANISTER VENT CONTROL VALVE

⋈ Without CONSULT-II

9

Check air passage continuity shown in the figure.

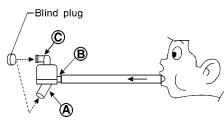
AEC783A

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
No supply	Yes

MTBL0297

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

If the portion B is rusted, replace EVAP canister vent control valve. Make sure new O-ring is installed properly.


OK or NG

OK •	GO TO 10.
NG ►	Replace EVAP canister vent control valve.

10 CHECK RUBBER TUBE

Check for obstructed water separator and rubber tube connected to EVAP canister vent control valve and clean the rubber tube using air blower. Check water separator.

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that **A** and **C** are not clogged by blowing air into **B** with **A**, and then **C** plugged.

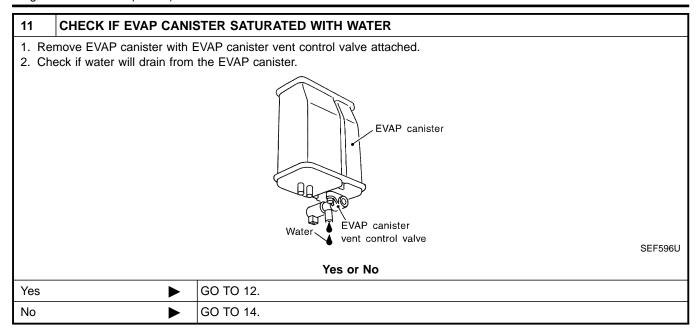
- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - C: Inlet port (To member)

SEF829T

- 5. In case of NG in items 2 4, replace the parts.
- Do not disassemble water separator.

OK	or	NG
----	----	----

l	NG	>	Clean, repair or replace rubber tube and/or water separator.
	OK		GO TO 11.


ΞL

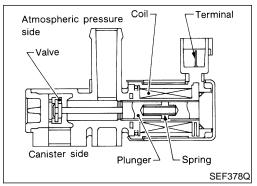
SC

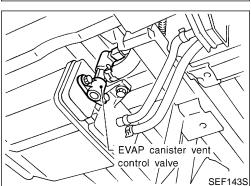
HA

KA24DE

Diagnostic Procedure (Cont'd)

12	CHECK EVAP CANISTE	ER .		
	Weigh the EVAP canister with the EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).			
OK or NG				
OK	>	GO TO 14.		
NG	>	GO TO 13.		


13	DETECT MALFUNCTIONING PART		
Check the following. • EVAP canister for damage • EVAP hose between EVAP canister and water separator for clogging or poor connection			
	•	Repair hose or replace EVAP canister.	


14	CHECK INTERMITTENT INCIDENT	
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	•	INSPECTION END

DTC P1446 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (CLOSE)

KA24DE

Component Description

Component Description

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid (the EVAP canister vent control valve) responds to signals from the ECM.

When the ECM sends an ON signal, the coil in the solenoid valve is energized.

A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

LC

GI

MA

EC

CL

MT

AT

TF

PD

AX

ST

BT

HA

CONSULT-II Reference Value in Data Monitor Mode

NGEC0367

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V • Ignition switch: ON		OFF

ECM Terminals and Reference Value

NGEC0368

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

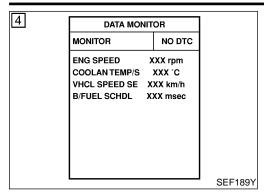
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

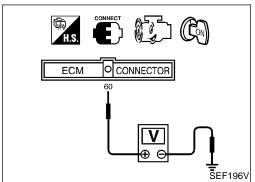
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
108	R/G	EVAP canister vent control valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

NGEC0369

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P1446	EVAP canister vent control valve remains closed under specified driving conditions.	 EVAP canister vent control valve EVAP control system pressure sensor and the circuit Blocked rubber tube to EVAP canister vent control valve Water separator EVAP canister is saturated with water.


EL


SC

DTC P1446 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (CLOSE)

KA24DE

DTC Confirmation Procedure

DTC Confirmation Procedure

NGEC0370

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Always perform at a temperature above 0°C (32°F).

- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Check that TANK F/TMP SE is 0°C (32°F) or more.
- 6) Drive vehicle at a speed of approximately 80 km/h (50 MPH) for a maximum of 15 minutes.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE" on EC-505.

NOTE:

If a malfunction exists, NG result may be displayed quicker.

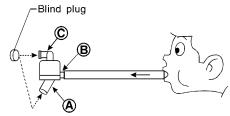
With GST

- 1) Start engine and warm it up to normal operating temperature.
- 2) Check that voltage between ECM terminal 60 (fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3) Drive vehicle at a speed of approximately 80 km/h (50 MPH) for 15 minutes.
- 4) Select "MODE 7" with GST.
- 5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE" on EC-505.

KA24DE

Diagnostic Procedure

Diagnostic Procedure


=NGEC0371

1 CHECK RUBBER TUBE FOR CLOGGING

Check obstructed water separator and rubber tube to EVAP canister vent control valve and clean the rubber tube using air blower.

Check water separator.

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that **A** and **C** are not clogged by blowing air into **B** with **A**, and then **C** plugged.

* (A): Bottom hole (To atmosphere)

B: Emergency tube (From EVAP canister)

(C): Inlet port (To member)

SEF829T

- 5. In case of NG in items 2 4, replace the parts.
- Do not disassemble water separator.

O	Κ	or	N	G

OK (With CONSULT-II)	>	GO TO 2.
OK (Without CONSULT-II)	>	GO TO 3.
NG	>	Clean, repair or replace rubber tube and/or water separator.

GI

MA

.C

EC

FE

GL

MT

AT

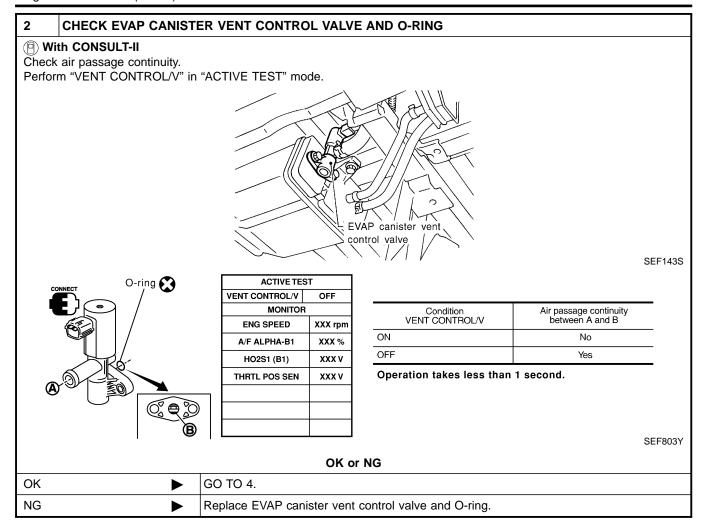
TF

PD

 $\mathbb{A}\mathbb{X}$

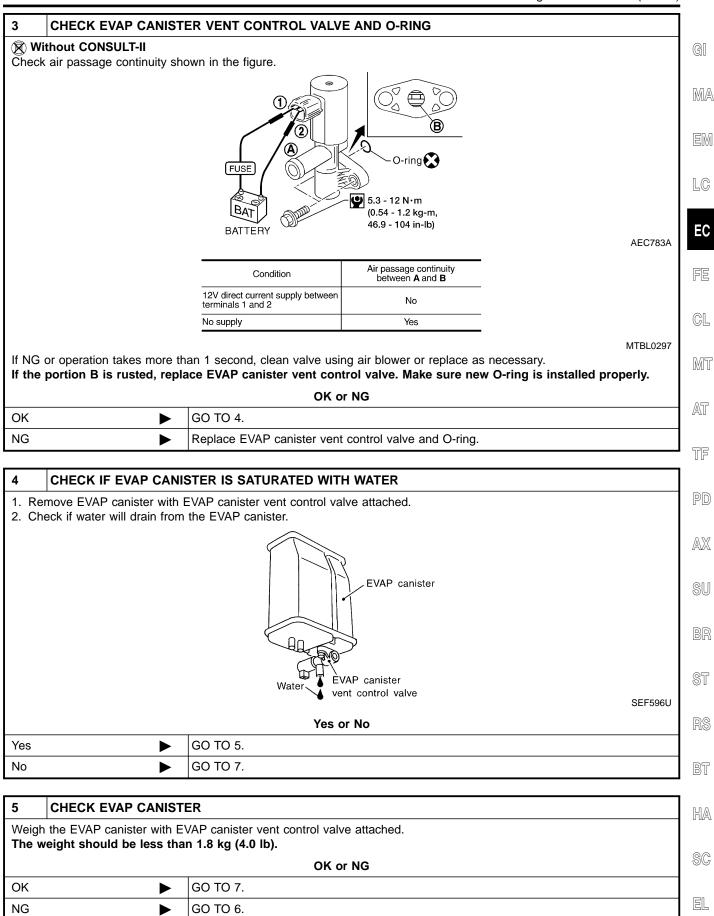
SU

ST


BT

HA

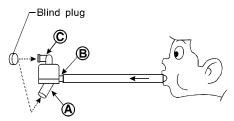
SC


KA24DE

Diagnostic Procedure (Cont'd)

KA24DE

Diagnostic Procedure (Cont'd)


KA24DE

Diagnostic Procedure (Cont'd)

6 DETECT MALFUNCTIONING PART

Check the following.

- 1. Visually check the EVAP canister for damage.
- 2. Check hose connection between EVAP canister and water separator for clogging and poor connection.
- 3. Check water separator.
- a. Check visually for insect nests in the water separator air inlet.
- b. Check visually for cracks or flaws in the appearance.
- c. Check visually for cracks or flaws in the hose.
- d. Check that A and C are not clogged by blowing air into B with A, and then C plugged.

- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - (C): Inlet port (To member)

SEF829T

- e. In case of NG in items 2 4, replace the parts.
- Do not disassemble water separator.
 - Repair hose or replace EVAP canister or water separator.

7	CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE			
Check	Check disconnection or improper connection of hose connected to EVAP control system pressure sensor.			
	OK or NG			
ОК	OK ▶ GO TO 8.			
NG	•	Install hose properly or replace it.		

8	CHECK HARNESS CONNECTOR			
2. Ch	 Disconnect EVAP control system pressure sensor harness connector. Check harness connector for water. Water should not exist. 			
	OK or NG			
ОК	>	GO TO 9.		
NG	>	Replace EVAP control system pressure sensor.		

9	CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR AND CIRCUIT		
Refer to "DTC Confirmation Procedure", EC-387.			
	OK or NG		
OK	>	GO TO 10.	
NG	>	Replace EVAP control system pressure sensor and repair or replace harness and connector.	

10	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	>	INSPECTION END	

KA24DE System Description

System Description

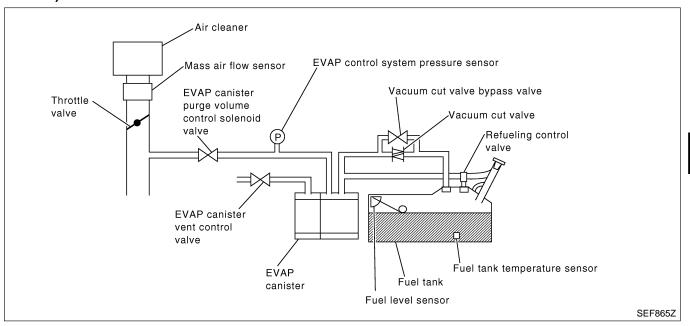
NGEC0373

MA

LC

EC

FE


GL

MT

AT

TF

NOTE: If both DTC P0510 and P1447 are displayed, perform trouble diagnosis for "DTC P0510" first. (See EC-433.)

In this evaporative emission (EVAP) control system, purge flow occurs during non-closed throttle conditions. Purge volume is related to air intake volume. Under normal purge conditions (non-closed throttle), the EVAP canister purge volume control solenoid valve is open. Purge flow exposes the EVAP control system pressure sensor to intake manifold vacuum.

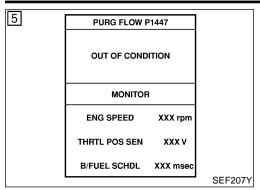
On Board Diagnosis Logic

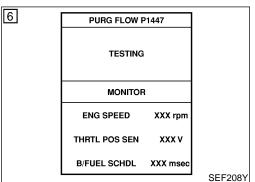
NGEC0374 PD

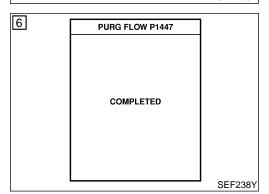
Under normal conditions (non-closed throttle), sensor output voltage indicates if pressure drop and purge flow are adequate. If not, a fault is determined.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	
P1447	 EVAP control system does not operate properly. EVAP control system has a leak between intake manifold and EVAP control system pressure sensor. 	EVAP canister purge volume control solenoid valve stuck closed EVAP control system pressure sensor and the circuit	_
		Loose, disconnected or improper connection of rubber tube Blocked rubber tube	
		Cracked EVAP canisterClosed throttle position switch	
		Blocked purge port EVAP canister vent control valve	

BT


HA


SC


KA24DE

NGEC0375

On Board Diagnosis Logic (Cont'd)

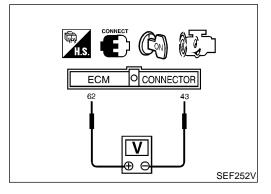
DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.


TESTING CONDITION:

- For best results perform test at a temperature of 5°C (41°F) or more.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- (II) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- Start engine and let it idle for at least 60 seconds.
- Select "PURG FLOW P1447" of "EVAPORATIVE SYSTEM" in "DTC CONFIRMATION" mode with CONSULT-II.
- 5) Touch "START". If "COMPLETED" is displayed, go to step 7.
- 6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 30 seconds.)

Selector lever	Suitable position
Vehicle speed	32 - 120 km/h (20 - 75 MPH)
ENG SPEED	500 - 3,750 rpm
Engine coolant temperature	More than 70°C (158°F)

If "TESTING" is not changed for a long time, retry from step 2.

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure".

Overall Function Check

Use this procedure to check the overall monitoring function of the EVAP control system purge flow monitoring. During this check, a 1st trip DTC might not be confirmed.

Without CONSULT-II

- 1) Lift up drive wheels.
- 2) Start engine and warm it up to normal operating temperature.
- 3) Turn ignition switch OFF, wait at least 5 seconds.
- Start engine and wait at least 60 seconds.
- Set voltmeter probes to ECM terminals 62 (EVAP control system pressure sensor signal) and 43 (ground).

KA24DE

Overall Function Check (Cont'd)

6)	Check	EVAP	control	system	pressure	sensor	value	at	idle
	speed	and no	te it.						

7) Establish and maintain the following conditions for at least 1 @1 minute.

> Air conditioner switch: ON Steering wheel: Fully turned **Headlamp switch: ON**

Rear window defogger switch: ON Engine speed: Approx. 3,000 rpm

Gear position:

Any position other than "Neutral" or "Reverse"

Verify that EVAP control system pressure sensor value stays 0.1V less than the value at idle speed (measured at step 6) for at least 1 second.

EC

FE

GL

MT

SU

ST

BT

HA

SC

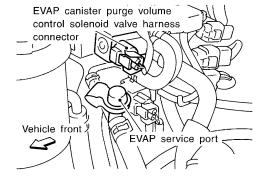
MA

LC

Diagnostic Procedure

		Biaginoono i roocaaro	NGEC0377	AT
1	CHECK EVAP CAN	STER		/ - 7/1
	n ignition switch OFF. eck EVAP canister for o	racks.		TF
		OK or NG		
OK (W	ith CONSULT-II)	GO TO 2.		PD
OK (W	ithout CONSULT-	GO TO 3.		AX
NG	>	Replace EVAP canister.		

EL


KA24DE

Diagnostic Procedure (Cont'd)

2 CHECK PURGE FLOW

(P) With CONSULT-II

1. Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge.

SEF339V

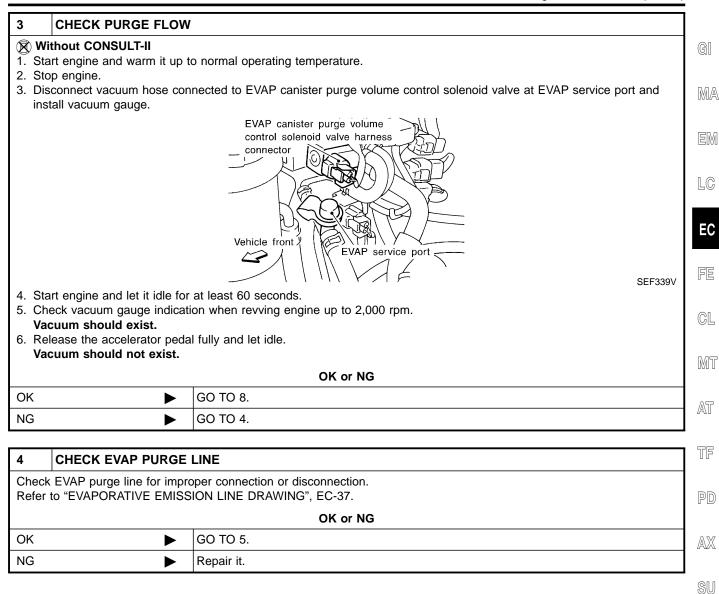
- 2. Start engine and let it idle.
- 3. Select "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.

ACTIVE TES	т
PURG VOL CONT/V	XXX %
MONITOR	
ENG SPEED	XXX rpm
A/F ALPHA-B1	XXX %
HO2S1 MNTR (B1)	LEAN
THRTL POS SEN	xxx v

SEF801Y

- 4. Rev engine up to 2,000 rpm.
- 5. Touch "Qd" and "Qu" on CONSULT-II screen to adjust "PURG VOL CONT/V" opening.

100.0%: Vacuum should exist.


0.0%: Vacuum should not exist.

OK or NG

OK ▶	GO TO 8.
NG ►	GO TO 4.

KA24DE

Diagnostic Procedure (Cont'd)

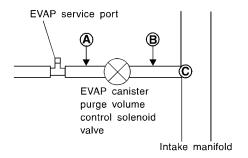
 $\mathbb{D}\mathbb{X}$

ST

BT

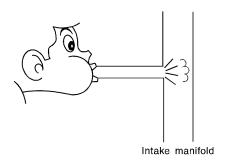
HA

SC


EL

KA24DE

Diagnostic Procedure (Cont'd)


5 CHECK EVAP PURGE HOSE AND PURGE PORT

1. Disconnect purge hoses connected to EVAP service port A and EVAP canister purge volume control solenoid valve B.

SEF367U

- 2. Blow air into each hose and EVAP purge port C.
- 3. Check that air flows freely.

SEF368U

0	Κ	or	NG

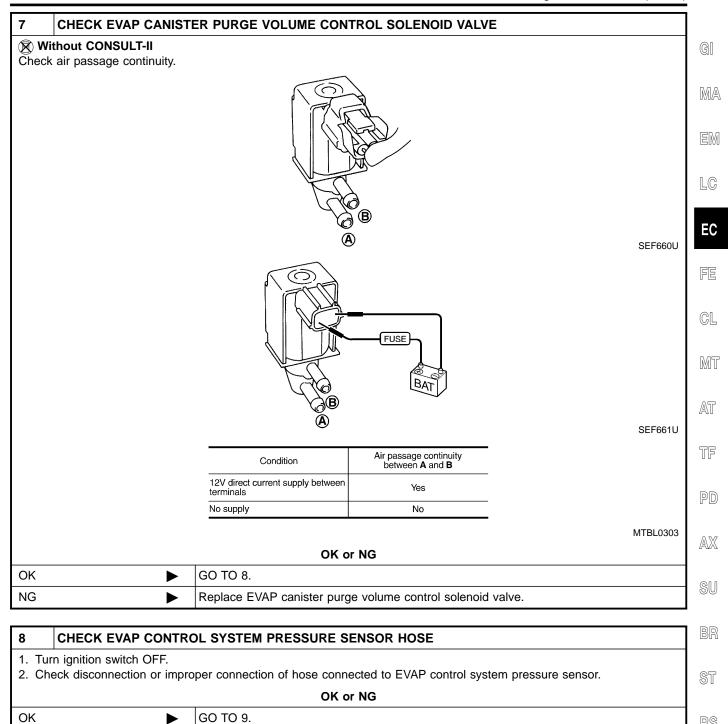
OK (With CONSULT-II)	>	GO TO 6.
OK (Without CONSULT-II)	•	GO TO 7.
NG	>	Repair or clean hoses and/or purge port.

6 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(II) With CONSULT-II

- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.
 - If OK, inspection end. If NG, go to following step.
- 3. Check air passage continuity.

ACTIVE TEST			
PURG VOL CONT/V	XXX %		
MONITOR			
ENG SPEED	XXX rpm		
A/F ALPHA-B1	XXX %		
HO2S1 MNTR (B1)	LEAN		
THRTL POS SEN	xxx v		


Condition PURG VOL CONT/V value	Air passage continuity between A and B
100.0%	Yes
0.0%	No

SEF723Z

OK		GO TO 8.
NG		Replace EVAP canister purge volume control solenoid valve.

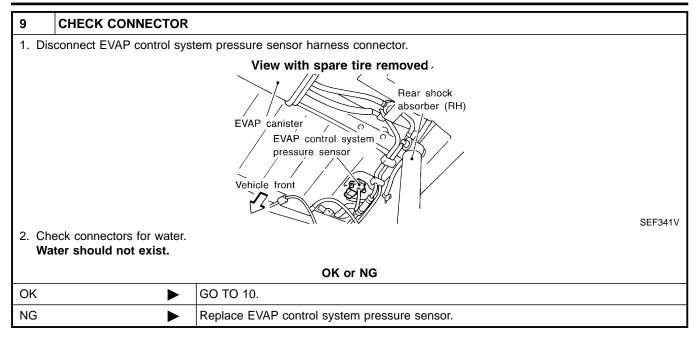
KA24DE

Diagnostic Procedure (Cont'd)

 $\mathbb{D}\mathbb{X}$

BT

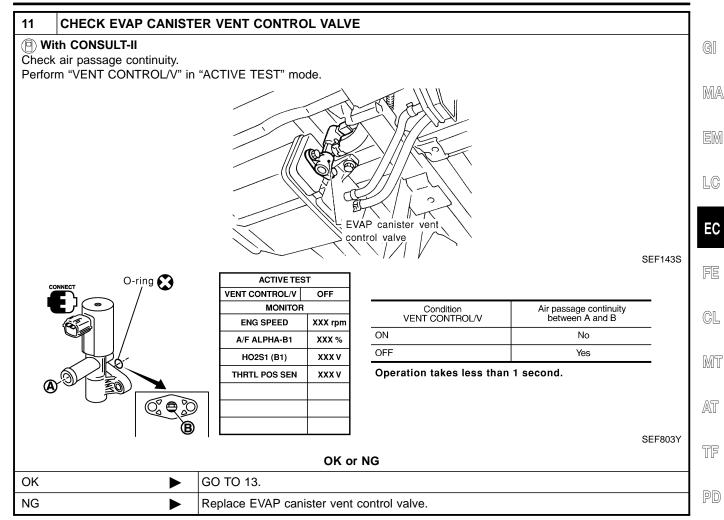
HA


SC

Repair it.

NG

KA24DE


Diagnostic Procedure (Cont'd)

10	CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR AND CIRCUIT		
Refer	Refer to "DTC Confirmation Procedure" for DTC P0450, EC-387.		
	OK or NG		
OK (V	Vith CONSULT-II)	>	GO TO 11.
OK (W II)	Vithout CONSULT-	>	GO TO 12.
NG			Replace EVAP control system pressure sensor.

KA24DE

Diagnostic Procedure (Cont'd)

SU

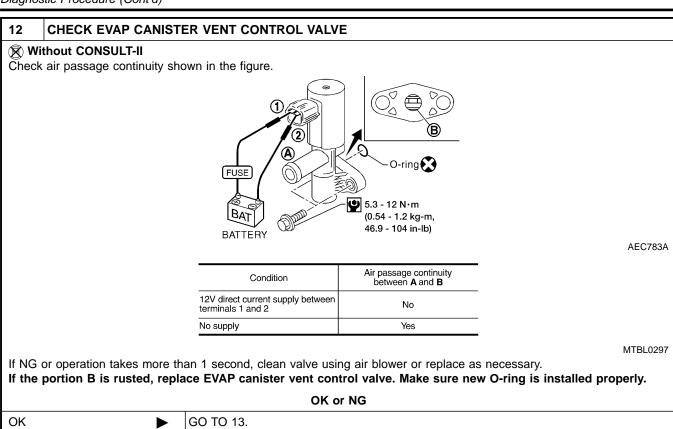
AX

BR

ST

RS

BT HA


SC

EL

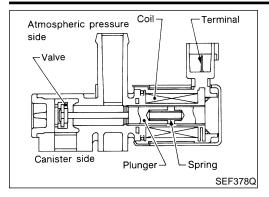
KA24DE

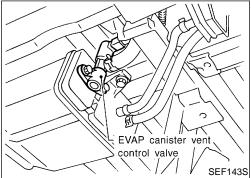
Diagnostic Procedure (Cont'd)

NG

13	13 CHECK EVAP PURGE LINE		
Inspect EVAP purge line (pipe and rubber tube). Check for evidence of leaks. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-37.			
OK or NG			
OK	•	GO TO 14.	
NG	>	Replace it.	

Replace EVAP canister vent control valve.


14	CLEAN EVAP PURGE LINE		
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.		
▶ GO TO 15.			


15	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	► INSPECTION END		

KA24DE

NGEC0379

Component Description

Component Description

NOTE:

If DTC P1448 is displayed with P0440 or P1440, perform trouble diagnosis for DTC P1448 first.

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid (the EVAP canister vent control valve) responds to signals from the ECM.

When the ECM sends an ON signal, the coil in the solenoid valve is energized.

A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

EC

FE

CL

MT

AT

TF

PD

AX

CONSULT-II Reference Value in Data Monitor Mode

NGEC0380

NGFC0381

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
108	R/G	EVAP canister vent control valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

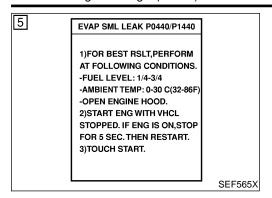
On Board Diagnosis Logic

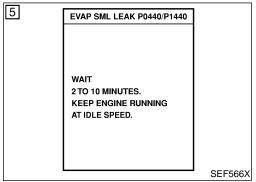
NGEC038

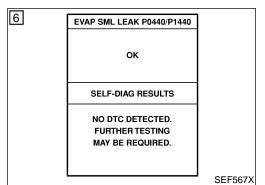
DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P1448	EVAP canister vent control valve remains opened under specified driving conditions.	 EVAP canister vent control valve EVAP control system pressure sensor Blocked rubber tube to EVAP canister vent control valve Water separator EVAP canister is saturated with water. Vacuum cut valve

EL

SC


BT


HA


KA24DE

NGEC0383

On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

NOTE:

 If DTC P1448 is displayed with P0440 or P1440, perform trouble diagnosis for DTC P1448 first.

 If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

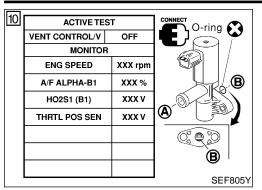
(II) With CONSULT-II TESTING CONDITION:

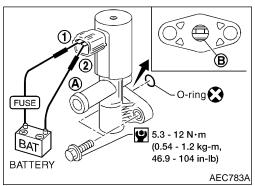
- Perform "DTC WORK SUPPORT" when the fuel level is less than 3/4 full and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).
- It is better that the fuel level is low.
- 1) Turn ignition switch ON.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 4) Check that the following conditions are met.

COOLAN TEMP/S	0 - 70°C (32 - 158°F)
INT/A TEMP SE	0 - 60°C (32 - 140°F)

5) Select "EVAP SML LEAK P0440" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II. Follow the instruction displayed.

NOTE:


- If the CONSULT-II screen shown at left is displayed, stop the engine and stabilize the vehicle temperature at 25°C (77°F) or cooler. After "TANK F/TMP SE" becomes less than 30°C (86°F), retest. (Use a fan to reduce the stabilization time.)
- If the engine speed cannot be maintained within the range displayed on CONSULT-II screen, go to "Basic Inspection", EC-104.
- The engine idle portion of this test (See illustration at left.) will take approximately 5 minutes.
- 6) Make sure that "OK" is displayed. If "NG" is displayed, go to following step.


NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

- 7) Stop engine and wait at least 5 seconds, then turn "ON".
- 8) Disconnect hose from water separator.
- Select "VENT CONTROL/V" of "ACTIVE TEST" mode with CONSULT-II.
- 10) Touch "ON" and "OFF" alternately.

DTC Confirmation Procedure (Cont'd)

11) Make sure of the following.

Condition	Air passage continuity between A and B
Touching "ON"	No
Touching "OFF"	Yes

If the result is NG, go to "Diagnostic Procedure", EC-521. If the result is OK, go to "Diagnostic Procedure" for DTC P0440, EC-356.

GI

MA

LC

EC

FE

Overall Function Check

Use this procedure to check the overall function of the EVAP canister vent control valve circuit. During this check, a DTC might not

be confirmed. **⋈** Without CONSULT-II

1) Disconnect hose from water separator.

- Disconnect EVAP canister vent control valve harness connec-

MT

AT

3) Verify the following.

Condition	Air passage continuity
12V direct current supply between terminals 1 and 2	No
No supply	Yes

If the result is NG, go to "Diagnostic Procedure", EC-521. If the result is OK, perform trouble diagnosis for DTC P0440. Refer to EC-352.

TF

PD

AX

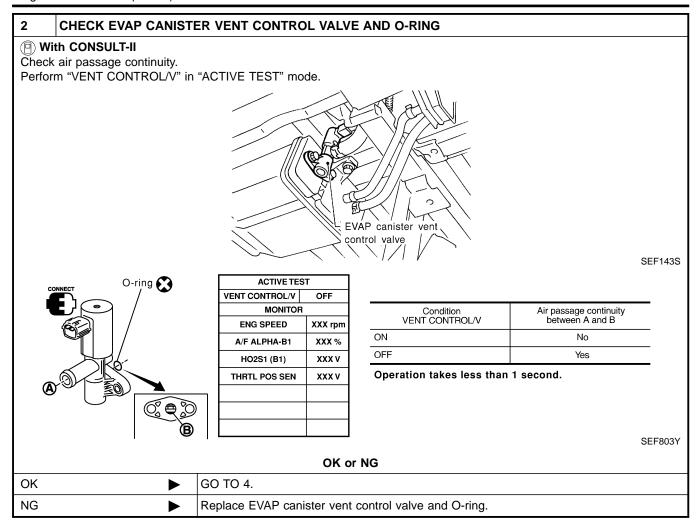
Diagnostic Procedure

NGEC0385

1	CHECK RUBBER	TUBI	
	 Turn ignition switch OFF. Check disconnection or obstruction of rubber tube connected to EVAP canister vent control valve. 		
	OK or NG		
OK (V	Vith CONSULT-II)		GO TO 2.
OK (V II)	Vithout CONSULT-	>	GO TO 3.
NG			Repair or clean rubber tube.

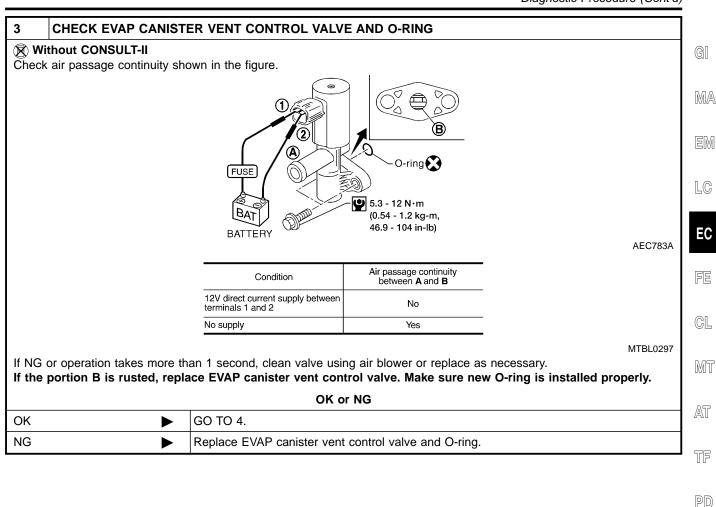
BT

ST


HA

SC

EL


KA24DE

Diagnostic Procedure (Cont'd)

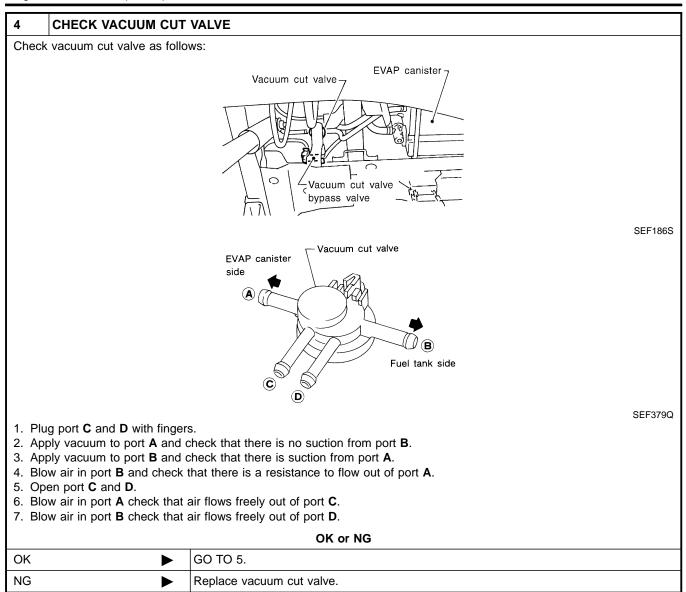
KA24DE

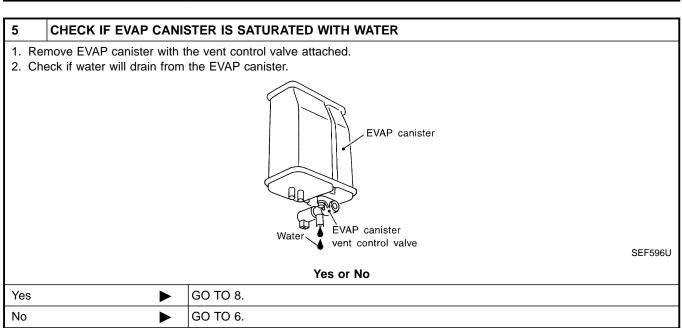
Diagnostic Procedure (Cont'd)

SU

ST

BT


HA

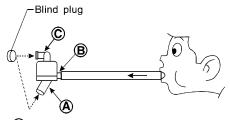

SC

EL

KA24DE

Diagnostic Procedure (Cont'd)

KA24DE


Diagnostic Procedure (Cont'd)

6	CHECK EVAP CANISTI	ER .	
	n the EVAP canister with Eveight should be less that	/AP canister vent control valve attached. n 1.8 kg (4.0lb).	(
		OK or NG	
OK	•	GO TO 8.	
NG	•	GO TO 7.	

7 DETECT MALFUNCTIONING PART

Check the following.

- 1. Visually check the EVAP canister for damage.
- 2. Check hose connection between EVAP canister and water separator for clogging and poor connection.
- 3. Check water separator.
- a. Check visually for insect nests in the water separator air inlet.
- b. Check visually for cracks or flaws in the appearance.
- c. Check visually for cracks or flaws in the hose.
- d. Check that A and C are not clogged by blowing air into B with A, and then C plugged.

- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - (C): Inlet port (To member)

SEF829T

- e. In case of NG in items 2 4, replace the parts.
- Do not disassemble water separator.
- Repair hose or replace EVAP canister or water separator.

8	CHECK EVAP CONTRO	DL SYSTEM PRESSURE SENSOR HOSE	
Check	Check disconnection or improper connection of hose connected to EVAP control system pressure sensor.		
	OK or NG		
OK	>	GO TO 9.	
NG	>	Install hose property or replace it.	

9	CHECK HARNESS CO	NNECTOR	
2. Che	connect EVAP control systeck harness connector for ter should not exist.	em pressure sensor harness connector. water.	
		OK or NG	
ОК	•	GO TO 10.	
NG	>	Replace EVAP control system pressure sensor.	

₽M

EC-525

GI

MA

LC

EC

FE

MT

AT

TF

l

PD

SU

BR

ST

© I

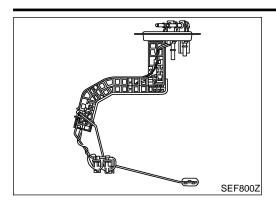
RS

BT

HA

SC

KA24DE


Diagnostic Procedure (Cont'd)

10	CHECK EVAP CONTRO	L SYSTEM PRESSURE SENSOR	
Perfor	Perform "DTC Confirmation Procedure", EC-387.		
		OK or NG	
ОК	>	GO TO 11.	
NG	>	Replace EVAP control system pressure sensor and repair or replace harness and connector.	

11	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	>	INSPECTION END	

DTC P1464 FUEL LEVEL SENSOR CIRCUIT (GROUND SIGNAL)

KA24DE Component Description

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

G[

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

MA

EM

LC

On Board Diagnostic Logic

NGEC

ECM receives two signals from the fuel level sensor.

One is fuel level sensor power supply circuit, and the other is fuel level sensor ground circuit.

FE

EC

This diagnosis indicates the latter to detect open circuit malfunction. Malfunction is detected when a high voltage from the sensor is sent to ECM.

CL

MT

Possible Cause

NGEC1038

Fuel level sensor circuit
 (The fuel level sensor circuit is open or shorted.)

TF

PD

AX

DTC Confirmation Procedure

NGEC103

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

ST

DATA MONITOR
MONITOR
NO DTC
FUEL T/TMP SE XXX 'C
FUEL LEVEL SE XXX V

(II) WITH CONSULT-II

NGEC1039S01

Select "DATA MONITOR" mode with CONSULT-II.
 Wait at least 5 seconds.

Turn ignition switch "ON".

 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-529.

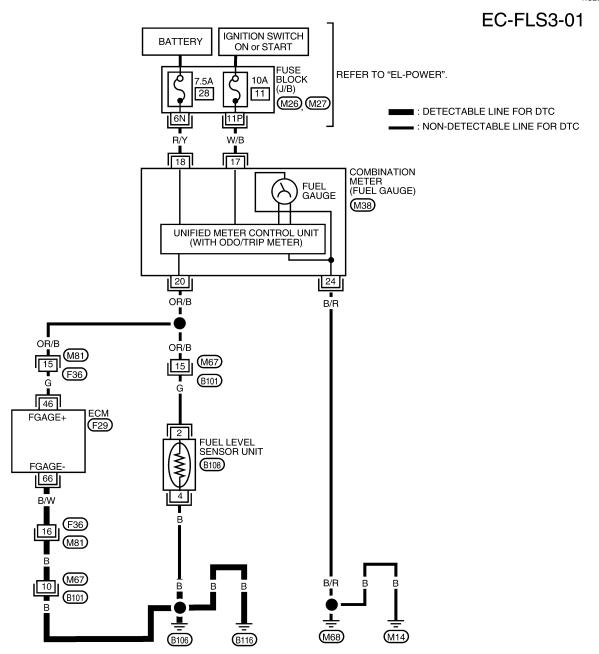
SC

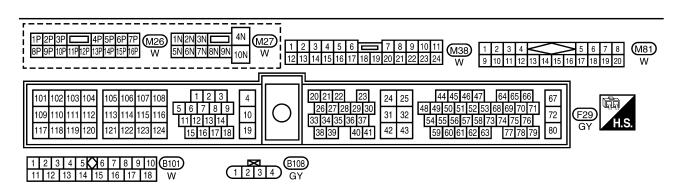
HA

WITH GST

SEF195Y

Follow the procedure "WITH CONSULT-II" above.


NGEC1039S02


EL

KA24DE

Wiring Diagram

NGEC1040

LEC492

DTC P1464 FUEL LEVEL SENSOR CIRCUIT (GROUND SIGNAL)

KA24DE Diagnostic Procedure

Diagnostic Procedure

=NGEC1041

1 C	HECK FUEL LEVEL S	ENSOR GROUND CIRCUIT FOR OPEN AND SHORT	(6	GI
2. Disco	gnition switch "OFF". nnect ECM harness cor		[V]	MA
Co	t harness continuity better the continuity should exist. The charness for short	veen ECM terminal 66 and body ground. Refer to Wiring Diagram.		
		OK or NG		EM
ОК	>	GO TO 3.		1 @
NG	•	GO TO 2.		LC

2	DETECT MALFUNCTIONING PART		
HarrHarr	Check the following. Harness connectors F36, M81 Harness connectors M67, B101 Harness for open and short between ECM and body ground		
	Replace open circuit or short to power in harness or connectors.		

3	3 CHECK FUEL LEVEL SENSOR				
Refer to <i>EL-87</i> , "Fuel Level Sensor Unit Check".					
OK or NG					
OK	•	GO TO 4.	1		
NG	>	Replace fuel level sensor unit.			

4	CHECK INTERMITTEN	Γ INCIDENT				
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142					
OK or NG						
	► INSPECTION END					

EC

FE

CL

MT

AT

TF

PD

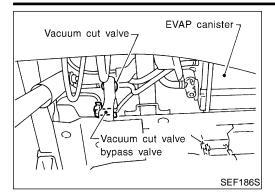
 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS


BT

HA

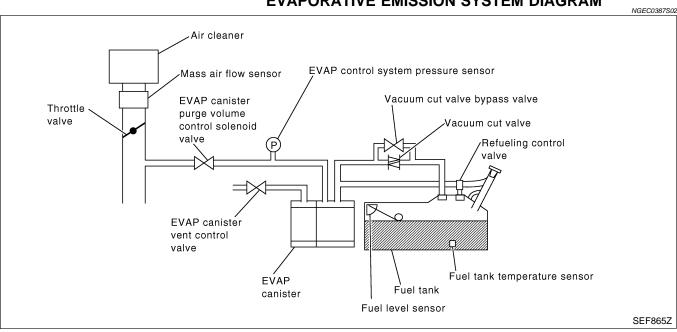
SC

EL

Description

Description **COMPONENT DESCRIPTION**

NGEC0387


The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.

The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

EVAPORATIVE EMISSION SYSTEM DIAGRAM

CONSULT-II Reference Value in Data Monitor Mode NGEC0388

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPASS/V	Ignition switch: ON	OFF

ECM Terminals and Reference Value

NGEC0389

Specification data are reference values and are measured between each terminal and ground.

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
120	P/B	Vacuum cut valve bypass valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

On Board	Diagnosis	Logic
----------	------------------	-------

NGEC0390

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P1490	An improper voltage signal is sent to ECM through vacuum cut valve bypass valve.	Harness or connectors (The vacuum cut valve bypass valve circuit is open or shorted.) Vacuum cut valve bypass valve

GI

MA

EM

LC

DTC Confirmation Procedure

NOTE:

NGEC0391

391 EC

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

GL MT

AT

TF

DATA MONITOR
MONITOR
NO DTC
ENG SPEED XXX rpm

SEF058Y

(P) With CONSULT-II

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-533.
- **With GST**

Follow the procedure "With CONSULT-II".

AX

PD

SU

BR

ST

6M

BT

HA

SC

EL

VACUUM CUT VALVE BYPASS VALVE

(C6)

(B101) (M67) (M81)

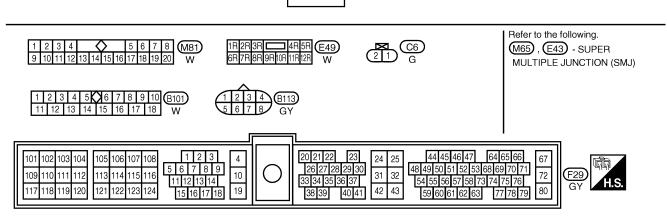
(F36)

ECM

(F29)

P/B

P/B 3 P/B


12

P/B

120

CVBV

Wiring Diagram NGEC0392 EC-BYPS/V-01 IGNITION SWITCH ON or START FUSE BLOCK (J/B) Refer to "EL-POWER". 10A 13 (E49) ■ : Detectable line for DTC : Non-detectable line for DTC 3R W/G (E43) 18B W/G 5 M65 W/G W/G (C3)

Diagnostic Procedure

GI

MA

Diagnostic P	rocedure
---------------------	----------

No	<u> </u>	GO TO 3.				
2	CHECK VACUUM CUT	VALVE BYPASS	VALVE CIRC	UIT] LC
	rn ignition switch ON.	. "AOTNE TEOT"				
Z. Pe	rform "VC/V BYPASS/V" ir	TACIIVE IESI" n	ACTIVE TES	т П		EC
			VC/V BYPASS/V	OFF		
			MONITOR ENG SPEED	XXX rpm		FE
		-	A/F ALPHA-B1	XXX %		
			HO2S1 MNTR (B1)	RICH		G[
			THRTL POS SEN	xxx v		
		_				ВД
		_				M'
		L			SEF806Y	

3. Make sure that clicking sound is heard from the vacuum cut valve bypass valve.

OK or NO	О	Κ	or	Ν	G
----------	---	---	----	---	---

NG GO TO 3	3.

PD

TF

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

Diagnostic Procedure (Cont'd)

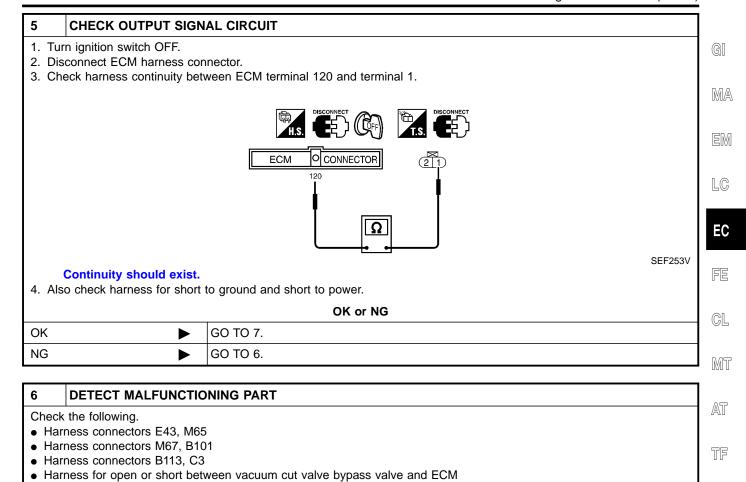
1. Turn ignition switch OFF. 2. Disconnect vacuum cut valve bypass valve harness connector. Vacuum cut valve Vacuum c

4 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E43, M65
- Harness connectors M67, B101
- Harness connectors B113, C3
- 10A fuse

OK


NG

• Harness for open or short between vacuum cut valve bypass valve and 10A fuse

GO TO 5. GO TO 4.

Repair harness or connectors.

Diagnostic Procedure (Cont'd)

Repair open circuit or short to ground or short to power in harness or connectors.

PD

AX

SU

ST

BT

HA

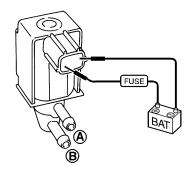
SC

Diagnostic Procedure (Cont'd)

CHECK VACUUM CUT VALVE BYPASS VALVE

(P) With CONSULT-II

Check air passage continuity.
Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.


ACTIVE TEST			
VC/V BYPASS/V	OFF		
MONITOR	3		
ENG SPEED	XXX rpm		
A/F ALPHA-B1	XXX %		
HO2S1 MNTR (B1)	RICH		
THRTL POS SEN	xxx v		

Condition VC/V BYPASS/V	Air passage continuity between A and B	
ON	Yes	
OFF	No	

Operation takes less than 1 second.

SEF807Y

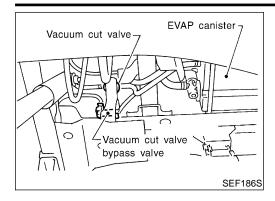
Without CONSULT-II
Check air passage continuity shown in the figure.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Operation takes less than 1 second.

SEF557Y

If NG or operation takes more than 1 second, replace vacuum cut valve bypass valve.


OK or NG

OK •	GO TO 8.
NG ►	Replace vacuum cut valve bypass valve.

Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142. INSPECTION END			
8 CHECK INTERMITTENT INCIDENT			

DTC P1491 VACUUM CUT VALVE BYPASS VALVE

Description COMPONENT DESCRIPTION

NGEC0395

VGEC0305S01

The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.

MA

The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

LC

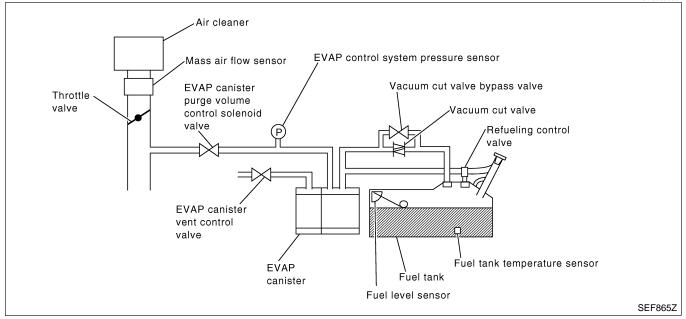
EC

FE

GL

MT

AT


TF

PD

SW

EVAPORATIVE EMISSION SYSTEM DIAGRAM

NGEC0395S02

CONSULT-II Reference Value in Data Monitor Mode

ECM Terminals and Reference Value

NGEC0396

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPASS/V	Ignition switch: ON	OFF

NGEC0397

Specification data are reference values and are measured between each terminal and ground.

-C0397

CALITION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

Bī

HA

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
120	P/B	Vacuum cut valve bypass valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

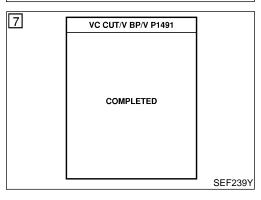
EL

SC

DTC No.

P1491

On Board Diagnosis Logic


	NGEC0398
Malfunction is detected when	Check Items (Possible Cause)
Vacuum cut valve bypass valve does not operate properl	Vacuum cut valve bypass valve Vacuum cut valve Bypass hoses for clogging EVAP control system pressure sensor EVAP canister vent control valve Hose between fuel tank and vacuum cut valve clogged Hose between vacuum cut valve and EVAP canister clogged

EVAP purge port of fuel tank for clogging

EVAP canister

7	VC CUT/V BP/V		
OUT OF CONDITION			
	MONITOR		
	ENG SPEED	XXX rpm	
	VHCL SPEED SE	XXX km/h	
	B/FUEL SCHDL	XXX msec	
			SEF210Y

VC CUT/V BP/V		
TESTING		
MONITOR		
ENG SPEED	XXX rpm	
VHCL SPEED SE	XXX km/h	
B/FUEL SCHDL	XXX msec	
		SEF211Y

DTC Confirmation Procedure

NGEC0399

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Always perform test at a temperature of 5 to 30°C (41 to 86°F).
- This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) With CONSULT-II

- 1) Turn ignition switch ON.
- 2) Start engine and warm it up to normal operating temperature.
- 3) Turn ignition switch OFF and wait at least 5 seconds.
- 4) Start engine and let it idle for at least 60 seconds.
- 5) Select "VC CUT/V BP/V P1491" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 6) Touch "START".
- 7) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 30 seconds.)

ENG SPEED	More than 1,000 rpm
Selector lever	Suitable position
Vehicle speed	36 - 120 km/h (22 - 75 MPH)
B/FUEL SCHDL	Less than 10 msec

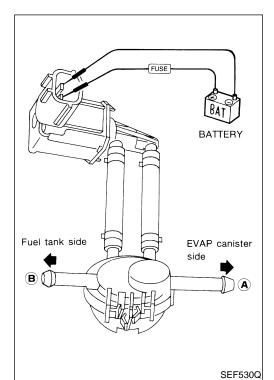
DTC P1491 VACUUM CUT VALVE BYPASS VALVE

KA24DE

DTC Confirmation Procedure (Cont'd)

If "TESTING" is not displayed after 5 minutes, retry from step 3.

8) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure".



MA

EM

LC

EC

Overall Function Check

NGEC0400

Use this procedure to check the overall function of vacuum cut valve bypass valve. During this check, the 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

FE

 Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.

n GL

Apply vacuum to port A and check that there is no suction from port B.

MT

Apply vacuum to port B and check that there is suction from port A.

AT

4. Blow air in port **B** and check that there is a resistance to flow out of port **A**.

5. Supply battery voltage to the terminal.

TF

7. Blow air in port **B** and check that air flows freely out of port **A**.

Blow air in port A and check that air flows freely out of port B.

PD

AX

3. If NG, go to "DIAGNOSTIC PROCEDURE" on EC-541.

SU

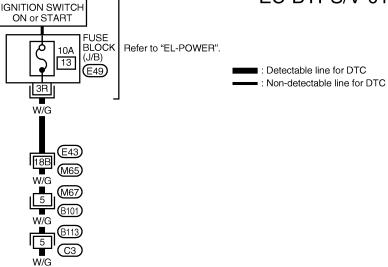
ST

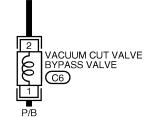
D@

BT

HA

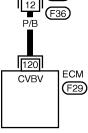
SC


EL



Wiring Diagram

NGEC0505



(C3)

Refer to the following. (M81) W M65 , E43 - SUPER MULTIPLE JUNCTION (SMJ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 W 44 45 46 47 101 102 103 104 105 106 107 108 4 5 6 7 8 9 11 12 13 14 26 27 28 29 30 33 34 35 36 37 48 49 50 51 52 53 68 69 70 71 54 55 56 57 58 73 74 75 76 109 110 111 112 113 114 115 116 10 31 32 72 (F29) 122 123 124 117 118 119 121 19 42 43 80 120

AEC007B

DTC P1491 VACUUM CUT VALVE BYPASS VALVE

GI

MA

EM

EC

FE

GL

MT

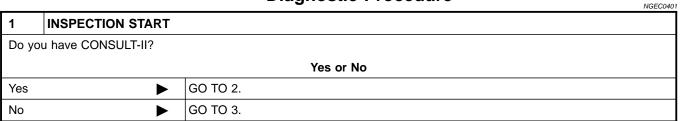
AT

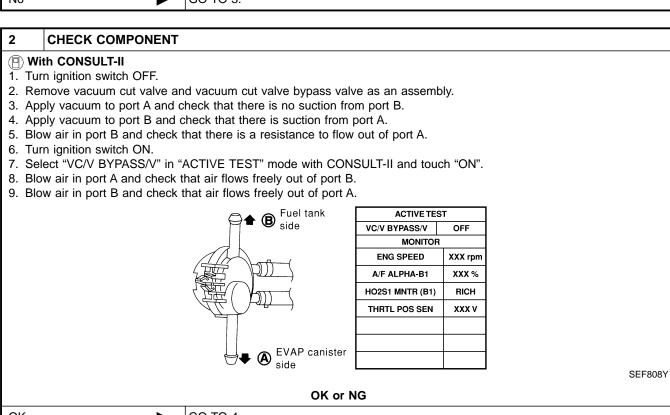
TF

PD

SW

ST


BT


HA

SC

Diagnostic Procedure

Diagnostic Procedure

D.Y.

SEF914U

Diagnostic Procedure (Cont'd)

CHECK COMPONENT

Without CONSULT-II

3

- 1. Turn ignition switch OFF.
- 2. Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- 3. Apply vacuum to port A and check that there is no suction from port B.
- 4. Apply vacuum to port B and check that there is suction from port A.
- 5. Blow air in port B and check that there is a resistance to flow out of port A.
- 6. Disconnect vacuum cut valve bypass valve harness connector.
- 7. Supply battery voltage to the terminal.
- 8. Blow air in port A and check that air flows freely out of port B.
- 9. Blow air in port B and check that air flows freely out of port A.

OK or NG

OK ▶	GO TO 4.
NG ►	GO TO 5.

4 CHECK EVAP PURGE LINE

- 1. Check EVAP purge line between EVAP canister and fuel tank for clogging or disconnection.
- 2. Check EVAP purge port of fuel tank for clogging.
- 3. Check EVAP canister. Refer to EC-34.

OK or NG

OK	•	GO TO 8.
NG (Step 1)	•	Repair it.
NG (Step 2)	•	Clean EVAP purge port.
NG (Step 3)	•	Replace EVAP canister.

5	CHECK BYPASS HOSE			
Check bypass hoses for clogging.				
	OK or NG			
OK ▶ GO TO 6.				
NG	•	Repair or replace hoses.		

DTC P1491 VACUUM CUT VALVE BYPASS VALVE

KA24DE

Diagnostic Procedure (Cont'd)

CHECK VACUUM CUT VALVE BYPASS VALVE

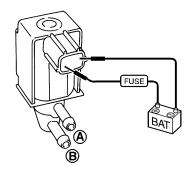
(P) With CONSULT-II

6

Check air passage continuity.

Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.

ACTIVE TEST			
VC/V BYPASS/V	OFF		
MONITOR			
ENG SPEED	XXX rpm		
A/F ALPHA-B1	XXX %		
HO2S1 MNTR (B1)	RICH		
THRTL POS SEN	xxx v		


Condition VC/V BYPASS/V	Air passage continuity between A and B
ON	Yes
OFF	No

Operation takes less than 1 second.

SEF807Y

Without CONSULT-II

Check air passage continuity shown in the figure.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Operation takes less than 1 second.

SEF557Y

If NG or operation takes more than 1 second, replace vacuum cut valve bypass valve.

OK or NG

OK	>	GO TO 7.
NG	>	Replace vacuum cut valve bypass valve.

G[

MA

EM

LC

EC

GL

MT

AT

TF

PD

ALX

SU

BR

ST

RS

BT

HA

SC

EL

Diagnostic Procedure (Cont'd) **CHECK VACUUM CUT VALVE** Check vacuum cut valve as follows: EVAP canister Vacuum cut valve-Vacuum cut valve bypass valve SEF186S Vacuum cut valve EVAP canister side Fuel tank side **(D)** SEF379Q 1. Plug port C and D with fingers. 2. Apply vacuum to port ${\bf A}$ and check that there is no suction from port ${\bf B}$. 3. Apply vacuum to port **B** and check that there is suction from port **A**. 4. Blow air in port **B** and check that there is a resistance to flow out of port **A**.

- 5. Open port C and D.
- 6. Blow air in port A check that air flows freely out of port C.
- 7. Blow air in port **B** check that air flows freely out of port **D**.

OK or NG

OK •	GO TO 8.
NG ►	Replace vacuum cut valve.

8	8 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE			
	1. Turn ignition switch OFF.			
2. Cn	eck disconnection or impro	per connection of hose connected to EVAP control system pressure sensor.		
	OK or NG			
OK	>	GO TO 9.		
NG	•	Repair it		

DTC P1491 VACUUM CUT VALVE BYPASS VALVE

KA24DE

G[

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

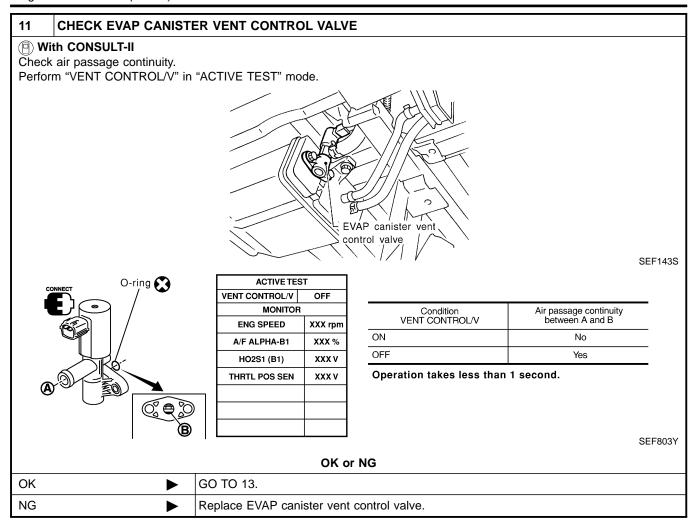
ST

RS

BT

HA

SC


EL

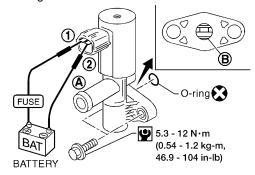
Diagnostic Procedure (Cont'd)

9	CHECK CONNECTOR	
1. D	isconnect EVAP control system pressure sensor harness connector.	
	View with spare tire removed.	
	Rear shock absorber (RH)	
	EVAP canister EVAP control system pressure sensor	
	Vehicle front	
		SEF341V
_	heck connectors for water. /ater should not exist.	
	OK or NG	
OK	▶ GO TO 10.	
NG	Replace EVAP control system pressure sensor.	

10	CHECK COMPO	NENT	AND CIRCUIT	
(EVAP control system pressure sensor) Refer to "DTC Confirmation Procedure" for DTC P0450, EC-387.				
OK or NG				
OK (W	Vith CONSULT-II)	•	GO TO 11.	
OK (W	Vithout CONSULT-	>	GO TO 12.	
NG		•	Replace EVAP control system pressure sensor.	

Diagnostic Procedure (Cont'd)

DTC P1491 VACUUM CUT VALVE BYPASS VALVE


KA24DE

Diagnostic Procedure (Cont'd)

12 CHECK EVAP CANISTER VENT CONTROL VALVE

⋈ Without CONSULT-II

Check air passage continuity shown in the figure.

AEC783A

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
No supply	Yes

MTBL0297

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

If the portion B is rusted, replace EVAP canister vent control valve. Make sure new O-ring is installed properly.

OK or NG

OK ►	GO TO 13.
NG •	Replace EVAP canister vent control valve.

13 CHECK INTERMITTENT INCIDENT

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.

► INSPECTION END

G[

MA

LC

EC

FE

GL

MT

AT

PD

TF

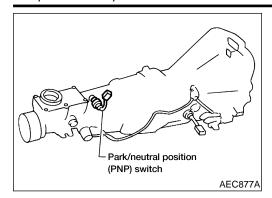
SU

BR

ST

RS

BT


HA

SC

EL

KA24DE

Component Description

Component Description

When the gear position is "N", park/neutral position (PNP) switch is "ON".

ECM detects the park/neutral position when continuity with ground exists.

CONSULT-II Reference Value in Data Monitor Mode

NGEC0425

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
P/N POSI SW	Ignition switch: ON	Shift lever: "N"	ON
		Except above	OFF

ECM Terminals and Reference Value

NGEC0426

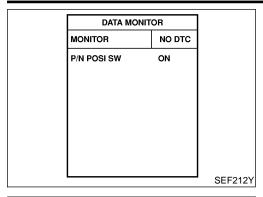
Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
22		DND quitab	[Ignition switch "ON"] • Gear position is "Neutral position"	Approximately 0V
	L/B	PNP switch	[Ignition switch "ON"] • Except the above gear position	Approximately 5V

On Board Diagnosis Logic


NGEC0427

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P1706	The signal of the PNP switch is not changed in the process of engine starting and driving.	 Harness or connectors (The PNP switch circuit is open or shorted.) PNP switch

KA24DE

=NGEC0428

DTC Confirmation Procedure

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm COOLAN TEMP/S XXX °C VHCL SPEED SE XXX km/h P/N POSI SW OFF B/FUEL SCHDL XXX msec SEF213Y

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

1) Turn ignition switch ON.

 Select "P/N POSI SW" in "DATA MONITOR" mode with CON-SULT-II. Then check the "P/N POSI SW" signal under the following conditions.

Position (Selector lever)	Known good signal
"N"	ON
Except the above position	OFF

If NG, go to "Diagnostic Procedure", EC-552. If OK, go to following step.

- 3) Select "DATA MONITOR" mode with CONSULT-II.
- 4) Start engine and warm it up to normal operating temperature.
- Maintain the following conditions for at least 60 consecutive seconds.

ENG SPEED	1,400 - 4,000 rpm
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	3.5 - 17 msec
VHCL SPEED SE	More than 64 km/h (40 MPH)
Selector lever	Suitable position

6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-552.

GI

0.2

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

AX

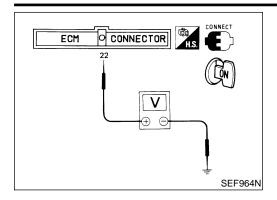
5U

3 R

ST

RS

BT


HA

SC

EL

KA24DE

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the park/neutral position switch circuit. During this check, a 1st trip DTC might not be confirmed.

(R) Without CONSULT-II

- 1) Turn ignition switch ON.
- 2) Check voltage between ECM terminal 22 (PNP switch signal) and body ground under the following conditions.

Condition (Gear position)	Voltage (V) (Known-good data)
"N" position	Approx. 0
Except the above position	Approx. 5

3) If NG, go to "Diagnostic Procedure", EC-552.

EM

LC

EC

FE

GL

MT

AT

TF

PD

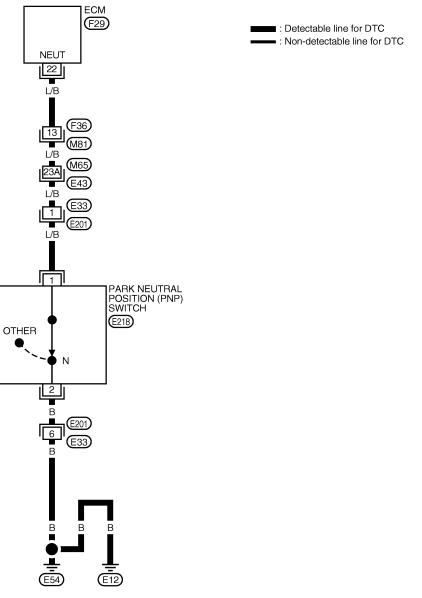
 $\mathbb{A}\mathbb{X}$

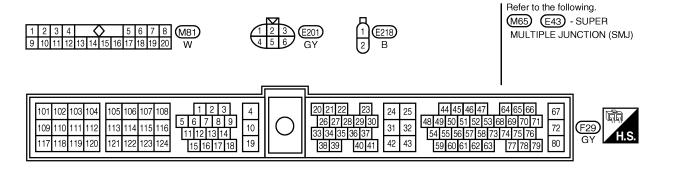
SU

BR

ST

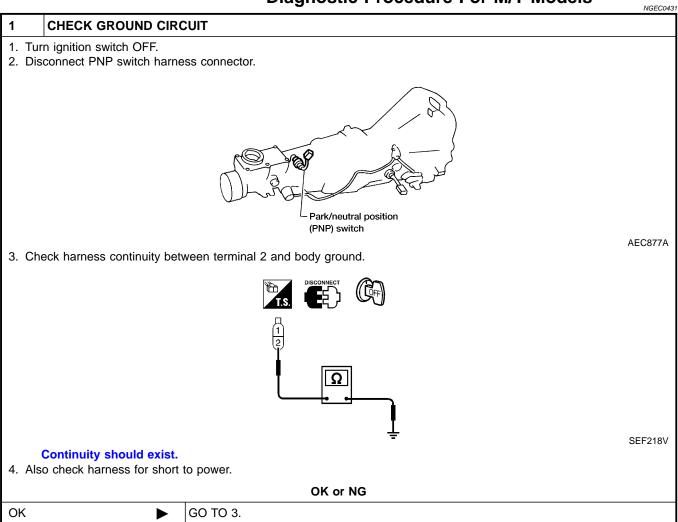
RS


BT


HA

SC

EL

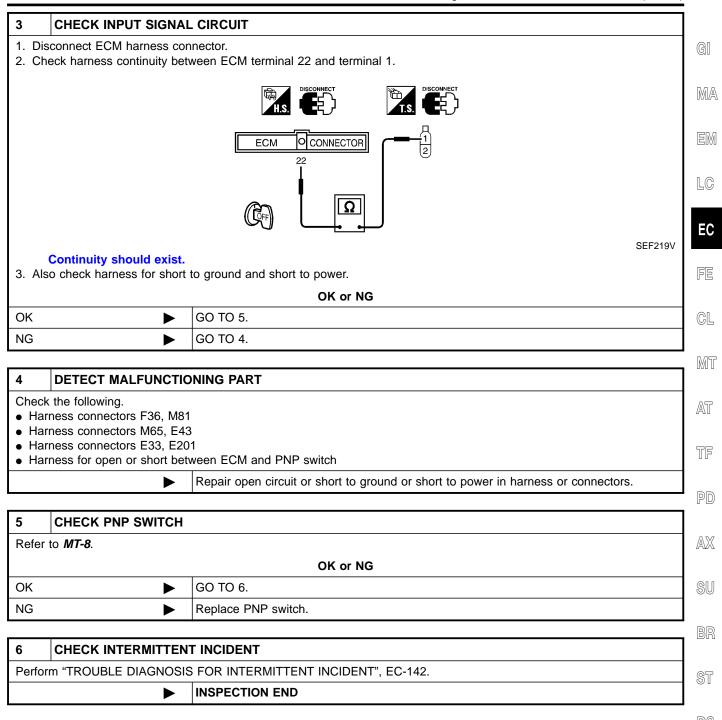


AEC008B

Diagnostic Procedure For M/T Models

NG

Diagnostic Procedure For M/T Models



2 DETECT MALFUNCTIONING PART Check the following. ■ Harness connectors E33, E201 ■ Harness for open or short between PNP switch and body ground ■ Repair open circuit or short to ground or short to power in harness or connectors.

GO TO 2.

KA24DE

Diagnostic Procedure For M/T Models (Cont'd)

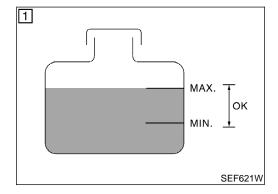
BT

HA

SC

On Board Diagnosis Logic

If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will rise.


When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
OVERHEAT	Engine coolant temperature reaches an abnormally high temperature.	 Harness or connectors (The cooling fan circuit is open or shorted.) Cooling fan Radiator hose Radiator Radiator cap Water pump Thermostat For more information, refer to "MAIN 12 CAUSES OF OVERHEATING", EC-558.

CAUTION:

When a malfunction is indicated, be sure to replace the coolant following the procedure in the MA section ("Changing Engine Coolant", "ENGINE MAINTENANCE"). Also, replace the engine oil.

- Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Be sure to use coolant with the proper mixture ratio. Refer to MA section ("Anti-freeze Coolant Mixture Ratio", "RECOMMENDED FLUIDS AND LUBRICANTS").
- 2) After refilling coolant, run engine to ensure that no water-flow noise is emitted.

Overall Function Check

NGEC0489

WARNING:

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator.

Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

(P) With CONSULT-II

- Check the coolant level in the reservoir tank and radiator. Allow engine to cool before checking coolant level. If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to "Diagnostic Procedure", EC-555.
- 2) Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to "Diagnostic Procedure", EC-555.

TROUBLE DIAGNOSIS FOR OVERHEAT

Diagnostic Procedure

NGEC0491

GI

MA

EM

LC

EC

FE

CL

MT

AT

1	CHECK COOLING SYS	TEM FOR LEAK
Te: CAUT	Apply pressure to the cooling system with a tester, and check if the pressure drops. Testing pressure: 157 kPa (1.6 kg/cm², 23 psi) CAUTION: Higher than the specified pressure may cause radiator damage.	
Press	sure should not drop.	Hose adapter EG17650301 (J33984-A) SLC754A
		OK or NG
OK	>	GO TO 2.
NG	•	Check the following for leak. • Hose • Radiator • Water pump Refer to LC section ("Water Pump").

2	CHECK RADIATOR CA	P	1 TF
Apply	pressure to cap with a test	ter.	P
			Sl
		EG17650301	BF
Ra	adiator cap relief pressure 78 - 98 kPa (0.8 - 1.0 kg/o	(J33984-A) SLC755A SE m ² , 11 - 14 psi)	\$1
		OK or NG	R
OK	>	GO TO 3.	1
NG		Replace radiator cap.	B1

HA

SC

EL

Diagnostic Procedure (Cont'd)

3 CHECK THERMOSTAT

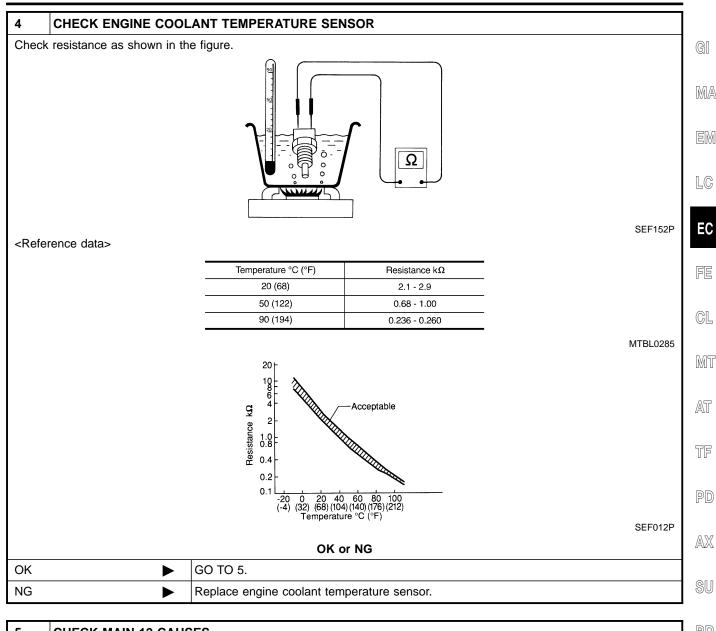
- 1. Check valve seating condition at normal room temperatures. **It should seat tightly.**
- 2. Check valve opening temperature and valve lift.

SLC343

Valve opening temperature: 76.5°C (170°F) [standard] Valve lift:

More than 8 mm/90°C (0.31 in/194°F)

3. Check if valve is closed at 5° C (9°F) below valve opening temperature. For details, refer to LC section ("Thermostat").


OK or NG

OK •	GO TO 4.
NG ►	Replace thermostat

TROUBLE DIAGNOSIS FOR OVERHEAT

KA24DE

Diagnostic Procedure (Cont'd)

5	CHECK MAIN 12 CAUSES	
If the cause cannot be isolated, go to "MAIN 12 CAUSES OF OVERHEATING", EC-558.		
	► INSPECTION END	

Perform FINAL CHECK by the following procedure after repair is completed.

- 1. Warm up engine. Run the vehicle for at least 20 minutes. Pay attention to engine coolant temperature gauge on the instrument panel. If the reading shows an abnormally high temperature, another part may be malfunctioning.
- Stop vehicle and let engine idle. Check the intake and exhaust systems for leaks by listening for noise or visually inspecting the components.
- 3. Allow engine to cool and visually check for oil and coolant leaks. Then, perform "OVERALL FUNCTION CHECK".

EL

ST

RS

BT

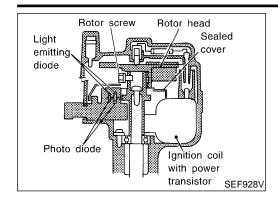
HA

SC

Main 11 Causes of Overheating

Main 11 Causes of Overheating NGEC0492 Standard Engine Step Inspection item Equipment Reference page OFF 1 Blocked radiator Visual No blocking • Blocked condenser • Blocked radiator grille Blocked bumper 2 Coolant mixture Coolant tester 50 - 50% coolant mixture See "RECOMMENDED FLUIDS AND LUBRI-CANTS" in MA section. 3 Coolant level Visual Coolant up to MAX level See "Changing Engine Coolant", "ENGINE in reservoir tank and radiator filler neck MAINTENANCE" in MA section. 4 Radiator cap Pressure tester 78 - 98 kPa See "System Check", (0.8 - 1.0 kg/cm², "ENGINE COOLING 11 - 14 psi) SYSTEM" in LC section. 59 - 98 kPa (0.6 - 1.0 kg/cm², 9 - 14 psi) (Limit) ON*2 5 See "System Check", Coolant leaks Visual No leaks "ENGINE COOLING SYSTEM" in LC section. ON*2 6 Thermostat • Touch the upper and Both hoses should be hot See "Thermostat" and "Radiator", "ENGINE lower radiator hoses COOLING SYSTEM" in LC section. **OFF** 7 · Combustion gas leak · Color checker chemi-Negative cal tester 4 Gas analyzer ON*3 8 • Coolant temperature Visual Gauge less than 3/4 when driving gauge Coolant overflow to No overflow during driv-See "Changing Engine Visual Coolant", "ENGINE reservoir tank ing and idling MAINTENANCE" in MA section. OFF*4 9 Coolant return from Visual Should be initial level in See "ENGINE MAINTE-NANCE" in MA section. reservoir tank to radiareservoir tank OFF 10 0.1 mm (0.004 in) Maxi-See "Inspection", "CYLIN- Cylinder head • Straight gauge feeler mum distortion (warping) DER HEAD" in EM secgauge tion. No scuffing on cylinder See "Inspection", "CYLIN-11 · Cylinder block and pis-Visual DER BLOCK" in EM sectons walls or piston tion.

For more information, refer to "OVERHEATING CAUSE ANALYSIS" in LC section.


^{*1:} Turn the ignition switch ON.

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

IGNITION SIGNAL

Component Description IGNITION COIL & POWER TRANSISTOR

NGEC0319

210501

The ignition signal from the ECM is sent to the power transistor. The power transistor switches the ignition coil primary circuit on and off. As the primary circuit is turned on and off, the proper high voltage is induced in the coil secondary circuit.

MA

The distributor is not repairable and must be replaced as an assembly except distributor cap and rotor head.

EM

NOTE:

The rotor screw which secures the distributor rotor head to the distributor shaft must be tightened properly.

LC

(0.34 - 0.40 kg-m, 29.5 - 34.7 in-lb)

EC

FE

GL

MT

AT

CONSULT-II Reference Value in Data Monitor Mode

NGEC0320

MONITOR ITEM	CONDITION		SPECIFICATION
IGN TIMING	Engine: After warming upAir conditioner switch: OFF	Idle	Approx. 20° BTDC
IGN TIMING	Shift lever: "N" No-load	2,000 rpm	More than 25° BTDC

- TF

AX

PD

SU

BR

ST

<u>p</u>g

BT

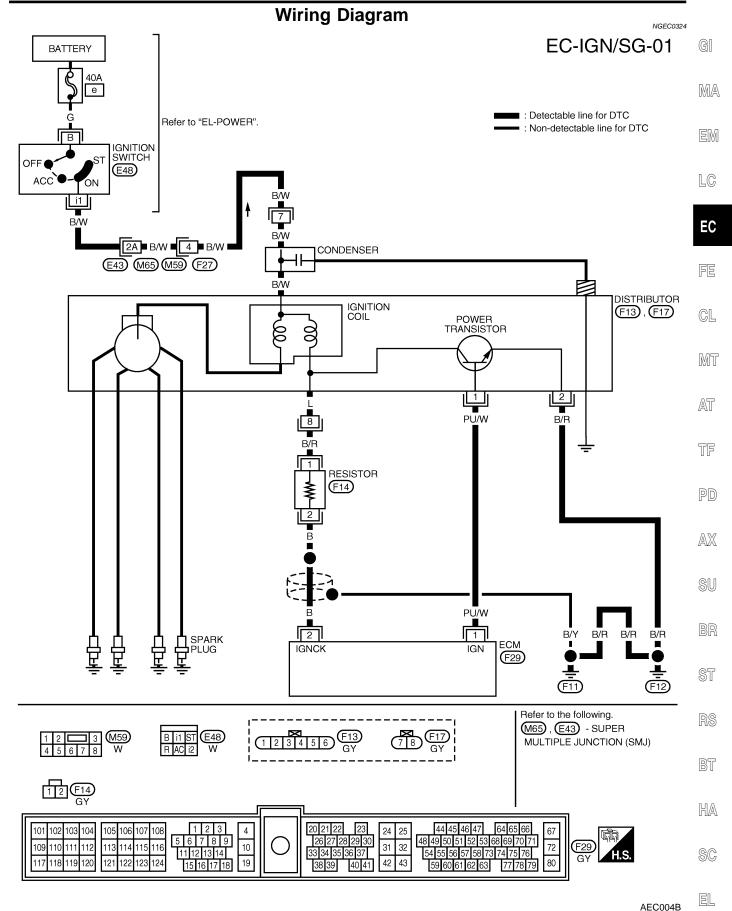
HA

SC

EL

 \mathbb{Z}

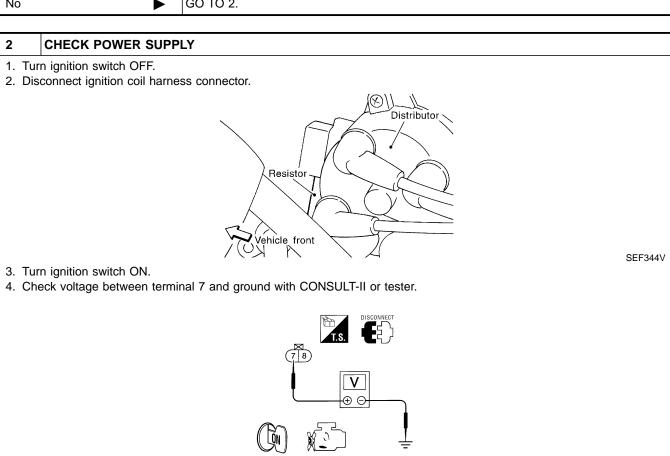
ECM Terminals and Reference Value


Specification data are reference values and are measured between each terminal and ground.

=NGEC0321

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


_			-	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
1	PU/W	Ignition signal	[Engine is running] • Warm-up condition • Idle speed	0 - 0.5V (V) 4 2 0 20 ms SEF996V
	1 6/11	ignition signal	[Engine is running] ● Engine speed is 2,000 rpm	0.2 - 1.0V (V) 4 2 0 20 ms SEF997V
			[Engine is running] • Warm-up condition • Idle speed	12 - 14V (V) 40 20 0 20 ms SEF998V
2	В	Ignition check	[Engine is running] ● Engine speed is 2,000 rpm	12 - 13V (V) 40 20 0 20 ms SEF999V

AEC698

Diagnostic Procedure

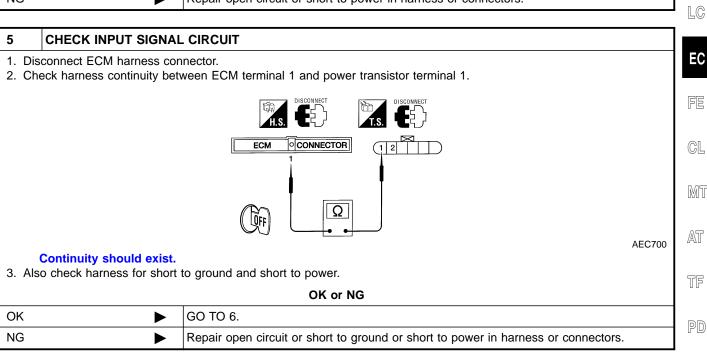
Voltage: Battery voltage

OK or NG

OK •	GO TO 4.
NG ▶	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.


- Harness connectors E43, M65
- Harness connectors M59, F27
- Harness for open or short between ignition coil and ignition switch

Repair harness or connectors.

IGNITION SIGNAL

Diagnostic Procedure (Cont'd)

CHECK GROUND CIRC	CUIT	
1. Turn ignition switch OFF.		
 Check harness continuity between power transistor terminal 2 and engine ground. Refer to the wiring diagram. Continuity should exist. Also check harness for short to power. 		
OK or NG		
>	GO TO 5.	
NG Repair open circuit or short to power in harness or connectors.		
1	rn ignition switch OFF. sconnect power transistor heck harness continuity beto Continuity should exist.	

EC

GI

MA

EM

FE

GL

MT

AT

AX

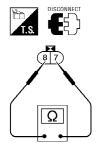
SU

BR

ST

RS

BT


HA

SC

EL

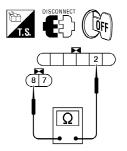
6 CHECK IGNITION COIL

- 1. Disconnect ignition coil harness connector.
- 2. Remove distributor cap.
- 3. Check resistance as shown in the figure.

AEC150A

Terminal	Resistance [at 25°C (77°F)]
7 - 8	Less than 1Ω
7 - 9	7 - 13Ω

MTBL0300


If NG, replace distributor assembly as a unit.

OK or NG

OK	GO TO 7.
NG ►	Replace distributor assembly as a unit.

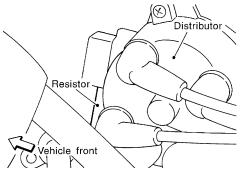
7 CHECK POWER TRANSISTOR

- 1. Disconnect camshaft position sensor & power transistor harness connector and ignition coil harness connector.
- 2. Check power transistor resistance between terminals 2 and 8.

AEC151A

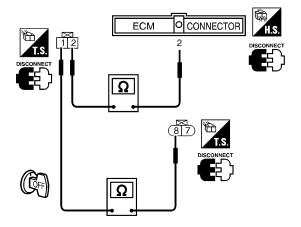
Terminals	Resistance	Result
2 and 8	Except 0Ω	OK
Z and o	0Ω	NG

MTBL0301


OK or NG

OK ▶	GO TO 8.
NG ►	Replace distributor assembly.

IGNITION SIGNAL


CHECK INPUT SIGNAL CIRCUIT

- 1. Stop engine.
- 2. Disconnect ignition coil harness connector.
- 3. Strip tape covering resistor.
- 4. Disconnect resistor harness connector.

SEF344V

- 5. Disconnect ECM harness connector.
- 6. Check harness continuity between ignition coil terminal 8 and resistor terminal 1, resistor terminal 2 and ECM terminal 2.

Continuity should exist.

7. Also check harness for short to ground and short to power.

OK or NG

OK		GO TO 9.
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.

GI

MA

EM

LC

EC

5

GL

MT

AT

TF

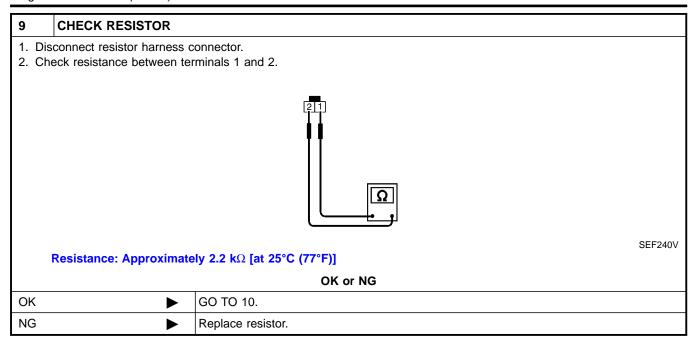
PD

SEF179X

SU

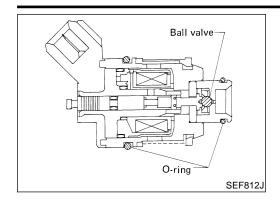
BK

ST


RS

BT

HA


SC

EL

10	CHECK INTERMITTENT	F INCIDENT	
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.		
	>	INSPECTION END	

INJECTOR

Component Description

The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the injector circuit, the coil in the injector is energized. The energized coil pulls the ball valve back and allows fuel to flow through the injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.

MA

EM

LC

EC

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	(
102	W/B	Injector No. 1	[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 20 ms SEF011W	
104 109 111	W/R W/L W/PU	Injector No. 3 Injector No. 2 Injector No. 4	 [Engine is running] Warm-up condition Engine speed is 2,000 rpm 	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 SEF012W	

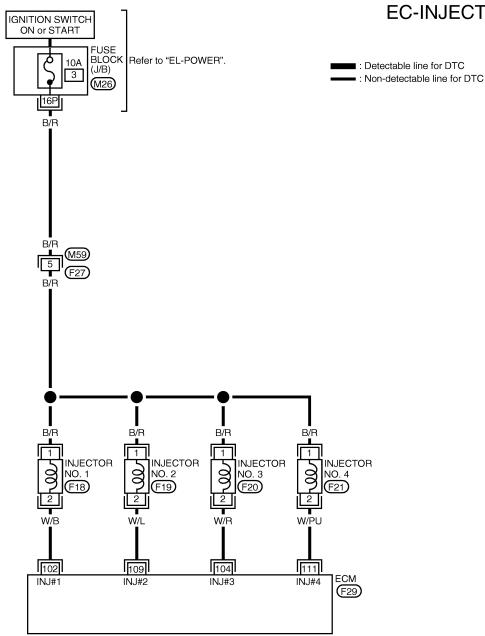
IT

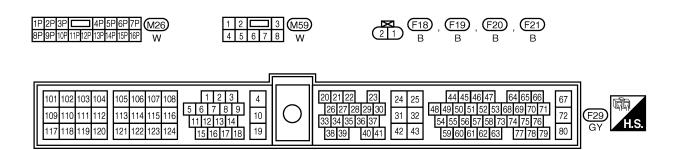
T

ST

BT

HA


SC


EL

Wiring Diagram

NGEC0434

EC-INJECT-01

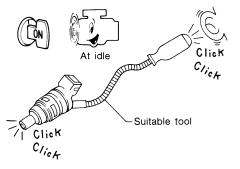
AEC009B

INJECTOR

Diagnostic Procedure

NGEC0438

1 CHECK OVERALL FUNCTION


- With CONSULT-II
- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.

ACTIVE TES	Г
POWER BALANCE	
MONITOR	
ENG SPEED	XXX rpm
MAS A/F SE-B1	xxx v
IACV-AAC/V	XXX step

3. Make sure that each circuit produces a momentary engine speed drop.

Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound.

Clicking noise should be heard.

OK or NG

OK •	INSPECTION END
NG ►	GO TO 2.

G[

MA

EM

LC

EC

SEF190Y

 \bigcirc I

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

MEC703B

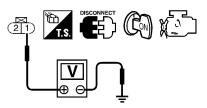
SU

BR

ST

RS

BT


HA

SC

FI

2 CHECK POWER SUPPLY

- 1. Stop engine.
- 2. Disconnect injector harness connector.
- 3. Turn ignition switch ON.
- 4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

OK or NG

Voltage: Battery voltage

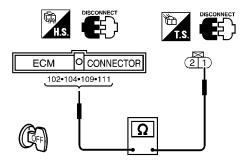
SEF271W

	GO TO 4.

NG	•	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.


• 10A fuse

OK

- Harness connectors F27, M59
- 10A fuse
- Harness for open or short between injector and fuse
 - Repair harness or connectors.

4 CHECK OUTPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between injector harness connector terminal 1 and ECM terminals 102, 104, 109, 111.

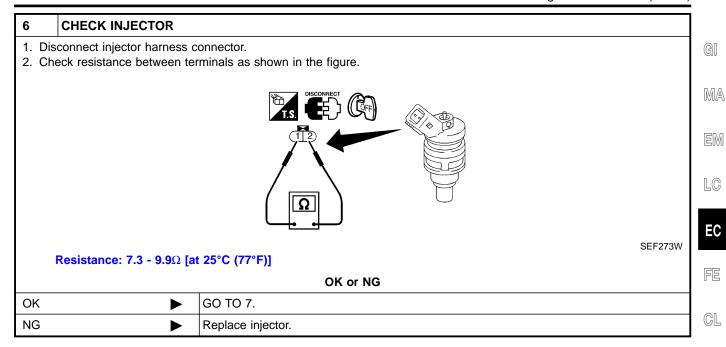
SEF223V

Continuity should exist.

4. Also check harness for short to ground and short to power.

ΟK	or	NG

OK •	GO TO 6.
NG ►	GO TO 5.


5 DETECT MALFUNCTIONING PART

Check the harness for open or short between ECM and injector.

Repair open circuit or short to ground or short to power in harness or connectors.

INJECTOR

Diagnostic Procedure (Cont'd)

7	CHECK INTERMITTENT INCIDENT		
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.			
	>	INSPECTION END	

EL IDX

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

KA24DE

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0441

MONITOR ITEM	CONDITION	SPECIFICATION
START SIGNAL	Ignition switch: ON → START → ON	$OFF \to ON \to OFF$

ECM Terminals and Reference Value

NGEC0442

Specification data are reference values and are measured between each terminal and ground.

CALITION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Ignition switch "ON"]	Approximately 0V
20	20 L/OR Start signal	[Ignition switch "START"]	BATTERY VOLTAGE (11 - 14V)	

START SIGNAL

NGEC0440

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

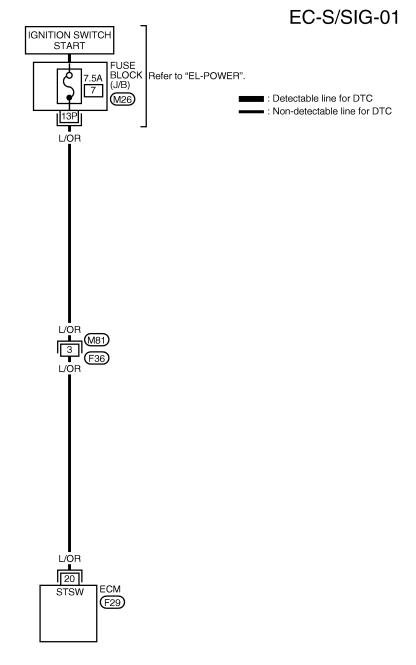
PD

 $\mathbb{A}\mathbb{X}$

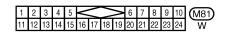
SU

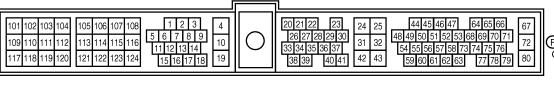
BR

ST


RS

BT


HA


SC

EL

AEC975A

Diagnostic Procedure

1	INSPECTION START	RIGECU	
Do yo	Do you have CONSULT-II?		
		Yes or No	
Yes	>	O TO 2.	
No	>	O TO 3.	

2 CHECK OVERALL FUNCTION

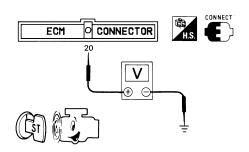
(I) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Check "START SIGNAL" in "DATA MONITOR" mode with CONSULT-II under the following conditions.

DATA MONITOR	
MONITOR	NO DTC
START SIGNAL	OFF

Condition	"START SIGNAL"
Ignition switch "ON"	OFF
Ignition switch "START"	ON

SEF227Y


OK or NG

OK •	INSPECTION END
NG ►	GO TO 4.

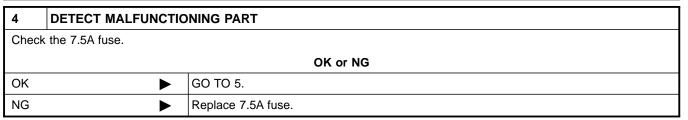
3 CHECK OVERALL FUNCTION

Without CONSULT-II

- 1. Turn ignition switch to START.
- 2. Check voltage between ECM terminal 20 and ground under the following conditions.

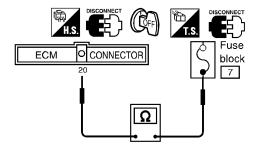
SEF109P

Condition	Voltage	
Ignition switch "START"	Battery voltage	
Except above	Approximately 0V	


MTBL0143

OK or NG

OK •	INSPECTION END
NG ►	GO TO 4.


START SIGNAL

Diagnostic Procedure (Cont'd)

5 CHECK INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector and 7.5A fuse.
- 3. Check harness continuity between ECM terminal 20 and fuse block.

SEF224V

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK	>	GO TO 7.
NG		GO TO 6.

6 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M81, F36
- Harness for open or short between ECM and fuse block

OK or NG

OK		GO TO 7.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

7	CHECK INTERMITTENT INCIDENT		
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.			
	>	INSPECTION END	

 \mathbb{G}

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

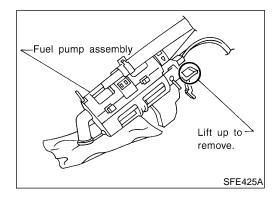
ST

BT

HA

SC

ΞL


System Description

NGEC0444

			NGEC0444
Sensor	Input Signal to ECM	ECM func- tion	Actuator
Camshaft position sensor	Engine speed	ECM	Fuel pump relay
Ignition switch	Start signal	LOW	

The ECM activates the fuel pump for several seconds after the ignition switch is turned on to improve engine startability. If the ECM receives a 180° signal from the camshaft position sensor, it knows that the engine is rotating, and causes the pump to perform. If the 180° signal is not received when the ignition switch is on, the engine stalls. The ECM stops pump operation and prevents battery discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

Condition	Fuel pump operation	
Ignition switch is turned to ON.	Operates for 5 seconds.	
Engine running and cranking	Operates.	
Except as shown above	Stops.	

Component Description

NGECOSO

The fuel pump with a fuel damper is an in-tank type (the pump and damper are located in the fuel tank).

CONSULT-II Reference Value in Data Monitor Mode

NGEC0445

MONITOR ITEM	CONDITION	SPECIFICATION
FUEL PUMP RLY	Ignition switch is turned to ON (Operates for 5 seconds)Engine running and cranking	ON
	Except as shown above	OFF

FUEL PUMP

ECM Terminals and Reference Value

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

=NGEC0446

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
11	W/R	N/R Fuel pump relay -	[Ignition switch "ON"] ● For 5 seconds after turning ignition switch "ON" [Engine is running]	0 - 1V
			[Ignition switch "ON"] ■ More than 5 seconds after turning ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)

GI

MA

EM

LC

EC

__

FE

GL

MT

AT

TF PD

SU

BR

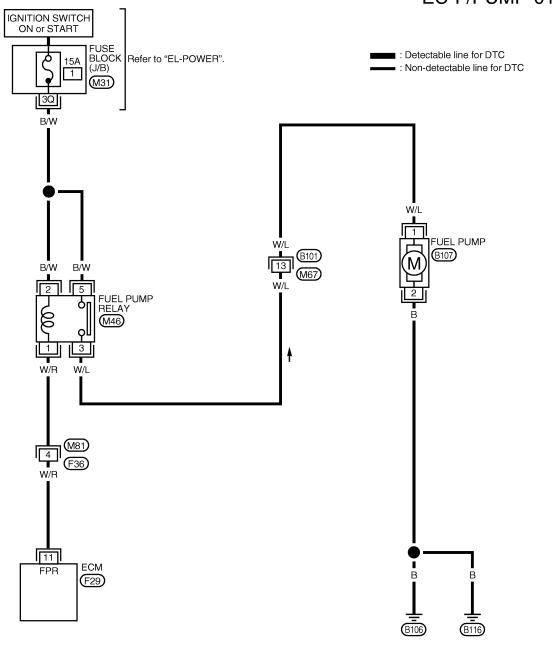
ST

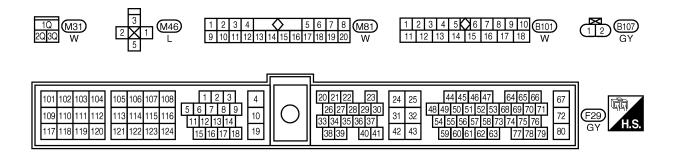
RS

BT

HA

SC

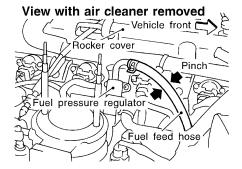

EL


Wiring Diagram

Wiring Diagram

NGEC0447

EC-F/PUMP-01



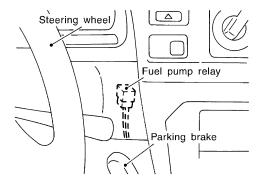
Diagnostic Procedure

NGEC0448

- Turn ignition switch ON.
- 2. Pinch fuel feed hose with two fingers.

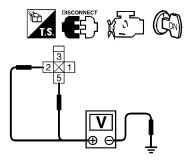
CHECK OVERALL FUNCTION

SEF348V


Fuel pressure pulsation should be felt on the fuel feed hose for 5 seconds after ignition switch is turned "ON".

OK or NG

OK		INSPECTION END
NG	•	GO TO 2.


2 CHECK POWER SUPPLY

- 1. Turn ignition switch OFF.
- 2. Disconnect fuel pump relay.

3. Turn ignition switch ON.

4. Check voltage between terminals 2, 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK	>	GO TO 4.
NG	•	GO TO 3.

GI

MA

LC

EC

GL

MT

AT

TF

PD

90

SEF349V

SEF225V

BR

ST

RS

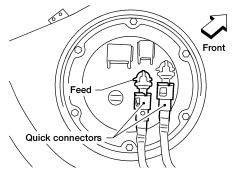
BT

HA

SC

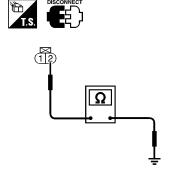
EL

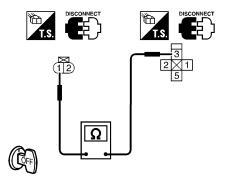
3 DETECT MALFUNCTIONING PART


Check the following.

- 15A fuse
- Harness for open or short between fuse and fuel pump relay

Repair harness or connectors.


4 CHECK FUEL PUMP POWER SUPPLY AND GROUND CIRCUIT FOR OPEN AND SHORT


- 1. Turn ignition switch OFF.
- 2. Disconnect fuel pump harness connector.

AFE095

3. Check harness continuity between terminal 2 and body ground, terminal 1 and fuel pump relay connector terminal 3.

SEF700Z

Continuity should exist.

4. Also check harness for short to power.

OK	or	NG
----	----	----

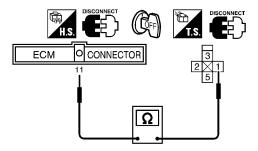
OK •	-	GO TO 6.
NG	>	GO TO 5.

FUEL PUMP

Diagnostic Procedure (Cont'd)

5 DETECT MALFUNCTIONING PART

Check the following.


- Harness connectors B101, M67
- Harness for open or short between fuel pump and body ground
- Harness for open or short between fuel pump and fuel pump relay

Repair open circuit or short to power in harness or connectors.

6 CHECK OUTPUT SIGNAL CIRCUIT

1. Disconnect ECM harness connector.

2. Check harness continuity between ECM terminal 11 and fuel pump relay connector terminal 1.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 8.
NG •	GO TO 7.

7 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F36, M81
- Harness for open or short between ECM and fuel pump relay

NG Repair open circuit or short to power in harness or connectors.

GI

MA

LC

EC

FE

GL

MT

SEF227V

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

ST

D@

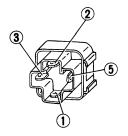
BT

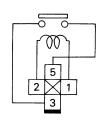
HA

SC

DW

8 **CHECK FUEL PUMP RELAY**


(II) With CONSULT-II


- 1. Reconnect fuel pump relay, fuel pump harness connector and ECM harness connector.
- 2. Turn ignition switch ON.
- 3. Turn fuel pump relay "ON" and "OFF" in "ACTIVE TEST" mode with CONSULT-II and check operating sound.

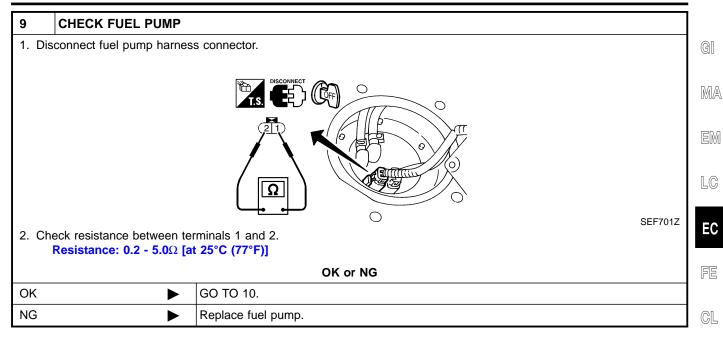
ACTIVE TEST				
ON				
XXX rpm				

SEF724Z

Without CONSULT-II
Check continuity between terminals 3 and 5.

SEF511P

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No


MTBL0306

OK or NG

OK ►	GO TO 9.
NG ►	Replace fuel pump relay.

FUEL PUMP

Diagnostic Procedure (Cont'd)

10	CHECK INTERMITTENT INCIDENT			
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.			
	► INSPECTION END			

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

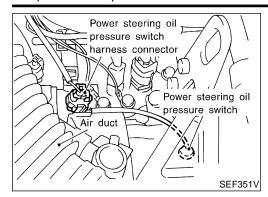
BR

ST

RS

BT

HA


SC

EL

POWER STEERING OIL PRESSURE SWITCH

KA24DE

Component Description

Component Description

The power steering oil pressure switch is attached to the power steering high-pressure tube and detects a power steering load. When a power steering load is detected, it signals the ECM. The ECM adjusts the IACV-AAC valve to increase the idle speed and adjust for the increased load.

CONSULT-II Reference Value in Data Monitor Mode

NGEC0452

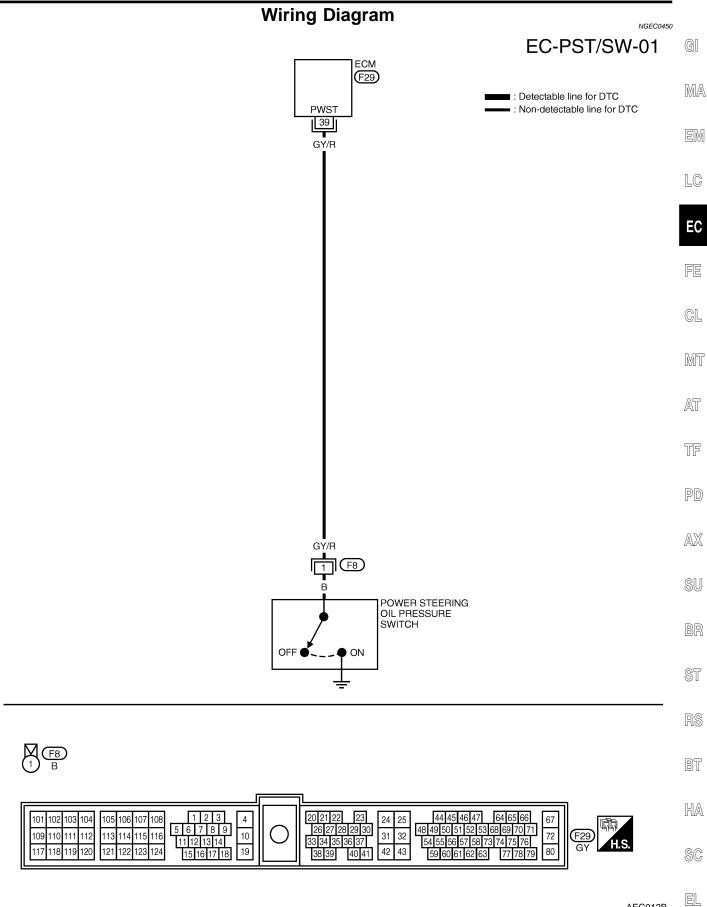
Specification data are reference values.

MONITOR ITEM	CONE	SPECIFICATION	
PW/ST SIGNAL	Engine: After warming up, idle the engine	Steering wheel in neutral position (forward direction)	OFF
		The steering wheel is fully turned	ON

ECM Terminals and Reference Value

NGEC0453

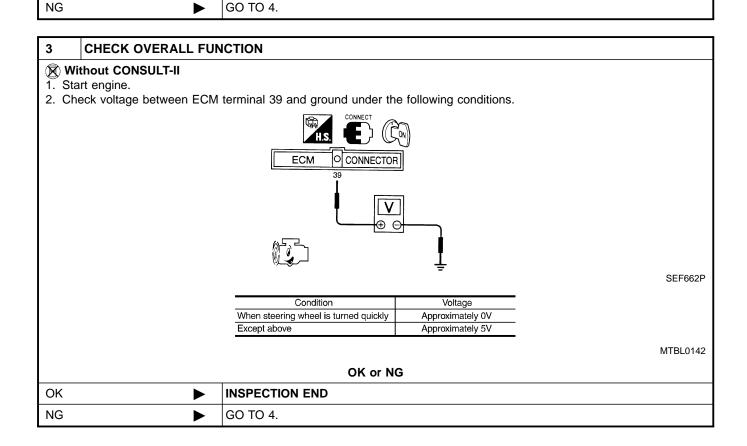
Specification data are reference values and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

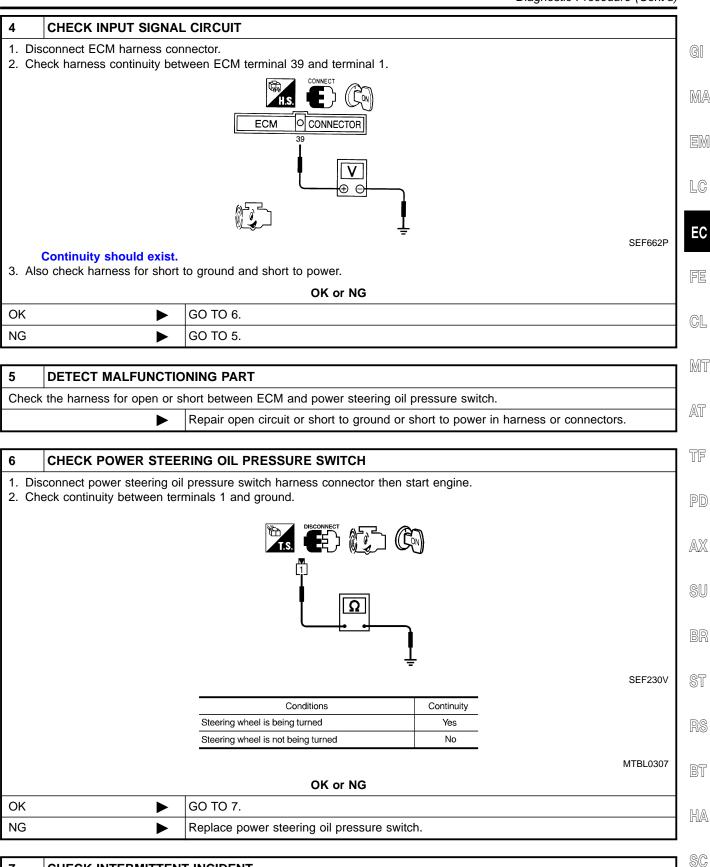
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
39	GY/R	/R Power steering oil pressure	[Engine is running] • Steering wheel is fully turned	Approximately 0V
			[Engine is running] • Steering wheel is not turned	Approximately 5V

POWER STEERING OIL PRESSURE SWITCH

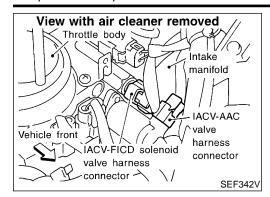


AEC012B

Diagnostic Procedure


2 **CHECK OVERALL FUNCTION** (I) With CONSULT-II 1. Start engine. 2. Check "PW/ST SIGNAL" in "DATA MONITOR" mode with CONSULT-II under the following conditions. DATA MONITOR MONITOR NO DTC PW/ST SIGNAL OFF Steering is in neutral position ON Steering is turned SEF228Y OK or NG OK INSPECTION END

POWER STEERING OIL PRESSURE SWITCH


KA24DE

Diagnostic Procedure (Cont'd)

7	7 CHECK INTERMITTENT INCIDENT				
Perfori	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-142.				
► INSPECTION END					

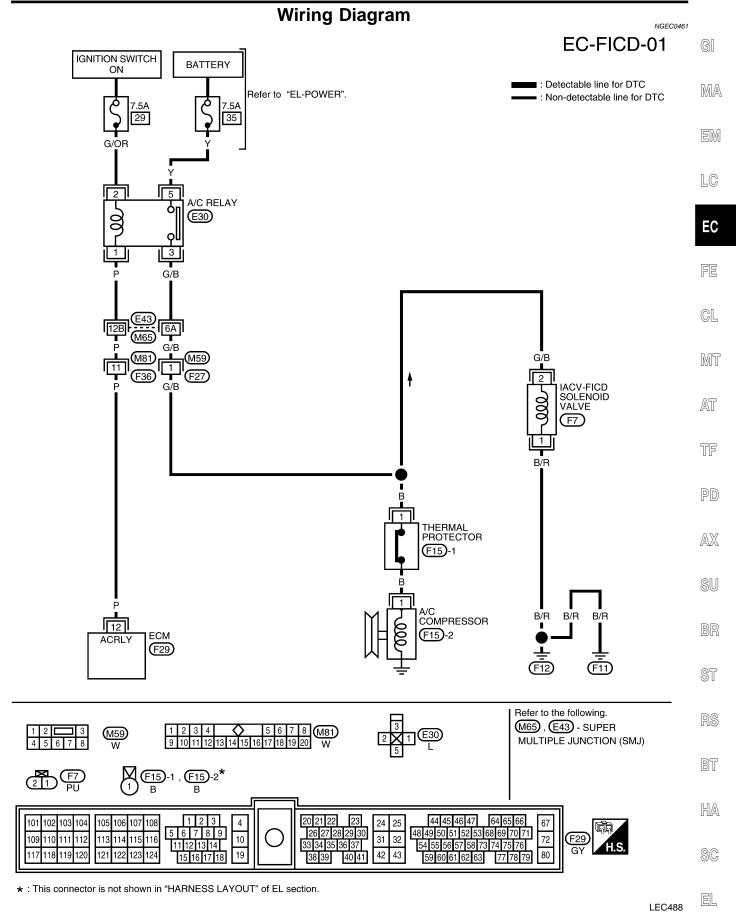
Component Description

Component Description

When the air conditioner is on, the IAC valve-FICD solenoid valve supplies additional air to adjust to the increased load.

ECM Terminals and Reference Value

NGEC0463


Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

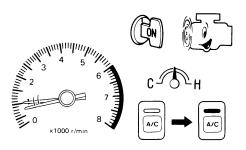
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
12	Р	Air conditioner relay	[Engine is running] ■ Both A/C switch and blower switch are ON★	Approximately 0V
12			[Engine is running] • A/C switch is OFF	BATTERY VOLTAGE (11 - 14V)
21	G/R	G/R Air conditioner dual-pressure switch	[Engine is running] ■ Both air conditioner switch and blower switch are ON (Compressor operates)	Approximately 0V
			[Engine is running] • Air conditioner switch is OFF	BATTERY VOLTAGE (11 - 14V)

[★] Ambient air temperature above 10°C (50°F) and in any mode except OFF.

Diagnostic Procedure

=NGEC0464

MEF634E


1 CHECK OVERALL FUNCTION

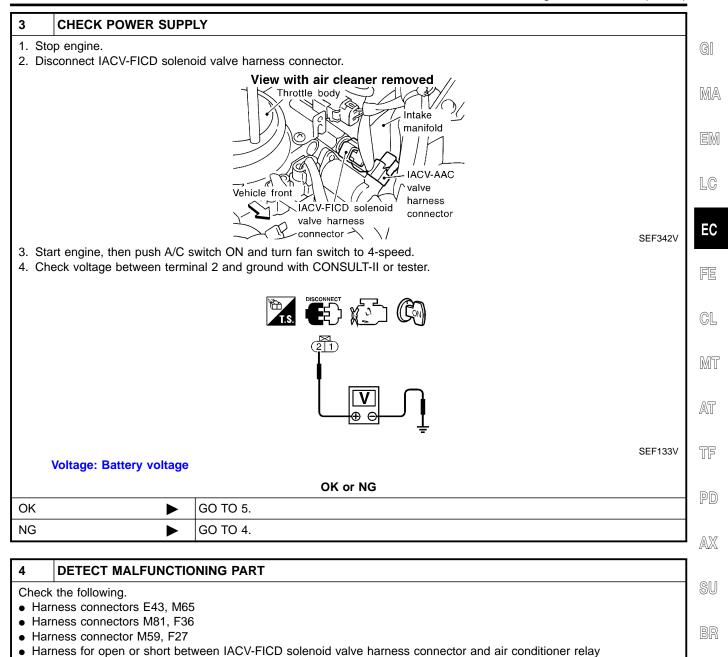
- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed.

800±50 rpm

If NG, adjust idle speed.

- 3. Push air conditioner switch ON and turn fan switch to 4-speed.
- 4. Recheck idle speed.

875 rpm or more


OK or NG

OK •	INSPECTION END
NG ►	GO TO 2.

2	2 CHECK AIR CONDITIONER FUNCTION				
Check	Check if air conditioner compressor functions normally.				
	OK or NG				
OK	OK ▶ GO TO 3.				
NG	>	Refer to "Symptom Table" in "TROUBLE DIAGNOSIS", HA-27.			

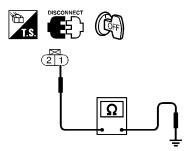
IACV-FICD SOLENOID VALVE

Diagnostic Procedure (Cont'd)

Repair open circuit, short to ground or short to power in harness or connectors.

DW.

ST


BT

HA

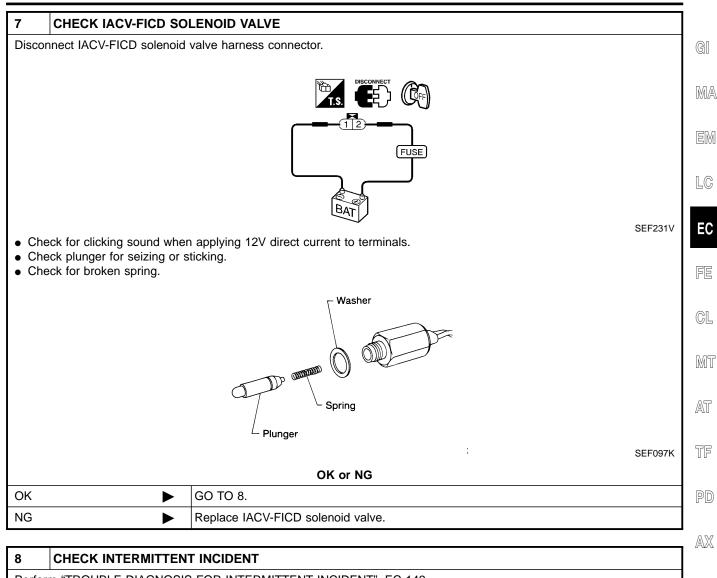
SC

5 CHECK GROUND CIRCUIT

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect ambient air temperature switch harness connector.
- 4. Check harness continuity between solenoid valve terminal 1 and body ground.

SEF134V

Continuity should exist.


5. Also check harness for short to power.

OK or NG		
OK ►	GO TO 7.	
NG ▶	GO TO 6.	

6 DETECT MALFUNCTIONING PART				
Check the harness for open or short between IACV-FICD solenoid valve and body ground.				
Repair open circuit or short to ground or short to power in harness or connectors.				

IACV-FICD SOLENOID VALVE

Diagnostic Procedure (Cont'd)

8	CHECK INTERMITTENT	T INCIDENT	
Perfor	m "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-142.	SU
	>	INSPECTION END	

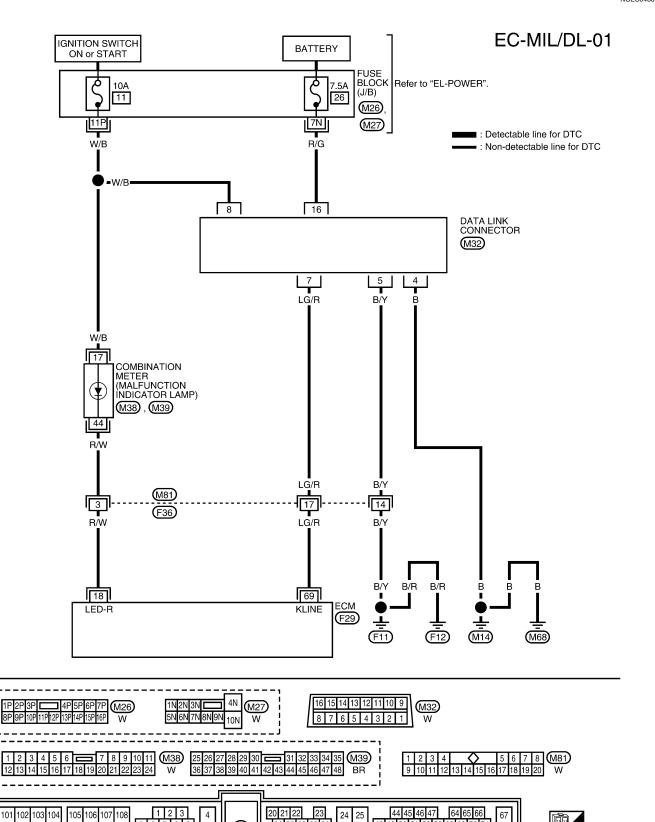
BR

ST

RS

BT

HA


SC

EL

Wiring Diagram

NGEC0466

WEC124A

33 34 35 36 37

31 32

42 43

48 49 50 51 52 53 68 69 70 71

72

5 6 7 8 9 11 12 13 14

10

19

109

110 111 112

113 114 115 116

SERVICE DATA AND SPECIFICATIONS (SDS)

KA24DE

	Fuel Pressure	Regulator NGECO4	467
Fuel pressure at idling kPa (kg/cm², psi) Vacuum hose is connected Vacuum hose is disconnected		Approximately 235 (2.4, 34)	
		Approximately 294 (3.0, 43)	_
	Idle Speed and	I Ignition Timing	_
Base idle speed*1 rpm	No-load*4 (in "P" or "N" position)	750±50	168
Target idle speed*2 rpm	No-load*4 (in "P" or "N" position)	800±50	_
Air conditioner: ON rpm	In "P" or "N" position	875 or more	_
Ignition timing*1	In "P" or "N" position	20°±2° BTDC	_
2: Throttle position sensor harne3: Throttle position sensor harne4: Under the following conditionsAir conditioner switch: OFFElectrical load: OFF (Lights,	ess connector disconnected s: heater fan & rear window defogger)	LI-II WORK SUPPORT Mode	
Steering wheel: Kept in strai	ght-ahead position Ignition Coil	uorea.	400
Primary voltage V		NGECO4 Battery voltage 12	169
Primary voltage V Primary resistance [at 20°C (68°F)] Ω		Approximately 1.0	
Secondary resistance [at 20°C (68°F)] $k\Omega$		Approximately 10	
	Mass Air Flow		_
Supply voltage V		NGEC04 Battery voltage (11 - 14)	170
Output voltage V		0.9 - 1.8*	_
Mass air flow (Using CONSULT-II or GST) g-m/sec		0.9 - 5.8 at idle* 7.5 - 13.2 at 2,500 rpm*	
: Engine is warmed up to norma	Il operating temperature and idling under no-	load.	_
	Engine Coolan	t Temperature Sensor	471
Temperatu	ure °C (°F)	Resistance $k\Omega$	
20	(68)	2.1 - 2.9	
50	(122)	0.68 - 1.00	
90	(194)	0.236 - 0.260	
	EGR Temperat	ure Sensor	472
EGR temperature °C (°F)	Voltage (V)	Resistance $(M\Omega)$	_
0 (32)	4.56	0.62 - 1.05	_
50 (122)	2.25	0.065 - 0.094	_
100 (212)	0.59	0.011 - 0.015	_
	Fuel Pump		_
		NGEC04	173

EL

0.2 - 5.0

Resistance [at 25°C (77°F)] Ω

SERVICE DATA AND SPECIFICATIONS (SDS)

IACV-AAC Valve

	IACV-AAC Valve	NGEC04:
Resistance [at 25°C (77°F)] Ω	Approximately 10.0	
	Injector	NGEC04
Resistance [at 25°C (77°F)] Ω	7.3 - 9.9	NGECU4
	Resistor	
Decistance (et 2590 /7795)] 10		NGEC04
Resistance [at 25°C (77°F)] kΩ	Approximately 2.2	
	Throttle Position Sensor	NGEC04
Throttle valve conditions	Voltage (at normal operating temp., engine off, igni	tion switch on)
Completely closed (a)	0.15 - 0.85V	
Partially open	Between (a) and (b)	
Completely open (b)	3.5 - 4.7V	
	Heated Oxygen Sensor 1 Heater (From	nt)
Resistance [at 25°C (77°F)] Ω	2.3 - 4.3	
	Calculated Load Value	NGEC04
	Calculated load value % (Using CONSULT-II or GST)	
At idle	9.5 - 34.0%	
At 2,500 rpm	13.9 - 24.9%	
	Intake Air Temperature Sensor	NOTOO
Temperature °C (°F)	Resistance kΩ	NGEC04
20 (68)	2.1 - 2.9	
80 (176)	0.27 - 0.38	
	Heated Oxygen Sensor 2 Heater (Rea	r)
Resistance [at 25°C (77°F)] Ω	2.3 - 4.3	NGEC04
	Crankshaft Position Sensor (OBD)	NGEC04
Resistance [at 20°C (68°F)] Ω	512 - 632	NGECU4
	Fuel Tank Temperature Sensor	NGEC04
Temperature °C (°F)	Resistance kΩ	
20 (68)	2.3 - 2.7	
50 (122)	0.79 - 0.90	

TROUBLE DIAGNOSIS — INDEX

VG33E

Alphabetical & P No. Index for DTC

Alphabetical & P No. Index for DTC

ALPHABETICAL INDEX FOR DTC

NGEC0522

Items (CONSULT-II screen terms)	DTC*1	Reference page
Unable to access ECM	_	EC-709
ABSL PRES SEN	P0105	EC-748
AIR TEMP SEN/CIRC	P0110	EC-750
A/T 1ST GR FNCTN	P0731	AT-119
A/T 2ND GR FNCTN	P0732	AT-125
A/T 3RD GR FNCTN	P0733	AT-131
A/T 4TH GR FNCTN	P0734	AT-137
A/T COMM LINE	P0600*4	EC-1040
A/T DIAG COMM LINE	P1605	EC-1150
A/T TCC S/V FNCTN	P0744	AT-151
ATF TEMP SEN/CIRC	P0710	AT-104
CAM POS SEN/CIRC	P0340	EC-946
CLOSED LOOP-B1	P1148	EC-1049
CLOSED LOOP-B2	P1168	EC-1049
CLOSED TP SW/CIRC	P0510	EC-1033
COOLANT T SEN/CIRC*2	P0115	EC-755
*COOLANT T SEN/CIRC	P0125	EC-773
CPS/CIRC (OBD) COG	P1336	EC-1068
CPS/CIRCUIT (OBD)	P0335	EC-940
CYL 1 MISFIRE	P0301	EC-927
CYL 2 MISFIRE	P0302	EC-927
CYL 3 MISFIRE	P0303	EC-927
CYL 4 MISFIRE	P0304	EC-927
CYL 5 MISFIRE	P0305	EC-927
CYL 6 MISFIRE	P0306	EC-927
ECM	P0605	EC-1045
ENGINE SPEED SIG	P0725	AT-115
ENG OVER TEMP	P0217	EC-906
ENG OVER TEMP	P1217*4	EC-1051
EVAP GROSS LEAK	P0455	EC-997
EVAP PURG FLOW/MON	P1447	EC-1111
EVAP SYS PRES SEN	P0450	EC-986
EVAP SMALL LEAK	P0440	EC-958
EVAP VERY SMALL LEAK	P1441	EC-1077
FUEL LEVL SEN/CIRC	P0464	EC-1018

Items (CONSULT-II screen terms)	DTC*1	Reference page
FUEL LEVL SEN/CIRC	P1464	EC-1131
FUEL LEVEL SENSOR	P0461	EC-1016
FUEL LV SE (SLOSH)	P0460	EC-1011
FUEL SYS LEAN/BK1	P0171	EC-884
FUEL SYS LEAN/BK2	P0174	EC-884
FUEL SYS RICH/BK1	P0172	EC-893
FUEL SYS RICH/BK2	P0175	EC-893
FUEL TEMP SEN/CIRC	P0180	EC-901
HO2S1 HTR (B1)	P0135	EC-829
HO2S1 HTR (B2)	P0155	EC-829
HO2S1 (B1)	P0130	EC-778
HO2S1 (B1)	P0131	EC-789
HO2S1 (B1)	P0132	EC-798
HO2S1 (B1)	P0133	EC-807
HO2S1 (B1)	P0134	EC-821
HO2S1 (B2)	P0150	EC-778
HO2S1 (B2)	P0151	EC-789
HO2S1 (B2)	P0152	EC-798
HO2S1 (B2)	P0153	EC-807
HO2S1 (B2)	P0154	EC-821
HO2S2 (B1)	P0137	EC-836
HO2S2 (B1)	P0138	EC-846
HO2S2 (B1)	P0139	EC-856
HO2S2 (B1)	P0140	EC-866
HO2S2 (B2)	P0157	EC-836
HO2S2 (B2)	P0158	EC-846
HO2S2 (B2)	P0159	EC-856
HO2S2 (B2)	P0160	EC-866
HO2S2 HTR (B1)	P0141	EC-876
HO2S2 HTR (B2)	P0161	EC-876
IACV/AAC VLV/CIRC	P0505	EC-1027
KNOCK SENSOR	P0325*4	EC-936
L/PRES SOL/CIRC	P0745	AT-158
MAF SEN/CIRCUIT*2	P0100	EC-739
MULTI CYL MISFIRE	P0300	EC-927
NO SELF DIAGNOSTIC FAILURE INDICATED	P0000	_
O/R CLTCH S/CIRC	P1760	AT-182

TROUBLE DIAGNOSIS — INDEX

Alphabetical & P No. Index for DTC (Cont'd)

Items (CONSULT-II screen terms)	DTC*1	Reference page	©
P-N POS SW/CIRCUIT	P0705	EC-1153	<u> </u>
PNP SW/CIRC	P0705	AT-98	N
PURG VOLUME CONT/V	P0443	EC-973	00
PURG VOLUME CONT/V	P1444	EC-1092	
SFT SOL A/CIRC*2	P0750	AT-163	
SFT SOL B/CIRC*2	P0755	AT-168	
TCC SOLENOID/CIRC	P0740	AT-146	
THERMOSTAT FNCTN	P1126	EC-1047	
TP SEN/CIRC A/T*2	P1705	AT-173	
TRTL POS SEN/CIRC*2	P0120	EC-760	 F
TW CATALYST SYS-B1	P0420	EC-953	
TW CATALYST SYS-B2	P0430	EC-953	©
VC CUT/V BYPASS/V	P1491	EC-1141	
VC/V BYPASS/V	P1490	EC-1135	N
VEH SPEED SEN/CIRC*3	P0500	EC-1023	
VEH SPD SEN/CIRC*3	P0720	AT-110	<u> </u>
VENT CONTROL VALVE	P0446	EC-980	
VENT CONTROL VALVE	P1446	EC-1104	— T
VENT CONTROL VALVE	P1448	EC-1123	<u> </u>

^{*1: 1}st trip DTC No. is the same as DTC No.

Regarding D22 models, "-B1" and "BK1" indicate right bank and "-B2" and "BK2" indicate left bank.

EC

^{*2:} When the fail-safe operation occurs, the MIL illuminates.

^{*3:} The MIL illuminates when both the "Revolution sensor signal" and the "Vehicle speed sensor signal" meet the fail-safe condition at the same time.

^{*4:} This DTC is displayed with CONSULT-II only.

P NO. INDEX FOR DTC

DTC*1	Items (CONSULT-II screen terms)	Reference page
_	Unable to access ECM	EC-709
P0000	NO SELF DIAGNOSTIC FAILURE INDICATED	_
P0100	MAF SEN/CIRCUIT*2	EC-739
P0105	ABSL PRES SEN/CIRC	EC-748
P0110	AIR TEMP SEN/CIRC	EC-750
P0115	COOLANT T SEN/CIRC*2	EC-755
P0120	THRTL POS SEN/CIRC*2	EC-760
P0125	*COOLANT T SEN/CIRC	EC-773
P0130	HO2S1 (B1)	EC-778
P0131	HO2S1 (B1)	EC-789
P0132	HO2S1 (B1)	EC-798
P0133	HO2S1 (B1)	EC-807
P0134	HO2S1 (B1)	EC-821
P0135	HO2S1 HTR (B1)	EC-829
P0137	HO2S2 (B1)	EC-836
P0138	HO2S2 (B1)	EC-846
P0139	HO2S2 (B1)	EC-856
P0140	HO2S2 (B1)	EC-866
P0141	HO2S2 HTR (B1)	EC-876
P0150	HO2S1 (B2)	EC-778
P0151	HO2S1 (B2)	EC-789
P0152	HO2S1 (B2)	EC-798
P0153	HO2S1 (B2)	EC-807
P0154	HO2S1 (B2)	EC-821
P0155	HO2S1 HTR (B2)	EC-829
P0157	HO2S2 (B2)	EC-836
P0158	HO2S2 (B2)	EC-846
P0159	HO2S2 (B2)	EC-856
P0160	HO2S2 (B2)	EC-866
P0161	HO2S2 HTR (B2)	EC-876
P0171	FUEL SYS LEAN/BK1	EC-884
P0172	FUEL SYS RICH/BK1	EC-893
P0174	FUEL SYS LEAN/BK2	EC-884
P0175	FUEL SYS RICH/BK2	EC-893
P0180	FUEL TEMP SEN/CIRC	EC-901
P0217	ENG OVER TEMP	EC-906

TROUBLE DIAGNOSIS — INDEX

VG33E

Alphabetical & P No. Index for DTC (Cont'd)

DTC*1	Items (CONSULT-II screen terms)	Reference page	G[
P0300	MULTI CYL MISFIRE	EC-927	— W
P0301	CYL 1 MISFIRE	EC-927	M
P0302	CYL 2 MISFIRE	EC-927	
P0303	CYL 3 MISFIRE	EC-927	 E1
P0304	CYL 4 MISFIRE	EC-927	
P0305	CYL 5 MISFIRE	EC-927	 [(
P0306	CYL 6 MISFIRE	EC-927	_
P0325*4	KNOCK SENSOR	EC-936	E
P0335	CPS/CIRCUIT (OBD)	EC-940	
P0340	CAM POS SEN/CIRC	EC-946	F
P0420	TW CATALYST SYS-B1	EC-953	
P0430	TW CATALYST SYS-B2	EC-953	- G
P0440	EVAP SMALL LEAK	EC-958	
P0443	PURG VOLUME CONT/V	EC-973	— M
P0455	EVAP GROSS LEAK	EC-997	
P0446	VENT CONTROL VALVE	EC-980	— Aī
P0450	EVAP SYS PRES SEN	EC-986	
P0455	EVAP GROSS LEAK	EC-997	— TF
P0460	FUEL LV SE (SLOSH)	EC-1077	— — PI
P0461	FUEL LEVEL SENSOR	EC-1016	— ri
P0464	FUEL LEVEL SEN/CIRC	EC-1018	 &
P0500	VEH SPEED SEN/CIRC*4	EC-1023	
P0505	IACV/AAC VLV/CIRC	EC-1027	 \$[
P0510	CLOSED TP SW/CIRC	EC-1033	
P0600*4	A/T COMM LINE	EC-1040	— B[
P0605	ECM	EC-1045	
P0705	PNP SW/CIRC	AT-98	 \$1
P0710	ATF TEMP SEN/CIRC	AT-104	
P0720	VEH SPD SEN/CIRC A/T*4	AT-110	R
P0725	ENGINE SPEED SIG	AT-115	
P0731	A/T 1ST GR FNCTN	AT-119	B
P0732	A/T 2ND GR FNCTN	AT-125	
P0733	A/T 3RD GR FNCTN	AT-131	
P0734	A/T 4TH GR FNCTN	AT-137	_
P0740	TCC SOLENOID/CIRC	AT-146	— S(
P0744	A/T TCC S/V FNCTN	AT-151	
P0745	L/PRESS SOL/CIRC	AT-158	

Alphabetical & P No. Index for DTC (Cont'd)

DTC*1	Items (CONSULT-II screen terms)	Reference page
P0750	SFT SOL A/CIRC*2	AT-163
P0755	SFT SOL B/CIRC*2	AT-168
P1126	THERMOSTAT FNCTN	EC-1047
P1148	CLOSED LOOP-B1	EC-1049
P1168	CLOSED LOOP-B2	EC-1049
P1217*4	ENG OVER TEMP	EC-1051
P1336	CPS/CIRC (OBD) COG	EC-1068
P1441	EVAP VERY SMALL LEAK	EC-1077
P1444	PURG VOLUME CONT/V	EC-1092
P1446	VENT CONTROL VALVE	EC-1104
P1447	EVAP PURG FLOW/MON	EC-1111
P1448	VENT CONTROL VALVE	EC-1123
P1464	FUEL LEVL SEN/CIRC	EC-1131
P1490	VC/V BYPASS/V	EC-1135
P1491	VC CUT/V BYPASS/V	EC-1141
P1605	A/T DIAG COMM LINE	EC-1150
P1705	TP SEN/CIRC A/T*2	AT-173
P1706	P-N POS SW/CIRCUIT	EC-1153
P1760	O/R CLUTCH SOL/CIRC	AT-182

^{*1: 1}st trip DTC No. is the same as DTC No.

NOTE:

Regarding D22 models, "-B1" and "BK1" indicate right bank and "-B2" and "BK2" indicate left bank.

^{*2:} When the fail-safe operation occurs, the MIL illuminates.

^{*3:} The MIL illuminates when both the "Revolution sensor signal" and the "Vehicle speed sensor signal" meet the fail-safe condition at the same time.

^{*4:} This DTC is displayed with CONSULT-II only.

PRECAUTIONS

VG33E

Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

The supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER" used along with a seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. The Supplemental Restraint System consists of driver air bag module (located in the center of the steering wheel), front passenger air bag module (located on the instrument panel on passenger side), seat belt pre-tensioners, a diagnosis sensor unit, a crash zone sensor (4WD models), warning lamp, wiring harness and spiral cable.

Information necessary to service the system safely is included in the RS section of this Service Manual.

WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the RS section.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. Spiral cable and wiring harnesses (except "SEAT BELT PRE-TENSIONER") covered with yellow insulation either just before the harness connectors or for the complete harness are related to the SRS.

Precautions for On Board Diagnostic (OBD) System of Engine and A/T

The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the driver of a malfunction causing emission deterioration.

CAUTION:

- Be sure to turn the ignition switch OFF and disconnect the negative battery terminal before any repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves, etc. will cause the MIL to light up.
- Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will
 cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease,
 dirt, bent terminals, etc.)
- Certain systems and components, especially those related to OBD, may use a new style slidelocking type harness connector. For description and how to disconnect, refer to EL section, "Description", "HARNESS CONNECTOR".
- Be sure to route and secure the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MIL to light up due to the short circuit.
- Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
 may cause the MIL to light up due to the malfunction of the EGR system or fuel injection system,
 etc.
- Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and TCM (Transmission control module) before returning the vehicle to the customer.

GI

I @

EC

AT

MIT

TF

90

BR

ST

RS

BT

HA

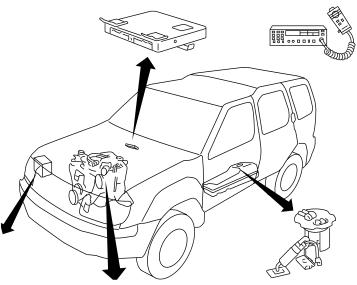
SC

EL

 \mathbb{N}

Engine Fuel & Emission Control System

NGEC0525


ECM

- Do not disassemble ECM.
- Do not turn on board diagnostic test mode selector forcibly.
- If a battery terminal is disconnected, the memory will return to the ECM value

The ECM will now start to self-control at its initial value. Engine operation can vary slightly when the terminal is disconnected. However, this is not an indication of a problem. Do not replace parts because of a slight variation.

WIRELESS EQUIPMENT

- When installing CB ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on its installation location.
- 1) Keep the antenna as far away as possible from the electronic control units.
- Keep the antenna feeder line more than 20 cm (7.9 in) away from the harness of electronic controls.
 Do not let them run parallel for a long distance.
- Adjust the antenna and feeder line so that the standing-wave ratio can be kept smaller.
- 4) Be sure to ground the radio to vehicle body

BATTERY

- Always use a 12 volt battery as power source.
- Do not attempt to disconnect battery cables while engine is running.

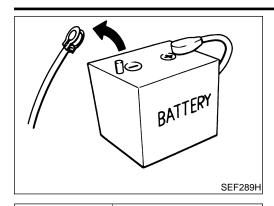
WHEN STARTING

- Do not depress accelerator pedal when starting.
- Immediately after starting, do not rev up engine unnecessarily.
- Do not rev up engine just prior to shutdown.

ECM PARTS HANDLING

- Handle mass air flow sensor carefully to avoid damage.
- Do not disassemble mass air flow sensor.
- Do not clean mass air flow sensor with any type of detergent.
- Do not disassemble IACV-AAC valve.
- Even a slight leak in the air intake system can cause serious problems.
- Do not shock or jar the camshaft position sensor or crankshaft position sensor (OBD).

FUEL PUMP


- Do not operate fuel pump when there is no fuel in lines.
- Tighten fuel hose clamps to the specified torque. (Refer to MA section.)

ECM HARNESS HANDLING

- Securely connect ECM harness connectors.
 - A poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs.
- Keep ECM harness at least 10 cm (3.9 in.) away from adjacent harnesses to prevent an ECM system malfunction due to receiving external noise, degraded operation of ICs, etc.
- Keep ECM parts and harnesses dry.
- Before removing parts, turn off ignition switch and then disconnect battery ground cable.

AEC045B

PRECAUTIONS

Precautions


Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect negative battery terminal. Failure to do so may damage the ECM because battery voltage is applied to ECM even if ignition switch is turned off.

MA

EM

LC

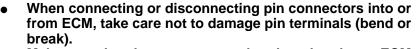
SEF291H

MEF040D

Bend

When connecting ECM harness connector, tighten securing bolt until the gap between orange indicators disappears.

: 3 - 5 N·m (0.3 - 0.5 kg-m, 26 - 43 in-lb)



FE

GL

MT

AT

Make sure that there are not any bends or breaks on ECM pin terminal, when connecting pin connectors.

PD

AX

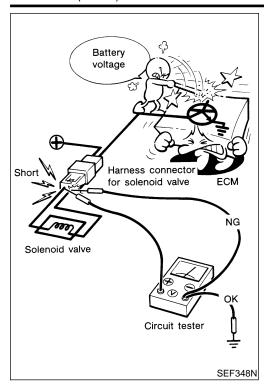
Before replacing ECM, perform "ECM Terminals and Reference Value" inspection and make sure ECM functions

properly. Refer to EC-719.

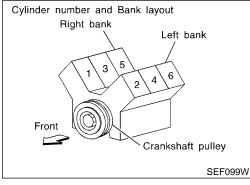
The DTC should not be displayed in the "DTC Confirmation Procedure" if the repair is completed. The "Overall Function Check" should be a good result if the repair is completed.

Perform ECM in-

put/output signal/


inspection before replacement.

OLD ONE


SC

EL

HA

- When measuring ECM signals with a circuit tester, never allow the two tester probes to contact.
 Accidental contact of probes will cause a short circuit and damage the ECM power transistor.
- Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

Regarding model D22, "-B1" indicates the right bank and "-B2" indicates the left bank as shown in the figure.

Wiring Diagrams and Trouble Diagnosis

NGFC0527

When you read Wiring diagrams, refer to the following:

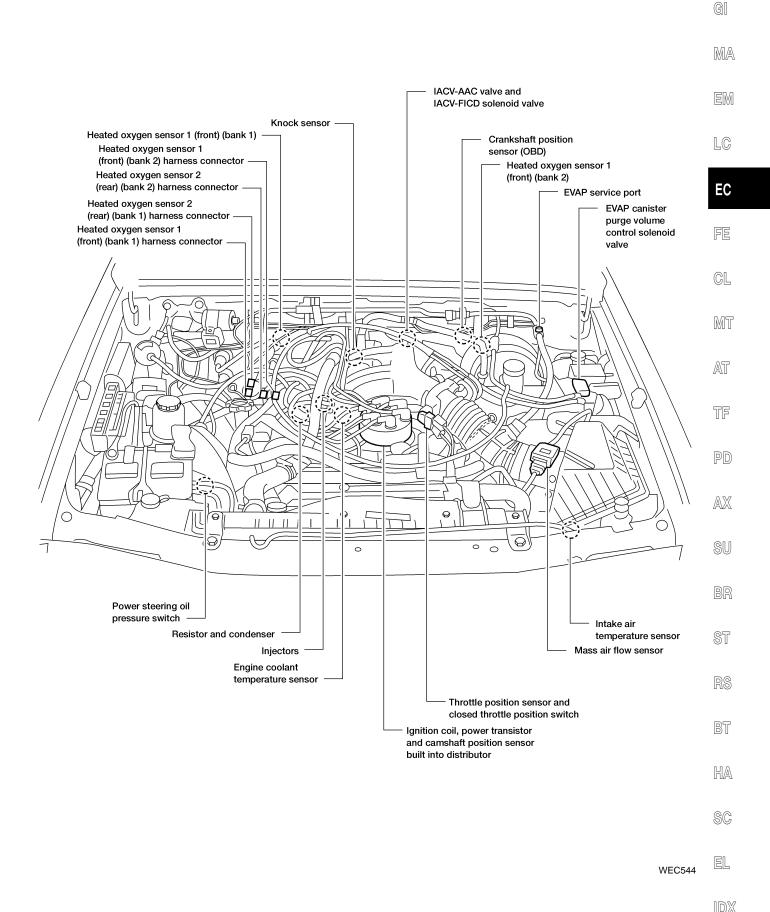
- "HOW TO READ WIRING DIAGRAMS" in GI section
- "POWER SUPPLY ROUTING" for power distribution circuit in EL section

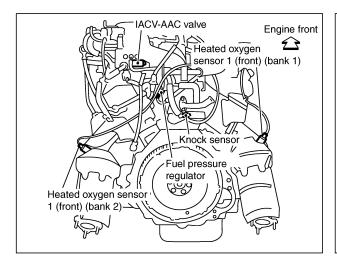
When you perform trouble diagnosis, refer to the following:

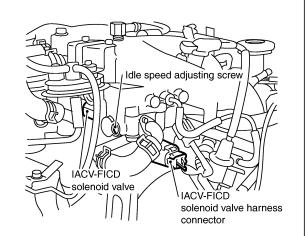
- "HOW TO FOLLOW TEST GROUPS IN TROUBLE DIAGNOSES" in GI section
- "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT" in GI section.

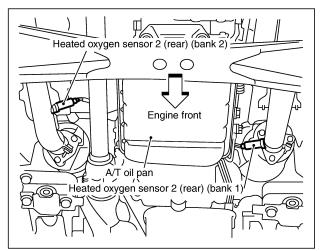
PREPARATION

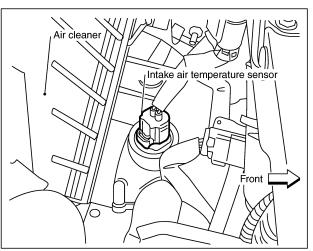
he actual shanes of Kent	Special Service -Moore tools may differ from those of special service	NGEC0528	1
Tool number (Kent-Moore No.) Tool name	Description	tools illustrated fiele.	· G
KV10117100 (J36471-A) Heated oxygen sensor wrench		Loosening or tightening front heated oxygen sensor with 22 mm (0.87 in) hexagon nut	
	NT379		E
KV10114400 (J-38365) Heated oxygen sensor wrench	a a	Loosening or tightening rear heated oxygen sensor a: 22 mm (0.87 in)	F
	NT636		G
(J-44321) Fuel pressure gauge kit	8	Checking fuel pressure	M
			A
	49		T
	Commercial Sei	rvice Tools	P
Tool name (Kent-Moore No.)	Description	NGEC0529	A
Leak detector (J41416)		Locating the EVAP leak	SI
			B
			S
EVAP service port adapter	NT703	Applying positive pressure through EVAP service port	R
(J41413-OBD)		r	B
			H
	NT704		' S

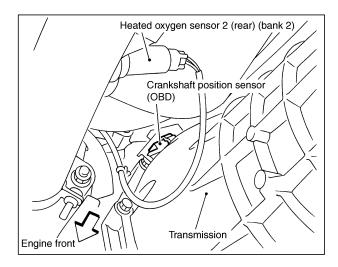

EL

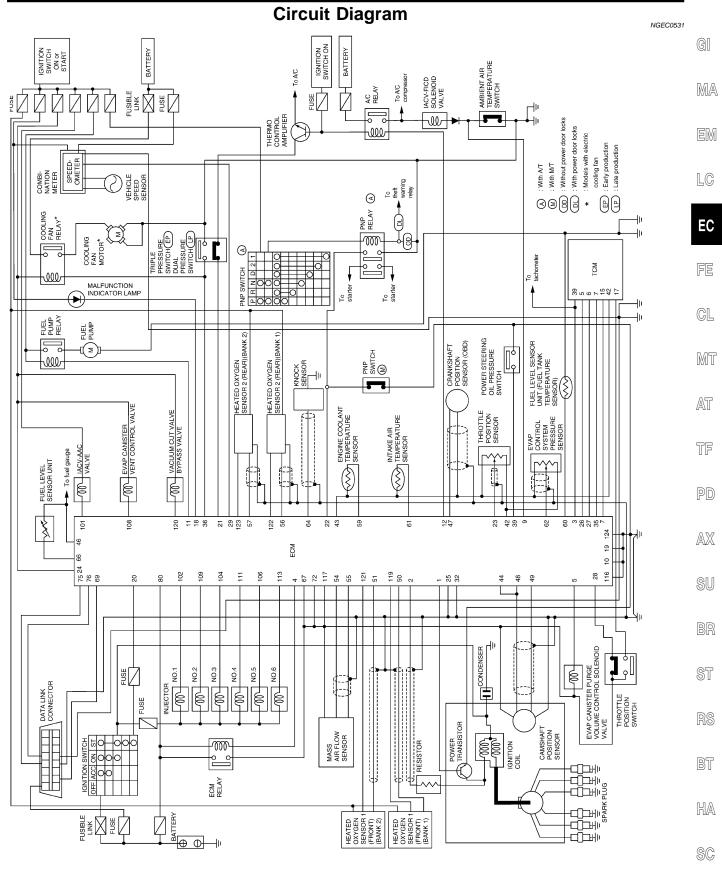

Tool name (Kent-Moore No.)	Description	
Hose clipper	Approx. 20 mm (0.79 in)	Clamping the EVAP purge hose between the fuel tank and EVAP canister applied to DTC P1440 [EVAP control system (small leak-positive pressure)]
Fuel filler cap adapter	NT720	Checking fuel tank vacuum relief valve opening pressure
Socket wrench	19 mm (0.75 in) More than 32 mm (1.26 in)	Removing and installing engine coolant temperature sensor
Oxygen sensor thread cleaner (J-43897-18) (J-43897-12)	AEM488	Reconditioning the exhaust system threads before installing a new oxygen sensor. Use with anti-seiz lubricant shown in "Commercial Service Tools". a: J-43897-18 18 mm diameter, for Zirconia Oxygen Sensor b: J-43897-12 12 mm diameter, for Titania Oxyger Sensor
Anti-seize lubricant (Permatex [®] 133AR or equivalent meeting MIL specification MIL-A-907)	ALIM-100	Lubricating oxygen sensor thread cleaning tool when reconditioning exhaust system threads.
	AEM489	


Engine Control Component Parts Location

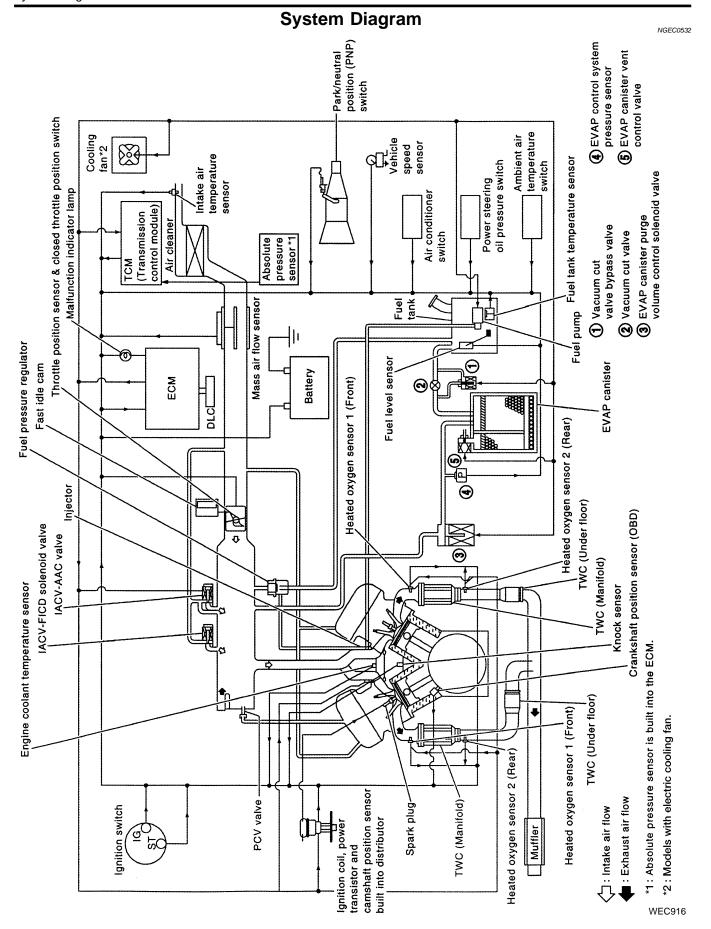

Engine Control Component Parts Location


NGEC0530





SEF792Z


ENGINE AND EMISSION CONTROL OVERALL SYSTEM

WEC125A

EL

Vacuum Hose Drawing

Vacuum Hose Drawing

Refer to "System Diagram", EC-612 for Vacuum Control System.

NGEC0533

GI

EM

LC

EC

FE

CL

MT

AT

TF

PD

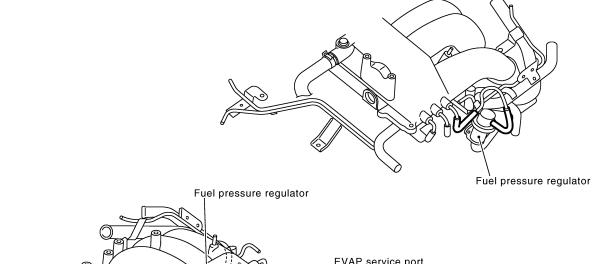
 $\mathbb{A}\mathbb{X}$

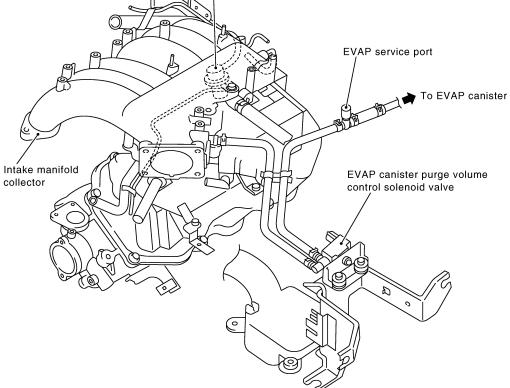
SU

BR

ST

RS


BT


HA

SEF794Z

SC

EL

NOTE:

Do not use soapy water or any type of solvent while installing vacuum hoses or purge hoses.

ENGINE AND EMISSION CONTROL OVERALL SYSTEM

VG33E

System Chart

System Chart		
Input (Sensor)	ECM Function	Output (Actuator)
Camshaft position sensor	Fuel injection & mixture ratio control	Injectors
Mass air flow sensorEngine coolant temperature sensor	Distributor ignition system	Power transistor
 Heated oxygen sensor 1 (front) Ignition switch Throttle position sensor 	Idle air control system	IACV-AAC valve and IACV-FICD solenoid valve
 Closed throttle position switch *4 	Fuel pump control	Fuel pump relay
Park/neutral position (PNP) switchAir conditioner switch	On board diagnostic system	MIL (On the instrument panel)
 Knock sensor Intake air temperature sensor Absolute pressure sensor (Built into ECM) 	Heated oxygen sensor 1 heater (front) control	Heated oxygen sensor 1 heater (front)
EVAP control system pressure sensor *1Battery voltage	Heated oxygen sensor 2 heater (rear) control	Heated oxygen sensor 2 heater (rear)
 Power steering oil pressure switch Vehicle speed sensor Fuel tank temperature sensor *1 	EVAP canister purge flow control	EVAP canister purge volume control solenoid valve
 Crankshaft position sensor (OBD) *1 Rear heated oxygen sensor *3 	Air conditioning cut control	Air conditioner relay
 TCM (Transmission control module) *2 	Cooling fan control*5	Cooling fan relays*5
Ambient air temperature switch	ON BOARD DIAGNOSIS for EVAP system	EVAP canister vent control valve Vacuum cut valve bypass valve

^{*1:} These sensors are not used to control the engine system. They are used only for the on board diagnosis.

^{*2:} The DTC related to A/T will be sent to ECM.

^{*3:} This sensor is not used to control the engine system under normal conditions.

^{*4:} This switch will operate in place of the throttle position sensor to control EVAP parts if the sensor malfunctions.

^{*5:} Models with electric cooling fan.

VG33E

Multiport Fuel Injection (MFI) System

Multiport Fuel Injection (MFI) System

DESCRIPTION Input/Output Signal Chart

NGEC0535

GI NGEC0535S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator	MA
Camshaft position sensor	Engine speed and piston position			
Mass air flow sensor	Amount of intake air			EM
Engine coolant temperature sensor	Engine coolant temperature			I @
Heated oxygen sensor 1 (front)	Density of oxygen in exhaust gas			LC
Throttle position sensor	Throttle position Throttle valve idle position			EC
Park/neutral position (PNP) switch	Gear position	Fuel injec-		
Vehicle speed sensor	Vehicle speed	tion & mix-	Injectors	FE
Ignition switch	Start signal	ture ratio control		
Air conditioner switch	Air conditioner operation	1		GL
Knock sensor	Engine knocking condition	7		0/052
Battery	Battery voltage	1		MT
Absolute pressure sensor (Built into ECM)	Ambient air barometric pressure			AT
Power steering oil pressure switch	Power steering operation	7		Æ
Heated oxygen sensor 2 (rear)*	Density of oxygen in exhaust gas			TF

^{*} Under normal conditions, this sensor is not for engine control operation.

Basic Multiport Fuel Injection System

The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from both the camshaft position sensor and the mass air flow sensor.

SU

PD

Various Fuel Injection Increase/Decrease Compensation

In addition, the amount of fuel injected is compensated to improve engine performance under various operating conditions as listed below.

<Fuel increase>

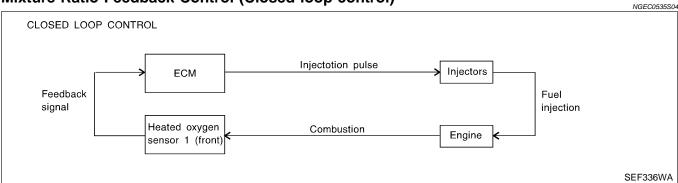
- During warm-up
- When starting the engine
- **During acceleration**
- Hot-engine operation
- When selector lever is changed from "N" to "D"
- High-load, high-speed operation

<Fuel decrease>

- During deceleration
- During high engine speed operation

BT

ST



VG33E

Multiport Fuel Injection (MFI) System (Cont'd)

Mixture Ratio Feedback Control (Closed loop control)

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The warm-up three way catalyst can then better reduce CO, HC and NOx emissions. This system uses a heated oxygen sensor 1 (front) in the exhaust manifold to monitor if the engine operation is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about the heated oxygen sensor 1 (front), refer to EC-778. This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition.

Heated oxygen sensor 2 (rear) is located downstream of the warm-up three way catalyst. Even if the switching characteristics of the heated oxygen sensor 1 (front) shift, the air-fuel ratio is controlled to stoichiometric by the signal from the heated oxygen sensor 2 (rear).

Open Loop Control

NGEC0535St

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

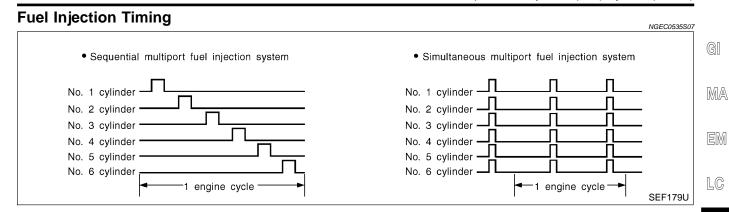
- Deceleration and acceleration
- High-load, high-speed operation
- Malfunction of heated oxygen sensor 1 (front) or its circuit
- Insufficient activation of heated oxygen sensor 1 (front) at low engine coolant temperature
- High engine coolant temperature
- During warm-up
- When starting the engine

Mixture Ratio Self-learning Control

NGEC0535S0

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from the heated oxygen sensor 1 (front). This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both manufacturing differences (i.e., mass air flow sensor hot wire) and characteristic changes during operation (i.e., injector clogging) directly affect mixture ratio.

Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.


"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short term fuel trim and long term fuel trim.

"Short term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from the heated oxygen sensor 1 (front) indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean.

"Long term fuel trim" is overall fuel compensation carried out long-term to compensate for continual deviation of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences, wear over time and changes in the usage environment.

VG33E

Multiport Fuel Injection (MFI) System (Cont'd)

Two types of systems are used.

Sequential Multiport Fuel Injection System

VGEC0535S0701

EC

FE

GL

MT

AT

TF

PD

AX

SU

ST

BT

HA

SC

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

Simultaneous Multiport Fuel Injection System

IGEC0535S0702

Fuel is injected simultaneously into all six cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.

The six injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

Fuel Shut-off

IGEC0535S08

Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.

Distributor Ignition (DI) System

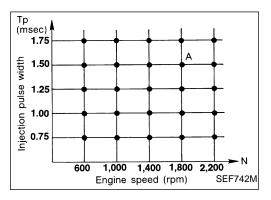
DESCRIPTION Input/Output Signal Chart

NGFC0536

NGEC0536S0

· · ·				NGEC0536S01
Sensor	Input Signal to ECM	ECM func-	Actuator	
Camshaft position sensor	Engine speed and piston position			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Throttle position sensor	Throttle position Throttle valve idle position	Ignition		
Vehicle speed sensor	Vehicle speed	timing con-	Power transistor	
Ignition switch	Start signal			
Knock sensor	Engine knocking			
Park/neutral position (PNP) switch	Gear position			
Battery	Battery voltage			

EL


 $\mathbb{D}\mathbb{X}$

Distributor Ignition (DI) System (Cont'd)

VG33E

System Description

NGEC0536S02

The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the engine. The ignition timing data is stored in the ECM. This data forms the map shown.

The ECM receives information such as the injection pulse width and camshaft position sensor signal. Computing this information, ignition signals are transmitted to the power transistor.

e.g., N: 1,800 rpm, Tp: 1.50 msec A °BTDC

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.

- At starting
- During warm-up
- At idle
- At low battery voltage
- During acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

Air Conditioning Cut Control

DESCRIPTION Input/Output Signal Chart

NGEC0537

NGEC0537S01

Sensor	Input Signal to ECM	ECM function	Actuator	
Air conditioner switch	Air conditioner "ON" signal			
Throttle position sensor	Throttle valve opening angle			
Camshaft position sensor	Engine speed			
Engine coolant temperature sensor	Engine coolant temperature	Air conditioner cut control	Air conditioner relay	
Ignition switch	Start signal			
Vehicle speed sensor	Vehicle speed			
Power steering oil pressure switch	Power steering operation			

System Description

NGEC0537S02

This system improves engine operation when the air conditioner is used. Under the following conditions, the air conditioner is turned OFF.

- When the accelerator pedal is fully depressed.
- When cranking the engine.
- At high engine speeds.
- When the engine coolant temperature becomes excessively high.
- When operating power steering during low engine speed or low vehicle speed.
- When engine speed is excessively low.

VG33E

Fuel Cut Control (at no load & high engine speed)

Fuel Cut Control (at no load & high engine speed)

DESCRIPTION Input/Output Signal Chart

NGEC0538

<u> </u>	NGEC0538S01			C0538S01	MA
Sensor	Input Signal to ECM	ECM func- tion	Actuator		
Vehicle speed sensor	Vehicle speed			[2	
Park/neutral position (PNP) switch	Neutral position			п	
Throttle position sensor	Throttle position	Fuel cut control	Injectors	L	_C
Engine coolant temperature sensor	Engine coolant temperature				
Camshaft position sensor	Engine speed				EC

GI

If the engine speed is above 2,500 rpm with no load (for example, in neutral and engine speed over 2,500 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed. Fuel cut will operate until the engine speed reaches 2,000 rpm, then fuel cut is cancelled.

FE

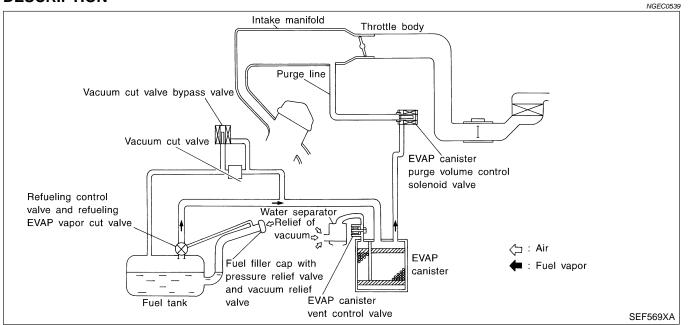
MT

AT

TF

PD

ST


BT

HA

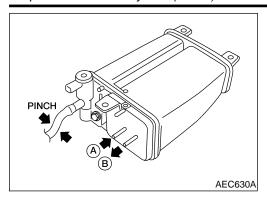
This function is different from deceleration control listed under "Multiport Fuel Injection (MFI) System", EC-615.

Evaporative Emission System

DESCRIPTION

The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.

The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the vapor is stored there when the engine is not operating or when refueling to the fuel tank.

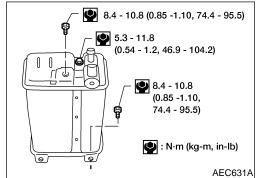

The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the engine is operating. EVAP canister purge volume control solenoid valve is controlled by ECM. When the engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is proportionally regulated as the air flow increases.

EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating and idling.

SC

VG33E

Evaporative Emission System (Cont'd)

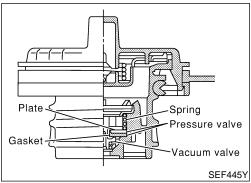

INSPECTION EVAP Canister

NGEC0540

NGEC0540S01

Check EVAP canister as follows:

- 1. Pinch the fresh air hose.
- Blow air into port A and check that it flows freely out of port B.



Tightening Torque

NGEC0540S02

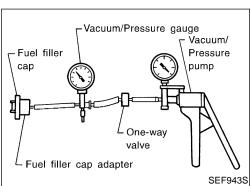
Tighten EVAP canister as shown in the figure.

Make sure new O-ring is installed properly between EVAP canister and EVAP canister vent control valve.

Fuel Tank Vacuum Relief Valve (Built into fuel filler cap)

- 1. Wipe clean valve housing.
- 2. Check valve opening pressure and vacuum.

Pressure:


15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 - 2.90 psi) Vacuum:

-6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm², -0.87 to -0.48 psi)

3. If out of specification, replace fuel filler cap as an assembly.

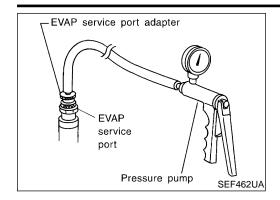
CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come ON

Vacuum Cut Valve and Vacuum Cut Valve Bypass Valve Refer to EC-1141.

Evaporative Emission (EVAP) Canister Purge Volume Control Solenoid Valve

Refer to EC-973.


NGEC0540S05

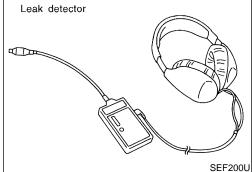
Tank Fuel Temperature Sensor

Refer to EC-901.

NGEC0540S06

Evaporative Emission System (Cont'd)

Evap Service Port


Positive pressure is delivered to the EVAP system through the EVAP service port. If fuel vapor leakage in the EVAP system occurs, use a leak detector to locate the leak.

GI

MA

LC

EC

How to Detect Fuel Vapor Leakage

CAUTION:

Never use compressed air or a high pressure pump.

Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in EVAP system.

FE

NOTE:

Do not start engine.

Improper installation of EVAP service port adapter to the EVAP service port may cause a leak.

MT

(P) With CONSULT-II

MODE" with CONSULT-II.

Attach the EVAP service port adapter securely to the EVAP service port.

Also attach the pressure pump and hose to the EVAP service port adapter.

TF

Turn ignition switch ON. Select the "EVAP SYSTEM CLOSE" of "WORK SUPPORT

Touch "START". A bar graph (Pressure indicating display) will 5) appear on the screen.

PD)

Apply positive pressure to the EVAP system until the pressure indicator reaches the middle of the bar graph.

AX

Remove EVAP service port adapter and hose with pressure pump.

Locate the leak using a leak detector. Refer to "EVAPORATIVE 8) EMISSION LINE DRAWING", EC-623.

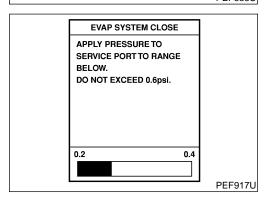
ST

BT

HA

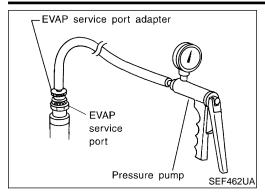
SC

EL


EVAP SYSTEM CLOSE

APPLY PRESSURE TO EVAP SYSTEM FROM SERVICE PORT USING HAND PUMP WITH PRESSURE GAUGE AT NEXT SCREEN. NEVER USE COMPRESSED AIR OR HIGH PRESSURE PUMP!

DO NOT START ENGINE.


TOUCH START.

PEF838U

VG33E

Evaporative Emission System (Cont'd)

⋈ Without CONSULT-II

- Attach the EVAP service port adapter securely to the EVAP service port.
- 2) Also attach the pressure pump with pressure gauge to the EVAP service port adapter.
- Apply battery voltage to between the terminals of both EVAP canister vent control valve and vacuum cut valve bypass valve to make a closed EVAP system.
- 4) To locate the leak, deliver positive pressure to the EVAP system until pressure gauge points reach 1.38 to 2.76 kPa (0.014 to 0.028 kg/cm², 0.2 to 0.4 psi).
- 5) Remove EVAP service port adapter and hose with pressure pump.
- 6) Locate the leak using a leak detector. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-623.

VG33E

Evaporative Emission System (Cont'd)

EVAPORATIVE EMISSION LINE DRAWING

NGEC0541

GI

MA

EM

LC

EC

FE

GL

MT

AT

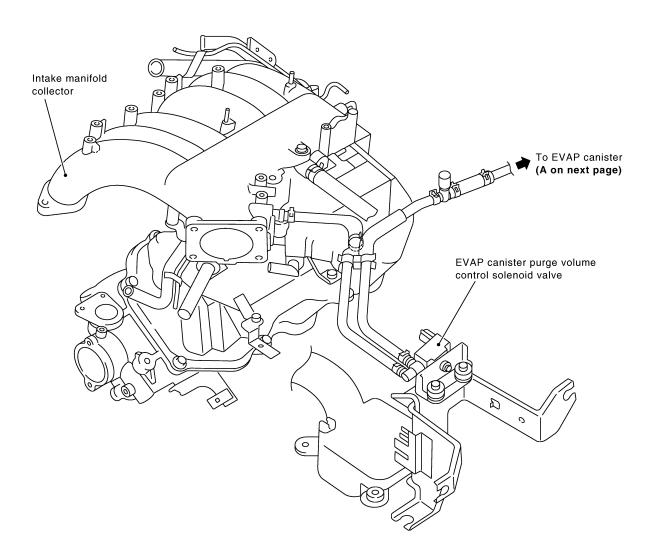
TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

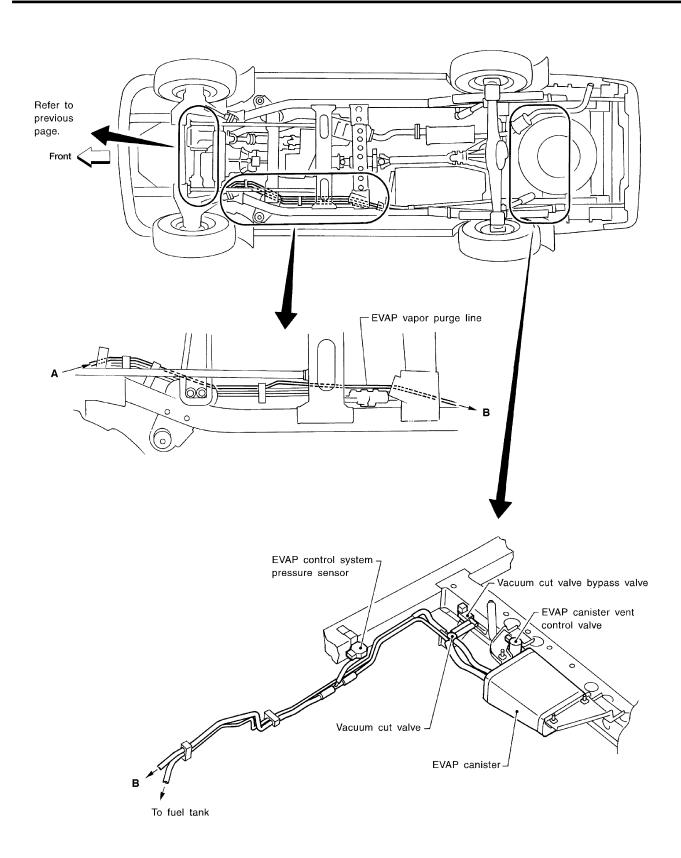

ST

RS

BT

HA

SC

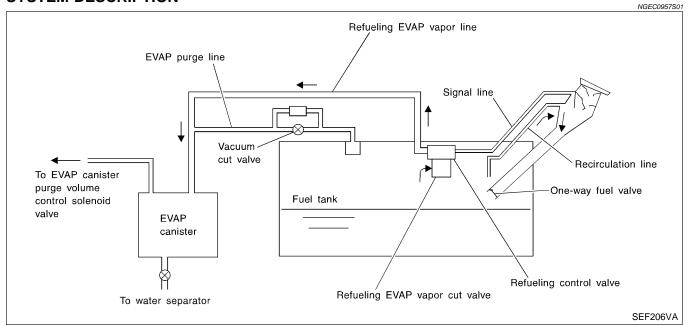

NOTE:

Do not use soapy water or any type of solvent while installing vacuum hoses or purge hoses.

SEF795Z

EL

VG33E


AEC886A

VG33E

On Board Refueling Vapor Recovery (ORVR)

On Board Refueling Vapor Recovery (ORVR)

SYSTEM DESCRIPTION

From the beginning of refueling, the fuel tank pressure goes up. When the pressure reaches the setting value of the refueling control valve (RCV) opening pressure, the RCV is opened. After RCV opens, the air and vapor inside the fuel tank go through refueling EVAP vapor cut valve, RCV and refueling vapor line to the EVAP canister. The vapor is absorbed by the EVAP canister and the air is released to the atmosphere.

When the refueling has reached the full level of the fuel tank, the refueling EVAP vapor cut valve is closed and refueling is stopped because of auto shut-off. The vapor which was absorbed by the EVAP canister is purged during driving.

The RCV is always closed during driving and the evaporative emission control system is operated the same as conventional system.

WARNING:

When conducting inspections below, be sure to observe the following:

- Put a "CAUTION: INFLAMMABLE" sign in workshop.
- Do not smoke while servicing fuel system. Keep open flames and sparks away from work area.
- Be sure to furnish the workshop with a CO₂ fire extinguisher.

CAUTION:

- Before removing fuel line parts, carry out the following procedures:
- a) Put drained fuel in an explosion-proof container and put lid on securely.
- b) Release fuel pressure from fuel line. Refer to "Fuel Pressure Release", EC-637.
- c) Disconnect battery ground cable.
- Always replace O-ring when the fuel gauge retainer is removed.
- Do not kink or twist hose and tube when they are installed.
- Do not tighten hose and clamps excessively to avoid damaging hoses.
- After installation, run engine and check for fuel leaks at connection.
- Do not attempt to top off the fuel tank after the fuel pump nozzle shuts off automatically. Continued refueling may cause fuel overflow, resulting in fuel spray and possibly a fire.

GI

MA

LC

EC

GL

MT

TF

PD

AX

ST

HA

SC

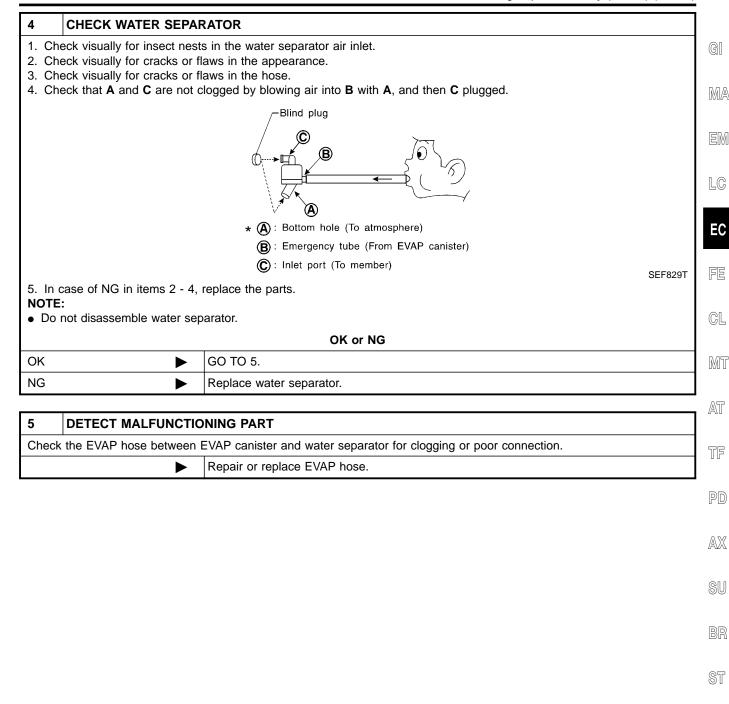
EL

VG33E

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

DIAGNOSTIC PROCEDURE

Symptom: Fuel Odor from EVAP Canister Is Strong.


NGEC0957S02

- NGEC0957S0201 **CHECK EVAP CANISTER** 1. Remove EVAP canister with EVAP canister vent control valve attached. 2. Weigh the EVAP canister with EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb). OK or NG OK GO TO 2. NG GO TO 3.
- CHECK IF EVAP CANISTER SATURATED WITH WATER Does water drain from the EVAP canister? EVAP canister **EVAP** canister vent control valve SEF596U Yes or No Yes GO TO 3. No (With CONSULT-II) GO TO 6. No (Without CONSULT-GO TO 7. II)

3	REPLACE EVAP CANISTER	
Repla	Replace EVAP canister with a new one.	
	▶ GO TO 4.	

VG33E

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

BT

HA

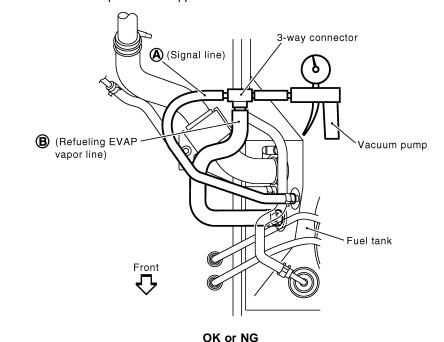
SC

VG33E

SEF707Z

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CHECK REFUELING EVAP VAPOR CUT VALVE


(P) With CONSULT-II

6

- 1. Remove fuel tank. Refer to FE-4, "FUEL SYSTEM.
- 2. Drain fuel from the tank as follows:
- a. Remove fuel feed hose located on the fuel gauge retainer.
- b. Connect a spare fuel hose, one side to fuel gauge retainer where the hose was removed and the other side to a fuel container
- c. Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.
 - Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

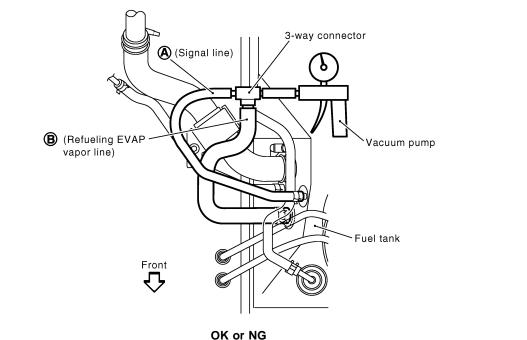
- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

ОК		GO TO 8.
NG		Replace refueling EVAP vapor cut valve with fuel tank.

VG33E

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CHECK REFUELING EVAP VAPOR CUT VALVE


Without CONSULT-II

7

- 1. Remove fuel tank. Refer to FE-4, "FUEL SYSTEM".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel gauge retainer.
- b. Drain fuel from the tank using a hand pump into a fuel container.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.
 - Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

OK •	GO TO 8.
NG ▶	Replace refueling EVAP vapor cut valve with fuel tank.

GI

MA

LC

EC

FE

CL

MT

AT

TF

PD

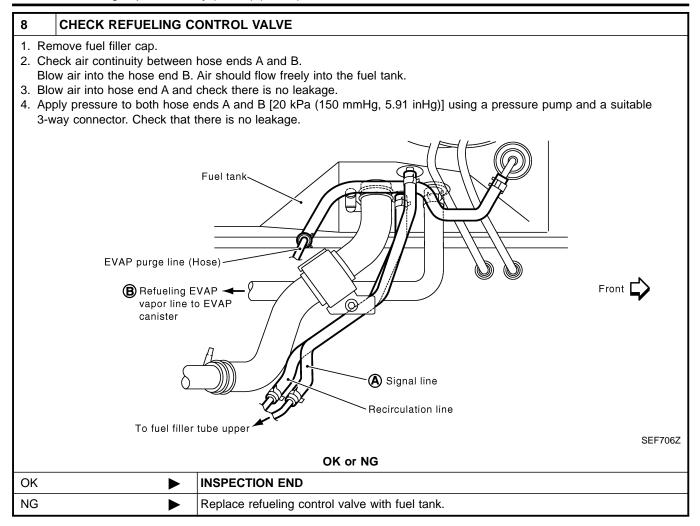
SU

SEF707Z

ST

RS

BT

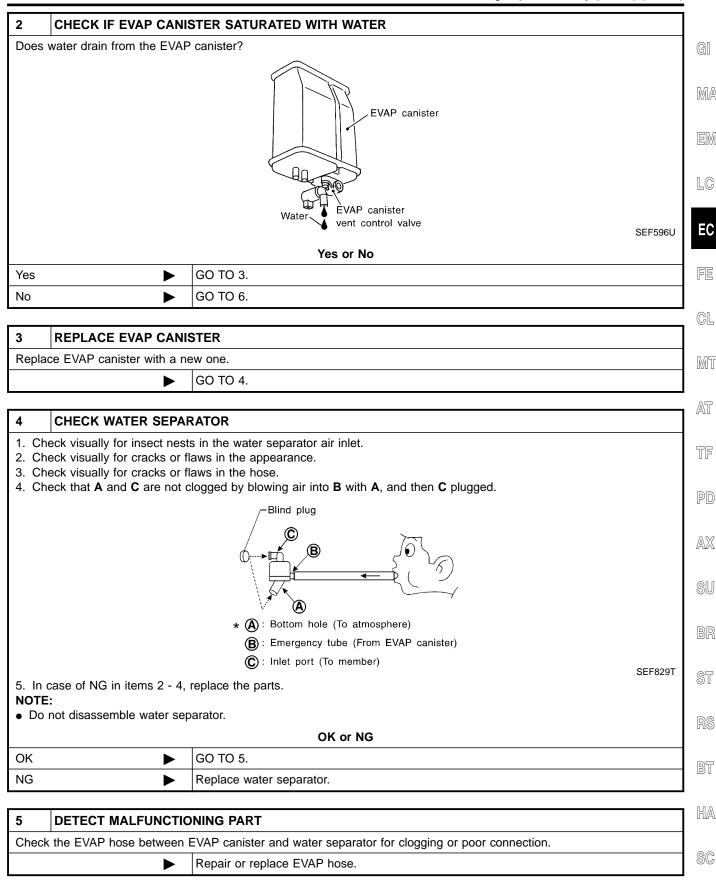

HA

SC

EL

VG33E

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

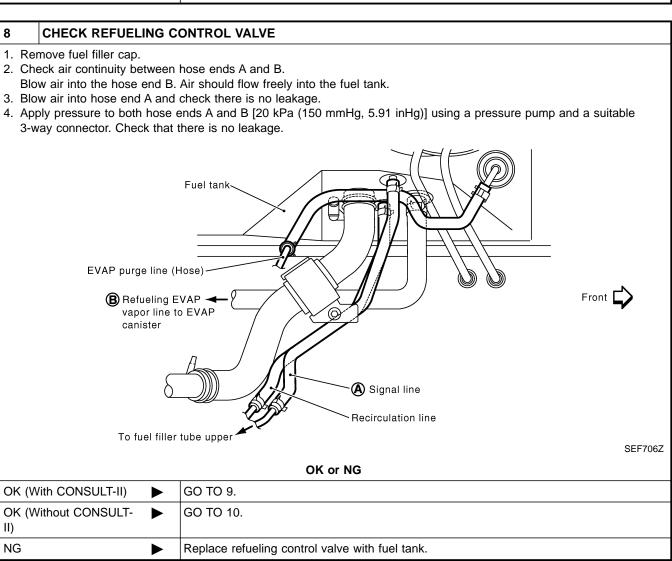


Symptom: Cannot Refuel/Fuel Odor From The Fuel Filler Opening Is Strong While Refueling.

Refue	Refueling.				
1	1 CHECK EVAP CANISTER				
2. We	 Remove EVAP canister with EVAP canister vent control valve attached. Weigh the EVAP canister with EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb). 				
	OK or NG				
ОК	>	GO TO 2.			
NG	>	GO TO 3.			

VG33E

On Board Refueling Vapor Recovery (ORVR) (Cont'd)



VG33E

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

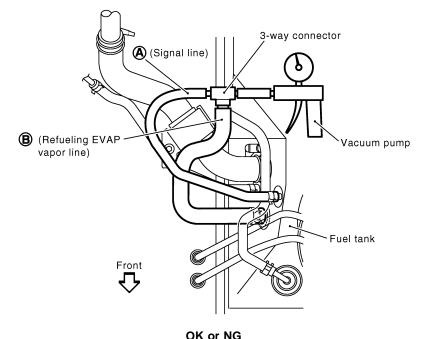
6	CHECK VENT HOSES AND VENT TUBES		
	Check hoses and tubes between EVAP canister and refueling control valve for clogging, kink, looseness and improper connection.		
		OK or NG	
OK	>	GO TO 7.	
NG	>	Repair or replace hoses and tubes.	

7	CHECK FILLER NECK TUBE		
Check signal line and recirculation line for clogging, dents and cracks.			
OK or NG			
OK	>	GO TO 8.	
NG	>	Replace filler neck tube.	

VG33E

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CHECK REFUELING EVAP VAPOR CUT VALVE


(P) With CONSULT-II

9

- 1. Remove fuel tank. Refer to FE-4, "FUEL SYSTEM".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel feed hose located on the fuel gauge retainer.
- b. Connect a spare fuel hose, one side to fuel gauge retainer where the hose was removed and the other side to a fuel container.
- c. Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.
 - Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

		on or no
ОК	•	GO TO 11.
NG	>	Replace refueling EVAP vapor cut valve with fuel tank.

GI

MA

EM

LG

EC

.

FE

CL

MT

AT

PD

TF

A\ \\

@11

SEF707Z

BF

ST

D@

BT

HA

SC

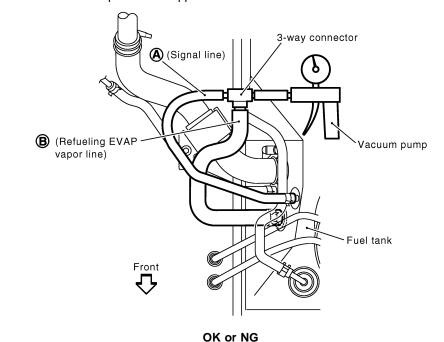
EL

 \mathbb{N}

VG33E

SEF707Z

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

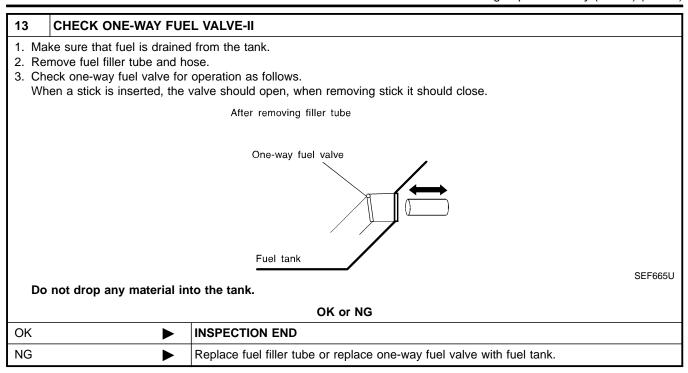

10 CHECK REFUELING EVAP VAPOR CUT VALVE

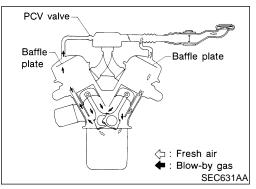
Without CONSULT-II

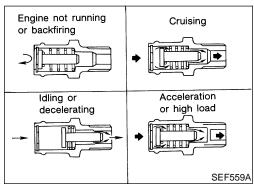
- 1. Remove fuel tank. Refer to FE-4, "FUEL SYSTEM".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel gauge retainer.
- b. Drain fuel from the tank using a hand pump into a fuel container.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.
 - Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.

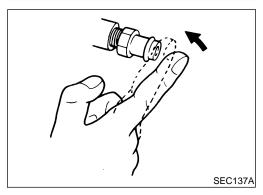
Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.




11	CHECK FUEL FILLER TUBE				
Check filler neck tube and hose connected to the fuel tank for clogging, dents and cracks.					
OK or NG					
OK ▶ GO TO 12.					
NG	<u> </u>				


12	CHECK ONE-WAY FUEL VALVE-I				
Check one-way valve for clogging.					
	OK or NG				
OK	OK ► GO TO 13.				
NG	•	Repair or replace one-way fuel valve with fuel tank.			


VG33E

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

Positive Crankcase Ventilation DESCRIPTION

This system returns blow-by gas to the intake manifold.

The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake manifold.

During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve.

Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air.

The ventilating air is then drawn from the air inlet tubes into the crankcase. In this process the air passes through the hose connecting air inlet tubes to rocker cover.

Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve. The flow goes through the hose connection in the reverse direction.

On vehicles with an excessively high blow-by, the valve does not meet the requirement. This is because some of the flow will go through the hose connection to the air inlet tubes under all conditions.

INSPECTION

PCV (Positive Crankcase Ventilation) Valve

With engine running at idle, remove PCV valve ventilation hose from PCV valve; if the valve is working properly, a hissing noise will be heard as air passes through it and a strong vacuum should be felt immediately when a finger is placed over valve inlet.

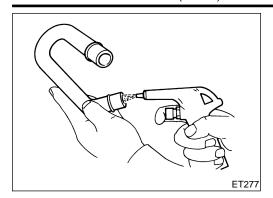
GI

MA

EC

MT

AT NGEC0542

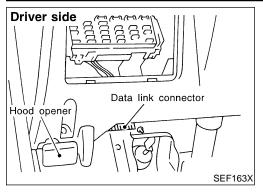

PD

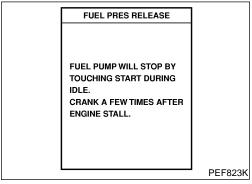
TF

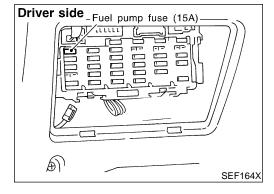
SC

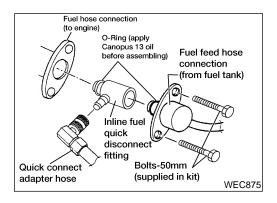
VG33E

Positive Crankcase Ventilation (Cont'd)




PCV Valve Ventilation Hose


NGEC0543S02


- 1. Check hoses and hose connections for leaks.
- 2. Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.

Fuel Pressure Release

Fuel Pressure Release

Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger.

(P) WITH CONSULT-II

Turn ignition switch ON.

Perform "FUEL PRESSURE RELEASE" in "WORK SUP-PORT" mode with CONSULT-II.

3. Start engine.

After engine stalls, crank it two or three times to release all fuel pressure.

Turn ignition switch OFF.

GI

NGEC0544S01

MA

LC

EC

GL

MT

AT

N WITHOUT CONSULT-II

Remove fuel pump fuse located in fuse box.

Start engine.

After engine stalls, crank it two or three times to release all fuel pressure.

Turn ignition switch OFF. 4.

Reinstall fuel pump fuse after servicing fuel system.

PD

NGEC0544S02

Fuel Pressure Check

Use Fuel Pressure Gauge Kit J-44321 to check fuel pressure.

Do not perform fuel pressure check with system operating. Fuel pressure gauge may indicate false readings.

Release fuel pressure to zero.

Install the inline fuel quick disconnect fitting between the connection of the fuel feed hose (from tank) and the fuel hose (to engine).

ST

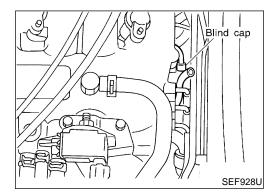
Connect the fuel pressure test gauge (quick connect adapter hose) to the quick disconnect fitting.

Start engine and check for fuel leakage.

Read the indication of fuel pressure gauge.

At idling:

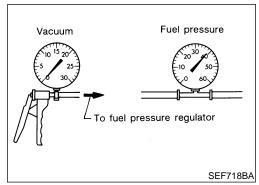
With vacuum hose connected Approximately 235 kPa (2.4 kg/cm², 34 psi) With vacuum hose disconnected


Approximately 294 kPa (3.0 kg/cm², 43 psi)

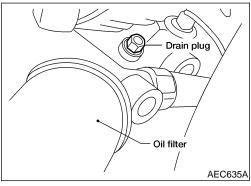
HA

SC

EL


If results are unsatisfactory, perform Fuel Pressure Regulator Check.

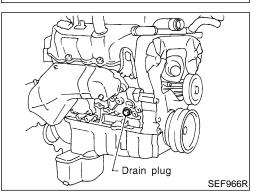
Fuel Pressure Regulator Check


VGEC0546

- Stop engine and disconnect fuel pressure regulator vacuum hose from intake manifold.
- Plug intake manifold with a blind cap.
- 3. Connect variable vacuum source to fuel pressure regulator.

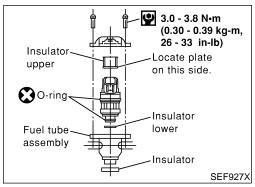
4. Start engine and read indication of fuel pressure gauge as vacuum is changed.

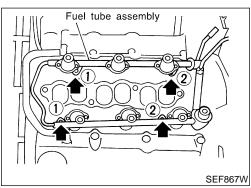
Fuel pressure should decrease as vacuum increases. If results are unsatisfactory, replace fuel pressure regulator.



Injector

REMOVAL AND INSTALLATION


NGEC0547


- 1. Release fuel pressure to zero. Refer to EC-637.
- Drain coolant by removing drain plugs from both sides of cylinder block.
- Separate ASCD and accelerator control wire from intake manifold collector.
- 4. Remove intake manifold collector from engine. The following parts should be disconnected or removed.
- a. Harness connectors for
- IACV-AAC valve
- IACV-FICD solenoid valve
- Throttle position sensor and closed throttle position switch assembly
- Ground harness
- b. PCV valve ventilation hoses
- c. Vacuum hoses for
- Brake booster
- Fuel pressure regulator
- d. Air hoses from
- Air duct

Injector (Cont'd)

- IACV-AAC valve
- Water hoses for e.
- Throttle body •
- Air relief plug
- EVAP canister purge hose f.
- Remove injector fuel tube assembly. The following parts should be disconnected or removed.
- Vacuum hose for fuel pressure regulator
- Fuel feed and return hose
- All injectors harness connectors
- Push injector tail piece.
- Do not pull on connector.
- Do not extract injector by pinching.

DATA MONITOR MONITOR NO DTC COOLAN TEMP/S XXX °C SEF013Y

- Push out any malfunctioning injector from injector fuel tube.
- 7. Replace or clean injector as necessary.
- Always replace O-rings with new ones. •
- Lubricate O-rings with engine oil.
- Install injector to injector fuel tube assembly.
- Install injectors with fuel tube assembly to intake manifold. Tighten in numerical order shown in the figure.
- First, tighten all bolts to 4.9 to 6.0 N·m (0.5 to 0.61 kg-m, 3.6 to 4.4 ft-lb).
- Then, tighten all bolts to 10.8 to 14.7 N·m (1.1 to 1.5 kg-m, 8 to 11 ft-lb).
- 10. Reinstall any part removed in reverse order of removal.

CAUTION:

After properly connecting fuel hose to injector and fuel tube, check connection for fuel leakage.

Fast Idle Cam (FIC) **INSPECTION AND ADJUSTMENT**

With CONSULT-II

Turn ignition switch ON.

- See "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- When engine coolant temperature is 20 to 30°C (68 to 86°F), make sure that the center of mark A is aligned with mark B as shown in the figure.

MA

GI

LC

EC

FE

GL

MT

AT

TF

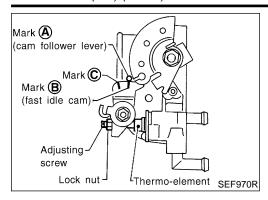
PD

AX

SU

ST

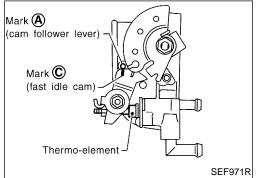
BT

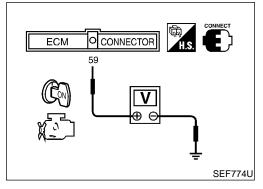

NGEC0548

NGEC0548S01

HA

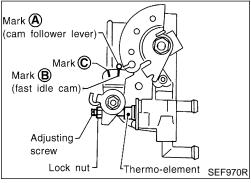
EIL


Fast Idle Cam (FIC) (Cont'd)


If NG, adjust by turning adjusting screw.

Lock nut:

(a) : 0.98 - 1.96 N·m (10 - 20 kg-cm, 8.7 - 17.4 in-lb)


- 4. Start engine and warm it up.
- 5. When engine coolant temperature is 75 to 85°C (167 to 185°F), check the following.
- The center of mark A is aligned with mark C.
- The cam follower lever's roller is not touching the fast idle cam.
- If NG, replace thermo-element and perform the above inspection and adjustment again.

⋈ Without CONSULT-II

NGFC0548S02

- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminal 59 (Engine coolant temperature sensor signal) and ground.
- When the voltage is between 3.12 to 3.52V, make sure that the center of mark A is aligned with mark B as shown in the figure.

If NG, adjust by turning adjusting screw.

Lock nut:

(a) : 0.98 - 1.96 N·m (10 - 20 kg-cm, 8.7 - 17.4 in-lb)

- Mark (A)
 (cam follower lever)

 Mark (C)
 (fast idle cam)

 Thermo-element
- 4. Start engine and warm it up.
- 5. When the voltage is between 1.10 to 1.36V, check the following.
- The center of mark A is aligned with mark C.
- The cam follower lever's roller is not touching the fast idle cam.
- If NG, replace thermo-element and perform the above inspection and adjustment again.

VG33E

GI

MA

LC

EC

FE

GL

MT

AT

TF

PD

SU

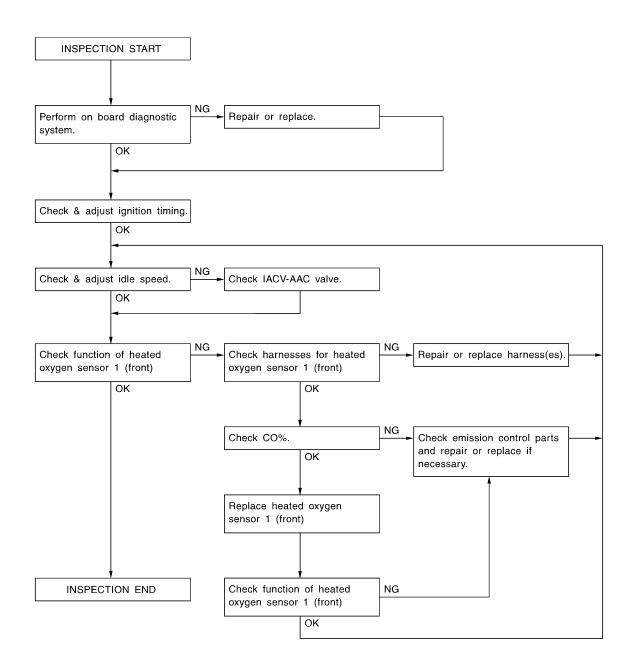
ST

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment

NGEC0549 **PREPARATION** NGEC0549S01 1) Make sure that the following parts are in good order. **Battery** Ignition system Engine oil and coolant levels Fuses ECM harness connector Vacuum hoses Air intake system (Oil filler cap, oil level gauge, etc.) Fuel pressure Engine compression Throttle valve Evaporative emission system 2) On air conditioner equipped models, checks should be carried out while the air conditioner is OFF. 3) On automatic transmission equipped models, when checking idle rpm, ignition timing and mixture ratio, checks should be carried out while shift lever is in "N" position. 4) When measuring "CO" percentage, insert probe more than 40 cm (15.7 in) into tail pipe. 5) Turn off headlamps, heater blower, rear defogger. 6) Keep front wheels pointed straight ahead. 7) Make the check after the cooling fan has stopped.

BT


HA

SC

EL

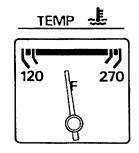
Overall Inspection Sequence

NGEC0549S0101

SEF554Y

NOTE:

If a vehicle contains a part which is operating outside of design specifications with no MIL illumination, the part shall not be replaced prior to emission testing unless it is determined that the part has been tampered with or abused in such a way that the diagnostic system cannot reasonably be expected to detect the resulting malfunction.


VG33E

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

INSPECTION PROCEDURE

=NGEC0549S02

- INSPECTION START
- 1. Visually check the following:Air cleaner clogging
- Hoses and ducts for leaks
- Electrical connectors
- Gasket
- Throttle valve and throttle position sensor operation
- 2. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge. Ensure engine stays below 1,000 rpm.

3. Open engine hood and run engine at about 2,000 rpm for about 2 minutes under no-load.

4. Make sure that no DTC is displayed with CONSULT-II or GST.

OK	or	NG
OIL	VI.	146

OK ►	GO TO 2.
NG ►	 Repair or replace components as necessary. GO TO 2.

G

MA

LC

EC

FE

 \bigcirc I

SEF976U

SEF977U

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

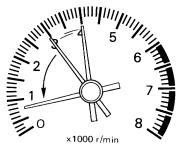
BR

ST

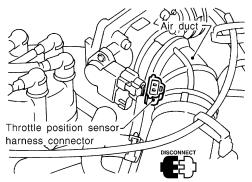
D@

BT

HA

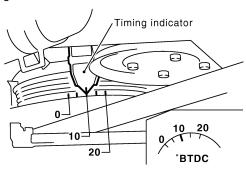

SC

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)


CHECK IGNITION TIMING

2

- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed.


3. Turn off engine and disconnect throttle position sensor harness connector.

SEF975R

SEF978U

- 4. Start and rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run at idle speed.
- 5. Check ignition timing with a timing light.

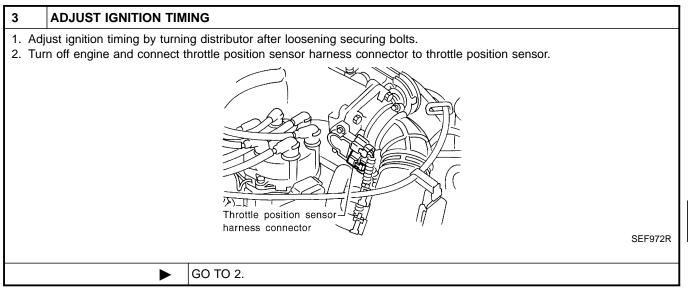
SEF927Z

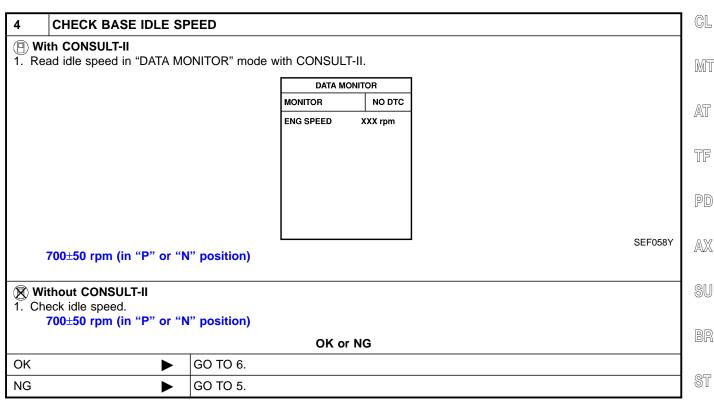
10°±2° BTDC (in "P" or "N" position)

OK •	GO TO 4.
NG ►	GO TO 3.

VG33E

GI


MA


EM

LC

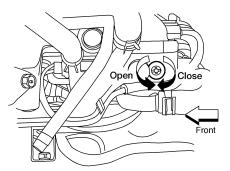
EC

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

BT

HA

SC


VG33E

LEC513

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

5 ADJUST BASE IDLE SPEED

- 1. Rev engine (2,000 to 3,000 rpm) 2 or 3 times under no-load then run engine at idle speed.
- 2. Adjust idle speed by turning idle speed adjusting screw.

700±50 rpm (in "P" or "N" position)

GO TO 6.

6 CHECK TARGET IDLE SPEED

(P) With CONSULT-II

- 1. Turn off engine and connect throttle position sensor harness connector.
- 2. Start and rev engine (2,000 to 3,000 rpm) 2 or 3 times under no-load then run at idle speed.
- 3. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

DATA M	ONITOR
MONITOR NO DTC	
ENG SPEED	XXX rpm
	·

SEF058Y

750±50 rpm (in "P" or "N" position)

Without CONSULT-II

- 1. Turn off engine and connect throttle position sensor harness connector.
- 2. Start and rev engine (2,000 to 3,000 rpm) 2 or 3 times under no-load then run at idle speed.
- 3. Check idle speed.

750±50 rpm (in "P" or "N" position)

OK or NG

OK (With CONSULT-II)	>	GO TO 8.
OK (Without CONSULT-II)	•	GO TO 9.
NG	>	GO TO 7.

VG33E

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

7	DETECT MALFUNCTIO	NING PART	
1. Ch		eplace if necessary. Refer to EC-1027.	GI
3. Ch	neck ECM function by subs	ess and repair if necessary. Refer to EC-1027. tituting another known-good ECM. problem, but this is rarely the case.)	M
With CONS	SULT-II	GO TO 8.	E1
Witho	out > SULT-II	GO TO 9.	

8 CHECK HEATE	D OXYGEN SEI	NSOR 1 (FRONT) (BANK 2) SIGNAL
	B2)" in "DATA Mo 000 rpm under no	ONITOR" o-load (en	
	DATA MONI MONITOR ENG SPEED HO2S1 MNTR (B1) HO2S1 MNTR (B2)	NO DTC XXX rpm LEAN RICH	1 time: RICH → LEAN → RICH 2 times: RICH → LEAN → RICH → LEAN → RICH SEF945Y
			OK or NG
OK	▶ GO TO	12.	
NG (Monitor does not fluctuate.)	▶ GO TO	17.	
NG (Monitor fluctuates less than 5 times.)	▶ GO TO	10.	

9 CH	CHECK HEATED OXYGEN SENSOR 1 (FRONT) (BANK 2) SIGNAL				
	it CONSULT-II	urnm for about 2 minutes under no-load			
 Run engine at about 2,000 rpm for about 2 minutes under no-load. Set voltmeter probe between ECM terminal 62 and ground. 					
	ure that the voltag	fluctuates between 0 - 0.3V and 0.6 - 1.0V more than 5	times during 10 seconds at 2,000		
rpm. 1 time: 0 - 0.3V → 0.6 - 1.0V → 0 - 0.3V					
1 time:	$0 - 0.3V \rightarrow 0.6 - 10$	$.0 extsf{V} ightarrow 0$ - $0.3 extsf{V}$			
		.0V $ ightarrow$ 0 - 0.3V 1.0V $ ightarrow$ 0 - 0.3V $ ightarrow$ 0.6 - 1.0V $ ightarrow$ 0 - 0.3V			
		1.0V $ ightarrow$ 0 - 0.3V $ ightarrow$ 0.6 - 1.0V $ ightarrow$ 0 - 0.3V			
2 times	:: 0 - 0.3V → 0.6 -	$1.0 extsf{V} ightarrow 0$ - $0.3 extsf{V} ightarrow 0.6$ - $1.0 extsf{V} ightarrow 0$ - $0.3 extsf{V}$ OK or NG			

EL

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

10 CHECK HEATED OXYGEN SENSOR 1 (FRONT) (BANK 2) SIGNAL

(P) With CONSULT-II

- 1. Stop engine.
- 2. Replace heated oxygen sensor 1 (front) (bank 2).
- 3. Start engine and warm it up to normal operating temperature.
- 4. Run engine at approx. 2,000 rpm for approx. 2 minutes under no-load.
- 5. See "HO2S1 MNTR (B2)" in "DATA MONITOR" mode.
- 6. Running engine at 2,000 rpm under no-load (engine is warmed up to normal operating temperature.), check that the monitor fluctuates between "LEAN" and "RICH" more than 5 times during 10 seconds.
 - 1 time: RICH \rightarrow LEAN \rightarrow RICH
 - 2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

(R) Without CONSULT-II

- 1. Stop engine.
- 2. Replace heated oxygen sensor 1 (front) (bank 2).
- 3. Start engine and warm it up to normal operating temperature.
- 4. Run engine at approx. 2,000 rpm for approx. 2 minutes under no-load.
- 5. Set voltmeter probe between ECM terminal 62 and ground.
- 6. Make sure that the voltage fluctuates between 0 0.3V and 0.6 1.0V more than 5 times during 10 seconds at 2,000 rpm.

1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

OK or NG

OK (With CONSULT-II)	>	GO TO 12.
OK (Without CONSULT-II)	•	GO TO 13.
NG		GO TO 11.

11 DETECT MALFUNCTIONING PART

Check the following.

- 1. Check fuel pressure regulator. Refer to EC-638.
- 2. Check mass air flow sensor and its circuit. Refer to EC-739.
- 3. Check injector and its circuit. Refer to EC-1169.
 - Clean or replace if necessary.
- 4. Check engine coolant temperature sensor and its circuit. Refer to EC-773.
- 5. Check ECM function by substituting another known good ECM.

(ECM may be the cause of a problem, but this is rarely the case.)

► GO TO 2.

VG33E

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

12 CHECK HEATED OXYGEN SENSOR 1 (FRONT) (BANK 1) SIGNAL

(P) With CONSULT-II

- 1. See "HO2S1 (B1)" in "DATA MONITOR" mode.
- 2. Maintaining engine at 2,000 rpm under no-load (engine is warmed up to normal operating temperature.), check that the monitor fluctuates between "LEAN" and "RICH" more than 5 times during 10 seconds.

DATA MONITOR						
MONITOR NO DT						
ENG SPEED	XXX rpm					
HO2S1 MNTR (B1)	LEAN					
HO2S1 MNTR (B2)	RICH					

1 time: RICH \rightarrow LEAN \rightarrow RICH

2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

SEF945Y

OK or NG

	on or no					
OK	>	INSPECTION END				
NG (Monitor does not fluctuate.)	•	GO TO 16.				
NG (Monitor fluctuates less than 5 times.)	•	GO TO 14.				

13 CHECK HEATED OXYGEN SENSOR 1 (FRONT) (BANK 1) SIGNAL

Without CONSULT-II

- 1. Set voltmeter probe between ECM terminal 63 and ground.
- 2. Make sure that the voltage fluctuates between 0 0.3V and 0.6 1.0V more than 5 times during 10 seconds at 2,000 rpm.

1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

OK or NG

ОК		INSPECTION END
NG (Voltage does not fluctuate.)	•	GO TO 16.
NG (Voltage fluctuates less than 5 times.)	•	GO TO 14.

GI

MA

FM

EC

945Y

GL

MT

AT

0 40

TF

PD

MΜ

ں ں

ST

RS

BT

HA

SC

VG33E

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

14 CHECK HEATED OXYGEN SENSOR 1 (FRONT) (BANK 1) SIGNAL

(P) With CONSULT-II

- 1. Stop engine.
- 2. Replace heated oxygen sensor 1 (front) (bank 1).
- 3. Start engine and warm it up to normal operating temperature.
- 4. Run engine at approx. 2,000 rpm for approx. 2 minutes under no-load.
- 5. See "HO2S1 MNTR (B1)" in "DATA MONITOR" mode.
- 6. Maintaining engine at 2,000 rpm under no-load (engine is warmed up to normal operating temperature.), check that the monitor fluctuates between "LEAN" and "RICH" more than 5 times during 10 seconds.
 - 1 time: RICH \rightarrow LEAN \rightarrow RICH
 - 2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

(R) Without CONSULT-II

- 1. Stop engine.
- 2. Replace heated oxygen sensor 1 (front) (bank 1).
- 3. Start engine and warm it up to normal operating temperature.
- 4. Run engine at approx. 2,000 rpm for approx. 2 minutes under no-load.
- 5. Set voltmeter probe between ECM terminal 63 and ground.
- 6. Make sure that the voltage fluctuates between 0 0.3V and 0.6 1.0V more than 5 times during 10 seconds at 2,000 rpm.
 - 1 time: 0 0.3V \rightarrow 0.6 1.0V \rightarrow 0 0.3V
 - 2 times: 0 0.3V \rightarrow 0.6 1.0V \rightarrow 0 0.3V \rightarrow 0.6 1.0V \rightarrow 0 0.3V

OK or NG

OK •	INSPECTION END			
NG ▶	GO TO 15.			

15 DETECT MALFUNCTIONING PART

Check the following.

- 1. Check fuel pressure regulator. Refer to EC-638.
- 2. Check mass air flow sensor and its circuit. Refer to EC-739.
- 3. Check injector and its circuit. Refer to EC-1169.
 - Clean or replace if necessary.
- 4. Check engine coolant temperature sensor and its circuit. Refer to EC-773.
- 5. Check ECM function by substituting another known good ECM.
 - (ECM may be the cause of a problem, but this is rarely the case.)

IGO	TO 2

16 CHECK HEATED OXYGEN SENSOR 1 (FRONT) (BANK 1) HARNESS

- 1. Turn off engine and disconnect battery ground cable.
- 2. Disconnect ECM harness connector.
- 3. Disconnect heated oxygen sensor 1 (front) (bank 1) harness connector.
- 4. Check harness continuity between ECM terminal 50 and heated oxygen sensor 1 (front) (bank 1) harness connector.

 Continuity should exist.

OK or NG

OK ►	 Connect ECM harness connector. GO TO 18.
NG ▶	Repair or replace harness. GO TO 8. (With CONSULT-II) GO TO 9. (Without CONSULT-II)

VG33E

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

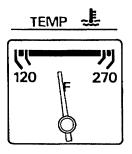
HA

SC

EL

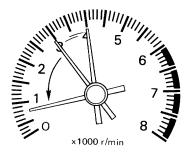
Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

17	CHECK HEATED OXYGEN SENSOR 1 (FRONT) (BANK 2) HARNESS	
	irn off engine and disconnect battery ground cable.	G
	sconnect ECM harness connector. sconnect heated oxygen sensor 1 (front) (bank 2) harness connector.	
4. Ch	neck harness continuity between ECM terminal 51 and heated oxygen sensor 1 (front) (bank 2) harness connector. Continuity should exist.	M
	OK or NG	
OK	1. Connect ECM harness connector.2. GO TO 18.	
NG	1. Repair or replace harness. 2. GO TO 8. (With CONSULT-II) CO TO 9. (With part CONSULT II)	L(
	GO TO 9. (Without CONSULT-II)	7 📮


18	PREPARATION FOR "CO" % CHECK							
1. Se	th CONSULT-II ect "COOLANT TEMP" in "ACTIVE TEST" "COOLANT TEMP" to 5°C (41°F) by touc		"Qd".					
		ACTIVE TE	ST					
		ENG COOLANT TEMP	XXX °C					
		MONITO	1					
		ENG SPEED	XXX rpm					
		INJ PULSE-B1	XXX msec					
		IGN TIMING	XXX BTDC					
					SEF172Y			
					OLI ITZI			
1. Dis	Without CONSULT-II 1. Disconnect engine coolant temperature sensor harness connector. 2. Connect a resistor (4.4 kΩ) between terminals of engine coolant temperature sensor harness connector. Engine coolant temperature sensor harness connector family for the properties of the pr							
	4.4 kΩ resistor AEC036B							
	► GO TO 19.							
	·							

VG33E

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)


19 CHECK "CO" %

1. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge.

SEF976U

2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed.

SEF978U

3. Check "CO" %.

Idle CO: 1.5 - 9.5%

4. Nithout CONSULT-II

After checking CO%,

- a. Disconnect the resistor from terminals of engine coolant temperature sensor.
- b. Connect engine coolant temperature sensor harness connector to engine coolant temperature sensor.

OK or NG

•	 Replace front heated oxygen sensor LH. GO TO 10.
NG ►	GO TO 20.

20 DETECT MALFUNCTIONING PART

Check the following.

- 1. Connect front heated oxygen sensor harness connectors to front heated oxygen sensors.
- 2. Check fuel pressure regulator. Refer to EC-638.
- 3. Check mass air flow sensor and its circuit. Refer to EC-739.
- 4. Check injector and its circuit. Refer to EC-1169.

Clean or replace if necessary.

- 5. Check engine coolant temperature sensor and its circuit. Refer to EC-773.
- 6. Check ECM function by substituting another known good ECM. (ECM may be the cause of a problem, but this is rarely the case.)

► GO TO 2.

Introduction

NGEC0550

The ECM has an on board diagnostic system, which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

GI

Emission-related diagnostic information	SAE Mode			
Diagnostic Trouble Code (DTC)	Mode 3 of SAE J1979			
Freeze Frame data	Mode 2 of SAE J1979			
System Readiness Test (SRT) code	Mode 1 of SAE J1979			
1st Trip Diagnostic Trouble Code (1st Trip DTC)	Mode 7 of SAE J1979			
1st Trip Freeze Frame data				
Test values and Test limits	Mode 6 of SAE J1979			

MA

_C

EC

The above information can be checked using procedures listed in the table below.

1st trip DTC

Х

X*1

—: Not applicable

Test value

CL

MT

DTC

Χ

Χ

The malfunction indicator lamp (MIL) on the instrument panel lights up when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode. (Refer to EC-709.)

Freeze Frame

data

Χ

Χ

,o., __

Two Trip Detection Logic

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the ECM memory. The MIL will not light up at this stage. <1st trip>

TF

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in the ECM memory, and the MIL lights up. The MIL lights up at the same time when the DTC is stored. <2nd trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to light up or blink the MIL, and store DTC and Freeze Frame data, even in the 1st trip, as shown below.

ST

X: Applicable —: Not applicable

X: Applicable

SRT code

Χ

Χ

1st trip Freeze

Frame data

Х

	MIL				DTC		1st trip DTC	
Items	1s	1st trip		2nd trip		2nd trip	1st trip	2nd trip
	Blinking	Lighting up	Blinking	Lighting up	displaying	displaying	displaying	displaying
Coolant overtemperature enrichment protection — DTC: P0217	_	X	_	_	х	_	х	_
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0306 is being detected	х	_	_	_	_	_	х	_
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0306 is being detected	_	_	Х	_	_	х	_	_
Closed loop control — DTC: P1148, P1168	_	X	_	_	х	_	x	_
Fail-safe items (Refer to EC-709.)	_	X	_	_	X*1	_	X*1	_
Except above	_	_	_	Х	_	Х	Х	_

^{*1:} Except "ECM"

CONSULT-II

GST

ΞL

HA

^{*1: 1}st trip DTCs for self-diagnoses concerning SRT items cannot be shown on the GST display.

Emission-related Diagnostic Information

Emission-related Diagnostic Information

DTC AND 1ST TRIP DTC

NGEC0552

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip DTC will not be displayed.

If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MIL will not light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory and the MIL lights up. In other words, the DTC is stored in the ECM memory and the MIL lights up when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MIL during the 1st trip, the DTC and 1st trip DTC are stored in the ECM memory.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-666.

For malfunctions in which 1st trip DTCs are displayed, refer to EC-663. These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-II.

1st trip DTC is specified in Mode 7 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a problem. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in "Work Flow" procedure Step II, refer to EC-692. Then perform "DTC Confirmation Procedure" or "Overall Function Check" to try to duplicate the problem. If the malfunction is duplicated, the item requires repair.

How to Read DTC and 1st Trip DTC

NGEC0552S0101

DTC and 1st trip DTC can be read by the following methods.

- (I) With CONSULT-II
- **With GST**

CONSULT-II or GST (Generic Scan Tool) Examples: P0340, P1320, P0705, P0750, etc.

These DTCs are prescribed by SAE J2012.

(CONSULT-II also displays the malfunctioning component or system.)

- 1st trip DTC No. is the same as DTC No.
- Output of a DTC indicates a malfunction. However, GST do not indicate whether the malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT-II can identify malfunction status as shown below. Therefore, using CONSULT-II (if available) is recommended.

A sample of CONSULT-II display for DTC and 1st trip DTC is shown below. DTC or 1st trip DTC of a malfunction is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-II. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be "0".

If a 1st trip DTC is stored in the ECM, the time data will be "[1t]".

	SELF DIAG RESU	LTS TIME		SELF DIAG RESU	ILTS TIME
DTC	MAF SEN/CIRCUIT [P0100]	0	1st trip	MAF SEN/CIRCUIT [P0100]	1t
display			DTC display		

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

NGEC0553SC

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed and absolute pressure at the moment a malfunction is detected.

Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data.

VG33E

Emission-related Diagnostic Information (Cont'd)

The data, stored together with the DTC data, are called freeze frame data and displayed on CONSULT-II or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-II screen, not on the GST. For details, see EC-679.

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the following priorities to update the data.

MA

Priority Items Freeze frame data Misfire — DTC: P0300 - P0306 Fuel Injection System Function — DTC: P0171, P0172, P0174, P0175 2 Except the above items (Includes A/T related items) 3 1st trip freeze frame data

EC

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was stored in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is stored in the ECM memory, 1st trip freeze data is no longer stored (because only one freeze frame data or 1st trip freeze frame data can be stored in the ECM). If freeze frame data is stored in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-666.

SYSTEM READINESS TEST (SRT) CODE

NGEC0552S03

System Readiness Test (SRT) code is specified in Mode 1 of SAE J1979.

As part of enhanced emissions test for Inspection and Maintenance (I/M), certain states require that the status of srt be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

TF

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "INCMP", use the information in this service manual to set the SRT to "CMPLT".

In most cases, the ECM will automatically complete its self-diagnosis cycle during normal usage and the SRT status will indicate "CMPLT" for each application system. Once set as "CMPLT", the SRT status remains "CMPLT" until the self-diagnosis memory is erased.

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern and the SRT will indicate "INCMP" for these items.

NOTE:

The SRT will also indicate "INCMP" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

If, during the state emissions inspection, the SRT indicates "CMPLT" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "INCMP" for one or more of the SRT items, the vehicle is returned to the customer untested.

NOTE:

If MIL is "ON" during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "CMPLT" for all test items. Therefore, it is important to check SRT ("CMPLT") and DTC (No DTCs) before the inspection.

HA

SC

VG33E

Emission-related Diagnostic Information (Cont'd)

SRT Item

NOTCOFFOCOM 4

The following table shows required self-diagnostic items to set the SRT to "CMPLT".

SRT item (CONSULT-II indication)	Perfor- mance Priority *	Required self-diagnostic items to set the SRT to "CMPLT"	Corresponding DTC No.
CATALYST	3	Three way catalyst function	P0420, P0430
EVAP SYSTEM 2		EVAP control system (small leak) (negative pressure)	P0440
	3	EVAP control system (very small leak) (negative pressure)/(positive pressure)	P1441
	3	EVAP control system purge flow monitoring	P1447
O2 SENSOR	3	Heated oxygen sensor 1 (front) (circuit)	P0130, P0150
		Heated oxygen sensor 1 (front) (lean shift monitoring)	P0131, P0151
		Heated oxygen sensor 1 (front) (rich shift monitoring)	P0132, P0152
		Heated oxygen sensor 1 (front) (response monitoring)	P0133, P0153
		Heated oxygen sensor 1 (front) (high voltage)	P0134, P0154
		Heated oxygen sensor 2 (rear) (min. voltage monitoring)	P0137, P0157
		Heated oxygen sensor 2 (rear) (max. voltage monitoring)	P0138, P0158
		Heated oxygen sensor 2 (rear) (response monitoring)	P0139, P0159
		Heated oxygen sensor 2 (rear) (high voltage)	P0140, P0160
O2 SEN HEATER	3	Heated oxygen sensor 1 heater (front)	P0135, P0155
		Heated oxygen sensor 2 heater (rear)	P0141, P0161

^{*:} If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure) one by one based on the priority for models with CONSULT-II.

SRT Set Timing

SRT is set as "CMPLT" after self-diagnosis has been performed one or more times. Completion of SRT will occur if the result is OK or NG. The set timing is different between them and is shown in the following table.

VG33E

GI

MA

EC

GL

MT

AT

TF

PD

ST

BT

HA

Emission-related Diagnostic Information (Cont'd)

Self-diagnosis result			Example					
		Diagnosis	Ignition OFF – ON – OFF					
All OK		P0400	OK (1)	- (1)	OK (2)	- (2)		
	Cons 4	P0402	OK (1)	- (1)	- (1)	OK (2)		
	Case 1	P1402	OK (1)	OK (2)	- (2)	- (2)		
		SRT of EGR	"CMPLT"	"CMPLT"	"CMPLT"	"CMPLT"		
		P0400	OK (1)	- (1)	- (1)	- (1)		
	Case 2	P0402	- (0)	- (0)	OK (1)	- (1)		
	Case 2	P1402	OK (1)	OK (2)	- (2)	- (2)		
		SRT of EGR	"INCMP"	"INCMP"	"CMPLT"	"CMPLT"		
NG exists		P0400	ОК	ОК	-	_		
		P0402	_	-	-	_		
	Case 3	P1402	NG	_	NG	NG (Consecutive NG)		
		(1st trip) DTC	1st trip DTC	_	1st trip DTC	DTC (=MIL "ON")		
		SRT of EGR	"INCMP"	"INCMP"	"INCMP"	"CMPLT"		

OK: Self-diagnosis is carried out and the result is OK.

NG: Self-diagnosis is carried out and the result is OK.

When all SRT related self-diagnoses showed OK results in a same cycle (Ignition OFF – ON – OFF), the SRT will indicate "CMPLT".

→ Case 1 above

When all SRT related self-diagnoses show OK results through several different cycles, the SRT will indicate "CMPLT" at the time the respective self-diagnoses have at least one OK result.

→ Case 2 above

If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indicate "CMPLT".

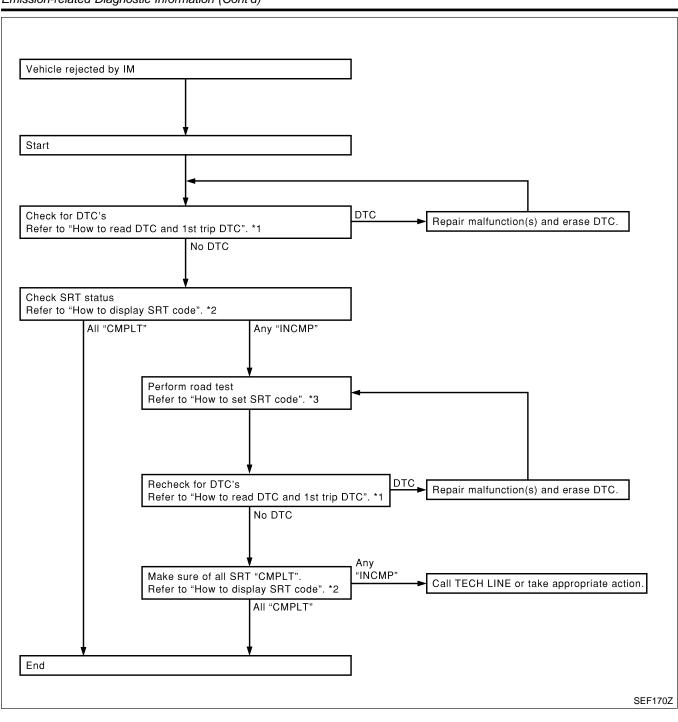
→ Case 3 above

The previous table shows that the minimum number of cycles for setting SRT as "INCMP" is one (1) for each self-diagnosis (Case 1 and 2) or two (2) for one self-diagnosis (Case 3). However, in preparation for the State emissions inspection, it is unnecessary of each self-diagnosis to be executed twice (Case 3) because of the following reasons;

- The SRT will indicate "CMPLT" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "CMPLT" of the SRT only with OK self-diagnosis result.
- When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to "CMPLT" of SRT, the self-diagnosis memory must be erased from ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "INCMP".

NOTE:

SRT can be set as "CMPLT" together with the DTC(s). Therefore, DTC check must always be carried out prior to the State emission inspection even though the SRT indicates "CMPLT".


SRT Service Procedure

If a vehicle has been rejected for the State emissions inspection due to one or more SRT items indicating "INCMP", review the following flowchart diagnostic sequence on the next page.

EL

^{-:} Self-diagnosis is not carried out.

Emission-related Diagnostic Information (Cont'd)

How to Display SRT Code

NGEC0552S0303

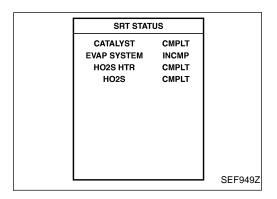
1. (P) With CONSULT-II

Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-II.

For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-II scre

For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-II screen; for items whose SRT codes are not set, "INCMP" is displayed.

2. With GST


Selecting Mode 1 with GST (Generic Scan Tool)

A sample of CONSULT-II display for SRT code is shown below.

"INCMP" means the self-diagnosis is incomplete and SRT is not set. "CMPLT" means the self-diagnosis is complete and SRT is set.

VG33E

Emission-related Diagnostic Information (Cont'd)

GI

MA

LC

EC

How to Set SRT Code

To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

(P) With CONSULT-II

Perform corresponding DTC confirmation procedure one by one based on "Performance Priority" in the table on EC-654.

⋈ Without CONSULT-II

The most efficient driving pattern in which SRT codes can be properly set is explained on EC-660. The driving pattern should be performed one or more times to set all SRT codes.

MT

AT

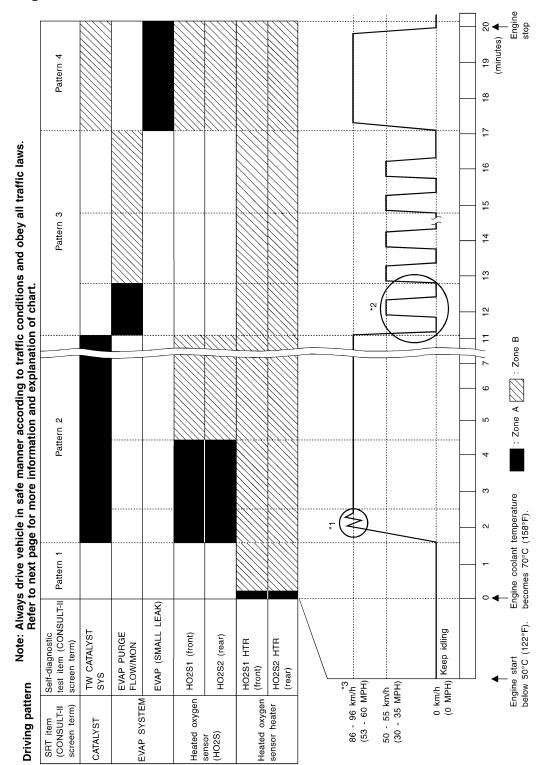
PD

TF

SU

ST

BT


HA

SC

EL

Driving Pattern

NGEC0552S0305

VG33E

Emission-related Diagnostic Information (Cont'd)

The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.

Zone A refers to the range where the time required, for the diagnosis under normal conditions*, is the shortest.

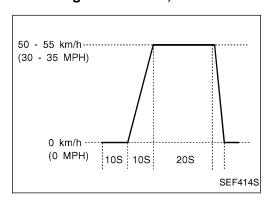
Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.

- *: Normal conditions refer to the following:
- Sea level
- Flat road
- Ambient air temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions.
 Under different conditions [For example: ambient air temperature other than 20 30°C (68 86°F)], diagnosis may also be performed.

Pattern 1:

- The engine is started at the engine coolant temperature of −10 to 35°C (14 to 95°F) (where the voltage between the ECM terminal 59 and ground is 3.0 - 4.3V).
- The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminal 59 and ground is lower than 1.4V).
- The engine is started at the tank fuel temperature of warmer than 0°C (32°F) (where the voltage between the ECM terminal 60 and ground is less than 4.1V).

Pattern 2


• When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted. In this case, the time required for diagnosis may be extended.

Pattern 3:

The driving pattern outlined in *2 must be repeated at least 3 times.

Pattern 4:

- Tests are performed after the engine has been operated for at least 17 minutes.
- The accelerator pedal must be held very steady during steady-state driving.
- If the accelerator pedal is moved, the test must be conducted all over again.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Operate the vehicle in the following driving pattern.
- 1) Decelerate vehicle to 0 km/h (0 MPH) and let engine idle.
- 2) Repeat driving pattern shown below at least 10 times.
- During acceleration, hold the accelerator pedal as steady as possible.

*3: Checking the vehicle speed with CONSULT-II or GST is advised.

Suggested Transmission Gear Position for A/T Models

Set the selector lever in the "D" position with the overdrive switch turned ON.

Suggested upshift speeds for M/T models

Shown below are suggested vehicle speeds for shifting into a higher gear. These suggestions relate to fuel economy and vehicle performance. Actual upshift speeds will vary according to road conditions, the weather and individual driving habits.

MA

EC

FE

CI

MT

AT

TF

PD

~KV

SU

ST

KS

BT

HA

SC

EL

VG33E

Emission-related Diagnostic Information (Cont'd)

	For normal accelerat [less than 1,2	For quick acceleration in low altitude areas and high altitude areas [over 1,219 m (4,000 ft)]:	
Gear change	ACCEL shift point km/h (MPH)	CRUISE shift point km/h (MPH)	km/h (MPH)
1st to 2nd	24 (15)	24 (15)	24 (15)
2nd to 3rd	40 (25)	29 (18)	40 (25)
3rd to 4th	58 (36)	48 (30)	64 (40)
4th to 5th	64 (40)	63 (39)	72 (45)

Suggested Maximum Speed in Each Gear

Downshift to a lower gear if the engine is not running smoothly, or if you need to accelerate.

Do not exceed the maximum suggested speed (shown below) in any gear. For level road driving, use the highest gear suggested for that speed. Always observe posted speed limits and drive according to the road conditions to ensure safe operation. Do not over-rev the engine when shifting to a lower gear as it may cause engine damage or loss of vehicle control.

	km/h (MPH) 2WD (AUTO mode)
1st	50 (30)
2nd	95 (60)

TEST VALUE AND TEST LIMIT (GST ONLY — NOT APPLICABLE TO CONSULT-II)

NGEC0552S04

The following is the information specified in Mode 6 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is "OK" or "NG" while being monitored by the ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored.

Items for which these data (test value and test limit) are displayed are the same as SRT code items (30 test items).

These data (test value and test limit) are specified by Test ID (TID) and Component ID (CID) and can be displayed on the GST screen.

X: Applicable —: Not applicable

CDT item	Calé diagnastic test item	Test value (0	GST display)	Took limit	Application
SRT item	Self-diagnostic test item TID CID Three way catalyst function (Right bank) Three way catalyst function (Left bank) EVAP control system (Small leak) EVAP control system purge flow monitoring Test value (GST display) Test limit 01H 01H 01H Max. 02H Max. 05H 03H 03H Max.	Application			
CATALYST -		01H	01H	Max.	X
		03H	02H	Max.	X
EVAD SVSTEM	,	05H	03H	Max.	X
EVAP SYSTEM		06H	83H	Min.	Х

VG33E

Emission-related Diagnostic Information (Cont'd)

		Test value (GST display)			•
SRT item	Self-diagnostic test item	TID	CID	Test limit	Application	
		09H	04H	Max.	Х	-
		0AH	84H	Min.	Х	-
	Heated oxygen sensor 1 (front) (bank 1)	0BH	04H	Max.	Х	-
	(Saint 1)	0CH	04H	Max.	Х	-
		0DH	04H	Max.	Х	- - [
		11H	05H	Max.	Х	-
		12H	85H	Min.	Х	-
	Heated oxygen sensor 1 (front) (bank 2)	13H	05H	Max.	Х	-
O2 SENSOR	(43 2)	14H	05H	Max.	Х	- - F - 0
O2 SENSOR		15H	05H	Max.	Х	
		19H	86H	Min.	Х	
	Heated oxygen sensor 2 (rear)	1AH	86H	Min.	Х	-
	(bank 1)	1BH	06H	Max.	Х	-
		1CH	06H	Max.	Х	-
		21H	87H	Min.	Х	-
	Heated oxygen sensor 2 (rear) (bank 2)	22H	87H	Min.	Х	-
		23H	07H	Max.	Х	-
		24H	07H	Max.	Х	_
	Heated oxygen sensor 1 heater (front)	29H	08H	Max.	Х	_
	(bank 1)	2AH	88H	Min.	X	
	Heated oxygen sensor 1 heater (front)	2BH	09H	Max.	X	_
O2 SENSOR HEATER	(bank 2)	2CH	89H	Min.	X	
OZ OLINGON HLATEN	Heated oxygen sensor 2 heater (rear)	2DH	0AH	Max.	X	_
	(bank 1)	2EH	8AH	Min.	X	_
	Heated oxygen sensor 2 heater (rear)	2FH	0BH	Max.	X	_
	(bank 2)	30H	8BH	Min.	X	

EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS

X: Applicable —: Not applicable

Items (CONSULT-II screen terms)	DTC*1	SRT code	Test value/ Test limit (GST only)	1st trip DTC*1	Reference page
NO SELF DIAGNOSTIC FAILURE INDICATED	P0000	_	_	_	_
MAF SEN/CIRCUIT	P0100	_	_	×	EC-739
ABSL PRES SEN/CIRC	P0105	_	_	X	EC-748
AIR TEMP SEN/CIRC	P0110	_	_	×	EC-750
COOLANT T SEN/CIRC	P0115	_	_	Х	EC-755
THRTL POS SEN/CIRC	P0120	_	_	X	EC-760

RS

BT

HA

SC

EL

Emission-related Diagnostic Information (Cont'd)

Items (CONSULT-II screen terms)	DTC*1	SRT code	Test value/ Test limit (GST only)	1st trip DTC*1	Reference page
*COOLAN T SEN/CIRC	P0125	_	_	Х	EC-773
HO2S1 (B1)	P0130	Х	Х	X*2	EC-778
HO2S1 (B1)	P0131	Х	Х	X*2	EC-789
HO2S1 (B1)	P0132	Х	Х	X*2	EC-798
HO2S1 (B1)	P0133	Х	Х	X*2	EC-807
HO2S1 (B1)	P0134	Х	Х	X*2	EC-821
HO2S1 HTR (B1)	P0135	Х	Х	X*2	EC-829
HO2S2 (B1)	P0137	Х	Х	X*2	EC-836
HO2S2 (B1)	P0138	Х	Х	X*2	EC-846
HO2S2 (B1)	P0139	Х	Х	X*2	EC-856
HO2S2 (B1)	P0140	Х	Х	X*2	EC-866
HO2S2 HTR (B1)	P0141	Х	Х	X*2	EC-876
HO2S1 (B2)	P0150	Х	Х	X*2	EC-778
HO2S1 (B2)	P0151	Х	Х	X*2	EC-789
HO2S1 (B2)	P0152	Х	Х	X*2	EC-798
HO2S1 (B2)	P0153	Х	Х	X*2	EC-807
HO2S1 (B2)	P0154	X	Х	X*2	EC-821
HO2S1 HTR (B2)	P0155	X	Х	X*2	EC-829
HO2S2 (B2)	P0157	Х	Х	X*2	EC-836
HO2S2 (B2)	P0158	X	Х	X*2	EC-846
HO2S2 (B2)	P0159	X	Х	X*2	EC-856
HO2S2 (B2)	P0160	X	Х	X*2	EC-866
HO2S2 HTR (B2)	P0161	X	Х	X*2	EC-876
FUEL SYS LEAN/BK1	P0171	_	_	Х	EC-884
FUEL SYS RICH/BK1	P0172	_	_	Х	EC-893
FUEL SYS LEAN/BK2	P0174	_	_	Х	EC-884
FUEL SYS RICH/BK2	P0175	_	_	Х	EC-893
FUEL TEMP SEN/CIRC	P0180	_	_	Х	EC-901
ENG OVER TEMP	P0217	_	_	X	EC-906
MULTI CYL MISFIRE	P0300	_	_	Х	EC-927
CYL 1 MISFIRE	P0301	_	_	Х	EC-927
CYL 2 MISFIRE	P0302	_	_	Х	EC-927
CYL 3 MISFIRE	P0303	_	_	Х	EC-927
CYL 4 MISFIRE	P0304	_	_	X	EC-927
CYL 5 MISFIRE	P0305	_	_	X	EC-927
CYL 6 MISFIRE	P0306	_	_	X	EC-927
KNOCK SEN/CIRC	P0325	_	_	_	EC-936

VG33E

Emission-related Diagnostic Information (Cont'd)

Items (CONSULT-II screen terms)	DTC*1	SRT code	Test value/ Test limit (GST only)	1st trip DTC*1	Reference page
CPS/CIRCUIT (OBD)	P0335	_	_	Х	EC-940
CAM POS SEN/CIRC	P0340	_	_	Х	EC-946
TW CATALYST SYS-B1	P0420	Х	Х	X*2	EC-953
TW CATALYST SYS-B2	P0430	Х	Х	X*2	EC-953
EVAP SMALL LEAK	P0440	Х	Х	X*2	EC-958
PURG VOLUME CONT/V	P0443	_	_	Х	EC-973
VENT CONTROL VALVE	P0446	_	_	Х	EC-980
EVAP SYS PRES SEN	P0450	_	_	Х	EC-986
EVAP GROSS LEAK	P0455	Х	Х	Х	EC-997
VEH SPEED SEN/CIRC	P0500	_	_	Х	EC-1023
IACV/AAC VLV/CIRC	P0505	_	_	Х	EC-1027
CLOSED TP SW/CIRC	P0510	_	_	Х	EC-1033
A/T COMM LINE	P0600	_	_	_	EC-1040
ECM	P0605	_	_	Х	EC-1045
PNP SW/CIRC	P0705	_	_	Х	AT-98
ATF TEMP SEN/CIRC	P0710	_	_	Х	AT-104
VEH SPD SEN/CIR AT	P0720	_	_	Х	AT-110
ENGINE SPEED SIG	P0725	_	_	Х	AT-115
A/T 1ST GR FNCTN	P0731	_	_	Х	AT-119
A/T 2ND GR FNCTN	P0732	_	_	Х	AT-125
A/T 3RD GR FNCTN	P0733	_	_	Х	AT-131
A/T 4TH GR FNCTN	P0734	_	_	Х	AT-137
TCC SOLENOID/CIRC	P0740	_	_	Х	AT-146
A/T TCC S/V FNCTN	P0744	_	_	Х	AT-151
L/PRESS SOL/CIRC	P0745	_	_	Х	AT-158
SFT SOL A/CIRC	P0750	_	_	Х	AT-163
SFT SOL B/CIRC	P0755	_	_	Х	AT-168
CLOSED LOOP-B1	P1148	_	_	Х	EC-1049
CLOSED LOOP-B2	P1168	_	_	Х	EC-1049
ENG OVER TEMP	P1217	_	_	Х	EC-1051
CPS/CIRC (OBD) COG	P1336	_	_	Х	EC-1068
EVAP VERY SMALL LEAK	P1441	Х	Х	X*2	EC-1077
PURG VOLUME CONT/V	P1444	_	_	Х	EC-1092
VENT CONTROL VALVE	P1446	_	_	Х	EC-1104
EVAP PURG FLOW/MON	P1447	Х	Х	X*2	EC-1111
VENT CONTROL VALVE	P1448	_	_	Х	EC-1123
VC/V BYPASS/V	P1490			Х	EC-1135

VG33E

Emission-related Diagnostic Information (Cont'd)

Items (CONSULT-II screen terms)	DTC*1	SRT code	Test value/ Test limit (GST only)	1st trip DTC*1	Reference page
VC CUT/V BYPASS/V	P1491	_	_	×	EC-1141
A/T DIAG COMM LINE	P1605	_	_	X	EC-1150
TP SEN/CIRC A/T	P1705	_	_	×	AT-173
P-N POS SW/CIRCUIT	P1706	_	_	Х	EC-1153
O/R CLTCH SOL/CIRC	P1760	_	_	X	AT-182

^{*1: 1}st trip DTC No. is the same as DTC No.

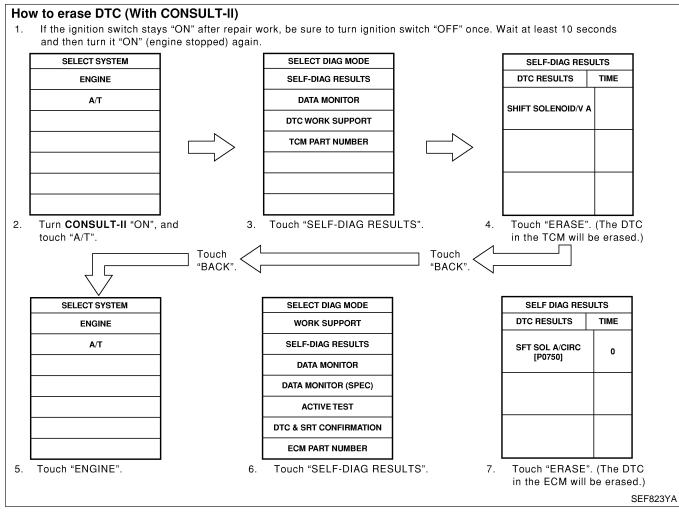
NOTE:

Regarding D22 models, "-B1" and "BK1" indicate right bank and "-B2" and "BK2" indicate left bank.

HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION How to Erase DTC (With CONSULT-II)

NGEC0552S06

NGEC0552S0601


NOTE:

If the DTC is not for A/T related items (see EC-597), skip steps 2 through 4.

- 1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 5 seconds and then turn it ON (engine stopped) again.
- 2. Turn CONSULT-II "ON" and touch "A/T".
- 3. Touch "SELF-DIAG RESULTS".
- Touch "ERASE". [The DTC in the TCM (Transmission control module) will be erased.] Then touch "BACK" twice.
- 5. Touch "ENGINE".
- 6. Touch "SELF-DIAG RESULTS".
- 7. Touch "ERASE". (The DTC in the ECM will be erased.)
- If DTCs are displayed for both ECM and TCM (Transmission control module), they need to be erased
 individually from the ECM and TCM (Transmission control module).

^{*2:} These are not displayed with GST.

Emission-related Diagnostic Information (Cont'd)

The emission related diagnostic information in the ECM can be erased by selecting "ERASE" in the "SELF-DIAG RESULTS" mode with CONSULT-II.

How to Erase DTC (With GST)

NOTE:

If the DTC is not for A/T related items (see EC-597), skip step 2.

- 1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 5 seconds and then turn it ON (engine stopped) again.
- Perform "SELF-DIAGNOSTIC PROCEDURE (Without CONSULT-II)" in AT section titled "TROUBLE DIAGNOSIS", "Self-diagnosis". (The engine warm-up step can be skipped when performing the diagnosis only to erase the DTC.)
- 3. Select Mode 4 with GST (Generic Scan Tool).

The emission related diagnostic information in the ECM can be erased by selecting Mode 4 with GST.

- If the battery is disconnected, the emission-related diagnostic information will be lost after approx. 24 hours.
- Erasing the emission-related diagnostic information using CONSULT-II or GST is easier and quicker than switching the mode selector on the ECM.
- The following data are cleared when the ECM memory is erased.
- 1) Diagnostic trouble codes
- 2) 1st trip diagnostic trouble codes
- Freeze frame data
- 4) 1st trip freeze frame data
- System readiness test (SRT) codes 5)
- 6) Test values
- Others

GI

MA

LC

EC

FE

MT

AT

TF

PD

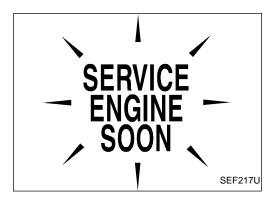
NGEC0552S0602 SU

ST

HA

SC

VG33E


Malfunction Indicator Lamp (MIL)

Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

Malfunction Indicator Lamp (MIL)

DESCRIPTION

NGEC0553

The MIL is located on the instrument panel.

- 1. The MIL will light up when the ignition switch is turned ON without the engine running. This is a bulb check.
- If the MIL does not light up, refer to EL section ("WARNING LAMPS") or see EC-1195.
- When the engine is started, the MIL should go OFF.If the MIL remains on, the on board diagnostic system has detected an engine system malfunction.

VG33E

Malfunction Indicator Lamp (MIL) (Cont'd)

On Board Diagnostic System Function

The on board diagnostic system has the following two functions.

=NGEC0553S01

Diagnostic Test Mode	KEY and ENG. Status	Function	Explanation of Function	• (
Mode I	Ignition switch in ON position Engine stopped	BULB CHECK	This function checks the MIL bulb for damage (blown, open circuit, etc.). If the MIL does not come on, check MIL circuit. (See EC-1195.)	[
	Engine running	MALFUNCTION WARNING	This is a usual driving condition. When a malfunction is detected twice in two consecutive driving cycles (two trip detection logic), the MIL will light up to inform the driver that a malfunction has been detected. The following malfunctions will light up or blink the MIL in the 1st trip. • Coolant overtemperature enrichment protection	
			 "Misfire (Possible three way catalyst damage)" "Closed loop control" Fail-safe mode 	ı

Diagnostic Test Mode I — Bulb Check

In this mode, the MIL on the instrument panel should stay ON. If it remains OFF, check the bulb. Refer to "WARNING LAMPS", *EL-89* or see EC-1195.

Diagnostic Test Mode I — Malfunction Warning

	ot mode i mandiotion marining	NGEC0553S04
MIL	Condition	
ON	When the malfunction is detected or the ECM's CPU is malfunctioning.	
OFF	No malfunction.	

OBD System Operation Chart

RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS

NGEC0554 NGEC0554S01 TF

PD

- When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MIL will come on. For details, refer to "Two Trip Detection Logic" on EC-653.
- The MIL will go off after the vehicle is driven 3 times with no malfunction. The drive is counted only when
 the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting,
 the counter will reset.
- The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern C) without the same malfunction recurring. The "TIME" in "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-II will count the number of times the vehicle is driven.
- The 1st trip DTC is not displayed when the self-diagnosis results in "OK" for the 2nd trip.

SUMMARY CHART

NGEC0554S02

Items	Fuel Injection System	Misfire	Other
MIL (goes off)	3 (pattern B)	3 (pattern B)	3 (pattern B)
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)

BT

HA

SC

VG33E

OBD System Operation Chart (Cont'd)

Items	Fuel Injection System	Misfire	Other
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)

For details about patterns "B" and "C" under "Fuel Injection System" and "Misfire", see EC-672. For details about patterns "A" and "B" under "Other", see EC-674.

^{*1:} Clear timing is at the moment OK is detected.

^{*2:} Clear timing is when the same malfunction is detected in the 2nd trip.

VG33E

GI

MA

LC

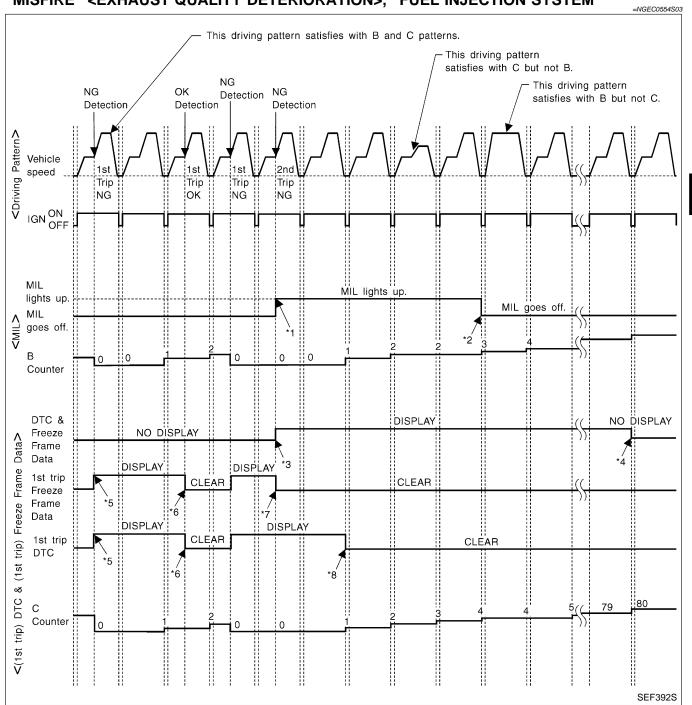
EC

FE

GL

MT

AT


TF

PD

AX

OBD System Operation Chart (Cont'd)

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR "MISFIRE" <EXHAUST QUALITY DETERIORATION>, "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *4: The DTC and the freeze frame
- data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction. (The DTC and the freeze frame data still remain in ECM.)
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *6: The 1st trip DTC and the 1st trip

- freeze frame data will be cleared at the moment OK is detected.
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.
- *8: 1st trip DTC will be cleared when vehicle is driven once (pattern C) without the same malfunction after DTC is stored in ECM.

ST

HA

SC

EL

VG33E

OBD System Operation Chart (Cont'd)

EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern B>

NGEC0554S04

NGEC0554S0401

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunction.
- The MIL will go off when the B counter reaches 3. (*2 in "OBD SYSTEM OPERATION CHART")

<Driving Pattern C>

NGEC0554S0402

Driving pattern C means the vehicle operation as follows:

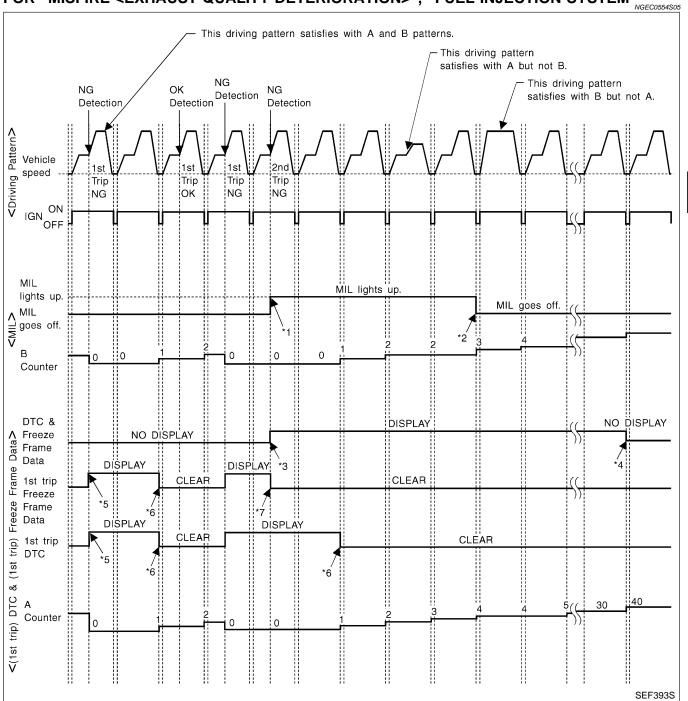
- The following conditions should be satisfied at the same time:
 Engine speed: (Engine speed in the freeze frame data) ±375 rpm
 Calculated load value: (Calculated load value in the freeze frame data) x (1±0.1) [%]
 Engine coolant temperature (T) condition:
- When the freeze frame data shows lower than 70°C (158°F), "T" should be lower than 70°C (158°F).
- When the freeze frame data shows higher than or equal to 70°C (158°F), "T" should be higher than or equal to 70°C (158°F).

Example:

If the stored freeze frame data is as follows:

Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F)

To be satisfied with driving pattern C, the vehicle should run under the following conditions:


Engine speed: 475 - 1,225 rpm, Calculated load value: 27 - 33%, Engine coolant temperature: more than 70°C (158°F)

- The C counter will be cleared when the malfunction is detected regardless of (1).
- The C counter will be counted up when (1) is satisfied without the same malfunction.
- The DTC will not be displayed after C counter reaches 80.
- The 1st trip DTC will be cleared when C counter is counted once without the same malfunction after DTC is stored in ECM.

VG33E

OBD System Operation Chart (Cont'd)

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction.

 (The DTC and the freeze frame)
 - (The DTC and the freeze frame data still remain in ECM.)
- *5: When a malfunction is detected for the first time, the 1st trip DTC
- and the 1st trip freeze frame data will be stored in ECM.
- *6: 1st trip DTC will be cleared after vehicle is driven once (pattern B) without the same malfunction.
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

MA

GI

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

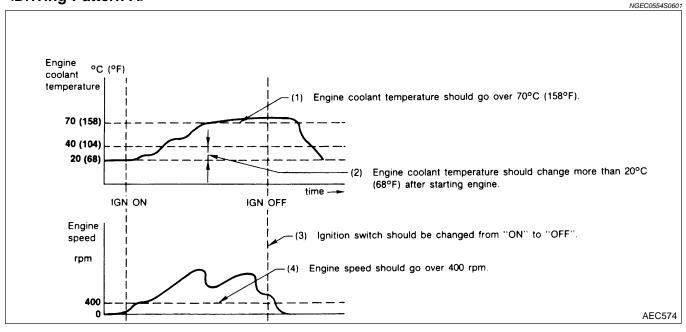
BR

ST

Ø [

BT

HA


SC

EL

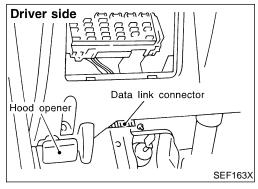
OBD System Operation Chart (Cont'd)

EXPLANATION FOR DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern A>

- The A counter will be cleared when the malfunction is detected regardless of (1) (4).
- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

<Driving Pattern B>


NGEC0554S0602

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MIL will go off when the B counter reaches 3 (*2 in "OBD SYSTEM OPERATION CHART").

CONSULT-II

CONSULT-II INSPECTION PROCEDURE

=NGEC0555

NGEC0555S01 GI

- Turn ignition switch OFF.
- Connect "CONSULT-II" to data link connector which is located under LH dash panel near the fuse box cover.

MA

LC

- Turn ignition switch ON.
- Touch "START".

EC

FE

GL

MT

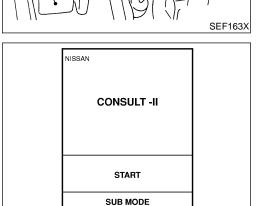
AT

TF

PD

SU

procedure. For further information, see the CONSULT-II Operation


ST

BT

HA

SC

EL

SELECT SYSTEM

ENGINE

Touch "ENGINE".

Manual.

EC-675

PBR455D

SEF948Y

SELECT DIAG MODE WORK SUPPORT **SELF-DIAG RESULTS** DATA MONITOR DATA MONITOR (SPEC) **ACTIVE TEST DTC & SRT CONFIRMATION** SEF949Y Perform each diagnostic test mode according to each service

VG33E

CONSULT-II (Cont'd)

ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION

NGEC0555S02

				DIA	AGNOSTIC	TEST MO	DE		
ltem		WORK		AGNOSTIC BULTS	DATA	DATA MONI- TOR (SPEC)	ACTIVE TEST	DTC 8	
	Item	SUP- PORT DTC*1 FRAM	FREEZE FRAME DATA*2	MONI- TOR	SRT STATUS			DTC WORK SUP- PORT	
	Camshaft position sensor		х	Х	Х	Х			
	Mass air flow sensor		х		Х	Х			
	Engine coolant temperature sensor		х	Х	Х	Х	х		
	Heated oxygen sensor 1 (front)		х		Х	Х		Х	Х
	Heated oxygen sensor 2 (rear)		х		Х	Х		Х	Х
	Vehicle speed sensor		Х	Х	Х	Х			
	Throttle position sensor		Х		Х	Х			
	Fuel tank temperature sensor		Х		Х	Х	Х		
	EVAP control system pressure sensor		x		X	X			
	Absolute pressure sensor		х		Х	Х			
5	Intake air temperature sensor		Х		Х	Х			
INPUT	Crankshaft position sensor (OBD)		х			х			
	Knock sensor		Х			Х			
	Ignition switch (start signal)				Х	Х			
	Closed throttle position switch		X		Х	Х			
	Closed throttle position switch (throttle position sensor signal)				X	х			
	Air conditioner switch				Х	Х			
	Park/neutral position (PNP) switch		х		Х	х			
	Power steering oil pressure switch				Х	х			
	Battery voltage				Х	Х			
	Ambient air temperature switch				Х	Х			

CONSULT-II (Cont'd)

			DIAGNOSTIC TEST MODE							
Item Injectors		SELF-DIAGNOSTIC RESULTS		DATA	DATA		DTC & SRT CONFIRMATION		_ (
		WORK SUP- PORT	SUP- FREEZE		DATA MONI- TOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT	- -
					Х	Х	Х			_
	Power transistor (Ignition timing)				Х	х	х			_
	IACV-AAC valve	Х	Х		Х	Х	Х			_
ENGINE CONTROL COMPONENT PARTS OUTPUT	EVAP canister purge volume control solenoid valve		Х		Х	х	х		Х	
	Air conditioner relay				Х	Х				_
5	Fuel pump relay	Х			Х	Х	Х			_
DUTPUT	Cooling fan*3		Х		Х	Х	Х			_
0	Heated oxygen sensor 1 heater (front)		Х		Х	х		х		_
	Heated oxygen sensor 2 heater (rear)		Х		Х	х		х		_
ENG	EVAP canister vent control valve		Х		Х	х	х			_
	Vacuum cut valve bypass valve		Х		Х	х	х		Х	_
	Calculated load value			Х	Х	Х				_

X: Applicable

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

^{*1:} This item includes 1st trip DTCs.

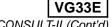
^{*2:} This mode includes 1st trip freeze frame data or freeze frame data. The items appear on CONSULT-II screen in freeze frame data mode only if a 1st trip DTC or DTC is detected. For details, refer to EC-654.

^{*3:} Models with electric cooling fan.

VG33E

CONSULT-II (Cont'd)

	FUNCTION =NGEC0555S03
Diagnostic test mode	Function
Work support	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-II unit.
Self-diagnostic results	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly.*1
Data monitor	Input/Output data in the ECM can be read.
Data monitor (SPEC)	Input/Output specification of the basic fuel schedule, AFM, A/F feedback control value and the other data monitor items can be read.
Active test	Diagnostic Test Mode in which CONSULT-II drives some actuators apart from the ECMs and also shifts some parameters in a specified range.
DTC confirmation	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.
ECM part number	ECM part number can be read.


^{*1} The following emission-related diagnostic information is cleared when the ECM memory is erased.

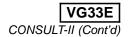
- 1) Diagnostic trouble codes
- 2) 1st trip diagnostic trouble codes
- 3) Freeze frame data
- 4) 1st trip freeze frame data
- 5) System readiness test (SRT) codes
- 6) Test values
- 7) Others

WORK SUPPORT MODE

NGEC0555S04

WORK ITEM	CONDITION	USAGE
TP SW/TP SEN IDLE POSI ADJ	FOLLOW THE BASIC INSPECTION INSTRUCTION IN THE SERVICE MANUAL.	When adjusting the idle throttle position
TARGET IGNITION TIMING ADJ	• IDLE CONDITION	When adjusting target ignition timing After adjustment, confirm target ignition timing with a timing light by turning the distributor.
FUEL PRESSURE RELEASE	FUEL PUMP WILL STOP BY TOUCHING "START" DUR- ING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.	When releasing fuel pressure from fuel line
SELF-LEARNING CONT	THE COEFFICIENT OF SELF-LEARNING CONTROL MIXTURE RATIO RETURNS TO THE ORIGINAL COEF- FICIENT.	When clean the coefficient of self-learning control valve

		CONSULT-II (Cont'd)
WORK ITEM	CONDITION	USAGE
EVAP SYSTEM CLOSE	OPEN THE VACUUM CUT VALVE BYPASS VALVE AND CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN ORDER TO MAKE EVAP SYSTEM CLOSE UNDER THE	When detecting EVAP vapor leak point of EVAP system
	FOLLOWING CONDITIONS. IGN SW ON ENGINE NOT RUNNING	
	 AMBIENT TEMPERATURE IS ABOVE 0°C (32°F). NO VACUUM AND NO HIGH PRESSURE IN EVAP SYSTEM 	
	 FUEL TANK TEMP. IS MORE THAN 0°C (32°F). WITHIN 10 MINUTES AFTER STARTING "EVAP SYSTEM CLOSE" 	
	WHEN TRYING TO EXECUTE "EVAP SYSTEM CLOSE" UNDER THE CONDITION EXCEPT ABOVE, CON- SULT-II WILL DISCONTINUE IT AND DISPLAY APPROPRIATE INSTRUCTION. NOTE:	
	NOTE: WHEN STARTING ENGINE, CONSULT-II MAY DISPLAY "BATTERY VOLTAGE IS LOW. CHARGE BATTERY", EVEN IN USING CHARGED BATTERY.	
TARGET IDLE RPM AC	J SET ENGINE SPEED AT THE SPECIFIED VALUE UNDER THE FOLLOWING CONDITIONS. • ENGINE WARMED UP • NO-LOAD	When adjusting initial ignition timing and idle speed
	SELF-DIAGNOSTIC MODE	NOTOOFFFOR
	DTC and 1st Trip DTC	NGEC0555S05 NGEC0555S0501
	Regarding items of "DTC and 1st tr DIAGNOSIS — INDEX" (See EC-59)	
	Freeze Frame Data and 1st Trip	Freeze Frame Data
Freeze frame data item *1	Description	
DIAG TROUBLE CODE [PXXXX]	The engine control component part/control system has a trouble code (Refer to "TROUBLE DIAGNOSIS — INDEX", EC-597.)	e, it is displayed as "PXXXX".
FUEL SYS-B1 *2	 "Fuel injection system status" at the moment a malfunction is detected One mode in the following is displayed. "MODE 2": Open loop due to detected system malfunction 	d is displayed.
FUEL SYS-B2 *2	"MODE 3": Open loop due to detected system mailuriction "MODE 3": Open loop due to driving conditions (power enrichment, d "MODE 4": Closed loop - using oxygen sensor(s) as feedback for fue "MODE 5": Open loop - has not yet satisfied condition to go to closed	l control
CAL/LD VALUE [%]	The calculated load value at the moment a malfunction is detected is	displayed.
COOLANT TEMP [°C] or [°F]	The engine coolant temperature at the moment a malfunction is determined.	cted is displayed.
S-FUEL TRIM-B1 [%]	"Short-term fuel trim" at the moment a malfunction is detected is disp. The short-term fuel trim indicates dynamic or instantaneous feedback.	
S-FUEL TRIM-B2 [%]	 The short-term fuel trim indicates dynamic or instantaneous feedback schedule. 	Compensation to the base fuel
L-FUEL TRIM-B1 [%]	"Long-term fuel trim" at the moment a malfunction is detected is disp The long term fuel trim indicates much more gradual feedback comp	=
L-FUEL TRIM-B2 [%]	 The long-term fuel trim indicates much more gradual feedback comports than short-term fuel trim. 	ensation to the base fuel schedule
ENGINE SPEED [rpm]	The engine speed at the moment a malfunction is detected is display	red.
VHCL SPEED [km/h] or [mph]	The vehicle speed at the moment a malfunction is detected is display	ved.


VG33E

CONSULT-II (Cont'd)

Freeze frame data item *1	Description
ABSOL PRESS [kPa] or [kg/cm ²] or [psi]	The absolute pressure at the moment a malfunction is detected is displayed.
B/FUEL SCHDL [msec]	The base fuel schedule at the moment a malfunction is detected is displayed.
INT/A TEMP SE [°C] or [°F]	The intake air temperature at the moment a malfunction is detected is displayed.

^{*1:} The items are the same as those of 1st trip freeze frame data.

^{*2:} Regarding D22 model, "-B1" indicates right bank and "-B2" indicates left bank.

			DATA MONITOR MODE	=NGEC0555S06
Monitored item [Unit]	ECM input sig-nals	Main sig- nals	Description	Remarks
ENG SPEED [rpm]	0		 Indicates the engine speed computed from the REF signal (120° signal) of the camshaft position sensor. 	
MAS AIR/FL SE [V]	0	0	 The signal voltage of the mass air flow sensor is displayed. 	When the engine is stopped, a certain value is indicated.
COOLAN TEMP/S [°C] or [°F]	0	0	The engine coolant temperature (determined by the signal voltage of the engine coolant temperature sen- sor) is displayed.	When the engine coolant temperature sensor is open or short-circuited, ECM enters fail-safe mode. The engine coolant temperature determined by the ECM is displayed.
HO2S1 (B1) [V]	0	0	The signal voltage of the heated oxy-	
HO2S1 (B2) [V]	0	0	gen sensor 1 (front) is displayed.	
HO2S2 (B1) [V]	0	0	The signal voltage of the heated oxy-	
HO2S2 (B2) [V]	0	0	gen sensor 2 (rear) is displayed.	
HO2S1 MNTR (B1) [RICH/LEAN]	0		 Display of heated oxygen sensor 1 (front) signal during air-fuel ratio feed-back control: RICH means the mixture became "rich", and control is being affected 	After turning ON the ignition switch, "RICH" is displayed until air-fuel mix- ture ratio feedback control begins.
HO2S1 MNTR (B2) [RICH/LEAN]	0		toward a leaner mixture. LEAN means the mixture became "lean", and control is being affected toward a rich mixture.	When the air-fuel ratio feedback is clamped, the value just before the clamping is displayed continuously.
HO2S2 MNTR (B1) [RICH/LEAN]	0		 Display of heated oxygen sensor 2 (rear) signal: RICH means the amount of oxygen after three way catalyst is relatively 	When the engine is stopped, a certain
HO2S2 MNTR (B2) [RICH/LEAN]	0		small. LEAN means the amount of oxygen after three way catalyst is relatively large.	value is indicated.
VHCL SPEED SE [km/h] or [mph]	0	0	 The vehicle speed computed from the vehicle speed sensor signal is dis- played. 	
BATTERY VOLT [V]	0	0	 The power supply voltage of ECM is displayed. 	
THRTL POS SEN [V]	0	0	The throttle position sensor signal voltage is displayed.	
TANK F/TMP SE [°C] or [°F]	0		 The fuel temperature judged from the fuel tank temperature sensor signal voltage is displayed. 	
INT/A TEMP SE [°C] or [°F]	0		 The intake air temperature determined by the signal voltage of the intake air temperature sensor is indicated. 	
EVAP SYS PRES [V]			The signal voltage of EVAP control system pressure sensor is displayed.	
ABSOL PRES/SE [V]			The signal voltage of the absolute pressure sensor is displayed.	

CONSULT-II (Cont'd)

Monitored item [Unit]	ECM input sig- nals	Main sig- nals	Description	Remarks
FUEL LEVEL SE [V]	0		The signal voltage of the fuel level sensor is displayed.	
START SIGNAL [ON/OFF]	0	0	Indicates [ON/OFF] condition from the starter signal.	After starting the engine, [OFF] is dis- played regardless of the starter signal
CLSD THL POS [ON/OFF]	0	0	 Indicates idle position [ON/OFF] computed by ECM according to the throttle position sensor signal. 	
CLSD THL/P SW [ON/OFF]			 Indicates mechanical contact [ON/OFF] condition of the closed throttle position switch. 	
AIR COND SIG [ON/OFF]	0	0	 Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioner signal. 	
P/N POSI SW [ON/OFF]	0	0	 Indicates [ON/OFF] condition from the park/neutral position (PNP) switch sig- nal. 	
PW/ST SIGNAL [ON/OFF]	0	0	[ON/OFF] condition of the power steering oil pressure switch deter- mined by the power steering oil pres- sure signal is indicated.	
AMB TEMP SW [ON/OFF]	0	0	Indicates [ON/OFF] condition from the ambient air temperature switch signal.	
IGNITION SW [ON/OFF]	0		Indicates [ON/OFF] condition from ignition switch.	
INJ PULSE-B2 [msec] INJ PULSE-B1 [msec]		0	 Indicates the actual fuel injection pulse width compensated by ECM according to the input signals. 	When the engine is stopped, a certain computed value is indicated.
B/FUEL SCHDL [msec]		0	"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	
IGN TIMING [BTDC]		0	Indicates the ignition timing computed by ECM according to the input signals.	When the engine is stopped, a certain value is indicated.
IACV-AAC/V [%]		0	 Indicates the IACV-AAC valve control value computed by ECM according to the input signals. 	
PURG VOL C/V [%]		0	 Indicates the EVAP canister purge volume control solenoid valve control value computed by the ECM according to the input signals. The opening becomes larger as the value increases. 	
A/F ALPHA-B2 [%]			The mean value of the air-fuel ratio feedback correction factor per cycle is	When the engine is stopped, a certain value is indicated. This data also includes the data for
A/F ALPHA-B1 [%]			indicated.	 This data also includes the data for the air-fuel ratio learning control.
AIR COND RLY [ON/OFF]			The air conditioner relay control condition (determined by ECM according to the input signal) is indicated.	

				·	
Monitored item [Unit]	ECM input signals	Main sig- nals	Description	Remarks	GI
FUEL PUMP RLY [ON/OFF]			Indicates the fuel pump relay control condition determined by ECM accord- ing to the input signals.		MA
COOLING FAN* [ON/OFF]			Indicates the control condition of the cooling fan (determined by ECM according to the input signal). ON Operation OFF Stop		EM LG
VENT CONT/V [ON/OFF]			 The control condition of the EVAP canister vent control valve (determined by ECM according to the input signal) is indicated. ON Closed OFF Open 		EC
HO2S1 HTR (B1) [ON/OFF]			Indicates [ON/OFF] condition of front heated oxygen sensor heater deter-		CL
HO2S1 HTR (B1) [ON/OFF]			mined by ECM according to the input signals.		. MT
HO2S2 HTR (B1) [ON/OFF]			Indicates [ON/OFF] condition of rear heated oxygen sensor heater deter-		- 11711 11
HO2S2 HTR (B2) [ON/OFF]			mined by ECM according to the input signals.		AT
VC/V BYPASS/V [ON/OFF]			The control condition of the vacuum cut valve bypass valve (determined by ECM according to the input signal) is indicated. ON Open		TF
CAL/LD VALUE [%]			"Calculated load value" indicates the value of the current airflow divided by peak airflow.		AX
ABSOL TH-P/S [%]			"Absolute throttle position sensor" indicates the throttle opening computed by ECM according to the signal voltage of the throttle position sensor.		SU BR
MASS AIRFLOW [g·m/s]			Indicates the mass airflow computed by ECM according to the signal volt- age of the mass airflow sensor.		ST
VOLTAGE [V]			Voltage measured by the voltage probe.		RS
FREQUENCY [msec] or [Hz] or [%]			Pulse width, frequency or duty cycle measured by the pulse probe.	 Only "#" is displayed if item is unable to be measured. Figures with "#"s are temporary ones. They are the same figures as an 	BT
NOTE:				actual piece of data which was just previously measured.	HA
NOTE:					

- Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.
- Regarding D22 model, "-B1" indicates right bank and "-B2" indicates left bank.

SC

^{*:} Models with electric cooling fan.

VG33E

CONSULT-II (Cont'd)

DATA MONITOR (SPEC) MODE NGEC0555S11 **ECM** Main Monitored item input Description Remarks sig-[Unit] signals nals • The signal voltage of the mass air flow sensor • When the engine is running, specifi-MAS A/F SE-B1 [V] 0 0 specification is displayed. cation range is indicated. • "Base fuel schedule" indicates the fuel injection B/FUEL SCHDL · When the engine is running, specifipulse width programmed into ECM, prior to any [msec] cation range is indicated. learned on board correction. • When the engine is running, specifi-A/F ALPHA-B1 [%] \bigcirc • Indicates the mean value of the air-fuel ratio cation range is indicated. feedback correction factor per cycle. • This data also includes the data for A/F ALPHA-B2 [%] \bigcirc the air-fuel ratio learning control.

NOTE:

- Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.
- Regarding D22 model, "B1" indicates bank 1 and "B2" indicates bank 2.

ACTIVE TEST MODE

NGEC0555S07

			NGEC0555S0
TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
FUEL INJEC- TION	 Engine: Return to the original trouble condition Change the amount of fuel injection using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connectorFuel injectorsFront heated oxygen sensor
IGNITION TIM- ING	 Engine: Return to the original trouble condition Timing light: Set Retard the ignition timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Adjust initial ignition timing
IACV-AAC/V OPENING	 Engine: After warming up, idle the engine. Change the IACV-AAC valve opening percent using CON- SULT-II. 	Engine speed changes according to the opening percent.	Harness and connectorIACV-AAC valve
POWER BAL- ANCE	 Engine: After warming up, idle the engine. A/C switch "OFF" Shift lever "N" Cut off each injector signal one at a time using CONSULT-II. 	Engine runs rough or dies.	 Harness and connector Compression Injectors Power transistor Spark plugs Ignition coils
ENG COOLANT TEMP	 Engine: Return to the original trouble condition Change the engine coolant tem- perature using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	 Harness and connector Engine coolant temperature sensor Fuel injectors
COOLING FAN*	 Ignition switch: ON Turn the cooling fan "ON" and "OFF" using CONSULT-II. 	Cooling fan moves and stops.	Harness and connectorCooling fan motorCooling fan relay
FUEL PUMP RELAY	 Ignition switch: ON (Engine stopped) Turn the fuel pump relay "ON" and "OFF" using CONSULT-II and listen to operating sound. 	Fuel pump relay makes the operating sound.	Harness and connector Fuel pump relay

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)	1
PURG VOL CONT/V	 Engine: After warming up, run engine at 1,500 rpm. Change the EVAP canister purge volume control solenoid valve opening percent using CONSULT-II. 	Engine speed changes according to the opening percent.	Harness and connectorSolenoid valve	GI M/
FUEL/T TEMP SEN	Change the fuel tank temperature using CONSULT-II.			
VENT CONTROL/V	 Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" with the CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connectorSolenoid valve	LC
VC/V BYPASS/V	Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" with the CONSULT-II and listen to operating sound.	Solenoid valve makes an operating sound.	Harness and connectorSolenoid valve	FE

^{*:} Models with electric cooling fan.

DTC CONFIRMATION MODE SRT STATUS Mode

SRT WORK SUPPORT Mode

NGEC0555S08

For details, refer to "SYSTEM READINESS TEST (SRT) CODE", EC-655.

SRT status and some of the data monitor item can be read.

PD

TF

MT

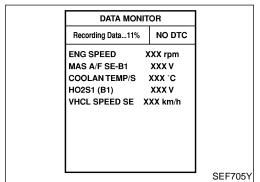
 $\mathbb{A}\mathbb{X}$

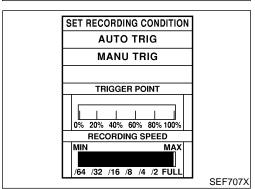
SU

BR

ST

RS


BT


HA

SC

EL

DTC Work Support Mode			
Test mode	Test item	Condition	Reference page
	EVAP SML LEAK P0440		EC-958
	EVAP VERY SML LEAK P1441		EC-1077
EVAPORATIVE SYSTEM	PURG VOL CN/V P1444		EC-1092
	PURGE FLOW P1447		EC-1111
	VC CUT/V BP/V P1491		EC-1141
	HO2S1 (B1) P0130		EC-778
	HO2S1 (B1) P0131		EC-789
	HO2S1 (B1) P0132		EC-798
HEATED OXYGEN SEN-	HO2S1 (B1) P0133	Refer to corresponding	EC-807
SOR 1 (FRONT)	HO2S1 (B2) P0150	trouble diagnosis for	EC-778
	HO2S1 (B2) P0151	DTC.	EC-789
	HO2S1 (B2) P0152		EC-798
	HO2S1 (B2) P0153		EC-807
	HO2S2 (B1) P0137		EC-836
	HO2S2 (B1) P0138		EC-846
HEATED OXYGEN SEN-	HO2S2 (B1) P0139		EC-856
SOR 2 (REAR)	HO2S2 (B2) P0157		EC-836
	HO2S2 (B2) P0158		EC-846
	HO2S2 (B2) P0159		EC-856

REAL TIME DIAGNOSIS IN DATA MONITOR MODE (RECORDING VEHICLE DATA)

CONSULT-II has two kinds of triggers and they can be selected by touching "SETTING" in "DATA MONITOR" mode.

- 1) "AUTO TRIG" (Automatic trigger):
- The malfunction will be identified on the CONSULT-II screen in real time.

In other words, DTC/1st trip DTC and malfunction item will be displayed if the malfunction is detected by ECM.

At the moment a malfunction is detected by ECM, "MONITOR" in "DATA MONITOR" screen is changed to "Recording Data ... xx%" as shown at left, and the data after the malfunction detection is recorded. Then when the percentage reached 100%, "REAL-TIME DIAG" screen is displayed. If "STOP" is touched on the screen during "Recording Data ... xx%", "REAL-TIME DIAG" screen is also displayed.

The recording time after the malfunction detection and the recording speed can be changed by "TRIGGER POINT" and "Recording Speed". Refer to CONSULT-II OPERATION MANUAL.

- 2) "MANU TRIG" (Manual trigger):
- DTC/1st trip DTC and malfunction item will not be displayed

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION

MA

EC

GL

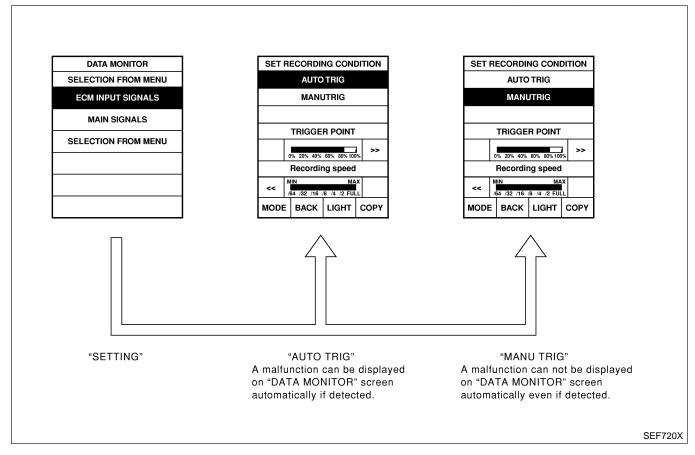
AT

TF

PD

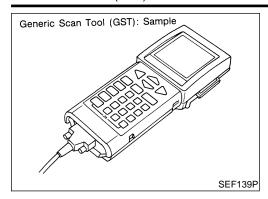
CONSULT-II (Cont'd)

automatically on CONSULT-II screen even though a malfunction is detected by ECM.


DATA MONITOR can be performed continuously even though a malfunction is detected.

Use these triggers as follows:

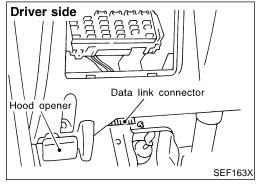
- "AUTO TRIG"
- While trying to detect the DTC/1st trip DTC by performing the "DTC Confirmation Procedure", be sure to select to "DATA MONITOR (AUTO TRIG)" mode. You can confirm the malfunction at the moment it is detected.
- While narrowing down the possible causes, CONSULT-II should be set in "DATA MONITOR (AUTO TRIG)" mode, especially in case the incident is intermittent.


When you are inspecting the circuit by gently shaking (or twisting) the suspicious connectors, components and harness in the "DTC Confirmation Procedure", the moment a malfunction is found the DTC/1st trip DTC will be displayed. (Refer to "Incident Simulation Tests" in "HOW TO PERFORM EFFI-CIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT", GI-23.

- "MANU TRIG"
- If the malfunction is displayed as soon as "DATA MONITOR" is selected, reset CONSULT-II to "MANU TRIG". By selecting "MANU TRIG" you can monitor and store the data. The data can be utilized for further diagnosis, such as a comparison with the value for the normal operating condition.

HA

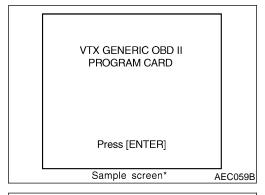
Generic Scan Tool (GST)


Generic Scan Tool (GST) DESCRIPTION

=NGEC0556

NGEC0556S01

Generic Scan Tool (OBDII scan tool) complying with SAE J1978 has 7 different functions explained on the next page. ISO9141 is used as the protocol.


The name "GST" or "Generic Scan Tool" is used in this service manual.

GST INSPECTION PROCEDURE

NGEC0556S02

- Turn ignition switch OFF.
- 2. Connect "GST" to data link connector for GST which is located under LH dash panel near the fuse box cover.

OBD II FUNCTIONS

F9: UNIT CONVERSION

Sample screen*

- Turn ignition switch ON.
- 4. Enter the program according to instruction on the screen or in the operation manual.
- (*: Regarding GST screens in this section, sample screens are shown.)

F0: DATA LIST
F1: FREEZE DATA
F2: DTCS
F3: SNAPSHOT
F4: CLEAR DIAG INFO
F5: O2 TEST RESULTS
F6: READINESS TESTS
F7: ON BOARD TESTS
F8: EXPAND DIAG PROT

AEC060B

Perform each diagnostic mode according to each service procedure.

For further information, see the GST Operation Manual of the tool maker.

ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION

VG33E

Generic Scan Tool (GST) (Cont'd)

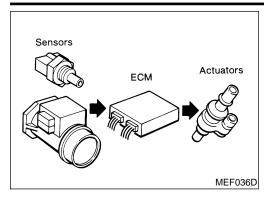
		FUNCTION NGEC0556SG
Di	agnostic test mode	Function
MODE 1	READINESS TESTS	This mode gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, and system status information.
MODE 2	(FREEZE DATA)	This mode gains access to emission-related data value which were stored by ECM during the freeze frame. [For details, refer to "Freeze Frame Data" (EC-679).]
MODE 3	DTCs	This mode gains access to emission-related power train trouble codes which were stored by ECM.
MODE 4	CLEAR DIAG INFO	This mode can clear all emission-related diagnostic information. This includes: Clear number of diagnostic trouble codes (MODE 1) Clear diagnostic trouble codes (MODE 3) Clear trouble code for freeze frame data (MODE 1) Clear freeze frame data (MODE 2) Reset status of system monitoring test (MODE 1) Clear on board monitoring test results (MODE 6 and 7)
MODE 6	(ON BOARD TESTS)	This mode accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.
MODE 7	(ON BOARD TESTS)	This mode enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.
MODE 8	_	This mode can close EVAP system in ignition switch "ON" position (Engine stopped). When this mode is performed, the following parts can be opened or closed. EVAP canister vent control valve open Vacuum cut valve bypass valve closed In the following conditions, this mode cannot function. Low ambient temperature Low battery voltage Engine running Ignition switch OFF Low fuel temperature
MODE 9	CALIBRATION ID	Too much pressure is applied to EVAP system This mode is to enable the off-board to request vehicle specific vehicle information
MODE 9	CALIBRATION ID	This mode is to enable the off-board to request vehicle specific vehicle information such as Vehicle Identification Number (VIN) and calibration IDs.

BR

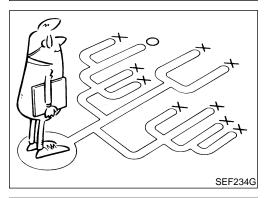
ST

RS

BT


HA

SC


EL

TROUBLE DIAGNOSIS — INTRODUCTION

VG33E

Introduction

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no problems such as vacuum leaks, fouled spark plugs, or other problems with the engine.

It is much more difficult to diagnose a problem that occurs intermittently rather than continuously. Most intermittent problems are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.

A visual check only may not find the cause of the problems. A road test with CONSULT-II (or GST) or a circuit tester connected should be performed. Follow the "Work Flow" on EC-692.

Before undertaking actual checks, take a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such problems, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A "Diagnostic Worksheet" like the example on next page should be used.

Start your diagnosis by looking for "conventional" problems first. This will help troubleshoot driveability problems on an electronically controlled engine vehicle.

KEY POINTS

WHAT Vehicle & engine model WHEN Date, Frequencies WHERE Road conditions Operating conditions,

Weather conditions,

Symptoms

SEF907L

DIAGNOSTIC WORKSHEET

There are many operating conditions that lead to the malfunction of engine components. A good grasp of such conditions can make trouble-shooting faster and more accurate.

In general, each customer feels differently about a problem. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one on the next page in order to organize all the information for troubleshooting.

Some conditions may cause the MIL to come on steady or blink and DTC to be detected. Examples:

- Vehicle ran out of fuel, which caused the engine to misfire.
- Fuel filler cap was left off or incorrectly screwed on, allowing fuel to evaporate into the atmosphere [for the models with EVAP (SMALL LEAK) diagnosis].

TROUBLE DIAGNOSIS — INTRODUCTION

Worksheet Sample

NGEC0557S0101

GI

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

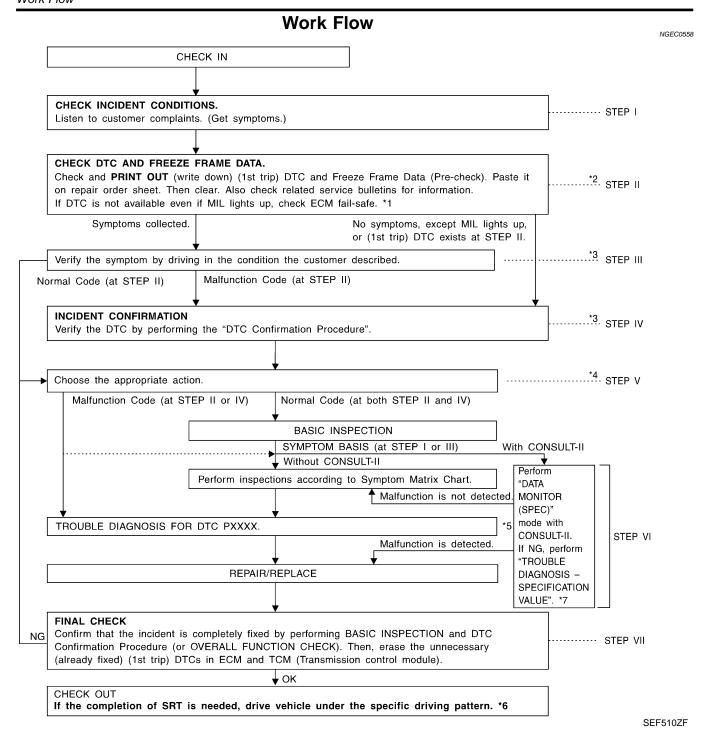
SU

BR

ST

RS

BT


HA

SC

EL

Customer name MR/MS		Model & Year	VIN	
Engine #		Trans.	Mileage	
Incident Date		Manuf. Date	In Service Date	
Fuel and fuel	filler cap	☐ Vehicle ran out of fuel causing misfire ☐ Fuel filler cap was left off or incorrectly screwed on.		
☐ Startability		☐ Inpossible to start ☐ No combust ☐ Partial combustion affected by th ☐ Partial combustion NOT affected ☐ Possible but hard to start ☐ Other	nrottle position I by throttle position	
Symptoms	□ Idling	☐ No fast idle ☐ Unstable ☐ F☐ Others [High idle ☐ Low idle	
	☐ Driveability	☐ Stumble ☐ Surge ☐ Knock☐ Intake backfire ☐ Exhaust backfi☐ Others [☐ Lack of power re]	
	☐ Engine stall	☐ At the time of start ☐ While idling ☐ While accelerating ☐ While decelerating ☐ Just after stopping ☐ While loading		
Incident occu	rrence	☐ Just after delivery ☐ Recently ☐ In the morning ☐ At night ☐ In the daytime		
Frequency		☐ All the time ☐ Under certain conditions ☐ Sometimes		
Weather cond	ditions	☐ Not affected		
Weather		☐ Fine ☐ Raining ☐ Snowing	Others [
Temperature] Cold ☐ Humid °F		
<u>'</u>		☐ Cold ☐ During warm-up ☐ After warm-up		
Engine conditions		Engine speed0 2,000	4,000 6,000 8,000 rpm	
Road conditions		☐ In town ☐ In suburbs ☐ Hig	hway 🔲 Off road (up/down)	
Driving conditions		 Not affected At starting While idling While accelerating While accelerating While decelerating While turning (RH/LH) 		
		Vehicle speed	30 40 50 60 MPH	
Malfunction in	ndicator lamp	☐ Turned on ☐ Not turned on		

MTBL0017

- *1 EC-709
- *2 If time data of "SELF-DIAG RESULTS" is other than "0" or "[1t]", perform "TROUBLE DIAG-NOSIS FOR INTERMITTENT INCIDENT", EC-732.
- *3 If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.
- *4 If the on board diagnostic system cannot be performed, check main power supply and ground circuit. Refer to "TROUBLE DIAGNOSIS FOR POWER SUPPLY", EC-733.
- *5 If malfunctioning part cannot be

detected, perform "TROUBLE DIAGNOSIS FOR INTERMIT-TENT INCIDENT", EC-732.

- *6 EC-660
- *7 EC-728

TROUBLE DIAGNOSIS — INTRODUCTION

	DESCRIPTION FOR WORK FLOW
STEP	DESCRIPTION
STEP I	Get detailed information about the conditions and the environment when the incident/symptom occurred using the "DIAGNOSTIC WORK SHEET", EC-691.
STEP II	Before confirming the concern, check and write down (print out using CONSULT-II or GST) the (1st trip) DTC and the (1st trip) freeze frame data, then erase the DTC and the data. (Refer to EC-666.) The (1st trip) DTC and the (1st trip) freeze frame data can be used when duplicating the incident at STEP III & IV. If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732. Study the relationship between the cause, specified by (1st trip) DTC, and the symptom described by the customer. (The "Symptom Matrix Chart" will be useful. See EC-710.) Also check related service bulletins for information.
STEP III	Try to confirm the symptom and under what conditions the incident occurs. The "DIAGNOSTIC WORK SHEET" and the freeze frame data are useful to verify the incident. Connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732. If the malfunction code is detected, skip STEP IV and perform STEP V.
STEP IV	Try to detect the (1st trip) DTC by driving in (or performing) the "DTC Confirmation Procedure". Check and read the (1st trip) DTC and (1st trip) freeze frame data by using CONSULT-II or GST. During the (1st trip) DTC verification, be sure to connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732. In case the "DTC Confirmation Procedure" is not available, perform the "Overall Function Check" instead. The (1st trip) DTC cannot be displayed by this check, however, this simplified "check" is an effective alternative. The "NG" result of the "Overall Function Check" is the same as the (1st trip) DTC detection.
STEP V	Take the appropriate action based on the results of STEP I through IV. If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC PXXXX. If the normal code is indicated, proceed to the BASIC INSPECTION. (Refer to EC-694.) If CONSULT-II is available, perform "DATA MONITOR (SPEC)" mode with CONSULT-II and proceed to the "TROUBLE DIAGNOSIS — SPECIFICATION VALUE", EC-728. (If malfunction is detected, proceed to "REPAIR REPLACE".) Then perform inspections according to the Symptom Matrix Chart. (Refer to EC-710.)
STEP VI	Identify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the system for mechanical binding, loose connectors or wiring damage using (tracing) "Harness Layouts". Gently shake the related connectors, components or wiring harness with CONSULT-II set in "DATA MONITOR (AUTO TRIG)" mode. Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CONSULT-II. Refer to EC-714, EC-719. The "Diagnostic Procedure" in EC section contains a description based on open circuit inspection. A short circuit inspection is also required for the circuit check in the Diagnostic Procedure. For details, refer to "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT", "Circuit Inspection", <i>GI-25</i> . Repair or replace the malfunction parts. If malfunctioning part cannot be detected, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.
STEP VII	Once you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and circumstances which resulted in the customer's initial complaint. Perform the "DTC Confirmation Procedure" and confirm the normal code [DTC No. P0000 or 0505] is detected. If the incident is still detected in the final check, perform STEP VI by using a different method from the previous one. Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) (1st trip) DTC in ECM and TCM (Transmission control module). (Refer to EC-666.)

HA

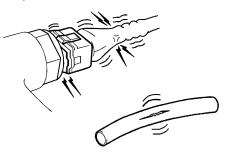
SC

EL

NGEC0559

Basic Inspection

Basic Inspection

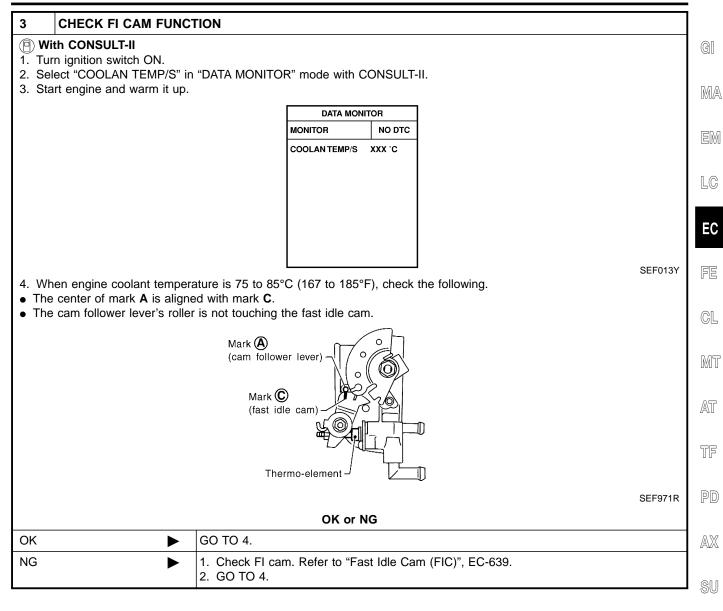

Precaution:

Perform Basic Inspection without electrical or mechanical loads applied;

- Headlamp switch is OFF,
- Air conditioner switch is OFF,
- Rear window defogger switch is OFF,
- Steering wheel is in the straight-ahead position, etc.

INSPECTION START

- 1. Check service records for any recent repairs that may indicate a related problem, or the current need for scheduled maintenance.
- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Vacuum hoses for splits, kinks, or improper connections
- Wiring for improper connections, pinches, or cuts


SEF983U

Models with CONSULT-II	GO TO 2.
Models with GST	GO TO 2.
Models with No Tools	GO TO 16.

2	CONNECT CONSULT-II OR GST TO THE VEHICLE		
	(E) With CONSULT-II Connect "CONSULT-II" to the data link connector for CONSULT-II and select "ENGINE" from the menu. Refer to EC-675.		
Conne	With GST Connect "GST" to the data link connector for GST. Refer to EC-688.		
Model CONS	s with S ULT-II	GO TO 3.	
Model GST	s with	GO TO 15.	

VG33E

Basic Inspection (Cont'd)

BR

ST

BT

HA

SC

EL

VG33E

Basic Inspection (Cont'd)

CHECK IGNITION TIMING (P) With CONSULT-II 1. Warm up engine to normal operating temperature. 2. Select "TARGET IDLE RPM ADJ" in "WORK SUPPORT" mode and touch "START". TARGET IDLE RPM ADJ SET ENGINE RPM AT THE **SPECIFIED VALUE UNDER** THE FOLLOWING CONDITION. -ENG WARMED UP ENOUGH -NO LOAD SEC019C 3. Check ignition timing at idle using a timing light. Timing SEF984U Ignition timing: 10°±2° BTDC

OK or NG		
ОК	•	GO TO 5.
NG	·	 Adjust ignition timing by turning distributor. Refer to "Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment", EC-641. GO TO 5.

CHECK BASE IDLE SPEED (P) With CONSULT-II 1. Select "TARGET IDLE RPM ADJ" in "WORK SUPPORT" mode and touch "START". TARGET IDLE RPM ADJ SET ENGINE RPM AT THE **SPECIFIED VALUE UNDER** THE FOLLOWING CONDITION. -ENG WARMED UP ENOUGH -NO LOAD SEC019C 2. Check idle speed. 700±50 rpm (in "P" or "N" position) OK or NG GO TO 6. OK NG 1. Adjust engine speed by turning idle speed adjusting screw. Refer to "Idle Speed/ Ignition Timing/Idle Mixture Ratio Adjustment", EC-641. 2. GO TO 6.

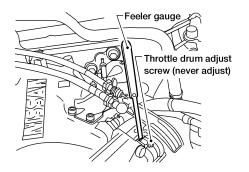
VG33E

Basic Inspection (Cont'd)

6 CHECK CLOSED THROTTLE POSITION SWITCH IDLE POSITION-I

(P) With CONSULT-II

NOTE:


Always check ignition timing and base idle speed before performing the following.

- 1. Warm up engine to normal operating temperature.
- 2. Check FI cam, refer to procedure 3.
- 3. Stop engine.

▶ GO TO 7.

CHECK CLOSED THROTTLE POSITION SWITCH IDLE POSITION-II

- 1. Turn ignition switch ON.
- 2. Select "CLSD THL/P SW" in "DATA MONITOR" mode.
- 3. Read "CLSD THL/P SW" signal under the following conditions.
- Insert a 0.2 mm (0.008 in) and 0.4 mm (0.016 in) feeler gauge alternately between the throttle adjust screw (TAS) and throttle drum as shown in the figure and check the signal.

LEC517

DATA MONITOR	
MONITOR	NO DTC
CLSD THL/P SW	ON

SEF173Y

"CLSD THL/P SW" signal should remain "ON" while inserting 0.2 mm (0.008 in) feeler gauge. "CLSD THL/P SW" signal should remain "OFF" while inserting 0.4 mm (0.016 in) feeler gauge.

OK or NG

OK ▶	GO TO 12.
NG ▶	GO TO 8.

8 ADJUSTMENT THROTTLE POSITION SWITCH IDLE POSITION

(P) With CONSULT-II

NOTE:

- Never adjust throttle adjust screw (TAS).
- Do not touch throttle drum when checking "CLSD THL/P SW" signal, doing so may cause an incorrect adjustment.
- 1. Warm up engine to normal operating temperature.
- 2. Check FI cam. Refer to procedure 3.
- 3. Stop engine.
- 4. Loosen throttle position sensor fixing bolts.

▶ GO TO 9.

EC-697

G

MA

LG

EC

FE

96

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

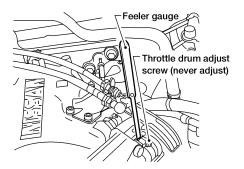
D@

BT

HA

SC

EL


VG33E

Basic Inspection (Cont'd)

9

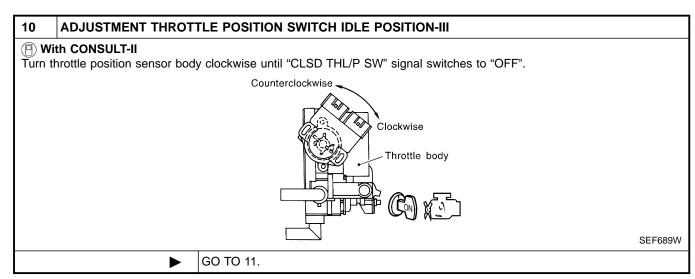
ADJUSTMENT CLOSED THROTTLE POSITION SWITCH IDLE POSITION-II

- 1. Turn ignition switch ON.
- 2. Select "CLSD THL/P SW" in "DATA MONITOR" mode.
- 3. Insert 0.3 mm (0.012 in) feeler gauge between throttle adjust screw and throttle drum as shown in the figure.

4. Open throttle valve and then close.

5. Check "CLSD THL/P SW" signal.

DATA MONITOR	
MONITOR	NO DTC
CLSD THL/P SW	OFF


SEF305Y

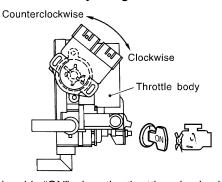
LEC517

"CLSD THL/P SW" signal should remain "OFF" when the throttle valve is closed.

OK or NG

OK ►	GO TO 10.
NG ►	GO TO 8.

VG33E


Basic Inspection (Cont'd)

ADJUSTMENT THROTTLE POSITION SWITCH IDLE POSITION-IV

(P) With CONSULT-II

11

- 1. Remove 0.3 mm (0.012 in) feeler gauge then insert 0.2 mm (0.008 in) feeler gauge.
- 2. Temporarily tighten sensor body fixing bolts as follows.
- Gradually move the sensor body counterclockwise and stop it when "CLSD THL/P SW" signal switches from "OFF" to "ON", then temporarily tighten sensor body fixing bolts.

SEF689W

- 3. Make sure two or three times that the signal is "ON" when the throttle valve is closed and "OFF" when it is opened.
- 4. Remove 0.2 mm (0.008 in) feeler gauge then insert 0.4 mm (0.016 in) feeler gauge.
- 5. Make sure two or three times that the signal remains "OFF" when the throttle valve is closed.
- 6. Tighten throttle position sensor.
- 7. Check the "CLSD THL/P SW" signal again.

The signal remains "OFF" while closing throttle valve.

OK or NG

OK •	GO TO 12.
NG ►	GO TO 8.

G[

MA

16

EC

FE

CL

MT

AT

TF

PD

AX

SU

חש

ST

D@

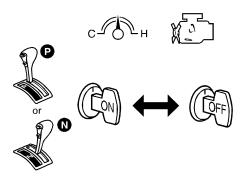
BT

HA

SC

VG33E

Basic Inspection (Cont'd)


12 RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY

(P) With CONSULT-II

NOTE:

Always warm up engine to normal operating temperature. If engine is cool, the throttle position sensor idle position memory will not be reset correctly.

- 1. Remove feeler gauge.
- 2. Start engine.
- 3. Warm up engine to normal operating temperature.
- 4. Select "CLSD THL POS" in "DATA MONITOR" mode.
- 5. Stop engine. (Turn ignition switch OFF.)
- 6. Turn ignition switch ON and wait at least 5 seconds.

SEF864V

- 7. Turn ignition switch OFF and wait at least 5 seconds.
- 8. Repeat steps 5 and 6 until "CLSD THL POS" signal changes to "ON".

DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
COOLAN TEMP/S	xxx °c	
CLSD THL/P SW	ON	

SEF197Y

GO TO 13.

13 CHECK TARGET IDLE SPEED

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "ENG SPEED" in "DATA MONITOR" mode.
- 3. Check idle speed.

750±50 rpm (in "P" or "N" position)

OK or NG

ОК	>	INSPECTION END
NG	•	Adjust idle speed. Refer to "Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment", EC-641.

VG33E

GI

MA

EM

LC

EC

GL

MT

AT

TF

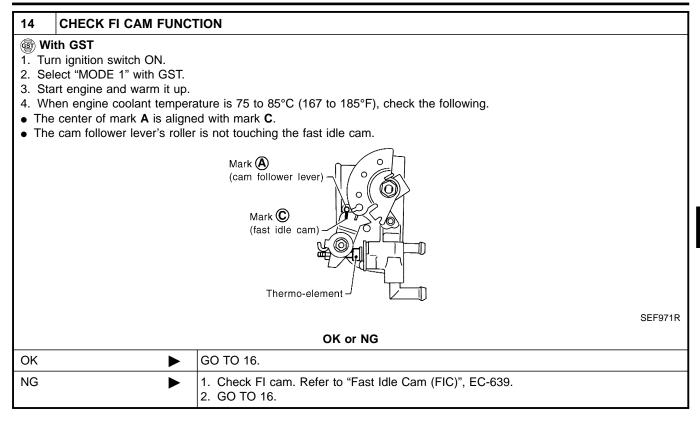
PD

SU

BR

ST

RS

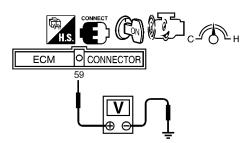

BT

HA

SC

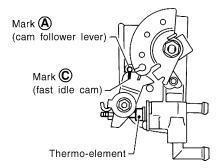
EL

Basic Inspection (Cont'd)



Basic Inspection (Cont'd)

15 CHECK FI CAM FUNCTION


No Tools

- 1. Set the voltmeter between ECM terminal 59 (Engine coolant temperature sensor signal) and ground.
- 2. Start engine and warm it up.

SEF119W

- 3. When the voltage is between 1.10 to 1.36V, check the following.
- The center of mark A is aligned with mark C.
- The cam follower lever's roller is not touching the fast idle cam.

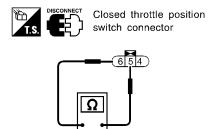

SEF971R

OK or NG

OK ►	GO TO 16.
NG ►	 Check FI cam. Refer to "Fast Idle Cam (FIC)", EC-639. GO TO 16.

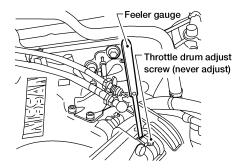
VG33E

Basic Inspection (Cont'd)



VG33E

Basic Inspection (Cont'd)


19 CHECK CLOSED THROTTLE POSITION SWITCH IDLE POSITION-I

- 1. Disconnect closed throttle position switch harness connector.
- 2. Check continuity between closed throttle position switch terminals 5 and 6 under the following conditions.

SEE862\/

• Insert the 0.2 mm (0.008 in) and 0.4 mm (0.016 in) feeler gauge alternately between the throttle adjust screw (TAS) and throttle drum as shown in the figure.

LEC517

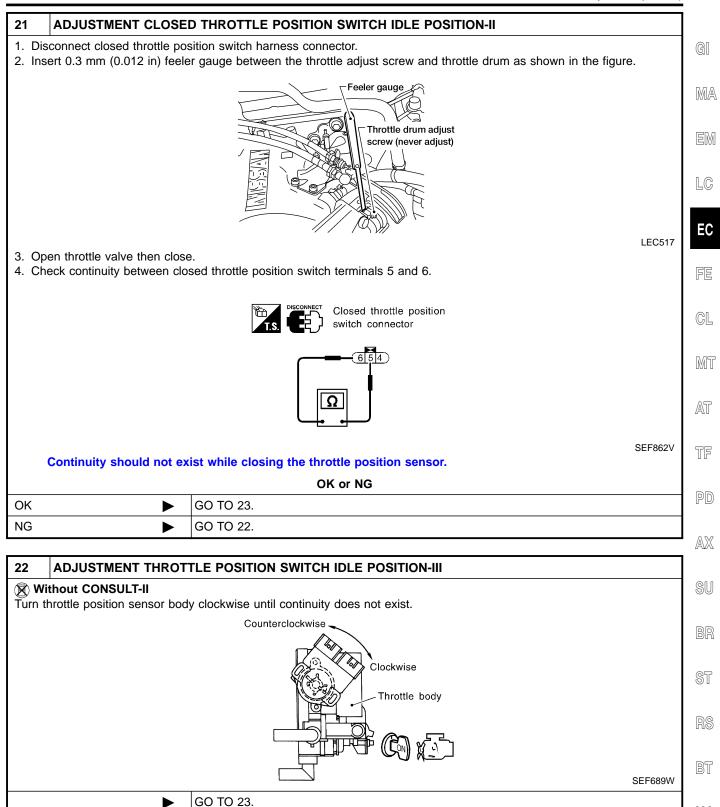
OK or NG

OK ▶	GO TO 24.
NG ►	GO TO 20.

20 ADJUSTMENT THROTTLE POSITION SWITCH IDLE POSITION

Without CONSULT-II

NOTE:


- Never adjust throttle adjust screw (TAS).
- Do not touch throttle drum when checking "continuity", doing so may cause an incorrect adjustment.
- 1. Warm up engine to normal operating temperature.
- 2. Check FI cam. Refer to procedure 12 or 13.
- 3. Stop engine.
- 4. Loosen throttle position sensor fixing bolts.

GO	TO	21.

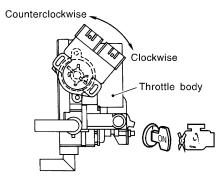
[&]quot;Continuity should exist" while inserting 0.2 mm (0.008 in) feeler gauge.

[&]quot;Continuity should not exist" while inserting 0.4 mm (0.016 in) feeler gauge.

Basic Inspection (Cont'd)

HA

SC


Basic Inspection (Cont'd)

23

ADJUSTMENT THROTTLE POSITION SWITCH IDLE POSITION-IV

(R) Without CONSULT-II

- 1. Remove 0.3 mm (0.012 in) feeler gauge then insert 0.2 mm (0.008 in) feeler gauge.
- 2. Temporarily tighten sensor body fixing bolts as follows.
- Gradually move the sensor body counterclockwise and stop it when the continuity comes to exist, then temporarily tighten sensor body fixing bolts.

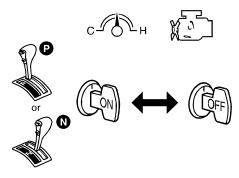
SEF689W

- 3. Make sure two or three times that the continuity exists when the throttle valve is closed and continuity does not exist when it is opened.
- 4. Remove 0.2 mm (0.008 in) feeler gauge then insert 0.4 mm (0.016 in) feeler gauge.
- 5. Make sure two or three times that the continuity does not exist when the throttle valve is closed.
- 6. Tighten throttle position sensor.
- 7. Check the continuity again.

Continuity does not exist while closing the throttle valve.

OK or NG

OK ▶	GO TO 24.
NG ►	GO TO 20.


24 RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY

Without CONSULT-II

NOTE:

Always warm up engine to normal operating temperature. If engine is cool, the throttle position sensor idle position memory will not be reset correctly.

- 1. Remove feeler gauge.
- 2. Start engine.
- 3. Warm up engine to normal operating temperature.
- 4. Stop engine. (Turn ignition switch OFF.)
- 5. Turn ignition switch ON and wait at least 5 seconds.

SEF864V

- 6. Turn ignition switch OFF and wait at least 5 seconds.
- 7. Repeat steps 4 and 5, 20 times.

■ GO TO 25.

VG33E

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

Basic Inspection (Cont'd)

25	REINSTALLATION]
⊗ Without CONSULT-II			GI
	Reconnect throttle position sensor harness connector and closed throttle position switch harness connector.		
2. Sta	art engine and rev it (2,000	to 3,000 rpm) two or three times under no-load and then run engine at idle speed.	1
	>	GO TO 26.	MA

26	CHECK TARGET IDLE	SPEED		
Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Check idle speed. 750±50 rpm (in "P" or "N" position)				
	OK or NG			
ОК	>	GO TO 27.		
NG	>	 Adjust idle speed. Refer to "Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment", EC-641. GO TO 27. 		

27	ERASE UNNECESSARY DTC		
After this inspection, unnecessary DTC No. might be displayed. Erase the stored memory in ECM and TCM (Transmission control module). Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-666 and "HOW TO ERASE DTC", AT-35.			
► INSPECTION END			

DTC Inspection Priority Chart

DTC Inspection Priority Chart

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

Priority	Detected items (DTC)
1	 P0100 Mass air flow sensor P0110 Intake air temperature sensor P0115 P0125 Engine coolant temperature sensor P0120 Throttle position sensor P0180 Fuel tank temperature sensor P0325 Knock sensor P0335 P1336 Crankshaft position sensor (OBD) P0340 Camshaft position sensor P0460 P0461 P1464 Fuel level sensor P0500 Vehicle speed sensor P0600 A/T communication line P0605 ECM P1605 A/T diagnosis communication line P1706 Park/Neutral position (PNP) switch
2	 P0105 Absolute pressure sensor (0803) P0130-P0134, P0150-P0154 Heated oxygen sensor 1 (front) P0135 P0155 Heated oxygen sensor 1 heater (front) P0137-P0140, P0157-P0160 Heated oxygen sensor 2 (rear) P0141 P0161 Heated oxygen sensor 2 heater (rear) P0217 Engine coolant overtemperature enrichment protection P0443 P1444 EVAP canister purge volume control solenoid valve P0450 EVAP control system pressure sensor P0510 Closed throttle position switch P0705-P0755 P1760 A/T related sensors, solenoid valves and switches P1441 EVAP control system purge flow monitoring P1490 P1491 Vacuum cut valve bypass valve
3	 P0171 P0172 P0174 P0175 Fuel injection system function P0306 - P0300 Misfire P0420 P0430 Three way catalyst function P0440 EVAP control system (SMALL LEAK) P0455 EVAP control system (GROSS LEAK) P0505 IACV-AAC valve P0731-P0734 P0744 A/T function P1148 P1168 Closed loop control

TROUBLE DIAGNOSIS — GENERAL DESCRIPTION

Fail-safe Chart

The ECM enters fail-safe mode, if any of the following malfunctions is detected due to the open or short circuit. When the ECM enters the fail-safe mode, the MIL illuminates.

	п
1(2	
1(5)	
<u></u>	ш

DTC No.										
CONSULT-II GST	Detected items	Engine operation	ng condition in fail-safe mode	M						
P0100	Mass air flow sensor cir- cuit	Engine speed will not rise more than	n 2,400 rpm due to the fuel cut.							
P0115	Engine coolant temperature sensor circuit	Engine coolant temperature will be or ing ignition switch ON or START. CONSULT-II displays the engine cool	determined by ECM based on the time after turn- plant temperature decided by ECM.							
		Condition	Engine coolant temperature decided (CONSULT-II display)							
		Just as ignition switch is turned ON or Start	40°C (104°F)	F						
		More than approx. 4 minutes after ignition ON or Start	80°C (176°F)							
		Except as shown above 40 - 80°C (104 - 176°F) (Depends on the time)								
P0120	Throttle position sensor circuit	Throttle position will be determined based on the injected fuel amount and the engine speed. Therefore, acceleration will be poor.								
		Condition	Driving condition	•						
		When engine is idling	Normal	1						
		When accelerating	Poor acceleration	•						
Unable to access ECM	ECM	the CPU of ECM), the MIL on the in However it is not possible to access Engine control with fail-safe	was judged to be malfunctioning. (i.e., if the ECM detects a malfunction condition in strument panel lights to warn the driver. ECM and DTC cannot be confirmed. el injection, ignition timing, fuel pump operation,							
			ECM fail-safe operation							
		Engine speed	Engine speed will not rise more than 3,000 rpm	. [
		Fuel injection	Simultaneous multiport fuel injection system	. 6						
		Ignition timing	Ignition timing is fixed at the preset value							
		Fuel pump	Fuel pump relay is "ON" when engine is running and "OFF" when engine stalls	. [
		IACV-AAC valve	Full open							

EL

Symptom Matrix Chart

Symptom Matrix Chart SYSTEM — BASIC ENGINE CONTROL SYSTEM

NGEC0562 NGEC0562S01

															NGEC0562S0
							S	YMPT	ОМ						
			ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty	Warranty symptom code		АВ	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Fuel	Fuel pump circuit	_			3			3	•					1	EC-1177
	Injector circuit	1	1	2	3	2		2	2			3			EC-1169
	Fuel pressure regulator system		4												EC-638
	Evaporative emission system	4		4	4	4	4	4	3	3		4			EC-619
Air	Positive crankcase ventilation system												1		EC-635
	Incorrect idle speed adjustment	3	3				1	1	1	1		1			EC-641
	IACV-AAC valve circuit	2	1	3	3	3	2	2	2	2		3		1	EC-1027
	IACV-FICD solenoid valve circuit		2			S	3	3				J			EC-1190
Ignition	Incorrect ignition timing adjustment	3	3	1	1	1		1	1			1			EC-641
	Ignition circuit	1	1	2	2	2		2	2			2			EC-1162
Main power supply and ground circuit		1	2	3	3	3		3	2		1	3		1	EC-733
Air conditi	Air conditioner circuit		2 2		٦	3	3	3	_	2		3		'	HA-11

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

TROUBLE DIAGNOSIS — GENERAL DESCRIPTION

VG33E

Symptom Matrix Chart (Cont'd)

						S`	/MPT	ОМ							ı		
	HA)				NOI					HIGH				-	GI		
	(EXCP. H		SPOT		ELERA					RATURE	NOIL	N C	CHARGE)		MA		
	TART (E		3/FLAT 8	NATION	OR ACC		ڻ ن) IDLE	remper	CONSUMPTION	SUMPTIC		Reference	EM		
	START/RESTART		HESITATION/SURGING/FLAT	SPARK KNOCK/DETONATION	POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	ATION	ETURN TO	SLOW/NO RETURN TO I OVERHEATS/WATER TE		OVERHEATS/WATER TEMPERATURE	FUEL	OIL CONSUMPTION	DEAD (UNDER	page	LG
		NE STALL	TATION	K KNO	OF PC	IDLE/L	3H IDLE	DLING VIBRATION	W/NO RI				EXCESSIVE	EXCESSIVE	ERY DE		EC
	HARD/NO	ENGINE	HESI	SPAR	LACK OF	HIGH	ROUG	IDLIN	SLOV	OVEF	EXCE	EXCE	BATTERY		FE		
Warranty symptom code	AA	АВ	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА				
Camshaft position sensor circuit	_ 1			2				2						EC-946	CL		
Mass air flow sensor circuit	╗'	1	2		2						2			EC-739			
Heated oxygen sensor 1 (front) circuit				3			2							EC-778	MT		
Engine coolant temperature sensor circuit	1	2	3		3	3			2		3			EC-755, 773			
Throttle position sensor circuit		1	2		2	2					2			EC-760	AT		
Incorrect throttle position sensor adjustment		3	1		1	1	1	1	1		1			EC-694	50		
Vehicle speed sensor circuit		2												EC-1023	TF		
Knock sensor circuit			3		3						3			EC-936			
ECM	2	2		3		3	3	2	2	1				EC-1045, 709	· PD		
Start signal circuit	1													EC-1174			
Park/neutral position (PNP) switch circuit			3		3		3	2			3			EC-1153			
Power steering oil pressure switch circuit		2					3	_						EC-1185	SU		

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

EL

BR

ST

RS

BT

HA

SC

VG33E

Symptom Matrix Chart (Cont'd)

		S	YST	EM	_	ENG	SIN	E M	ECH	ANI	CA	L &	ОТ	ΗE	R NGEC0562S02
							S`	YMPT	ОМ						
			ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference section
Warranty s	Warranty symptom code		AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	1
Fuel	Fuel tank	5													FE-4
	Fuel piping	3		5	5	5		5	4			5			
	Vapor lock		5												
	Valve deposit														
	Poor fuel (Heavy weight gasoline, Low octane)	5		5	5	5		5	4			5			_
Air	Air duct														
	Air cleaner														
	Air leakage from air duct (Mass air flow sensor — throttle body)		5	5	5	5		5	4			5			
	Throttle body, Throttle wire	5					5			4					FE-3
	Air leakage from intake manifold/ Collector/Gasket	1			5										_
Cranking	Battery			_		_			4]				
	Generator circuit		1	1		1		1	1			1		1	SC-4
	Starter circuit	1]					1
	Park/neutral position (PNP) switch														AT-98
	Drive plate/Flywheel	6													EM-111

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

TROUBLE DIAGNOSIS — GENERAL DESCRIPTION

Symptom Matrix Chart (Cont'd)

							S\	/MPT	ОМ							
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference section	
Warranty sy	mptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА		
Engine	Cylinder head															•
-	Cylinder head gasket	5	5	5	5	5		5	5		2	5	2	1		
	Cylinder block									1				1		
	Piston												3			
	Piston ring	1_			6											
	Connecting rod	6	6	6		6		6	6			6				
	Bearing														<i>EM-77</i> , <i>EM-88</i> and <i>EM-104</i>	
	Crankshaft														ana 2	
Valve	Timing chain															
mechanism	Camshaft	6	6					6	6	6						
	Intake valve			6	6	6						6	2			
	Exhaust valve															
	Hydraulic lash adjuster															
Exhaust	Exhaust manifold/Tube/Muffler/ Gasket	6	6	6	6	6		6	6			6			FE-9	
	Three way catalyst															
Lubrication	Oil pan/Oil strainer/Oil pump/Oil filter/Oil gallery	6	6	6	6	6		6	6			6	2		MA-29, EM-72 and LC-20	
	Oil level (Low/Filthy) oil														MA-29	
Cooling	Radiator/Hose/Radiator filler cap															
	Thermostat						5			5						
	Water pump		_	_	_	_			_		_	_			LC-26	
	Water gallery	6	6	6	6	6		6	6		2	6				
	Cooling fan						5			5						
	Coolant level (low)/Contaminated coolant														MA-26	•

^{1 - 6:} The numbers refer to the order of inspection.

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode

Remarks:

- Specification data are reference values.
- Specification data are output/input values which are detected or supplied by the ECM at the connector.
 - * Specification data may not be directly related to their components signals/values/operations.

i.e. Adjust ignition timing with a timing light before monitoring IGN TIMING, because the monitor may show the specification data in spite of the ignition timing not being adjusted to the specification data. This IGN TIMING monitors the data calculated by the ECM according to the signals input from the camshaft position sensor and other ignition timing related sensors.

• If the real-time diagnosis results are NG and the on board diagnostic system results are OK when diagnosing the mass air flow sensor, first check to see if the fuel pump control circuit is normal.

MONITOR ITEM	CONI	DITION	SPECIFICATION		
ENG SPEED	Tachometer: Connect Run engine and compare tachome value.	ter indication with the CONSULT-II	Almost the same speed as the CONSULT-II value.		
MAS AIR/FL SE	Engine: After warming up Air conditioner switch: OFF	Idle	1.0 - 1.7V		
WAS AIIVI E SE	Shift lever: "N"No-load	2,500 rpm	1.7 - 2.3V		
COOLAN TEMP/S	Engine: After warming up	More than 70°C (158°F)			
HO2S1 (B1) HO2S1 (B2)		Maintaining and at 0 000	0 - 0.3V ←→ Approx. 0.6 - 1.0V		
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.		
HO2S2 (B1) HO2S2 (B2)	- Engine After werming up	Maintaining engine speed at 2,000	0 - 0.3V ←→ Approx. 0.6 - 1.0V		
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	Engine: After warming up	rpm	LEAN ←→ RICH		
VHCL SPEED SE	Turn drive wheels and compare sp SULT-II value	Almost the same speed as the CONSULT-II value			
BATTERY VOLT	Ignition switch: ON (Engine stopper	11 - 14V			
	Engine: After warming up, idle the engine	Throttle valve: fully closed (a)	0.15 - 0.85V		
THRTL POS SEN	Engine: After warming up Implified a witch: ON	Throttle valve: Partially open	Between (a) and (b)		
	Ignition switch: ON (Engine stopped)	Throttle valve: fully opened (b)	3.5 - 4.7V		
START SIGNAL	Ignition switch: ON → START → O	N	$OFF \to ON \to OFF$		
CLSD THL POS	Engine: After warming up, idle the	Throttle valve: Idle position	ON		
CLSD THL/P SW	engine	Throttle valve: Slightly open	OFF		
	- Engine, After warming up, idle the	Air conditioner switch: OFF	OFF		
AIR COND SIG	Engine: After warming up, idle the engine	Air conditioner switch: ON (Compressor operates.)	ON		
D/N DOSL SW/	a lanition quitable ON	Shift lever: "P" or "N"	ON		
P/N POSI SW	Ignition switch: ON	Except above	OFF		
PW/ST SIGNAL	Engine: After warming up, idle the engine.	Steering wheel in neutral position (forward direction)	OFF		
	engine	The steering wheel is turned	ON		

TROUBLE DIAGNOSIS — GENERAL DESCRIPTION

VG33E

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONE	DITION	SPECIFICATION			
	Ignition switch: ON	Below 19°C (66°F)	OFF			
AMB TEMP SW	Compare ambient air temperature with the following:	Above 25°C (77°F)	ON			
IGNITION SW	Ignition switch: ON → OFF → ON		$ON \to OFF \to ON$			
INJ PULSE-B2	Engine: After warming up Air conditioner switch: OFF	Idle	2.4 - 3.7 msec			
INJ PULSE-B1	Shift lever: "N"No-load	2,000 rpm	1.9 - 3.3 msec			
B/FUEL SCHDL	Engine: After warming up Air conditioner switch: OFF	Idle	1.0 - 1.6 msec			
	Shift lever: "N"No-load	2,000 rpm	0.7 - 1.4 msec	E		
IGN TIMING	Engine: After warming up Air conditioner switch: OFF	Idle	15° BTDC	F		
	Shift lever: "N"No-load	2,000 rpm	More than 25° BTDC			
IACV-AAC/V	Engine: After warming up Air conditioner switch: OFF	Idle	10 - 20%			
11 to v 7 ti to, v	Shift lever: "N"No-load	2,000 rpm	_	N		
PURG VOL C/V	Engine: After warming up Air conditioner switch: OFF	Idle	0 %	— — A		
TORG VOL 0/V	Shift lever: "N"No-load	2,000 rpm	_	L		
A/F ALPHA-B2 A/F ALPHA-B1	Engine: After warming up	Maintaining engine speed at 2,000 rpm	54 - 155%	 T		
EVAP SYS PRES	Ignition switch: ON	Approx. 3.4V	— — P			
AIR COND RLY	Air conditioner switch: OFF → ON		OFF → ON			
FUEL PUMP RLY	Ignition switch is turned to ON (Ope Engine running and cranking	erates for 5 seconds)	ON			
	Except as shown above		OFF			
COOLING FANI*	After warming up engine, idle the	Engine coolant temperature is 94°C (201°F) or less	OFF	—		
COOLING FAN*	engine. • Air conditioner switch: OFF	Engine coolant temperature is 95°C (203°F) or more	ON			
VENT CONT/V	Ignition switch: ON		OFF			
HO2S1 HTR (B1)	• Engine speed: Below 3,200 rpm		ON			
HO2S1 HTR (B2)	Engine speed: Above 3,200 rpm		OFF			
HO2S2 HTR (B1)	Ignition switch: ON (Engine stopped Engine speed: Above 3,200 rpm					
HO2S2 HTR (B2)	Engine speed: Below 3,200 rpm [Air 70 km/h (43 MPH) or more]	fter driving for 2 minutes at a speed of	ON	[
VC/V BYPASS/V	Ignition switch: ON	n switch: ON				
CAL/LD VALUE	Engine: After warming up Air conditioner switch: OFF	Idle	18.5 - 26.0%			
	Shift lever: "N"No-load	2,500 rpm	18.0 - 21.0%			

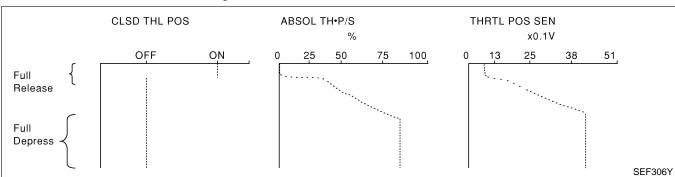
VG33E

NGEC0564

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONE	DITION	SPECIFICATION
ABSOL TH-P/S	 Engine: After warming up Ignition switch: ON More than -40.0 kpa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a hand vacuum pump. 	Throttle valve: fully closed	0.0%
	 Engine: After warming up Ignition switch: ON (Engine stopped) 	Throttle valve: fully opened	Approx. 80%
MASS AIRFLOW	Engine: After warming up Air conditioner switch: OFF	Idle	3.3 - 4.8 g·m/s
MASS AIRFLOW	Shift lever: "N"No-load	2,500 rpm	12.0 - 14.9 g·m/s
	Ignition switch: ON (Engine stopped)	1)	Approx. 4.4V
ABSOL PRES/SE		For 5 seconds after starting engine	Approx. 4.4V
	Engine speed: Idle	More than 5 seconds after starting engine	Approx. 1.3V

^{*:} Models with electric cooling fan.


Major Sensor Reference Graph in Data Monitor Mode

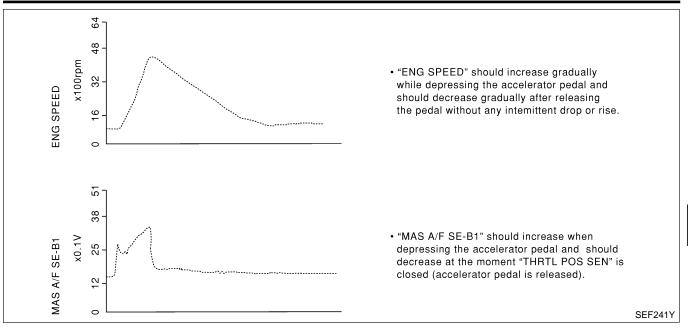
The following are the major sensor reference graphs in "DATA MONITOR" mode. (Select "HI SPEED" in "DATA MONITOR" with CONSULT-II.)

THRTL POS SEN, ABSOL TH-P/S, CLSD THL POS

Below is the data for "THRTL POS SEN", "ABSOL TH-P/S" and "CLSD THL POS" when depressing the accelerator pedal with the ignition switch ON.

The signal of "THRTL POS SEN" and "ABSOL TH-P/S" should rise gradually without any intermittent drop or rise after "CLSD THL POS" is changed from "ON" to "OFF".

ENG SPEED, MAS AIR/FL SE, THRTL POS SEN, HO2S2 (B1), HO2S1 (B1), INJ PULSE-B1


Below is the data for "ENG SPEED", "MAS AIR/FL SE", "THRTL POS SEN", "HO2S2 (B1)", "HO2S1 (B1)" and "INJ PULSE-B1" when revving engine quickly up to 4,800 rpm under no load after warming up engine sufficiently.

Each value is for reference, the exact value may vary.

TROUBLE DIAGNOSIS — GENERAL DESCRIPTION

VG33E

Major Sensor Reference Graph in Data Monitor Mode (Cont'd)

GI

MA

. .

LC

EC

FE

GL

MT

AT

PD

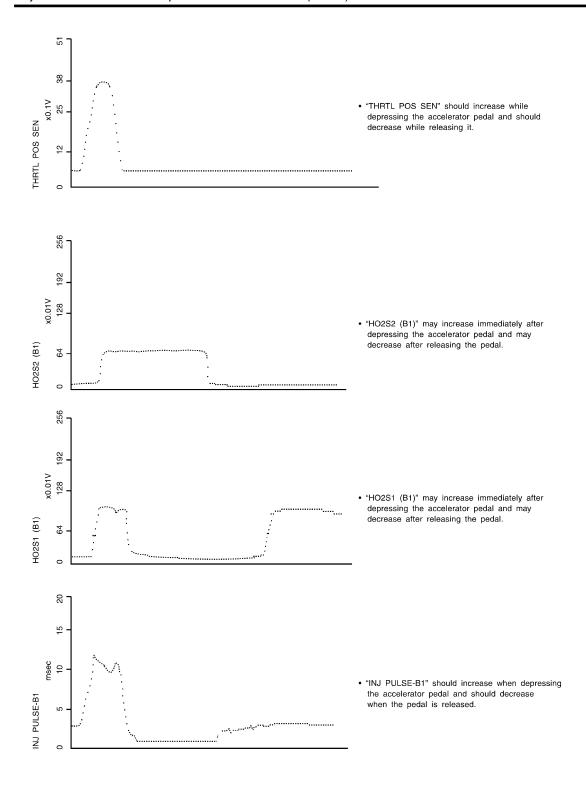
TF

AX

SU

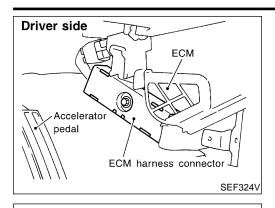
BR

ST


RS

BT

HA


SC

EL

TROUBLE DIAGNOSIS — GENERAL DESCRIPTION

ECM Terminals and Reference Value

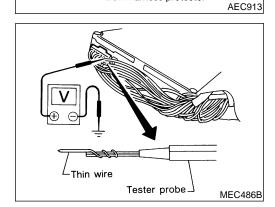
ECM Terminals and Reference Value PREPARATION

NGEC0565

- ECM is located behind the instrument lower cover. For this inspection:
- Remove instrument lower cover.

MA

GI


LC

2. Remove ECM harness protector.

GL

MT

105 106 107 108

114 115 116

101

109 110 111 112

102 103 104

118 119 120

ECM harness protector

- Perform all voltage measurements with the connector connected. Extend tester probe as shown to perform tests easily.
- Open harness securing clip to make testing easier.
- Use extreme care not to touch 2 pins at one time.
- Data is for comparison and may not be exact.

23

40 41

PD

TF

AT

AX

SU

ECM HARNESS CONNECTOR TERMINAL LAYOUT

24 25

31

42 43

32

67

72

80

64 65 66

BT

ECM INSPECTION TABLE

20 21 22

38 39

|26|27|28|29|30|

33 34 35 36 37

SEF533P

Specification data are reference values and are measured between each terminal and ground.

44 45 46 47

59 60 61 62 63

48 49 50 51 52 53 68 69 70 71

|54|55|56|57|58|73|74|75|76|

HA

SC

CAUTION:

1 2 3

10

19

5 6 7 8 9

11 12 13 14

| 15| 16| 17| 18

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

EL

ECM Terminals and Reference Value (Cont'd)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
	DUAM	Ignition signal	[Engine is running] ● Idle speed	Approximately 0.7V (V) 4 2 0 20 ms SEF988U
1	PU/W		[Engine is running] ● Engine speed is 2,000 rpm	1.1 - 1.5V (V) 4 2 0 20 ms SEF989U
3	R/L	Tachometer	[Engine is running] • Warm-up condition • Idle speed	1 - 2V (V) 10 5 0 20 ms SEF992U
3	IVE		[Engine is running] ● Engine speed is 2,000 rpm	3 - 5V (V) 10 5 0 20 ms SEF993U
4	OR/B	R/B ECM relay (Self shut-off)	[Engine is running] [Ignition switch OFF] ● For a few seconds after turning ignition switch OFF	0 - 1.5V
·			[Ignition switch OFF] ● A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)

TROUBLE DIAGNOSIS — GENERAL DESCRIPTION

VG33E

ECM Terminals and Reference Value (Cont'd)

TER-					
MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	GI
	5 R/Y volume o	EVAP canister purge	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms	MA EM LC
5		volume control sole- noid valve	[Engine is running] ● Engine speed is 2,000 rpm (More than 100 seconds after starting engine)	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms SEF995U	EC FE GL
7	Y/G	A/T check signal	[Ignition switch ON] [Engine is running]	0 - 3.0V	MT
		Ambient air temperature switch	 [Engine is running] ● Idle speed ● Ambient air temperature is above 25°C (77°F) ● Air conditioner is operating 	OV	AT TF
9	В/Ү		[Engine is running] ■ Idle speed ■ Ambient air temperature is below 19°C (66°F) ■ Air conditioner is operating	BATTERY VOLTAGE (11 - 14V)	PD
			 [Engine is running] Idle speed Ambient air temperature is below 19°C (66°F) Air conditioner is not operating 	Approximately 5V	AX SU
10	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground	BR
44	\M//P	Fuel pump relay	[Ignition switch ON] ● For 5 seconds after turning ignition switch ON [Engine is running]	0 - 1V	ST
11	W/R	ruei puitip reiay	[Ignition switch ON] ■ More than 5 seconds after turning ignition switch ON	BATTERY VOLTAGE (11 - 14V)	RS
40		At a second	[Engine is running] • Both A/C switch and blower switch are ON*1	0 - 1V	BT
12	P	Air conditioner relay [Engine is running] • A/C switch is OFF	BATTERY VOLTAGE (11 - 14V)	HA	
		Malfunction indicator	[Ignition switch ON]	0 - 1V	II II/~\
18	R/W	lamp	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)	SC
19	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground	EL

ECM Terminals and Reference Value (Cont'd)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
20	L/OR	Start signal	[Ignition switch ON]	Approximately 0V
20	L/OR Start signal		[Ignition switch START]	9 - 12V
21 G/R	G/R	Air conditioner switch	[Engine is running] ■ Both A/C switch and blower switch are ON (Compressor operates)*1	Approximately 0V
			[Engine is running] ● A/C switch is OFF	BATTERY VOLTAGE (11 - 14V)
22	L/D	Park/neutral position	[Ignition switch ON] ■ Gear position is "N" or "P"	Approximately 0V
22	L/B	(PNP) switch	[Ignition switch ON] ■ Except the above gear position	Approximately 5V
23	L Throttle position senso		 [Engine is running] Warm-up condition More than -40.0 kpa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a hand vacuum pump. Accelerator pedal fully released 	0.15 - 0.85V
			[Ignition switch ON] • Accelerator pedal fully depressed	3.5 - 4.7V
			[Ignition switch OFF]	0V
24	W/L	Ignition switch	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)
25	B/Y	ECM ground	[Engine is running] ● Idle speed	Engine ground
26	PU/W	A/T signal No. 1 [Ignition switch ON] [Engine is running] • Idle speed		6 - 8V
27	P/B	A/T signal No. 2	[Ignition switch ON] [Engine is running] • Idle speed	6 - 8V
28	BR/W	Throttle position switch (Closed position)	 [Engine is running] Warm-up condition More than -40.0 kpa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a hand vacuum pump. Accelerator pedal fully released 	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch ON] • Accelerator pedal depressed	Approximately 0V
29	G/B	Vehicle speed sensor	 [Engine is running] Lift up the vehicle. In 2nd gear position Vehicle speed is 40 km/h (25 MPH) 	2 - 3V (V) 10 5 0 50 ms SEF98
32	B/Y	ECM ground	[Engine is running] • Idle speed	Engine ground (Probe this terminal with (– tester probe when measuring

TROUBLE DIAGNOSIS — GENERAL DESCRIPTION

VG33E

ECM Terminals and Reference Value (Cont'd)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)		
35	G/R	A/T signal No. 3	[Ignition switch ON]	0V		
36	LG/R	Cooling for relay*2	[Engine is running] • Cooling fan is not operating	BATTERY VOLTAGE (11 - 14V)		
30	LG/R	Cooling fan relay*2	[Engine is running] ■ Cooling fan is operating	0 - 1V		
39	GY/R	Power steering oil	[Engine is running]Steering wheel is being turned	Approximately 0V		
	O 1/1C	pressure switch	[Engine is running]Steering wheel is not being turned	Approximately 5V		
42	B/W	Sensors' power supply	[Ignition switch ON]	Approximately 5V		
43	BR	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V		
44	PU	Camshaft position sen-	[Engine is running] ● Idle speed	0.3 - 0.5V (V) 10 5 0 20 ms		
	sor (Reference signal)	[Engine is running] ● Engine speed is 2,000 rpm	0.3 - 0.5V (V) 10 5 0 20 ms SEF998U			
46	P/B	Fuel level sensor	[Ignition switch ON]	Approximately 0 - 4.8V Output voltage varies with fuel level.		
					[Engine is running]	1 - 2V (AC range)
47 l			Warm-up conditionIdle speed	0.2 ms		
	L	Crankshaft position sensor (OBD)		3 - 4V		
				(AC range)		
			[Engine is running] • Engine speed is 2,000 rpm	10 5 0		
				0.2 ms SEF691W		
	<u> </u>	!	<u> </u>			

EC-723

ECM Terminals and Reference Value (Cont'd)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
		Camshaft position sen-	[Engine is running] • Warm-up condition • Idle speed	Approximately 2.5V (V) 10 5 0 0.2 ms SEF999
49 LG	LG	Camshaft position sensor (Position signal)	[Engine is running] • Engine speed is 2,000 rpm	Approximately 2.5V (V) 10 5 0 0.2 ms SEF001
50	В	Heated oxygen sensor 1 (front) (bank 1)	[Engine is running] • Warm-up condition • Engine speed is 2,000 rpm	0 - Approximately 1.0V (V) 2 1 0.5 ms SEF002
51	G	Heated oxygen sensor 1 (front) (bank 2)	[Engine is running] • Warm-up condition • Engine speed is 2,000 rpm	0 - Approximately 1.0V (V) 2 1 0.5 ms
54	R	Mass air flow sensor	[Engine is running] ■ Warm-up condition ■ Idle speed [Engine is running]	1.0 - 1.7V
			Warm-up condition Engine speed is 2,500 rpm [Engine is running]	1.7 - 2.3V
55	G	Mass air flow sensor ground	Warm-up condition Idle speed	Approximately 0V
56	OR	Heated oxygen sensor 2 (rear) (bank 1)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm	0 - Approximately 1.0V
57	Y	Heated oxygen sensor 2 (rear) (bank 2)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm	0 - Approximately 1.0V
59	LG/R	Engine coolant temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with engine coolant temperature

TROUBLE DIAGNOSIS — GENERAL DESCRIPTION

VG33E

ECM Terminals and Reference Value (Cont'd)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	GI
60	Y/B	Fuel tank temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with fuel temperature	M2
61	PU/R	Intake air temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with intake air temperature.	EN
62	Υ	EVAP control system pressure sensor	[Ignition switch ON]	Approximately 3.4V	LC
64	W	Knock sensor	[Engine is running] ■ Idle speed	Approximately 2.5V	EC
66	В	Fuel level sensor ground	[Engine is running] • Idle speed	Approximately 0V	FE
67	B/P	Power supply for ECM	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)	@I
69	LG/R	Data link connector for GST	[Engine is running] ● Idle speed (GST is disconnected)	6 - 10V	· Cl
72	B/P	Power supply for ECM	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)	M
75	Y/R	Data link connector for	[Engine is running]	0 - 4V	At
76	GY/L	CONSULT-II	Idle speed (Connect CONSULT-II and turned on.)	3 - 9V	-
80	SB	Power supply (Back-up)	[Ignition switch OFF]	BATTERY VOLTAGE (11 - 14V)	TF
			[Engine is running] • Warm-up condition	8 - 11V (V) 20 10	PD AX
404			Idle speed	0 5 ms SEF005V	SU
101	OR/L	IACV-AAC valve		7 - 10V (V)	BF
			[Engine is running]Warm-up conditionEngine speed is 3,000 rpm	20 10 0	ST
				5 ms SEF692W	RS
	1	l	1	_	Bī

EL

HA

SC

ECM Terminals and Reference Value (Cont'd)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
102 W/B 104 W/R		Injector No. 1 Injector No. 3 Injector No. 5 Injector No. 2 Injector No. 4 Injector No. 6	[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms
106 109 111 113	W/L W/PU W		[Engine is running] • Warm-up condition • Engine speed is 2,000 rpm	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms
108	R/G	EVAP canister vent control valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)
116	B/R	ECM ground	[Engine is running] ● Idle speed	Engine ground
117	B/P	Current return	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)
119	BR/Y	Heated oxygen sensor 1 heater (front) (bank 1)	[Engine is running] ● Engine speed is below 3,200 rpm [Engine is running]	Approximately 0.4V BATTERY VOLTAGE
120	P/B	Vacuum cut valve bypass valve	• Engine speed is above 3,200 rpm [Ignition switch ON]	(11 - 14V) BATTERY VOLTAGE (11 - 14V)
		Heated oxygen sensor	[Engine is running] • Engine speed is below 3,200 rpm	Approximately 0.4V
121	BR	1 heater (front) (bank 2)	[Engine is running] • Engine speed is above 3,200 rpm	BATTERY VOLTAGE (11 - 14V)
400	D/D	Heated oxygen sensor 2 heater (rear) (bank 1)	 [Engine is running] Engine speed is below 3,200 rpm After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more. 	Approximately 0.4V
122	R/B		[Ignition switch ON] ■ Engine stopped [Engine is running] ■ Engine speed is above 3,200 rpm	BATTERY VOLTAGE (11 - 14V)
123	DA	Heated oxygen sensor	 [Engine is running] ◆ Engine speed is below 3,200 rpm ◆ After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more. 	Approximately 0.4V
	R/Y	2 heater (rear) (bank 2)	[Ignition switch ON] • Engine stopped [Engine is running] • Engine speed is above 3,200 rpm	BATTERY VOLTAGE (11 - 14V)

TROUBLE DIAGNOSIS — GENERAL DESCRIPTION

VG33E

ECM Terminals and Reference Value (Cont'd)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
124	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground

^{*1:} Any mode except OFF, ambient air temperature is above 25°C (77°F).

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

AX

SU

BR

ST

RS

BT

HA

SC

EL

^{*2:} Models with electric cooling fan.

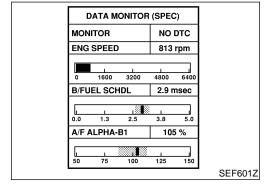
Description

The specification (SP) value indicates the tolerance of the value that is displayed in "DATA MONITOR (SPEC)" mode of CONSULT-II during normal operation of the Engine Control System. When the value in "DATA MONITOR (SPEC)" mode is within the SP value, the Engine Control System is confirmed OK. When the value in "DATA MONITOR (SPEC)" mode is NOT within the SP value, the Engine Control System may have one or more malfunctions.

The SP value is used to detect malfunctions that may affect the Engine Control System, but will not light the MIL.

The SP value will be displayed for the following three items:

- B/FUEL SCHDL (The fuel injection pulse width programmed into ECM prior to any learned on board correction)
- A/F ALPHA-B1/B2 (The mean value of air-fuel ratio feedback correction factor per cycle)
- MAS A/F SE-B1 (The signal voltage of the mass air flow sensor)


Testing Condition

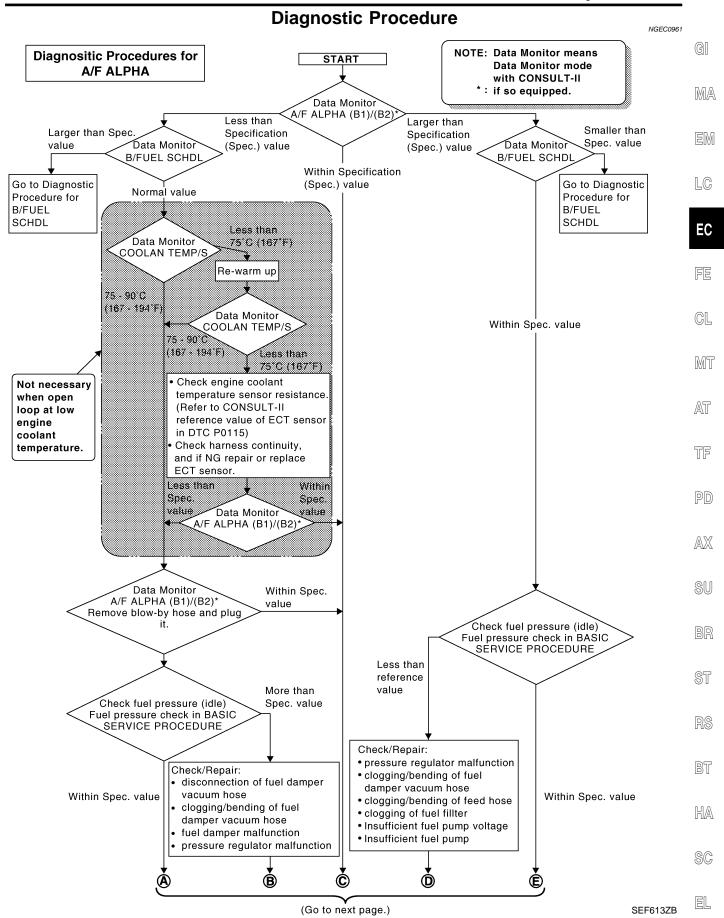
NGEC0959

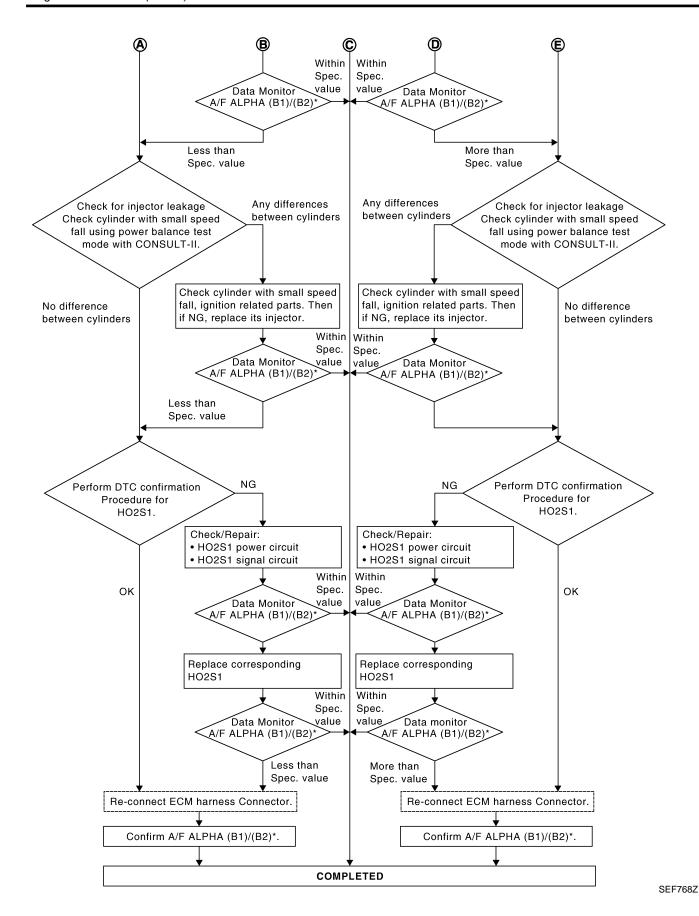
- Vehicle driven distance: More than 5,000 km (3,100 miles)
- Barometric pressure: 101.3 kPa (760.0 mmHg, 29.92 inHg)±3 kPa (22.5 mmHg, 0.89 inHg)
- Atmospheric temperature: 20 30°C (68 86°F)
- Engine coolant temperature: 75 95°C (167 203°F)
- Transmission: Warmed-up*1Electrical load: Not applied*2
- Engine speed: Idle

*1: For A/T models, after the engine is warmed up to normal operating temperature, drive vehicle until "FLUID TEMP SE" (A/T fluid temperature sensor signal) indicates less than 0.9V. For M/T models, drive vehicle for 5 minutes after the engine is warmed up to normal operating temperature.

*2: Rear window defogger switch, air conditioner switch, lighting switch are "OFF". Cooling fans are not operating. Steering wheel is straight ahead.

Inspection Procedure

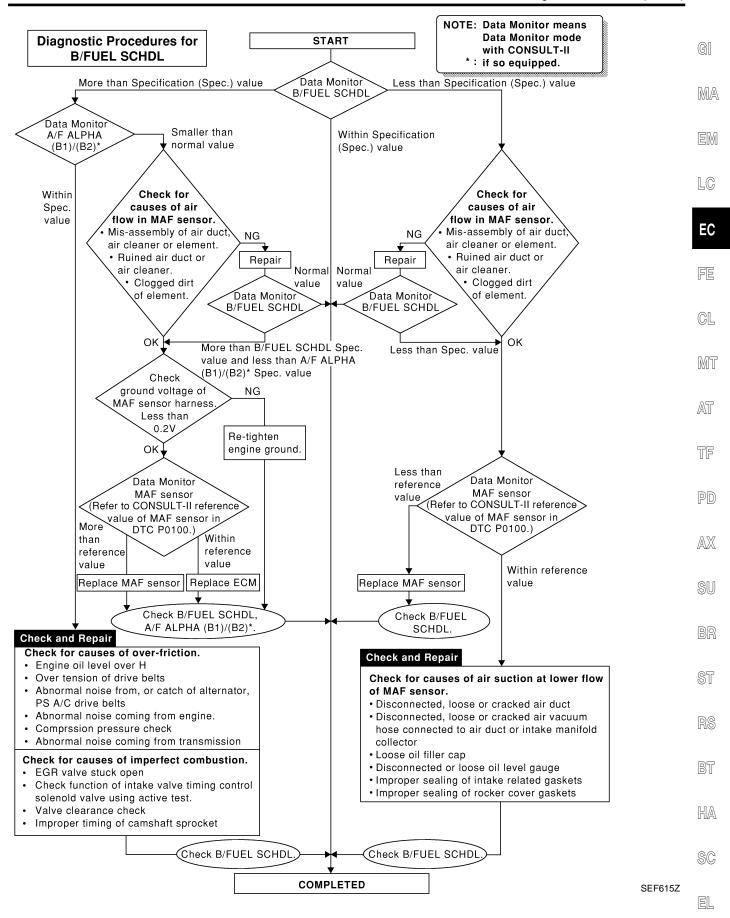

NGEC0960


NOTE:

Perform "DATA MONITOR (SPEC)" mode in maximum scale display.

- 1. Perform "Basic Inspection", EC-694.
- 2. Confirm that the testing conditions indicated above are met.
- Select "B/FUEL SCHDL", "A/F ALPHA-B1", "A/F ALPHA-B2" and "MAS A/F SE-B1" in "DATA MONITOR (SPEC)" mode with CONSULT-II.
- 4. Make sure that monitor items are within the SP value.
- 5. If NG, go to "Diagnostic Procedure", EC-729.

TROUBLE DIAGNOSIS — SPECIFICATION VALUE



TROUBLE DIAGNOSIS — SPECIFICATION VALUE

VG33E

Diagnostic Procedure (Cont'd)

Description

IGEC0566

Intermittent incidents (I/I) may occur. In many cases, the problem resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on (1st trip) DTC visits. Realize also that the most frequent cause of I/I occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific problem area.

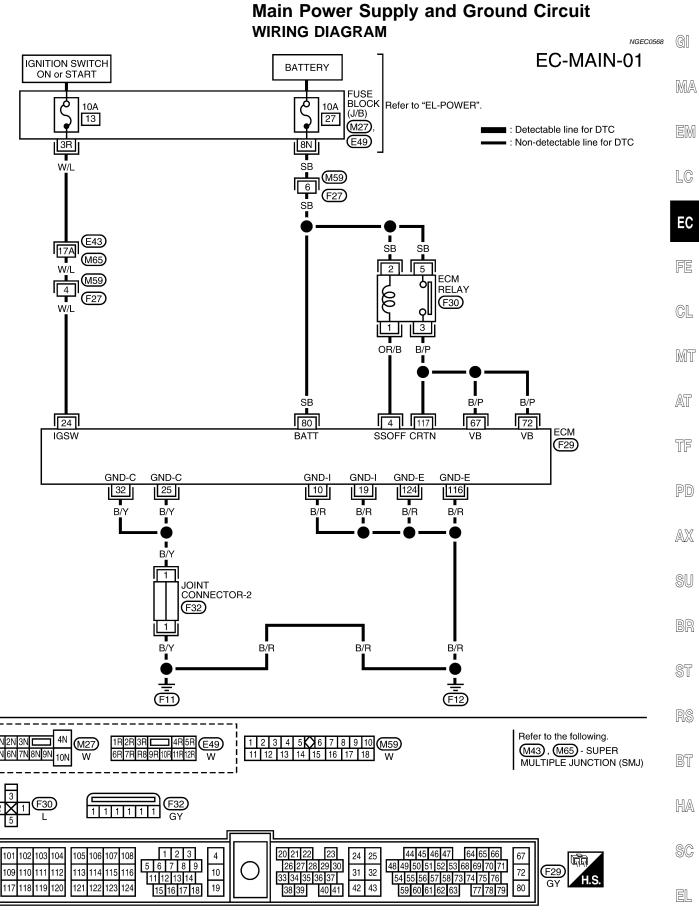
COMMON I/I REPORT SITUATIONS

NGEC0566S01

STEP in Work Flow	Situation
II	The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other than "0" or "[1t]".
III	The symptom described by the customer does not recur.
IV	(1st trip) DTC does not appear during the DTC Confirmation Procedure.
VI	The Diagnostic Procedure for PXXXX does not indicate the problem area.

Diagnostic Procedure

NGEC056


1	INSPECTION START			
Erase	Erase (1st trip) DTCs. Refer to "HOW TO ERASE EMISSION — RELATED INFORMATION", EC-666.			
	▶ GO TO 2.			

2	CHECK GROUND TERMINALS					
	Check ground terminals for corroding or loose connection. Refer to "Circuit Inspection", "GROUND INSPECTION", <i>GI-28</i> .					
		OK or NG				
OK		GO TO 3.				
NG	>	Repair or replace.				

3	SEARCH FOR ELECTRICAL INCIDENT				
Perfor	Perform "Incident Simulation Tests", <i>GI-23</i> .				
	OK or NG				
OK	OK ▶ GO TO 4.				
NG	NG Repair or replace.				

4	CHECK CONNECTOR TERMINALS				
Refer	Refer to "How to Check Enlarged Contact Spring of Terminal", <i>GI-20</i> .				
	OK or NG				
OK	OK INSPECTION END				
NG		Repair or replace connector.			

Main Power Supply and Ground Circuit

VG33E

Main Power Supply and Ground Circuit (Cont'd)

ECM TERMINALS AND REFERENCE VALUE

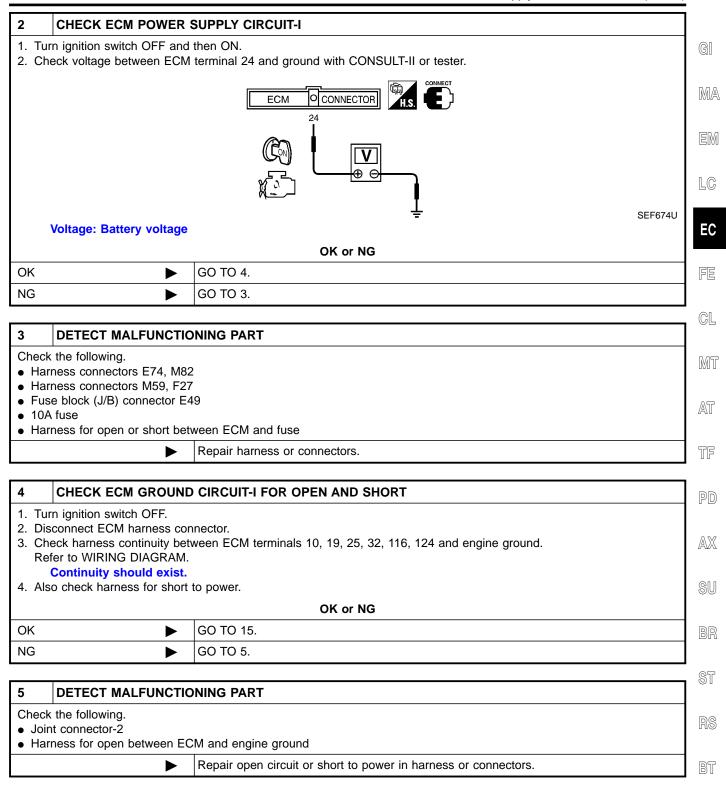
Specification data are reference values and are measured between each terminal and ground.

NGEC0569

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

			•	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
4	OR/B	ECM relay (Self-shutoff)	[Engine is running] [Ignition switch OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
			[Ignition switch OFF] ■ A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
10	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground
19	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground
			[Ignition switch OFF]	OV
24	W/L	Ignition switch	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)
25	B/Y	ECM ground	[Engine is running] • Idle speed	Engine ground
32	B/Y	ECM ground	[Engine is running] ● Idle speed	Engine ground (Probe this terminal with (–) tester probe when measuring)
67	B/P	Dower aupply for ECM	Fignition quitab ONI	BATTERY VOLTAGE
72	B/P	Power supply for ECM	[Ignition switch ON]	(11 - 14V)
80	SB	Power supply (Back-up)	[Ignition switch OFF]	BATTERY VOLTAGE (11 - 14V)
116	B/R	ECM ground	[Engine is running] • Idle speed	Engine ground
117	B/P	Current return	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)
124	B/R	ECM ground	[Engine is running] ● Idle speed	Engine ground

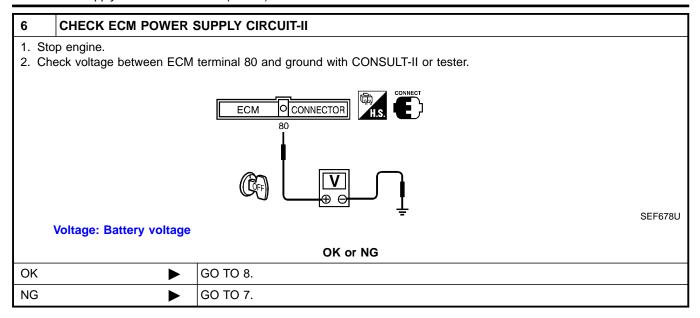

DIAGNOSTIC PROCEDURE

NGEC0570

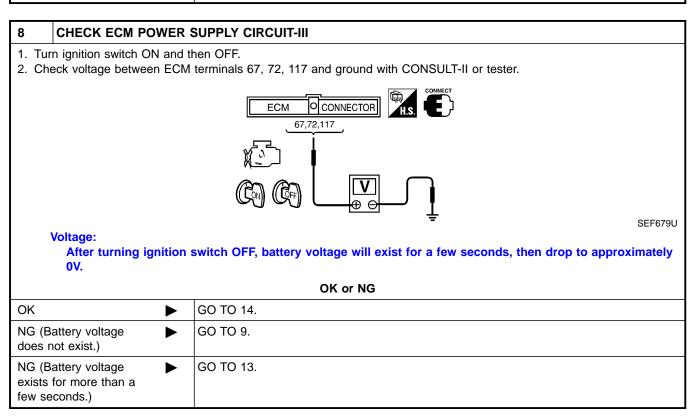
1	INSPECTION START				
Start e	Start engine. Is engine running?				
	Yes or No				
Yes	Yes DO TO 6.				
No	No ▶ GO TO 2.				

VG33E

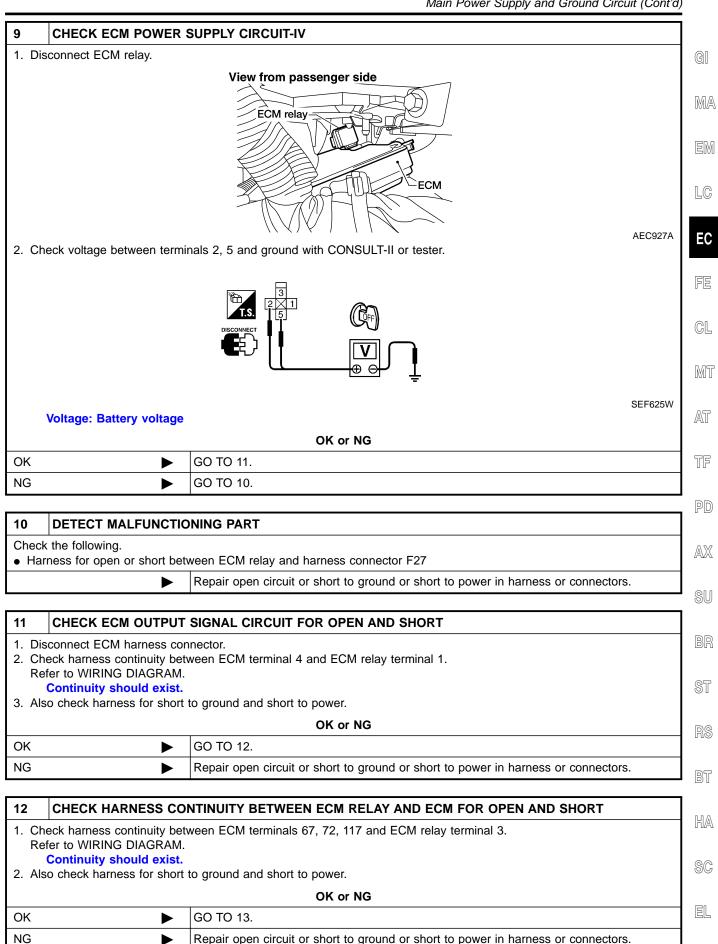
Main Power Supply and Ground Circuit (Cont'd)



HA


SC

VG33E


Main Power Supply and Ground Circuit (Cont'd)

7 DETECT MALFUNCTIONING PART Check the following. • Harness connectors M59, F27 • Fuse block (J/B) connector M27 • 10A fuse • Harness for open or short between ECM and fuse Repair harness or connectors.

Main Power Supply and Ground Circuit (Cont'd)

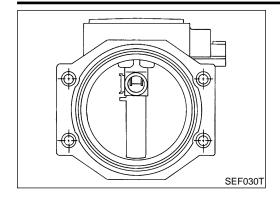
VG33E

Main Power Supply and Ground Circuit (Cont'd)

OK NG

NG

14	CHECK ECM GROUND CIRCUIT-II FOR OPEN AND SHORT			
2. Dis 3. Ch Re	1. Turn ignition switch OFF. 2. Disconnect ECM harness connector. 3. Check harness continuity between ECM terminals 10, 19, 25, 32, 116, 124 and engine ground. Refer to WIRING DIAGRAM. Continuity should exist. 4. Also check harness for short to power.			
	OK or NG			
OK	>	GO TO 15.		


Replace ECM relay.

GO TO 5.

15	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
	► INSPECTION END		

VG33E

Component Description

Component Description

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot wire that is supplied with electric current from the ECM. The temperature of the hot wire is controlled by the ECM a certain amount. The heat generated by the hot wire is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the ECM must supply more electric current to maintain the temperature of the hot wire as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

GEC0572

MA

LC

EC

FE

MT

AT

TF

PD

ST

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION	
MAS AIR/FL SE	Engine: After warming up Air conditioner switch: OFF	Idle	1.0 - 1.7V	
WAS AIR/FL SE	Shift lever: "N"No-load	2,500 rpm	1.7 - 2.3V	
CAL/LD VALUE	ditto	Idle	18.5 - 26.0%	
CAL/LD VALUE		2,500 rpm	18.0 - 21.0%	
MAAOO AIRELOM	Par.	Idle	3.3 - 4.8 g·m/s	
MASS AIRFLOW	ditto	2,500 rpm	12.0 - 14.9 g·m/s	

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NGEC0573

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
54	D	Mass air flow sensor	[Engine is running] • Warm-up condition • Idle speed	1.0 - 1.7V
54	R	mass air now sensor	[Engine is running] • Warm-up condition • Engine speed is 2,500 rpm	1.7 - 2.3V
55	G	Mass air flow sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

On Board Diagnosis Logic

NGEC057

Malfunction is detected when

(Malfunction A) an excessively high voltage from the sensor is sent to ECM when engine is not running,

(Malfunction B) an excessively low voltage from the sensor is sent to ECM when engine is running,

(Malfunction C) a high voltage from the sensor is sent to ECM under light load driving condition,

(Malfunction D) a low voltage from the sensor is sent to ECM under heavy load driving condition.

On Board Diagnosis Logic (Cont'd)

POSSIBLE CAUSE

Malfunction A or C

NGEC0574S01

NGEC0574S0101

- Harness or connectors (The sensor circuit is open or shorted.)
- Mass air flow sensor

Malfunction B or D

NGEC0574S0102

- Harness or connectors (The sensor circuit is open or shorted.)
- Intake air leaks
- Mass air flow sensor

FAIL-SAFE MODE

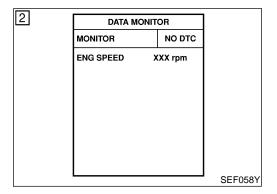
NGEC0574S02

When the malfunction B is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.

DTC Confirmation Procedure

NGEC0575


Perform "PROCEDURE FOR MALFUNCTION A" first.

If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B".

If there is no problem on "PROCEDURE FOR MALFUNCTION B", perform "PROCEDURE FOR MALFUNCTION C". If there is no problem on "PROCEDURE FOR MALFUNCTION C", perform "PROCEDURE FOR MALFUNCTION D".

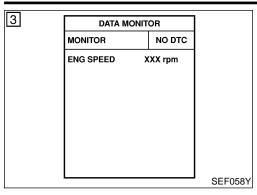
NOTE:

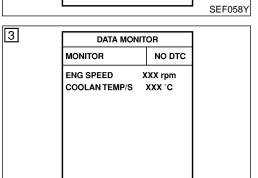
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A

NGEC0575S01

- (P) With CONSULT-II
- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 6 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-744.


With GST


Follow the procedure "With CONSULT-II".

VG33E

NGEC0575S02

DTC Confirmation Procedure (Cont'd)

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II

Turn ignition switch ON.

Select "DATA MONITOR" mode with CONSULT-II.

Start engine and wait 5 seconds at most.

 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-744.

With GST

Follow the procedure "With CONSULT-II".

PROCEDURE FOR MALFUNCTION C

NOTE:

If engine will not start or stops soon, wait at least 10 seconds with engine stopped (Ignition switch ON) instead of running engine at idle speed.

(P) With CONSULT-II

1) Turn ignition switch ON.

2) Select "DATA MONITOR" mode with CONSULT-II.

3) Start engine and warm it up to normal operating temperature.

4) Run engine for at least 10 seconds at idle speed.

5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-744.

With GST

SEF174Y

Follow the procedure "With CONSULT-II".

....

MA

GI

UVU*U*~U

LC

EC

FE

CL

MT

٨٢

AT

TF

PD

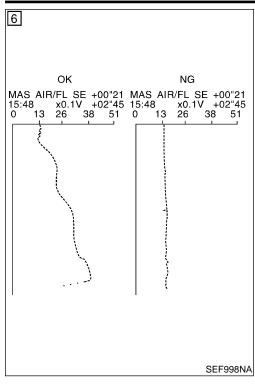
SU

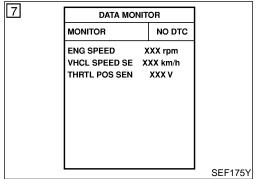
BR

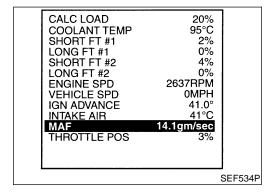
ST

DS.

BT


HA


SC


EL

NGEC0575S04

DTC Confirmation Procedure (Cont'd)

PROCEDURE FOR MALFUNCTION D

CAUTION:

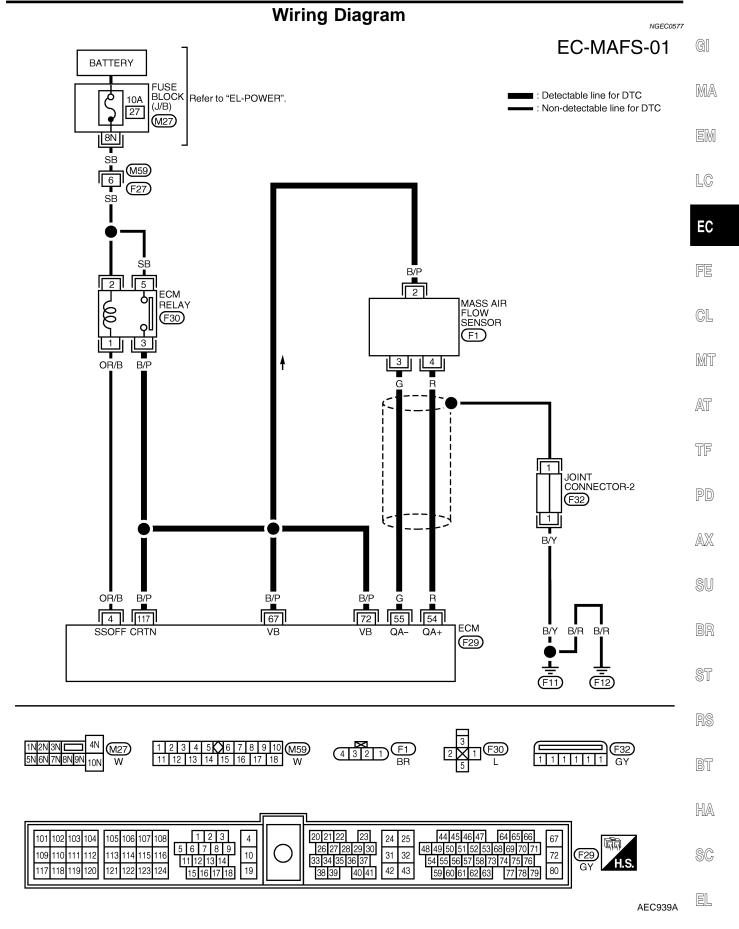
Always drive vehicle at a safe speed.

(P) With CONSULT-II

- Turn ignition switch "ON".
- Start engine and warm it up to normal operating temperature.
 If engine cannot be started, go to "Diagnostic Procedure", EC-744.
- 3) Select "DATA MONITOR" mode with CONSULT-II.
- Check the voltage of MAS AIR/FL SE with "DATA MONITOR".
- Increases engine speed to about 4,000 rpm.
- 6) Monitor the linear voltage rise in response to engine speed increases.
 - If NG, go to "Diagnostic Procedure", EC-744. If OK, go to following step.
- Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	More than 2,000 rpm	
THRTL POS SEN	More than 3V	
Selector lever	Suitable position	
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.	

 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-744.

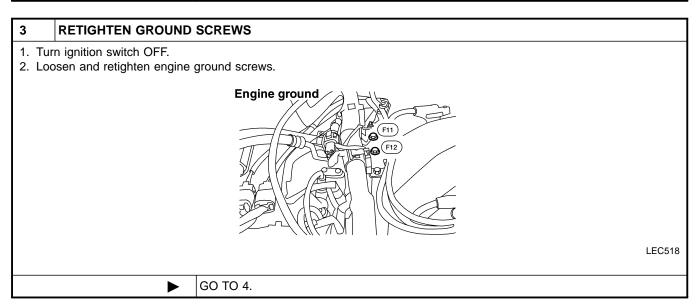

Overall Function Check PROCEDURE FOR MALFUNCTION D

NGEC0576

Use this procedure to check the overall function of the mass air flow sensor circuit. During this check, a 1st trip DTC might not be confirmed.

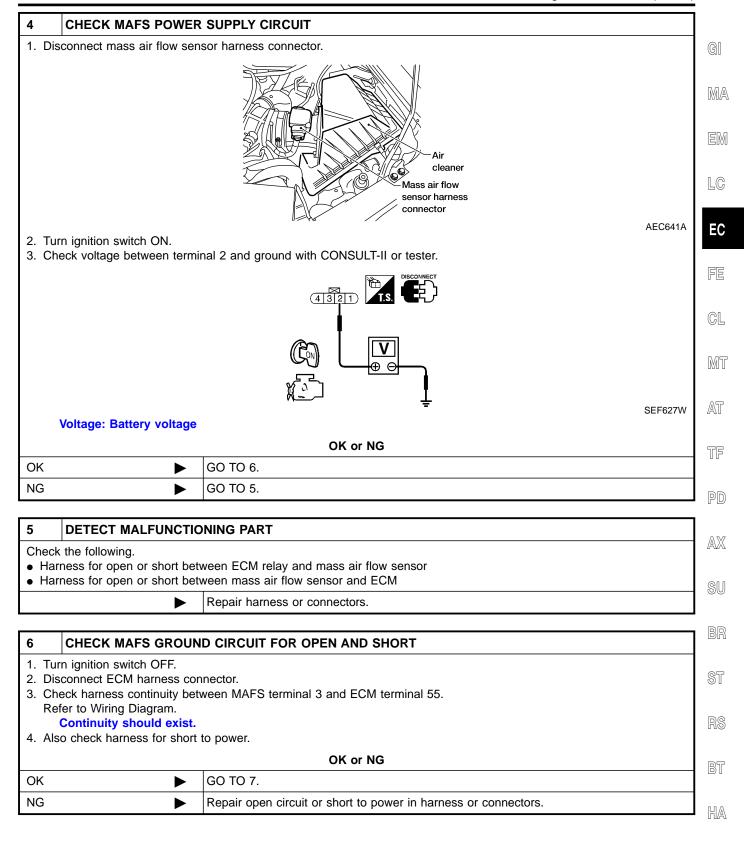
With GST

- 1) Start engine and warm it up to normal operating temperature.
- Select "MODE 1" with GST.
- Check the mass air flow sensor signal with "MODE 1".
- 4) Check for linear mass air flow sensor signal value rise in response to increases to about 4,000 rpm in engine speed.
- 5) If NG, go to "Diagnostic Procedure", EC-744.



Diagnostic Procedure

ICECOET

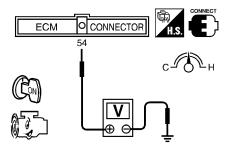

			NGEC0578
INSPECTION START			
malfunction (A, B, C or D)	is duplicated?		
	MALFUNCTION	Туре	
	A and/or C	I	
	B and/or D	II	
			MTBL0063
	Type I or	Гуре II	
I >	GO TO 3.		
II >	GO TO 2.		
1	malfunction (A, B, C or D)	malfunction (A, B, C or D) is duplicated? MALFUNCTION A and/or C B and/or D Type I or 7	malfunction (A, B, C or D) is duplicated? MALFUNCTION Type A and/or C I B and/or D II

2	CHECK INTAKE SYSTE	EM	
AirVac	Check the following for connection. • Air duct • Vacuum hoses • Intake air passage between air duct to intake manifold collector		
	OK or NG		
OK	•	GO TO 3.	
NG	>	Reconnect the parts.	

VG33E

Diagnostic Procedure (Cont'd)

SC

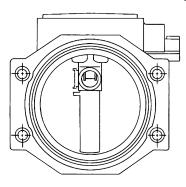

VG33E

Diagnostic Procedure (Cont'd)

7	CHECK MAFS INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT				
Check harness continuity between MAFS terminal 4 and ECM terminal 54. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power.					
	OK or NG				
ОК	OK ▶ GO TO 8.				
NG	NG Repair open circuit or short to ground or short to power in harness or connectors.				

8 CHECK MASS AIR FLOW SENSOR

- 1. Reconnect harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 54 (Mass air flow sensor signal) and ground.



SEF747U

Condition	Voltage V
Ignition switch "ON" (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.0 - 1.7
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.7 - 2.3
Idle to about 4,000 rpm*	1.0 - 1.7 to Approx. 4.0

MTBL0227

- 4. If the voltage is out of specification, disconnect mass air flow sensor harness connector and connect it again. Then repeat above check.
- 5. If NG, remove mass air flow sensor from air duct. Check hot wire for damage or dust.

SEF030T

OK	>	GO TO 9.
NG	>	Replace mass air flow sensor.

VG33E

Diagnostic Procedure (Cont'd)

9 CHECK	CHECK MAFS SHIELD CIRCUIT FOR OPEN AND SHORT			
1. Turn ignition	1. Turn ignition switch OFF.			
2. Disconnect j	oint connector-2.			
3. Check the fo	llowing.			
 Continuity be 	tween joint conne	ector terminal 1 and ground		
Refer to Wirin	ng Diagram.			
 Joint connect 	Joint connector			
(Refer to "HA	(Refer to "HARNESS LAYOUT")			
Continuity should exist.				
Also check h	4. Also check harness for short to power.			
5. Then reconnect joint connector-2.				
OK or NG				
ОК	OK ▶ GO TO 10.			
NG	•	Repair open circuit or short to power in harness or connectors.		

10	CHECK INTERMITTENT INCIDENT		
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
	► INSPECTION END		

GL

FE

G[

MA

EM

LC

EC

MT

AT

PD

TF

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

Component Description

NGEC0579

The absolute pressure sensor is built into ECM. The sensor detects ambient barometric pressure and sends the voltage signal to the microcomputer.

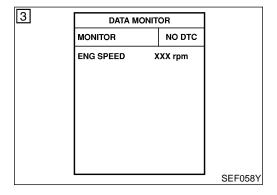
On Board Diagnosis Logic

GEC05

Malfunction is detected when an excessively low or high voltage from the sensor is sent to the micro computer.

POSSIBLE CAUSE

NGEC0580S01


ECM

DTC Confirmation Procedure

NOTOOFO

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

- (P) With CONSULT-II
- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 6 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-749.
- With GST

Follow the procedure "With CONSULT-II".

DTC P0105 ABSOLUTE PRESSURE SENSOR

VG33E

Diagnostic Procedure

NGEC0962

GI

MA

EM

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

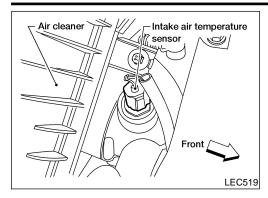
BR

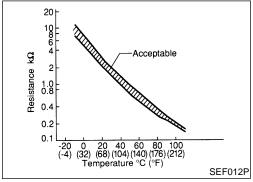
ST

RS

BT

HA


SC


EL

Diagnostic Procedure

1 INSPECT	INSPECTION START		
(With CONSU	With CONSULT-II		
1. Turn ignition s	witch ON.		ı
2. Select "SELF	DIAG RESULTS	" mode with CONSULT-II.	ı
Touch "ERASE	Ξ".		ı
4. Perform "DTO	Confirmation	Procedure".	ı
See EC-748.			ı
5. Is the 1st trip	DTC P0105 disp	played again?	ı
With GST			
	1. Turn ignition switch ON.		
2. Select MODE	2. Select MODE 4 with GST.		
3. Touch "ERASI	3. Touch "ERASE".		
4. Perform "DTO	4. Perform "DTC Confirmation Procedure".		
See EC-748.	See EC-748.		
5. Is the 1st trip	5. Is the 1st trip DTC P0105 displayed again?		
Yes or No			
Yes	>	Replace ECM.	1
No	o INSPECTION END		

Component Description

Component Description

The intake air temperature sensor is mounted to the air duct housing. The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* (V)	Resistance kΩ
20 (68)	3.5	2.1 - 2.9
80 (176)	1.23	0.27 - 0.38

^{*:} These data are reference values and are measured between ECM terminal 61 (Intake air temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

On Board Diagnosis Logic

Malfunction is detected when

(Malfunction A) an excessively low or high voltage from the sensor is sent to ECM,

(Malfunction B) rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signal from engine coolant temperature sensor.

POSSIBLE CAUSE

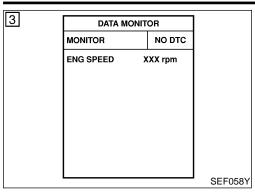
NGEC0586S01

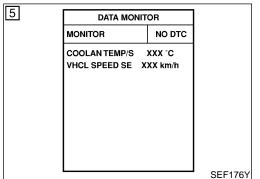
- Harness or connectors (The sensor circuit is open or shorted.)
- Intake air temperature sensor

DTC Confirmation Procedure

Perform "PROCEDURE FOR MALFUNCTION A" first. If 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MAL-FUNCTION B".

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.


DTC P0110 INTAKE AIR TEMPERATURE SENSOR

VG33E

NGEC0587S01

DTC Confirmation Procedure (Cont'd)

PROCEDURE FOR MALFUNCTION A

(P) With CONSULT-II

1) Turn ignition switch ON.

- Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 5 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-753.

With GST

Follow the procedure "With CONSULT-II".

PROCEDURE FOR MALFUNCTION B

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(P) With CONSULT-II

- Wait until engine coolant temperature is less than 90°C (194°F).
- Turn ignition switch ON. a)
- Select "DATA MONITOR" mode with CONSULT-II.
- Check the engine coolant temperature.
- If the engine coolant temperature is not less than 90°C (194°F), turn ignition switch OFF and cool down engine.
- Perform the following steps before engine coolant temperature is above 90°C (194°F).
- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 4) Start engine.
- 5) Hold vehicle speed at more than 70 km/h (43 MPH) for 100 consecutive seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-753.

With GST

Follow the procedure "With CONSULT-II".

NGEC0587S02

EC

LC

GI

MA

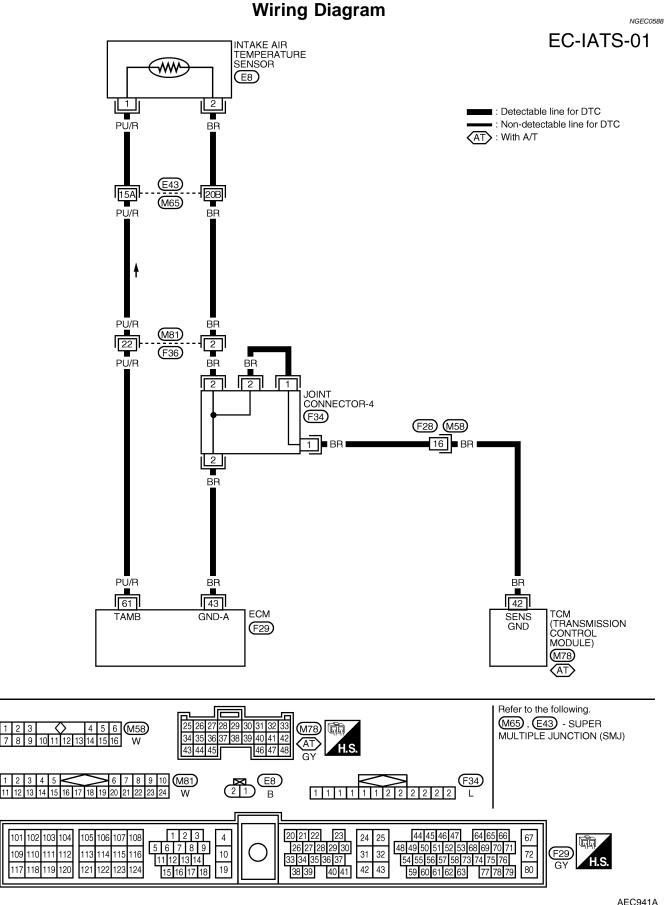
GL

MT

AT

TF

PD


ST

BT

HA

SC

EL

DTC P0110 INTAKE AIR TEMPERATURE SENSOR

CHECK INTAKE AIR TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

Diagnostic Procedure

NGEC0589

GI

MA

LC

EC

MT

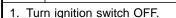
AT

TF

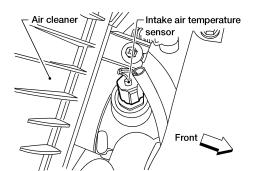
PD

AX

ST

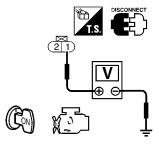

BT

HA


SC

LEC519

SEF203W



2. Disconnect intake air temperature sensor harness connector.

3. Turn ignition switch ON.

4. Check voltage between terminal 1 and ground.

Voltage: Approximately 5V

OK or NG

OK •	GO TO 3.
NG •	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E43, M65
- Harness connectors M81, F36
- Harness for open or short between ECM and intake air temperature sensor

Repair harness or connectors.

3 CHECK INTAKE AIR TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Check harness continuity between sensor terminal 2 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

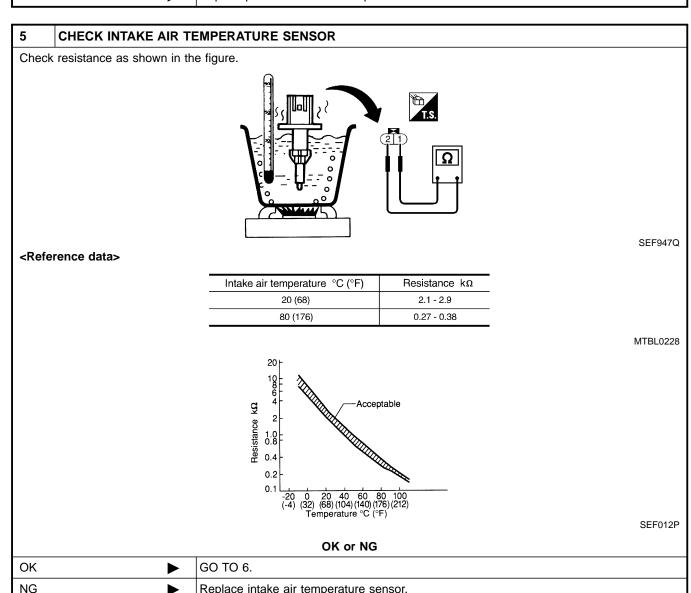
OK	or	NG
----	----	----

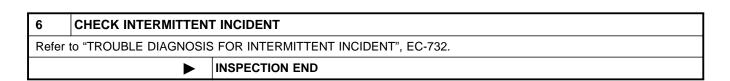
OK ►	GO TO 5.
NG ►	GO TO 4.

 \mathbb{Z}

DTC P0110 INTAKE AIR TEMPERATURE SENSOR

VG33E

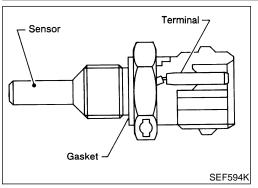

Diagnostic Procedure (Cont'd)

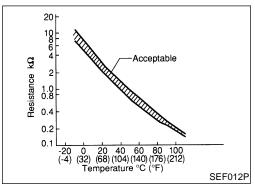

DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E43, M65
- Harness connectors M81, F36
- Harness connectors F28, M58
- Joint connector-4
- Harness for open or short between ECM and intake air temperature sensor
- Harness for open or short between TCM (Transmission Control Module) and intake air temperature sensor

Repair open circuit or short to power in harness or connectors.




Replace intake air temperature sensor.

DTC P0115 ENGINE COOLANT TEMPERATURE SENSOR (ECTS) (CIRCUIT)

VG33E

Component Description

Component Description

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

MA

LC

EC

<Reference data>

Engine coolant temperature °C (°F)	Voltage* (V)	Resistance (kΩ)
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 59 (Engine coolant temperature sensor) and ground.

MT

GL

CAUTION:

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TF

PD

AX

On Board Diagnosis Logic

SU

Malfunction is detected when an excessively high or low voltage from the sensor is sent to ECM.

NGEC0591S01

- **POSSIBLE CAUSE**
- Harness or connectors (The sensor circuit is open or shorted.)
- Engine coolant temperature sensor

FAIL-SAFE MODE

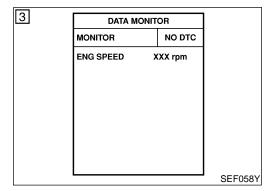
When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

BT

ST

HA

SC


EL

DTC P0115 ENGINE COOLANT TEMPERATURE SENSOR (ECTS) (CIRCUIT)

VG33E

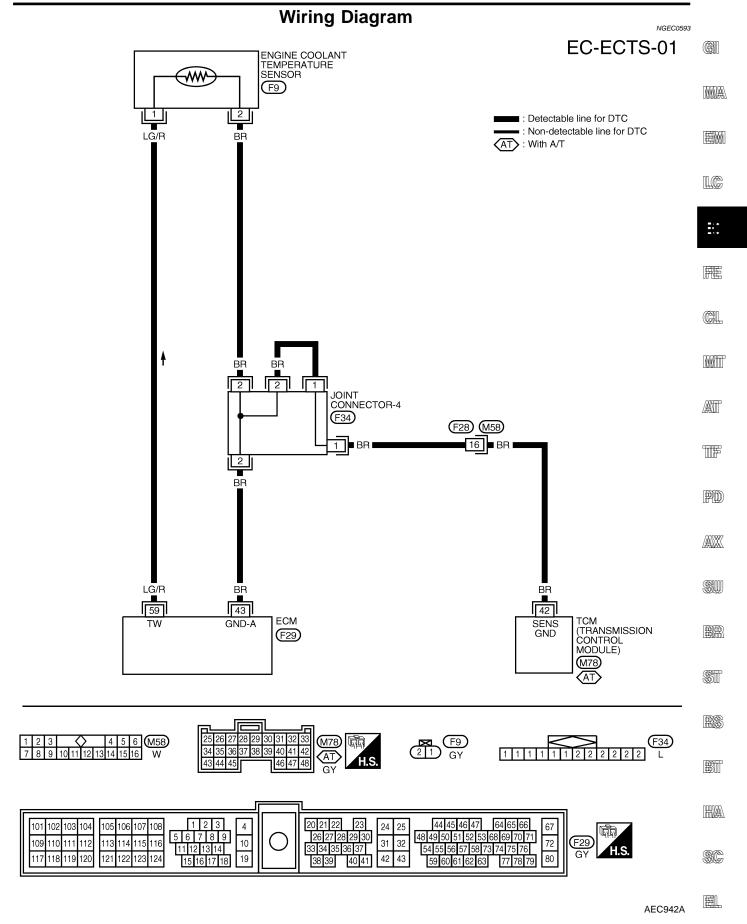
On Board Diagnosis Logic (Cont'd)

Detected items	Engine operating condition in fail-safe mode		
	Engine coolant temperature will be determined by ECM based on the time after turning ignition switch ON or START. CONSULT-II displays the engine coolant temperature decided by ECM.		
Engine coolant tempera-	Condition	Engine coolant temperature decided (CONSULT-II display)	
ture sensor circuit	Just as ignition switch is turned ON or Start	40°C (104°F)	
	More than approx. 4 minutes after ignition ON or Start	80°C (176°F)	
	Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)	

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.


(II) With CONSULT-II

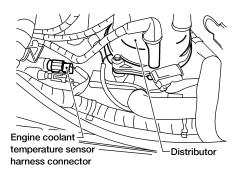
- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-758.

With GST Follow the procedure "With CONSULT-II".

DTC P0115 ENGINE COOLANT TEMPERATURE SENSOR (ECTS) (CIRCUIT)

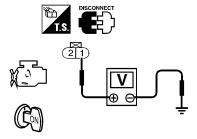
VG33E Wiring Diagram

Diagnostic Procedure


VG33E

NGEC0594

Diagnostic Procedure


1 CHECK ECTS POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect engine coolant temperature sensor harness connector.

AEC643A

- 3. Turn ignition switch ON.
- 4. Check voltage between ECTS terminal 1 and ground with CONSULT-II or tester.

SEF206W

Voltage: Approximately 5V

OK or NG

OK •	GO TO 2.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

2 CHECK ECTS GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Check harness continuity between ECTS terminal 2 and engine ground. Refer to Wiring Diagram.

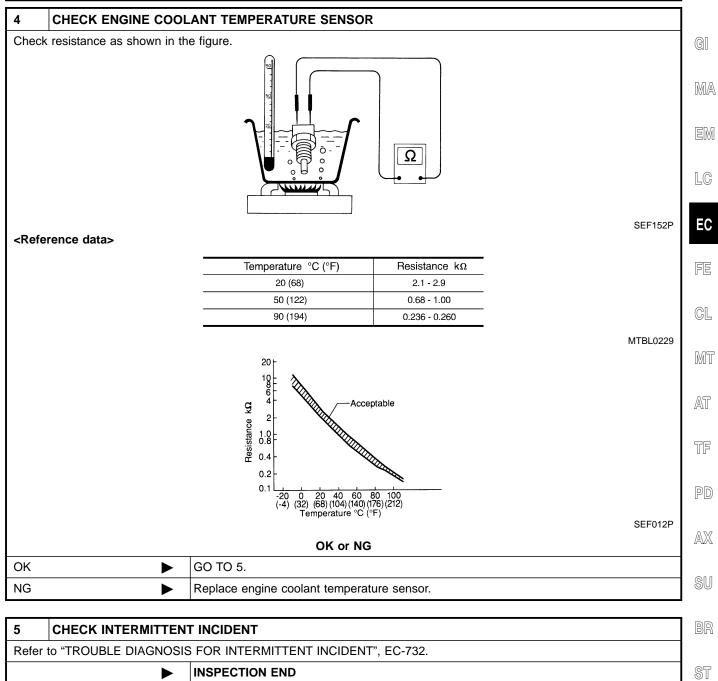
Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK	>	GO TO 4.
NG	>	GO TO 3.

3 DETECT MALFUNCTIONING PART


Check the following.

- Harness connectors F28, M58
- Joint connector-4
- Harness for open or short between ECM and engine coolant temperature sensor
- Harness for open or short between TCM (Transmission Control Module) and engine coolant temperature sensor
 - Repair open circuit or short to power in harness or connectors.

DTC P0115 ENGINE COOLANT TEMPERATURE SENSOR (ECTS) (CIRCUIT)

VG33E

Diagnostic Procedure (Cont'd)

5	CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.			
	► INSPECTION END		

RS

BT

HA

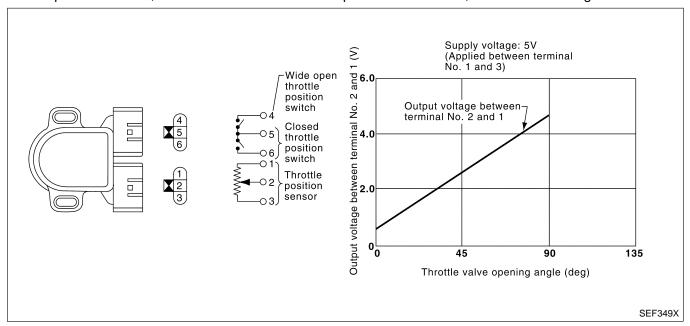
SC

EL

Description

NGEC0595

NOTE:


If DTC P0120 (0403) is displayed with DTC P0510 (0203), first perform the trouble diagnosis for DTC P0510. Refer to EC-1033.

COMPONENT DESCRIPTION

GEC0595S01

The throttle position sensor responds to the accelerator pedal movement. This sensor is a kind of potentiometer which transforms the throttle position into output voltage, and emits the voltage signal to the ECM. In addition, the sensor detects the opening and closing speed of the throttle valve and feeds the voltage signal to the ECM.

Idle position of the throttle valve is determined by the ECM receiving the signal from the throttle position sensor. This sensor controls engine operation such as fuel cut. On the other hand, the "Wide open and closed throttle position switch", which is built into the throttle position sensor unit, is not used for engine control.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0596

MONITOR ITEM	CONE	SPECIFICATION	
	Engine: After warming up, idle the engine	Throttle valve: fully closed (a)	0.15 - 0.85V
THRTL POS SEN	Engine: After warming up Ignition switch: ON	Throttle valve: Partially open	Between (a) and (b)
	(Engine stopped)	Throttle valve: fully opened (b)	3.5 - 4.7V
ABSOL TH-P/S	 Engine: After warming up Ignition switch: ON More than -40.0 kpa (-300 mmHg, -11.81 inHg) of vacuum is applied to the throttle opener with a hand vacuum pump. 	Throttle valve: fully closed	0.0%
	 Engine: After warming up Ignition switch: ON (Engine stopped) 	Throttle valve: fully opened	Approx. 80%

ECM Terminals and Reference Value

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

=NGEC0597

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

GI

MA

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
23	L	Throttle position sensor	[Engine is running]Warm-up conditionAccelerator pedal fully released	0.15 - 0.85V
			[Ignition switch ON] • Accelerator pedal fully depressed	3.5 - 4.7V
42	B/W	Sensors' power supply	[Ignition switch ON]	Approximately 5V
43	BR	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

EC

MIT

AT

On Board Diagnosis Logic

Malfunction is detected when

(Malfunction A) an excessively low or high voltage from the sensor is sent to ECM,

(Malfunction B) a high voltage from the sensor is sent to ECM under light load driving conditions,

TF

(Malfunction C) a low voltage from the sensor is sent to ECM under heavy load driving conditions.

POSSIBLE CAUSE

Malfunction A

NGEC0598S0101

NGFC0598S01

NGEC0598S0102

Harness or connectors (The throttle position sensor circuit is open or shorted.)

Throttle position sensor

Malfunction B

Harness or connectors

(The throttle position sensor circuit is open or shorted.)

ST

Throttle position sensor

Fuel injector

Camshaft position sensor Mass air flow sensor

Malfunction C

Harness or connectors

(The throttle position sensor circuit is open or shorted.)

Intake air leaks

HA

Throttle position sensor

FAIL-SAFE MODE

When the malfunction A is detected, the ECM enters fail-safe mode and the MIL lights up.

EL

SC

VG33E

On Board Diagnosis Logic (Cont'd)

Detected items	Engine operating condition in fail-safe mode		
Throttle position sensor circuit	Throttle position will be determined based on the injected fuel amount and the engine speed. Therefore, acceleration will be poor.		
	Condition	Driving condition	
	When engine is idling	Normal	
	When accelerating	Poor acceleration	

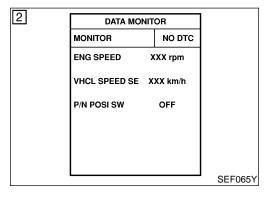
DTC Confirmation Procedure

NGEC0599

NOTE:

- Perform "PROCEDURE FOR MALFUNCTION A" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B".
 - If there is no problem on "PROCEDURE FOR MALFUNC-TION B", perform "PROCEDURE FOR MALFUNCTION C".
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A


NGEC0599S01

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

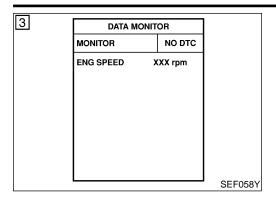
- Before performing the following procedure, confirm that battery voltage is more than 10V at idle.
- This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(P) With CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and maintain the following conditions for at least 5 consecutive seconds.

Vehicle speed	More than 5 km/h (3 MPH)
Selector lever	Suitable position except "P" or "N" position

3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-766.


With GST

Follow the procedure "With CONSULT-II".

VG33E

NGEC0599S02

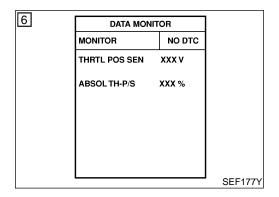
DTC Confirmation Procedure (Cont'd)

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II

Turn ignition switch ON.

Select "DATA MONITOR" mode with CONSULT-II.


3) Start engine and let it idle for at least 10 seconds. If idle speed is over 1,000 rpm, maintain the following conditions for at least 10 seconds to keep engine speed below 1,000 rpm.

Selector lever	Suitable position except "P" or "N"
Brake pedal	Depressed
Vehicle speed	0 km/h (0 MPH)

 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-766.

With GST

Follow the procedure "With CONSULT-II".

PROCEDURE FOR MALFUNCTION C

CAUTION:

Always drive vehicle at a safe speed.

(I) With CONSULT-II

1) Start engine and warm it up to normal operating temperature.

2) Turn ignition switch OFF and wait at least 5 seconds.

3) Turn ignition switch ON.

 Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II.

 Select "THRTL POS SEN" and "ABSOL TH-P/S" in "DATA MONITOR" mode with CONSULT-II.

6) Press RECORD on CONSULT-II SCREEN at the same time accelerator pedal is depressed.

7) Print out the recorded graph and check the following:

 The voltage rise is linear in response to accelerator pedal depression.

 The voltage when accelerator pedal is fully depressed is approximately 4V.

If NG, go to "Diagnostic Procedure", EC-766.

If OK, go to following step.

GI

 $\mathbb{M}\mathbb{A}$

EM

LC

EC

FE

GL

MT

AT

TF

NGEC0599S03

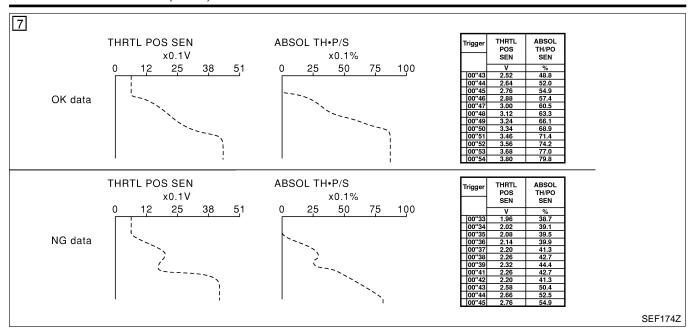
PD

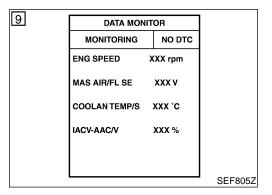
@11

ST

0 I

KS


BT


HA

SC

EL

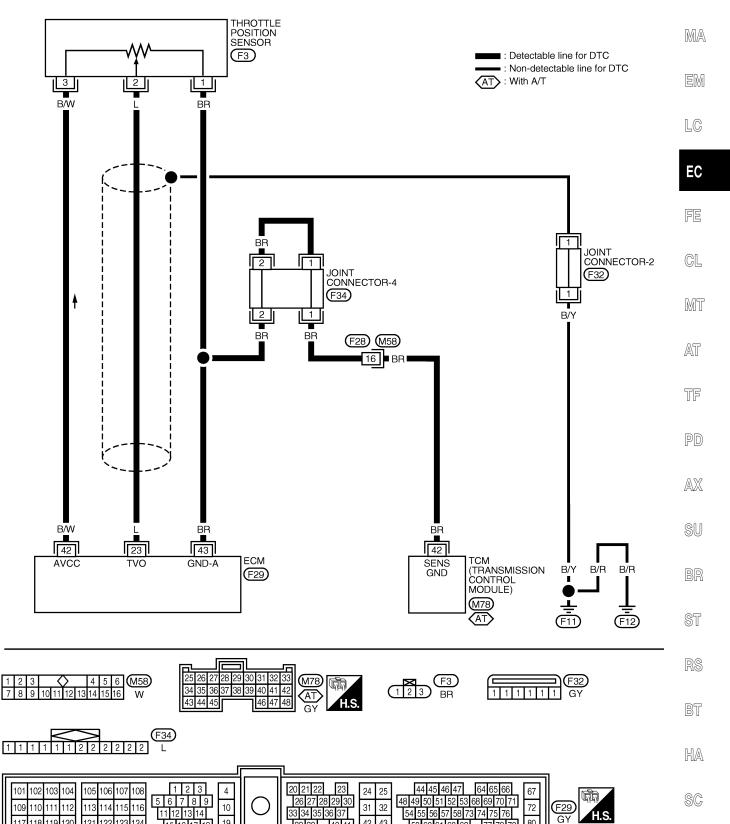
DTC Confirmation Procedure (Cont'd)

- Select "AUTO TRIG" in "DATA MONITOR" mode with CON-SULT-II.
- 9) Maintain the following conditions for at least 10 consecutive seconds.

CMPS-RPM (REF)	More than 2,000 rpm
MAS AIR/FL SE	More than 3V
COOLAN TEMP/S	More than 70°C (158°F)
IACV-AAC/V	Less than 80%
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

10) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-766.

With GST


Follow the procedure "With CONSULT-II".

Wiring Diagram

NGEC0600

GI

72

EL

31 32

42 43

114 115 116

121 122 123 124

109 110 111

117 118 119 120

112

10

15 16 17 18

Diagnostic Procedure

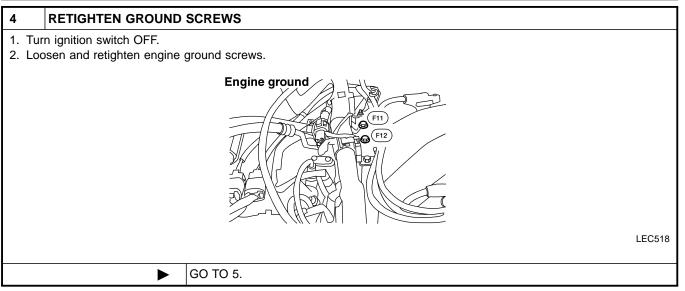
Diagnostic Procedure

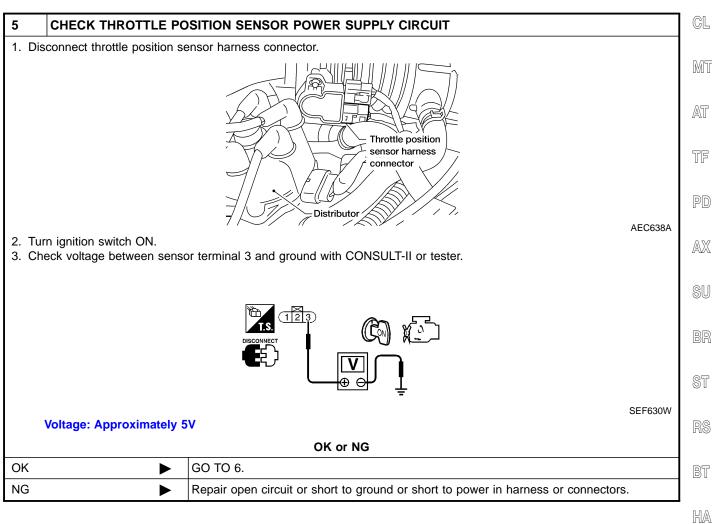
NGEC0601 **INSPECTION START** Which malfunction A, B or C is duplicated? MALFUNCTION Туре Α В В С С MTBL0066 Type A, B or C GO TO 4. Type A or B GO TO 2. Type C

2	ADJUST THROTTLE PO	OSITION SENSOR		
Chec	k the following items. Refer	to "Basic Inspection", EC-	-694.	
		Items	Specifications	•
		Ignition timing	10° ± 2° BTDC	-
		Base idle speed	700 ± 50 rpm (in "P" or "N" position)	_
		Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.3 mm (0.012 in): ON 0.4 mm (0.016 in): OFF	
		Target idle speed	750 ± 50 rpm (in "P" or "N" position)	-
				MTBL0576
	>	GO TO 3.		

3 CHECK INTAKE SYSTEM. 1. Turn ignition switch OFF. 2. Check the following for connection. • Air duct • Vacuum hoses • Intake air passage between air duct to intake manifold collector OK or NG OK Reconnect the parts.

GI


MA


EM

LC

EC

Diagnostic Procedure (Cont'd)

SC

EL

VG33E

Diagnostic Procedure (Cont'd)

7 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F28, M58
- Joint connector-4
- Harness for open or short between ECM and throttle position sensor
- Harness for open or short between TCM (Transmission Control Module) and throttle position sensor
 - Repair open circuit or short to power in harness or connectors.

8 CHECK THROTTLE POSITION SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 23 and sensor terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

Oł	(With CONSULT-II)	>	GO TO 9.
Oł II)	(Without CONSULT-	•	GO TO 10.
NO	3	•	Repair open circuit or short to ground or short to power in harness or connectors.

9 CHECK THROTTLE POSITION SENSOR

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine (ignition switch OFF).
- 3. Turn ignition switch ON.
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- 5. Check voltage of "THRTL POS SEN" under the following conditions.

Voltage measurement must be made with throttle position sensor installed in vehicle.

DATA MONITOR		
NO DTC		
XXX rpm		
XXX °C		
XXX V		

Throttle valve conditions	THRTL POS SEN
Completely closed (a)	0.15 - 0.85V
Partially open	Between (a) and (b)
Completely open (b)	3.5 - 4.7V

SEF062Y

OK or NG

ОК		GO TO 12.
NG		GO TO 11.

VG33E

MTBL0231

GI

MA

EM

LC

EC

GL

MT

AT

TF

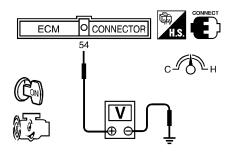
PD

SU

Diagnostic Procedure (Cont'd)

10 **CHECK THROTTLE POSITION SENSOR** Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Stop engine (ignition switch OFF). 3. Turn ignition switch ON. 4. Check voltage between ECM terminal 23 (Throttle position sensor signal) and ground. Voltage measurement must be made with throttle position sensor installed in vehicle. Throttle valve conditions Voltage 0.15 - 0.85V Completely closed (a) Partially open Between (a) and (b) Completely open (b) 3.5 - 4.7V OK or NG

GO TO 12.

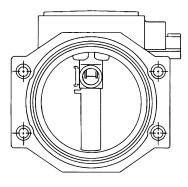

OK

11	ADJUST CLOSED THR	OTTLE POSITION SWIT	ГСН	
Adjus	et closed throttle position sw	ritch. Refer to "Basic Inspe	ection", EC-694.	
		Items	Specifications	
		Ignition timing	10° ± 2° BTDC	
		Base idle speed	700 ± 50 rpm (in "P" or "N" position)	-
		Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.3 mm (0.012 in): ON 0.4 mm (0.016 in): OFF	
		Target idle speed	750 ± 50 rpm (in "P" or "N" position)	•
				MTBL057
		O	K or NG	
OK	>	GO TO 12.		
NG	•	Replace throttle position	sensor. To adjust it, perform '	"Basic Inspection". EC-694.

BR ST RS BT HA SC EL Diagnostic Procedure (Cont'd)

12 CHECK MASS AIR FLOW SENSOR

- 1. Reconnect harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 54 (Mass air flow sensor signal) and ground.



SEF747U

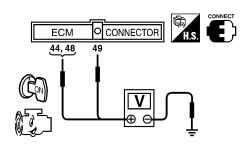
Condition	Voltage V
Ignition switch "ON" (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.0 - 1.7
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.7 - 2.3
Idle to about 4,000 rpm*	1.0 - 1.7 to Approx. 4.0

MTBL0227

- 4. If the voltage is out of specification, disconnect mass air flow sensor harness connector and connect it again. Then repeat above check.
- 5. If NG, remove mass air flow sensor from air duct. Check hot wire for damage or dust.

SEF030T

OK or NG


OK •	GO TO 13.
NG ►	Replace mass air flow sensor.

VG33E

Diagnostic Procedure (Cont'd)

13 CHECK CAMSHAFT POSITION SENSOR

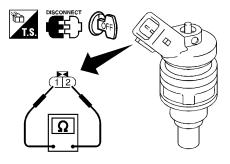
- 1. Install any parts removed.
- 2. Start engine.
- 3. Check voltage between ECM terminals 44, 48 and ground, ECM terminal 49 and ground with DC range.

Terminal 44 or 48 and engine ground

Condition	Idle	2,000 rpm
Voltage	0.3 - 0.5V	0.3 - 0.5V
Pulse signal	(V) 10 5 0 20 ms	(V) 10 5 0 10 20 ms

Terminal 49 and engine ground

Condition	Idle	2,000 rpm
Voltage	Approximately 2.5V	Approximately 2.5V
Pulse signal	(V) 10 5 0	(V) 10 5 0 0.2 ms


AEC072B

OK or NG

OK •	GO TO 14.
NG >	Replace distributor assembly with camshaft position sensor.

14 CHECK FUEL INJECTOR

- 1. Disconnect injector harness connector.
- 2. Check resistance between terminals as shown in the figure.

Resistance: 10 - 14Ω [at 25°C (77°F)]

OK or NG

OK •	GO TO 15.
NG •	Replace fuel injector.

G[

MA

EM

LC

EC

__

GL

MT

AT

TF

PD

AX

SU

BR

ST

D@

BT

HA

SC

SEF625V

EL

VG33E

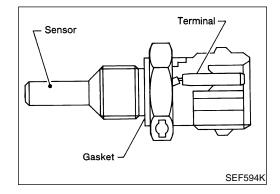
Diagnostic Procedure (Cont'd)

15	15 CHECK THROTTLE POSITION SENSOR SHIELD CIRCUIT FOR OPEN AND SHORT		
1. Tu	rn ignition switch OFF.		
2. Dis	sconnect joint connector-2.		
3. Ch	3. Check the following.		
• Co	Continuity between joint connector terminal 1 and ground		
Join	Joint connector		
(Re	(Refer to <i>EL-244</i> , "HARNESS LAYOUT".)		
	Continuity should exist.		
	4. Also check harness for short to power.		
5. Th	5. Then reconnect joint connector-2.		
OK or NG			
ОК	OK ▶ GO TO 16.		
NG	NG Repair open circuit or short to power in harness or connectors.		

16	16 CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
	► INSPECTION END		

Description

NGEC0602


Description

NOTE:

If DTC P0125 (0908) is displayed with P0115 (0103), first perform the trouble diagnosis for DTC P0115. Refer to EC-755.

MA

LC

Acceptable

20 40 60 80 100 (68) (104) (140) (176) (212)

émpérature °C (°F)

10 8 6

0.8

0.4

0.2

ĝ

COMPONENT DESCRIPTION

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

GL

MT

<Reference data>

Engine coolant Voltage* (V) Resistance $(k\Omega)$ temperature °C (°F) -10(14)4.4 9.2 20 (68) 3.5 2.1 - 2.950 (122) 2.2 0.68 - 1.0090 (194) 0.9 0.236 - 0.260

TF PD

*: These data are reference values and are measured between ECM terminal 59

CAUTION:

SEF012P

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

ST

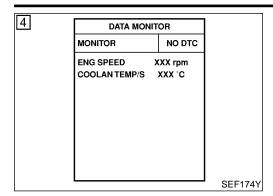
On Board Diagnosis Logic

(Engine coolant temperature sensor) and ground.

Malfunction is detected when voltage sent to ECM from the sensor is not practical, even when some time has passed after starting the engine, or engine coolant temperature is insufficient for closed loop fuel control.

SC

POSSIBLE CAUSE


NGEC0603S01

Harness or connectors (High resistance in the circuit)

Engine coolant temperature sensor

Thermostat

DTC Confirmation Procedure

DTC Confirmation Procedure

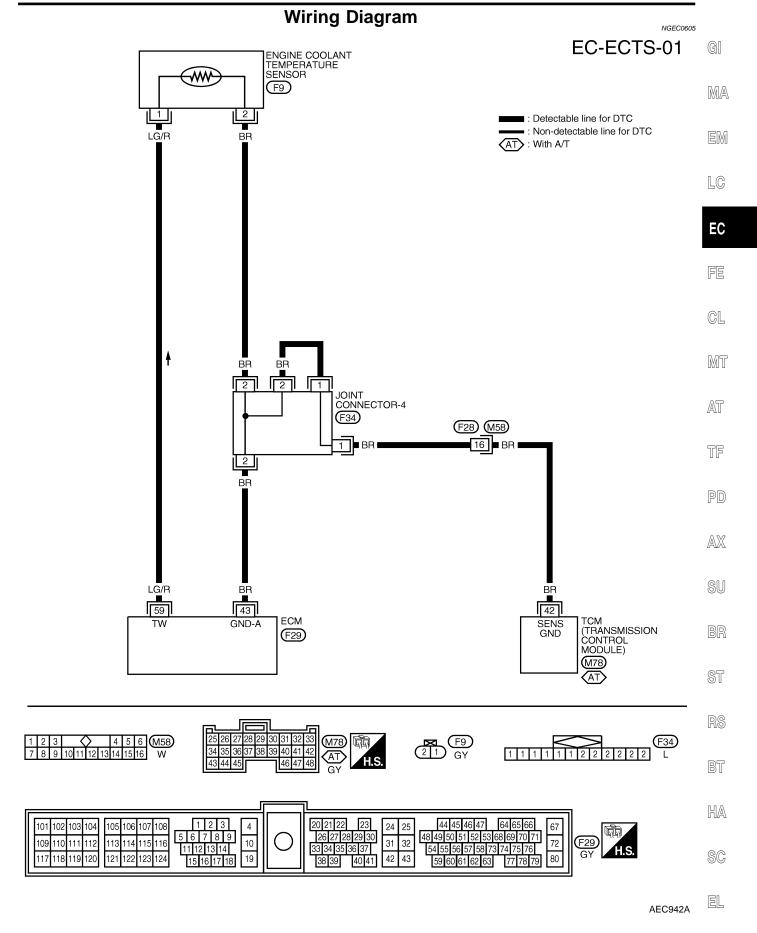
=NGEC0604

CAUTION:

Be careful not to overheat engine.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

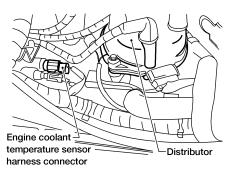

(P) With CONSULT-II

- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Check that "COOLAN TEMP/S" is above 10°C (50°F). If it is above 10°C (50°F), the test result will be OK. If it is below 10°C (50°F), go to following step.
- 4) Start engine and run it for 65 minutes at idle speed. If "COOLAN TEMP/S" increases to more than 10°C (50°F) within 65 minutes, stop engine because the test result will be OK.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-776.

With GST

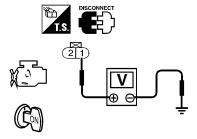
Follow the procedure "With CONSULT-II".

Wiring Diagram



Diagnostic Procedure

NGEC0606


1 CHECK ECTS POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect engine coolant temperature sensor harness connector.

AEC643A

- 3. Turn ignition switch ON.
- 4. Check voltage between ECTS terminal 1 and ground with CONSULT-II or tester.

SEF206W

Voltage: Approximately 5V

OK or NG

OK ►	GO TO 2.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

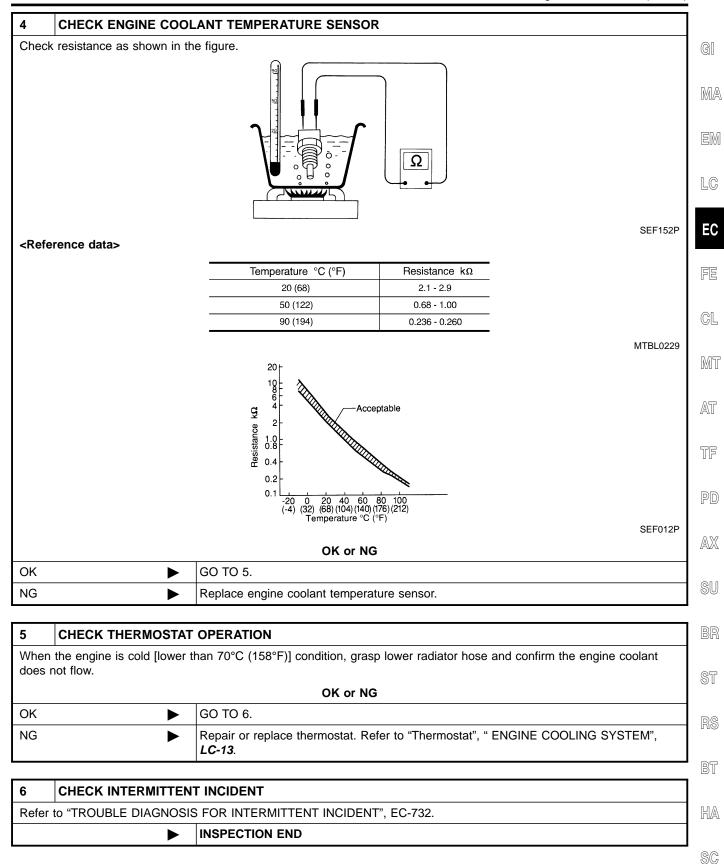
2 CHECK ECTS GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Check harness continuity between ECTS terminal 2 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

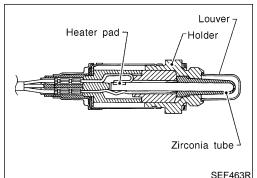
OK or NG


ОК	>	GO TO 4.
NG	•	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F28, M58
- Joint connector-4
- Harness for open or short between ECM and engine coolant temperature sensor
- Harness for open or short between TCM (Transmission Control Module) and engine coolant temperature sensor
 - Repair open circuit or short to power in harness or connectors.


Diagnostic Procedure (Cont'd)

EL

VG33E

Component Description

SEF463R

Component Description

The heated oxygen sensor 1 (front) is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal airfuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

\geq Output voltage V_s Lean Rich Ideal ratio Mixture ratio SEF288D

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

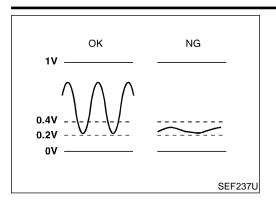
NGEC0608

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1) HO2S1 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value

NGEC0609

Specification data are reference values and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
50	В	Heated oxygen sensor 1 (front) (bank 1)	[Engine is running]	0 - Approximately 1.0V
51	G	Heated oxygen sensor 1 (front) (bank 2)	After warming up to normal operating tempera- ture and engine speed is 2,000 rpm	0.5 ms SEF002V

VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

Under the condition in which the heated oxygen sensor 1 (front) signal is not input, the ECM circuits will read a continuous approximately 0.3V. Therefore, for this diagnosis, the time that output voltage is within 200 to 400 mV range is monitored, and the diagnosis checks that this time is not inordinately long.

Malfunction is detected when the voltage from the sensor is constantly approx. 0.3V.

POSSIBLE CAUSE

Harness or connectors (The sensor circuit is open or shorted.)

Heated oxygen sensor 1 (front)

MA

NGEC0610S01

LC

EC

FE

GL

MT

AT

TF

AX

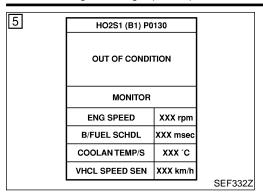
PD

SU

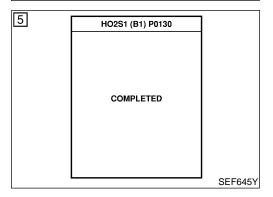
ST

BT

HA


SC

EL


VG33E

=NGFC0611

On Board Diagnosis Logic (Cont'd)

[<u>의</u>	HO2S1 (B1) P0	130	
	TESTING		
	MONITOR		
	ENG SPEED	XXX rpm	
	B/FUEL SCHDL	XXX msec	
	COOLAN TEMP/S	XXX °C	
	VHCL SPEED SEN	XXX km/h	
			SEF333Z

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

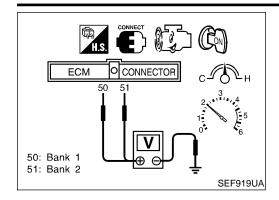
- (A) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "HO2S1 (B1)/(B2) P0130/P0150" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 3) Touch "START".
- 4) Let it idle for at least 3.5 minutes.

NOTE:

Never raise engine speed above 3,200 rpm after this step. If the engine speed limit is exceeded, return to step 4.

5) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 10 to 60 seconds.)

ENG SPEED	1,800 - 3,100 rpm
Vehicle speed	More than 65 km/h (40 MPH)
B/FUEL SCHDL	2.8 - 13 msec
Selector lever	Suitable position


If "TESTING" is not displayed after 5 minutes, retry from step 2.

 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-784.

During this test, P1148 and P1168 may be stored in ECM.

VG33E

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 50 (bank 1 signal) or 51 (bank 2 signal) and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage does not remain in the range of 0.2 0.4V.
- If NG, go to "Diagnostic Procedure", EC-784.

MA

LC

EC

FE

GL

MT

AT

TF PD

SU

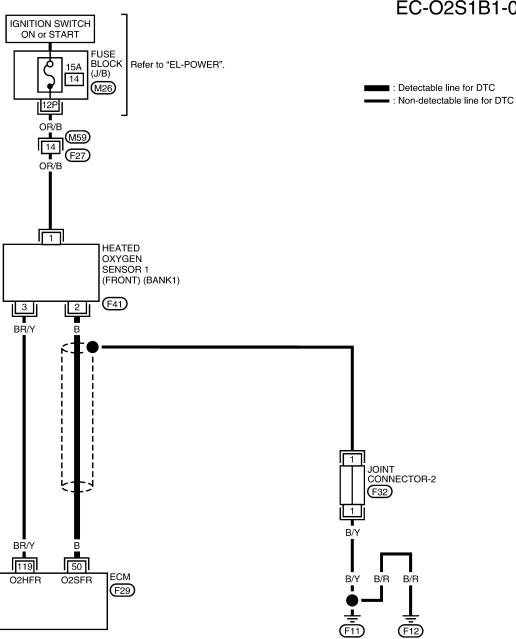
ST

BT

HA

SC

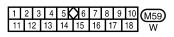
EL

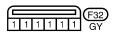

VG33E

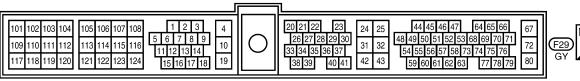
Wiring Diagram

NGEC0613

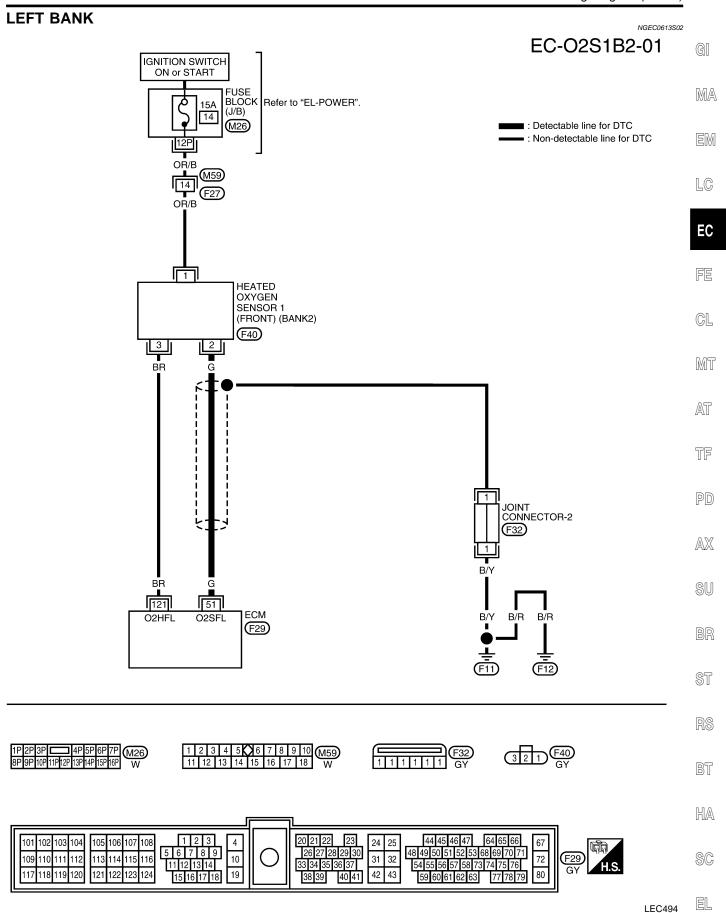
NGEC0613S01


EC-02S1B1-01




Wiring Diagram

RIGHT BANK

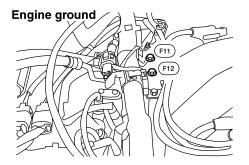


VG33E

Wiring Diagram (Cont'd)

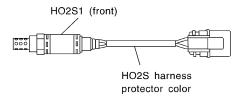
EC-783

VG33E

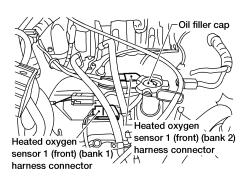

Diagnostic Procedure

Diagnostic Procedure

NGEC0614



- 1. Turn ignition switch OFF.
- 2. Loosen and retighten engine ground screws.


LEC518

3. Make sure HO2S 1 (front) harness protector color, and disconnect corresponding heated oxygen sensor 1 (front) harness connector.

HO2S1 (front) (bank 1): Black HO2S1 (front) (bank 2): Blue

SEF505Y

WEC545

 \blacktriangleright

GO TO 2.

VG33E

Diagnostic Procedure (Cont'd)

CHECK HO2S 1 (FRONT) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Disconnect ECM harness connector.

2

2. Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Term	ninals	Donle
DIC	ECM	Sensor	Bank
P0130	50	2	Bank 1 (Right)
P0150	51	2	Bank 2 (Left)

SEF803Z

Continuity should exist.

3. Check harness continuity between ECM terminal or HO2S1 terminal and ground as follows. Refer to Wiring Diagram.

DTC	Termin	nals	Bank
DIC	ECMorsensor	Ground	Dank
P0130	50 or 2	Ground	Bank 1 (Right)
P0150	51 or 2	Ground	Bank 2 (Left)

SEF816Z

Continuity should not exist.

4. Also check harness for short to power.

3

	NG	>	Repair open circuit or short to ground or short to power in harness or connectors.
	OK (Without CONSULT-II)	•	GO TO 4.
ı	OK (With CONSULT-II)		GO 10 3.

GI

MA

EM

EC

MT

AT

TF

PD

BR

ST

HA

SC

Diagnostic Procedure (Cont'd)

VG33E

CHECK HEATED OXYGEN SENSOR 1 (FRONT)

(P) With CONSULT-II

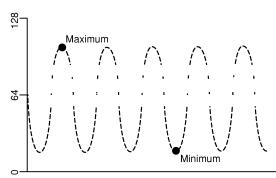
3

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 3. Hold engine speed at 2,000 rpm under no load during the following steps.
- 4. Touch "RECORD" on CONSULT-II screen.

ITOR
NO DTC
XXX rpm XXX °C XXX V XXX V

SEF967Y

- 5. Check the following.
- "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below.


Bank 2
cycle | 1 | 2 | 3 | 4 | 5 |
HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R-L-R

R means HO2S1 MNTR (B1)/(B2) indicates RICH L means HO2S1 MNTR (B1)/(B2) indicates LEAN

SFF647Y

- "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Trigger	ENG	HO2S1
	SPEED	(B1)
	rpm	V
XXX	XXX	XXX

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 5.
NG ►	Replace malfunctioning heated oxygen sensor 1 (front).

VG33E

GI

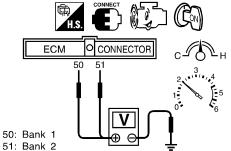
MA

LC

EC

FE

CL


MT

Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 1 (FRONT)

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 50 (bank 1 signal) or 51 (bank 2 signal) and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

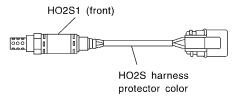
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

1 time: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$

2 times: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$

SEF796Z

CAUTION:


Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK ▶	GO TO 6.
NG ▶	GO TO 5.

REPLACE HEATED OXYGEN SENSOR 1 (FRONT)

- 1. Turn ignition switch "OFF".
- 2. Check heated oxygen sensor 1 (front) harness protector color.

HO2S1 (front) (bank 1): Black

HO2S1 (front) (bank 2): Blue **CAUTION:**

Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Replace malfunctioning heated oxygen sensor 1 (front).

AT

TF

PD

SEF505Y

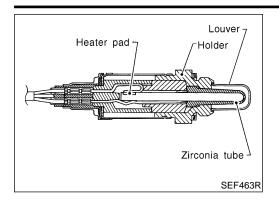
BT

HA

SC

VG33E

Diagnostic Procedure (Cont'd)


6	CHECK HO2S 1 (FRONT) SHIELD CIRCUIT FOR OPEN AND SHORT		
1. Tur	1. Turn ignition switch OFF.		
2. Dis	2. Disconnect joint connector-2.		
3. Ch	3. Check the following.		
Con	Continuity between joint connector terminal 1 and ground		
Join	Joint connector		
(Re	(Refer to "HARNESS LAYOUT", <i>EL-9</i> .)		
	Continuity should exist.		
4. Als	4. Also check harness for short to power.		
5. The	5. Then reconnect joint connector-2.		
	OK or NG		
OK	>	GO TO 7.	
NG	NG Repair open circuit or short to power in harness or connectors.		

7	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
► INSPECTION END			

DTC P0131, P0151 HEATED OXYGEN SENSOR 1 (FRONT) (BANK 1)/(BANK 2) (LEAN SHIFT MONITORING)

VG33E

Component Description

Component Description

The heated oxygen sensor 1 (front) is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal airfuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

MA

LC

EC

GL

MT

AT

CONSULT-II Reference Value in Data Monitor Mode

NGEC0616

Specification data are reference values.

Ideal ratio Mixture ratio Lean

SEF288D

MONITOR ITEM	CONDITION		SPECIFICATION	TF
HO2S1 (B1) HO2S1 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V	PD
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.	AX

ECM Terminals and Reference Value

NGEC0617

Specification data are reference values and are measured between each terminal and ground.

ST

BT

HA

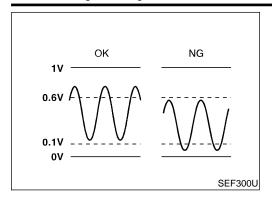
CAUTION:

 \geq

Output voltage V_s

Rich

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
50	В	Heated oxygen sensor (bank 1)	[Engine is running] ■ After warming up to normal operating temperature and engine speed is 2,000 rpm	0 - Approximately 1.0V
51	G	Heated oxygen sensor (bank 2)		0.5 ms

SC

DTC P0131, P0151 HEATED OXYGEN SENSOR 1 (FRONT) (BANK 1)/(BANK 2) (LEAN SHIFT MONITORING)

VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

To judge the malfunction, the output from the heated oxygen sensor 1 (front) is monitored to determine whether the "rich" output is sufficiently high and whether the "lean" output is sufficiently low. When both the outputs are shifting to the lean side, the malfunction will be detected.

Malfunction is detected when the maximum and minimum voltage from the sensor are not reached to the specified voltages.

POSSIBLE CAUSE

NGEC0618S01

- Heated oxygen sensor 1 (front)
- Heated oxygen sensor 1 heater (front)
- Fuel pressure
- Injectors
- Intake air leaks

DTC P0131, P0151 HEATED OXYGEN SENSOR 1 (FRONT) (BANK 1)/(BANK 2) (LEAN SHIFT MONITORING)

VG33E

DTC Confirmation Procedure

DTC Confirmation Procedure

CAUTION:

=NGEC0619

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

GI

TESTING CONDITION:

- Always perform at a temperature above -10°C (14°F).
- Before performing following procedure, confirm that battery voltage is more than 11V at idle.

EC

MT

6 HO2S1 (B1) P0130 **TESTING** MONITOR **ENG SPEED** XXX rpm B/FUEL SCHDL XXX msed COOLAN TEMP/S XXX °C VHCL SPEED SEN XXX km/h SEF334Z

HO2S1 (B1) P0131

TESTING

MONITOR

XXX rpm

XXX mse

XXX °C

XXX km/h

ENG SPEED

B/FUEL SCHDL

COOLAN TEMP/S

VHCL SPEED SE

6

(P) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 5 seconds.
- Turn ignition switch "ON" and select "HO2S1 (B1)/(B2) P0131/ P0151" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.

- Touch "START".
- Start engine and let it idle for at least 3.5 minutes.

NOTE:

Never raise engine speed above 3,200 rpm after this step. If the engine speed limit is exceeded, return to step 5.

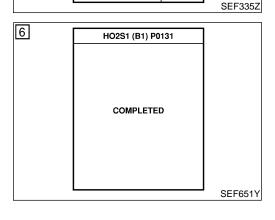
When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)

\sim	\sim	

PD

ENG SPEED	1,200 - 3,100 rpm
Vehicle speed	Less than 100 km/h (62 MPH)
B/FUEL SCHDL	2.8 - 11 msec
Selector lever	Suitable position

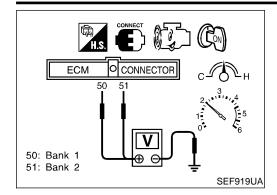
ST


If "TESTING" is not displayed after 5 minutes, retry from

BT

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-792.

HA


SC

DTC P0131, P0151 HEATED OXYGEN SENSOR 1 (FRONT) (BANK 1)/(BANK 2) (LEAN SHIFT MONITORING)

VG33E

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

- Start engine and warm it up to normal operating temperature. 1)
- Set voltmeter probes between ECM terminal 50 (bank 1 signal) or 51 (bank 2 signal) and engine ground.
- Check one of the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is over 0.1V at least one time.
- If NG, go to "Diagnostic Procedure", EC-792.

Diagnostic Procedure

NGEC0621 RETIGHTEN GROUND SCREWS 1. Turn ignition switch OFF. 2. Loosen and retighten engine ground screws. Engine ground LEC518 GO TO 2.

RETIGHTEN HEATED OXYGEN SENSOR 1 (FRONT) Loosen and retighten corresponding heated oxygen sensor 1 (front). **Tightening torque:** 40 - 60 N·m (4.1 - 6.1 kg-m, 30 - 44 ft-lb) GO TO 3.

VG33E

Diagnostic Procedure (Cont'd)

3 CLEAR THE SEL	F-LEARNING DATA]
With CONSULT-II		G
2. Select "SELF-LEARNIN	it up to normal operating temperature. IG CONT" in "WORK SUPPORT" mode with CONSULT-II. control coefficient by touching "CLEAR".	MA
	WORK SUPPORT SELF-LEARNING CONT CLEAR 100 %	
	B2 100 %	LC
		EC
Run engine for at least	SEF968Y	FE
	171 or P0174 detected?	GL
 Turn ignition switch OF Disconnect mass air flo 	w sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.	Mī
5. Make sure 1st trip DTC6. Erase the 1st trip DTC	nect mass air flow sensor harness connector. P0100 is displayed. memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION",	AT
EC-666. 7. Make sure DTC P0000 8. Run engine for at least	10 minutes at idle speed.	TF
Is the 1st trip DTC P0 Is it difficult to start e	171 or P0174 detected? ngine?	PD
	Yes or No	
Yes	▶ Perform trouble diagnosis for DTC P0171, P0174. Refer to EC-884.	
No	▶ GO TO 4.]
	·	- Sii

BR

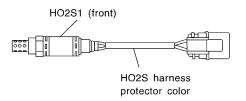
ST

RS

BT

HA

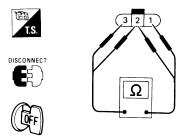
SC


EL

Diagnostic Procedure (Cont'd)

VG33E

CHECK HEATED OXYGEN SENSOR 1 HEATER (FRONT)


- 1. Stop engine.
- 2. Check heated oxygen sensor 1 (front) harness protector color.

HO2S1 (front) (bank 1): Black HO2S1 (front) (bank 2): Blue

SEF505Y

3. Check resistance between HO2S1 (front) terminals 3 and 1.

AEC158A

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

Check continuity between HO2S1 (front) terminals 2 and 1, 3 and 2.
 Continuity should not exist.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK	or	NG
----	----	----

OK (With CONSULT-II)	>	GO TO 5.
OK (Without CONSULT-II)	•	GO TO 6.
NG	•	Replace malfunctioning heated oxygen sensor 1 (front).

VG33E

GI

MA

EC

FE

CL

MT

AT

TF

PD

Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 1 (FRONT)

(P) With CONSULT-II

5

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 3. Hold engine speed at 2,000 rpm under no load during the following steps.
- 4. Touch "RECORD" on CONSULT-II screen.

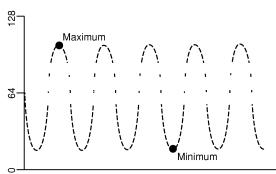
DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
COOLAN TEMP/S	XXX °C	
HO2S1 (B1)	xxx v	
HO2S2 (B2)	xxx v	

SEF967Y

- 5. Check the following.
- "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below.

Bank 1
cycle | 1 | 2 | 3 | 4 | 5 |
HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

Bank 2


cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R

R means HO2S1 MNTR (B1)/(B2) indicates RICH L means HO2S1 MNTR (B1)/(B2) indicates LEAN

SEF647Y

- "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Trigger	ENG SPEED	HO2S1 (B1)
	rpm	٧
XXX	XXX	XXX

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

CAUTION:

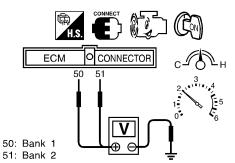
- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK	or	NG
----	----	----

OK •	GO TO 7.
NG •	Replace malfunctioning heated oxygen sensor 1 (front).

HA

SC


VG33E

Diagnostic Procedure (Cont'd)

6 CHECK FRONT HEATED OXYGEN SENSOR 1 (FRONT)

Without CONSULT-II

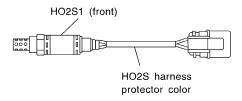
- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 50 (bank 1 signal) or 51 (bank 2 signal) and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

1 time: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$ 2 times: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$

SEF796Z

CAUTION:


Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK •	GO TO 8.
NG ►	GO TO 7.

7 REPLACE HEATED OXYGEN SENSOR 1 (FRONT)

- 1. Turn ignition switch "OFF".
- 2. Check heated oxygen sensor 1 (front) harness protector color.

HO2S1 (front) (bank 1): Black HO2S1 (front) (bank 2): Blue

SEF505Y

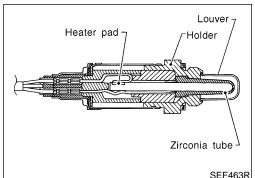
CAUTION:

Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Replace malfunctioning heated oxygen sensor 1 (front).

VG33E

Diagnostic Procedure (Cont'd)


8 CHECK HO2S1 (FRO	NT) SHIELD CIRCUIT FOR OPEN AND SHORT	ī
Turn ignition switch OFF. Disconnect joint connector.		
 For circuit, refer to "DTC P0130, P0150 HEATED OXYGEN SENSOR 1 (FRONT) (BANK 1)/(BANK 2) (CIRCUIT)", EC-778. Check the following. 		
 Continuity between joint con Joint connector (Refer to <i>EL-244</i>, "HARNES 	S LAYOUT".)	EM
Continuity should exist. 5. Also check harness for short 6. Then reconnect joint connect	t to power.	LG
	OK or NG	
OK •	GO TO 9.	EC
NG •	Repair open circuit or short to power in harness or connectors.	
		FE
9 CHECK INTERMITTE		<u> </u>
	IS FOR INTERMITTENT INCIDENT", EC-732. 0, P0150 HEATED OXYGEN SENSOR (FRONT) (BANK 1)/(BANK 2) (CIRCUIT)", EC-778.	GL
•	INSPECTION END	I MT
		AT TF
		PD
		AX
		SU
		BR
		ST
		RS
		BT
		HA
		SC

EL

VG33E

Component Description

Rich -

Component Description

The heated oxygen sensor 1 (front) is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal airfuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

Ideal ratio

Mixture ratio

Lean

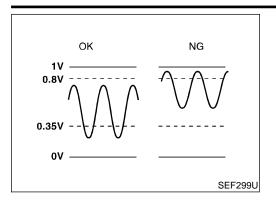
SEF288D

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1) HO2S1 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value

NGEC0624

Specification data are reference values and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
50	В	Heated oxygen sensor 1 (front) (Bank 1)	[Engine is running]	
51	G	Heated oxygen sensor 1 (front) (Bank 2)	After warming up to normal operating tempera- ture and engine speed is 2,000 rpm	0.5 ms SEF002V

VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

To judge the malfunction, the output from the heated oxygen sensor 1 (front) is monitored to determine whether the "rich" output is sufficiently high. The "lean" output is sufficiently low. When both the outputs are shifting to the rich side, the malfunction will be detected.

Malfunction is detected when the maximum and minimum voltages from the sensor are beyond the specified voltages.

POSSIBLE CAUSE

- Heated oxygen sensor 1 (front)
- Fuel pressure
- Injectors
- Heated oxygen sensor 1 heater (front)

NGEC0625

G[

MA

EM

NGEC0625S01

LC

EC

FE

CL

MT

AT

TF

PD

AX

SU

BR

ST

RS

BT

HA

SC

EL

 $\mathbb{D}\mathbb{X}$

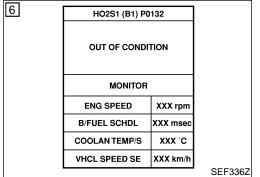
DTC Confirmation Procedure

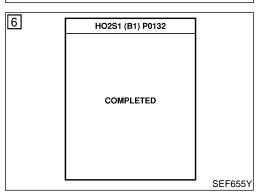
VG33E

=NGEC0626

DTC Confirmation Procedure

CAUTION:


Always drive vehicle at a safe speed.


NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above -10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

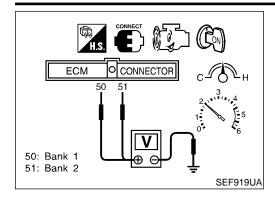
(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Stop engine and wait at least 5 seconds.
- Turn ignition switch ON and select "HO2S1 (B1)/(B2) P0132/ P0152" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine and let it idle for at least 3.5 minutes.

NOTE:

Never raise engine speed above 3,200 rpm after this step. If the engine speed limit is exceeded, return to step 5.

6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)


END SPEED	1,200 - 3,100 rpm
Vehicle speed	Less than 100 km/h (62 MPH)
B/FUEL SCHDL	2.8 - 11 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-801.

VG33E

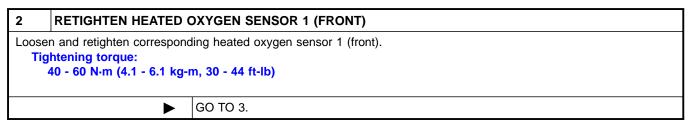
Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 50 (bank 1 signal) or 51 (bank 2 signal) and engine ground.
- Check one of the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is below 0.8V at least one time.
- The minimum voltage is below 0.35V at least one time.
- If NG, go to "Diagnostic Procedure", EC-801.


MA

EM

LC

Diagnostic Procedure

RETIGHTEN GROUND SCREWS 1. Turn ignition switch OFF. 2. Loosen and retighten engine ground screws. Engine ground LEC518 GO TO 2.

EC

FE

GL MT

AT

PD

TF

AX

ST

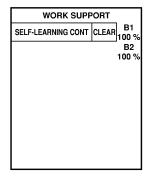
BT

HA

SC

EL

Diagnostic Procedure (Cont'd)


VG33E

CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

3

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

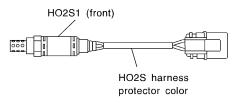
SEF968Y

4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC P0100 is displayed.
- Erase the 1st trip DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-666.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.


Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine?

Yes or No

Yes	Perform trouble diagnosis for DTC P0172, P0175. Refer to EC-893.
No •	GO TO 4.

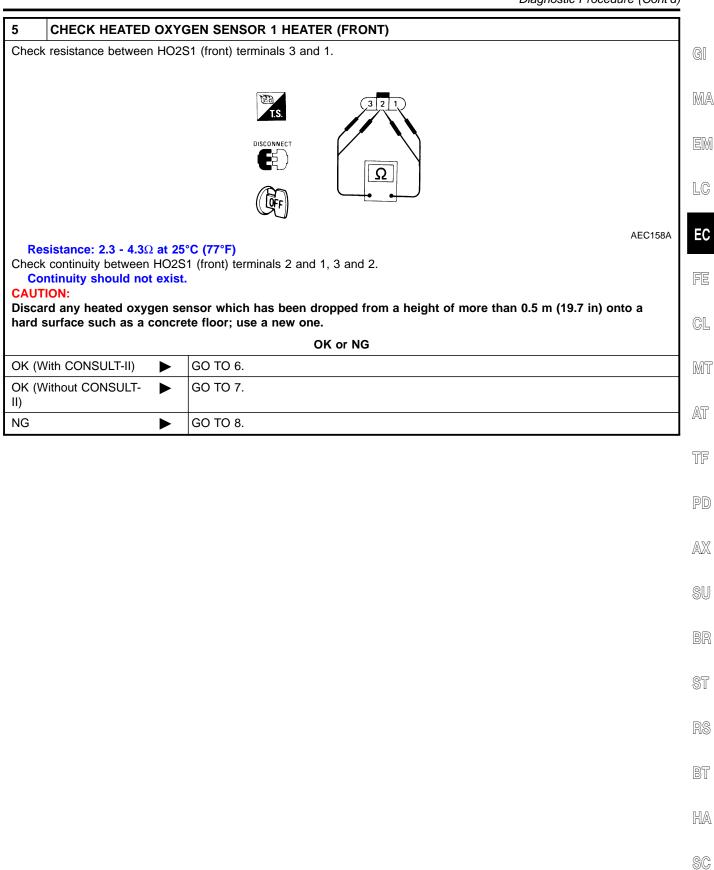
4 CHECK HO2S 1 (FRONT) CONNECTOR FOR WATER

- 1. Turn ignition switch "OFF".
- 2. Check heated oxygen sensor 1 (front) harness protector color.

HO2S1 (front) (bank 1): Black HO2S1 (front) (bank 2): Blue

SEF505Y

- 3. Disconnect heated oxygen sensor 1 (front) harness connector.
- 4. Check connectors for water.


Water should not exist.

OK or NG

OK •	GO TO 5.
NG ▶	Repair or replace harness or connectors.

VG33E

Diagnostic Procedure (Cont'd)

EL

Diagnostic Procedure (Cont'd)

VG33E

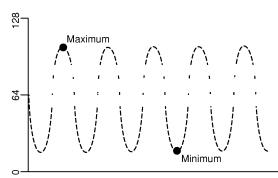
CHECK HEATED OXYGEN SENSOR 1 (FRONT)

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 3. Hold engine speed at 2,000 rpm under no load during the following steps.
- 4. Touch "RECORD" on CONSULT-II screen.

DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED COOLAN TEMP/S HO2S1 (B1) HO2S2 (B2)	XXX rpm XXX °C XXX V XXX V	

SEF967Y


- 5. Check the following.
- "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below.

R means HO2S1 MNTR (B1)/(B2) indicates RICH L means HO2S1 MNTR (B1)/(B2) indicates LEAN

SFF647Y

- "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Trigger	ENG	HO2S1 (B1)	
	SPEED		
	rpm	V	
XXX	XXX	XXX	

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK	or	NG
----	----	----

OK ▶	GO TO 9.
NG ►	GO TO 8.

VG33E

GI

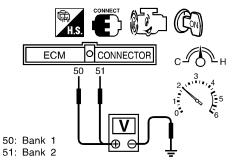
MA

LC

EC

FE

GL


MT

Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 1 (FRONT)

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 50 (bank 1 signal) or 51 (bank 2 signal) and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

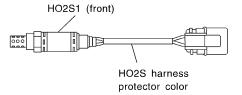
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

1 time: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$

2 times: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$

SEF796Z

CAUTION:


Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK ▶	GO TO 8.
NG ▶	GO TO 8.

REPLACE HEATED OXYGEN SENSOR 1 (FRONT)

- 1. Turn ignition switch "OFF".
- 2. Check heated oxygen sensor 1 (front) harness protector color.

HO2S1 (front) (bank 1): Black HO2S1 (front) (bank 2): Blue

CAUTION:

Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Replace malfunctioning heated oxygen sensor 1 (front).

AT

TF

PD

SEF505Y

BT

HA

SC

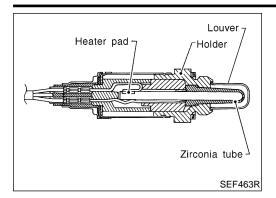
VG33E

Diagnostic Procedure (Cont'd)

OK

NG

9 CHECK HO2S1 (FRONT) SHIELD CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch OFF. 2. Disconnect joint connector. For circuit, refer to "DTC P0130, P0150 FRONT HEATED OXYGEN SENSOR (FRONT) (BANK 1)/(BANK 2) (CIRCUIT)", EC-778. 3. Check the following. • Continuity between joint connector terminal 1 and ground • Joint connector (Refer to EL-244, "HARNESS LAYOUT".) Continuity should exist. 4. Also check harness for short to power. 5. Then reconnect joint connector. OK or NG


GO TO 10.

10	CHECK INTERMITTENT INCIDENT		
For cir	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732. For circuit, refer to "DTC P0130, P0150 FRONT HEATED OXYGEN SENSOR (FRONT) (BANK 1)/(BANK 2) (CIRCUIT)", EC-778.		
	► INSPECTION END		

Repair open circuit or short to power in harness or connectors.

VG33E

Component Description

Component Description

The heated oxygen sensor 1 (front) is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal airfuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

MA

EC

GL

MT

AT

CONSULT-II Reference Value in Data Monitor Mode

NGEC0630

Specification data are reference values.

Ideal ratio Mixture ratio Lean

SEF288D

MONITOR ITEM	CONDITION		SPECIFICATION	TF
HO2S1 (B1) HO2S1 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V	P[
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.	AD

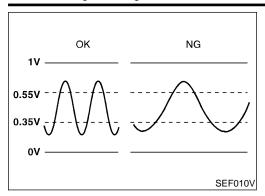
ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NGEC0631

 \geq

Output voltage V_s


Rich

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

	<u> </u>			<i>,</i>		@F
	TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	ST RS
	50	В	Heated oxygen sensor 1 (front) (Bank 1)	[Engine is running]	0 - Approximately 1.0V	BT
_	51	G	Heated oxygen sensor 1 (front) (Bank 2)	After warming up to normal operating tempera- ture and engine speed is 2,000 rpm	0.5 ms	HA
_					SEF002V	SC

VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

To judge the malfunction of heated oxygen sensor 1 (front), this diagnosis measures response time of heated oxygen sensor 1 (front) signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and heated oxygen sensor 1 (front) temperature index. Judgment is based on whether the compensated time (heated oxygen sensor 1 (front) cycling time index) is inordinately long or not.

Malfunction is detected when the response of the voltage signal from the sensor takes more than the specified time.

POSSIBLE CAUSE

NGEC0632501

- Harness or connectors (The sensor circuit is open or shorted.)
- Heated oxygen sensor 1 (front)
- Heated oxygen sensor 1 heater (front)
- Fuel pressure
- Injectors
- Intake air leaks
- Exhaust gas leaks
- PCV valve
- Mass air flow sensor

DTC Confirmation Procedure

NGEC0633

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above –10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

VG33E

GI

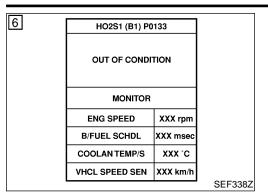
MA

LC

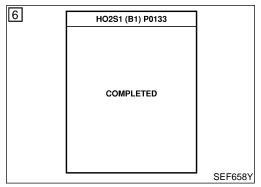
EC

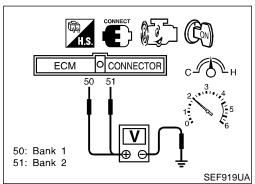
FE

GL


MT

TF


PD


AX

DTC Confirmation Procedure (Cont'd)

6		1	
	HO2S1 (B1) PO	0133	
	TESTING		
	MONITOR		
	ENG SPEED	XXX rpm	
	B/FUEL SCHDL	XXX msec	
	COOLAN TEMP/S	xxx °c	
	VHCL SPEED SEN	XXX km/h	
			SEF339Z

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 5 seconds.
- Turn ignition switch ON and select "HO2S1 (B1)/(B2) P0133/ P0153" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine and let it idle for at least 3.5 minutes.

NOTE:

Never raise engine speed above 3,200 rpm after this step. If the engine speed limit is exceeded, return to step 5.

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 40 to 50 seconds.)

ENG SPEED	1,800 - 3,300 rpm
Vehicle speed	More than 80 km/h (50 MPH)
B/FUEL SCHDL	2.8 - 13 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-812.

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 50 (bank 1 signal) or 51 (bank 2 signal) and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.

1 time: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V 2 times: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V

4) If NG, go to "Diagnostic Procedure", EC-812.

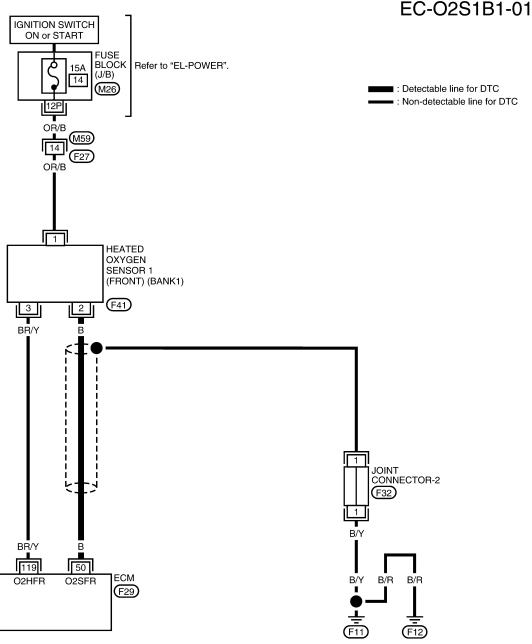
EL

BT

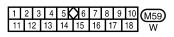
HA

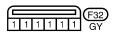
SC

Wiring Diagram

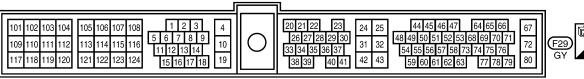

RIGHT BANK

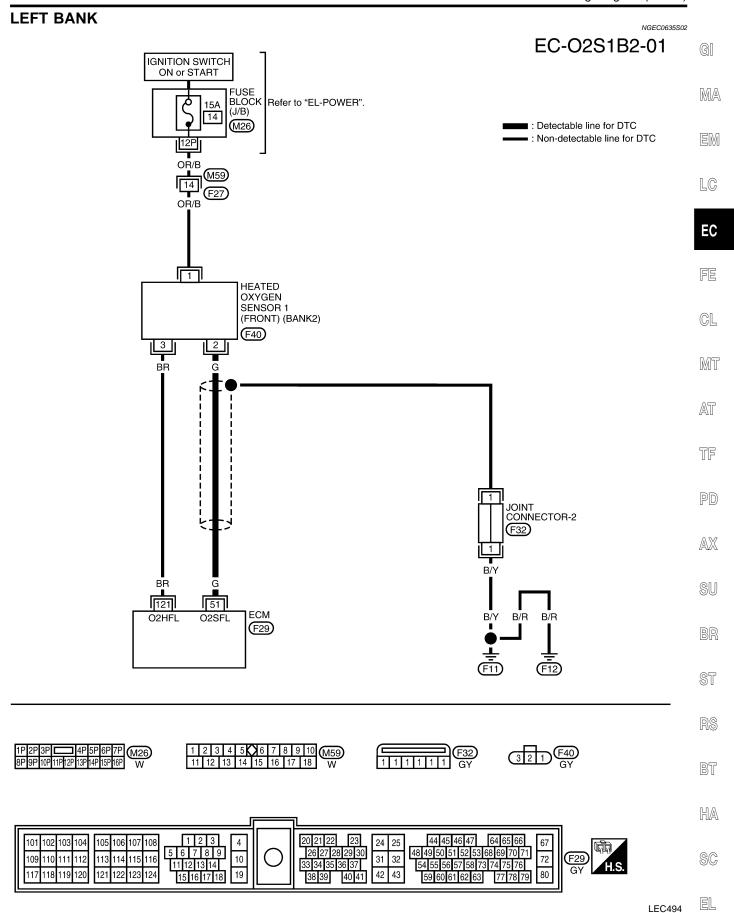
VG33E


NGEC0635


Wiring Diagram

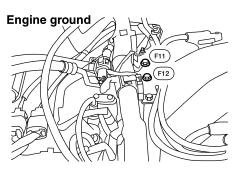
NGEC0635S01





VG33E

Wiring Diagram (Cont'd)


Diagnostic Procedure

VG33E

NGEC0636

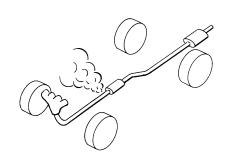
Diagnostic Procedure

RETIGHTEN GROUND SCREWS
 Turn ignition switch OFF.
 Loosen and retighten engine ground screws.

LEC518

2 RETIGHTEN HEATED OXYGEN SENSOR 1 (FRONT)

Loosen and retighten corresponding heated oxygen sensor 1 (front).


Tightening torque:

40 - 60 N·m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)

► GO TO 3.

3 CHECK FOR EXHAUST AIR LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust air leak before three way catalyst.

SEF099P

OK or NG

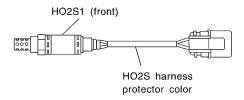
OK		GO TO 4.
NG		Repair or replace.

4	4 CHECK FOR INTAKE AIR LEAK	
Listen for an intake air leak after the mass air flow sensor.		
OK or NG		
OK	>	GO TO 5.
NG	•	Repair or replace.

VG33E

Diagnostic Procedure (Cont'd)

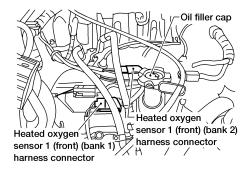
5 CLEAR	THE SELF-LEA	ARNING DATA
With CONS		
1. Start engine	and warm it up t	o normal operating temperature. "NT" in "WORK SUPPORT" mode with CONSULT-II.
		I coefficient by touching "CLEAR".
	9	
		WORK SUPPORT SELF-LEARNING CONT CLEAR 100 9/
		B2
		100 %
		CETOCON C
Run engine f	for at least 10 mi	nutes at idle speed.
Is the 1st tri	ip DTC P0171, P	P0172, P0174 or P0175 detected?
Is it difficult	to start engine	?
Without CO		
. Start engine . Turn ignition		o normal operating temperature.
•		sor harness connector, and restart and run engine for at least 5 seconds at idle speed.
		nass air flow sensor harness connector.
	st trip DTC P010	io is displayed. ory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION",
EC-666.	·	
	TC P0000 is dis	
		nutes at idle speed. P0172, P0174 or P0175 detected?
	to start engine	
		Yes or No
′es	•	Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to EC-884,
		893.
0	>	GO TO 6.
CHECK	HO2S1 (FRON	T) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT
·		


SC

EL

Diagnostic Procedure (Cont'd)

VG33E


- 1. Turn ignition switch OFF.
- 2. Check heated oxygen sensor 1 (front) harness protector.

HO2S1 (front) (bank 1): Black HO2S1 (front) (bank 2): Blue

SEF505Y

3. Disconnect corresponding heated oxygen sensor 1 (front) harness connector.

WEC545

- 4. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
DIC	ECM	Sensor	Dank
P0133	50	2	Bank 1 (Right)
P0153	51	2	Bank 2 (Left)

SEF817Z

Continuity should exist.

6. Check harness continuity between ECM terminal or HO2S1 terminal and ground as follows. Refer to Wiring Diagram.

DTC	Terminals		Bank	
DIC	ECMorsensor	Ground	Dank	
P0133	50 or 2	Ground	Bank 1 (Right)	
P0153	51 or 2	Ground	Bank 2 (Left)	

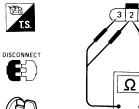
SEF818Z

Continuity should not exist.

7. Also check harness for short to power.

OK or NG

OK ► GO TO 7.


VG33E

Diagnostic Procedure (Cont'd)

NG Repair open circuit or short to ground or short to power in harness or connectors.

CHECK HEATED OXYGEN SENSOR 1 HEATER (FRONT)

Check resistance between HO2S1 (front) terminals 3 and 1.

AEC158A

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

Check continuity between HO2S1 (front) terminals 2 and 1, 3 and 2.

Continuity should not exist.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK •	GO TO 8.
NG ▶	GO TO 12.

GI

MA

LC

EC

GL

MT

AT

TF

PD

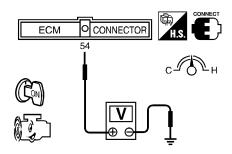
SU

ST

BT

HA

SC

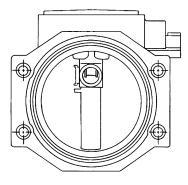

EL

Diagnostic Procedure (Cont'd)

VG33E

CHECK MASS AIR FLOW SENSOR

- 1. Reconnect harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 54 (Mass air flow sensor signal) and ground.



SEF747U

Condition	Voltage V
Ignition switch "ON" (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.0 - 1.7
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.7 - 2.3
Idle to about 4,000 rpm*	1.0 - 1.7 to Approx. 4.0

MTBL0227

- 4. If the voltage is out of specification, disconnect mass air flow sensor harness connector and connect it again. Then repeat above check.
- 5. If NG, remove mass air flow sensor from air duct. Check hot wire for damage or dust.

SEF030T

OK or NG

OK •	GO TO 9.
NG ►	Replace mass air flow sensor.

VG33E

Diagnostic Procedure (Cont'd)

9	CHECK PCV VALV		
		emove PCV valve ventilation hose from PCV valve; make sure that a hissing noise will be it and a strong vacuum should be felt immediately when a finger is placed over valve inlet.	GI
			M
			EN
		1-600 M	LC
		SEC137A	EC
		OK or NG	FE
OK (V	Vith CONSULT-II)	▶ GO TO 10.	
OK (V II)	Vithout CONSULT-	► GO TO 11.	GL
NG	NG Replace PCV valve.		
		<u> </u>	Mī

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

Diagnostic Procedure (Cont'd)

VG33E

10 CHECK HEATED OXYGEN SENSOR 1 (FRONT)

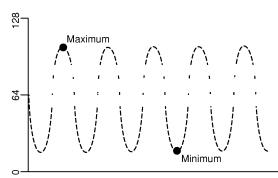
(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 3. Hold engine speed at 2,000 rpm under no load during the following steps.
- 4. Touch "RECORD" on CONSULT-II screen.

DATA MONITOR		
NO DTC		
XXX rpm XXX °C XXX V XXX V		

SEF967Y

- 5. Check the following.
- "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below.


Bank 2
cycle | 1 | 2 | 3 | 4 | 5 |
HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R

R means HO2S1 MNTR (B1)/(B2) indicates RICH L means HO2S1 MNTR (B1)/(B2) indicates LEAN

SFF647Y

- "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Trigger	ENG	HO2S1
	SPEED	(B1)
	rpm	V
XXX	XXX	XXX

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK	>	GO TO 12.
NG		Replace malfunctioning heated oxygen sensor 1 (front).

VG33E

GI

MA

LC

EC

FE

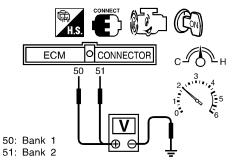
GL

MT

AT

TF

PD


Diagnostic Procedure (Cont'd)

CHECK FRONT HEATED OXYGEN SENSOR 1 (FRONT)

Without CONSULT-II

11

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 50 (bank 1 signal) or 51 (bank 2 signal) and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

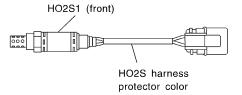
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

SEF796Z

CAUTION:


Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK ►	GO TO 13.
NG ►	GO TO 12.

12 REPLACE HEATED OXYGEN SENSOR 1 (FRONT)

- 1. Turn ignition switch "OFF".
- 2. Check heated oxygen sensor 1 (front) harness protector color.

HO2S1 (front) (bank 1): Black HO2S1 (front) (bank 2): Blue

SEF505Y

CAUTION:

Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Replace malfunctioning heated oxygen sensor 1 (front).

BT

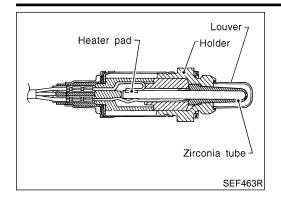
HA

SC

EL

 \mathbb{N}

VG33E


Diagnostic Procedure (Cont'd)

13	3 CHECK HO2S1 (FRONT) SHIELD CIRCUIT FOR OPEN AND SHORT		
1. Tu	rn ignition switch OFF.		
2. Di:	sconnect joint connector.		
3. Ch	neck the following.		
 Co 	ntinuity between joint conne	ctor terminal 1 and ground	
Joi	nt connector		
(Re	(Refer to "HARNESS LAYOUT", <i>EL-9</i> .)		
	Continuity should exist.		
	4. Also check harness for short to power.		
5. Th	5. Then reconnect joint connector.		
	OK or NG		
OK		GO TO 14.	
NG	NG Repair open circuit or short to power in harness or connectors.		

14	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
	► INSPECTION END		

VG33E

Component Description

Component Description

The heated oxygen sensor 1 (front) is placed into the front tube. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal airfuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

MA

LC

EC

GL

MT

AT

TF

PD

AX

CONSULT-II Reference Value in Data Monitor Mode

NGEC0638

Specification data are reference values.

Ideal ratio Mixture ratio Lean

SEF288D

MONITOR ITEM	CONDITION		SPECIFICATION	
HO2S1 (B1) HO2S1 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V	
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.	L

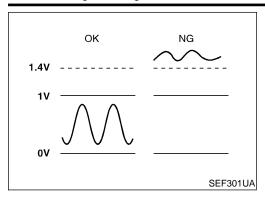
ECM Terminals and Reference Value

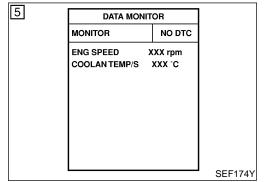
NGEC0639

Specification data are reference values and are measured between each terminal and ground.

 \geq

Output voltage V_s


Rich


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

		1			ST
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	RS
		Heated oxygen sensor		0 - Approximately 1.0V	110
50	В	1 (front) (Bank 1)	[Engine is running]	(V) 2 1	BT
51	G	Heated oxygen sensor 1 (front) (Bank 2)	After warming up to normal operating tempera- ture and engine speed is 2,000 rpm	0.5 ms	HA
				SEF002V	SC

VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

NGEC064

To judge the malfunction, the diagnosis checks that the heated oxygen sensor 1 (front) output is not inordinately high.

Malfunction is detected when an excessively high voltage from the sensor is sent to ECM.

POSSIBLE CAUSE

NGEC0640S01

- Harness or connectors (The sensor circuit is open or shorted.)
- Heated oxygen sensor 1 (front)

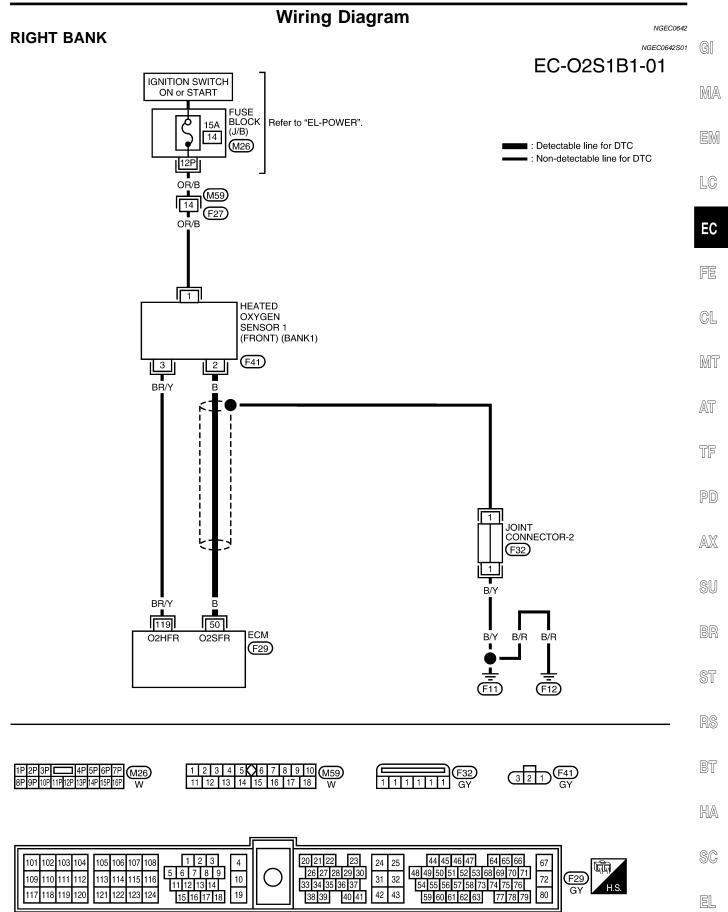
DTC Confirmation Procedure

NGEC0641

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II


- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 5) Restart engine and let it idle for 25 seconds.
- 6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-825.

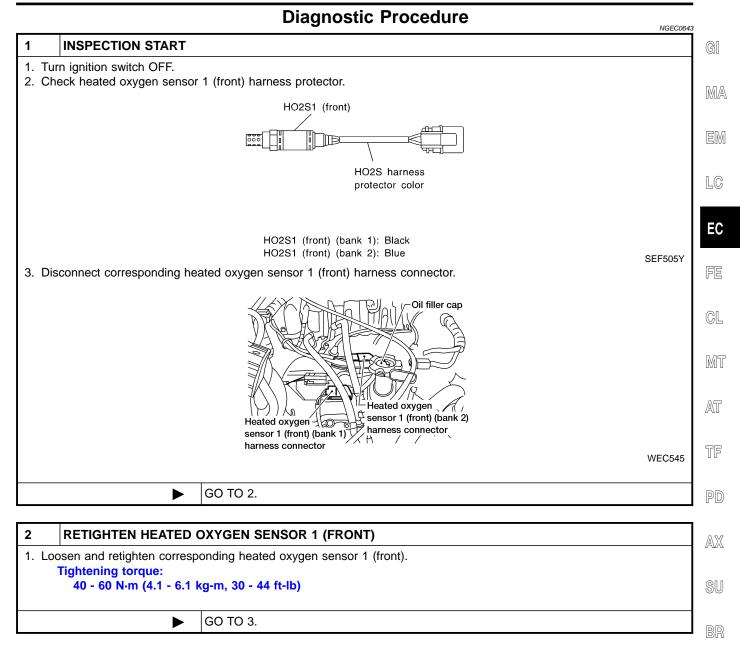
With GST

Follow the procedure "With CONSULT-II".

 When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

VG33E
Wiring Diagram

Wiring Diagram (Cont'd)


VG33E

LEFT BANK NGEC0642S02 EC-O2S1B2-01 IGNITION SWITCH ON or START FUSE BLOCK Refer to "EL-POWER". (J/B) 14 (M26) : Detectable line for DTC : Non-detectable line for DTC OR/B M59 (F27) OR/B 1 HEATED OXYGEN SENSOR 1 (FRONT) (BANK2) (F40) 2 JOINT CONNECTOR-2 (F32) ВR 121 51 ECM B/R O2HFL O2SFL B/R (F29) (F11) (F12) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 W 1P 2P 3P 4P 5P 6P 7P M26 8P 9P 10P 11P 12P 13P 14P 15P 16P W 102 103 104 105 106 107 108 5 6 7 8 9 26 27 28 29 30 33 34 35 36 37 48 49 50 51 52 53 68 69 70 71 109 110 111 112 113 114 115 116 10 31 32 121 122 123 124 42 43

LEC494

VG33E

Diagnostic Procedure

 \mathbb{N}

ST

BT

HA

SC

Diagnostic Procedure (Cont'd)

VG33E

3 CHECK HO2S1 (FRONT) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal and HO2S1 (front) terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
DIC	ECM	Sensor	Dank
P0134	50	2	Bank 1 (Right)
P0154	51	2	Bank 2 (Left)

SEF819Z

Continuity should exist.

3. Check harness continuity between ECM terminal or HO2S1 (front) terminal and ground as follows. Refer to Wiring Diagram.

DTC	Termin	Donle	
DIC	ECMorsensor	Ground	Bank
P0134	50 or 2	Ground	Bank 1 (Right)
P0154	51 or 2	Ground	Bank 2 (Left)

SEF820Z

Continuity should not exist.

4. Also check harness for short to power.

OK or NG

OK	>	GO TO 4.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK FRONT HO2S1 (FRONT) CONNECTOR FOR WATER 1. Disconnect heated oxygen sensor 1 (front) harness connector. 2. Check connectors for water. Water should not exist. OK or NG OK (With CONSULT-II) GO TO 5. OK (Without CONSULT- GO TO 6. II) NG Repair or replace harness or connectors.

VG33E

GI

MA

EC

FE

CL

MT

AT

TF

PD

Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 1 (FRONT)

(P) With CONSULT-II

5

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 3. Hold engine speed at 2,000 rpm under no load during the following steps.
- 4. Touch "RECORD" on CONSULT-II screen.

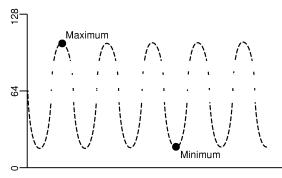
DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
COOLAN TEMP/S	XXX °C	
HO2S1 (B1)	xxx v	
HO2S2 (B2)	xxx v	

SEF967Y

- 5. Check the following.
- "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown left:

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R-L-R

Bank 2


cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R

R means HO2S1 MNTR (B1)/(B2) indicates RICH L means HO2S1 MNTR (B1)/(B2) indicates LEAN

SEF647Y

- "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Trigger	ENG SPEED	HO2S1 (B1)
	rpm	V
XXX	XXX	XXX

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

CAUTION:

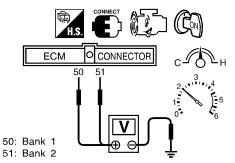
- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK	or	NG
----	----	----

OK •	GO TO 8.
NG ►	GO TO 7.

HA

SC


VG33E

Diagnostic Procedure (Cont'd)

6 CHECK HEATED OXYGEN SENSOR 1 (FRONT)

Without CONSULT-II

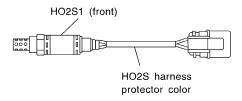
- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 50 (bank 1 signal) or 51 (bank 2 signal) and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

1 time: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$ 2 times: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$

SEF796Z

CAUTION:


Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK ►	GO TO 8.
NG ▶	GO TO 7.

7 REPLACE HEATED OXYGEN SENSOR 1 (FRONT)

- 1. Turn ignition switch "OFF".
- 2. Check heated oxygen sensor 1 (front) harness protector color.

HO2S1 (front) (bank 1): Black HO2S1 (front) (bank 2): Blue

SEF505Y

CAUTION:

Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Replace malfunctioning heated oxygen sensor 1 (front).

8 CHECK INTERMITTENT INCIDENT

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.

► INSPECTION END

Description

SYSTEM DESCRIPTION

NGEC0644

NGEC0644S01

				CIII
Sensor	Input Signal to ECM	ECM func- tion	Actuator	MA
Camshaft position sensor	Engine speed	Heated oxygen sensor 1 heater (front) con- trol	Heated oxygen sensor 1 heaters (front)	EM

The ECM performs ON/OFF control of the heated oxygen sensor 1 heaters (front) corresponding to the engine speed.

OPERATION

Engine speed rpm	Heated oxygen sensor 1 heaters (front)
Above 3,200	OFF
Below 3,200	ON

EC

NGEC0644S02

CONSULT-II Reference Value in Data Monitor Mode

NGEC0645

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S1 HTR (B1)	• Engine speed: Below 3,200 rpm	ON
HO2S1 HTR (B2)	• Engine speed: Above 3,200 rpm	OFF

AT

TF

MT

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

SU

ST

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
110	Heated oxygen sensor 1 heater (front) (bank 1)	[Engine is running] • Engine speed is above 3,200 rpm	BATTERY VOLTAGE (11 - 14V)	
119		heater (front) (bank 1)	[Engine is running] • Engine speed is below 3,200 rpm	Approximately 0.4V
121 BR	DD.	Heated oxygen sensor 1	[Engine is running] • Engine speed is above 3,200 rpm	BATTERY VOLTAGE (11 - 14V)
	DK	heater (front) (bank 2)	ngine is running] Engine speed is below 3,200 rpm Approximately 0.4V	Approximately 0.4V

HA

BT

SC

EL

On Board Diagnosis Logic

VG33E

On Board Diagnosis Logic

NGEC0647

Malfunction is detected when the current amperage in the heated oxygen sensor 1 heater (front) circuit is out of the normal range. [An improper voltage drop signal is sent to ECM through the heated oxygen sensor 1 heater (front).]

POSSIBLE CAUSE

NGEC0647S01

- Harness or connectors
 [The heated oxygen sensor 1 heater (front) circuit is open or shorted.]
- Heated oxygen sensor 1 heater (front)

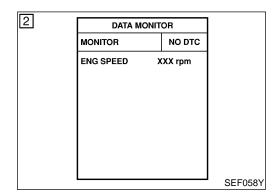
DTC Confirmation Procedure

NGEC0648

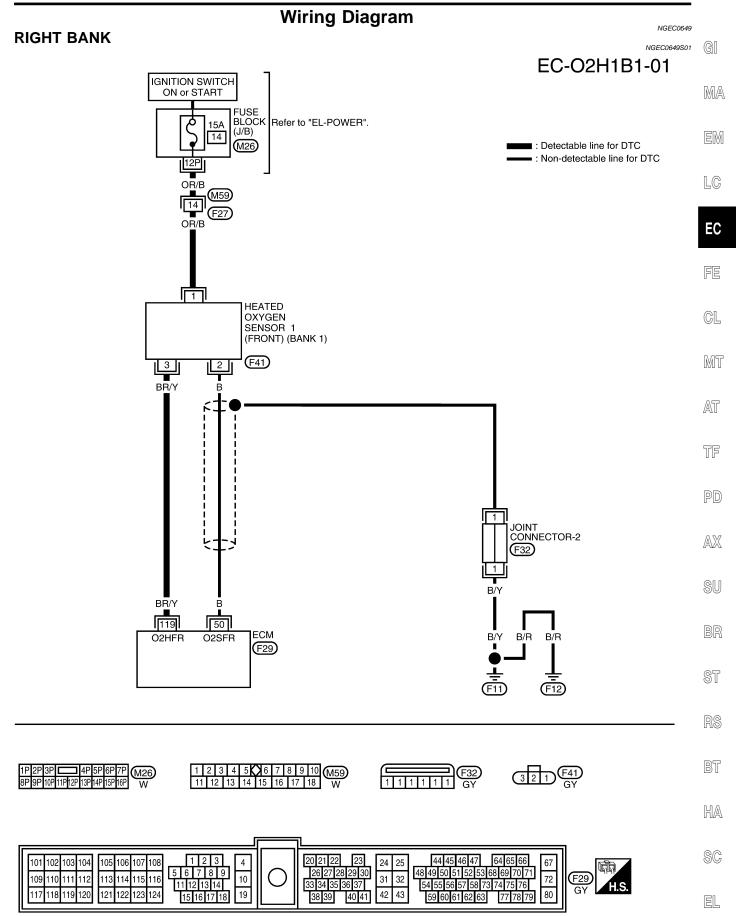
NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:


Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

(P) With CONSULT-II


- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and run it for at least 6 seconds at idle speed.
- 3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-833.

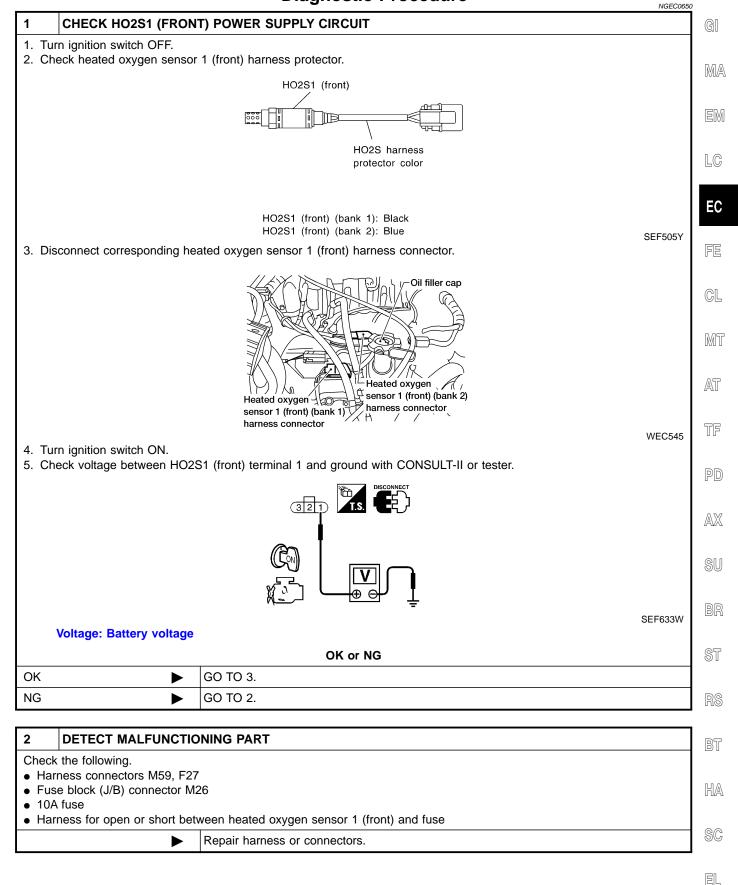
With GST

- 1) Start engine and run it for at least 6 seconds at idle speed.
- Turn ignition switch OFF, wait at least 5 seconds and then turn ON.
- 3) Start engine and run it for at 6 seconds at idle speed.
- 4) Select "MODE 3" with GST.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-833.
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

VG33E
Wiring Diagram

Wiring Diagram (Cont'd)

VG33E


LEFT BANK NGEC0649S02 EC-O2H1B2-01 **IGNITION SWITCH** ON or START FUSE BLOCK (J/B) Refer to "EL-POWER". 15A 14 (M₂₆) ■ : Detectable line for DTC : Non-detectable line for DTC OR/B M59 (F27) OR/B **HEATED** OXYGEN SENSOR 1 (FRONT) (BANK 2) (F40) 2 BR JOINT CONNECTOR-2 121 51 ECM B/R O2HFL O2SFL B/R (F29) (F11) (F12) 1 2 3 4 5 6 7 8 9 10 M59 4P 5P 6P 7P M26 2P 13P 14P 15P 16P W 102 103 104 105 106 107 108 5 6 7 8 9 26 27 28 29 30 48 49 50 51 52 53 68 69 70 71 110 111 113 114 115 116 10 31 32 109 112 72 42 43

LEC496

VG33E

Diagnostic Procedure

VG33E

Diagnostic Procedure (Cont'd)

3 CHECK HO2S1 HEATER (FRONT) OUTPUT CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal and HO2S1 (front) terminal as follows. Refer to Wiring Diagram.

DTC	Terminals		Bank	
DIC	ECM	Sensor	Dalik	
P0135	119	3	Bank 1 (Right)	
P0155	121	3	Bank 2 (Left)	

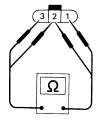
SEF821Z

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.


4 CHECK HEATED OXYGEN SENSOR 1 HEATER (FRONT)

Check resistance between HO2S1 (front) terminals 3 and 1.

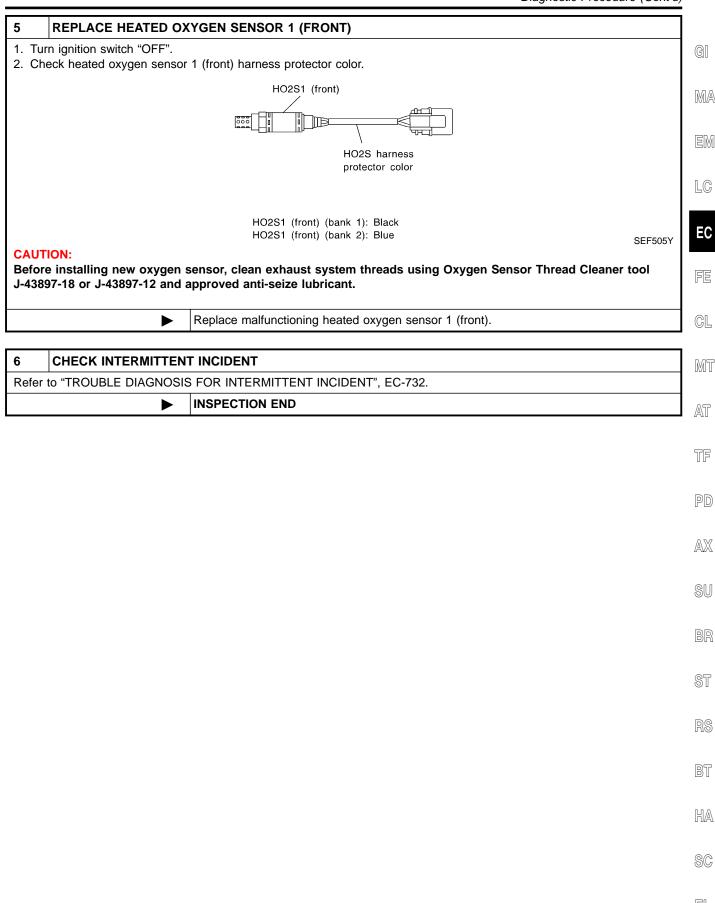
AEC158A

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

Check continuity between HO2S1 (front) terminals 2 and 1, 3 and 2.

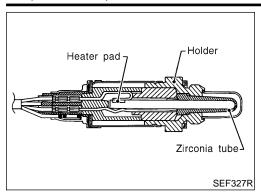
Continuity should not exist.

CAUTION:


- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK or NG

OK ►	GO TO 6.
NG ▶	GO TO 5.


VG33E

Diagnostic Procedure (Cont'd)

VG33E

Component Description

Component Description

NGEC0651

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

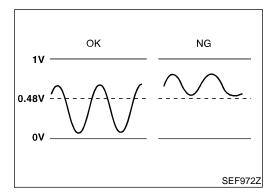
CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0652

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1) HO2S2 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	Engine: After warming up	Revving engine from idle up to 2,000 rpm	LEAN ←→ RICH

ECM Terminals and Reference Value


NGFC0653

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
56	OR	Heated oxygen sensor 2 (rear) (bank 1)	[Engine is running]	0 - Approximately 1.0V
57	Y	Heated oxygen sensor 2 (rear) (bank 2)	Warm-up condition Revving engine from idle up to 2,000 rpm	

On Board Diagnosis Logic

The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether the minimum voltage of sensor is sufficiently low during the various driving condition such as fuel-cut.

Malfunction is detected when the minimum voltage from the sensor is not reached to the specified voltage.

VG33E

On Board Diagnosis Logic (Cont'd)

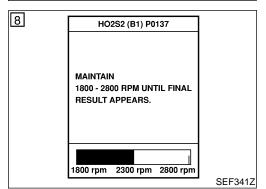
POSSIBLE CAUSE

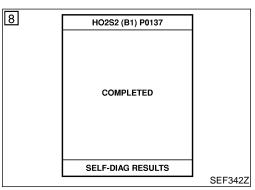
Harness or connectors (The sensor circuit is open or shorted.)

Heated oxygen sensor 2 (rear)

Fuel pressure

Injectors


NGEC0654S01


GI

MA

LC

6 HO2S2 (B1) P0137 WAIT OPEN ENGINE HOOD. KEEP ENGINE BUNNING AT IDLE SPEED FOR MAXIMUM OF 5 MINUTES. SEF340Z

DTC Confirmation Procedure

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Open engine hood before conducting following procedure With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Make sure that "COOLANT TEMP/S" is more than 70°C (158°F).
- Select "HO2S2 (B1)/(B2) P0137/P0157" of "HO2S2" in DTC WORK SUPPORT" mode with CONSULT.
- Start engine and follow the instructions of CONSULT-II.
- Make sure that "OK" is displayed after touching "SELF_DIAG RESULTS".

If NG is displayed, refer to "DIAGNOSTIC PROCEDURE", AX EC-841.

If "CAN NOT BE DIAGNOSED" is displayed, perform the fol-

- Stop engine and cool down "COOLANT TEMP/SE" to less than 70°C (158°F).
- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II. c)
- Start engine.
- Perform from step 6) again when the "COOLANT TEMP/S" reaches to 70°C (158°F)

EC

GL

MT

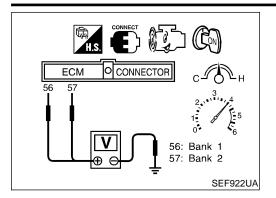
AT

TF

PD

SU

ST


BT

HA

SC

VG33E

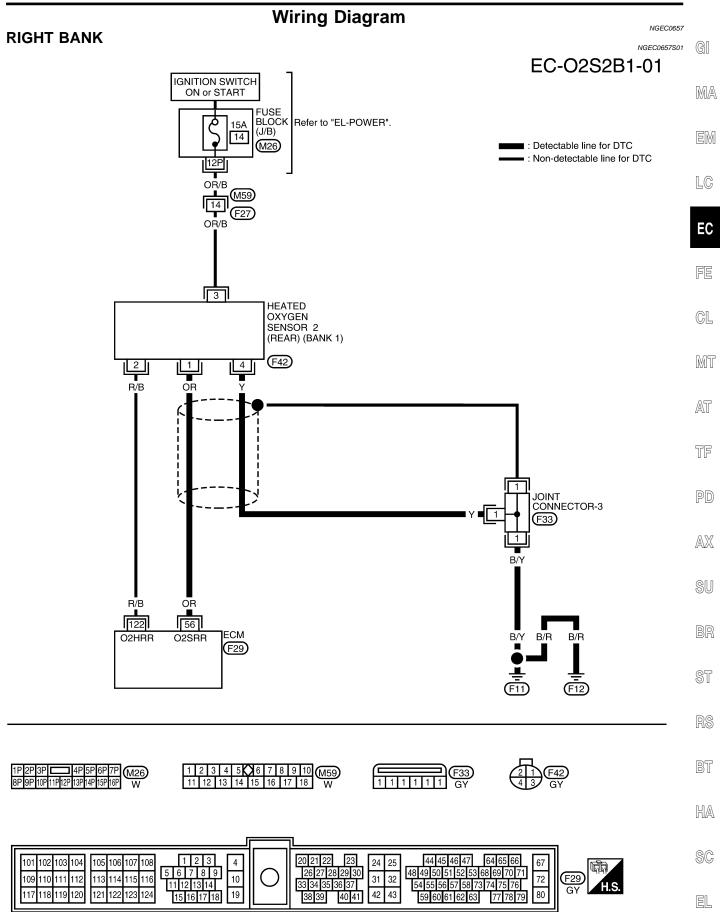
Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 2 (rear) circuit. During this check, a 1st trip DTC might not be confirmed.

CAUTION:

Always drive vehicle at a safe speed.


- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeter probes between ECM terminal 56 (bank 1 signal) or 57 (bank 2 signal) and engine ground.
- 4) Check the voltage when racing up to 4,000 rpm under no load at least 10 times.

(depress and release accelerator pedal as soon as possible)
The voltage should be below 0.48V at least once during this procedure.

If the voltage can be confirmed in step 4, step 5 is not necessary.

- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), "D" position with "O/D" OFF (A/T). The voltage should be below 0.48V at least once during this procedure.
- 6) If NG, go to "Diagnostic Procedure", EC-841.

VG33E Wiring Diagram

LEC497

VG33E

Wiring Diagram (Cont'd) **LEFT BANK** NGEC0657S02 EC-02S2B2-01 **IGNITION SWITCH** ON or START 15A FUSE BLOCK (J/B) Refer to "EL-POWER". 14 (M₂₆) ■ : Detectable line for DTC : Non-detectable line for DTC OR/B M59 (F27) OR/B 3 HEATED OXYGEN SENSOR 2 (REAR) (BANK 2) (F39) BR JOINT CONNECTOR-3 (F33) 1 R/Y 57 123 ECM B/Y B/R O2HRL O2SRL B/R (F29) (F11) (F12) 1 2 3 4 5 6 7 8 9 10 M59 4P 5P 6P 7P M26 2P 13P 14P 15P 16P W 102 103 104 105 106 107 108 26 27 28 29 30 48 49 50 51 52 53 68 69 70 71 5 6 7 8 9

LEC498

72

31 32

42 43

110 111

109

113

114

112

115 116

10

VG33E

NGEC0658

GI

MA

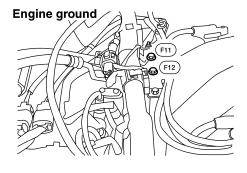
EC

MT

AT

TF

PD

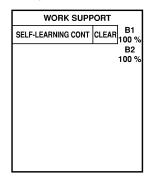

Diagnostic Procedure

1 RETIGHTEN GROUND SCREWS

1. Turn ignition switch OFF.

2. Loosen and retighten engine ground screws.

LEC518


SEF968Y

► GO TO 2.

2 CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine?

Without CONSULT-II

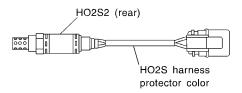
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC P0100 is displayed.
- Erase the 1st trip DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-666.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine?

Υ	es >	Perform trouble diagnosis for DTC P0172, P0175. Refer to EC-894.
Ν	lo •	GO TO 3.

3 CHECK HO2S2 (REAR) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

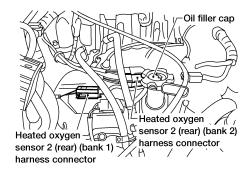
 $\mathbb{D}\mathbb{X}$


HA

SC

Diagnostic Procedure (Cont'd)

VG33E


- 1. Turn ignition switch "OFF".
- 2. Check heated oxygen sensor 2 (rear) harness protector color.

HO2S2 (rear) (bank 1): White or Gray HO2S2 (rear) (bank 2): Red or Red/Brown

SEF372Z

3. Disconnect corresponding heated oxygen sensor 2 (rear) harness connector.

WEC546

- 4. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal and HO2S2 (rear) terminal as follows. Refer to Wiring Diagram.

DTC	Terminals		Book	
DIC	ECM	Sensor	Bank	
P0137	56	1	Bank 1 (Right)	
P0157	57	1	Bank 2 (Left)	

SEF822Z

Continuity should exist.

6. Check harness continuity between ECM terminal or HO2S2 (rear) terminal and ground as follows. Refer to Wiring Diagram.

DTC	Termin	Donk	
	ECMorsensor	Ground	Bank
P0137	56 or 1	Ground	Bank 1 (Right)
P0157	57 or 1	Ground	Bank 2 (Left)

SEF823Z

Continuity should not exist.

7. Also check harness for short to power.

OK or NG

OK ► GO TO 4.

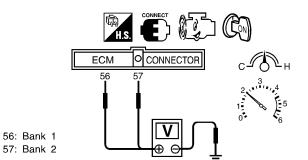
VG33E

Diagnostic Procedure (Cont'd)

NG Repair open circuit or short to ground or short to power in harness or connectors. GI CHECK HO2S GROUND CIRCUIT FOR OPEN AND SHORT 1. Check harness continuity between HO2S2 (rear) terminal 4 and engine ground. MA Refer to Wiring Diagram. Continuity should exist. 2. Also check harness for short to power. OK or NG OK (With CONSULT-II) GO TO 6. OK (Without CONSULT-GO TO 7. NG GO TO 5. EC 5 **DETECT MALFUNCTIONING PART** Check the following. • Joint connector-3 GL Harness for open between heated oxygen sensor 2 (rear) and engine ground. Repair open circuit or short to power in harness or connectors. MT 6 **CHECK HEATED OXYGEN SENSOR 2 (REAR)** (P) With CONSULT-II AT 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. 2. Stop vehicle with engine running. 3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-TF 4. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%. PD (Reference data) The voltage should be above 0.62V at least one time. 64 The voltage should be below 0.48V at least one time. SEF989RD "HO2S2 (B1)/(B2)" should be above 0.62V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)/(B2)" should be below 0.48V at least once when the "FUEL INJECTION" is -25%. **CAUTION:** Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one. OK or NG OK GO TO 9. NG **GO TO 8.** HA

SC

VG33E


Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 2 (REAR)

Without CONSULT-II

7

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 56 (bank 1 signal) or 57 (bank 2 signal) and engine ground.
- 4. Check the voltage when racing up to 4,000 rpm under no load at least 10 times. (depress and release accelerator pedal as soon as possible)

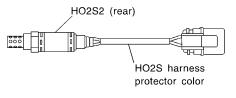
The voltage should be above 0.62V at least once during this procedure.

SEF797ZB

5. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), "D" position with "O/D" OFF (A/T).

The voltage should be below 0.48V at least once during this procedure.

CAUTION:


Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK ▶	GO TO 9.
NG ►	GO TO 8.

REPLACE HEATED OXYGEN SENSOR 2 (REAR)

- 1. Stop vehicle and turn ignition switch OFF.
- 2. Check heated oxygen sensor 2 (rear) harness protector color.

HO2S2 (rear) (bank 1): White or Gray HO2S2 (rear) (bank 2): Red or Red/Brown

SEF372Z

CAUTION:

Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Replace malfunctioning heated oxygen sensor 2 (rear).

VG33E

GI

MA

EM

LC

EC

FE

Diagnostic Procedure (Cont'd)

9 CHECK	HO2S2 (REA	R) SHIELD CIRCUIT FOR OPEN AND SHORT	
1. Turn ignition	switch OFF.		
2. Disconnect jo	oint connector-	3.	
3. Check the fo	llowing.		
,	,	nnector terminal 1 and ground	
 Joint connect 			
`	244 , "HARNES	SS LAYOUT".)	
Continuity s			
4. Also check h		·	
5. Then reconn	ect joint conne	Ctor-3.	
		OK or NG	
OK		GO TO 10.	
NG		Repair open circuit or short to power in harness or connectors.	

10	CHECK INTERMITTENT INCIDENT			
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.			
	► INSPECTION END			

MT

CL

AT

PD

TF

 $\mathbb{A}\mathbb{X}$

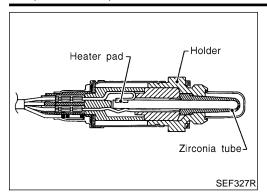
SU

BR

ST

RS

BT


HA

SC

EL

VG33E

Component Description

Component Description

NGEC0659

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

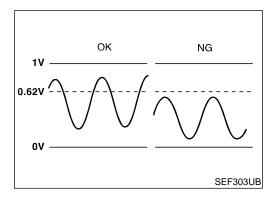
CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0660

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1) HO2S2 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	Engine: After warming up	Revving engine from idle up to 2,000 rpm	LEAN ←→ RICH

ECM Terminals and Reference Value


NGFC0661

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
56	OR	Heated oxygen sensor 2 (rear) (bank 1)	[Engine is running]	0 - Approximately 1.0V	
57	Υ	Heated oxygen sensor 2 (rear) (bank 2)	Warm-up condition Revving engine from idle up to 2,000 rpm	0 - Approximately 1.0V	

On Board Diagnosis Logic

The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether the maximum voltage of the sensor is sufficiently high during the various driving condition such as fuel-cut.

Malfunction is detected when the maximum voltage from the sensor is not reached to the specified voltage.

VG33E

On Board Diagnosis Logic (Cont'd)

POSSIBLE CAUSE

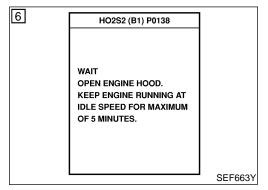
Harness or connectors (The sensor circuit is open or shorted.)

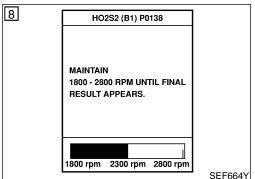
Heated oxygen sensor 2 (rear)

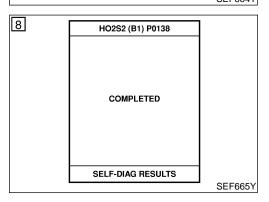
- Fuel pressure
- Injectors

NOTE:

Intake air leaks


NGEC0662S01


GI


MA

LC

EC

DTC Confirmation Procedure

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Open engine hood before conducting following procedure With CONSULT-II

GL

MT

AT

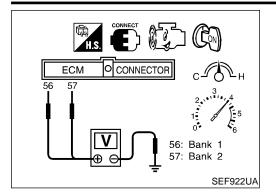
TF

PD

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Make sure that "COOLANT TEMP/S" is more than 70°C (158°F).
- Select "HO2S2 (B1)/(B2), P0138/P0158" of "HO2S2" in DTC WORK SUPPORT" mode with CONSULT-II.
- Start engine and follow the instructions of CONSULT-II.
- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If NG is displayed, refer to "DIAGNOSTIC PROCEDURE", AX EC-851.
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the fol-
- Stop engine and cool down "COOLANT TEMP/SE" to less than 70°C (158°F).
- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II. c)
- Start engine.
- Perform from step 6) again when the "COOLANT TEMP/S" reaches to 70°C (158°F)

SU

ST


BT

HA

SC

VG33E

Overall Function Check

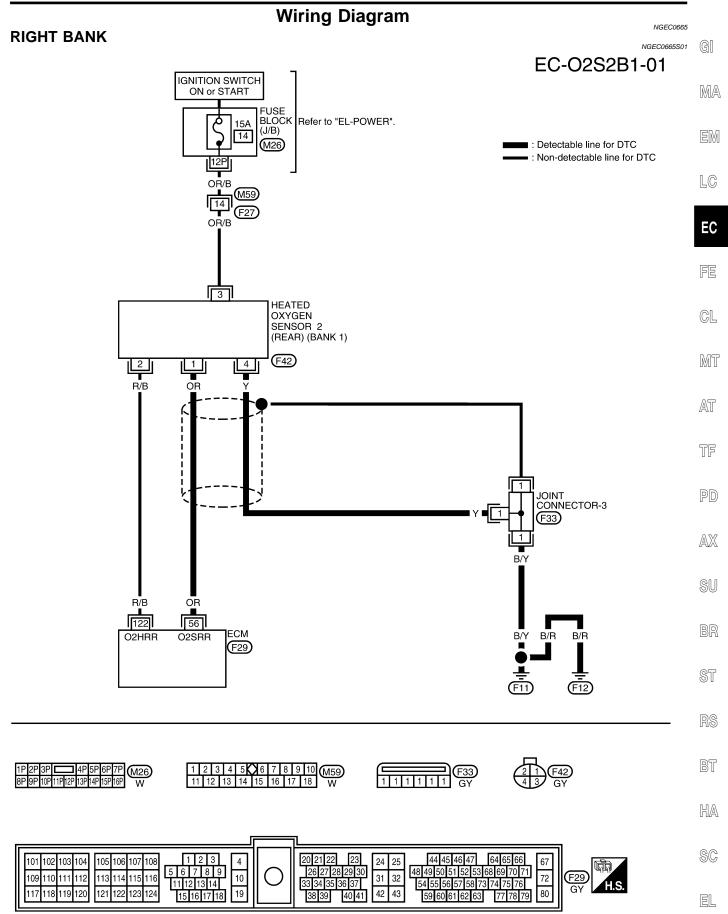
Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 2 (rear) circuit. During this check, a 1st trip DTC might not be confirmed.

CAUTION:

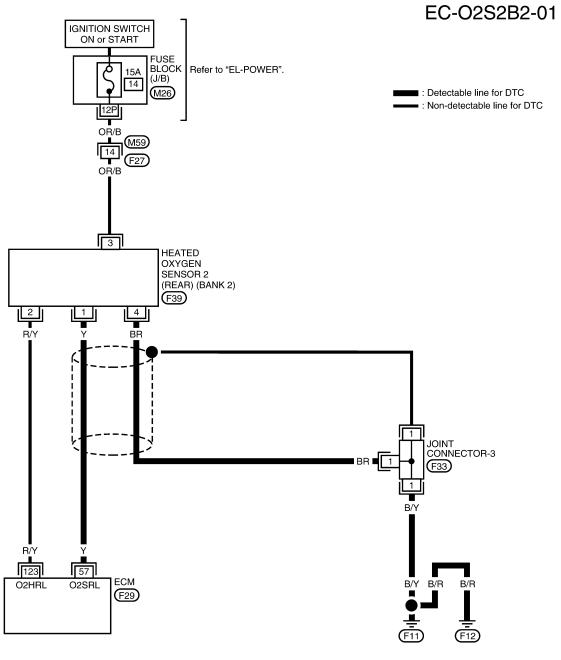
Always drive vehicle at a safe speed.

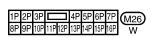
⊗ Without CONSULT-II

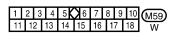

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeter probes between ECM terminal 56 (bank 1 signal) or 57 (bank 2 signal) and engine ground.
- Check the voltage when racing up to 4,000 rpm under no load at least 10 times.
 (depress and release accelerator pedal as soon as possible)

The voltage should be above 0.62V at least once during this procedure.

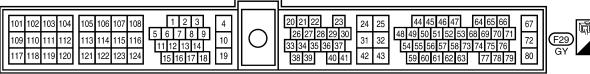
If the voltage can be confirmed in step 4, step 5 is not necessary.


- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), "D" position with "O/D" OFF (A/T). The voltage should be above 0.62V at least once during this procedure.
- 6) If NG, go to "Diagnostic Procedure", EC-851.


VG33E
Wiring Diagram


VG33E

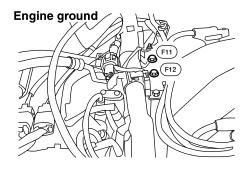

LEFT BANK NGEC0665S02



Wiring Diagram (Cont'd)

LEC498

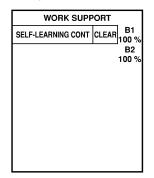
VG33E


NGEC0666

Diagnostic Procedure

RETIGHTEN GROUND SCREWS
 Turn ignition switch OFF.

2. Loosen and retighten engine ground screws.


LEC518

► GO TO 2.

2 CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC P0100 is displayed.
- Erase the 1st trip DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-666.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine?

Yes	or	N	0
-----	----	---	---

Yes	erform trouble diagnosis for DTC P0171, P0174. Refer to EC-885.	
No •	GO TO 3.	

GI

MA

L(<u>C</u>

EC

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

SEF968Y

91

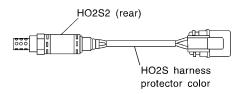
RS

>==

BT

HA

_ SC


ĘL

VG33E

Diagnostic Procedure (Cont'd)

CHECK HO2S2 (REAR) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check heated oxygen sensor 2 (rear) harness protector color.

HO2S2 (rear) (bank 1): White or Gray HO2S2 (rear) (bank 2): Red or Red/Brown

SEF372Z

- 3. Disconnect corresponding heated oxygen sensor 2 (rear) harness connector.
- 4. Disconnect ECM harness connector.
- 5. Check harness continuity between ECM terminal and HO2S2 (rear) terminal as follows. Refer to Wiring Diagram.

DTC	Term	Donk	
	ECM	Sensor	Bank
P0138	56	1	Bank 1 (Right)
P0158	57	1	Bank 2 (Left)

SEF824Z

Continuity should exist.

Check harness continuity between ECM terminal or HO2S2 (rear) terminal and ground as follows. Refer to Wiring Diagram.

DTC	Termin	Bank	
	ECMorsensor	Ground	Dank
P0138	56 or 1	Ground	Bank 1 (Right)
P0158	57 or 1	Ground	Bank 2 (Left)

SEF825Z

Continuity should not exist.

7. Also check harness for short to power.

OK or NG

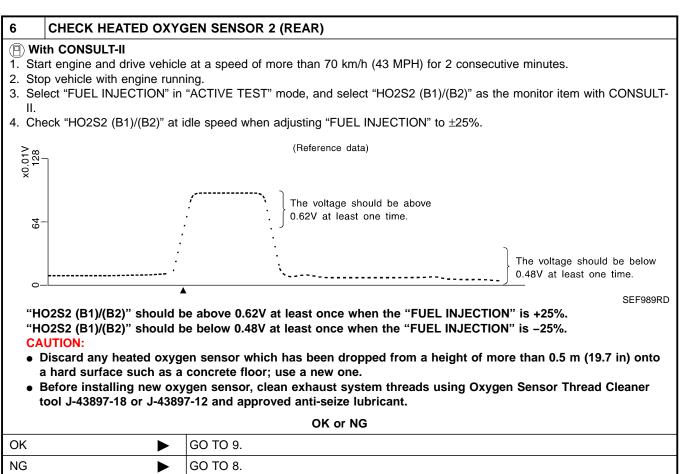
OK	>	GO TO 4.
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.

VG33E

EC

MT

AT


TF

PD

Diagnostic Procedure (Cont'd)

4 CHECK HO2S2 (REA	R) GROUND CIRCUIT FOR OPEN AND SHORT]
Check harness continuity be Refer to Wiring Diagram. Continuity should exist.	etween HO2S2 terminal 4 and engine ground.	GI
2. Also check harness for sho		MA
	OK or NG	
OK (With CONSULT-II)	GO TO 6.	
OK (Without CONSULT- II)	GO TO 7.	
NG ▶	GO TO 5.] LC

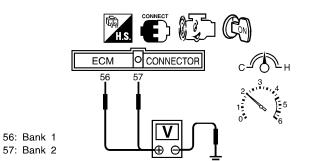
5 DETECT MALFUNCTIONING PART Check the following. • Joint connector-3 • Harness for open between heated oxygen sensor 2 (rear) and engine ground. Repair open circuit or short to power in harness or connectors.

HA	
SC	

BT

.....

VG33E


Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 2 (REAR)

Without CONSULT-II

7

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 56 (bank 1 signal) or 57 (bank 2 signal) and engine ground.
- 4. Check the voltage when racing up to 4,000 rpm under no load at least 10 times. (depress and release accelerator pedal as soon as possible)

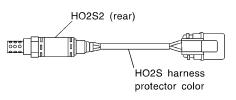
The voltage should be above 0.62V at least once during this procedure.

SFF7977B

5. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), "D" position with "O/D" OFF (A/T).

The voltage should be below 0.48V at least once during this procedure.

CAUTION:


Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK ▶	GO TO 9.
NG ►	GO TO 8.

REPLACE HEATED OXYGEN SENSOR 2 (REAR)

- 1. Stop vehicle and turn ignitioin switch OFF.
- 2. Check heated oxygen sensor 2 (rear) harness protector color.

HO2S2 (rear) (bank 1): White or Gray HO2S2 (rear) (bank 2): Red or Red/Brown

SEF372Z

CAUTION:

Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Replace malfunctioning heated oxygen sensor 2 (rear).

VG33E

Diagnostic Procedure (Cont'd)

() SHIELD CIRCUIT FOR OPEN AND SHORT	
witch OFF.		
nt connector.		
owing.		
veen joint conn	ector terminal 1 and ground	
r		
	Г", EL-9 .)	
4. Also check harness for short to power.		
ct joint connect	or.	
	OK or NG	
	GO TO 10.	
	Repair open circuit or short to power in harness or connectors.	
1	or RNESS LAYOUT should exist. arness for short	int connector. owing. ween joint connector terminal 1 and ground or RNESS LAYOUT", <i>EL-9</i> .) should exist. erness for short to power. ect joint connector. OK or NG

10	CHECK INTERMITTENT INCIDENT		
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
	► INSPECTION END		

MT

GI

MA

EM

LC

EC

FE

CL

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

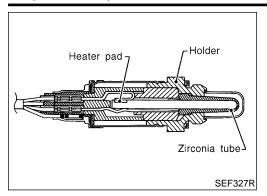
SU

BR

ST

RS

BT


HA

SC

EL

VG33E

Component Description

Component Description

otolyct moni

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

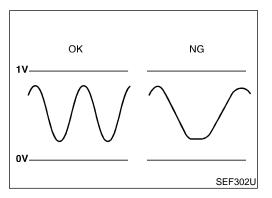
CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0668

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1) HO2S2 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	Engine: After warming up	Revving engine from idle up to 2,000 rpm	$LEAN \longleftrightarrow RICH$

ECM Terminals and Reference Value


NGFC0669

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
56	OR	Heated oxygen sensor 2 (rear) (bank 1)	[Engine is running]	0 - Approximately 1.0V
57	Υ	Heated oxygen sensor 2 (rear) (bank 2)	Revving engine from idle up to 2,000 rpm	

On Board Diagnosis Logic

The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether the switching response of the sensor's voltage is faster than specified during the various driving condition such as fuel-cut.

Malfunction is detected when it takes more time for the sensor to respond between rich and lean than the specified time.

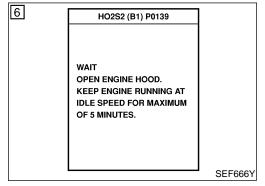
VG33E

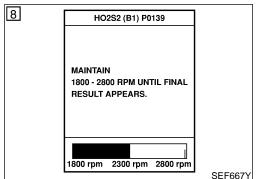
On Board Diagnosis Logic (Cont'd)

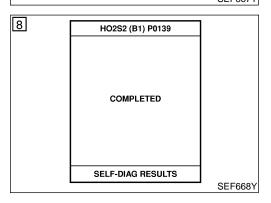
POSSIBLE CAUSE

Harness or connectors (The sensor circuit is open or shorted.)

Heated oxygen sensor 2 (rear)


- Fuel pressure
- Injectors
- Intake air leaks


NGEC0670S01


MA

GI

LC

DTC Confirmation Procedure

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Open engine hood before conducting following procedure With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Make sure that "COOLANT TEMP/S" is more than 70°C (158°F).
- Select "HO2S2 (B1)/(B2) P0139/P0159" of "HO2S2" in DTC WORK SUPPORT" mode with CONSULT-II.
- Start engine and follow the instructions of CONSULT-II.
- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If NG is displayed, refer to "DIAGNOSTIC PROCEDURE", AX EC-861.
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the fol-
- Stop engine and cool down "COOLANT TEMP/SE" to less than 70°C (158°F).
- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II. c)
- Start engine.
- Perform from step 6) again when the "COOLANT TEMP/S" reaches to 70°C (158°F)

EC

GL

MT

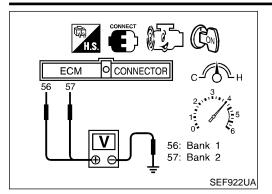
AT

TF

PD

SU

ST


BT

HA

SC

VG33E

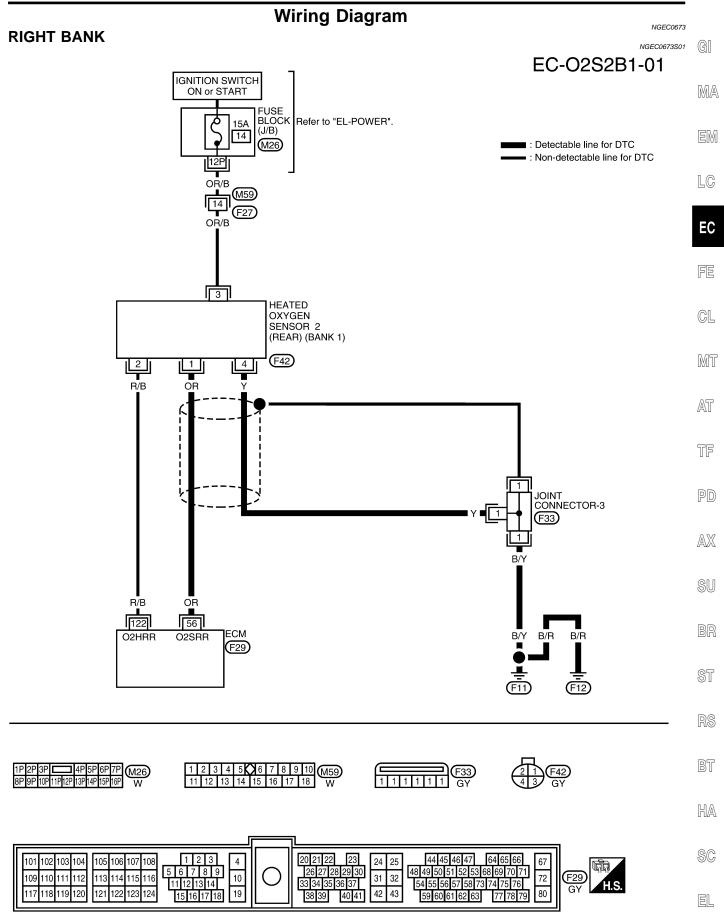
Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 2 (rear) circuit. During this check, a 1st trip DTC might not be confirmed.

CAUTION:

Always drive vehicle at a safe speed.



necessary.

- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeter probes between ECM terminal 56 (bank 1 signal) or 57 (bank 2 signal) and engine ground.
- 4) Check the voltage when racing up to 4,000 rpm under no load at least 10 times. (depress and release accelerator pedal as soon as possible) The voltage should change at more than 0.06V for 1 second during this procedure. If the voltage can be confirmed in step 4, step 5 is not
- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), "D" position with "O/D" OFF (A/T). The voltage should change at more than 0.06V for 1 sec-
- 6) If NG, go to "Diagnostic Procedure", EC-861.

ond during this procedure.

VG33E Wiring Diagram

Wiring Diagram (Cont'd)

VG33E

LEFT BANK NGEC0673S02 EC-02S2B2-01 **IGNITION SWITCH** ON or START FUSE BLOCK (J/B) Refer to "EL-POWER". 14 (M₂₆) ■ : Detectable line for DTC : Non-detectable line for DTC OR/B M59 (F27) OR/B 3 HEATED OXYGEN SENSOR 2 (REAR) (BANK 2) (F39) BR JOINT CONNECTOR-3 R/Y 57 123 ECM B/Y B/R O2HRL O2SRL B/R (F29) (F11) (F12) 1 2 3 4 5 6 7 8 9 10 M59 4P 5P 6P 7P M26 2P 13P 14P 15P 16P W 102 103 104 105 106 107 108 26 27 28 29 30 48 49 50 51 52 53 68 69 70 71 5 6 7 8 9 110 111 113 115 116 10 31 32 109 112 114 72 42 43

LEC498

VG33E

GI

MA

LC

EC

FE

GL

MT

AT

TF

PD

SEF968Y

Diagnostic Procedure

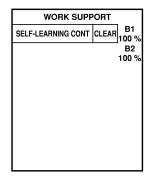
RETIGHTEN GROUND SCREWS

1. Turn ignition switch OFF.
2. Loosen and retighten engine ground screws.

Engine ground

F12

LEC518


2 CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.

GO TO 2.

3. Clear the self-learning control coefficient by touching "CLEAR".

4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC P0100 is displayed.
- Erase the 1st trip DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-666.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

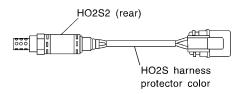
Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

Yes	Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to EC-884, 893.
No •	GO TO 3.

₽M.

BT

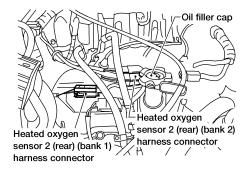
HA


\$0

VG33E

Diagnostic Procedure (Cont'd)

CHECK HO2S2 (REAR) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT


- 1. Turn ignition switch "OFF".
- 2. Check heated oxygen sensor 2 (rear) harness protector color.

HO2S2 (rear) (bank 1): White or Gray HO2S2 (rear) (bank 2): Red or Red/Brown

SEF372Z

3. Disconnect corresponding heated oxygen sensor 2 (rear) harness connector.

WEC546

- 4. Disconnect ECM harness connector.
- 5. Check harness continuity between ECM terminal and HO2S2 (rear) terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
DIC	ECM	Sensor	Dank
P0139	56	1	Bank 1 (Right)
P0159	57	1	Bank 2 (Left)

SEF826Z

Continuity should exist.

6. Check harness continuity between ECM terminal or HO2S2 (rear) terminal and ground as follows. Refer to Wiring Diagram.

DTC	Termin	Bank	
DIC	ECMorsensor	Ground	Dank
P0139	56 or 1	Ground	Bank 1 (Right)
P0159	57 or 1	Ground	Bank 2 (Left)

SEF827Z

Continuity should not exist.

7. Also check harness for short to power.

OK or NG

VG33E

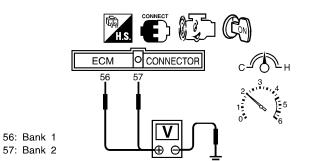
Diagnostic Procedure (Cont'd)

OK		GO TO 4.	
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.	
			_
) GROUND CIRCUIT FOR OPEN AND SHORT	_
 Check harness con Refer to Wiring Dia Continuity shot 	igram.	ween HO2S2 (rear) terminal 4 and engine ground.	
2. Also check harness		to power.	
		OK or NG	
OK (With CONSULT-II)) 🕨	GO TO 6.	
OK (Without CONSULT)	.T- >	GO TO 7.	
IG		GO TO 5.	
DETECT MAL	FUNCTIO	NING PART	
heck the following.			
Joint connector-3 Harness for open be	etween hea	ated oxygen sensor 2 (rear) and engine ground.	
		Repair open circuit or short to power in harness or connectors.	\dashv
CHECK HEAT	ED OXYG	GEN SENSOR 2 (REAR)	
With CONSULT-II . Start engine and dr	rive vehicle	e at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.	
With CONSULT-II . Start engine and dr . Stop vehicle with en	rive vehicle	e at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. ing.	
With CONSULT-II Start engine and dr Stop vehicle with er Select "FUEL INJECTIII.	rive vehicle ngine runn CTION" in	e at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. ing. "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSU	LT-
With CONSULT-II Start engine and dr Stop vehicle with end Select "FUEL INJECTIII.	rive vehicle ngine runn CTION" in	e at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. ing.	
With CONSULT-II Start engine and dr Stop vehicle with end Select "FUEL INJECTII. Check "HO2S2 (B1	rive vehicle ngine runn CTION" in	e at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. ing. "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSU	
With CONSULT-II Start engine and dr Stop vehicle with er Select "FUEL INJECTIII.	rive vehicle ngine runn CTION" in	e at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. ing. "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSU dle speed when adjusting "FUEL INJECTION" to ±25%.	
With CONSULT-II Start engine and dr Stop vehicle with er Select "FUEL INJECTII. Check "HO2S2 (B1	rive vehicle ngine runn CTION" in	e at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. ing. "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSU dle speed when adjusting "FUEL INJECTION" to ±25%. (Reference data)	
With CONSULT-II Start engine and dr Stop vehicle with er Select "FUEL INJECTII. Check "HO2S2 (B1	rive vehicle ngine runn CTION" in	e at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. ing. "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSU dle speed when adjusting "FUEL INJECTION" to ±25%.	LT-
With CONSULT-II Start engine and dr Stop vehicle with er Select "FUEL INJECTII. Check "HO2S2 (B1	rive vehicle ngine runn CTION" in	e at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. ing. "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSU dle speed when adjusting "FUEL INJECTION" to ±25%. (Reference data) The voltage should be above	LT-
With CONSULT-II Start engine and dr Stop vehicle with er Select "FUEL INJECTII. Check "HO2S2 (B1	rive vehicle ngine runn CTION" in	e at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. ing. "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSU dle speed when adjusting "FUEL INJECTION" to ±25%. (Reference data) The voltage should be above 0.62V at least one time.	
With CONSULT-II Start engine and dr Stop vehicle with er Select "FUEL INJECTII. Check "HO2S2 (B1	rive vehicle ngine runn CTION" in	e at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. ing. "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSU dle speed when adjusting "FUEL INJECTION" to ±25%. (Reference data) The voltage should be above 0.62V at least one time.	
With CONSULT-II Start engine and dr Stop vehicle with er Select "FUEL INJECTII. Check "HO2S2 (B1	rive vehicle ingine runn CTION" in 1)/(B2)" at i	at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. ing. "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSU dle speed when adjusting "FUEL INJECTION" to ±25%. (Reference data) The voltage should be above 0.62V at least one time. The voltage should be below 0.48V at least one time.	v
With CONSULT-II Start engine and dr Stop vehicle with end Select "FUEL INJECTIII. Check "HO2S2 (B1	rive vehicle ingine runn CTION" in I)/(B2)" at i	at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. ing. "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSU dle speed when adjusting "FUEL INJECTION" to ±25%. (Reference data) The voltage should be above 0.62V at least one time. The voltage should be below 0.48V at least one time. SEF98 The above 0.62V at least once when the "FUEL INJECTION" is +25%.	v
"HO2S2 (B1)/(B2)" "HO2S2 (B1)/(B2)" CAUTION:	rive vehicle ingine runn CTION" in I)/(B2)" at i	at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. ing. "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSU dle speed when adjusting "FUEL INJECTION" to ±25%. (Reference data) The voltage should be above 0.62V at least one time. The voltage should be below 0.48V at least one time. SEF98 The above 0.62V at least once when the "FUEL INJECTION" is +25%. The voltage should be below 0.48V at least once when the "FUEL INJECTION" is -25%.	v ĐRD
"HO2S2 (B1)/(B2)" "HO2S2 (B1)/(B2)" CAUTION: Discard any heate	rive vehicle ingine runn CTION" in I)/(B2)" at i	at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. ing. "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSU dle speed when adjusting "FUEL INJECTION" to ±25%. (Reference data) The voltage should be above 0.62V at least one time. The voltage should be below 0.48V at least one time. SEF98 The above 0.62V at least once when the "FUEL INJECTION" is +25%. The voltage should be below 0.48V at least once when the "FUEL INJECTION" is -25%. The voltage should be below 0.48V at least once when the "FUEL INJECTION" is -25%. The voltage should be below 0.48V at least once when the "FUEL INJECTION" is -25%. The voltage should be below 0.48V at least once when the "FUEL INJECTION" is -25%.	v ĐRD
With CONSULT-II 1. Start engine and dr 2. Stop vehicle with er 3. Select "FUEL INJECTIII. 4. Check "HO2S2 (B1) "HO2S2 (B1)/(B2)" "HO2S2 (B1)/(B2)" CAUTION: Discard any heate	rive vehicle ingine runn CTION" in I)/(B2)" at i	e at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. ing. "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSU dle speed when adjusting "FUEL INJECTION" to ±25%. (Reference data) The voltage should be above 0.62V at least one time. The voltage should be below 0.48V at least once when the "FUEL INJECTION" is +25%. The below 0.48V at least once when the "FUEL INJECTION" is -25%. Sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto crete floor; use a new one.	LT- PRD
With CONSULT-II 1. Start engine and dr 2. Stop vehicle with er 3. Select "FUEL INJECTIL. 4. Check "HO2S2 (B1) "HO2S2 (B1)/(B2)" "HO2S2 (B1)/(B2)" CAUTION: Discard any heate	rive vehicle ingine runn CTION" in I)/(B2)" at i	at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. ing. "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSU dle speed when adjusting "FUEL INJECTION" to ±25%. (Reference data) The voltage should be above 0.62V at least one time. The voltage should be below 0.48V at least one time. SEF98 The above 0.62V at least once when the "FUEL INJECTION" is +25%. The voltage should be below 0.48V at least once when the "FUEL INJECTION" is -25%. The voltage should be below 0.48V at least once when the "FUEL INJECTION" is -25%. The voltage should be below 0.48V at least once when the "FUEL INJECTION" is -25%. The voltage should be below 0.48V at least once when the "FUEL INJECTION" is -25%.	v ĐRD

SC

EL

VG33E


Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 2 (REAR)

Without CONSULT-II

7

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 56 (bank 1 signal) or 57 (bank 2 signal) and engine ground.
- 4. Check the voltage when racing up to 4,000 rpm under no load at least 10 times. (depress and release accelerator pedal as soon as possible)

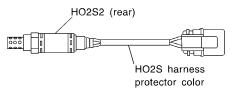
The voltage should be above 0.62V at least once during this procedure.

SEF797ZB

5. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), "D" position with "O/D" OFF (A/T).

The voltage should be below 0.48V at least once during this procedure.

CAUTION:


Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK ▶	GO TO 9.
NG ►	GO TO 8.

REPLACE HEATED OXYGEN SENSOR 2 (REAR)

- 1. Stop vehicle and turn ignitioin switch OFF.
- 2. Check heated oxygen sensor 2 (rear) harness protector color.

HO2S2 (rear) (bank 1): White or Gray HO2S2 (rear) (bank 2): Red or Red/Brown

SEF372Z

CAUTION:

Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Replace malfunctioning heated oxygen sensor 2 (rear).

DTC P0139, P0159 HEATED OXYGEN SENSOR 2 (REAR) (BANK 1)/(BANK 2) (RESPONSE MONITORING)

VG33E

GI

MA

EM

LC

EC

FE

CL

Diagnostic Procedure (Cont'd)

9 CHEC	CK HO2S2 (REAR) SHIELD CIRCUIT FOR OPEN AND SHORT	
1. Turn igniti	on switch OFF.		
2. Disconnec	t joint connector.		
3. Check the	following.		
 Continuity 	between joint conn	ector terminal 1 and ground	
 Joint conne 	ector		
(Refer to "I	HARNESS LAYOU	Γ", <i>EL-9</i> .)	
•	should exist.		
	k harness for short	·	
5. Then reco	nnect joint connect	or.	
		OK or NG	
		OK OF NO	
ОК	>	GO TO 10.	

10	CHECK INTERMITTENT	T INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
	► INSPECTION END		

MT

TF

AT

PD

 $\mathbb{A}\mathbb{X}$

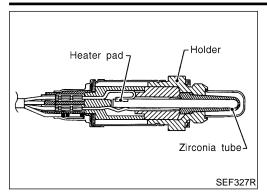
SU

BR

ST

RS

BT


HA

SC

EL

VG33E

Component Description

Component Description

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

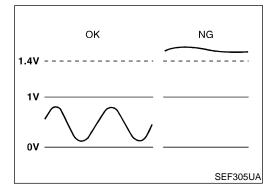
CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0676

MONITOR ITEM	CONI	DITION	SPECIFICATION
HO2S2 (B1) HO2S2 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	Engine: After warming up	Revving engine from idle up to 2,000 rpm	LEAN ←→ RICH

ECM Terminals and Reference Value


NGEC0677

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
56	OR	Heated oxygen sensor 2 (rear) (bank 1)	[Engine is running]	O Approximately 1.0V
57	Υ	Heated oxygen sensor 2 (rear) (bank 2)	Warm-up condition Revving engine from idle up to 2,000 rpm	0 - Approximately 1.0V

On Board Diagnosis Logic

The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether the voltage is unusually high during the various driving condition such as fuel-cut.

Malfunction is detected when an excessively high voltage from the sensor is sent to ECM.

VG33E

On Board Diagnosis Logic (Cont'd)

POSSIBLE CAUSE

 Harness or connectors (The sensor circuit is open or shorted.)

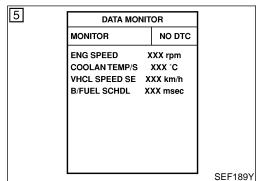
Heated oxygen sensor 2 (rear)

NGEC0678S01

GI

MA

LG


EC

GL

MT

AT

PD

DTC Confirmation Procedure

CAUTION:

NGEC067

Always drive vehicle at a safe speed.

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

 Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.

Start engine and drive vehicle at a speed of more than 70 km/h
 (43 MPH) for 2 consecutive minutes.

3) Stop vehicle with engine running.

Let engine idle for 1 minute.

 Maintain the following conditions for at least 5 consecutive seconds.

ENG SPEED Less than 3,600 rpm

COOLAN TEMP/S More than 70°C (158°F)

Selector lever Suitable position

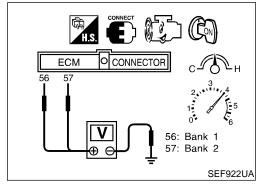
 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-871.

SU

@T

RS

HA


SC

Overall Function Check

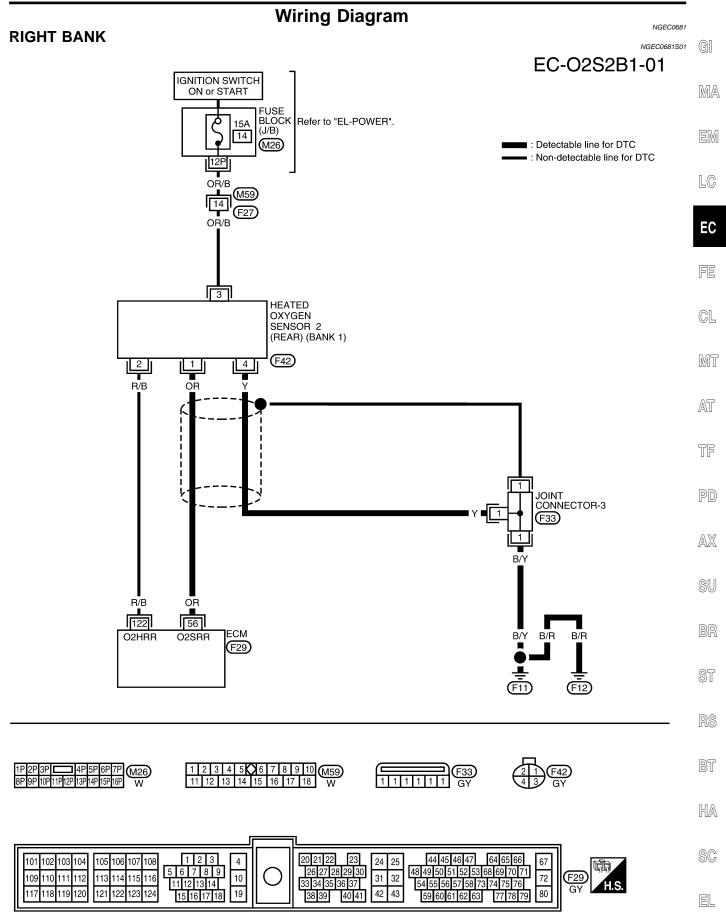
Use this procedure to check the overall function of the heated oxygen sensor 2 (rear) circuit. During this check, a 1st trip DTC might not be confirmed.

⊗ Without CONSULT-II

- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminal 56 (bank 1 signal) or 57 (bank 2 signal) and engine ground.
- 4) Check the voltage when racing up to 4,000 rpm under no load

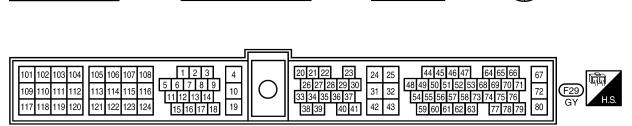
VG33E

Overall Function Check (Cont'd)


at least 10 times.

(depress and release accelerator pedal as soon as possible)

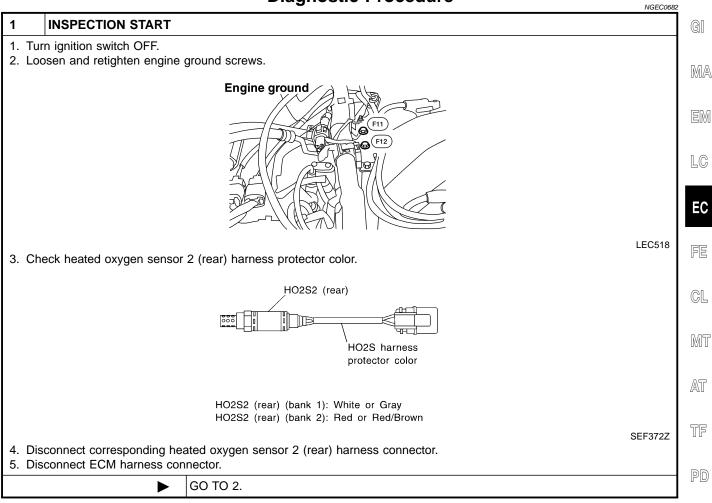
The voltage should be below 1.4V during this procedure.


5) If NG, go to "Diagnostic Procedure", EC-871.

VG33E Wiring Diagram

VG33E

Wiring Diagram (Cont'd) **LEFT BANK** NGEC0681S02 EC-02S2B2-01 IGNITION SWITCH ON or START FUSE BLOCK (J/B) Refer to "EL-POWER". 14 (M₂₆) : Detectable line for DTC : Non-detectable line for DTC OR/B M59 (F27) OR/B 3 HEATED OXYGEN SENSOR 2 (REAR) (BANK 2) (F39) BR JOINT CONNECTOR-3 R/Y 57 123 ECM B/Y B/R O2HRL B/R (F29) (F11) (F12) 1 2 3 4 5 6 7 8 9 10 M59 4P 5P 6P 7P M26 2P 13P 14P 15P 16P W



LEC498

VG33E

Diagnostic Procedure

SU

BR

ST

RS

BT

HA

SC

EL

Diagnostic Procedure (Cont'd)

VG33E

2 CHECK HO2S2 (REAR) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
DIC	ECM	Sensor	Dank
P0140	56	1	Bank 1 (Right)
P0160	57	1	Bank 2 (Left)

SEF828Z

Continuity should exist.

2. Check harness continuity between ECM terminal or HO2S2 terminal and ground as follows. Refer to Wiring Diagram.

DTC	Termir	Ponk	
DIC	ECMorsensor	Ground	Bank
P0140	56 or 1	Ground	Bank 1 (Right)
P0160	57 or 1	Ground	Bank 2 (Left)

SEF829Z

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK ▶	GO TO 3.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK HO2S2 (REAR) GROUND CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between HO2S2 terminal 4 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to power.

OK or NG

OK •	GO TO 5.
NG ▶	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-3
- Harness for open between heated oxygen sensor 2 (rear) and engine ground.
 - Repair open circuit or short to power in harness or connectors.

VG33E

EC

FE

GL

MT

AT

TF

PD

ST

BT

HA

SC

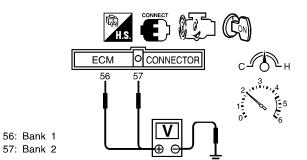
Diagnostic Procedure (Cont'd)

5	CHECK HO2S2 (F	REAR	CONNECTORS FOR WATER	
	heated oxygen sen should not exist.	sor 2	rear) connector and harness connector for water.	GI
			OK or NG	БЛΑ
OK (W	/ith CONSULT-II)		GO TO 6.	MA
OK (W	Vithout CONSULT-	>	GO TO 7.	EM
NG		>	Repair or replace harness or connectors.	

CHECK HEATED OXYGEN SENSOR 2 (REAR) (P) With CONSULT-II 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes. 2. Stop vehicle with engine running. 3. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-4. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%. (Reference data) x0.01V 128 The voltage should be above 0.62V at least one time. 64 The voltage should be below 0.48V at least one time. SEF989RD "HO2S2 (B1)/(B2)" should be above 0.62V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)/(B2)" should be below 0.48V at least once when the "FUEL INJECTION" is -25%. **CAUTION:** Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one. OK or NG OK GO TO 9. NG GO TO 8.

 $\mathbb{D}\mathbb{X}$

Diagnostic Procedure (Cont'd)


VG33E

CHECK HEATED OXYGEN SENSOR 2 (REAR)

Without CONSULT-II

7

- 1. Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2. Stop vehicle with engine running.
- 3. Set voltmeter probes between ECM terminal 56 (bank 1 signal) or 57 (bank 2 signal) and engine ground.
- 4. Check the voltage when racing up to 4,000 rpm under no load at least 10 times. (depress and release accelerator pedal as soon as possible)

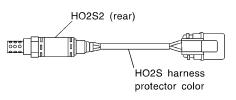
The voltage should be above 0.62V at least once during this procedure.

SEF797ZB

5. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), "D" position with "O/D" OFF (A/T).

The voltage should be below 0.48V at least once during this procedure.

CAUTION:


Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK	>	GO TO 9.
NG	>	GO TO 8.

REPLACE HEATED OXYGEN SENSOR 2 (REAR)

- 1. Stop vehicle and turn ignitioin switch OFF.
- 2. Check heated oxygen sensor 2 (rear) harness protector color.

HO2S2 (rear) (bank 1): White or Gray HO2S2 (rear) (bank 2): Red or Red/Brown

SEF372Z

CAUTION:

Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Replace malfunctioning heated oxygen sensor 2 (rear).

VG33E

Diagnostic Procedure (Cont'd)

9	CHECK HO2S2 (REAR	SHIELD CIRCUIT FOR OPEN AND SHORT	П
1. Tu	rn ignition switch OFF.		П
2. Di	sconnect joint connector.		-
	neck the following.		
	ntinuity between joint conn nt connector	ector terminal 1 and ground	
(Re	efer to <i>EL-244</i> , "HARNESS Continuity should exist. so check harness for short then reconnect joint connect	to power.	
		OK or NG	
OK	>	GO TO 10.	
NG	•	Repair open circuit or short to power in harness or connectors.	
	<u> </u>		

10	CHECK INTERMITTENT	T INCIDENT
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.	
	► INSPECTION END	

MT

CL

GI

MA

EM

LC

EC

FE

AT

PD

TF

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

 $\mathbb{H}\mathbb{A}$

SC

EL

DTC P0141, P0161 HEATED OXYGEN SENSOR 2 HEATER (REAR) (BANK 1)/(BANK 2)

VG33E

Description

Description

SYSTEM DESCRIPTION

NGEC0683

NGEC0683S01

			11020000001
Sensor	Input Signal to ECM	ECM func- tion	Actuator
Camshaft position sensor	Engine speed	Heated oxygen sensor 2 heater (rear) con- trol	Heated oxygen sensor 2 heaters (rear)

The ECM performs ON/OFF control of the heated oxygen sensor 2 heaters (rear) corresponding to the engine speed.

OPERATION

NGEC0683S02

	77-22-33-33-32
Engine speed rpm	Heated oxygen sensor 2 heaters (rear)
Above 3,200	OFF
Below 3,200	ON

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0684

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S2 HTR (B1)	Ignition switch: ON (Engine stopped)Engine is running above 3,200 rpm.	OFF
HO2S2 HTR (B2)	 Engine is running below 3,200 rpm after driving for 2 minutes at a speed of 70 km/h (43 MPH) or more. 	ON

ECM Terminals and Reference Value

NGEC0685

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
122	R/B	Heated oxygen sensor 2 heater (rear) (bank 1)	[Ignition switch "ON"] ■ Engine stopped [Engine is running] ■ Engine speed is above 3,200 rpm	BATTERY VOLTAGE (11 - 14V)
			 [Engine is running] Engine speed is below 3,200 rpm After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more 	Approximately 0.4V
	R/Y	Heated oxygen sensor 2 heater (rear) (bank 2)	[Ignition switch "ON"] ■ Engine stopped [Engine is running] ■ Engine speed is above 3,200 rpm	BATTERY VOLTAGE (11 - 14V)
123			 [Engine is running] Engine speed is below 3,200 rpm After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more 	Approximately 0.4V

DTC P0141, P0161 HEATED OXYGEN SENSOR 2 HEATER (REAR) (BANK 1)/(BANK 2)

VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

Malfunction is detected when the current amperage in the heated oxygen sensor 2 heater (rear) circuit is out of the normal range. [An improper voltage drop signal is sent to ECM through the heated oxygen sensor 2 heater (rear).]

GI

POSSIBLE CAUSE

NGEC0686S01

Harness or connectors (The heated oxygen sensor 2 heater (rear) circuit is open or shorted.)

MA

Heated oxygen sensor 2 heater (rear)

LC

DTC Confirmation Procedure

NOTE:

4

DATA MONITOR

NO DTC

SEF058Y

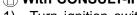
XXX rpm

MONITOR

ENG SPEED

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

EC


FE

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

(P) With CONSULT-II

MT

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II. 2) Start engine.
 - Drive vehicle at a speed of more than 70 km/h (43 MPH) for 2
- consecutive minutes. Stop vehicle and let engine idle for at least 6 seconds.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-880.

TF

With GST

Follow the procedure "With CONSULT-II".

PD

ST

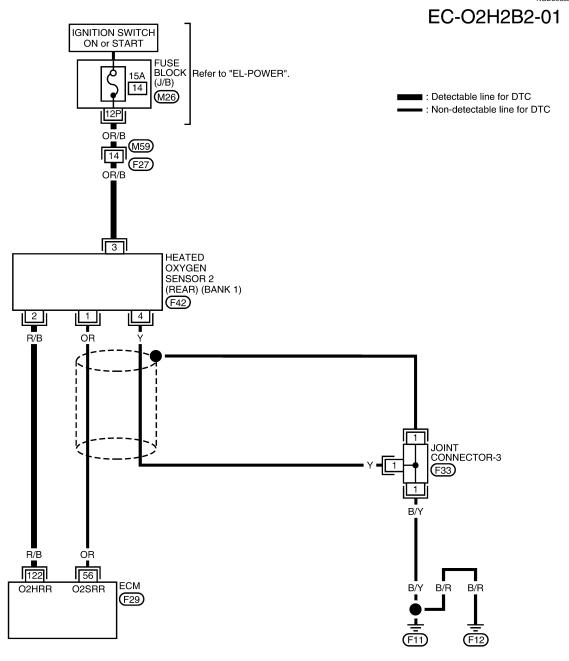
BT

HA

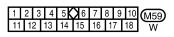
SC

EL

Wiring Diagram


VG33E

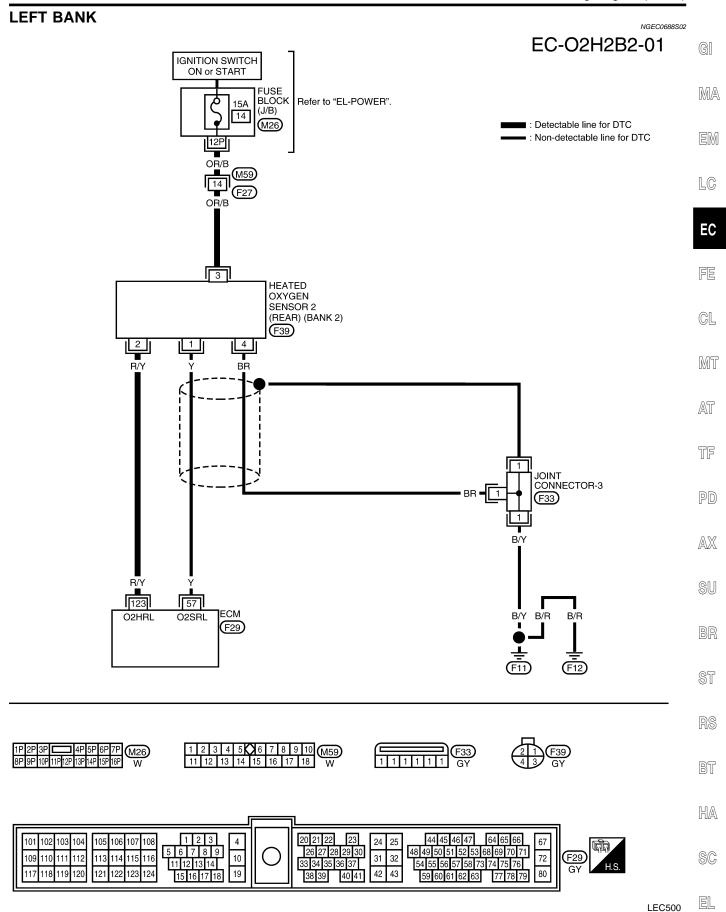
Wiring Diagram


RIGHT BANK

NGEC0688

NGEC0688S01



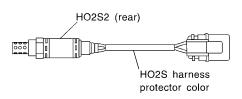


DTC P0141, P0161 HEATED OXYGEN SENSOR 2 HEATER (REAR) (BANK 1)/(BANK 2)

VG33E

Wiring Diagram (Cont'd)

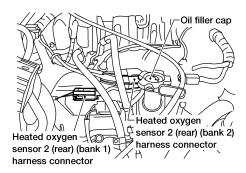
EC-879


VG33E

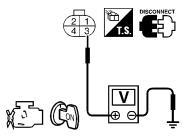
Diagnostic Procedure

NGEC0689

1 CHECK HO2S2 (REAR) POWER SUPPLY CIRCUIT


- 1. Turn ignition switch "OFF".
- 2. Check heated oxygen sensor 2 (rear) harness protector color.

HO2S2 (rear) (bank 1): White or Gray HO2S2 (rear) (bank 2): Red or Red/Brown


3. Disconnect corresponding heated oxygen sensor 2 (rear) harness connector.

WEC546

- 4. Turn ignition switch ON.
- 5. Check voltage between HO2S2 terminal 3 and ground.

SEF637W

Voltage: Battery voltage

OK or NG

OK •	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M59, F27
- Fuse block (J/B) connector M26
- 10A fuse
- Harness for open or short between heated oxygen sensor 2 (rear) and fuse
 - Repair harness or connectors.

DTC P0141, P0161 HEATED OXYGEN SENSOR 2 HEATER (REAR) (BANK 1)/(BANK 2)

VG33E

Diagnostic Procedure (Cont'd)

CHECK HO2S2 HEATER (REAR) OUTPUT CIRCUIT FOR OPEN AND SHORT

1. Turn ignition switch OFF.

3

2. Disconnect ECM harness connector.

Check harness continuity between ECM terminal and HO2S2 (rear) terminal as follows. Refer to Wiring Diagram.

DTC	Term	Dank		
DIC	ECM	Sensor	Bank	
P0141	122	2	Bank 1 (Right)	
P0161	123	2	Bank 2 (Left)	

SEF830Z

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 5.
NG ►	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

• Joint connector-3

• Harness for open or short between heated oxygen sensor 2 (rear) and engine ground.

Repair open circuit or short to ground or short to power in harness or connectors.

JL1 0302

CL

GI

MA

EM

EC

MT

AT

PD

TF

SU

BR

ST

6M

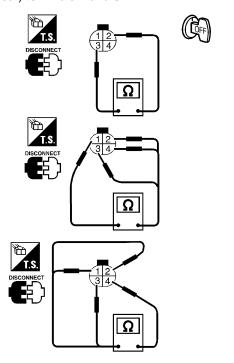
BT

HA

SC

SIL

DTC P0141, P0161 HEATED OXYGEN SENSOR 2 HEATER (REAR) (BANK 1)/(BANK 2)


VG33E

5 **CHECK HEATED OXYGEN SENSOR 2 HEATER (REAR)**

Check the following.

Diagnostic Procedure (Cont'd)

1. Check resistance between HO2S2 (rear) terminals 2 and 3.

SEF716W

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

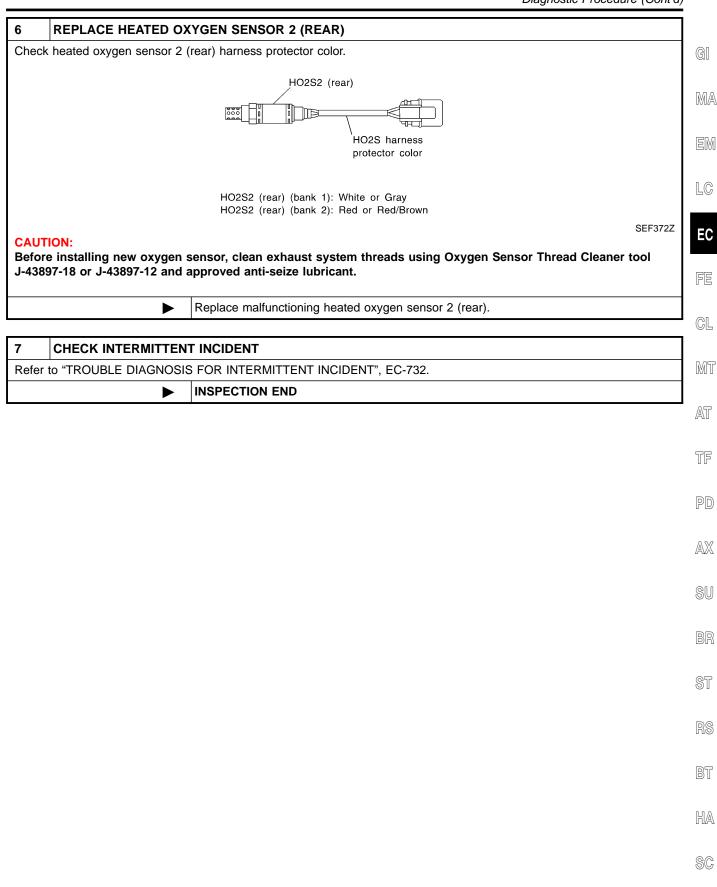
2. Check continuity.

Terminal No.	Continuity
1 and 2, 3, 4	No
4 and 1, 2, 3	NO

MTBL0233

CAUTION:

Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.


OK	or	NG
UN	OI	ING

OK •	GO TO 7.
NG ►	GO TO 6.

DTC P0141, P0161 HEATED OXYGEN SENSOR 2 HEATER (REAR) (BANK 1)/(BANK 2)

VG33E

Diagnostic Procedure (Cont'd)

VG33E

On Board Diagnosis Logic

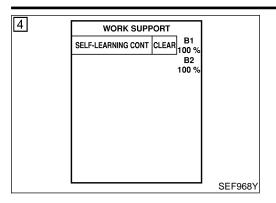
On Board Diagnosis Logic

NGEC0690

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensors 1 (front). The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios. In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the ECM judges the condition as the fuel injection system malfunction and light up the MIL (2 trip detection logic).

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Heated oxygen sensors 1 (front)	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injec- tion control	Injectors

Malfunction is detected when fuel injection system does not operate properly, the amount of mixture ratio compensation is too large. (The mixture ratio is too lean.)


POSSIBLE CAUSE

NGEC0690S01

- Intake air leaks
- Heated oxygen sensor 1 (front)
- Injectors
- Exhaust gas leaks
- Incorrect fuel pressure
- Lack of fuel
- Mass air flow sensor

VG33E

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

MA

EM

=NGEC0691

(P) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON and select "SELF-LEARN CONTROL" in "WORK SUPPORT" mode with CONSULT-II.
- Clear the self-learning control coefficient by touching "CLEAR".
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0171 or P0174 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-888.
- 7) If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
- starts, go to "Diagnostic Procedure", EC-888. If engine does not start, check exhaust and intake air leak visually.
- 8) Crank engine while depressing accelerator pedal. If engine

Follow the procedure "With CONSULT-II".

EC

FE

MT

AT

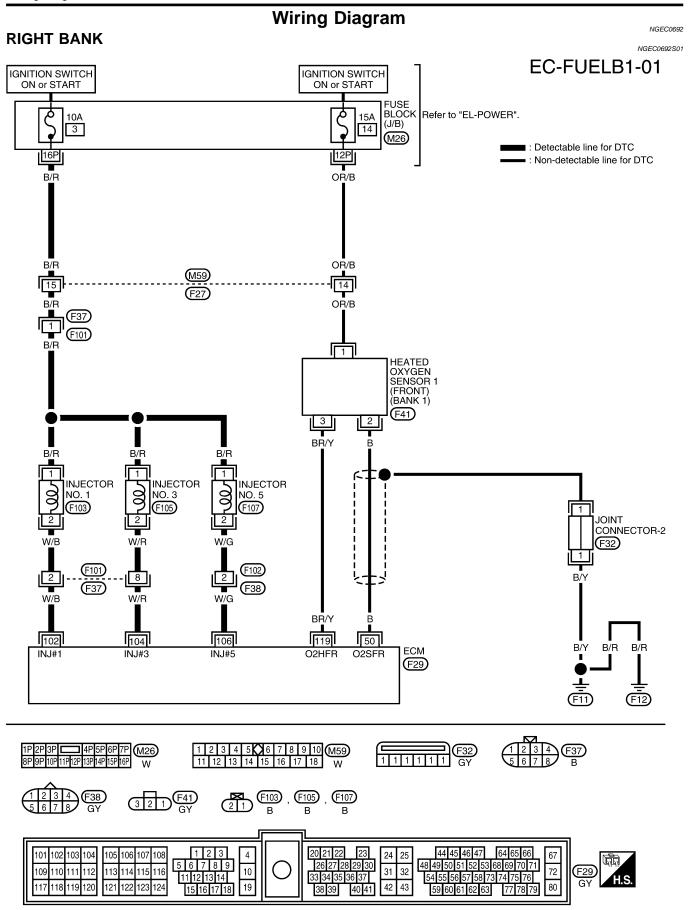
TF

AX

PD

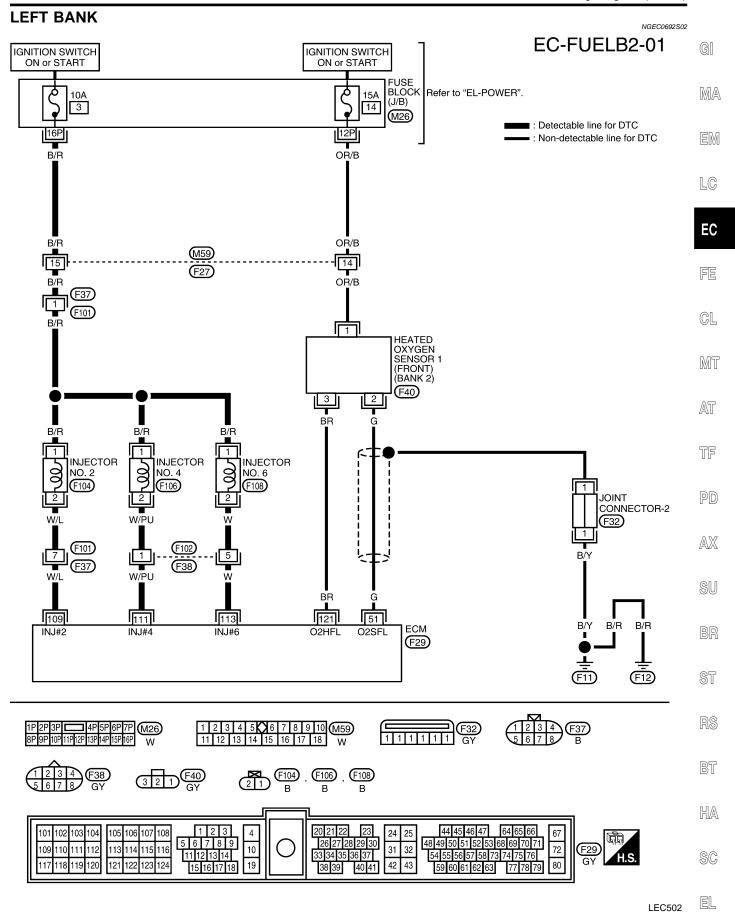
ST

BT


HA

SC

EL


VG33E

Wiring Diagram

VG33E

Wiring Diagram (Cont'd)

VG33E

Diagnostic Procedure

2	CHECK FOR INTAKE AIR LEAK		
Lister	Listen for an intake air leak after the mass air flow sensor.		
OK or NG			
OK	•	GO TO 3.	
NG		Repair or replace.	

VG33E

GI

MA

EC

MT

AT

TF

PD

AX

Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 1 (FRONT) CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect corresponding heated oxygen sensor 1 (front) harness connector.
- 3. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal and HO2S1 (front) terminal as follows. Refer to Wiring Diagram.

DTC	Terminals		Donle	
	ECM	Sensor	Bank	
P0171	50	2	Bank 1 (Right)	
P0174	51	2	Bank 2 (Left)	

SEF831Z

Continuity should exist.

5. Check harness continuity between ECM terminal or HO2S1 (front) terminal and ground as follows. Refer to Wiring Diagram.

DTC	Termir	Bonk		
DIC	ECMorsensor	Ground	Bank	
P0171	50 or 2	Ground	Bank 1 (Right)	
P0174	51 or 2	Ground	Bank 2 (Left)	

SEF832Z

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK	GO TO 4.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK FUEL PRESSURE

 Release fuel pressure to zero. Refer to EC-637.

2. Install fuel pressure gauge and check fuel pressure.

At idling:

When fuel pressure regulator valve vacuum hose is connected.

235 kPa (2.4 kg/cm², 34 psi)

When fuel pressure regulator valve vacuum hose is disconnected.

294 kPa (3.0 kg/cm², 43 psi)

OK or NG

OK •	GO TO 6.
NG ►	GO TO 5.

DX(

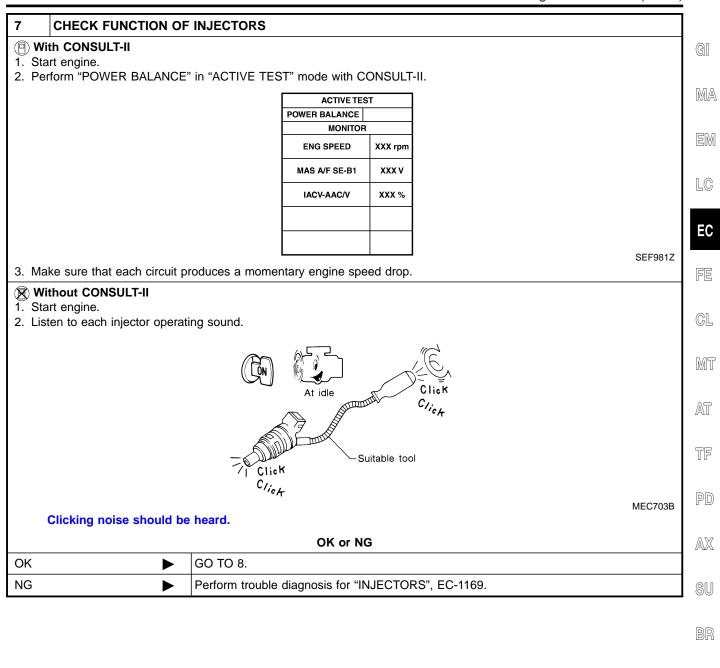
BT

HA

SC

EC-889

VG33E


Diagnostic Procedure (Cont'd)

5 DETECT MALFUNCTIONING PART Check the following. • Fuel pump and circuit (Refer to EC-1177.) • Fuel pressure regulator (Refer to EC-638.) • Fuel lines (Refer to "ENGINE MAINTENANCE", MA-28.) • Fuel filter for clogging Repair or replace.

6	CHECK MASS AIR FLOW SENSOR				
⊕ W	ith CONSULT-II				
1. Ins	stall all parts removed.				
2. Ch	eck "MASS AIR FLOW" in	"DATA MONITOR" mode with CONSULT-II.			
3.3	3 - 4.8 g-m/sec: at idling				
12	.0 - 14.9 g·m/sec: at 2,500) rpm			
	ith GST				
	stall all parts removed.				
2. Ch	eck mass air flow sensor s	signal in MODE 1 with GST.			
3.3	3 - 4.8 g-m/sec: at idling				
12	.0 - 14.9 g·m/sec: at 2,500) rpm			
	OK or NG				
ОК	OK ▶ GO TO 7.				
NG	>	Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-739.			

VG33E

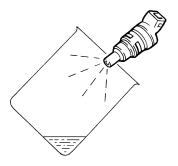
Diagnostic Procedure (Cont'd)

ST

BT

HA

SC


EL

VG33E

Diagnostic Procedure (Cont'd)

8 CHECK INJECTOR

- 1. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 2. Turn ignition switch OFF.
- 3. Disconnect injector harness connectors on left bank (for DTC P0171), right bank (for DTC P0174).
- 4. Remove injector gallery assembly. Refer to EC-638.
 - Keep fuel hose and all injectors connected to injector gallery.
- The injector harness connectors on right bank (for DTC P0171), left bank (for DTC P0174) should remain connected.
- 5. Disconnect all ignition coil harness connectors.
- 6. Prepare pans or saucers under each injector.
- 7. Crank engine for about 3 seconds. Make sure that fuel sprays out from injectors.

SEF595Q

Fuel should be sprayed evenly for each injector.

0	K	or	N	G

OK •	GO TO 9.	
NG ►	Replace injectors from which fuel does not spray out. Always replace O-ring with new ones.	

9	CHECK INTERMITTENT INCIDENT				
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.				
	► INSPECTION END				

VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensors 1 (front). The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios. In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the ECM judges the condition as the fuel injection system malfunction and light up the MIL (2 trip detection logic).

MA

EM

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Heated oxygen sensors 1 (front)	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection control	Injectors

Malfunction is detected when fuel injection system does not operate properly, the amount of mixture ratio compensation is too large. (The mixture ratio is too rich.)

POSSIBLE CAUSE

Heated oxygen sensor 1 (front)

- Injectors
- Exhaust gas leaks
- Incorrect fuel pressure
- Mass air flow sensor

CL

NGFC0694S01

MT

AT

TF

PD

AX

SU

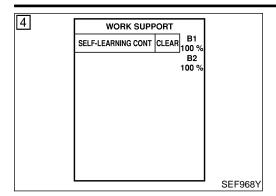
ВK

ST

RS

BT

HA


SC

EL

 $\mathbb{D}\mathbb{X}$

VG33E

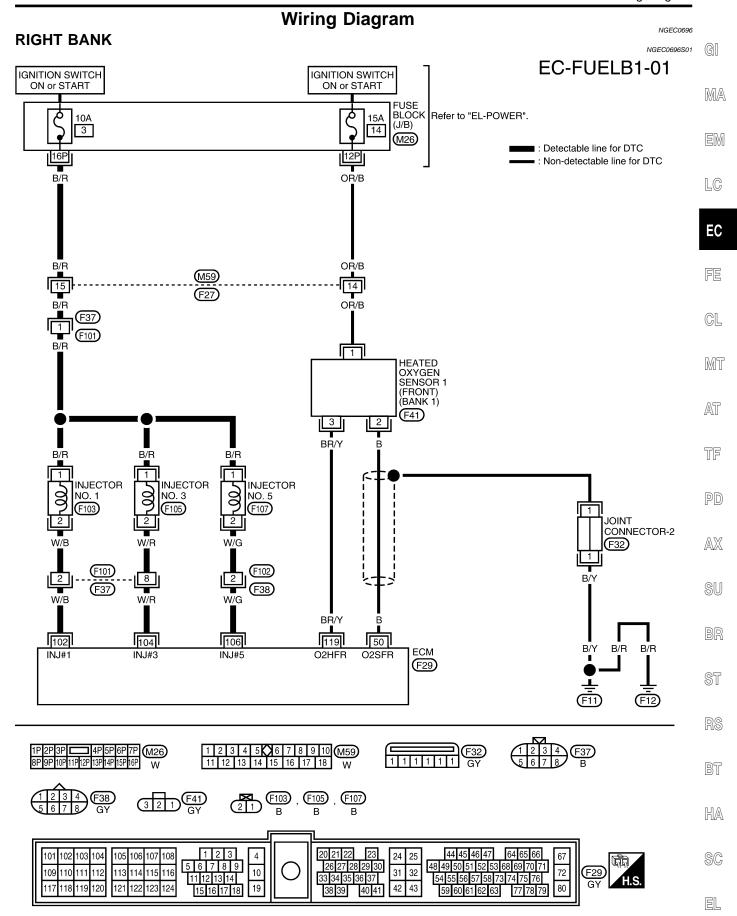
DTC Confirmation Procedure

DTC Confirmation Procedure

=NGEC0695

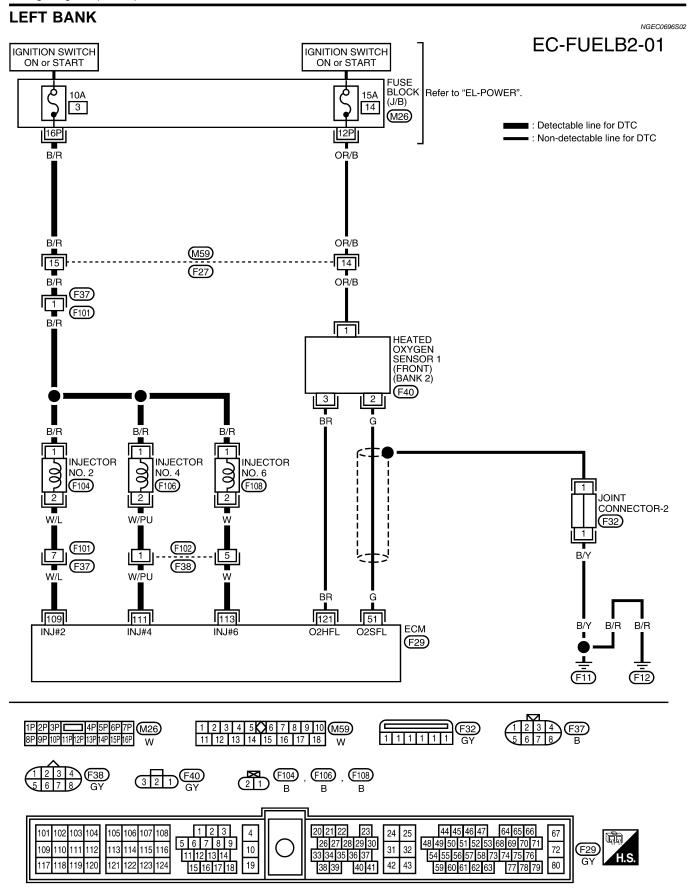
NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.


(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON and select "SELF-LEARN CONTROL" in "WORK SUPPORT" mode with CONSULT-II.
- Clear the self-learning control coefficient by touching "CLEAR".
- Select "DATA MONITOR" mode with CONSULT-II.
- 6) Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0172, P0175 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-897.
- 7) If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
- 8) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-897. If engine does not start, remove ignition plugs and check for fouling, etc.

With GST


Follow the procedure "With CONSULT-II".

VG33EWiring Diagram

VG33E

Wiring Diagram (Cont'd)

VG33E

GI

MA

EM

LC

EC

FE

CL

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

Diagnostic Procedure

	Diagnostic Procedure			
1	C	CHECK EXHAUST AIR LEAK		
		t engine and run it at idle. en for an exhaust air leak before three way catalyst.		

SEF099P
OK or NG

2	CHECK FOR INTAKE A	IR LEAK	MT	
Listen	Listen for an intake air leak after the mass air flow sensor.			
	OK or NG			
OK	>	GO TO 3.	l	
NG	>	Repair or replace.	TF	

GO TO 2.

Repair or replace.

OK

NG

Diagnostic Procedure (Cont'd)

VG33E

3 CHECK HEATED OXYGEN SENSOR 1 (FRONT) CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect corresponding heated oxygen sensor 1 (front) harness connector.
- 3. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal and HO2S1 (front) terminal as follows. Refer to Wiring Diagram.

DTC	Terminals		Donle	
DIC	ECM	Sensor	Bank	
P0172	50	2	Bank 1 (Right)	
P0175	51	2	Bank 2 (Left)	

SEF833Z

Continuity should exist.

5. Check harness continuity between ECM terminal or HO2S1 (front) terminal and ground as follows. Refer to Wiring Diagram.

DTC	Termin	Bank	
DIC	ECMorsensor	Ground	Darik
P0172	50 or 2	Ground	Bank 1 (Right)
P0175	51 or 2	Ground	Bank 2 (Left)

SEF834Z

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK •	GO TO 4.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK FUEL PRESSURE

1. Release fuel pressure to zero.

Refer to EC-637.

2. Install fuel pressure gauge and check fuel pressure.

At idling:

When fuel pressure regulator valve vacuum hose is connected.

235 kPa (2.4 kg/cm², 34 psi)

When fuel pressure regulator valve vacuum hose is disconnected.

294 kPa (3.0 kg/cm², 43 psi)

OK or NG

OK ►	GO TO 6.
NG ►	GO TO 5.

VG33E

Diagnostic Procedure (Cont'd)

	T MALFUNCTIC	ONING PART	7
Check the follo			G
	ind circuit (Refer t e regulator (Refer		
• Fuel pressur	e regulator (Refer	,	$+$ $_{\rm M}$
		Repair or replace.	UVU
6 CHECK	(MASS AIR FLO	OW SENSOR	E
(With CONS			
1. Install all pa		"DATA MONITOR" mode with CONSULT-II.	
	n/sec: at idling	DATA MONTOR THOSE WITH CONSOLITIE.	
12.0 - 14.9	g-m/sec: at 2,500	O rpm	E
			▍▙
With GSTInstall all pa	rts removed.		
2. Check mass	s air flow sensor s	signal in MODE 1 with GST.	F
	n/sec: at idling g-m/sec: at 2,500	O rom	1
12.0 - 14.5	g-111/36C. at 2,500	I I I I I I I I I I I I I I I I I I I	
			C[
OK		OK or NG	4
OK	<u> </u>	OK or NG GO TO 7.	G1 M
OK NG	>	OK or NG	
	>	OK or NG GO TO 7. Check connectors for rusted terminals or loose connections in the mass air flow sensor	_ _ [M
	>	OK or NG GO TO 7. Check connectors for rusted terminals or loose connections in the mass air flow sensor	_ _ M
	>	OK or NG GO TO 7. Check connectors for rusted terminals or loose connections in the mass air flow sensor	
	>	OK or NG GO TO 7. Check connectors for rusted terminals or loose connections in the mass air flow sensor	
	>	OK or NG GO TO 7. Check connectors for rusted terminals or loose connections in the mass air flow sensor	
	>	OK or NG GO TO 7. Check connectors for rusted terminals or loose connections in the mass air flow sensor	
	>	OK or NG GO TO 7. Check connectors for rusted terminals or loose connections in the mass air flow sensor	

SU

BR

ST

RS

BT

HA

SC

EL

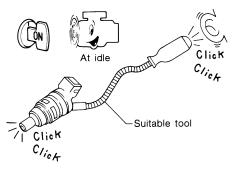
Diagnostic Procedure (Cont'd)

VG33E

CHECK FUNCTION OF INJECTORS

(P) With CONSULT-II

- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.


ACTIVE TEST		
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
IACV-AAC/V	xxx %	

3. Make sure that each circuit produces a momentary engine speed drop.

SEF981Z

Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound.

Clicking noise should be heard.

MEC703B

ΟK	or	NG
----	----	----

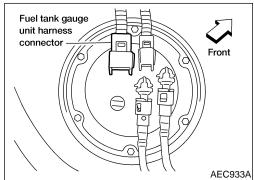
OK ►	GO TO 8.
NG ►	Perform trouble diagnosis for "INJECTORS", EC-1169.

8 CHECK INJECTOR

- 1. Remove injector assembly. Refer to EC-638.
 - Keep fuel hose and all injectors connected to injector gallery.
- 2. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 3. Disconnect injector harness connectors left bank (for DTC P0172), right bank (for P0175).
 - The injector harness connectors on right bank (for P0172), left bank (for P0175) should remain connected.
- 4. Disconnect all ignition coil harness connectors.
- 5. Prepare pans or saucers under each injectors.
- 6. Crank engine for about 3 seconds.

Make sure fuel does not drip from injector.

OK or NG


OK (Does not drip)		GO TO 9.
NG (Drips)	•	Replace the injectors from which fuel is dripping. Always replace O-ring with new one.

9	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
INSPECTION END			

DTC P0180 FUEL TANK TEMPERATURE SENSOR

VG33E

Component Description

AEC933A 20 10 86 4 9 2 1.0 150 88 99 0.4

0 20 40 60 80 100 (32) (68) (104) (140) (176) (212) Temperature °C (°F)

0.2

0.1

Component Description

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

G[

MA

C

EC

FE

<Reference data>

Fluid temperature °C (°F)	Voltage* (V)	Resistance (kΩ)
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

*: These data are reference values and are measured between ECM terminal 60 (Fuel tank temperature sensor) and ground.

CL

CAUTION

SEF012P

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

AT

TF

PD

On Board Diagnosis Logic

IGEC0699

Malfunction is detected when an excessively high or low voltage is sent to ECM, rationally incorrect voltage is sent to ECM, compared with the voltage signals from engine coolant temperature sensor and intake air temperature sensor.

POSSIBLE CAUSE

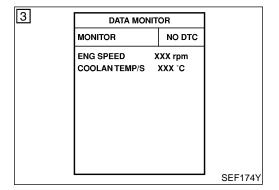
- Harness or connectors (The sensor circuit is open or shorted.)
- Fuel tank temperature sensor

NGEC0699S01

BT

HA

SC

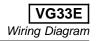

<u>I</u>

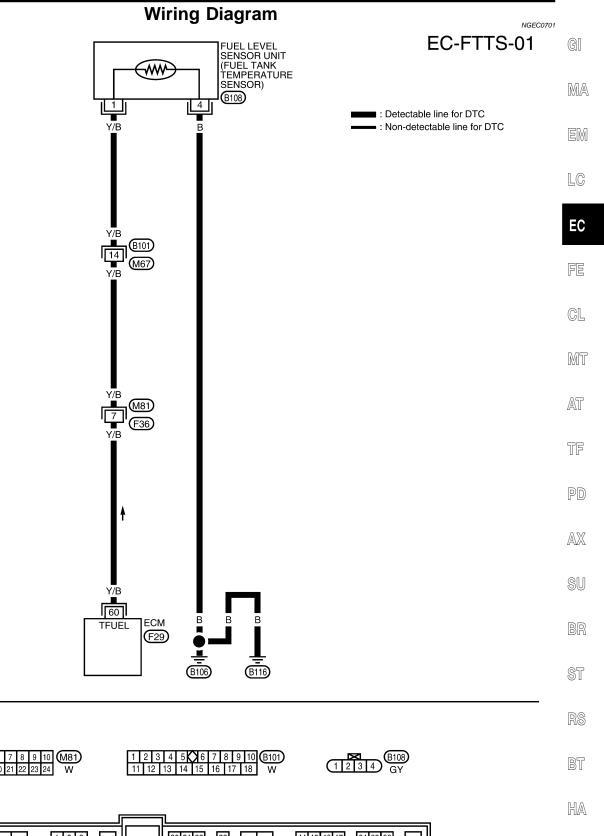
DTC Confirmation Procedure

NOTE

=NGEC0700

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.


(P) With CONSULT-II


- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 10 seconds.
 If the result is NG, go to "Diagnostic Procedure", EC-904.
 If the result is OK, go to following step.
- 4) Check "COOLAN TEMP/S" value. If "COOLAN TEMP/S" is less than 60°C (140°F), the result will be OK. If "COOLAN TEMP/S" is above 60°C (140°F), go to the following step.
- 5) Cool engine down until "COOLAN TEMP/S" is less than 60°C (140°F).
- 6) Wait at least 10 seconds.
- 7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-904.

With GST

Follow the procedure "With CONSULT-II".

DTC P0180 FUEL TANK TEMPERATURE SENSOR

48 49 50 51 52 53 68 69 70 71 54 55 56 57 58 73 74 75 76

72

LEC503

SC

26 27 28 29 30 33 34 35 36 37

31 32

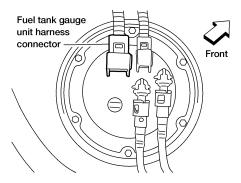
5 6 7 8 9 11 12 13 14

10

109 110 111 112

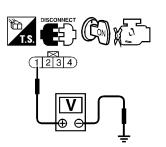
113 114 115 116

Diagnostic Procedure


NGEC0702

AEC933A

SEF639W


1 CHECK FUEL TANK TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect fuel tank gauge unit harness connector.

3. Turn ignition switch ON.

4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK •	GO TO 3.
NG ▶	GO TO 2.

OK or NG

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B101, M67
- Harness connectors M81, F36
- Harness for open or short between ECM and fuel tank temperature sensor

Repair harness or connector.

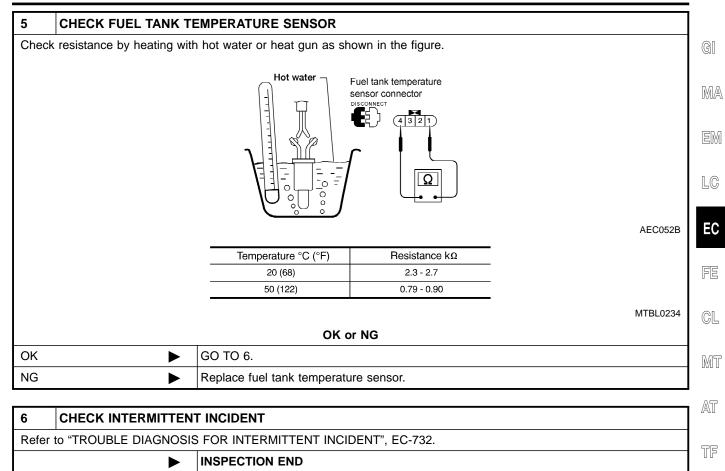
3 CHECK FUEL TANK TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Check harness continuity between sensor terminal 4 and body ground. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to power.

OK or NG

OK		GO TO 5.
NG	•	GO TO 4.

4 DETECT MALFUNCTIONING PART


Check harness for open between fuel tank temperature sensor and body ground.

Repair open circuit or short to power in harness or connectors.

DTC P0180 FUEL TANK TEMPERATURE SENSOR

VG33E

Diagnostic Procedure (Cont'd)

PD

SU

BR

ST

RS

BT

HA

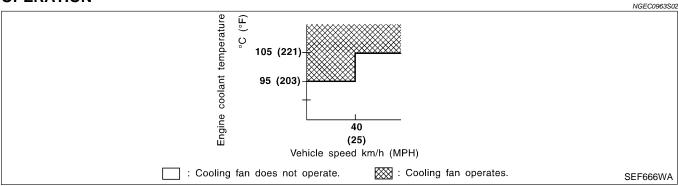
SC

EL

System Description

VG33E

System Description


COOLING FAN CONTROL

NGEC0963

COOLING I AN CONTROL			NGEC0963S01
Sensor	Input Signal to ECM	ECM func- tion	Actuator
Vehicle speed sensor	Vehicle speed		
Engine coolant temperature sensor	Engine coolant temperature	Cooling fan	Cooling for roley(a)
Ignition switch	Start signal	control	Cooling fan relay(s)
Camshaft position sensor Engine speed			

The ECM controls the cooling fan corresponding to the signals sent from the vehicle speed and engine coolant temperature. The control system has 2-step control [ON/OFF].

OPERATION

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0964

MONITOR ITEM	CONDITION		SPECIFICATION
COOLING FAN	Engine: Idling, after warming up	Engine coolant temperature is 94°C (201°F) or less.	OFF
COOLING FAIN	Air conditioner switch: OFF	Engine coolant temperature is 95°C (203°F) or more.	ON

On Board Diagnosis Logic

NGECO

This diagnosis checks whether the engine coolant temperature is extraordinary high, even when the load is not heavy.

When malfunction is detected, the malfunction indicator lamp (MIL) will light up even in the first trip.

Malfunction is detected when engine coolant temperature is excessively high under normal engine speed.

VG33E
Possible Cause

Possible Cause

NGEC0966

- Harness or connectors (The cooling fan circuit is open or shorted)
- GI

MA

- Cooling fan
- Thermostat
- Improper ignition timing
- Engine coolant temperature sensor
- Blocked radiator
- Blocked front end (Improper fitting of nose mask)
- Crushed vehicle frontal area (Vehicle frontal is collided but not repaired)
- Blocked air passage by improper installation of front fog lamp or fog lamps.
- Improper mixture ratio of coolant
- Damaged bumper

For more information, refer to "MAIN 12 CAUSES OF OVERHEATING", EC-919.

GL

MT

AT

TF

PD

SU

ST

BT

HA

SC

EL

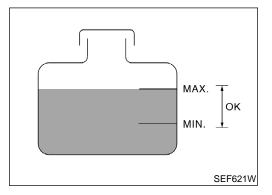
VG33E

Overall Function Check

NGEC0704

Use this procedure to check the overall function of the engine coolant over temperature enrichment protection check, a DTC might not be confirmed.

WARNING:


Never remove the radiator cap when the engine is hot. Serious burns could be caused by high-pressure fluid escaping from the radiator.

Wrap a thick cloth around the cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

WITH CONSULT-II

IGEC0704S01

- 1. Check the coolant level and mixture ratio (Using coolant tester) in the reservoir tank and radiator.
 - Allow engine to cool before checking coolant level and mixture ratio.
- If the coolant level in the reservoir and/or the radiator is below the proper range, skip following steps and go to "Diagnostic Procedure", EC-912.
- If the coolant mixture ratio is out of range between 45 to 55%, replace the coolant. Refer to "Changing Engine Coolant", MA-26.
- a) Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute like pouring coolant by kettle. Be sure to use coolant with the proper mixture ratio. Refer to "Anti-freeze Coolant Mixture Ratio", MA-15.
- After refilling coolant, run engine to ensure that no water-flow noise is emitted. After checking or replacing coolant, go to step 3) below.
- 2. Confirm whether customer filled the engine coolant or not. If customer filled the engine coolant, skip following steps and go to "Diagnostic Procedure", EC-912.
- 3. Turn ignition switch ON.
- 4. Perform "COOLANT TEMP" in "ACTIVE TEST" mode with CONSULT-II.
- Set "COOLANT TEMP" to 95°C (203°F) and make sure that cooling fan operates. If NG, go to "Diagnostic Procedure", EC-912. After repair, go to next step.
- Check for blocked coolant passage.
 - Warm up engine to normal operating temperature, then grasp upper and lower radiator hoses and make sure that coolant flows.
 - If NG, go to step 6 of "Diagnostic Procedure", EC-912. After repair, go to next step.
 - Be extremely careful not to touch any moving or adjacent parts.
- 6. Check radiator for blocked air passage
 - Check for blocked condenser or radiator (condenser or radiator fins damaged, condenser or radiator clogged), after market fog lamps ...etc. Check for condenser or radiator fin damage, shroud damage, vehicle front end for clogging of debris or insects ...etc.
 - Check for improper fitting of front end cover, damaged radiator grille or bumper, vehicle frontal area damaged by collision but not repaired.
 - If NG, take appropriate action and then go to next step.
- 7. Check ECT sensor for proper operation. Refer to step 7 of

VG33E

Overall Function Check (Cont'd)

"Diagnostic Procedure", EC-912. If NG, replace ECT sensor and go to next step.

MA

LC

SEF927Z

OK

SEF621W

20

°BTDC

MAX.

MIN.

Timing indicator

3

20

Check ignition timing. Refer to "Basic Inspection", EC-694. Make sure that ignition timing is $10^{\circ} \pm 2^{\circ}$ at 700 ± 50 rpm. If NG, adjust ignition timing and then recheck.

FE

GL

MT

Check the coolant level and mixture ratio (Using coolant tester) in the reservoir tank and radiator.

AT TF

Allow engine to cool before checking coolant level and mixture ratio.

If the coolant level in the reservoir and/or radiator is below the proper range, skip the following steps and go to step 3 of "Diagnostic Procedure", EC-912.

PD

If the coolant mixture ratio is out of range between 45 to 55%, replace the coolant. Refer to "Changing Engine Coolant",

MA-26. Fill radiator with coolant up to specified level with a filling speed

SU

of 2 liters per minute like pouring coolant by kettle. Be sure to use coolant with the proper mixture ratio. Refer to "Anti-freeze Coolant Mixture Ratio", **MA-15**.

After refilling coolant, run engine to ensure that no water-flow noise is emitted. After checking or replacing coolant, go to step 3) below.

Confirm whether customer filled the engine coolant or not. If customer filled engine coolant, skip following steps and go to "Diagnostic Procedure", EC-912.

3. Turn ignition switch OFF.

Disconnect engine coolant temperature sensor harness connector.

BT

HA

SC

EL

VG33E

Overall Function Check (Cont'd)

- 5. Connect 150Ω resistor to engine coolant temperature sensor harness connector.
- 6. Start engine and make sure that cooling fan operates.

Be careful not to overheat engine.

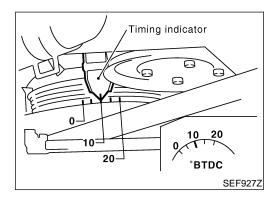
If NG, go to step 9 of "Diagnostic Procedure", EC-912. After repair, go to next step.

7. Check for blocked coolant passage.

Warm up engine to normal operating temperature, then grasp upper and lower radiator hoses and make sure that coolant flows.

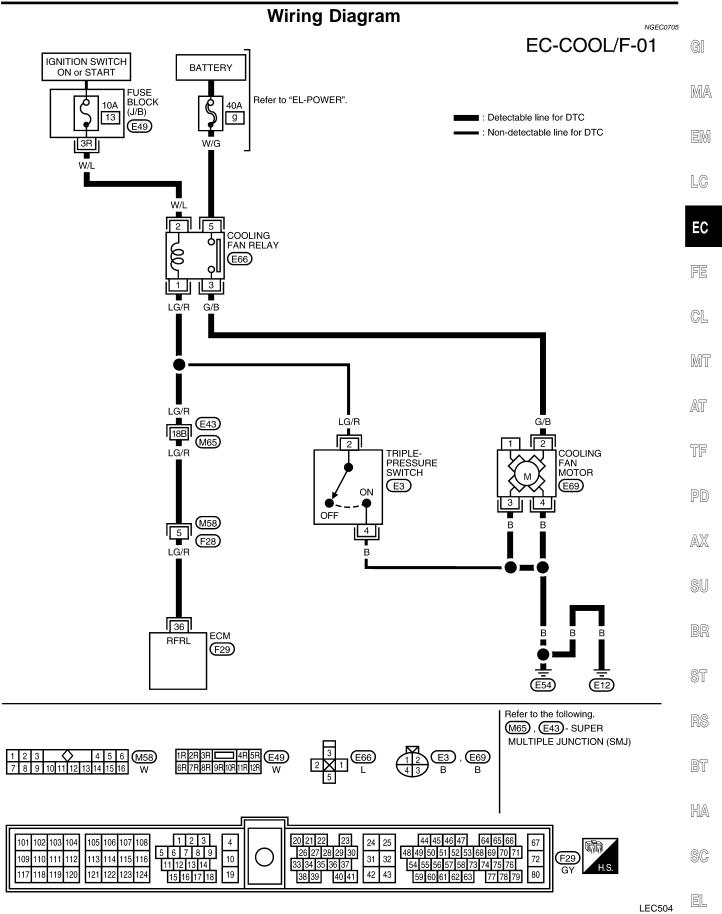
If NG, go to step 6 of "Diagnostic Procedure", EC-912. After repair, go to next step.

Be extremely careful not to touch any moving or adjacent parts.


8. Check radiator for blocked air passage

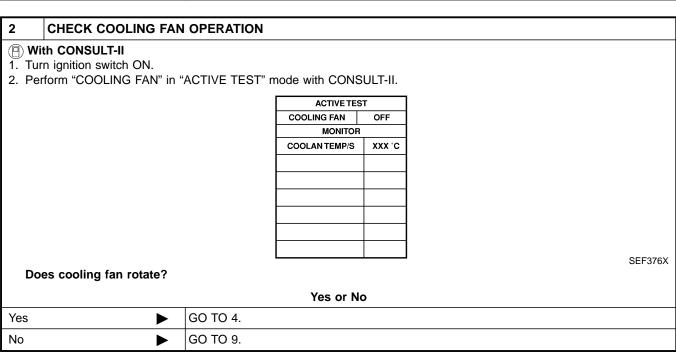
Check for blocked condenser or radiator (condenser or radiator fins damaged, condenser or radiator clogged), after market fog lamps,...etc. Check for condenser or radiator fin damage, shroud damage, vehicle front end for clogging of debris or insects ...etc.

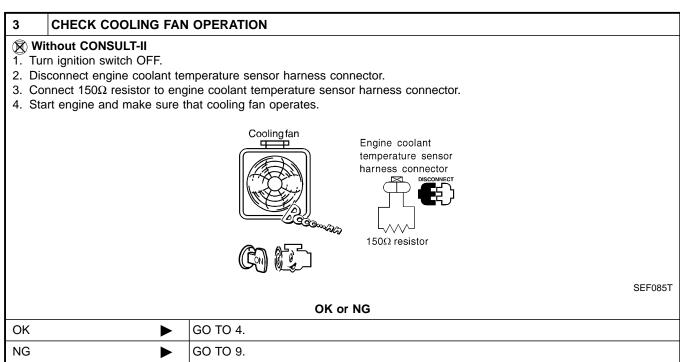
Check for improper fitting of front end cover, damaged radiator grille or bumper, vehicle frontal area damaged by collision but not repaired.


If NG, take appropriate action and then go to next step.

9. Check ECT sensor for proper operation. Refer to step 6 of "Diagnostic Procedure", EC-912. If NG, replace ECT sensor and go to next step.

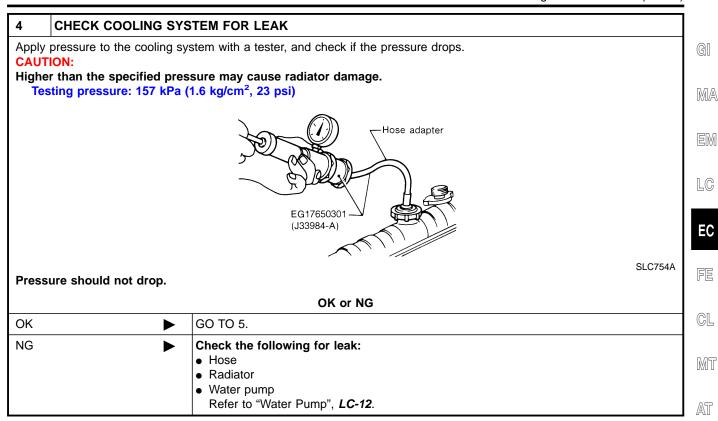
10. Check ignition timing. Refer to "Basic Inspection", EC-694. Make sure that ignition timing is $10^{\circ} \pm 2^{\circ}$ at 700 ± 50 rpm. If NG, adjust ignition timing and then recheck.


VG33E
Wiring Diagram



VG33E

Diagnostic Procedure


Diagnostic Procedure 1 INSPECTION START Do you have CONSULT-II? Yes or No Yes ▶ GO TO 2. No ▶ GO TO 3.

VG33E

Diagnostic Procedure (Cont'd)

5 (CHECK RADIATOR CAP	
Apply p	pressure to cap with a tester and check radiator cap relief pressure.	
Padi	EG17650301 (J33984-A)	SLC755A
Kadi 59	diator cap relief pressure: 59 - 98 kPa (0.6 - 1.0 kg/cm², 9 - 14 psi)	
	OK or NG	
OK	► GO TO 6.	
NG	Replace radiator cap.	

TF

PD

SU

BR

ST

RS

BT

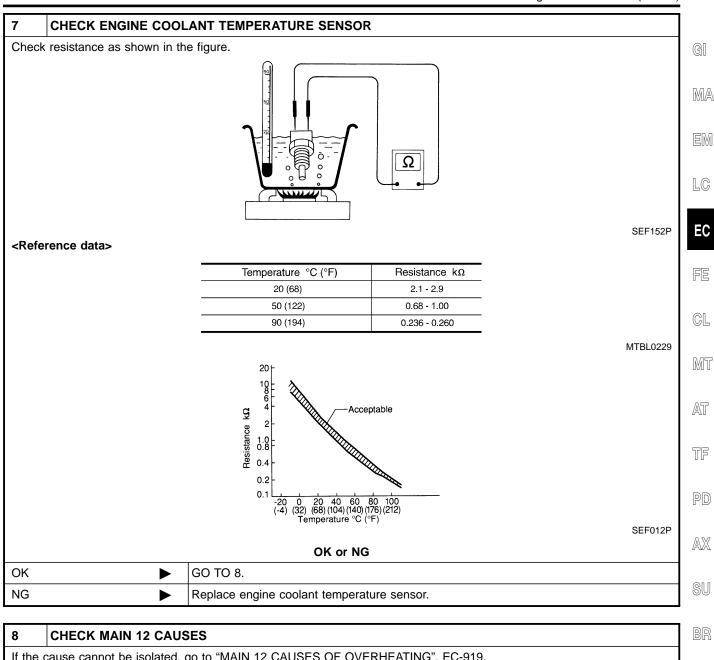
HA

SC

EL

VG33E

Diagnostic Procedure (Cont'd)


NG

6 CHECK THERMOSTAT 1. Check valve seating condition at normal room temperatures. It should seat tightly. 2. Check valve opening temperature and valve lift. Valve opening temperature: 82°C (180°F) [standard] Valve lift: More than 10 mm/95°C (0.31 in/203°F) 3. Check if valve is closed at 5°C (9°F) below valve opening temperature. For details, refer to "Thermostat", LC-13. OK or NG

Replace thermostat.

VG33E

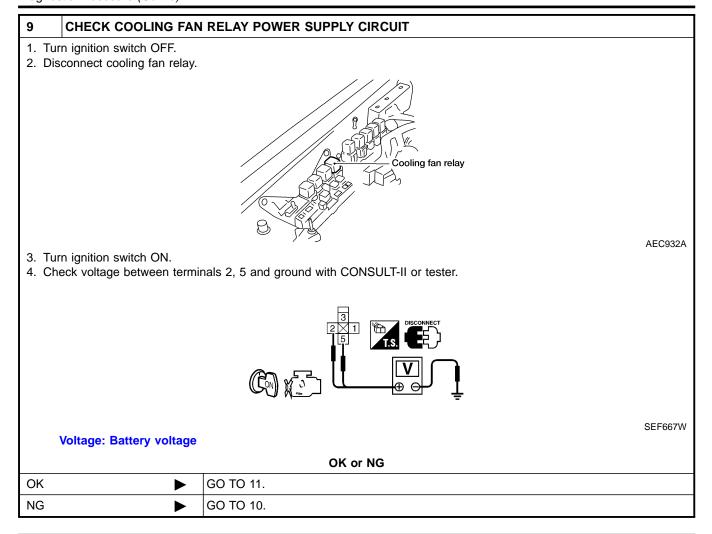
Diagnostic Procedure (Cont'd)

8	8 CHECK MAIN 12 CAUSES	
If the o	cause cannot be isolated, g	go to "MAIN 12 CAUSES OF OVERHEATING", EC-919.
	► INSPECTION END	

EL

ST

RS

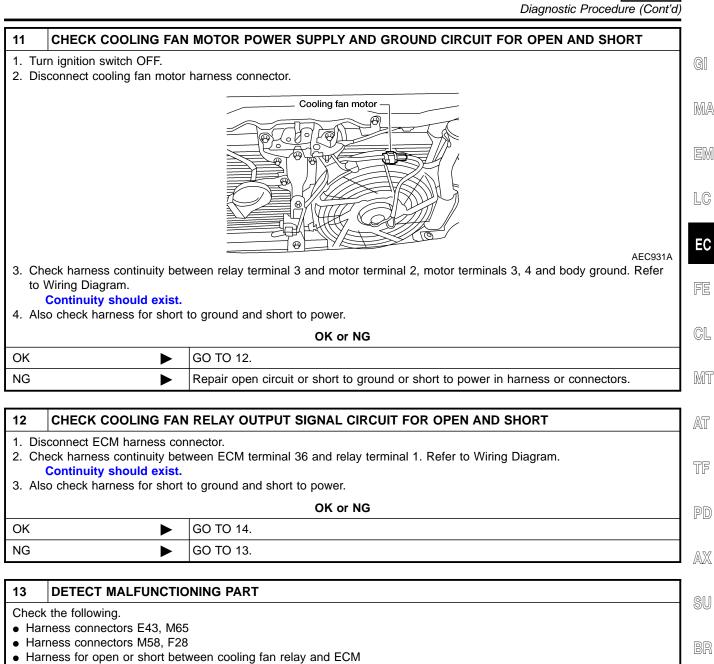

BT

HA

SC

Diagnostic Procedure (Cont'd)

VG33E



10 DETECT MALFUNCTIONING PART

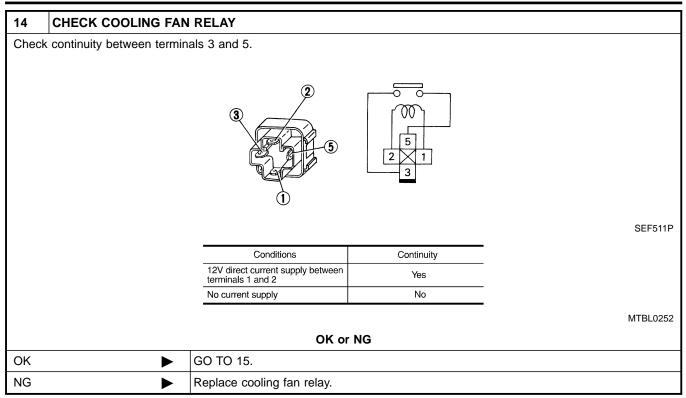
Check the following.

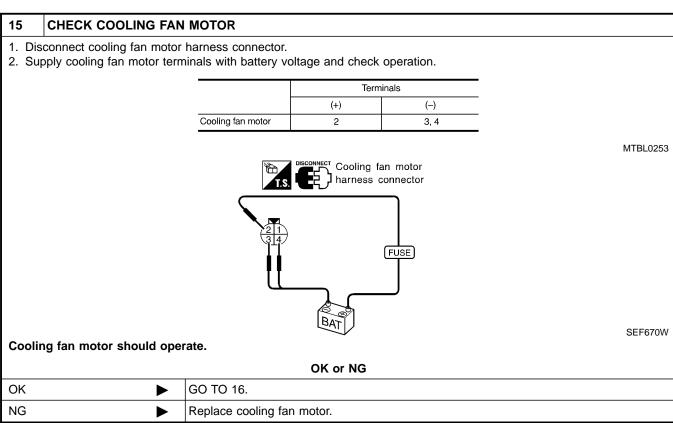
- Fuse block (J/B) connector E49
- 10A fuse
- 40A fusible link
- Harness for open or short between cooling fan relay and fuse
- Harness for open or short between cooling fan relay and battery
 - Repair open circuit or short to ground or short to power in harness or connectors.

VG33E

ST

BT


HA


SC

Repair open circuit or short to ground or short to power in harness or connectors.

VG33E

Diagnostic Procedure (Cont'd)

16	16 CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
	► INSPECTION END		

VG33E

Main 12 Causes of Overheating

Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	Blocked radiator Blocked condenser Blocked radiator grille Blocked bumper	Visual	No blocking	_
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See "RECOMMENDED FLUIDS AND LUBRI- CANTS" in <i>MA-13</i> .
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See "Changing Engine Coolant", "ENGINE MAINTENANCE" in MA-26.
	4	Radiator cap	Pressure tester	59 - 98 kPa (0.6 - 1.0 kg/cm², 9 - 14 psi) (Limit)	See "System Check", "ENGINE COOLING SYSTEM" in <i>LC-11</i> .
ON*2	5	Coolant leaks	Visual	No leaks	See "System Check", "ENGINE COOLING SYSTEM" in <i>LC-11</i> .
ON*2	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	See "Thermostat" and "Radiator", "ENGINE COOLING SYSTEM" in LC-13, LC-14.
ON*1	7	Cooling fan	CONSULT-II	Operating	See "TROUBLE DIAG- NOSIS FOR OVER- HEAT" (EC-1051).
OFF	8	Combustion gas leak	Color checker chemi- cal tester 4 Gas ana- lyzer	Negative	_
ON*3	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	See "Changing Engine Coolant", "ENGINE MAINTENANCE" in <i>MA-26</i> .
OFF* ⁴	10	Coolant return from reservoir tank to radia- tor	Visual	Should be initial level in reservoir tank	See "ENGINE MAINTE- NANCE" in <i>MA-26</i> .
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	See "Inspection", "CYL-INDER HEAD" in <i>EM-88</i> .
	12	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	See "Inspection", "CYL-INDER BLOCK" in <i>EM-104</i> .

^{*1:} Turn the ignition switch ON.

For more information, refer to "OVERHEATING CAUSE ANALYSIS", LC-34.

EL

BT

HA

SC

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

On Board Diagnosis Logic

VG33E

On Board Diagnosis Logic

NGEC1052

This diagnosis checks whether the engine coolant temperature is extraordinary high, even when the load is not heavy.

When malfunction is detected, the malfunction indicator lamp (MIL) will light up even in the first trip.

Malfunction is detected when engine coolant temperature is excessively high under normal engine speed.

Possible Cause

NGEC1053

- Cooling fan (Crankshaft driven)
- Thermostat
- Improper ignition timing
- Engine coolant temperature sensor
- Blocked radiator
- Blocked front end (Improper fitting of nose mask)
- Crushed vehicle frontal area (Vehicle frontal is collided but not repaired)
- Blocked air passage by improper installation of front fog lamp or fog lamps.
- Improper mixture ratio of coolant
- Damaged bumper

For more information, refer to "MAIN 12 CAUSES OF OVERHEATING", EC-926.

VG33E

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the engine coolant over temperature enrichment protection check, a DTC might not be confirmed.

GI

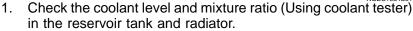
WARNING:

MAX

MIN.

OK

SEF621W


Never remove the radiator cap when the engine is hot. Serious burns could be caused by high-pressure fluid escaping from the radiator. MA

Wrap a thick cloth around the cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

LC

WITH CONSULT-II

NGEC1054S01

EC

Allow engine to cool before checking coolant level and mixture ratio.

~ n

 If the coolant level in the reservoir and/or the radiator is below the proper range, skip following steps and go to "Diagnostic Procedure", EC-923.

GL

 If the coolant mixture ratio is out of range between 45 to 55%, replace the coolant. Refer to *MA-26*, "Changing Engine Coolant".

MT

a) Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute like pouring coolant by kettle. Be sure to use coolant with the proper mixture ratio. Refer to *MA-15*, "Anti-freeze Coolant Mixture Ratio".

T

b) After refilling coolant, run engine to ensure that no water-flow noise is emitted. After checking or replacing coolant, go to step 3) below.

F

2. Confirm whether customer filled the engine coolant or not. If customer filled the engine coolant, skip following steps and go to "Diagnostic Procedure", EC-923.

שי

 Start engine and make sure that cooling fan (crankshaft driven) operates. If NG, go to "Diagnostic Procedure", EC-923. After repair, go to next step.

. . .

4. Check for blocked coolant passage.

SU

Warm up engine to normal operating temperature, then grasp upper and lower radiator hoses and make sure that coolant flows.

30

If NG, go to step 4 of "Diagnostic Procedure", EC-923. After repair, go to next step.

ST

Be extremely careful not to touch any moving or adjacent parts.

5. Check radiator for blocked air passage

RS

Check for blocked condenser or radiator (condenser or radiator fins damaged, condenser or radiator clogged), after market fog lamps ...etc. Check for condenser or radiator fin damage, shroud damage, vehicle front end for clogging of debris or insects ...etc.

3T

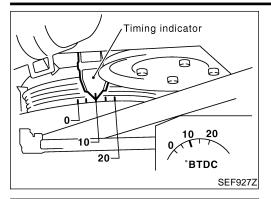
Check for improper fitting of front end cover, damaged radiator grille or bumper, vehicle frontal area damaged by collision but not repaired.

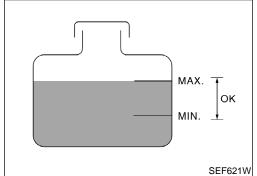
HA

If NG, take appropriate action and then go to next step.

SC

 Check ECT sensor for proper operation. Refer to step 5 of "Diagnostic Procedure", EC-923. If NG, replace ECT sensor and go to next step.


ΞL



VG33E

Overall Function Check (Cont'd)

7. Check ignition timing. Refer to "Basic Inspection", EC-694. Make sure that ignition timing is $10^{\circ} \pm 2^{\circ}$ at 700 ± 50 rpm. If NG, adjust ignition timing and then recheck.

WITHOUT CONSULT-II

NGEC1054S02

1. Check the coolant level and mixture ratio (Using coolant tester) in the reservoir tank and radiator.

Allow engine to cool before checking coolant level and mixture ratio.

- If the coolant level in the reservoir and/or radiator is below the proper range, skip the following steps and go to step 3 of "Diagnostic Procedure", EC-923.
- If the coolant mixture ratio is out of range between 45 to 55%, replace the coolant. Refer to *MA-26*, "Changing Engine Coolant".
- a) Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute like pouring coolant by kettle. Be sure to use coolant with the proper mixture ratio. Refer to *MA-15*, "Anti-freeze Coolant Mixture Ratio".
- After refilling coolant, run engine to ensure that no water-flow noise is emitted. After checking or replacing coolant, go to step 3) below.
- 2. Confirm whether customer filled the engine coolant or not. If customer filled engine coolant, skip following steps and go to "Diagnostic Procedure", EC-923.
- 3. Start engine and make sure that cooling fan (crankshaft driven) operates.

Be careful not to overheat engine.

If NG, go to step 9 of "Diagnostic Procedure", EC-923. After repair, go to next step.

4. Check for blocked coolant passage.

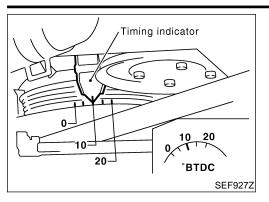
Warm up engine to normal operating temperature, then grasp upper and lower radiator hoses and make sure that coolant flows.

If NG, go to step 4 of "Diagnostic Procedure", EC-923. After repair, go to next step.

Be extremely careful not to touch any moving or adjacent parts.

5. Check radiator for blocked air passage

Check for blocked condenser or radiator (condenser or radiator fins damaged, condenser or radiator clogged), after market fog lamps,...etc. Check for condenser or radiator fin damage, shroud damage, vehicle front end for clogging of debris or insects ...etc.


Check for improper fitting of front end cover, damaged radiator grille or bumper, vehicle frontal area damaged by collision but not repaired.

If NG, take appropriate action and then go to next step.

 Check ECT sensor for proper operation. Refer to step 5 of "Diagnostic Procedure", EC-923. If NG, replace ECT sensor and go to next step.

VG33E

Overall Function Check (Cont'd)

7. Check ignition timing. Refer to "Basic Inspection", EC-694. Make sure that ignition timing is 10° \pm 2° at 700 \pm 50 rpm. If NG, adjust ignition timing and then recheck.

G[

MA

EM

LC

EC

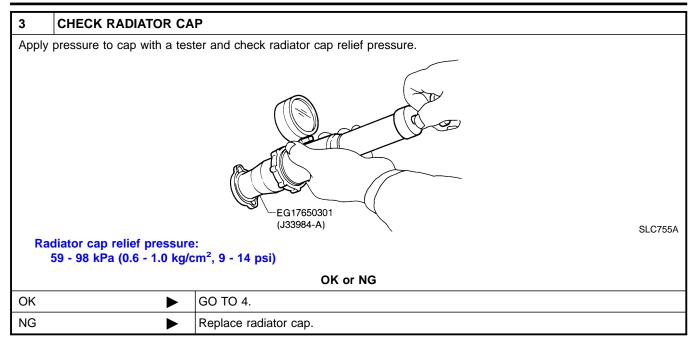
FE

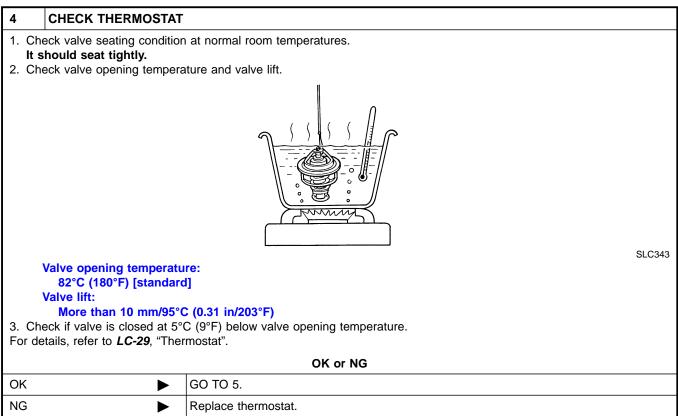
Diagnostic Procedure

		NGEC1055	
1	CHECK COOLING FAN	(CRANKSHAFT DRIVEN) OPERATION	
Start e	Start engine and make sure that cooling fan (crankshaft driven) operates.		
	OK or NG		
ОК	OK ▶ GO TO 2.		
NG	>	Check cooling fan (crankshaft driven). Refer to <i>LC-32</i> , "Cooling Fan".	

NG		Check cooling fan (crankshaft driven). Refer to <i>LC-32</i> , "Cooling Fan".		G
2	CHECK COOLING SYS	TEM FOR LEAK		\mathbb{N}
	y pressure to the cooling sy TION:	stem with a tester, and check if the pressure drops.		
	er than the specified presesting pressure: 157 kPa (sure may cause radiator damage. 1.6 kg/cm², 23 psi)		A
		→ Hose adapter		T
				P
		EG17650301 (J33984-A)		A
			SLC754A	8
Pres	sure should not drop.			-
		OK or NG		00
OK	>	GO TO 3.		
NG		Check the following for leak: Hose		S
		 Hose Radiator Water pump Refer to <i>LC-28</i>, "Water Pump". 		R

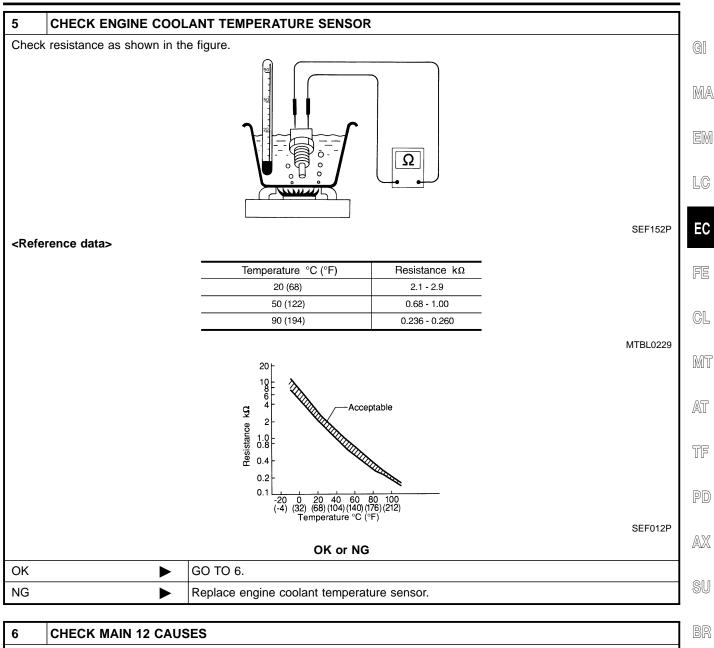
BT


HA


SC

EL

VG33E


Diagnostic Procedure (Cont'd)

VG33E

Diagnostic Procedure (Cont'd)

6	6 CHECK MAIN 12 CAUSES	
If the o	cause cannot be isolated, g	go to "MAIN 12 CAUSES OF OVERHEATING", EC-926.
	► INSPECTION END	

EL

ST

RS

BT

HA

SC

VG33E

Main 12 Causes of Overheating

			Main 12 Cause	s of Overheating	NGEC105
Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	Blocked radiator Blocked condenser Blocked radiator grille Blocked bumper	Visual	No blocking	_
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See <i>MA-13</i> , "RECOM- MENDED FLUIDS AND LUBRICANTS".
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See <i>MA-26</i> , "Changing Engine Coolant".
	4	Radiator cap	Pressure tester	59 - 98 kPa (0.6 - 1.0 kg/cm², 9 - 14 psi) (Limit)	See <i>LC-26</i> , "System Check".
ON*2	5	Coolant leaks	Visual	No leaks	See <i>LC-26</i> , "System Check".
ON*2	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	See <i>LC-29</i> , "Thermostat" and <i>LC-31</i> , "Radiator".
ON*1	7	Cooling fan (Crankshaft driven)	Visual	Operating	See <i>LC-32</i> , "Cooling Fan".
OFF	8	Combustion gas leak	Color checker chemi- cal tester 4 Gas ana- lyzer	Negative	_
ON*3	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	See <i>MA-26</i> , "Changing Engine Coolant".
OFF* ⁴	10	Coolant return from reservoir tank to radia- tor	Visual	Should be initial level in reservoir tank	See <i>MA-25</i> , "ENGINE MAINTENANCE".
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	See <i>EM-88</i> , "Inspection".
	12	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	See <i>EM-104</i> , "Inspection".

^{*1:} Turn the ignition switch ON.

For more information, refer to LC-34, "OVERHEATING CAUSE ANALYSIS".

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

When a misfire occurs, engine speed will fluctuate. If the engine speed fluctuates enough to cause the CKP sensor signal to vary, ECM can determine that a misfire is occurring.

GI

Sensor	Input Signal to ECM	ECM function	[
Crankshaft position sensor (OBD)	Engine speed	On board diagnosis of misfire	

MA

The misfire detection logic consists of the following two conditions.

1. One Trip Detection Logic (Three Way Catalyst Damage) On the first trip that a misfire condition occurs that can damage the three way catalyst (TWC) due to overheating, the MIL will blink.

When a misfire condition occurs, the ECM monitors the CKP sensor signal every 200 engine revolutions for a change. When the misfire condition decreases to a level that will not damage the TWC, the MIL will turn off. If another misfire condition occurs that can damage the TWC on a second trip, the MIL will blink. When the misfire condition decreases to a level that will not damage the TWC, the MIL will remain on. If another misfire condition occurs that can damage the TWC, the MIL will begin to blink again.

EC

Two Trip Detection Logic (Exhaust quality deterioration) For misfire conditions that will not damage the TWC (but will affect vehicle emissions), the MIL will only light when the misfire is detected on a second trip. During this condition, the ECM monitors the CKP sensor signal every 1,000 engine revolutions.

MT

A misfire malfunction can be detected on any one cylinder or on multiple cylinders.

TF

Malfunction is detected when multiple cylinders misfire, No. 1 cylinder misfires, No. 2 cylinder misfires, No. 3 cylinder misfires, No. 4 cylinder misfires, No. 5 cylinder misfires and No. 6 cylinder misfires.

PD

POSSIBLE CAUSE

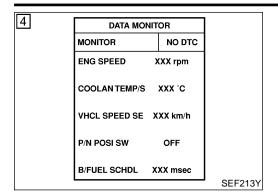
Improper spark plug

Insufficient compression

NGEC0708S01

- Incorrect fuel pressure
- The injector circuit is open or shorted
- Injectors
- Intake air leak
- The ignition secondary circuit is open or shorted
- Lack of fuel
- Drive plate or flywheel
- Heated oxygen sensor 1 (front)
- Incorrect distributor rotor

ST


BT

HA

SC

VG33E

DTC Confirmation Procedure

DTC Confirmation Procedure

=NGEC0709

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

- Turn ignition switch ON, and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and warm it up to normal operating temperature.
- 3) Turn ignition switch OFF and wait at least 5 seconds.
- 4) Start engine again and drive at 1,500 to 3,000 rpm for at least 3 minutes.

Hold the accelerator pedal as steady as possible.

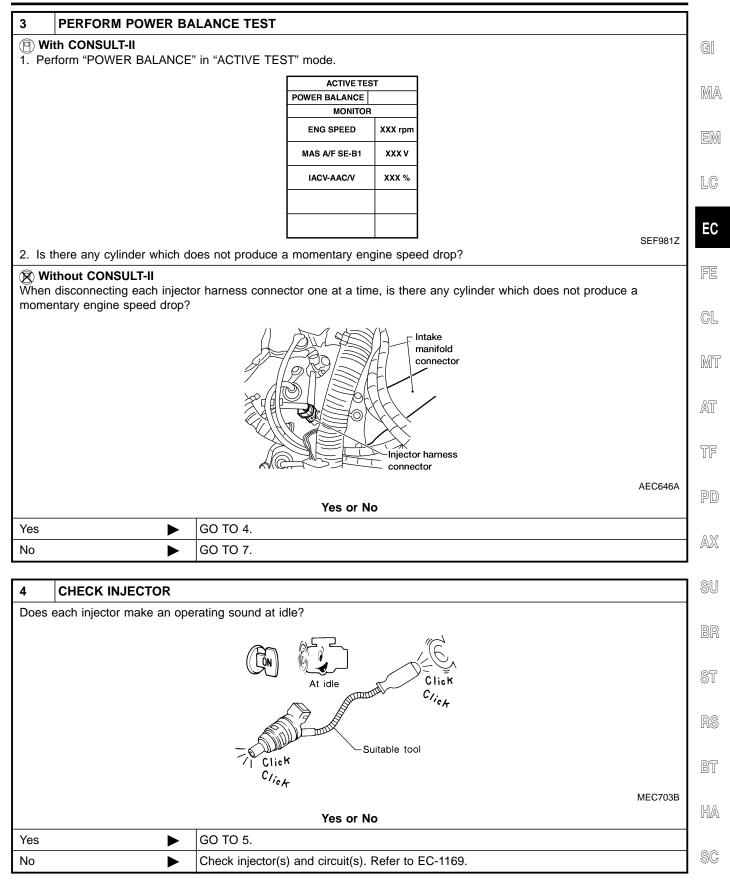
NOTE:

Refer to the freeze frame data for the test driving conditions.

- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-928.
- **With GST**

Follow the procedure "With CONSULT-II".

Diagnostic Procedure


UCEC074

		NGEC0710	
1	1 CHECK FOR INTAKE AIR LEAK		
	Start engine and run it at idle speed. Listen for the sound of the intake air leak.		
	OK or NG		
OK	OK ▶ GO TO 2.		
NG	>	Discover air leak location and repair.	

2	CHECK FOR EXHAUST SYSTEM CLOGGING	
Stop engine and visually check exhaust tube, three way catalyst and muffler for dents.		
OK or NG		
OK 🕨 GO TO 3.		
NG	>	Repair or replace it.

VG33E

Diagnostic Procedure (Cont'd)

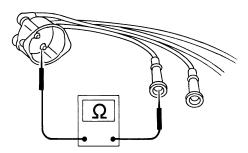
VG33E

Diagnostic Procedure (Cont'd)

5 CHECK IGNITION SPARK 1. Disconnect ignition wire from spark plug. 2. Connect a known good spark plug to the ignition wire. 3. Place end of spark plug against a suitable ground and crank engine. 4. Check for spark. Ignition wire Spark plug OK or NG

6 CHECK IGNITION WIRES

OK


NG

1. Inspect wires for cracks, damage, burned terminals and for improper fit.

GO TO 7.

GO TO 6.

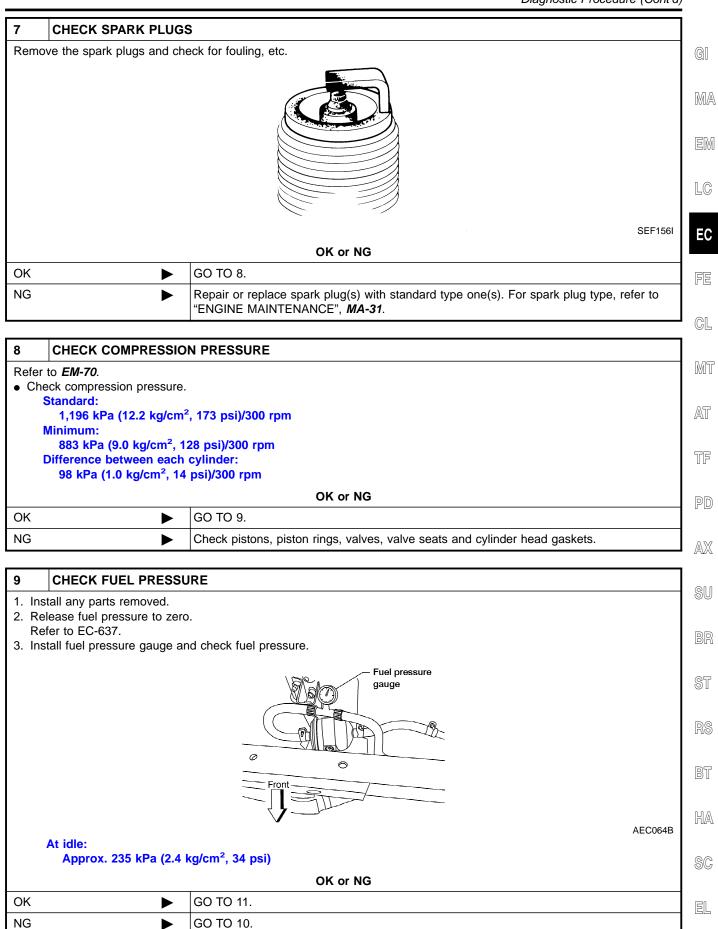
2. Measure the resistance of wires to their distributor cap terminal. Move each wire while testing to check for intermittent breaks.

SEF174P

Resistance:

Cylinder No.	Resistance kΩ [at 25°C (77°F)]
1	Approximately 6.5
2	Approximately 10.0
3	Approximately 8.5
4	Approximately 12.5
5	Approximately 8.5
6	Approximately 11.0

MTBL0235


If the resistance exceeds the above specification, inspect ignition wire to distributor cap connection. Clean connection or replace the ignition wire with a new one.

OK or NG

•	 Check the following: Distributor rotor head for incorrect parts Ignition coil, power transistor and their circuits Refer to EC-1162.
NG ►	Replace.

VG33E

Diagnostic Procedure (Cont'd)

VG33E

Diagnostic Procedure (Cont'd)

10	DETECT MALFUNCTIO	NING PART
FueFueFue	t the following. If pump and circuit (Refer to be pressure regulator (Refer to lines (Refer to "ENGINE) If liter for clogging	
	Repair or replace.	

11	CHECK IGNITION TIMING				
Chec	Check the following items. Refer to "Basic Inspection", EC-694.				
		Items	Specifications		
		Ignition timing	10° ± 2° BTDC		
		Base idle speed	700 ± 50 rpm (in "P" or "N" position)		
		Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.3 mm (0.012 in): ON 0.4 mm (0.016 in): OFF		
		Target idle speed	750 ± 50 rpm (in "P" or "N" position)		
				MTBL0576	
		OI	K or NG		
OK (\	With CONSULT-II)	GO TO 12.			
OK (\	Without CONSULT-	GO TO 13.			
NG	>	Adjust ignition timing.			

VG33E

GI

MA

EC

FE

CL

MT

AT

TF

PD

Diagnostic Procedure (Cont'd)

CHECK HEATED OXYGEN SENSOR 1 (FRONT)

(P) With CONSULT-II

12

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 3. Hold engine speed at 2,000 rpm under no load during the following steps.
- 4. Touch "RECORD" on CONSULT-II screen.

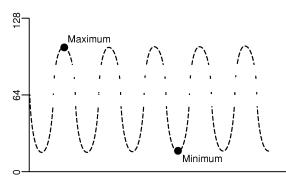
DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
COOLAN TEMP/S	XXX °C	
HO2S1 (B1)	XXX V	
HO2S2 (B2)	XXX V	
, ,		

SEF967Y

- 5. Check the following.
- "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown left:

вапк 1 cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R-L-R

Bank 2


cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R

R means HO2S1 MNTR (B1)/(B2) indicates RICH L means HO2S1 MNTR (B1)/(B2) indicates LEAN

SEF647Y

- "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Trigger	ENG	HO2S1
	SPEED	(B1)
	rpm	V
XXX	XXX	XXX

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

CAUTION:

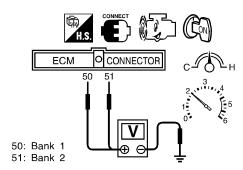
- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

OK	or	NG
----	----	----

OK •	GO TO 14.
NG ►	Replace heated oxygen sensor 1 (front).

HA

SC


VG33E

Diagnostic Procedure (Cont'd)

13 CHECK FRONT HEATED OXYGEN SENSOR LH/RH

Without CONSULT-II

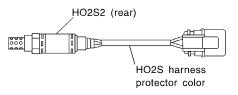
- 1. Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 50 (right bank sensor signal) or 51 (left bank sensor signal) and engine ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.

- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V 2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

SEF796Z

CAUTION:


Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK ▶	GO TO 15.
NG ►	GO TO 14.

14 REPLACE HEATED OXYGEN SENSOR 2 (REAR)

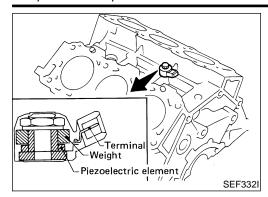
- 1. Stop vehicle and turn ignitioin switch OFF.
- 2. Check heated oxygen sensor 2 (rear) harness protector color.

HO2S2 (rear) (bank 1): White or Gray HO2S2 (rear) (bank 2): Red or Red/Brown

SEF372Z

CAUTION:

Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.


Replace malfunctioning heated oxygen sensor 2 (rear).

VG33E

	Diagnostic Procedure (Cont'd)						
	MASS AIR FLOW SENSOR						
With CONSULT-II Check mass air flow sensor signal in "DATA MONITOR" mode with CONSULT-II.							
3.3 - 4.8 g·m/sec: at idling							
12.0 - 14.9 g·m/sec: at 2,500 rpm							
	flow sensor signal in MODE 1 with GST.						
3.3 - 4.8 g·m/sec: at idling 12.0 - 14.9 g·m/sec: at 2,500 rpm							
	OK or NG						
OK .	► GO TO 16.						
NG	Check connectors for rusted terminals or loose connections in the mass air flow sensor						
	circuit or engine grounds. Refer to EC-739.						
16 CHECK	SYMPTOM MATRIX CHART						
	the rough idle symptom in "Symptom Matrix Chart", EC-710.						
CHECK REITIS OIT	OK or NG						
 OK	▶ GO TO 17.						
NG	Repair or replace.						
	Tropali of Topiace.						
17 ERASE	THE 1ST TRIP DTC						
Some tests may cause a 1st trip DTC to be set.							
Erase the 1st trip DTC from the ECM memory after performing the tests. Refer to EC-666.							
	▶ GO TO 18.						
	INTERMITTENT INCIDENT						
Refer to "TROU	BLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.						
	INSPECTION END						

EL

Component Description

Component Description

The knock sensor is attached to the cylinder block. It senses engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM. Freeze frame data will not be stored in the ECM for the knock sensor. The MIL will not light for knock sensor malfunction. The knock sensor has one trip detection logic.

ECM Terminals and Reference Value

NGEC0712

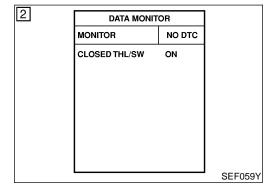
Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
64	W	Knock sensor	[Engine is running] ● Idle speed	Approximately 2.5V

On Board Diagnosis Logic


NOFCOZA

Malfunction is detected when an excessively low or high voltage from the knock sensor is sent to ECM.

POSSIBLE CAUSE

NGEC0713S01

- Harness or connectors (The knock sensor circuit is open or shorted.)
- Knock sensor

DTC Confirmation Procedure

NGEC0714

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- (P) With CONSULT-II
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and run it for at least 5 seconds at idle speed.
- 3) If DTC is detected, go to "Diagnostic Procedure", EC-938.

With GST

Follow the procedure "With CONSULT-II".

ECM F29

F101 6

NGEC0715

JOINT CONNECTOR-1

1

B/Y

EM

GI

MA

L©

5**9**

EC

FE

CL

MT

AT

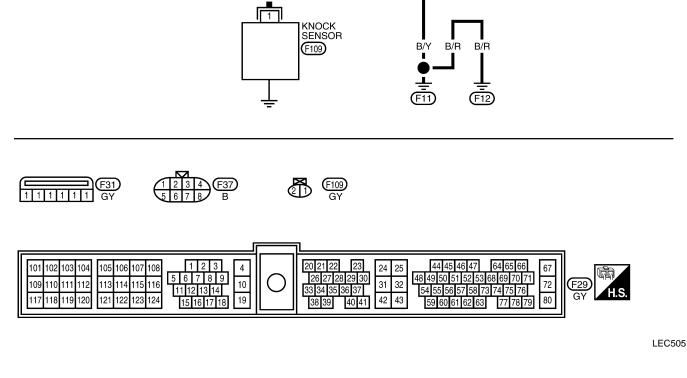
TF

PD

AX

SU

BR


ST

RS

BT

HA

SC

Diagnostic Procedure

NGEC0716

1 CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-I

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check resistance between ECM terminal 64 and engine ground.

NOTE:

It is necessary to use an ohmmeter which can measure more than 10 M Ω .

Resistance:

Approximately 500 - 620 k Ω [at 25°C (77°F)]

4. Also check harness for short to ground and short to power.

$\overline{}$	1/		N.	_
റ	ĸ	α r	N	(-

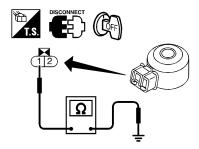
OK •	GO TO 5.
NG >	GO TO 2.

2 CHECK INPUT SIGNAL CIRCUIT-II

- 1. Disconnect knock sensor harness connector.
- Check harness continuity between ECM terminal 64 and knock sensor terminal 1. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 4.
NG ►	GO TO 3.


3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connector F37, F101
- Harness for open or short between ECM and knock sensor
 - Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK KNOCK SENSOR

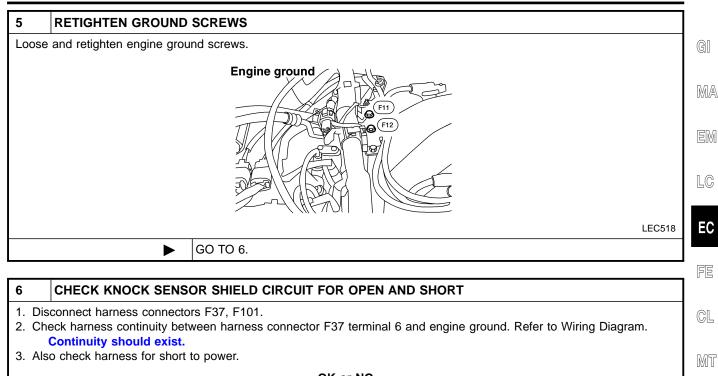
- Use an ohmmeter which can measure more than 10 M Ω .
- 1. Disconnect knock sensor harness connector.
- 2. Check resistance between terminal 1 and ground.

Resistance: 500 - 620 k Ω [at 25°C (77°F)]

SFF7997

CAUTION:

Do not use any knock sensors that have been dropped or physically damaged. Use only new ones.


OK or NG

OK •	GO TO 8.
NG ►	Replace knock sensor.

DTC P0325 KNOCK SENSOR (KS)

VG33E

Diagnostic Procedure (Cont'd)

OK or NG		
ОК	•	GO TO 8.
NG	•	GO TO 7.
<u> </u>		

DETECT MALFUNCTIONING PART

Check the following.			
 Harness connectors F37, F10 	Harness connectors F37, F101		
Joint connectors - 1			
 Harness for open between harness connector F37 and engine ground 			
•	Repair open circuit or short to power in harness or connectors.		

Refer to "TROUBLE	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
► INSPECTION END			

AT

TF

PD

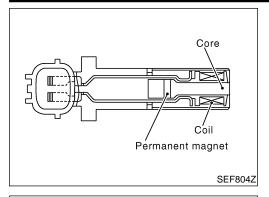
AX

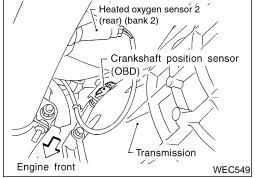
SU

BR

ST

RS


BT


HA

SC

EL

Component Description

Component Description

The crankshaft position sensor (OBD) is located on the transaxle housing facing the gear teeth (cogs) of the flywheel or drive plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet, core and coil.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

This sensor is not used to control the engine system. It is used only for the on board diagnosis.

ECM Terminals and Reference Value

NGEC0718

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

_				-
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (AC Voltage)
		Crankshaft position sensor (OBD)	[Engine is running] • Warm-up condition • Idle speed	1 - 2V (AC range) (V) 10 5 0.2 ms
47	L		[Engine is running] • Engine speed is 2,000 rpm	3 - 4V (AC range) (V) 10 5 0.2 ms SEF691W

On Board Diagnosis Logic

On Board Diagnosis Logic

Malfunction is detected when the proper pulse signal from the crankshaft position sensor (OBD) is not sent to ECM while the engine is running at the specified engine speed.

POSSIBLE CAUSE

NGEC0719S01

Harness or connectors [The crankshaft position sensor (OBD) circuit is open.]

EM

MA

Crankshaft position sensor (OBD)

LC

2 DATA MONITOR MONITOR NO DTC XXX rpm **ENG SPEED** SEF058Y

DTC Confirmation Procedure

NOTE: If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

EC

FE

(P) With CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode 1) with CONSULT-II.
- Start engine and run it for at least 15 seconds at idle speed.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-943.

MT

With GST

Follow the procedure "With CONSULT-II".

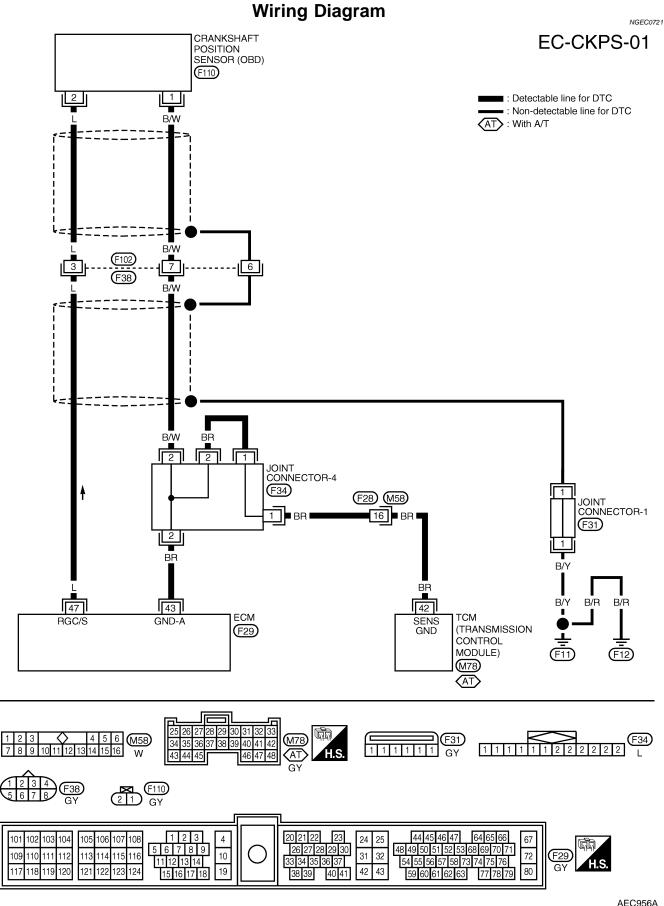
TF

AT

PD

AX

SU


ST

BT

HA

SC

EL

Diagnostic Procedure

NGEC0722

MA

GI

Engine ground

EC

LEC518

FE

GO TO 2.

GL

CHECK CKPS (OBD) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

1. Disconnect crankshaft position sensor (OBD) and ECM harness connectors.

MT

Heated oxygen sensor 2 (rear) (bank 2)

AT

Crankshaft position sensor

TF

PD

Transmission

Engine front 2. Check continuity between ECM terminal 47 and sensor terminal 2. Refer to Wiring Diagram. Continuity should exist.

3. Also check harness for short to ground and short to power.

WEC549

OK or NG

OK GO TO 4. NG GO TO 3.

ST

DETECT MALFUNCTIONING PART

Check the following.

• Harness connectors F38, F102

• Harness for open or short between ECM and crankshaft position sensor (OBD)

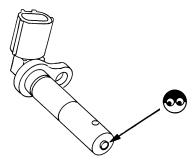
Repair open circuit or short to ground or short to power in harness or connectors.

HA

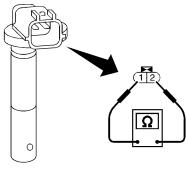
SC

Diagnostic Procedure (Cont'd)

4	CHECK CKPS (OBD) GROUND CIRCUIT FOR OPEN AND SHORT				
2. Ch	Reconnect ECM harness connector. Check harness continuity between sensor terminal 1 and engine ground. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power.				
	OK or NG				
OK	>	GO TO 6.			
NG	•	GO TO 5.			


5 **DETECT MALFUNCTIONING PART**

Check the following.


- Harness connectors F38, F102
- Harness connectors F28, M58
- Joint connector-4
- Harness for open or short between crankshaft position sensor (OBD) and ECM
- Harness for open or short between crankshaft position sensor (OBD) and TCM (Transmission Control Module)
 - Repair open circuit or short to ground or short to power in harness or connectors.

CHECK CRANKSHAFT POSITION SENSOR (OBD)

- 1. Disconnect crankshaft position sensor (OBD) harness connector.
- 2. Loosen the fixing bolt of the sensor.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.

5. Check resistance as shown in the figure.

SEF504V

SEF960N

Resistance: Approximately 512 - 632Ω [at 20°C (68°F)]

OK or NG

OK		GO TO 7.
NG		Replace crankshaft position sensor (OBD).

Diagnostic Procedure (Cont'd)

7 CHECK	CKPS (OBD) SHIEL	CIRCUIT FOR OPEN AND SHORT		
2. Check harne	narness connectors F38 ess continuity between ty should exist.	F102. arness connector F38 terminal 6 and engine ground. Refer to Wiring I	Diagram.	
3. Also check h	3. Also check harness for short to power.			
		OK or NG		
OK	▶ GO ⁻	O 9.	[5	
NG	▶ GO ⁻	O 8.		
	•			

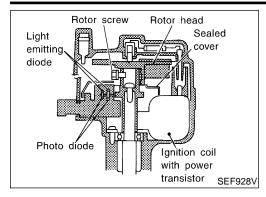
8	DETECT MALFUNCTIONING PART		
Check the following.			
	 Harness connectors F38, F102 Joint connector-1 		
	Harness for open between harness connector F38 and engine ground		
	>	Repair open circuit or short to power in harness or connectors.	

9	9 CHECK INTERMITTENT INCIDENT		
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
>		INSPECTION END	M

EC-945

MT AT TF PD $\mathbb{A}\mathbb{X}$ SU BR ST RS BT

HA


SC

EL

EC

FE

Component Description

Component Description

The camshaft position sensor is a basic component of the engine control system. It monitors engine speed and piston position. These input signals to the ECM are used to control fuel injection, ignition timing and other functions.

The camshaft position sensor has a rotor plate and a wave-forming circuit. The rotor plate has 360 slits for a 1° (POS) signal and 6 slits for a 120° (REF) signal. The wave-forming circuit consists of Light Emitting Diodes (LED) and photo diodes.

The rotor plate is positioned between the LED and the photo diode. The LED transmits light to the photo diode. As the rotor plate turns, the slits cut the light to generate rough-shaped pulses. These pulses are converted into on-off signals by the wave-forming circuit and sent to the ECM.

The distributor is not repairable and must be replaced as an assembly except distributor cap and rotor head.

NOTE:

The rotor screw which secures the distributor rotor head to the distributor shaft must be torqued properly.

o: 3.6±0.3 N·m (37±3 kg-cm, 32±3 in-lb)

ECM Terminals and Reference Value

NGEC0724

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

age to	ge to the Low 3 transistor. Ose a ground other than the Low terminals, such as the ground.				
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
4	OR/B	ECM relay (Self shut-off)	[Engine is running] [Ignition switch OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V	
			[Ignition switch OFF] • A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	
44	PU	Camshaft position sensor (Reference signal)	[Engine is running] ● Idle speed	0.3 - 0.5V (V) 10 5 0 20 ms SEF997U	
48	PU		[Engine is running] ● Engine speed is 2,000 rpm	0.3 - 0.5V (V) 10 5 0 44444444444444444444444444444444	

DTC P0340 CAMSHAFT POSITION SENSOR (CMPS)

VG33E

TF

PD

ECM Terminals and Reference Value (Cont'd)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	(
49 LG		[Engine is running] • Warm-up condition • Idle speed	Approximately 2.5V (V) 10 5 0 0.2 ms SEF999U		
49	LG	sor (Position signal)	[Engine is running] ● Engine speed is 2,000 rpm	Approximately 2.5V (V) 10 5 0.2 ms SEF001V	
67	B/P	Power supply for ECM	[Ignition switch ON]	BATTERY VOLTAGE	
72	B/P	1 ower supply for LOW	[ignition switch Oil]	(11 - 14V)	
117	B/P	Current return	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)	

On Board Diagnosis Logic

Malfunction is detected when

(Malfunction A) either 1° or 120° signal is not sent to ECM for the first few seconds during engine cranking,

(Malfunction B) either 1° or 120° signal is not sent to ECM often enough while the engine speed is higher than the specified engine

(Malfunction C) the relation between 1° and 120° signal is not in the normal range during the specified engine speed.

POSSIBLE CAUSE

- Harness or connectors (The camshaft position sensor circuit is open or shorted.)
- Camshaft position sensor
- Starter motor (Refer to **SC-10**.)
- Starting system circuit (Refer to SC-10.)
- Dead (Weak) battery

BT HA

SC

EL

DTC Confirmation Procedure

NOTE:

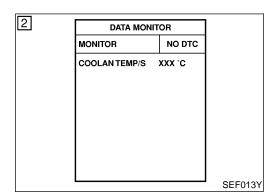
NGEC0726

- Perform "PROCEDURE FOR MALFUNCTION A" first. If DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B AND C".
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

PROCEDURE FOR MALFUNCTION A

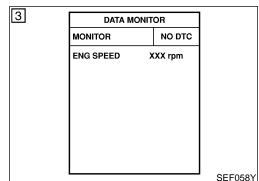

NGEC0726S01

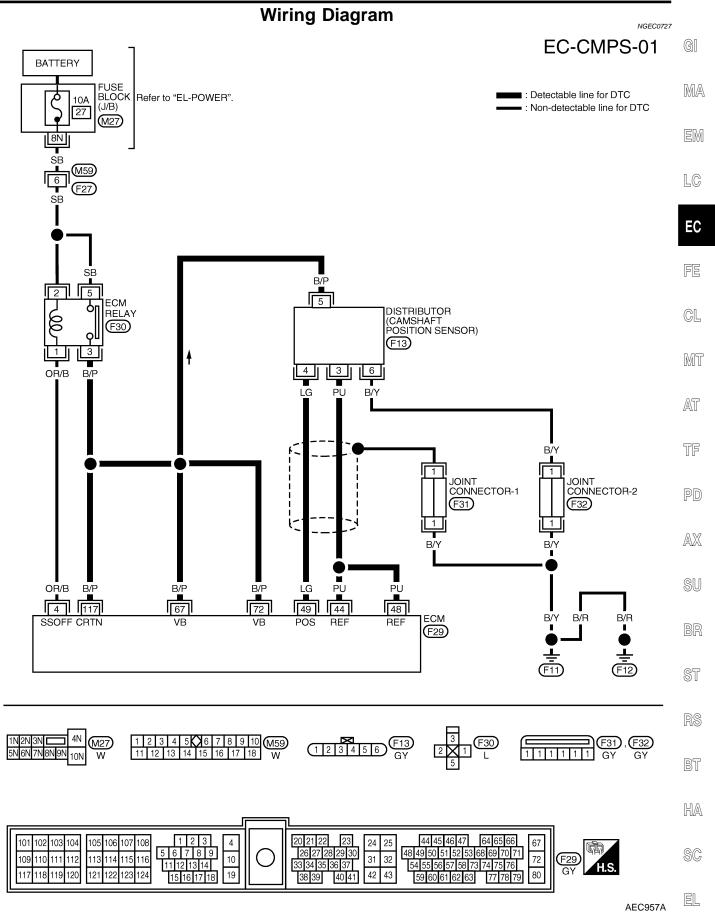
- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Crank engine for at least 2 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-950.

With GST

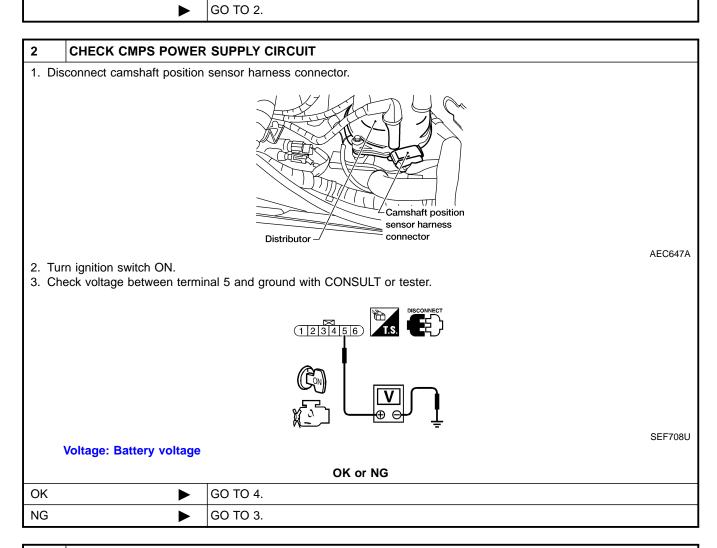
Follow the procedure "With CONSULT-II".

PROCEDURE FOR MALFUNCTION B AND C


NGEC0726S02


(II) With CONSULT-II

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and run it for at least 2 seconds at idle speed.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-950.


With GST

Follow the procedure "With CONSULT-II".

1 RETIGHTEN GROUND SCREWS 1. Turn ignition switch OFF. 2. Loosen and retighten engine ground screws. Engine ground F12 LEC518

DETECT MALFUNCTIONING PART Check the following. Harness for open or short between camshaft position sensor and ECM relay Harness for open or short between camshaft position sensor and ECM Repair harness or connectors.

DTC P0340 CAMSHAFT POSITION SENSOR (CMPS)

VG33E

Diagnostic Procedure (Cont'd)

4	CHECK CMPS INPUT	SIGNAL CIRCUIT FOR OPEN AND SHORT		
	1. Turn ignition switch OFF.			
 Disconnect ECM harness connector. Check harness continuity between sensor terminal 4 and ECM terminal 49, sensor terminal 3 and ECM terminals 44, 				
48	48. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power.			
	OK or NG			
ОК	•	GO TO 5.	1	
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.	LC	

5	CHECK CMPS GROUN	ND CIRCUIT FOR OPEN AND SHORT				
2. Ch	Turn ignition switch OFF. Check harness continuity between sensor terminal 6 and engine ground. Continuity should exist. Also check harness for short to power.					
	OK or NG					
OK	>	GO TO 7.				
NG	•	GO TO 6.				

6	DETECT MALFUNCTIO	NING PART	
	the following.		
	Harness for open between camshaft position sensor and engine ground		
	>	Repair open circuit or short to power in harness or connector.	

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

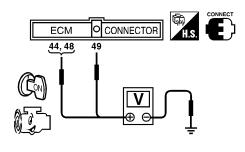
BR

ST

RS

BT

HA


SC

EL

Diagnostic Procedure (Cont'd)

CHECK CAMSHAFT POSITION SENSOR

- 1. Install any parts removed.
- 2. Start engine.
- 3. Check voltage between ECM terminals 44, 48 and ground, ECM terminal 49 and ground with DC range.

Terminal 44 or 48 and engine ground

Condition	Idle	2,000 rpm
Voltage	0.3 - 0.5V	0.3 - 0.5V
Pulse signal	(V) 10 5 0 20 ms	(V) 10 5 0

Terminal 49 and engine ground

Condition	Idle	2,000 rpm
Voltage	Approximately 2.5V	Approximately 2.5V
Pulse signal	(V) 10 5 0	(V) 10 5 0 0.2 ms

AEC072B

OK or NG

OK ▶	GO TO 8.
NG ►	Replace distributor assembly with camshaft position sensor.

8 CHECK CMPS SHIELD CIRCUIT FOR OPEN AND SHORT

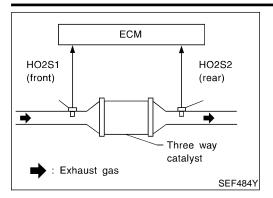
- 1. Turn ignition switch OFF.
- 2. Disconnect joint connector-1.
- 3. Check the following.
- Continuity between joint connector terminal 1 and ground
- Joint connector

(Refer to EL-244, "HARNESS LAYOUT".)

Continuity should exist.

- 4. Also check harness for short to power.
- 5. Then reconnect joint connector-1.

OK or NG


OK •	GO TO 9.
NG ►	Repair open circuit or short to power in harness or connectors.

9	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
	>	INSPECTION END	

DTC P0420 (RIGHT BANK, -B1), P0430 (LEFT BANK, -B2) THREE WAY CATALYST FUNCTION

VG33E

On Board Diagnosis Logic

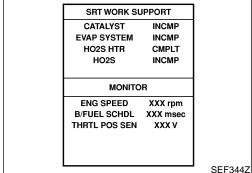
On Board Diagnosis Logic

The ECM monitors the switching frequency ratio of heated oxygen sensors 1 (front) and 2 (rear).

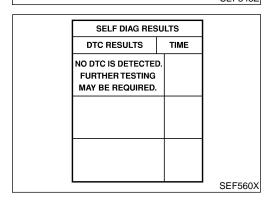
A warm-up three way catalyst with high oxygen storage capacity will indicate a low switching frequency of heated oxygen sensor 2 (rear). As oxygen storage capacity decreases, the heated oxygen sensor 2 (rear) switching frequency will increase.

When the frequency ratio of heated oxygen sensors 1 (front) and 2 (rear) approaches a specified limit value, the warm-up three way catalyst malfunction is diagnosed.

Malfunction is detected when warm-up three way catalyst does not operate properly, warm-up three way catalyst does not have enough oxygen storage capacity.


POSSIBLE CAUSE NGEC0740S01

Warm-up three way catalyst


- Exhaust tube
- Intake air leaks
- Injectors
- Injector leaks
- Spark plug
- Improper ignition timing

DTC Confirmation Procedure NOTE: If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test. With CONSULT-II TESTING CONDITION

- Open engine hood before conducting the following procedure.
- Do not hold engine speed for more than the specified minutes below.
- 1) Turn ignition switch ON.
- Select "DTC & SRT CONFIRMATION" the SRT WORK SUP-PORT" mode with CONSULT-II.
- 3) Start engine.
- Rev engine up to 2,500 to 3,500 rpm and hold it for 3 consecutive minutes then release the accelerator pedal completely.
- Wait 5 seconds at idle.
- Rev engine up to 2,000 to 3,000 rpm and maintain it until "INCMP" of "CATALYST" changes to "CMPLT" (It will take maximum of approximately 5 minute.).
- Select "SELF-DIAG RESULTS" mode with CONSULT-II. If the 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-955. If not "CMPLT", stop engine and cool down "COOLANT TEMP/SE" to less than 70°C (158°F) and retest from step 1).

SRT WORK SUPPORT CATALYST CMPLT **EVAP SYSTEM** INCMP HO2S HTR CMPLT HO2S INCMP MONITOR ENG SPEED XXX rpm B/FUEL SCHDL XXX msec THRTL POS SEN SEF345Z

GI

MA

EC

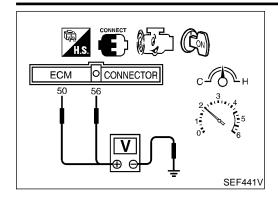
MT

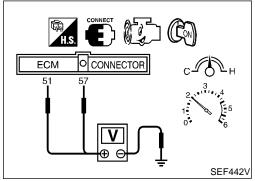
AT

TF

PD

SU


HA


SC

DTC P0420 (RIGHT BANK, -B1), P0430 (LEFT BANK, -B2) THREE WAY CATALYST FUNCTION

VG33E

Overall Function Check

Overall Function Check

NGEC0742

Use this procedure to check the overall function of the warm-up three way catalyst. During this check, a 1st trip DTC might not be confirmed.

CAUTION:

Always drive vehicle at a safe speed.

⊗ Without CONSULT-II

- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3) Set voltmeters probes between ECM terminals 50 [heated oxygen sensor 1 (front) (bank 1) signal], 51 [heated oxygen sensor 1 (front) (bank 2) signal] and engine ground, and ECM terminals 56 [heated oxygen sensor 2 (rear) (bank 1) signal], 57 [heated oxygen sensor 2 (rear) (bank 2) signal] and engine ground.
- 4) Keep engine speed at 2,000 rpm constant under no load.
- 5) Make sure that the voltage switching frequency (high & low) between ECM terminals 56 and engine ground, or 57 and engine ground is very less than that of ECM terminals 50 and engine ground, or 51 and engine ground.

Switching frequency ratio = A/B

A: Heated oxygen sensor 2 (rear) voltage switching frequency

B: Heated oxygen sensor 1 (front) voltage switching frequency

This ratio should be less than 0.75.

If the ratio is greater than above, it means warm-up three way catalyst does not operate properly. Go to "Diagnostic Procedure", EC-955.

NOTE:

If the voltage at terminal 50 or 51 does not switch periodically more than 5 times within 10 seconds at step 5, perform trouble diagnosis for "DTC P0133, P0153" first. (See EC-807.)

DTC P0420 (RIGHT BANK, -B1), P0430 (LEFT BANK, -B2) THREE WAY CATALYST FUNCTION

VG33E

Diagnostic Procedure

Diagnostic Procedure

=NGEC0743

1	CHECK EXHAUST SYS	TEM	Ĭ			
Visual	isually check exhaust tubes and muffler for dent.					
		OK or NG	l			
OK	>	GO TO 2.				
NG		Repair or replace it.				

 \mathbb{G}

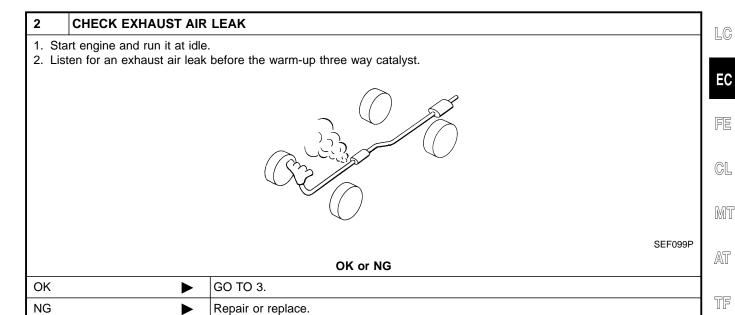
MA

EM

PD

AX

SU


BR

ST

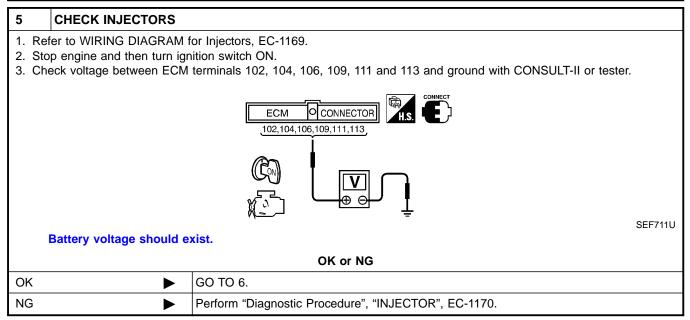
RS

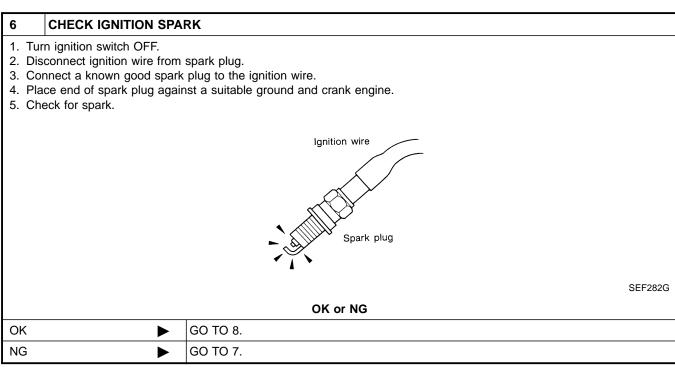
BT

HA

3	CHECK INTAKE AIR LEAK			
Listen	Listen for an intake air leak after the mass air flow sensor.			
	OK or NG			
OK	OK 🕨 GO TO 4.			
NG	>	Repair or replace.		

4	CHECK IGNITION TIMI	NG		
Check	the following items. Refer	to "Basic Inspection", EC-	-694.	
		Items	Specifications	•
		Ignition timing	10° ± 2° BTDC	
		Base idle speed	700 ± 50 rpm (in "P" or "N" position)	
		Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.3 mm (0.012 in): ON 0.4 mm (0.016 in): OFF	
		Target idle speed	750 ± 50 rpm (in "P" or "N" position)	
				MTBL0576
		O	K or NG	
OK	>	GO TO 5.		
NG	•	Adjust ignition timing.		

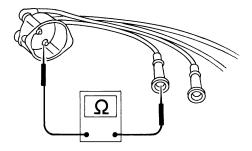

EL


SC

DTC P0420 (RIGHT BANK, -B1), P0430 (LEFT BANK, -B2) THREE WAY CATALYST FUNCTION

VG33E

Diagnostic Procedure (Cont'd)


DTC P0420 (RIGHT BANK, -B1), P0430 (LEFT BANK, -B2) THREE WAY CATALYST FUNCTION

VG33E

Diagnostic Procedure (Cont'd)

CHECK IGNITION WIRES

- 1. Inspect wires for cracks, damage, burned terminals and for improper fit.
- 2. Measure the resistance of wires to their distributor cap terminal. Move each wire while testing to check for intermittent breaks.

Resistance:

Cylinder No.	Resistance kΩ [at 25°C (77°F)]
1	Approximately 6.5
2	Approximately 10.0
3	Approximately 8.5
4	Approximately 12.5
5	Approximately 8.5
6	Approximately 11.0

MTBL0235

If the resistance exceeds the above specification, inspect ignition wire to distributor cap connection. Clean connection or replace the ignition wire with a new one.

OK or NG

OK	>	Check ignition coil, power transistor and their circuits. Refer to EC-1162.
NG	>	Replace.

8 CHECK INJECTOR

- 1. Turn ignition switch OFF.
- 2. Remove injector assembly.

Refer to EC-638.

Keep fuel hose and all injectors connected to injector gallery.

- 3. Disconnect all ignition coil harness connectors.
- 4. Turn ignition switch ON.

Make sure fuel does not drip from injector.

OK or NG

OK (Does not drip)	>	GO TO 9.
NG (Drips)	>	Replace the injector(s) from which fuel is dripping.

9	CHECK INTERMITTENT INCIDENT		
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
Trouble	Trouble is fixed		INSPECTION END
Trouble is not fixed		>	Replace warm-up three way catalyst.

GI

MA

1 @

EC

SEF174P

FE

GL

MT

AT

TF

PD

/\\ \\ \

3U

BR

ST

M

BT

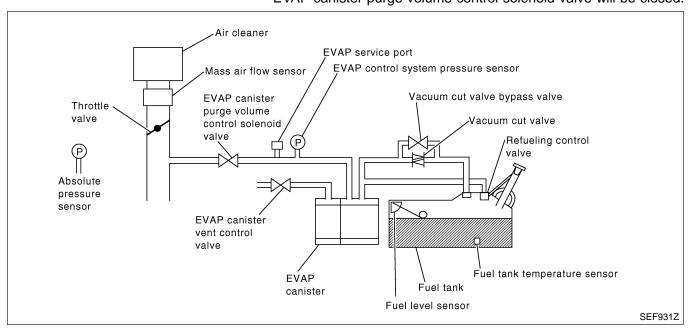
HA

SC

ie M On Board Diagnosis Logic

VG33E

NGEC0744


On Board Diagnosis Logic

NOTE:

If DTC P0440 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-1123.)

This diagnosis detects leaks in the EVAP purge line using engine intake manifold vacuum.

If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge volume control solenoid valve, under the following "Vacuum test" conditions. The vacuum cut valve bypass valve is opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP canister vent control valve will then be closed to shut the EVAP purge line off. The EVAP canister purge volume control solenoid valve is opened to depressurize the EVAP purge line using intake manifold vacuum. After this occurs, the EVAP canister purge volume control solenoid valve will be closed.

Malfunction is detected when EVAP control system has a leak, EVAP control system does not operate properly.

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

POSSIBLE CAUSE

NGEC0744S01

- Incorrect fuel tank vacuum relief valve
- Incorrect fuel filler cap used
- Fuel filler cap remains open or fails to close.
- Foreign matter caught in fuel filler cap.
- Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.
- Foreign matter caught in EVAP canister vent control valve.
- EVAP canister or fuel tank leaks
- EVAP purge line (pipe and rubber tube) leaks
- EVAP purge line rubber tube bent.

EC-958

VG33E

On Board Diagnosis Logic (Cont'd)

•	Blocked or bent rubber tube to EVAP control system pressure
	sensor

- Loose or disconnected rubber tube
- EVAP canister vent control valve and the circuit
- EVAP canister purge volume control solenoid valve and the circuit
- Absolute pressure sensor
- Fuel tank temperature sensor
- O-ring of EVAP canister vent control valve is missing or damaged.
- Water separator
- EVAP canister is saturated with water.
- EVAP control system pressure sensor
- Fuel level sensor and the circuit.
- Refueling EVAP vapor cut
- ORVR system leaks

GI

MA

LC

EC

FE

CL

MT

AT

TF PD

SU

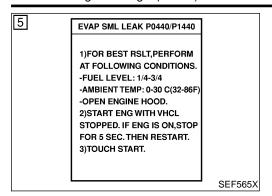
BR

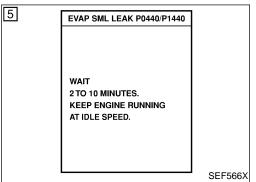
ST

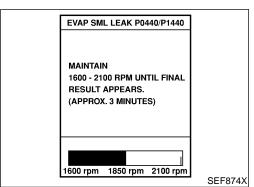
RS

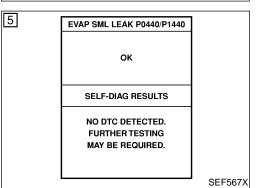
BT

HA


SC


EL


VG33E


NGEC0745

On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

NOTE:

TE: If DTC 80440 is displayed with 81448 perform trouble

- If DTC P0440 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-1123.)
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Open engine hood before conducting the following procedure.

(P) With CONSULT-II

- 1) Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 4) Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 32°C (32 - 90°F) INT/A TEMP SE: More than 0°C (32°F)

5) Select "EVAP SML LEAK P0440" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II. Follow the instruction displayed.

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to "Basic Inspection", EC-694.

Make sure that "OK" is displayed.
If "NG" is displayed, refer to "Diagnostic Procedure", EC-961.

NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

With GST

NOTE:

Be sure to read the explanation of "Driving Pattern" on EC-660 before driving vehicle.

- 1) Start engine.
- 2) Drive vehicle according to "Driving Pattern", EC-660.
- 3) Stop vehicle.
- 4) Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- 5) Turn ignition switch OFF and wait at least 5 seconds.
- Start engine.

It is not necessary to cool engine down before driving.

- 7) Drive vehicle again according to the "Driving Pattern", EC-660.
- 8) Stop vehicle.
- Select "MODE 3" with GST.
- If P0440 is displayed on the screen, go to "Diagnostic Procedure", EC-961.
- If P1447 is displayed on the screen, go to "Diagnostic Procedure" for "DTC P1447", EC-1114.
- If P0440 and P1447 are not displayed on the screen, go to the following step.

VG33E

DTC Confirmation Procedure (Cont'd)

- 10) Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6.

 \mathbb{G}

MA

EM

LC

EC

GL

MT

AT

TF

PD

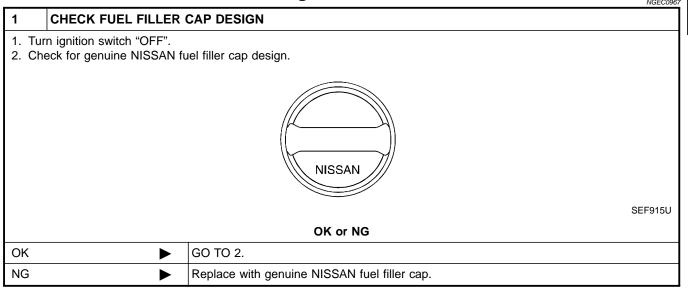
AX

SU

BR

ST

RS

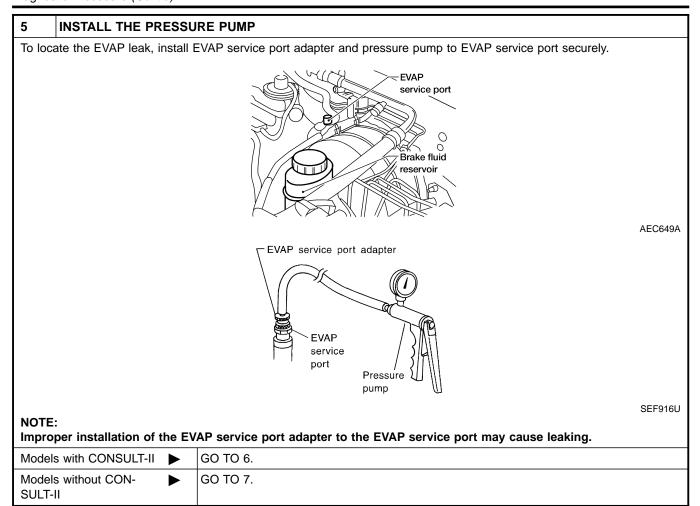

BT

HA

SC

EL

Diagnostic Procedure


2	CHECK FUEL FILLER	CAP INSTALLATION
Check that the cap is tightened properly by rotating the cap clockwise.		
OK or NG		
OK	•	GO TO 3.
NG	>	 Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard.

3	3 CHECK FUEL FILLER CAP FUNCTION			
Check for air releasing sound while opening the fuel filler cap.				
	OK or NG			
OK	OK • GO TO 6.			
NG	>	GO TO 4.		

CHECK FUEL TANK VACUUM RELIEF VALVE		
Refer to "Evaporative Emission System", EC-619.		
OK or NG		
OK • GO TO 5.		
•	Replace fuel filler cap with a genuine one.	

VG33E

Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)

6 **CHECK FOR EVAP LEAK** (P) With CONSULT-II GI 1. Turn ignition switch "ON". 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II. 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph. MA NOTE: • Never use compressed air or a high pressure pump. • Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system. EVAP SYSTEM CLOSE APPLY PRESSURE TO SERVICE PORT TO RANGE BELOW. DO NOT EXCEED 0.6psi. EC FE 0.2 0.4 PEF917U GL 4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-623. MT Leak detector AT TF PD SEF200U AX OK or NG

GO TO 8.

Repair or replace.

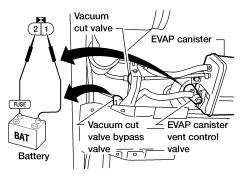
OK

NG

BT

HA

SC

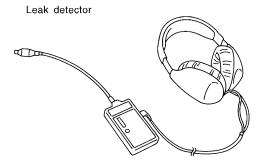

VG33E

Diagnostic Procedure (Cont'd)

CHECK FOR EVAP LEAK

Without CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)

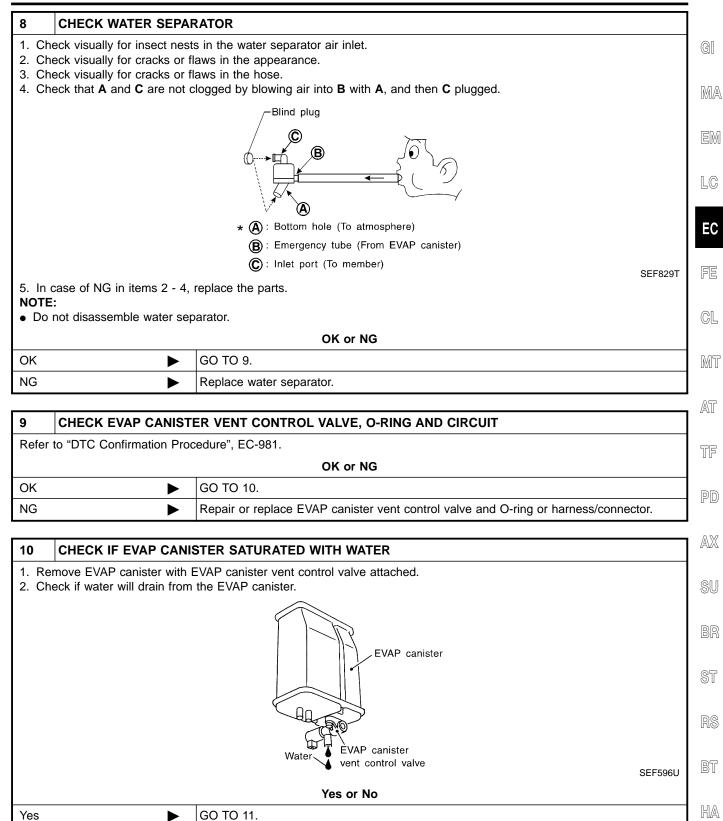


AEC632A

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

- NOTE:

 Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-623.



SEF200U

OK •	GO TO 8.
NG ▶	Repair or replace.

VG33E

Diagnostic Procedure (Cont'd)

SC

GO TO 13.

GO TO 14.

No (With CONSULT-II)

No (Without CONSULT-

VG33E

Diagnostic Procedure (Cont'd)

11	CHECK EVAP CANISTER				
_	Weigh the EVAP canister with the EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).				
	OK or NG				
OK (\	With CONSULT-II)		GO TO 13.		
OK (\ II)	OK (Without CONSULT- GO TO 14.				
NG		>	GO TO 12.		

12	DETECT MALFUNCTIONING PART		
• EVA	Check the following. EVAP canister for damage EVAP hose between EVAP canister and water separator for clogging or poor connection		
	Repair hose or replace EVAP canister.		

13 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

ACTIVE TEST		
PURG VOL CONT/V	XXX %	
MONITOR	1	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	
THRTL POS SEN	xxx v	

Vacuum should exist.

SEF984Y

ÞΚ	or	NG	
	ΙK)K or	K or NG

OK •	GO TO 17.
NG •	GO TO 15.

14 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK •	GO TO 17.
NG ▶	GO TO 15.

VG33E

 \mathbb{G}

Diagnostic Procedure (Cont'd)

15	CHECK VACUUM HOS	E		
Check vacuum hoses for clogging or disconnection. Refer to "Vacuum Hose Drawing", EC-613.				
OK or NG				
OK	•	GO TO 16.		
NG	•	Repair or reconnect the hose.		

OK	>	GO TO 16.				
NG	•	Repair or reco	nnect the hose.			1
		<u>'</u>				- ¬ [
16	CHECK EVAP CANIST	ER PURGE VO	LUME CONTRO	L SOLE	ENOID VALVE] ˈ
⊕ Wi	ith CONSULT-II					1 ,
	art engine.					
		V" in "ACTIVE T	EST" mode with C	CONSUL	T-II. Check that engine speed varies according	
to t	the valve opening.					Н
			ACTIVE TES	т		
			PURG VOL CONT/V	0.0%		-
			MONITOR	1		
			ENG SPEED	XXX rpm		
			A/F ALPHA-B1	XXX %		Ι,
			A/F ALPHA-B2	XXX %		
			HO2S1 MNTR (B1)	RICH		
			HO2S1 MNTR (B2)	RICH		
			THRTL POS SEN	XXX V		'
					SEF985Y	1
					SEI 900 I	
			OK or NO	3		1
OK	•	GO TO 18.				
NG	•	GO TO 17.				'

PD

 $\mathbb{A}\mathbb{X}$

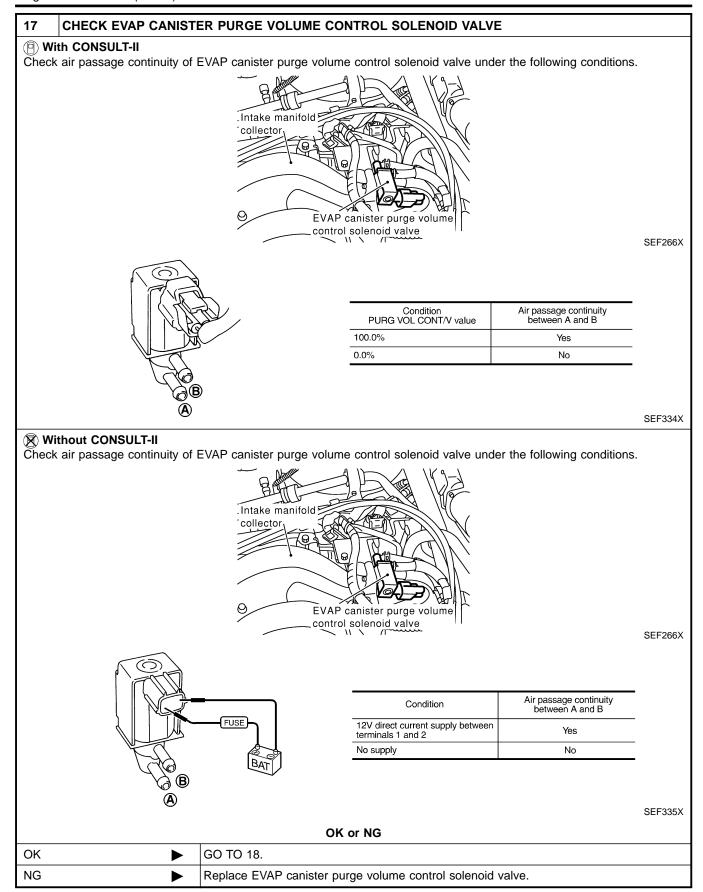
SU

BR

ST

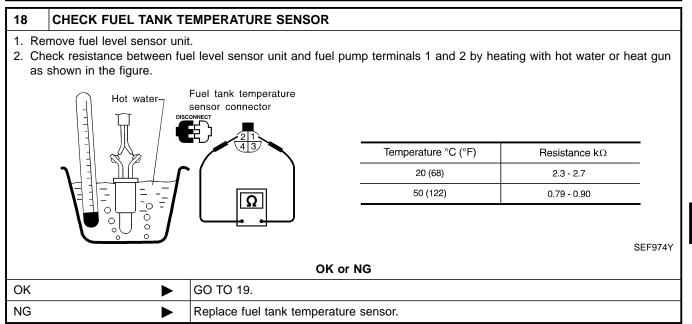
RS

BT


 $\mathbb{H}\mathbb{A}$

SC

EL


VG33E

Diagnostic Procedure (Cont'd)

VG33E

Diagnostic Procedure (Cont'd)

GI

MA

EM

LC

EC

FE

GL

MT

AT

PD

TF

SU

BR

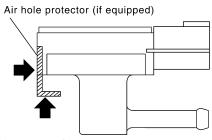
ST

RS

BT

HA

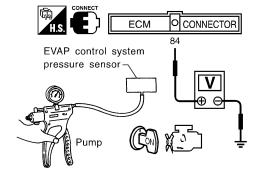
SC


EL

VG33E

Diagnostic Procedure (Cont'd)

19 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


- 1. Remove EVAP control system pressure sensor with its harness connector connected.
 - Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
 - Always calibrate the vacuum pump gauge when using it.
 - Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 5. Check input voltage between ECM terminal 84 and ground.

Pressure (Relative to atmospheric pressure)	Voltage V
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

SEF342X

CAUTION:

• Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK ►	GO TO 20.
NG ▶	Replace EVAP control system pressure sensor.

20	CHECK EVAP PURGE LINE				
	Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to "Evaporative Emission System", EC-619.				
	OK or NG				
OK	OK ▶ GO TO 21.				
NG	•	Repair or reconnect the hose.			

21	1 CLEAN EVAP PURGE LINE			
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.			
	▶ GO TO 22.			

VG33E

LC

EC

FE

MT

AT

TF

PD

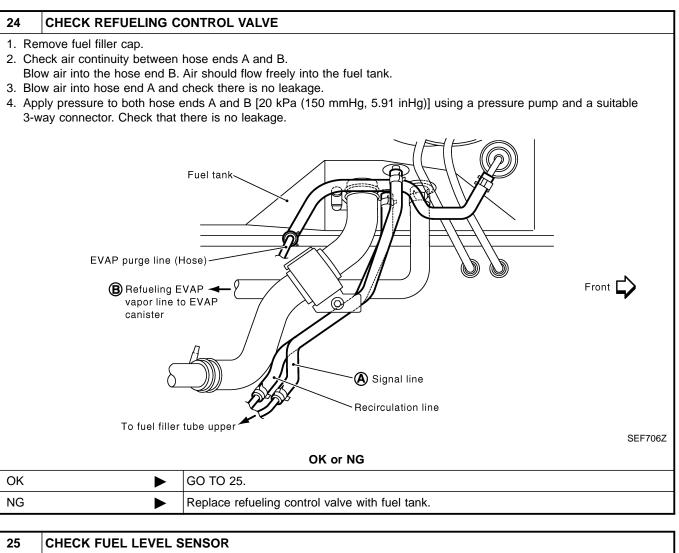
AX

SU

ST

BT

HA


SC

EL

Diagnostic Procedure (Cont'd)

22	CHECK REFUELING E	VAP VAPOR LINE	Ì			
	Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to "ON BOARD REFUELING VAPOR RECOVERY (ORVR)", EC-625.					
	OK or NG					
OK	•	GO TO 23.	M			
NG	>	Repair or replace hoses and tubes.				

23	CHECK SIGNAL LINE AND RECIRCULATION LINE					
	Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.					
OK or NG						
OK	>	GO TO 24.				
NG	•	Repair or replace hoses, tubes or filler neck tube.				

25	CHECK FUEL LEVEL SENSOR		
Refer to <i>EL-87</i> , "Fuel Level Sensor Unit Check".			
OK or NG			
OK	>	GO TO 26.	
NG	>	Replace fuel level sensor unit.	

VG33E

Diagnostic Procedure (Cont'd)

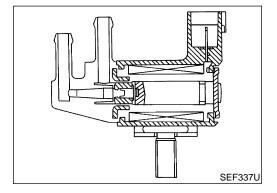
26	CHECK INTERMITTENT INCIDENT			
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.				
	>	INSPECTION END		

VG33E
Description

Description SYSTEM DESCRIPTION

NGEC0747

NGEC0747S01


				. 🛇 🗆	
Sensor	Input Signal to ECM	ECM function	Actuator	· · MA	
Camshaft position sensor	Engine speed				
Mass air flow sensor	Amount of intake air			EM	
Engine coolant temperature sensor	Engine coolant temperature				
Ignition switch	Start signal			LC	
Throttle position sensor	Throttle position	EVAP can- ister purge	ister purge EVAP canister purge volume		
Throttle position switch	Closed throttle position	flow control	control solenoid valve	EC	
Heated oxygen sensors 1 (front)	Density of oxygen in exhaust gas (Mixture ratio feedback signal)				
Fuel tank temperature sensor	Fuel temperature in fuel tank			rg	
Vehicle speed sensor	Vehicle speed]			

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

PD

AX

COMPONENT DESCRIPTION

NGEC0747S02

The EVAP canister purge volume control solenoid valve uses a ON/OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

BT

HA

SC

EL

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0748

MONITOR ITEM	CONE	SPECIFICATION	
PURG VOL C/V	Engine: After warming upAir conditioner switch OFF	Idle (Vehicle stopped)	0%
	Shift lever: "N" No-load	2,000 rpm	_

ECM Terminals and Reference Value

VG33E

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NGEC0749

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
4	OR/B	ECM relay (Self shut-	[Engine is running] [Ignition switch OFF] ● For a few seconds after turning ignition switch OFF	0 - 1.5V	
		off)	[Ignition switch OFF]A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	
_	Day	EVAP canister purge	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms	
5	R/Y	volume control sole- noid valve	 [Engine is running] Engine speed is 2,000 rpm (More than 100 seconds after starting engine) 	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms SEF995U	
67	B/P	Power supply for ECM	[Ignition switch ON]	BATTERY VOLTAGE	
72	B/P	Fower supply for ECIVI	[ignition switch ON]	(11 - 14V)	
117	B/P	Current return	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)	

VG33E

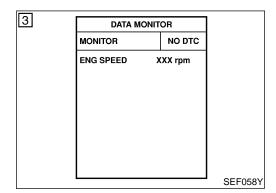
NGEC0750S01

On Board Diagnosis Logic

On Board Diagnosis Logic

Malfunction is detected when an improper voltage signal is sent to ECM through the valve.

G


POSSIBLE CAUSE

 Harness or connectors (The valve circuit is open or shorted.)

EVAP canister purge volume control solenoid valve

MA

LC

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

(II) With CONSULT-II

1) Turn ignition switch ON.

2) Select "DATA MONITOR" mode with CONSULT-II.

3) Start engine and let it idle for at least 13 seconds.

4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-977.

With GST

Follow the procedure "With CONSULT-II".

d EC

FE

GL

MT

D (7 II

PD

TF

AX

SU

BR

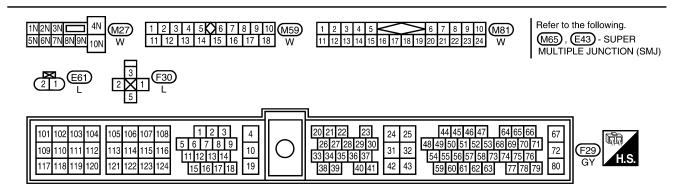
ST

RS

BT

HA

SC


EL

 \mathbb{N}

Wiring Diagram

VG33E

Wiring Diagram NGEC0752 EC-PGC/V-01 BATTERY FUSE BLOCK (J/B) Refer to "EL-POWER". 10A 27 M27 ■ : Detectable line for DTC : Non-detectable line for DTC (F27) RELAY (F30) B/P B/P OR/B EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE **E61 E**43 9A R/Y (M65) (M81) 8 (F36) OR/B B/P R/Y B/P B/P 67 72 117 5 ECM SSOFF CRTN EVAP (F29)

WEC933

VG33E

Diagnostic Procedure

Diagnostic Procedure

NGEC0753

GI

MA

EC

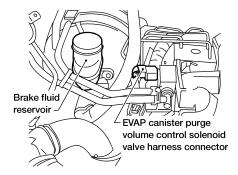
MT

AT

TF

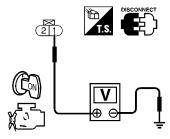
PD

ST


HA

SC

AEC652A


SEF646W

- 1 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT
- 1. Turn ignition switch OFF.
- 2. Disconnect EVAP canister purge volume control solenoid valve harness connector.

3. Turn ignition switch ON.

4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK •	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F36, M81
- Harness connectors M82, E74
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM relay

Repair harness or connectors.

3 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 5 and solenoid terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

G
C

OK (With CONSULT-II)		GO TO 5.
OK (Without CONSULT-II)	>	GO TO 6.
NG	>	GO TO 4.

DX

VG33E

Diagnostic Procedure (Cont'd)

4 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E74, M82
- Harness connectors M81, F36
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM

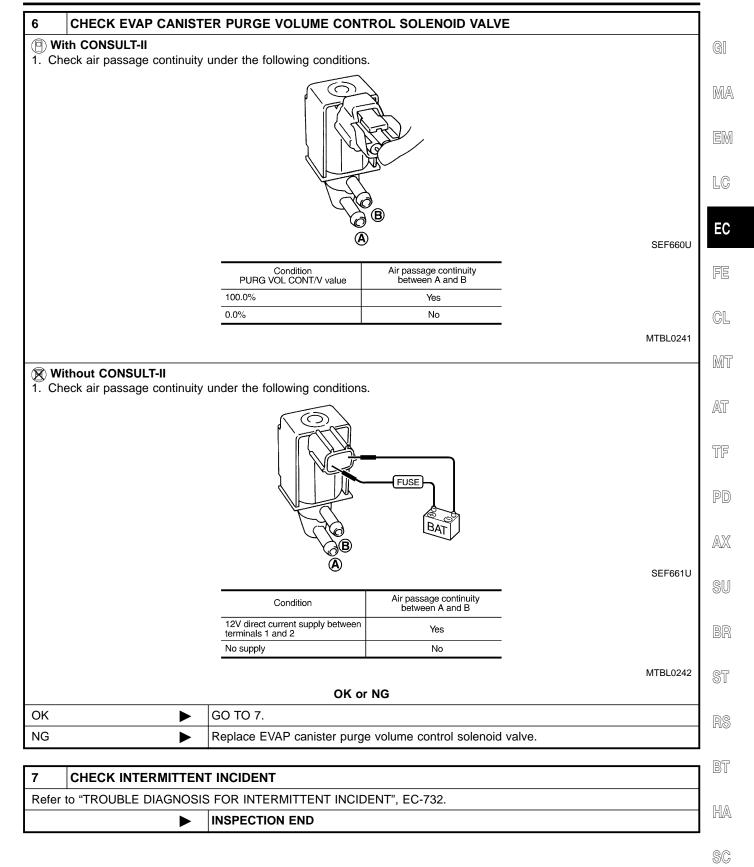
Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

ACTIVE TEST		
PURG VOL CONT/V	0.0%	
MONITOR	1	
ENG SPEED XXX rp		
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	RICH	
HO2S1 MNTR (B2)	RICH	
THRTL POS SEN	xxx v	

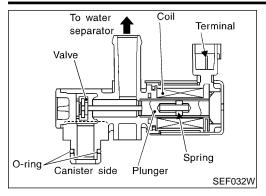

SEF985Y

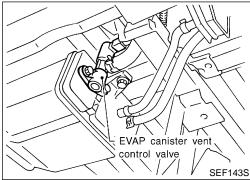
OK or NG

OK •	GO TO 7.
NG ►	GO TO 6.

VG33E

Diagnostic Procedure (Cont'd)




DTC P0446 EVAPORATIVE EMISSION (EVAP) CANISTER **VENT CONTROL VALVE (CIRCUIT)**

VG33E

NGEC0756

Component Description

Component Description

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

Mode NGEC0755

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	• Ignition switch: ON	OFF

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
108	R/G	EVAP canister vent control valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)

DTC P0446 EVAPORATIVE EMISSION (EVAP) CANISTER **VENT CONTROL VALVE (CIRCUIT)**

VG33E

NGEC0757S01

On Board Diagnosis Logic

On Board Diagnosis Logic

Malfunction is detected when an improper voltage signal is sent to ECM through EVAP canister vent control valve.

POSSIBLE CAUSE

- Harness or connectors (The valve circuit is open or shorted.)
- EVAP canister vent control valve

MA

LC

DTC Confirmation Procedure

NOTE:

EC If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before

FE

conducting the next test. **TESTING CONDITION:**

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

GL

MT

(P) With CONSULT-II Turn ignition switch ON.

AT

TF

PD

AX

- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and wait at least 8 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-983.

® With GST

Follow the procedure "With CONSULT-II".

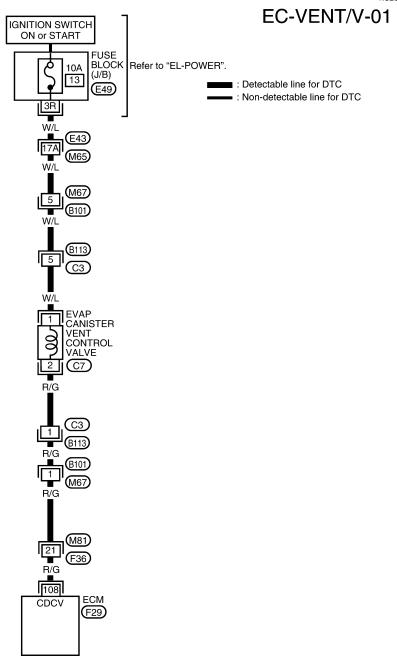
MONITOR NO DTC ENG SPEED XXX rpm SEF058Y

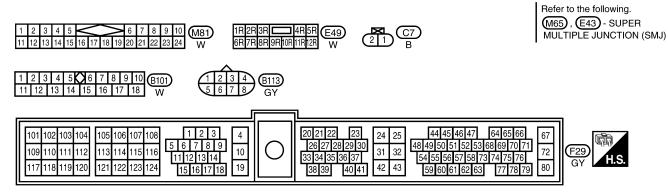
DATA MONITOR

3

ST

HA


EL


SC

VG33E

Wiring Diagram

NGEC0759

WEC934

DTC P0446 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (CIRCUIT)

VG33E

Diagnostic Procedure

Diagnostic Procedure

MA

GI

EM

2 CHECK EVAP CANISTER VENT CONTROL VALVE CIRCUIT

- 1. Turn ignition switch OFF and then turn ON.
- 2. Select "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Touch "ON/OFF" on CONSULT-II screen.

ACTIVE TEST		
VENT CONTROL/V	OFF	
MONITOF	1	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 (B1)	xxx v	
HO2S1 (B2)	xxx v	
THRTL POS SEN	xxx v	

SEF989Y

4. Check for operating sound of the valve. Clicking noise should be heard.

oĸ	or	NG
----	----	----

NG ▶ GO TO 3.	OK •	GO TO 7.
	NG ►	GO TO 3.

EC

FE

CL

MT

AT

PD

TF

SU

BR

ST

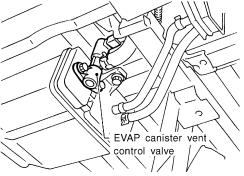
RS

BT

HA

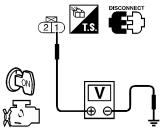
SC

 \mathbb{N}


DTC P0446 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (CIRCUIT)

Diagnostic Procedure (Cont'd)

VG33E


CHECK EVAP CANISTER VENT CONTROL VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect EVAP canister vent control valve harness connector.

region switch ON

- 3. Turn ignition switch ON.
- 4. Check voltage between terminal 1 and ground with CONSULT-II or tester.

SEF648W

Voltage: Battery voltage

		NIC
ok	or	NG

OK •	GO TO 5.
NG ▶	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E74, M82
- Harness connectors M67, C101 and B113, C3
- Fuse block (J/B) connector E49
- 10A fuse
- Harness for open or short between EVAP canister vent control valve and fuse

Repair harness or connectors.

5 CHECK EVAP CANISTER VENT CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 108 and valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK •	GO TO 7.
NG ►	GO TO 6.

DTC P0446 EVAPORATIVE EMISSION (EVAP) CANISTER VENT CONTROL VALVE (CIRCUIT)

VG33E

GI

MA

EC

FE

GL

MT

AT

TF

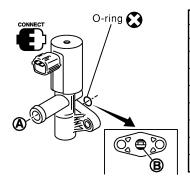
PD

Diagnostic Procedure (Cont'd)

DETECT MALFUNCTIONING PART

Check the following.

6


- Harness connectors C101, M67 and C3, B113
- Harness connectors M81, F36
- Harness for open or short between EVAP canister vent control valve and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

CHECK EVAP CANISTER VENT CONTROL VALVE

(P) With CONSULT-II

- 1. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 2. Check air passage continuity and operation delay time.

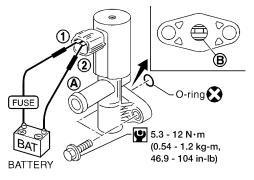
ACTIVE TEST				
VENT CONTROL/V OFF				
MONITOR				
ENG SPEED	XXX rpm			
A/F ALPHA-B1	XXX %			
A/F ALPHA-B2	XXX %			
HO2S1 (B1)	xxx v			
HO2S1 (B2)	xxx v			
THRTL POS SEN	xxx v			
	· · · · · · · · · · · · · · · · · · ·			

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

Operation takes less than 1 second.

SEF991Y

Without CONSULT-II


1. Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

MTBL0240

AEC783A

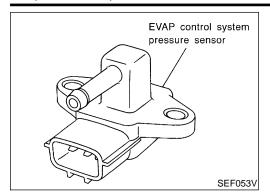
If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary. If portion **B** is rusted, replace control valve.

Make sure new O-ring is installed properly.

OK or NG

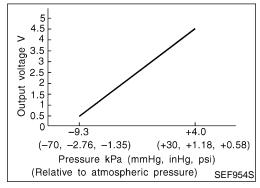
OK	>	GO TO 8.
NG	•	Replace EVAP canister vent control valve.

8	CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.			
► INSPECTION END			


DW.

BT

HA


SC

Component Description

Component Description

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases. The EVAP control system pressure sensor is not used to control the engine system. It is used only for on board diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0762

VG33E

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	• Ignition switch: ON	Approx. 3.4V

ECM Terminals and Reference Value

NGEC0763

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
42	B/W	Sensors' power supply	[Ignition switch ON]	Approximately 5V
43	BR	Sensors' ground	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V
62	Υ	EVAP control system pressure sensor	[Ignition switch ON]	Approximately 3.4V

On Board Diagnosis Logic

On Board Diagnosis Logic

Malfunction is detected when an improper voltage signal from EVAP control system pressure sensor is sent to ECM.

MA

POSSIBLE CAUSE

- Harness or connectors
 (The EVAP control system pressure sensor circuit is open or shorted.)
 - ıre sensor is

NGEC0764S01

VG33E

- Rubber hose to EVAP control system pressure sensor is clogged, vent, kinked, disconnected or improper connection.
- EVAP control system pressure sensor
- EVAP canister vent control valve
- EVAP canister purge volume control solenoid valve
- EVAP canister
 - Rubber hose from EVAP canister vent control valve to water separator

EC

LC

GL

FE

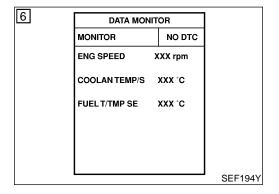
MT

AT

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.


TF

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

SU

PD

- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure that "TANK F/TEMP SE" is more than 0°C (32°F).
- 6) Start engine and wait at least 20 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-989.

RS

ST

₩ith GST

Follow the procedure "With CONSULT-II".

BT

HA

SC

EL

 \mathbb{Z}

Wiring Diagram

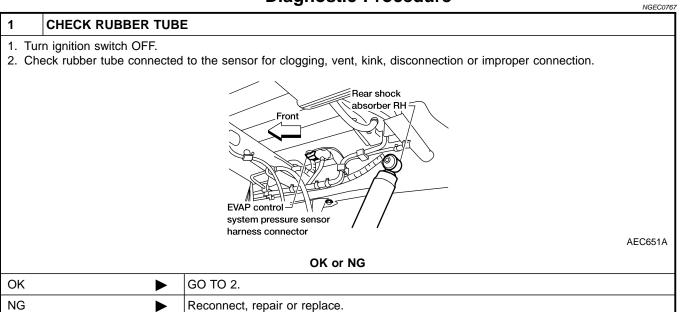
VG33E

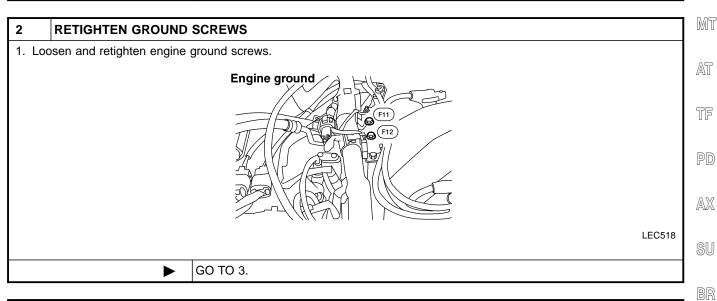
Diagnostic Procedure

VG33E

GI

MA


EM


LC

EC

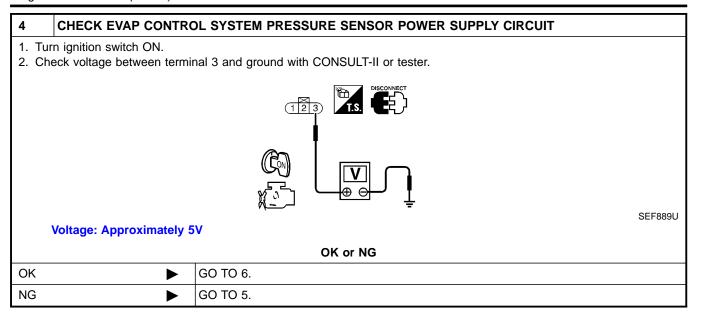
GL

Diagnostic Procedure

3 CHEC	K CONNECTOR		
2. Check sens	EVAP control syst sor harness connec uld not exist.	tem pressure sensor harness connector. ctor for water.	
		OK or NG	
OK	>	GO TO 4.	
NG	•	Repair or replace harness connector.	

ST

RS


BT

HA

SC

EL

Diagnostic Procedure (Cont'd)

5	DETECT MALFUNCTIO	NING PART
HarHar	the following. ness connectors C3, B113 ness connectors M58, F28 ness for open or short beto	,
	•	Repair harness or connectors.

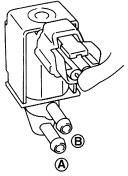
6	CHECK EVAP CONTRO	L SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT		
2. Che	Turn ignition switch OFF. Check harness continuity between sensor terminal 1 and engine ground. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to power.			
OK or NG				
ОК	>	GO TO 8.		
NG	>	GO TO 7.		

7	DETECT MALFUNCTIO	NING PART
HarrJoinHarr	•	·
	>	Repair open circuit or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)

	CHECK EVAP CON SHORT	ITROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN	
2. Che Refe	er to Wiring Diagram.	between ECM terminal 62 and sensor terminal 2.	
	Continuity should ex	iist. hort to ground and short to power.	'
J. Also	o check harness for si	OK or NG	
OK (Wi	/ith CONSULT-II)	► GO TO 10.	'
		GO TO 11.	[
NG		► GO TO 9.	
		•	
9	DETECT MALFUNG	CTIONING PART	
HarnHarn	the following. ness connectors C3, Eness connectors M59,		
Harn	ness tor open or short	between ECM and EVAP control system pressure sensor	
• Harn	· · · · · · · · · · · · · · · · · · ·	Repair open circuit or short to ground or short to power in harness or connect	tors.
• Harn	· · · · · · · · · · · · · · · · · · ·		
			tors.
10 Witi 1. Star 2. Perf	CHECK EVAP CAN th CONSULT-II rt engine.	Repair open circuit or short to ground or short to power in harness or connec	according
10 Witi 1. Star 2. Perf	CHECK EVAP CAN th CONSULT-II rt engine. form "PURG VOL CO	Repair open circuit or short to ground or short to power in harness or connect IISTER PURGE VOLUME CONTROL SOLENOID VALVE NT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies ACTIVETEST PURG VOL CONT/V 0.0% MONITOR	according
10 Witt 1. Star 2. Perf	CHECK EVAP CAN th CONSULT-II rt engine. form "PURG VOL CO	Repair open circuit or short to ground or short to power in harness or connect IISTER PURGE VOLUME CONTROL SOLENOID VALVE NT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies ACTIVE TEST	according
10 Witt 1. Star 2. Perf	CHECK EVAP CAN th CONSULT-II rt engine. form "PURG VOL CO	Repair open circuit or short to ground or short to power in harness or connect IISTER PURGE VOLUME CONTROL SOLENOID VALVE NT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies ACTIVETEST PURG VOL CONT/V 0.0% MONITOR ENG SPEED XXX rpm FR 02 MNTR-B1 RICH	according
10 Witt 1. Star 2. Perf	CHECK EVAP CAN th CONSULT-II rt engine. form "PURG VOL CO	Repair open circuit or short to ground or short to power in harness or connectification of the control of the c	
10 Witt 1. Star 2. Perf	CHECK EVAP CAN th CONSULT-II rt engine. form "PURG VOL CO he valve opening.	Repair open circuit or short to ground or short to power in harness or connections. IISTER PURGE VOLUME CONTROL SOLENOID VALVE NT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies ACTIVE TEST PURG VOL CONT/V 0.0% MONITOR ENG SPEED XXX rpm FR 02 MNTR-B1 RICH FR 02 MNTR-B2 RICH THRTL POS SEN XXX V A/F ALPHA-B1 XXX %	according

RS


BT

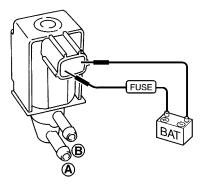
HA

SC

EL

Diagnostic Procedure (Cont'd) 11 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (II) With CONSULT-II 1. Check air passage continuity under the following conditions.

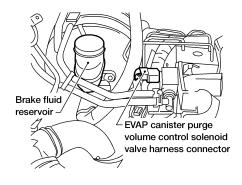
Condition PURG VOL CONT/V value Air passage continuity between A and B 100.0% Yes 0.0% No


MTBL0241

SEF660U

VG33E

Without CONSULT-II


1. Check air passage continuity under the following conditions.

SEF661U

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

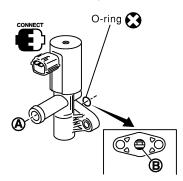
MTBL0242

AEC652A

_			
റ	κ	or	NG

OK •	GO TO 12.
NG >	Replace EVAP canister purge volume control solenoid valve.

Diagnostic Procedure (Cont'd)


VG33E

CHECK EVAP CANISTER VENT CONTROL VALVE

(II) With CONSULT-II

12

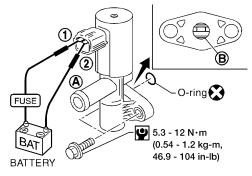
- 1. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 2. Check air passage continuity and operation delay time under the following conditions.

ACTIVE TEST		
VENT CONTROL/V	OFF	
MONITOR	1	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 (B1)	xxx v	
HO2S1 (B2)	xxx v	
THRTL POS SEN	xxx v	

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

Operation takes less than 1 second.

SEF991Y


Without CONSULT-II

1. Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B	
12V direct current supply between terminals 1 and 2	No	
OFF	Yes	

MTBL0240

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary. If portion **B** is rusted, replace control valve.

AEC783A

Make sure new O-ring is installed properly.

OK	or	NG
----	----	----

OK •	GO TO 13.
NG ▶	Replace EVAP canister vent control valve.

G[

MA

LC

EC

FE

MT

11Y

240

TF PD

 $\mathbb{N} \mathbb{V}$

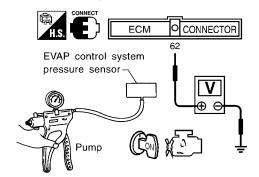
SU

ST

KS

BT

HA


SC

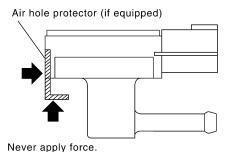
EL

Diagnostic Procedure (Cont'd)

13 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

- 1. Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch ON.
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 5. Check input voltage between ECM terminal 62 and ground.

SEF894U


VG33E

Pressure (Relative to atmosphericpressure)	Voltage (V)
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

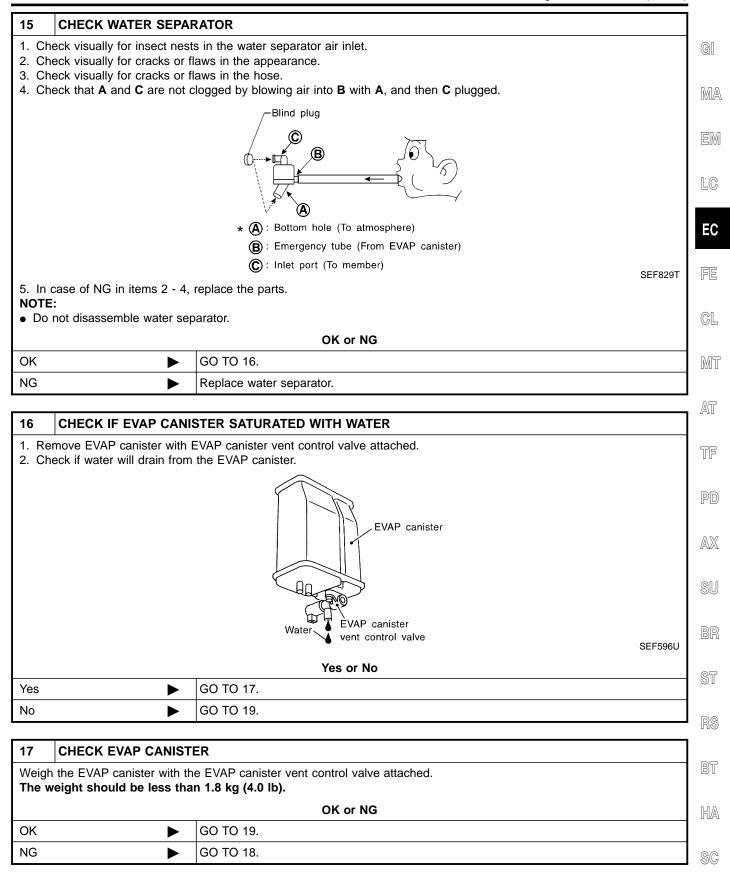
MTBL0246

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below –20 kPa (–150 mmHg, –5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure. CAUTION:
- Never apply force to the air hole protector of the sensor if equipped.

SEE799W

• Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5m (19.7in) onto a hard surface such as a concrete floor; use a new one.


				_
O	Κ	or	Ν	G

OK •	GO TO 14.
NG •	Replace EVAP control system pressure sensor.

14	CHECK RUBBER TUBE		
Check obstructed rubber tube connected to EVAP canister vent control valve.			
OK or NG			
ОК	OK GO TO 15.		
NG	•	Clean, repair or replace rubber tube.	

Diagnostic Procedure (Cont'd)

VG33E

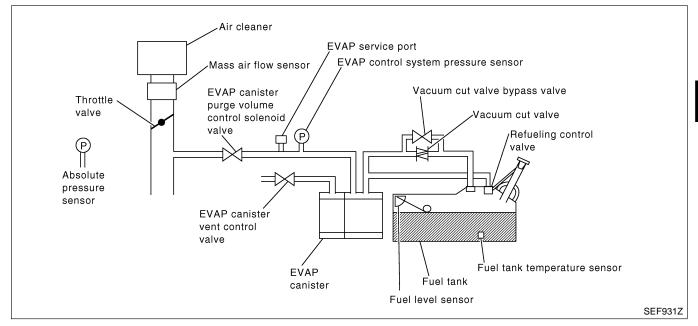
Diagnostic Procedure (Cont'd)

18	DETECT MALFUNCTIONING PART	
Check the following.		
	 EVAP canister for damage EVAP hose between EVAP canister and water separator for clogging or poor connection 	
	>	Repair hose or replace EVAP canister.

19	CHECK EVAP CONTRO	L SYSTEM PRESSURE SENSOR SHIELD CIRCUIT FOR OPEN AND SHORT	
2. Dis 3. Che	 Reconnect harness connectors disconnected. Disconnect harness connectors C3, B113. Check harness continuity between harness connector B113 terminal 6 and engine ground. Continuity should exist. Also check harness for short to power. 		
	OK or NG		
ОК	>	GO TO 21.	
NG	>	GO TO 20.	

20	DETECT MALFUNCTIO	NING PART
HarHarJoir	Check the following. • Harness connectors B113 and B101, M67 • Harness connectors M59, F27 • Joint connector-1 • Harness for open between harness connector B113 and engine ground	
	>	Repair open circuit or short to power in harness or connectors.

21	CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.	
	► INSPECTION END	


NGEC0954

On Board Diagnosis Logic

On Board Diagnosis Logic

If DTC P0455 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-1127.)

This diagnosis detects a very large leak (fuel filler cap fell off etc.) in the EVAP system between the fuel tank and the EVAP canister purge volume control solenoid valve.

Malfunction is detected when EVAP control system has a very large leak, such as fuel filler cap fell off, EVAP control system does not operate properly.

PD

CAUTION:

- Fuel filler cap remains open or fails to close.
- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

POSSIBLE CAUSE

Fuel filler cap remains open or fails to close.

- Incorrect fuel tank vacuum relief valve
- Incorrect fuel filler cap used
- Foreign matter caught in fuel filler cap.
- Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.
- Foreign matter caught in EVAP canister vent control valve.
- EVAP canister or fuel tank leaks
- EVAP purge line (pipe and rubber tube) leaks
- EVAP purge line rubber tube bent.
- Blocked or bent rubber tube to EVAP control system pressure sensor
- Loose or disconnected rubber tube
- EVAP canister vent control valve and the circuit
- EVAP canister purge volume control solenoid valve and the circuit
- Absolute pressure sensor
- Fuel tank temperature sensor

EC-997

LC

EC

GL

MT

AT

TF

NGEC0954S01

ST

BT

HA

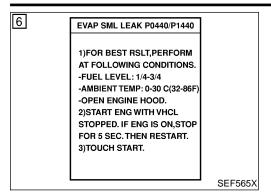
SC

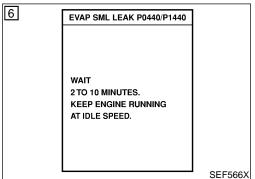
EL

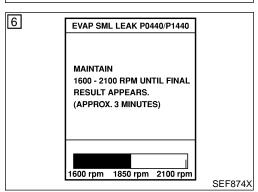
VG33E

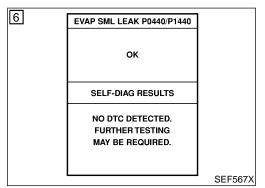
On Board Diagnosis Logic (Cont'd)

- O-ring of EVAP canister vent control valve is missing or damaged.
- EVAP control system pressure sensor
- Refueling control valve
- ORVR system leaks


DTC Confirmation Procedure


NGEC0955


CAUTION:


Never remove fuel filter cap during the DTC confirmation procedure.

DTC Confirmation Procedure (Cont'd)

NOTE:

If DTC P0455 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-1127.)

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Open engine hood before conducting the following procedure.

(P) With CONSULT-II

- 1) Tighten fuel filter cap securely until ratcheting sound is heard.
- 2) Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 5 seconds. 3)
- 4) Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Make sure that the following conditions are met. COOLAN TEMP/S: 0 - 32°C (32 - 90°F) INT/A TEMP SE: More than 0°C (32°F)
- Select "EVAP SML LEAK P0440" of "EVAPORATIVE SYS-TEM" in "DTC WORK SUPPORT" mode with CONSULT-II. Follow the instruction displayed.

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to "Basic Inspection". EC-694.

Make sure that "OK" is displayed. If "NG" is displayed, select "SELF-DIAG RESULTS" mode with CONSULT-II and make sure that "EVAP GROSS LEAK [P0455] is displayed, refer to "Diagnostic Procedure", EC-1000. If P0440 is displayed, perform "Diagnostic Procedure" for DTC P0440.

With GST

Be sure to read the explanation of "Driving Pattern" on EC-660 before driving vehicle.

- Start engine.
- Drive vehicle according to "Driving Pattern", EC-660.
- 3) Stop vehicle.
- 4) Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- 5) Turn ignition switch "OFF" and wait at least 5 seconds.
- 6) Start engine.
 - It is not necessary to cool engine down before driving. Drive vehicle again according to the "Driving Pattern", EC-660.
- Stop vehicle.
- Select "MODE 3" with GST.
- If P0455 is displayed on the screen, go to "Diagnostic Procedure", EC-1000.

GI

MA

LC

EC

MT

AT

TF

PD

BT

HA

SC

DTC Confirmation Procedure (Cont'd)

- If P0440 is displayed on the screen, go to "Diagnostic Procedure", EC-961.
- If P1447 is displayed on the screen, go to "Diagnostic Procedure" for "DTC P1447", EC-1114.
- If P0440, P0455 and P1447 are not displayed on the screen, go to the following step.
- 10) Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6.

Diagnostic Procedure

NGEC0956

1	CHECK FUEL FILLER	CAP DESIGN	
	Turn ignition switch OFF. Check for genuine NISSAN fuel filler cap design.		
		NISSAN	¹ 915U
		OK or NG	
OK	>	GO TO 2.	
NG	>	Replace with genuine NISSAN fuel filler cap.	

2	CHECK FUEL FILLER	CAP INSTALLATION	
Check that the cap is tightened properly by rotating the cap clockwise.			
	OK or NG		
ОК	>	GO TO 3.	
NG	>	 Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard. 	

3	CHECK FUEL FILLER CAP FUNCTION			
Check for air releasing sound while opening the fuel filler cap.				
OK or NG				
OK	OK ▶ GO TO 5.			
NG	>	GO TO 4.		

VG33E

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

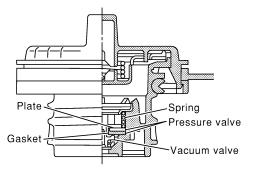
PD

AX

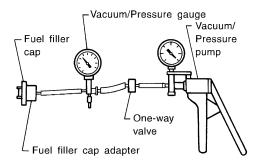
SU

ST

BT


HA

SC


Diagnostic Procedure (Cont'd)

- 1. Wipe clean valve housing.
- 2. Check valve opening pressure and vacuum.

SEF445Y

SEF943S

Pressure:

15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 - 2.90 psi)

Vacuum:

-6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm², -0.87 to -0.48 psi)

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

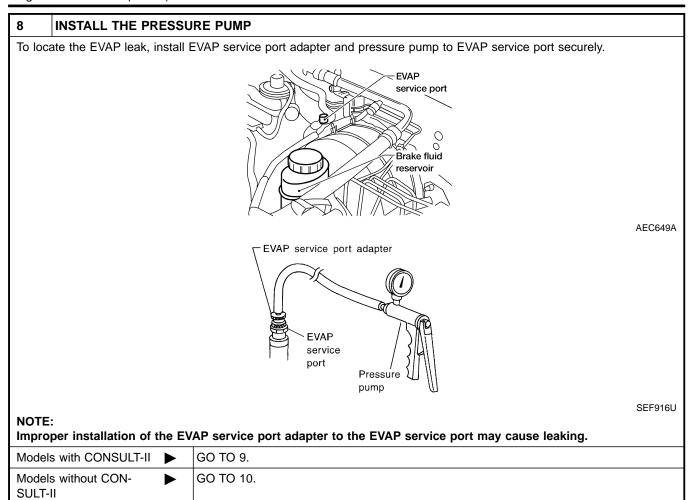
OK or NG

OK ▶	GO TO 5.
NG ▶	Replace fuel filler cap with a genuine one.

5 CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks, improper connection or disconnection. Refer to "Evaporative Emission System", EC-620.

OK or NG


OK •	GO TO 6.
NG •	Repair or reconnect the hose.

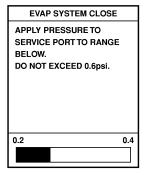
6	CLEAN EVAP PURGE I	LINE	
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.		
	>	GO TO 7.	

7	CHECK EVAP CANISTE	ER VENT CONTROL VALVE, O-RING AND CIRCUIT
Refer to "DTC Confirmation Procedure", EC-981.		
OK or NG		
OK	>	GO TO 8.
NG	>	Repair or replace EVAP canister vent control valve and O-ring or harness/connector.

 \mathbb{N}

Diagnostic Procedure (Cont'd)

VG33E


Diagnostic Procedure (Cont'd)

CHECK FOR EVAP LEAK

(P) With CONSULT-II

9

- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph. **NOTE:**
 - Never use compressed air or a high pressure pump.
 - Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

PEF917U

4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-623.

SEF200U

OK or NG

OK •	GO TO 11.
NG ▶	Repair or replace.

G[

MA

.C

EC

FE

GL

MT

AT

TF

PD

AX

SU

20

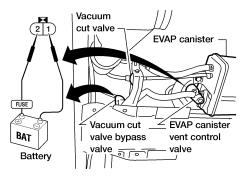
ST

DQ

BT

HA

SC

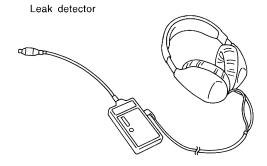

EL

Diagnostic Procedure (Cont'd)

10 CHECK FOR EVAP LEAK

Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)



AEC632A

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

- NOTE:

 Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-623.

SEF200U

OK or NG

OK •	GO TO 12.
NG ►	Repair or replace.

VG33E

Diagnostic Procedure (Cont'd)

CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION 11 (P) With CONSULT-II GI 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port. 2. Start engine. 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode. MA 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%. 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm. ACTIVE TEST PURG VOL CONT/V XXX % MONITOR **ENG SPEED** XXX rpm A/F ALPHA-B1 XXX % Vacuum should exist. A/F ALPHA-B2 XXX % EC HO2S1 MNTR (B1) LEAN HO2S1 MNTR (B2) LEAN THRTL POS SEN xxx v FE SEF984Y Vacuum should exist. GL OK or NG OK GO TO 14. MT NG GO TO 13. AT 12 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION (R) Without CONSULT-II TF 1. Start engine and warm it up to normal operating temperature. 2. Stop engine. 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port. PD 4. Start engine and let it idle for at least 80 seconds. 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm. Vacuum should exist. OK or NG OK GO TO 15. NG GO TO 13. 13 **CHECK VACUUM HOSE** Check vacuum hoses for clogging or disconnection. Refer to "Vacuum Hose Drawing", EC-613. OK or NG

HA

SC

OK (With CONSULT-II)

OK (Without CONSULT-

II) NG GO TO 14.

GO TO 15.

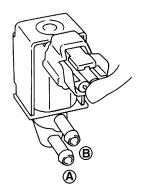
Repair or reconnect the hose.

VG33E

Diagnostic Procedure (Cont'd)

14 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(II) With CONSULT-II


- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

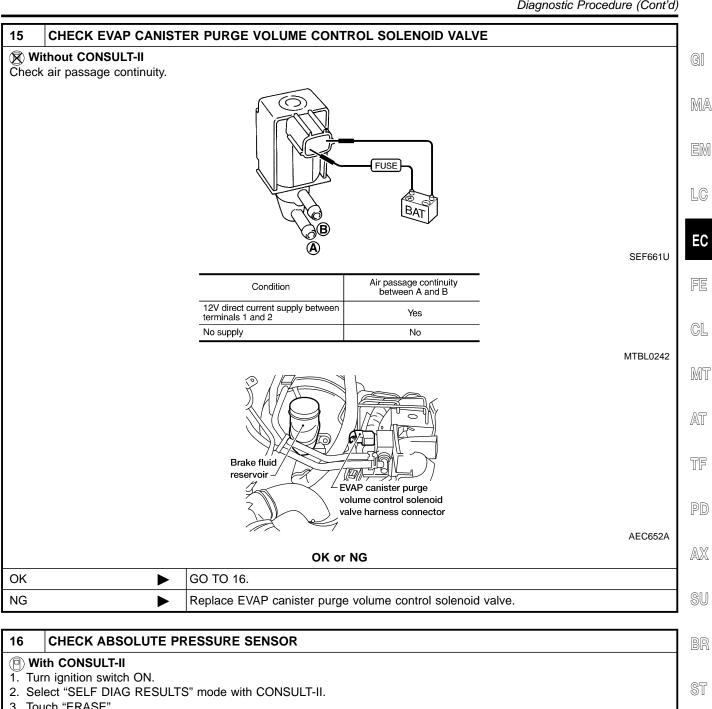
ACTIVE TEST			
PURG VOL CONT/V	0.0%		
MONITOR	3		
ENG SPEED	XXX rpm		
A/F ALPHA-B1	XXX %		
A/F ALPHA-B2	XXX %		
HO2S1 MNTR (B1)	RICH		
HO2S1 MNTR (B2)	RICH		
THRTL POS SEN	xxx v		

SEF985Y

If OK, inspection end. If NG, go to following step.

3. Check air passage continuity.

SEF660U


Condition PURG VOL CONT/V value	Air passage continuity between A and B
100.0%	Yes
0.0%	No

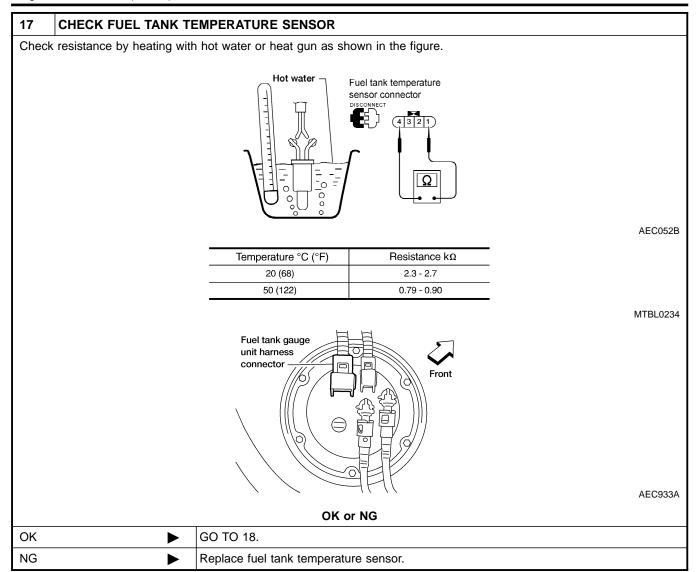
MTBL0241

OK	or	NG
----	----	----

OK •	\	GO TO 16.
NG	▼	Replace EVAP canister purge volume control solenoid valve.

Diagnostic Procedure (Cont'd)

16	16 CHECK ABSOLUTE PRESSURE SENSOR			
(E) Wi	ith CONSULT-II			
1. Tu	1. Turn ignition switch ON.			
2. Se	2. Select "SELF DIAG RESULTS" mode with CONSULT-II.			
3. Too	uch "ERASE".			
4. Pe	4. Perform "DTC Confirmation Procedure".			
	See EC-748.			
5. Is 1	the 1st trip DTC P0105 dis	played again?		
	OK or NG			
OK		GO TO 17.		
NG	•	Replace ECM.		


RS

BT

HA

SC

Diagnostic Procedure (Cont'd)

DTC P0455 EVAP CONTROL SYSTEM (GROSS LEAK)

VG33E

GI

MA

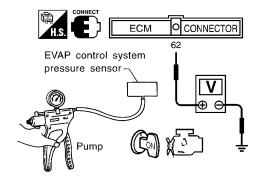
EC

MT

AT

TF

PD

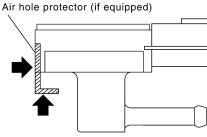

Diagnostic Procedure (Cont'd)

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

- 1. Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch ON.

18

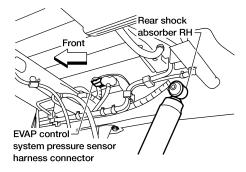
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 5. Check input voltage between ECM terminal 62 and ground.


S	E	-85	14U	,

Pressure (Relative to atmosphericpressure)	Voltage (V)
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

MTBL0246

CAUTION:


- . Always calibrate the vacuum pump gauge when using it.
- Do not apply below –20 kPa (–150 mmHg, –5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure. CAUTION:
- Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEE700W

• Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5m (19.7in) onto a hard surface such as a concrete floor; use a new one.

AEC651A

OK or NG

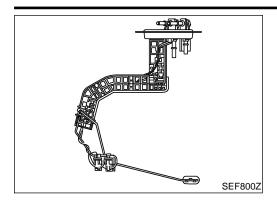
OK •	GO TO 19.
NG ►	Replace EVAP control system pressure sensor.

HA

\$0

DTC P0455 EVAP CONTROL SYSTEM (GROSS LEAK)

VG33E


Diagnostic Procedure (Cont'd)

19	CHECK INTERMITTENT INCIDENT				
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.				
	INSPECTION END				

DTC P0460 FUEL LEVEL SENSOR FUNCTION (SLOSH)

VG33E

Component Description

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

G[

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

MA

LG

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

974

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

FE

GL

EC

	TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	(
_	46	P/B	Fuel level sensor	[Ignition switch "ON"]	Approximately 0 - 4.8V Output voltage varies with fuel level.	[
	66	В	Fuel level sensor ground	[Engine is running] • Idle speed	Approximately 0V	L

AT

MT

TF

PD

AX

On Board Diagnosis Logic

GEC0969

When the vehicle is parked, naturally the fuel level in the fuel tank is stable. It means that output signal of the fuel level sensor does not change. If ECM senses sloshing signal from the sensor, fuel level sensor malfunction is detected.

Malfunction is detected when even though the vehicle is parked, a signal being varied is sent from the fuel level sensor to ECM.

ST

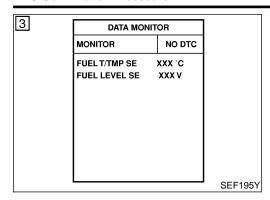
POSSIBLE CAUSE

NGEC0969S01

 Fuel level sensor circuit (The fuel level sensor circuit is open or shorted.)

Fuel level sensor

BT


HA

SC

DTC P0460 FUEL LEVEL SENSOR FUNCTION (SLOSH)

VG33E

DTC Confirmation Procedure

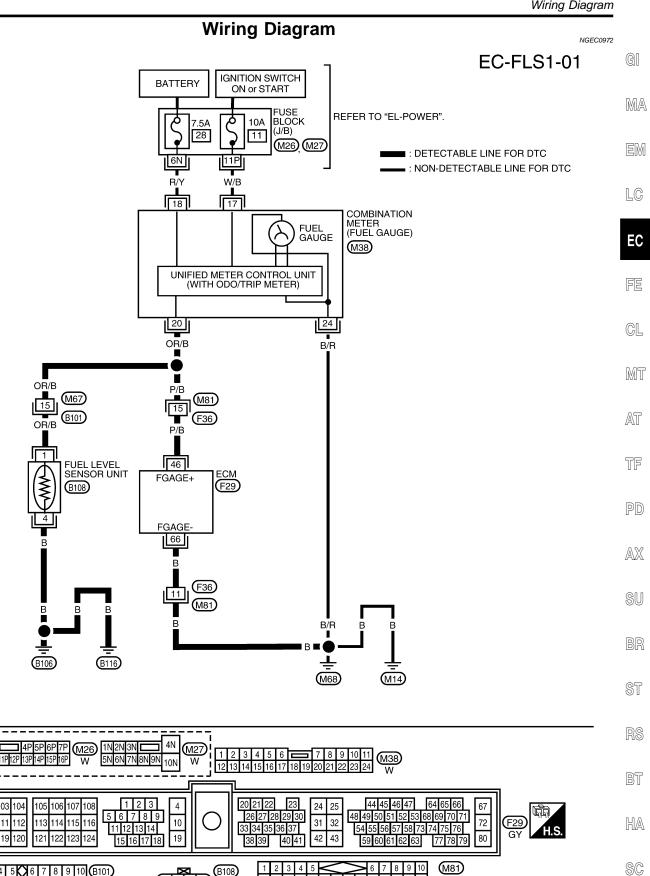
DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

(P) WITH CONSULT-II

NGEC0971S01


NGEC0971

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait maximum of 2 consecutive minutes.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1014.

WITH GST

NGEC0971S02

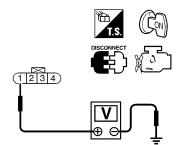
Follow the procedure "WITH CONSULT-II" above.

LEC522

EL

11 12 13 14 15 16 17 18 19 20 21 22 23 24

1234 B108 GY


1 2 3 4 5 6 7 8 9 10 B101 11 12 13 14 15 16 17 18 W Diagnostic Procedure

Diagnostic Procedure

=NGEC0973

CHECK FUEL LEVEL SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect fuel level sensor until and fuel pump harness connector.
- 3. Turn ignition switch "ON".
- 4. Check voltage between fuel level sensor unit and fuel pump terminal 1 and ground with CONSULT-II or a tester.

Voltage: Approximately 12V

SEF801Z

_	.,			_
റ	κ	or	Ν	(-

OK •	GO TO 3.
NG >	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M67, B101
- Harness for open or short between combination meter and fuel level sensor until and fuel pump
 - Repair or replace harness or connectors.

3 CHECK FUEL LEVEL SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between fuel level sensor unit and fuel pump terminal 4 and body ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK •	GO TO 4.
NG ►	Repair open circuit or short to power in harness or connectors.

4 CHECK FUEL LEVEL SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

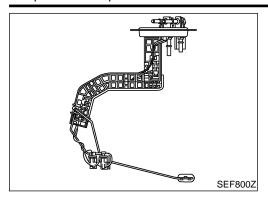
- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 46 and fuel level sensor unit and fuel pump terminal 1, ECM terminal 66 and fuel level sensor unit and fuel pump terminal 4. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 6.
NG ►	GO TO 5.


DTC P0460 FUEL LEVEL SENSOR FUNCTION (SLOSH)

VG33E

Diagnostic Procedure (Cont'd)

		Diagnostic Procedure (CC	
5	DETECT MALFUNCTION	ONING PART	
HaHa	k the following. Irness connectors M66, B1 Irness connectors M81, F3	6	GI
• Ha	rness for open or short be	tween ECM and fuel level sensor	MA
	•	Repair open circuit or short to ground or short to power in harness or connectors.	
			- EM
6	CHECK FUEL LEVEL		
Refe	r to <u>EL-XX</u> , "Fuel Level Ser		LC
		OK or NG	
OK	<u> </u>	GO TO 7.	EC
NG	<u> </u>	Replace fuel level sensor unit.	
-	OUEOK INTERMITTEN	IT INCIDENT	FE
7	CHECK INTERMITTEN		_ "
Ketei		S FOR INTERMITTENT INCIDENT", EC-732.	GL
	<u> </u>	INSPECTION END	
			MT
			ם מעם מ
			AT
			AI
			576
			TF
			D.D.
			PD
			2.2.5
			AX
			SU
			BR
			ST
			RS
			BT
			HA
			U UU U
			SC

Component Description

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnosis Logic

NGEC0976

Driving long distances naturally affect fuel gauge level.

This diagnosis detects the fuel gauge malfunction of the gauge not moving even after a long distance has been driven.

Malfunction is detected when the output signal of the fuel level sensor does not change within the specified range even though the vehicle has been driven a long distance.

POSSIBLE CAUSE

NGEC0976S01

- Harness or connectors (The level sensor circuit is open or shorted.)
- Fuel level sensor

Overall Function Check

NGEC0978

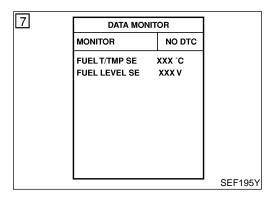
Use this procedure to check the overall function of the fuel level sensor function. During this check, a 1st trip DTC might not be confirmed.

WARNING:

When performing following procedure, be sure to observe the handling of the fuel. Refer to FE-XX "Fuel Tank".

TESTING CONDITION:

Before starting overall function check, preparation of draining fuel and refilling fuel is required.

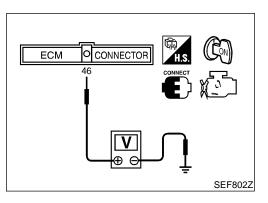

(II) WITH CONSULT-II

NGEC0978S0

NOTE:

Start from step 11, if it is possible to confirm that the fuel cannot be drained by 30ℓ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

- 1) Prepare a fuel container and a spare hose.
- 2) Release fuel pressure from fuel line, refer to "Fuel Pressure Release", EC-637.
- Remove the fuel feed hose on the fuel level sensor unit.
- Connect a spare fuel hose where the fuel feed hose was removed.



DTC P0461 FUEL LEVEL SENSOR FUNCTION

VG33E

Overall Function Check (Cont'd)

- 5) Turn ignition switch "OFF" and wait at least 5 seconds then turn "ON".
- 6) Select "FUEL LEVEL SE" in "DATA MONITOR" mode with CONSULT-II.
- Check "FUEL LEVEL SE" output voltage and note it.
- 8) Select "FUEL PUMP" in "ACTIVE TEST" mode with CON-SULT-II.
- 9) Touch "ON" and drain fuel approximately 30ℓ (7-7/8 US gal, 6-5/8 Imp gal) and stop it.
- 10) Fill fuel into the fuel tank for 30ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- 11) Check "FUEL LEVEL SE" output voltage and note it.
- 12) Check "FUEL LEVEL SE" output voltage and confirm whether the voltage changes more than 0.03V during step 7 to 11. If NG, check the fuel level sensor, refer to *EL-87*, "FUEL LEVEL SENSOR UNIT CHECK".

WITH GST

NOTE:

Start from step 11, if it is possible to confirm that the fuel cannot be drained by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

- 1) Prepare a fuel container and a spare hose.
- Release fuel pressure from fuel line, refer to "Fuel Pressure Release", EC-637.
- 3) Remove the fuel feed hose on the fuel level sensor unit.
- 4) Connect a spare fuel hose where the fuel feed hose was removed.
- 5) Turn ignition switch "OFF".
- 6) Set voltmeters probe between ECM terminal 46 (fuel level sensor signal) and ground.
- 7) Turn ignition switch "ON".
- Check voltage between ECM terminal 46 and ground and note it.
- 9) Drain fuel by 30ℓ (7-7/8 US gal, 6-5/8 Imp gal) from the fuel tank using proper equipment.
- 10) Fill fuel into the fuel tank for 30ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- 11) Confirm that the voltage between ECM terminal 46 and ground changes more than 0.03V during step 8 10.
 - If NG, check component of fuel level sensor, refer to *EL-87*, "FUEL LEVEL SENSOR UNIT CHECK".

LC

MA

EC

FE

CL

. . .

NGFC0978S02

MT

PD

TF

 $\mathbb{A}\mathbb{X}$

SU

BR

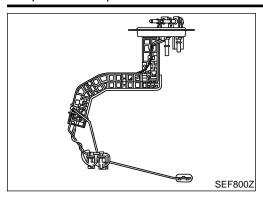
| 9|

RS

BT

HA

SC


EL

 $\mathbb{D}\mathbb{X}$

DTC P0464 FUEL LEVEL SENSOR CIRCUIT

VG33E

Component Description

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

ECM Terminals and Reference Value

NGEC0985

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
46	P/B	Fuel level sensor	[Ignition switch "ON"]	Approximately 0 - 4.8V Output voltage varies with fuel level.
66	В	Fuel level sensor ground	[Engine is running] • Idle speed	Approximately 0V

On Board Diagnosis Logic

NGEC0980

ECM receives two signals from the fuel level sensor circuit.

One is fuel level sensor power supply circuit, and the other is fuel level sensor ground circuit.

This diagnosis indicates the former, to detect open or short circuit malfunction.

Malfunction is detected when an excessively low or high voltage is sent from the sensor is sent to ECM.

POSSIBLE CAUSE

NGEC0980S01

- Fuel level sensor circuit (The fuel level sensor circuit is open or shorted.)
- Fuel level sensor

DTC P0464 FUEL LEVEL SENSOR CIRCUIT

VG33E

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

NGEC0982

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

MA

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at ignition switch "ON".

EM

LC

EC

2	DATA MONIT		
	MONITOR NO DTC		
	FUEL LEVEL SE	XXX °C XXX V	
			SEF195Y

(P) WITH CONSULT-II

NGEC0982S01

1) Turn ignition switch "ON".

- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1021.

WITH GST

Follow the procedure "WITH CONSULT-II" above.

NGEC0982S02

MT

AT

PD

TF

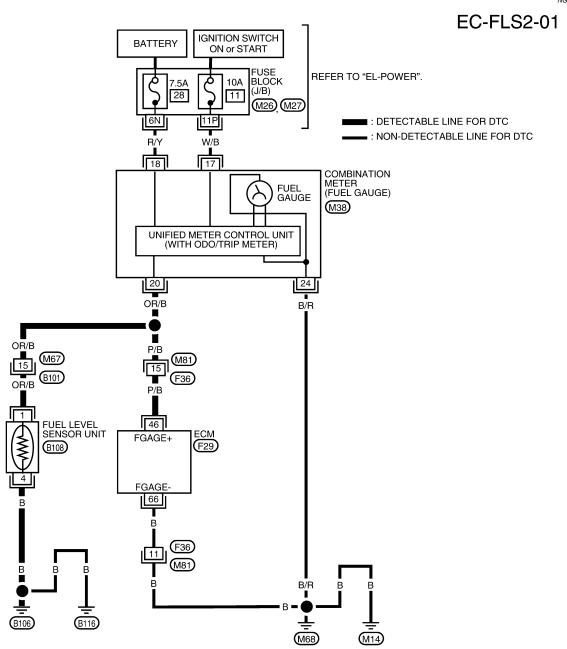
AX

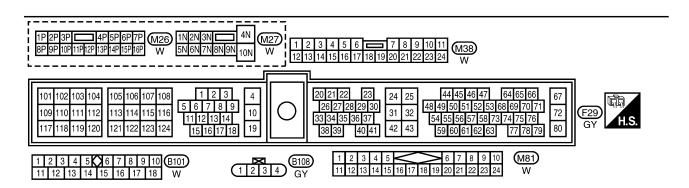
SU

BR

ST

DQ

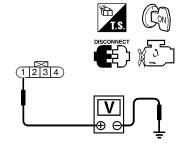

BT


HA

SC

Wiring Diagram

NGEC0983


DTC P0464 FUEL LEVEL SENSOR CIRCUIT

Diagnostic Procedure

=NGEC0984

1 CHECK FUEL LEVEL SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect fuel level sensor until and fuel pump harness connector.
- 3. Turn ignition switch "ON".
- 4. Check voltage between fuel level sensor unit and fuel pump terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 12V

SEF801Z

OK or NG

OK		GO TO 3.
NG	•	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M67, B101
- Harness for open or short between combination meter and fuel level sensor until and fuel pump
 - Repair or replace harness or connectors.

3 CHECK FUEL LEVEL SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between fuel level sensor unit and fuel pump terminal 4 and body ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

Ok			N	2
Ur	\ (or I	N	5

OK ►	GO TO 4.
NG ►	Repair open circuit or short to power in harness or connectors.

4 CHECK FUEL LEVEL SENSOR INPUT CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 46 and fuel level sensor unit and fuel pump terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK J	>	GO TO 6.
NG		GO TO 5.

MA

GI

LC

EC

FE

GL

MT

AT

TF

PD

SU

ST

0 .

RS

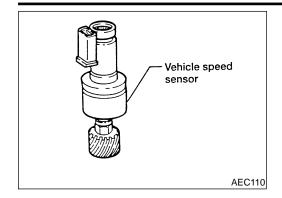
BT

HA

DTC P0464 FUEL LEVEL SENSOR CIRCUIT

VG33E

Diagnostic Procedure (Cont'd)


5 DETECT MALFUNCTIONING PART Check the following. • Harness connectors M66, B101 • Harness connectors M81, F36 • Harness for open or short between ECM and fuel level sensor Repair open circuit or short to ground or short to power in harness on connectors.

6	CHECK FUEL LEVEL SENSOR		
Refer	Refer to <i>EL-87</i> , "Fuel Level Sensor Unit Check".		
	OK or NG		
ОК	OK ▶ GO TO 7.		
NG	>	Replace fuel level sensor unit.	

7	CHECK INTERMITTENT INCIDENT	
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
	•	INSPECTION END

DTC P0500 VEHICLE SPEED SENSOR (VSS)

VG33E Component Description

Component Description

The vehicle speed sensor is installed in the transaxle. It contains a pulse generator which provides a vehicle speed signal to the speedometer. The speedometer then sends a signal to the ECM.

G[

MA

LG

EC

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

VGEC076

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

FE CL

MT

AT

TF

PD

AX

•	TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	(
	29	G/B	Vehicle speed sensor	 [Engine is running] Lift up the vehicle In 1st gear position Vehicle speed is 40 km/h (25 MPH) 	2 - 3V (V) 10 5 0 50 ms SEF996U	1

On Board Diagnosis Logic

NGEC0770

Malfunction is detected when the almost 0 km/h (0 MPH) signal from vehicle speed sensor is sent to ECM even when vehicle is being driven.

POSSIBLE CAUSE

NGEC0770S01

 Harness or connector (The vehicle speed sensor circuit is open or shorted.)

8

Vehicle speed sensor

RS

DTC Confirmation Procedure

NGEC0771

CAUTION:

Always drive vehicle at a safe speed.

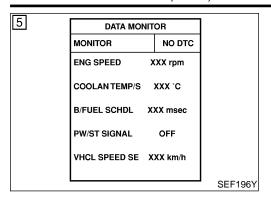
HA

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

SC

TESTING CONDITION:


Steps 1 and 2 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

EC-1023

DTC P0500 VEHICLE SPEED SENSOR (VSS)

VG33E

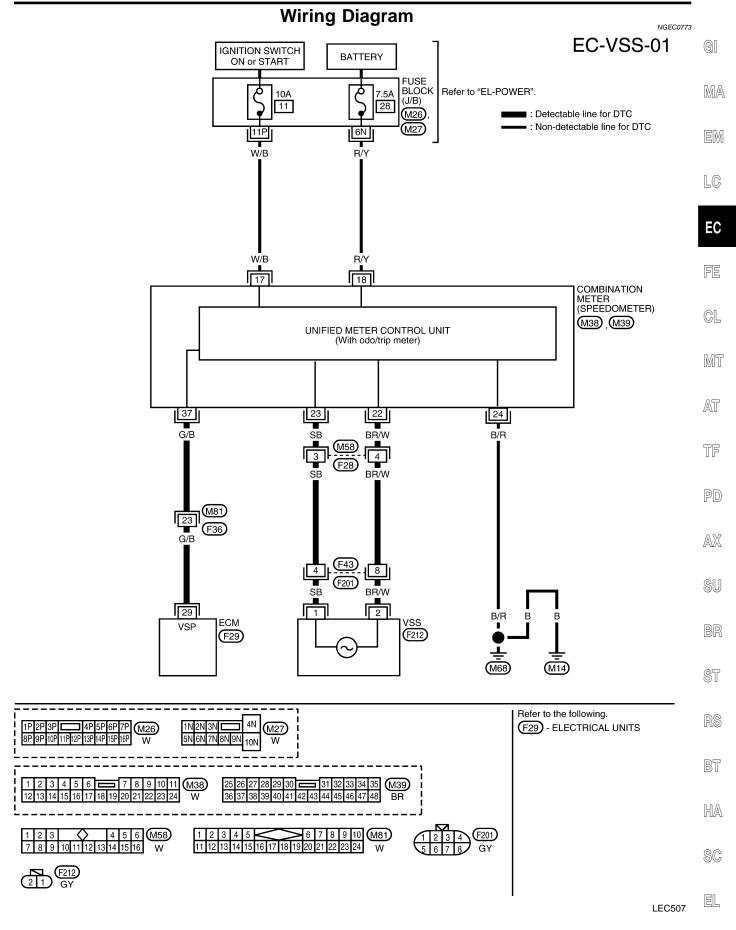
DTC Confirmation Procedure (Cont'd)

(P) With CONSULT-II

-) Start engine
- Read "VHCL SPEED SE" in "DATA MONITOR" mode with CONSULT-II. The vehicle speed on CONSULT-II should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.
 - If NG, go to "Diagnostic Procedure", EC-1026. If OK, go to following step.
- Select "DATA MONITOR" mode with CONSULT-II.
- 4) Warm engine up to normal operating temperature.
- Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	More than 1,400 rpm (A/T models) More than 2,000 rpm (M/T models)
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	4.5 - 9.0 msec
Selector lever	Suitable position
PW/ST SIGNAL	OFF

 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1026.


Overall Function Check

Use this procedure to check the overall function of the vehicle speed sensor circuit. During this check, a 1st trip DTC might not

be confirmed.

With GST

- 1) Lift up drive wheels.
- 2) Start engine.
- 3) Read vehicle speed sensor signal in "MODE 1" with GST. The vehicle speed sensor on GST should be able to exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.
- 4) If NG, go to "Diagnostic Procedure", EC-1026.

DTC P0500 VEHICLE SPEED SENSOR (VSS)

VG33E

Diagnostic Procedure

Diagnostic Procedure

NGEC0774

1 CHECK VEHICLE SPEED SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector and combination meter harness connector.
- Check harness continuity between ECM terminal 29 and meter terminal 37. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

0	K	or	Ν	G

OK	>	GO TO 3.
NG	•	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M81, F36
- · Harness for open or short between ECM and combination meter

Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK SPEEDOMETER CIRCUIT FOR OPEN AND SHORT

Check the following.

- Harness connectors M58, F28
- Harness connectors F43, F201
- Harness for open or short between combination meter and vehicle speed sensor

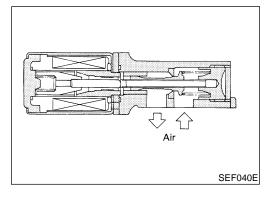
OK or NG

OK •	Check combination meter and vehicle speed sensor. Refer to EL section.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK INTERMITTENT INCIDENT Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732. INSPECTION END

DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE

VG33E Description


Description SYSTEM DESCRIPTION

NGEC0775

NGEC0775S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator	D/J /A
Camshaft position sensor	Engine speed			- MA
Mass air flow sensor	Amount of intake air			EM
Engine coolant temperature sensor Ignition switch Throttle position sensor	Engine coolant temperature			الالاكا
	Start signal			LC
	Throttle position			
Park/neutral position (PNP) switch	Park/neutral position			EC
Air conditioner switch	Air conditioner operation	Idle air control	IACV-AAC valve	
Air conditioner switch Power steering oil pressure switch	Power steering load signal			FE
Battery	Battery voltage			
Vehicle speed sensor	Vehicle speed			GL
Ambient air temperature switch	Ambient air temperature			
Intake air temperature sensor	Intake air temperature			Mī
Absolute pressure sensor	Ambient barometic pressure			
	This sustains sutains ties		ring idle apped to a specific	_ AT

This system automatically controls engine idle speed to a specified level. Idle speed is controlled through fine adjustment of the amount of air which bypasses the throttle valve via IACV-AAC valve. The IACV-AAC valve repeats ON/OFF operation according to the signal sent from the ECM. The camshaft position sensor detects the actual engine speed and sends a signal to the ECM. The ECM then controls the ON/OFF time of the IACV-AAC valve so that engine speed coincides with the target value memorized in ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warm up, deceleration, and engine load (air conditioner and power steering).

COMPONENT DESCRIPTION IACV-AAC Valve

NGEC0775S02

The IACV-AAC valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of air that will flow through the valve. The more air that flows through the valve, the higher the idle speed.

SC

TF

SU

ST

DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE

VG33E

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM CONDIT		DITION	SPECIFICATION
IACV-AAC/V	Engine: After warming upAir conditioner switch: "OFF"	Idle	10 - 20%
	Shift lever: "N"	2,000 rpm	_

ECM Terminals and Reference Value

NGEC0777

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
		[Engine is running] • Warm-up condition • Idle speed	8 - 11V (V) 20 10 0 5 ms SEF005V	
101	OR/L	IACV-AAC valve	[Engine is running] • Warm-up condition • Engine speed is 3,000 rpm	7 - 10V (V) 20 10 0 5 ms SEF692W

On Board Diagnosis Logic

NGEC0778

Malfunction is detected when (Malfunction A) the IACV-AAC valve does not operate properly, (Malfunction B) the IACV-AAC valve does not operate properly.

POSSIBLE CAUSE

NGEC0778S01

- Harness or connectors (The IACV-AAC valve circuit is open.)
- Harness or connectors (The IACV-AAC valve circuit is shorted.)
- IACV-AAC valve

DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE

VG33E

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

NGEC0779

 If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

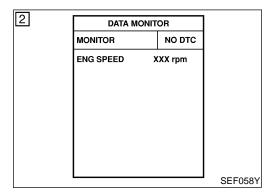
плл

Perform "PROCEDURE FOR MALFUNCTION A" first. If 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B".

MA

LC

EC


GL

MT

AT

TF

PD

PROCEDURE FOR MALFUNCTION A

NGEC0779S01

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch "ON".

(P) With CONSULT-II

FE

- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 2 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1031.

With GST

Follow the procedure "With CONSULT-II".

DATA MONITOR
MONITOR
NO DTC
ENG SPEED XXX rpm
COOLAN TEMP/S XXX *C

PROCEDURE FOR MALFUNCTION B

NGEC0779S02

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) With CONSULT-II

- 2) Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON again and select "DATA MONITOR" mode with CONSULT-II.

Start engine and warm it up to normal operating temperature.

- 4) Start engine and run it for at least 1 minute at idle speed.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1031.

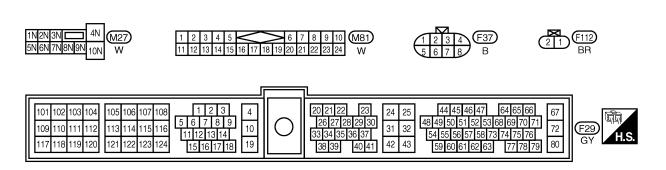
With GST

1)

Follow the procedure "With CONSULT-II".

BT

HA


ST

SC

Wiring Diagram

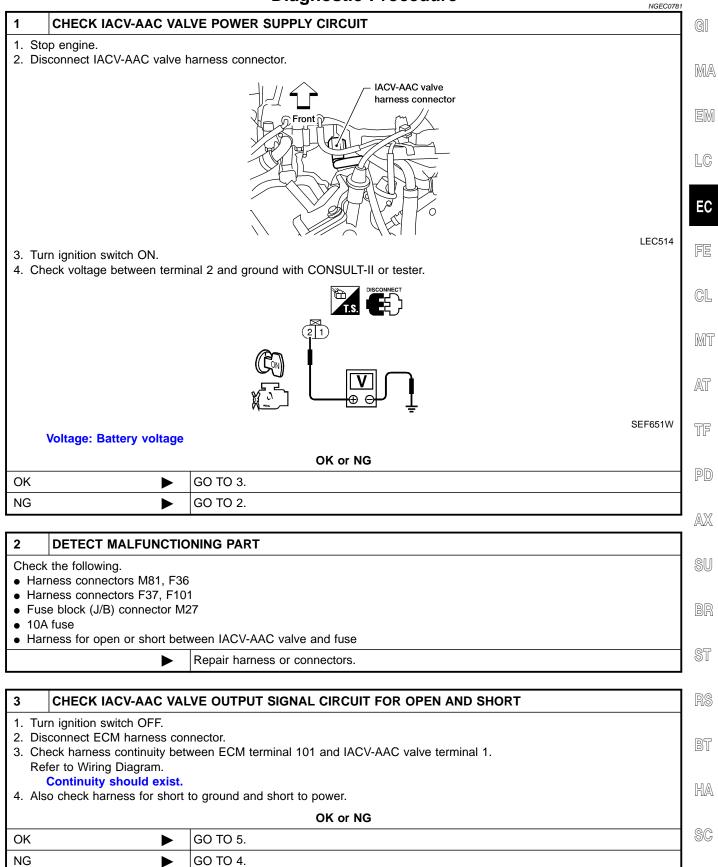
VG33E

Wiring Diagram NGEC0780 EC-AAC/V-01 IGNITION SWITCH ON or START FUSE BLOCK (J/B) Refer to "EL-POWER". 10A 15 M27 ■ : Detectable line for DTC : Non-detectable line for DTC Y/B 14 Y/B (M81) (F36) (F101) IACV-AAC VALVE (F112) OR/L 3 **F37** OR/L

101

ISC

ECM


(F29)

DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE

VG33E

Diagnostic Procedure

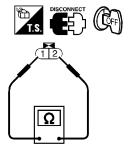
EIL

DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE

AIR CONTROL (AAC) VÂLVE ´
Diagnostic Procedure (Cont'd)

VG33E

4 DETECT MALFUNCTIONING PART


Check the following.

- Harness connectors F101, F37
- Harness for open or short between IACV-AAC valve and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK IACV-AAC VALVE

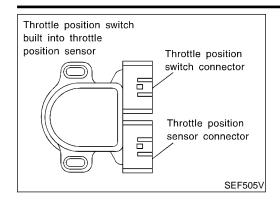
- 1. Disconnect IACV-AAC valve harness connector.
- 2. Remove IACV-AAC valve.
- Check IACV-AAC valve resistance.

SEF202V

Resistance:

Approximately 10 Ω [at 20°C (68°F)]

- Check plunger for seizing or sticking.
- Check for broken spring.
- 3. Supply battery voltage between IACV-AAC valve connector terminals.


Plunger should move.

OK or NG

OK •	GO TO 6.
NG ►	Replace IACV-AAC valve.

6	6 CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
	•	INSPECTION END	

Component Description

Specification data are reference values.

Component Description

A closed throttle position switch and wide open throttle position switch are built into the throttle position sensor unit. The wide open throttle position switch is used only for A/T control.

When the throttle valve is in the closed position, the closed throttle position switch sends a voltage signal to the ECM. The ECM only uses this signal to open or close the EVAP canister purge volume control solenoid valve when the throttle position sensor is malfunctioning.

MA

LC

EC

FE

CONSULT-II Reference Value in Data Monitor Mode

MONITOR ITEM	CONDITION		SPECIFICATION	
CLSD THL/P SW	Engine: After warming up, idle	Throttle valve: Idle position	ON	
	the engine	Throttle valve: Slightly open	OFF	

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NGEC0784

Mī

TF

PD

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

AT

MINA	TER-MINAL NO. WIRE COLOR ITEM		CONDITION	DATA (DC Voltage)	1
28 BR/W	BR/W	Throttle position switch	[Engine is running]Warm-up conditionAccelerator pedal fully released	BATTERY VOLTAGE (11 - 14V)	1
	(Closed position)	[Ignition switch "ON"] • Accelerator pedal depressed	Approximately 0V	Ŀ	

ST

On Board Diagnosis Logic

Malfunction is detected when battery voltage from the closed throttle position switch is sent to ECM with the throttle valve opened.

HA

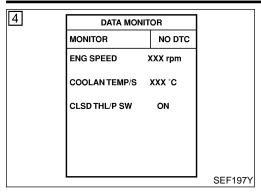
SC

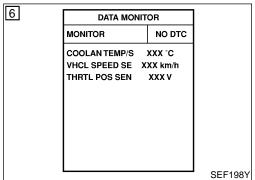
BT

POSSIBLE CAUSE

Harness or connectors (The closed throttle position switch circuit is shorted.)

Closed throttle position switch


Throttle position sensor


NGEC0785S01

VG33E

NGEC0786

DTC Confirmation Procedure

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF, wait at least 5 seconds and then start engine.
- 3) Select "CLSD THL/P SW" in "DATA MONITOR" mode.
- 4) Check the signal under the following conditions.

Condition	Signal indication
Throttle valve: Idle position	ON
Throttle valve: Slightly open	OFF

If the result is NG, go to "Diagnostic Procedure", EC-1036. If OK, go to following step.

- 5) Select "DATA MONITOR" mode with CONSULT-II.
- 6) Drive the vehicle for at least 5 consecutive seconds under the following condition.

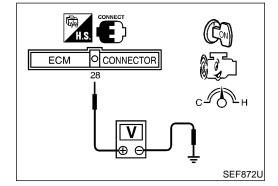
THRTL POS SEN	More than 2.5V
VHCL SPEED SE	More than 5 km/h (3 MPH)
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

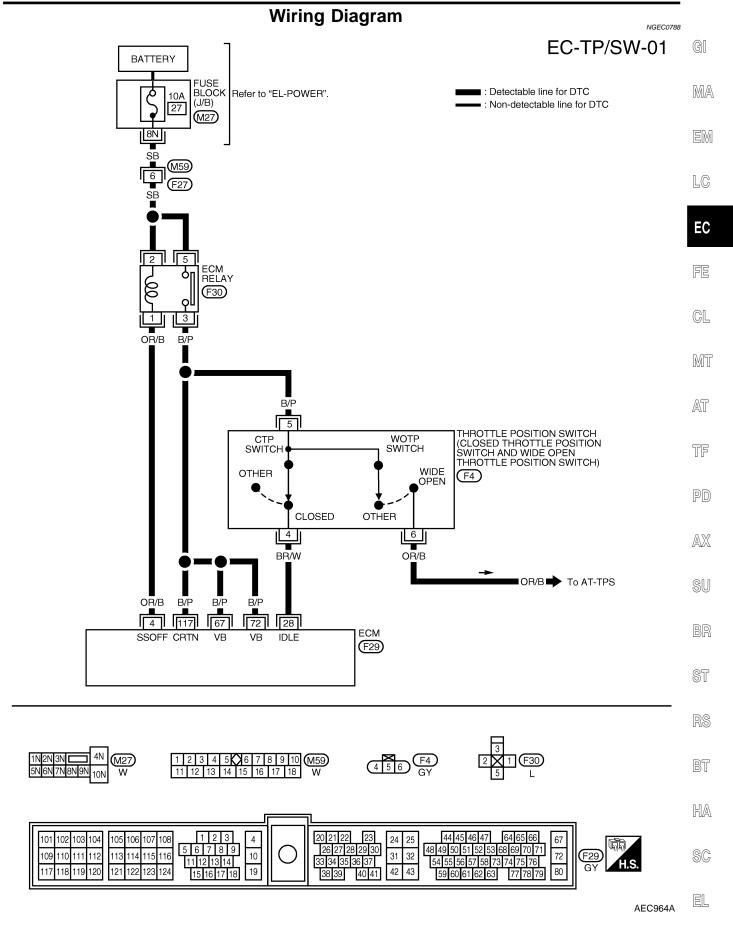
7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1036.

Overall Function Check

NGEC078

Use this procedure to check the overall function of the closed throttle position switch circuit. During this check, a 1st trip DTC might not be confirmed.

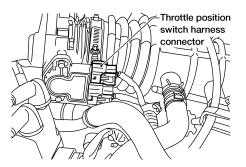

Without CONSULT-II


- 1) Start engine and warm it up to normal operating temperature.
- Check the voltage between ECM terminal 28 (Closed throttle position switch signal) and ground under the following conditions.

At idle: Battery voltage

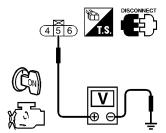
At 2,000 rpm: Approximately 0V

3) If NG, go to "Diagnostic Procedure", EC-1036.



Diagnostic Procedure

NGEC0789


1 CHECK CLOSED THROTTLE POSITION SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect throttle position switch harness connector.

AEC653A

- 3. Turn ignition switch ON.
- 4. Check voltage between terminal 5 and engine ground with CONSULT-II or tester.

SEF715U

Voltage: Battery voltage

OK or NG

OK •	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between throttle position switch and ECM relay
- Harness for open or short between throttle position switch and ECM

Repair harness or connectors.

3 CHECK CLOSED THROTTLE POSITION SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 28 and switch terminal 4. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK	>	GO TO 4.
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.

VG33E

Diagnostic Procedure (Cont'd)

4	ADJUST THROTT	LE POSITION SWITCH			
Check	the following items.	Refer to "Basic Inspection", E	C-694.		C
			N		
		Ignition timing	10° ± 2° BTDC		П/
		Base idle speed	700 ± 50 rpm (in "P" or "N" position)		_
		Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.2 mm (0.008 in): ON 0.4 mm (0.016 in): OFF		
		Target idle speed	750 ± 50 rpm (in "P" or "N" position)		L
				WEC959	:
with C	ONSULT-II	► GO TO 5.			
withou	t CONSULT-II	► GO TO 6.			F
5	CHECK CLOSED	THROTTLE POSITION SW	ITCH		0
	th CONSULT-II				٠
	rt engine and warm i n ignition switch OFF	it up to normal operating temp	perature.		Ľ/
	n ignition switch ON.				N
4. Sel	ect "DATA MONITOR	R" mode with CONSULT-II.			
	eck indication of "CLS		tion avvitale imptalled in valeigle		A
ivie	asurement must be r	made with closed throttle posi	tion switch installed in vehicle.		

CLSD THL/P SW

ON OFF

Throttle valve conditions

OK or NG

Partially open or completely open

Completely closed

GO TO 8.

GO TO 7.

OK

NG

TF

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

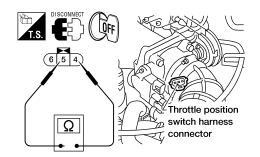
HA

SC

EL

MTBL0355

VG33E


Diagnostic Procedure (Cont'd)

6 CHECK CLOSED THROTTLE POSITION SWITCH

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect closed throttle position switch harness connector.
- 4. Check continuity between closed throttle position switch terminals 4 and 5.

 Resistance measurement must be made with closed throttle position switch installed in vehicle.

Throttle valve conditions	Continuity
Completely closed	Yes
Partially open or completely open	No

MTBL0247

AEC654A

OK or NG

OK ▶	>	GO TO 9.
NG ▶	>	GO TO 7.

7 ADJUST THROTTLE POSITION SWITCH

Check the following items. Refer to "Basic Inspection", EC-694.

Items	Specifications
Ignition timing	10° ± 2° BTDC
Base idle speed	700 ± 50 rpm (in "P" or "N" position)
Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.2 mm (0.008 in): ON 0.4 mm (0.016 in): OFF
Target idle speed	750 ± 50 rpm (in "P" or "N" position)

WEC959

If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace closed throttle position switch.

OK or NG

OK (with CONSULT-II)	>	GO TO 8.
OK (without CONSULT-II)	•	GO TO 9.
NG		Replace throttle position switch.

Diagnostic Procedure (Cont'd)

8 **CHECK THROTTLE POSITION SENSOR** (P) With CONSULT-II GI 1. Start engine and warm it up to normal operating temperature. 2. Stop engine (ignition switch OFF). 3. Turn ignition switch ON. MA 4. Select "DATA MONITOR" mode with CONSULT-II. 5. Check voltage of "THRTL POS SEN". Throttle valve conditions THRTL POS SEN Completely closed (a) 0.15 - 0.85V Partially open Between (a) and (b) Completely open (b) 3.5 - 4.7V MTBL0230 EC Voltage measurement must be made with throttle position sensor installed in vehicle. If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-694. OK or NG GO TO 10. OK NG Replace throttle position sensor. 9 **CHECK THROTTLE POSITION SENSOR** MT Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Stop engine (ignition switch OFF). AT 3. Turn ignition switch ON. 4. Check voltage between ECM terminal 23 (Throttle position sensor signal) and ground. Voltage measurement must be made with throttle position sensor installed in vehicle. TF Throttle valve conditions Voltage Completely closed (a) 0.15 - 0.85V PD Partially open Between (a) and (b) Completely open (b) 3.5 - 4.7V MTBL0231 If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-694. OK or NG GO TO 10. OK NG Replace throttle position sensor. 10 **CHECK INTERMITTENT INCIDENT** Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732. **INSPECTION END**

BT

HA

SC

System Description

NGEC0790

These circuit lines are used to control the smooth shifting up and down of A/T during the hard acceleration/deceleration.

Voltage signals are exchanged between ECM and TCM (Transmission Control Module).

ECM Terminals and Reference Value

NGEC0791

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
26	PU/W	A/T signal No. 1	[Ignition switch "ON"] [Engine is running] • Idle speed	6 - 8V
27	P/B	A/T signal No. 2	[Ignition switch "ON"] [Engine is running] • Idle speed	6 - 8V
35	G/R	A/T signal No. 3	[Ignition switch "ON"]	OV

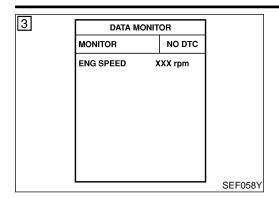
On Board Diagnosis Logic

NGEC0792

Malfunction is detected when ECM receives incorrect voltage from TCM (Transmission Control Module) continuously.

POSSIBLE CAUSE

NGEC0792S01


 Harness or connectors [The circuit between ECM and TCM (Transmission Control Module) is open or shorted.]

DTC P0600 A/T CONTROL

VG33E

=NGEC0793

DTC Confirmation Procedure

CONNECTOR

ECM

26 27

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine, and rev engine more than 1,000 rpm once, then let it idle for more than 40 seconds.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-1043.

FE

MT

MA

LC

Overall Function Check

Use this procedure to check the overall function of the A/T control

circuit. During this check, a DTC might not be confirmed.

(X) Without CONSULT-II

1) Start engine.

SEF755U

TF

 Check voltage between ECM terminal 26 and ground. ECM terminal 27 and ground.

PD

Voltage: 6 - 8V

) If NG, go to "Diagnostic Procedure", EC-1043.

AX

מוש

ST

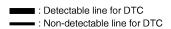
RS

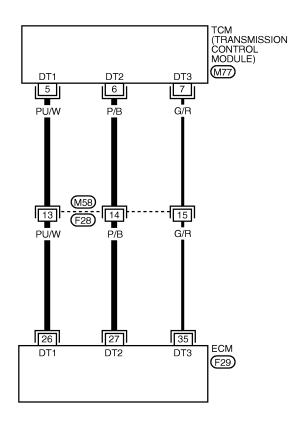
BT

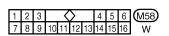
HA

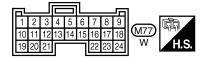
SC

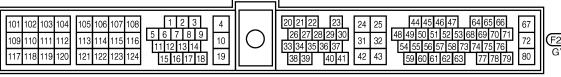
EL


 \mathbb{N}


EC-1041


Wiring Diagram


NGEC0795


EC-AT/C-01

AEC965A

DTC P0600 A/T CONTROL

Diagnostic Procedure

NGEC0796

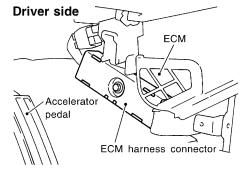
GI

MA

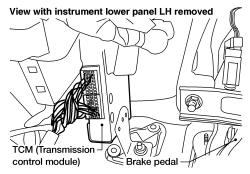
EC

FE

MT


AT

TF


PD

1 CHECK A/T CONTROL INPUT SIGNAL CIRCUIT FOR OPEN

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector and TCM (Transmission Control Module) harness connector.

SEF324V

AEC655A

3. Check harness continuity between ECM terminal 26 and terminal 5, ECM terminal 27 and terminal 6, ECM terminal 35 and terminal 7.

Refer to Wiring Diagram.

Continuity should exist.

OK	or	NG
----	----	----

OK •	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M58, F28
- Harness for open or short between ECM and TCM (Transmission Control Module)

Repair harness or connectors.

3 CHECK A/T CONTROL INPUT SIGNAL CIRCUIT FOR SHORT

1. Check harness continuity between ECM terminal 26 and ground, ECM terminal 27 and ground, ECM terminal 35 and ground.

Refer to Wiring Diagram.

Continuity should not exist.

2. Also check harness for short to power.

OK	or	NG

OK •	GO TO 5.
NG •	GO TO 4.

3

SU

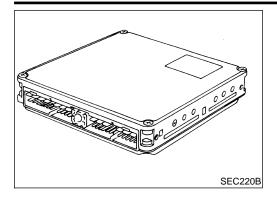
BT

HA

| SC

ZL

DTC P0600 A/T CONTROL


VG33E

Diagnostic Procedure (Cont'd)

4	4 DETECT MALFUNCTIONING PART		
Check	Check the harness for open or short between ECM and TCM (Transmission Control Module).		
	Repair open circuit or short to ground or short to power in harness.		

5	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
	► INSPECTION END		

DTC P0605 ECM

Component Description

The ECM consists of a microcomputer and connectors for signal input and output and for power supply. The unit controls the engine.

MA

LC

On Board Diagnosis Logic

Malfunction is detected when ECM calculation function is malfunctioning.

EC

POSSIBLE CAUSE

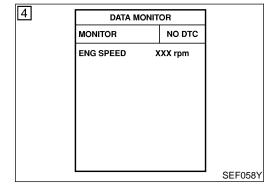
ECM

NGFC0798S01

GL

MT

AT


DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before TF

PD

AX

(P) With CONSULT-II

conducting the next test.

SU

- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine.
- Run engine for at least 2 seconds at idle speed.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1046.

ST

With GST

Follow the procedure "With CONSULT-II".

BT

HA

SC

EL

Diagnostic Procedure

NGEC0800

1 INSPECTION START

With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "SELF DIAG RESULTS" mode with CONSULT-II.
- 3. Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure".

See EC-1045.

5. Is the 1st trip DTC P0605 displayed again?

With GST

- 1. Turn ignition switch ON.
- 2. Select MODE 4 with GST.
- 3. Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure".

See EC-1045.

5. Is the 1st trip DTC P0605 displayed again?

Yes or No

Yes ▶ Replace ECM.		Replace ECM.	
No	>	SPECTION END	

DTC P1126 THERMOSTAT FUNCTION

On Board Diagnosis Logic

On Board Diagnosis Logic

Engine coolant temperature has not risen enough to open the thermostat even though the engine has run long enough.

This is due to a leak in the seal or the thermostat open stuck. Malfunction is detected when the engine coolant temperature does not reach to specified temperature even though the engine has run long enough.

GI

MA

POSSIBLE CAUSE

NGEC0986S01

- Thermostat function
- Leakage from sealing portion of thermostat
- Engine coolant temperature sensor

EC

GL

MT

DTC Confirmation Procedure

NOTE:

AT

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds

TF

TESTING CONDITION:

before conducting the next test.

- For best results, perform at ambient temperature of -10°C (14°F) or higher.
- For best results, perform at engine coolant temperature of -10°C (14°F) to 70°C (158°F).

- (P) WITH CONSULT-II
- 1) Replace thermostat with new one. Refer to **LC-30**, "Thermostat". Use only a genuine NISSAN thermostat as a replacement. If an incorrect thermostat is used, the MIL may come on.
- Turn ignition switch "ON".

- 3) Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
 - ST
- 4) Check that the "COOLAN TEMP/S" is above 70°C (158°F). If it is below 70°C (158°F), go to following step. If it is above 70°C (158°F), stop engine and cool down the engine to less than 70°C (158°F), then retry from step 1.
- Drive vehicle for 10 consecutive minutes under the following

conditions.

BT

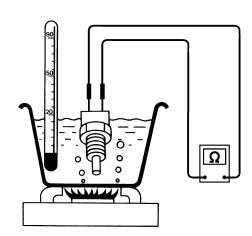
VHCL SPEED SE 80 - 120 km/h (50 - 75 MPH)

HA If 1st trip DTC is detected, go to "Diagnostic Procedure",

EC-597. **WITH GST**

NGEC0988502

1) Follow the procedure "WITH CONSULT-II" above.


SC

Diagnostic Procedure

NGEC0989


CHECK ENGINE COOLANT TEMPERATURE SENSOR

- 1. Turn ignition switch OFF.
- 2. Remove engine coolant temperature sensor.
- 3. Check resistance between engine coolant temperature sensor terminals under the following conditions.

<Reference data>

Temperature °C (°F)	Resistance k Ω
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

SEF304X

OK or NG

OK ▶	INSPECTION END
NG ►	Replace engine coolant temperature sensor.

DTC P1148 (RIGHT BANK, -B1), P1168 (LEFT BANK, -B2) **CLOSED LOOP CONTROL**

VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

★ The closed loop control has the one trip detection logic. Malfunction is detected when the closed loop control function for right bank does not operate even when vehicle is driving in the specified condition, the closed loop control function for left bank does not operate even when vehicle is driving in the specified condition.

MA

NGEC0808S01

POSSIBLE CAUSE

- The heated oxygen sensor 1 (front) circuit is open or shorted.
- Heated oxygen sensor 1 (front)
- Heated oxygen sensor 1 heater (front)

LC

EC

GL

MT

AT

TF

NGEC0809

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

PD

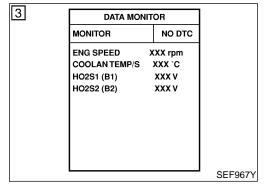
TESTING CONDITION:

- Never raise engine speed above 3,200 rpm during the "DTC Confirmation Procedure". If the engine speed limit is exceeded, retry the procedure from step 2.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

ST

BT

HA


SC

EL

(P) With CONSULT-II

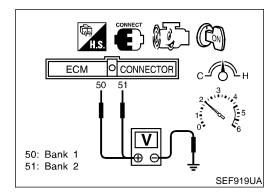
- Start engine and warm it up to normal operating temperature.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Hold engine speed at 2,000 rpm and check one of the following.
- "HO2S1 (B1)/(B2)" voltage should go above 0.70V at least once.
- "HO2S1 (B1)/(B2)" voltage should go below 0.21V at least If the check result is NG, perform "Diagnosis Procedure",

EC-1050.

DTC P1148 (RIGHT BANK, -B1), P1168 (LEFT BANK, -B2) CLOSED LOOP CONTROL

DTC Confirmation Procedure (Cont'd)

VG33E


If the check result is OK, perform the following step.

- 4) Let engine idle at least 5 minutes.
- 5) Maintain the following condition at least 50 consecutive seconds.

B/FUEL SCHDL	3.3 msec or more
ENG SPEED	1,600 rpm or more
Selector lever	Suitable position
VHCL SPEED SE	More than 71 km/h (44 MPH)

During this test, P0130 and/or P0150 may be displayed on CONSULT-II screen.

6) If DTC is detected, go to "Diagnostic Procedure", EC-1050.

Overall Function Check

NGEC0810

Use this procedure to check the overall function of the closed loop control. During this check, a DTC might not be confirmed.

⋈ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 50 [heated oxygen sensor 1 (front) (bank 1) signal] or 51 [heated oxygen sensor 1 (front) (bank 2) signal] and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no-load.
- The voltage should go above 0.70V at least once.
- The voltage should go below 0.21V at least once.
- 4) If NG, go to "Diagnostic Procedure", EC-1050.

Diagnostic Procedure

NGEC0811

Perform trouble diagnosis for "DTC P0133, P0153", EC-807.

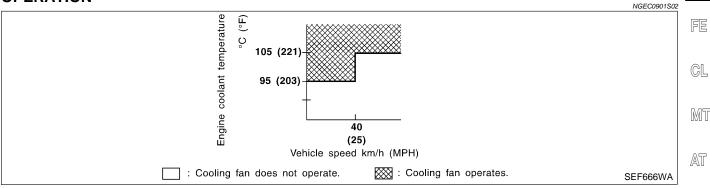
VG33E

System Description

System Description

COOLING FAN CONTROL

NGEC0901	
NGEC0901S01	


(GII

			110200001001	QII.
Sensor	Input Signal to ECM	ECM func- tion	Actuator	MA
Vehicle speed sensor	Vehicle speed			UVUZ
Engine coolant temperature sensor	Engine coolant temperature	Cooling fan	Cooling fan relay(s)	EM
Ignition switch	Start signal	control	Cooling fair relay(s)	الالاكا
Camshaft position sensor	Engine speed			LC

The ECM controls the cooling fan corresponding to the signals sent from the vehicle speed and engine coolant temperature. The control system has 2-step control [ON/OFF].

EC

OPERATION

CONSULT-II Reference Value in Data Monitor Mode

TF

PD

Specification data are reference values.

iΕ	C_{ℓ}	191	U2	•

MONITOR ITEM	CONE	DITION	SPECIFICATION	
COOLING FAN	Engine: Idling, after warming up	Engine coolant temperature is 94°C (201°F) or less.	OFF	AX
COOLING FAIN	Air conditioner switch: OFF	Engine coolant temperature is 95°C (203°F) or more.	ON	SU

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
36 LG/R Coolir	Cooling fan relay	[Engine is running] • Cooling fan is not operating	BATTERY VOLTAGE (11 - 14V)	
		[Engine is running] ■ Cooling fan is operating	0 - 0.6V	

BT

HA

EIL

On Board Diagnosis Logic

VG33E

On Board Diagnosis Logic

NGEC0904

If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will rise. When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

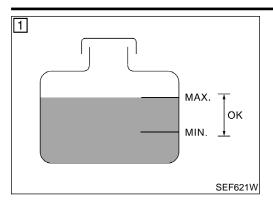
Malfunction is detected when engine coolant temperature reaches an abnormally high temperature.

CAUTION:

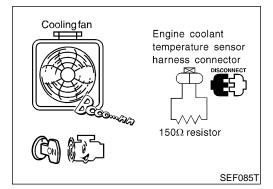
When a malfunction is indicated be sure to replace the coolant, follow the procedure in "Changing Engine Coolant", "ENGINE MAINTENANCE", MA-26. Also, replace the engine oil.

- 1) Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute like pouring coolant by kettle. Be sure to use coolant with the proper mixture ratio. Refer to "Anti-freeze Coolant Mixture Ratio", "RECOMMENDED FLUIDS AND LUBRICANTS", MA-15.
- 2) After refilling coolant, run engine to ensure that no water-flow noise is emitted.

POSSIBLE CAUSE


NGEC0904S01

- Harness or connectors (The cooling fan circuit is open or shorted.)
- Cooling fan
- Radiator hose
- Radiator
- Radiator cap
- Water pump
- Thermostat


For more information, refer to "MAIN 12 CAUSES OF OVERHEATING", EC-1062.

VG33E

On Board Diagnosis Logic (Cont'd)

[4]	ACTIVE TES	T	
	COOLING FAN	OFF	
	MONITOR		
	COOLAN TEMP/S	xxx °c	
	L		SEF376X

Overall Function Check

Use this procedure to check the overall function of the cooling fan. During this check, a DTC might not be confirmed.

WARNING:

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator.

Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

(P) With CONSULT-II

- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to "Diagnostic Procedure", EC-1055.
- Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to "Diagnostic Procedure", EC-1055.
- Turn ignition switch ON.
- Perform "COOLING FAN" in "ACTIVE TEST" mode with CON-SULT-II.
- 5) Make sure that cooling fan operates.
- 6) If NG, go to "Diagnostic Procedure", EC-1055.

₩ithout CONSULT-II

- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to "Diagnostic Procedure", EC-1055.
- Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to "Diagnostic Procedure", EC-1055.
- 3) Turn ignition switch OFF.
- 4) Disconnect engine coolant temperature sensor harness connector.
- 5) Connect 150Ω resistor to engine coolant temperature sensor harness connector.
- Start engine and make sure that cooling fan operates.
 Be careful not to overheat engine.
- 7) If NG, go to "Diagnostic Procedure", EC-1055.

EC

LC

GI

MA

FE

CL

>Ш

__

MT

AT

TF

PD

AX

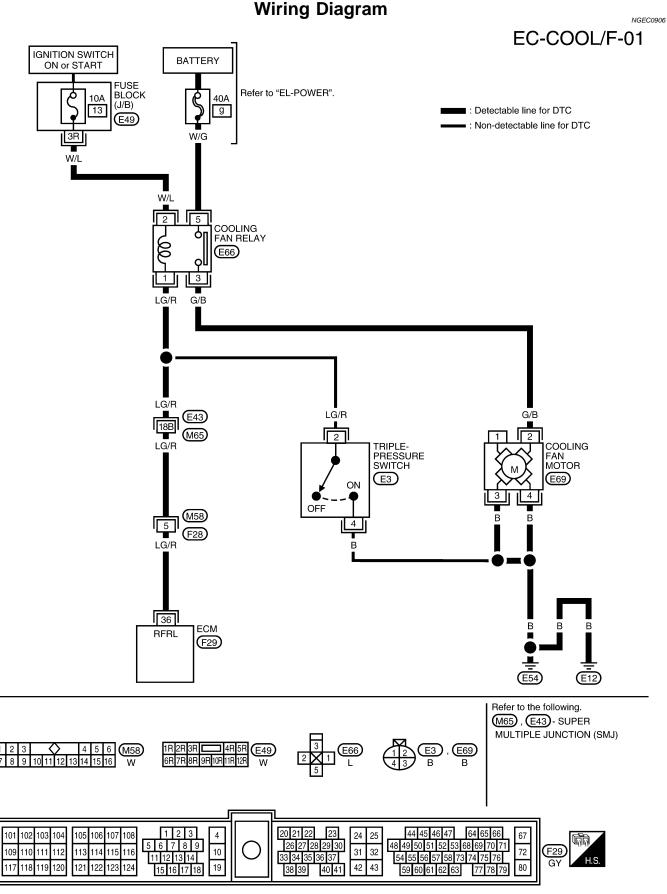
5U

BR

ST

_ _

BT


HA

SC

EL

Wiring Diagram

VG33E

VG33E

GI

MA

EM

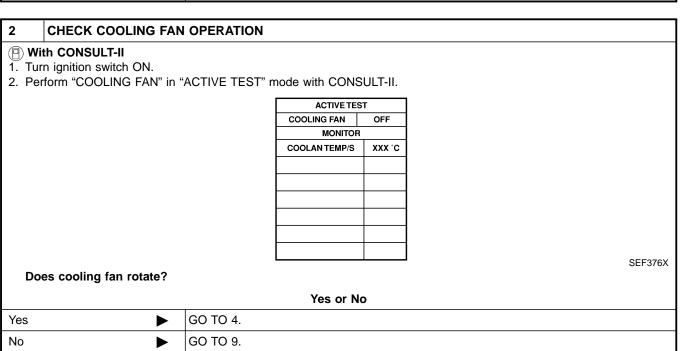
EC

FE

GL

MT

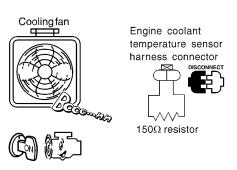
AT


TF

PD

ST

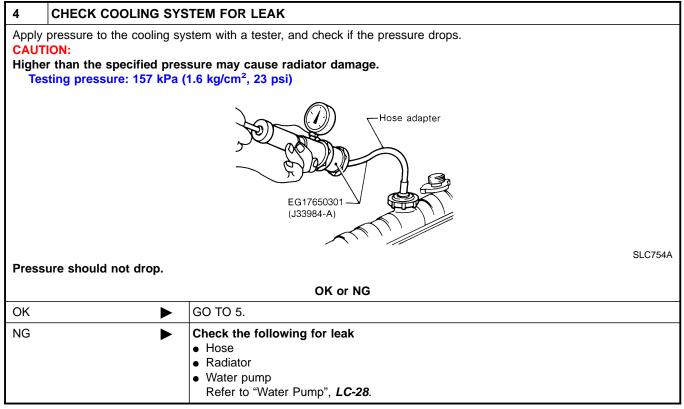
Diagnostic Procedure

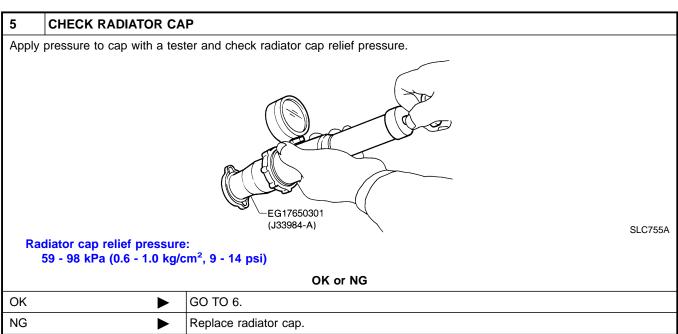

Diagnostic Procedure

Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect engine coolant temperature sensor harness connector.
- 3. Connect 150Ω resistor to engine coolant temperature sensor harness connector.
- 4. Start engine and make sure that cooling fan operates.

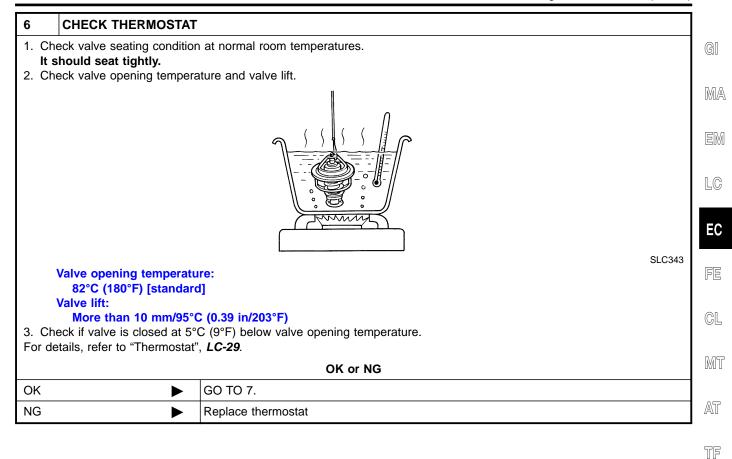
SEF085T


OK or NG		
OK	>	GO TO 4.
NG	>	GO TO 9.


HA

SC

Diagnostic Procedure (Cont'd)


VG33E

VG33E

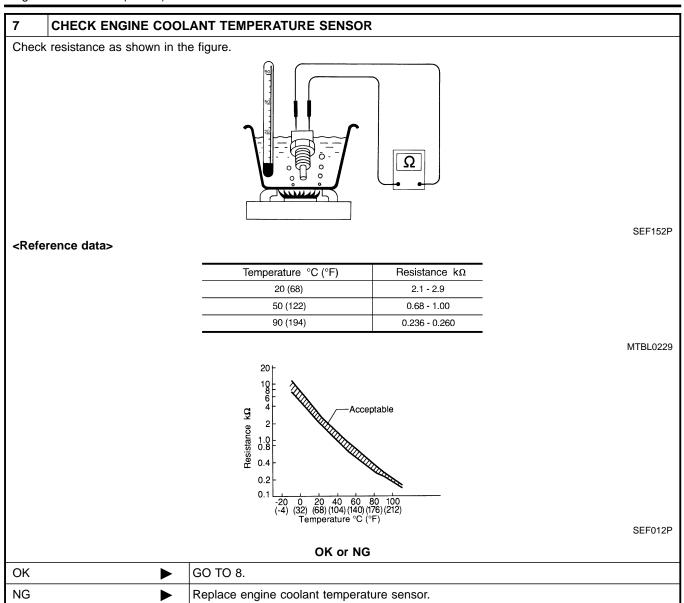
Diagnostic Procedure (Cont'd)

PD

SU

BR

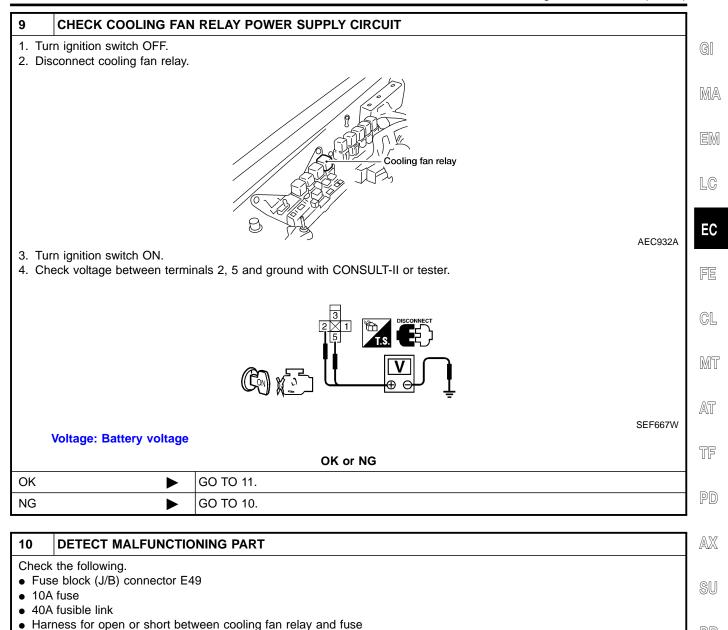
ST


BT

HA

SC

EL


VG33E

8	CHECK MAIN 12 CAUSES		
If the o	If the cause cannot be isolated, go to "MAIN 12 CAUSES OF OVERHEATING", EC-1062.		
	► INSPECTION END		

VG33E

Diagnostic Procedure (Cont'd)

Repair open circuit or short to ground or short to power in harness or connectors.

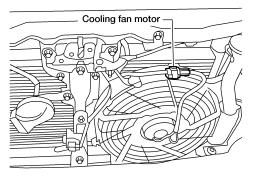
DX(

ST

BT

HA

SC


· Harness for open or short between cooling fan relay and battery

VG33E

Diagnostic Procedure (Cont'd)

11 CHECK COOLING FAN MOTOR POWER SUPPLY AND GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect cooling fan motor harness connector.

AEC931A

3. Check harness continuity between relay terminal 3 and motor terminal 2, motor terminals 3, 4 and body ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

O	K	or	Ν	G

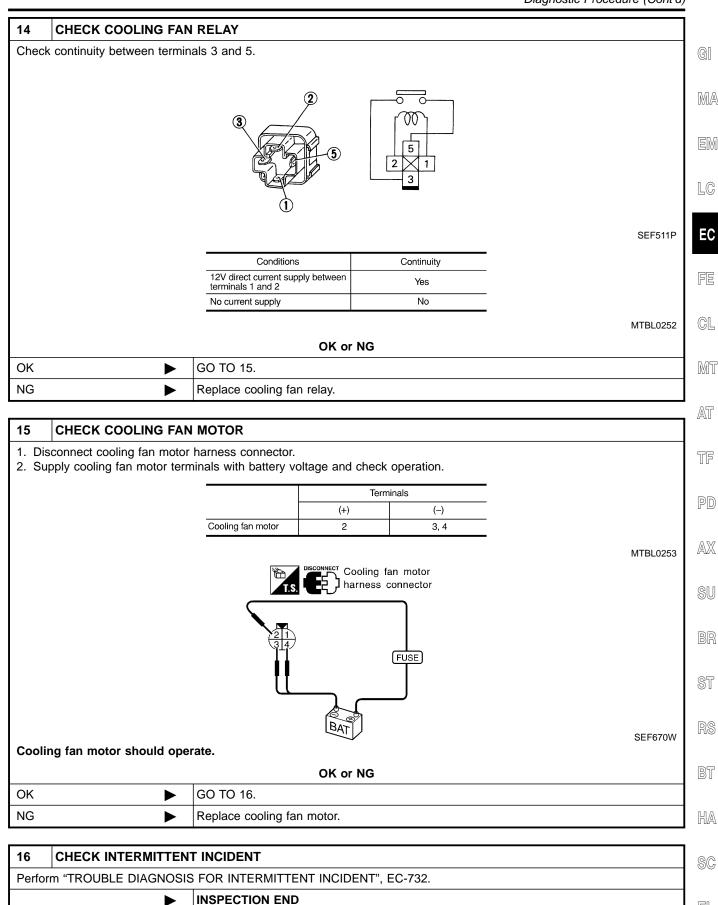
OK •	•	GO TO 12.
NG •	•	Repair open circuit or short to ground or short to power in harness or connectors.

12 CHECK COOLING FAN RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 36 and relay terminal 1. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK ▶	GO TO 14.
NG ▶	GO TO 13.


13 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E43, M65
- Harness connectors M58, F28
- Harness for open or short between cooling fan relay and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

VG33E

VG33E

Main 12 Causes of Overheating

			Main 12 Cause	s of Overheating	NGEC0908
Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	Blocked radiator Blocked condenser Blocked radiator grille Blocked bumper	Visual	No blocking	_
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See "RECOMMENDED FLUIDS AND LUBRI- CANTS", MA-13.
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See "Changing Engine Coolant", "ENGINE MAINTENANCE", <i>MA-26</i> .
	4	Radiator cap	Pressure tester	59 - 98 kPa (0.6 - 1.0 kg/cm², 9 - 14 psi) (Limit)	See "System Check", "ENGINE COOLING SYSTEM", <i>LC-26</i> .
ON* ²	5	Coolant leaks	Visual	No leaks	See "System Check", "ENGINE COOLING SYSTEM", <i>LC-26</i> .
ON* ²	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	See "Thermostat" and "Radiator", "ENGINE COOLING SYSTEM", LC-29, LC-31.
ON*1	7	Cooling fan	CONSULT-II	Operating	See "TROUBLE DIAG- NOSIS FOR OVER- HEAT" EC-1051.
OFF	8	Combustion gas leak	Color checker chemi- cal tester 4 Gas ana- lyzer	Negative	_
ON*3	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	See "Changing Engine Coolant", "ENGINE MAINTENANCE", <i>MA-26</i> .
OFF*4	10	Coolant return from reservoir tank to radia- tor	Visual	Should be initial level in reservoir tank	See "ENGINE MAINTENANCE", MA-25 .
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	See "Inspection", "CYL-INDER HEAD DISTORTION", <i>EM-88</i> .
	12	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	See "Inspection", "CYL- INDER BLOCK DISTOR- TION AND WEAR", <i>EM-47</i> .

^{*1:} Turn the ignition switch ON.

For more information, refer to "Engine Cooling System", "OVERHEATING CAUSE ANALYSIS", LC-34.

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will rise. When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

Malfunction is detected when engine coolant temperature reaches an abnormally high temperature.

MA

CAUTION:

When a malfunction is indicated be sure to replace the coolant, follow the procedure in MA-26, "Changing Engine Coolant". Also, replace the engine oil.

Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute like pouring coolant by kettle. Be sure to use coolant with the proper mixture ratio. Refer to MA-15. "Anti-freeze Coolant Mixture Ratio".

LC

2) After refilling coolant, run engine to ensure that no water-flow noise is emitted.

EC

FE

POSSIBLE CAUSE

Cooling fan (Crankshaft driven)

NGEC1062S01

- Radiator hose
- Radiator

MT

- Radiator cap
- Water pump

Thermostat

AT

For more information, refer to CAUSES OF "MAIN 12 OVERHEATING", EC-1067.

TF

PD

Overall Function Check

Use this procedure to check the overall function of the cooling fan. During this check, a DTC might not be confirmed.

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from

Wrap a thick cloth around cap. Carefully remove the cap by turning it a guarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

(P) With CONSULT-II

Check the coolant level in the reservoir tank and radiator. Allow engine to cool before checking coolant level.

BT

If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to "Diagnostic Procedure", EC-1064.

HA

Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to "Diagnostic Procedure", EC-1064.

- Start engine.
- Make sure that cooling fan (crankshaft driven) operates.
- 5) If NG, go to "Diagnostic Procedure", EC-1064.

EIL

MAX.

MIN.

OK

SEF621W

1

Overall Function Check (Cont'd)

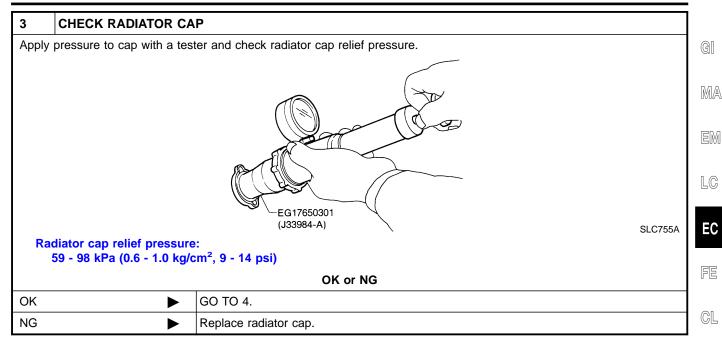
VG33E

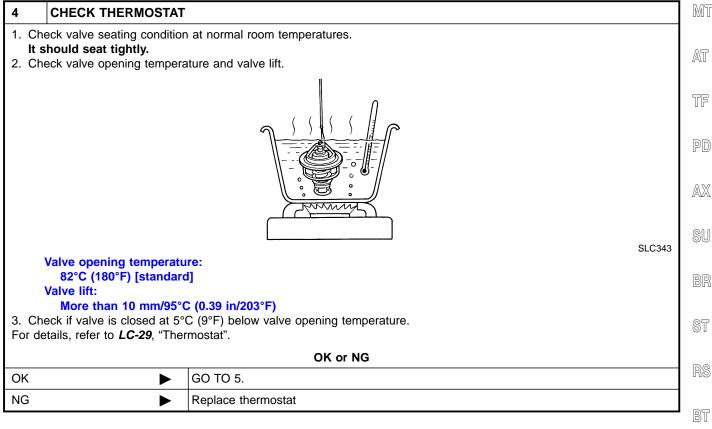
Without CONSULT-II

- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to "Diagnostic Procedure", EC-1064.
- 2) Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to "Diagnostic Procedure", EC-1064.
- 3) Start engine and make sure that cooling fan (crankshaft driven) operates.
 - Be careful not to overheat engine.
- 4) If NG, go to "Diagnostic Procedure", EC-1064.

Diagnostic Procedure

NGEC106

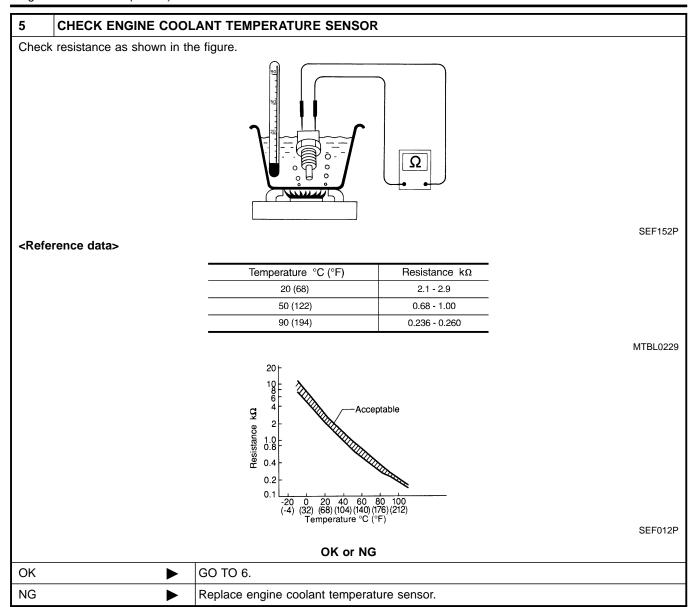

1	1 CHECK COOLING FAN (CRANKSHAFT DRIVEN) OPERATION		
Start	Start engine and make sure that cooling fan (crankshaft driven) operates.		
	OK or NG		
ОК	OK ▶ GO TO 2.		
NG	>	Check cooling fan (Crankshaft driven). Refer to <i>LC-32</i> , "Cooling Fan".	


CHECK COOLING SYSTEM FOR LEAK Apply pressure to the cooling system with a tester, and check if the pressure drops. **CAUTION:** Higher than the specified pressure may cause radiator damage. Testing pressure: 157 kPa (1.6 kg/cm², 23 psi) Hose adapter EG17650301 (J33984-A) SLC754A Pressure should not drop. OK or NG OK GO TO 3. NG Check the following for leak Hose Radiator Water pump

Refer to LC-28, "Water Pump".

VG33E

Diagnostic Procedure (Cont'd)


 $\mathbb{D}\mathbb{X}$

HA

SC

EL

VG33E

6	CHECK MAIN 12 CAUSES	
If the o	If the cause cannot be isolated, go to "MAIN 12 CAUSES OF OVERHEATING", EC-1067.	
	► INSPECTION END	

VG33E

Main 12 Causes of Overheating

Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	Blocked radiator Blocked condenser Blocked radiator grille Blocked bumper	Visual	No blocking	— — —
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See <i>MA-13</i> , "RECOM- MENDED FLUIDS AND LUBRICANTS".
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See <i>MA-26</i> , "Changing Engine Coolant".
	4	Radiator cap	Pressure tester	59 - 98 kPa (0.6 - 1.0 kg/cm², 9 - 14 psi) (Limit)	See <i>LC-26</i> , "System Check".
ON*2	5	Coolant leaks	Visual	No leaks	See <i>LC-26</i> , "System Check".
ON*2	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	See <i>LC-29</i> , "Thermostat" and <i>LC-31</i> , "Radiator".
ON*1	7	Cooling fan (Crankshaft driven)	Visual	Operating	See <i>LC-32</i> , "Cooling Fan".
OFF	8	Combustion gas leak	Color checker chemical tester 4 Gas analyzer	Negative	_
ON*3	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	See <i>MA-26</i> , "Changing Engine Coolant".
OFF*4	10	Coolant return from reservoir tank to radia- tor	Visual	Should be initial level in reservoir tank	See <i>MA-25</i> , "ENGINE MAINTENANCE".
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	See <i>EM-88</i> , "Inspection".
	12	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	See <i>EM-104</i> , "Inspection".

^{*1:} Turn the ignition switch ON.

For more information, refer to $\emph{\textbf{LC-34}},$ "OVERHEATING CAUSE ANALYSIS".

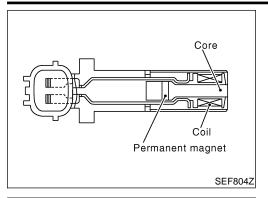
ST

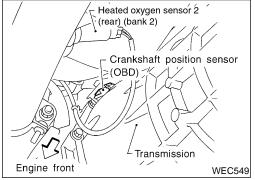
RS

BT

HA

SC


^{*2:} Engine running at 3,000 rpm for 10 minutes.


^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

VG33E

Component Description

Component Description

The crankshaft position sensor (OBD) is located on the transmission housing facing the gear teeth (cogs) of the flywheel or drive plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet, core and coil.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

This sensor is not used to control the engine system.

It is used only for the on board diagnosis.

ECM Terminals and Reference Value

NGEC0819

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (AC Voltage)
			[Engine is running] • Warm-up condition • Idle speed	1 - 2V (AC range) (V) 10 5 0.2 ms
47	L	Crankshaft position sensor (OBD)	[Engine is running] ● Engine speed is 2,000 rpm	3 - 4V (AC range) (V) 10 5 0.2 ms SEF691W

VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

Malfunction is detected when a chipping of the flywheel or drive plate gear tooth (cog) is detected by the ECM.

GI

POSSIBLE CAUSE

- Harness or connectors
- Crankshaft position sensor (OBD)
- Drive plate/Flywheel

conducting the next test.

NGEC0820S01 MA

LC

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before

EC

FE

GL

MT

TF

PD

AX

(P) With CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode AT with CONSULT-II.
- Start engine and run it for at least 2 minutes at idle speed.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1071.

With GST

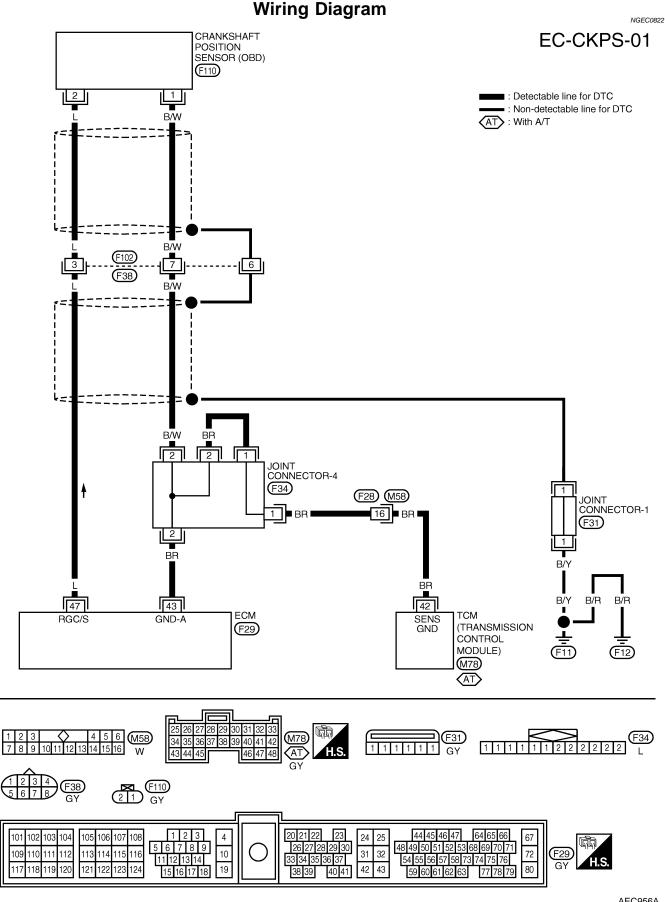
Follow the procedure "With CONSULT-II".

DATA MONITOR MONITOR NO DTC **ENG SPEED** XXX rpm SEF058Y

2

ST

BT


HA

SC

EL

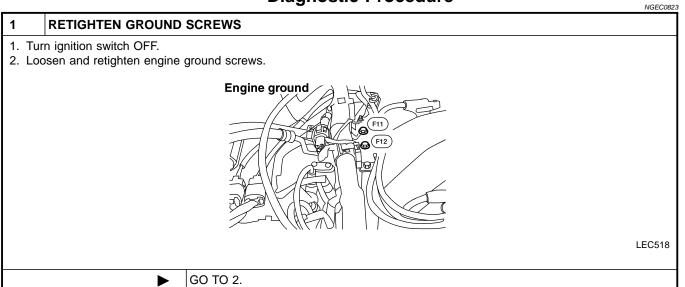
Wiring Diagram

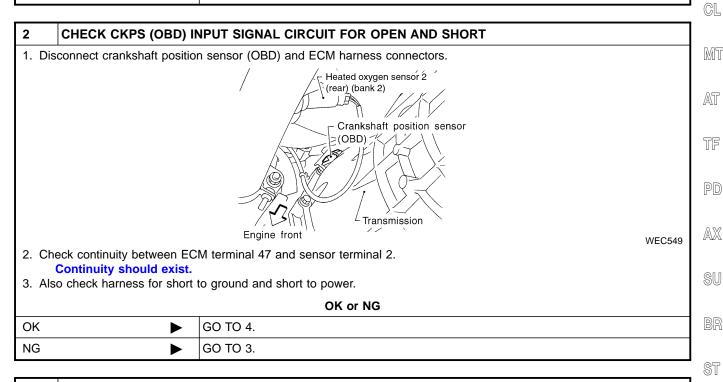
VG33E

VG33E

GI

MA


EM


LC

EC

Diagnostic Procedure

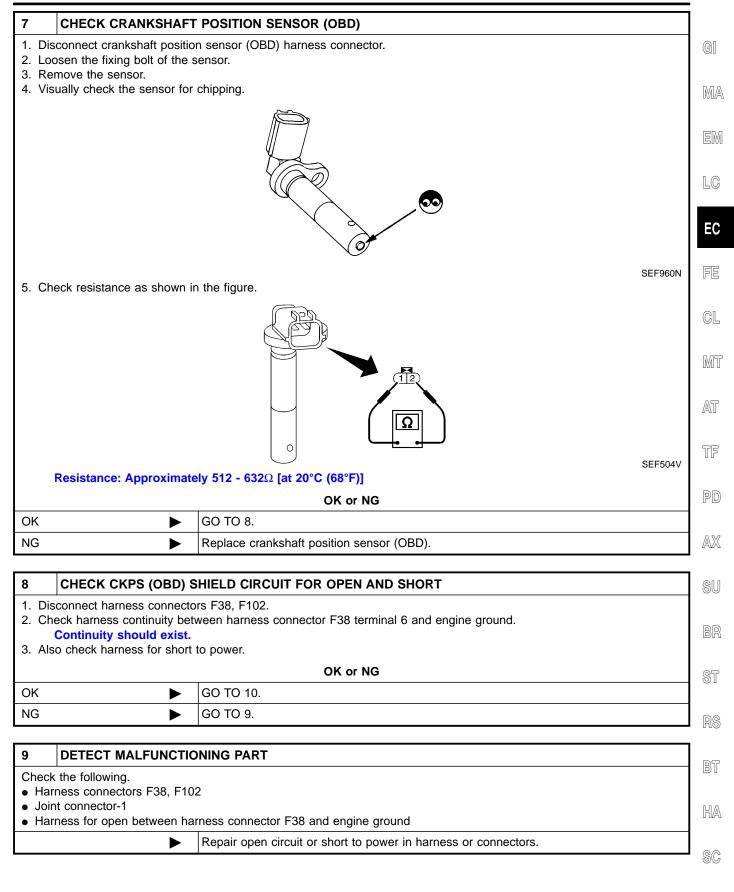
3	DETECT MALFUNCTIO	NING PART	
Check the following.			
Harness connectors F38, F102			
Harr	 Harness for open or short between ECM and crankshaft position sensor (OBD) 		
	>	Repair open circuit or short to ground or short to power in harness or connectors.	

EL

BT

HA

SC


VG33E

4	CHECK CKPS (OBD) GROUND CIRCUIT FOR OPEN AND SHORT		
2. Ch	 Reconnect ECM harness connectors. Check harness continuity between CKPS (OBD) terminal 1 and engine ground. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power. 		
	OK or NG		
ОК	>	GO TO 6.	
NG	•	GO TO 5.	

5	DETECT MALFUNCTIONING PART	
Check	Check the following.	
Har	ness connectors F38, F102	
Har	ness connectors F28, M58	
Joir	• Joint connector-4	
Har	 Harness for open between crankshaft position sensor (OBD) and ECM 	
• Har	 Harness for open between crankshaft position sensor (OBD) and TCM (Transmission Control Module) 	
	Repair open circuit or short to ground or short to power in harness or connectors.	

6	CHECK IMPROPER INSTALLATION		
	 Loosen and retighten the fixing bolt of the crankshaft position sensor (OBD). Perform "DTC Confirmation Procedure", EC-1069 again. 		
	Is a 1st trip DTC P1336 detected?		
Yes	>	GO TO 7.	
No	>	INSPECTION END	

VG33E

VG33E

10	CHECK GEAR TOOTH				
Visually check for chipping flywheel or drive plate gear tooth (cog).					
OK or NG					
ОК	>	GO TO 11.			
NG	>	Replace the flywheel or drive plate.			

11	CHECK INTERMITTENT INCIDENT			
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.			
	>	INSPECTION END		

DTC P1440 EVAP CONTROL SYSTEM (SMALL LEAK) (POSITIVE PRESSURE)

VG33E

On Board Diagnosis Logic

On Board Diagnosis Logic

NOTE:

If DTC P1440 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-1123.)

NGEC1048

This diagnosis detects leaks in the EVAP purge line using of vapor pressure in the fuel tank.

MA

The EVAP canister vent control valve is closed to shut the EVAP purge line. The vacuum cut valve bypass valve will then be opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP control system pressure sensor can now monitor the pressure inside the fuel tank.

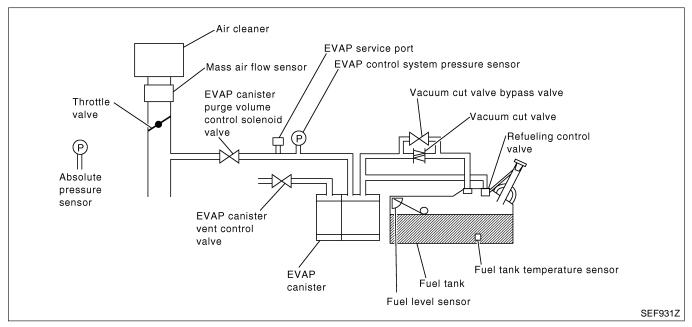
SUVU

If pressure increases, the PCM will check for leaks in the line between the vacuum cut valve and EVAP canister purge volume control solenoid valve.

LC

EC

FE


GL

MT

AT

TF

PD

Malfunction is detected when EVAP control system has a leak, EVAP control system does not operate properly.

SU

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

POSSIBLE CAUSE

NGEC1048S02

- Incorrect fuel tank vacuum relief valve
- Incorrect fuel filler cap used
- Fuel filler cap remains open or fails to close
- Foreign matter caught in fuel filler cap
- Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve
- Foreign matter caught in EVAP canister vent control valve
- EVAP canister
- EVAP purge line (pipe and rubber tube) leaks
- EVAP purge line rubber tube bent

SC

EIL

BT

HA

DTC P1440 EVAP CONTROL SYSTEM (SMALL LEAK) (POSITIVE PRESSURE)

On Board Diagnosis Logic (Cont'd)

VG33E

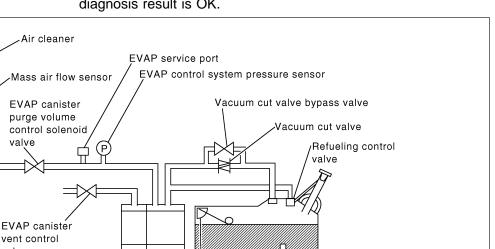
- Blocked or bent rubber tube to EVAP control system pressure sensor
- Loose or disconnected rubber tube
- EVAP canister vent control valve and the circuit
- EVAP canister purge volume control solenoid valve
- Absolute pressure sensor
- Fuel tank temperature sensor
- O-ring of EVAP canister vent control valve is missing or damaged
- Water separator
- EVAP canister is saturated with water
- Fuel level sensor and the circuit
- EVAP control system pressure sensor
- Refueling control valve
- ORVR system leaks
- Foreign matter caught in EVAP canister purge volume control solenoid valve

DTC Confirmation Procedure

Refer to "P1441 EVAP CONTROL SYSTEM (VERY SMALL LEAK) (NEGATIVE PRESSURE)", EC-1077.

Diagnostic Procedure

Refer to "P1441 EVAP CONTROL SYSTEM (VERY SMALL LEAK) (NEGATIVE PRESSURE)", EC-1077.


On Board Diagnosis Logic

On Board Diagnosis Logic

This diagnosis detects very small leaks in the EVAP line between the fuel tank and the EVAP canister purge volume control solenoid valve using intake manifold vacuum in the same way as conventional EVAP small leak diagnosis.

MA

If the ECM judges a leak equivalent to a very small leak, the very small leak DTC P1441 will be detected. If the ECM judges a leak equivalent to a small leak, the EVAP small leak DTC P0440 will be detected. Correspondingly, if the ECM judges there is no leak, the diagnosis result is OK.

Malfunction is detected when EVAP control system has a very small leak, EVAP control system does not operate properly.

Fuel tank

Fuel level sensor

Fuel tank temperature sensor

CAUTION:

EVAP

canister

Throttle

valve

valve

valve

(P)

Absolute pressure

sensor

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may
- Use only a genuine NISSAN rubber tube as a replacement.

POSSIBLE CAUSE

Incorrect fuel tank vacuum relief valve

Incorrect fuel filler cap used

Fuel filler cap remains open or fails to close.

Foreign matter caught in fuel filler cap.

Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.

Foreign matter caught in EVAP canister vent control valve.

EVAP canister or fuel tank leaks

EVAP purge line (pipe and rubber tube) leaks

EVAP purge line rubber tube bent.

Blocked or bent rubber tube to EVAP control system pressure

Loose or disconnected rubber tube

EVAP canister vent control valve and the circuit

EVAP canister purge volume control solenoid valve

LC

EC

GL

MT

AT

TF

SEF931Z

NGEC0990S02

PD

AX

SU

ST

BT

HA

SC

EIL

- Absolute pressure sensor
- Fuel tank temperature sensor
- O-ring of EVAP canister vent control valve is missing or damaged.
- Water separator
- EVAP canister is saturated with water.
- Fuel level sensor and the circuit
- EVAP control system pressure sensor
- Refueling control valve
- ORVR system leaks

DTC Confirmation Procedure

NGEC0992

CAUTION:

Never remove fuel filler cap during the DTC confirmation procedure.

NOTE:

- If DTC P1441 is displayed with P0440, perform TROUBLE DIAGNOSIS FOR DTC P1441 first.
- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.
- After repair, make sure that the hoses and clips are installed properly.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- If any of following condition is met just before the DTC confirmation procedure, leave the vehicle for more than 1 hour.
- a) Fuel filler cap is removed.
- b) Refilled or drained the fuel.
- EVAP component parts is/are removed.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

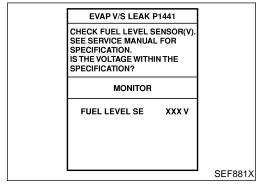
(P) With CONSULT-II

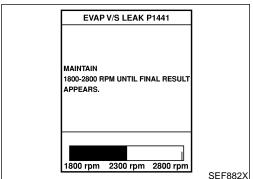
- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- Make sure the following conditions are met.

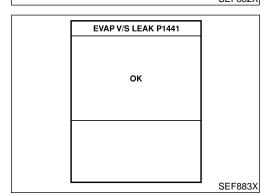
FUEL LEVEL SE: 1.08 - 0.2V

COOLAN TEMP/S: 0 - 32°C (32 - 90°F)

FUEL T/TMP SE: 0 - 32°C (32 - 90°F)


INT A/TEMP SE: More than 0°C (32°F)


If NG, turn ignition switch "OFF" and leave the vehicle in a cool place (soak the vehicle) or refilling/draining fuel until the output voltage condition of the "FUEL LEVEL SE" meets within the range above and leave the vehicle for more than 1 hour. Then start from step 1).


- 3) Turn ignition switch "OFF" and wait at least 5 seconds.
- 4) Turn ignition switch "ON".
- Select "EVAP VERY/SML LEAK P1441" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

Make sure that "OK" is displayed. If "NG" is displayed, refer to "Diagnostic Procedure", EC-825.

DTC Confirmation Procedure (Cont'd)

NOTE:

- If the engine speed cannot be maintained within the range displayed on CONSULT-II screen, go to "Basic inspection", EC-694.
- G[
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

MA

LC

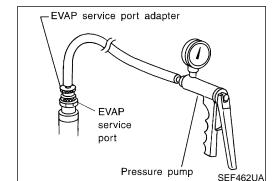
Overall Function Check

Use this procedure to check the overall function of the EVAP very small leak function. During this check, a 1st trip DTC might not be confirmed.

EC

FE

GL


MT

AT

TF

PD

AX

CAUTION:

- Never use compressed air, doing so may damage the EVAP system.
- Do not start engine.
- Do not exceeded 4.12 kPa (0.042 kg/cm², 0.6 psi).
- Attach the EVAP service port adapter securely to the EVAP service port.
- 2) Set the pressure pump and a hose.
- 3) Also set a vacuum gauge via 3-way connector and a hose.
- 4) Turn ignition switch "ON".
- 5) Connect GST and select mode 8.
- 6) Using mode 8 control the EVAP canister vent control valve (close) and vacuum cut valve bypass valve (open).
- Apply pressure and make sure the following conditions are satisfied.

Pressure to be applied: 2.7 kPa (20 mmHg, 0.79 inHg) Time to be waited after the pressure drawn in to the EVAP system and the pressure to be dropped: 60 seconds and the pressure should not be dropped more than 0.4 kPa (3 mmHg, 0.12 inHg)

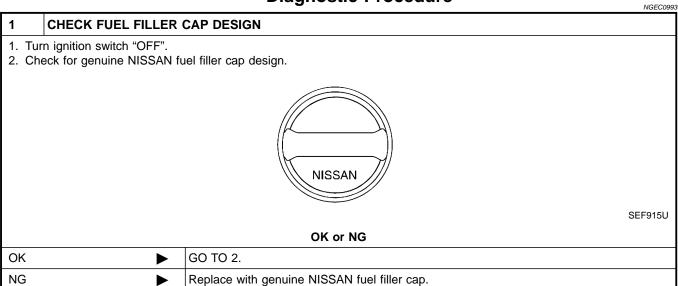
If NG, go to diagnostic procedure, EC-825.

NOTE:

For more information, refer to GST instruction manual.

BT

HA

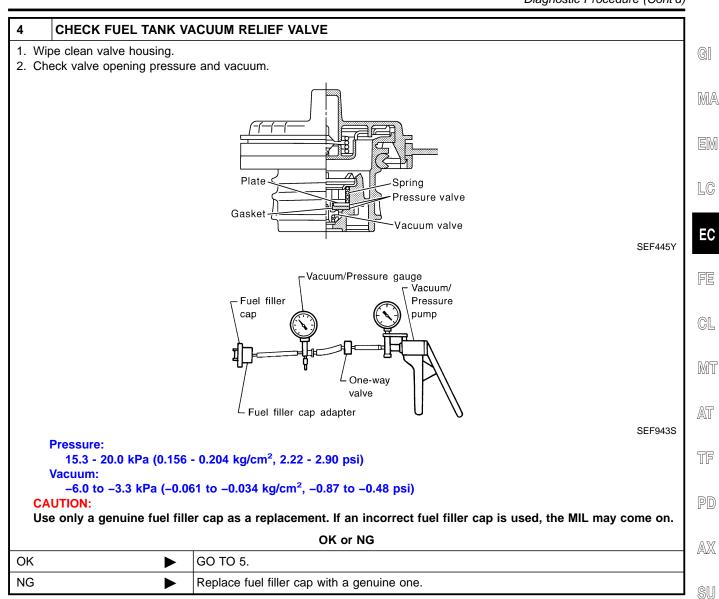

SC

EL

 \mathbb{N}

Diagnostic Procedure

Diagnostic Procedure



2	CHECK FUEL FILLER CAP INSTALLATION				
Check that the cap is tightened properly by rotating the cap clockwise.					
	OK or NG				
OK	>	GO TO 3.			
NG	>	 Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard. 			

3	CHECK FUEL FILLER CAP FUNCTION				
Check for air releasing sound while opening the fuel filler cap.					
OK or NG					
OK	>	GO TO 5.			
NG	>	GO TO 4.			

VG33E

Diagnostic Procedure (Cont'd)

BR

ST


BT

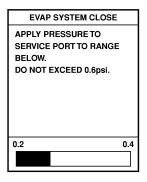
SC

EL

VG33E

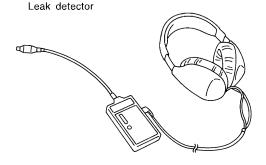
Diagnostic Procedure (Cont'd)

VG33E


Diagnostic Procedure (Cont'd)

CHECK FOR EVAP LEAK

(P) With CONSULT-II


6

- 1. Turn ignition switch "ON".
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph. **NOTE:**
 - Never use compressed air or a high pressure pump.
 - Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

PEF917U

4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-623.

SEF200U

OK	or	NG
----	----	----

OK ▶	GO TO 8.
NG ►	Repair or replace.

G[

MA

EM

_C

EC

FE

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

911

20

ST

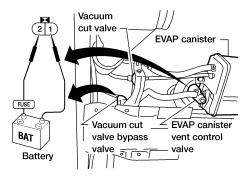
RS

BT

HA

SC

EL

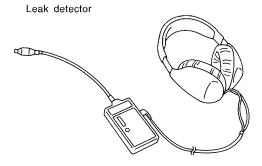

VG33E

Diagnostic Procedure (Cont'd)

CHECK FOR EVAP LEAK

Without CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)



AEC632A

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-623.

SEF200U

OK •	GO TO 8.
NG ►	Repair or replace.

VG33E

GI

MA

LC

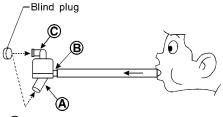
EC

MT

AT

TF

PD


AX

ST

Diagnostic Procedure (Cont'd)

8 CHECK WATER SEPARATOR

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that **A** and **C** are not clogged by blowing air into **B** with **A**, and then **C** plugged.

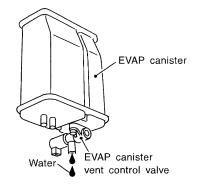
- * (A): Bottom hole (To atmosphere)
 - **B**: Emergency tube (From EVAP canister)
 - (C): Inlet port (To member)

SEF829T

5. In case of NG in items 2 - 4, replace the parts.

NOTE:

• Do not disassemble water separator.


OK	or	NG
----	----	----

OK •	GO TO 9.
NG •	Replace water separator.

9	9 CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT	
Refer to "DTC Confirmation Procedure", EC-981.		
OK or NG		
OK	>	GO TO 10.
NG	>	Repair or replace EVAP canister vent control valve and O-ring or harness/connector.

10 CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Does water drain from the EVAP canister?

SEF596U

Yes	•	GO TO 11.
No (With CONSULT-II)	>	GO TO 13.
No (Without CONSULT-II)	•	GO TO 14.

EL

HA

SC

VG33E

Diagnostic Procedure (Cont'd)

11	CHECK EVAP CA	NISTI	ER
Weigh the EVAP canister with the EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).			
	OK or NG		
OK (W	/ith CONSULT-II)		GO TO 13.
OK (W	Vithout CONSULT-	>	GO TO 14.
NG		>	GO TO 12.

12	DETECT MALFUNCTIONING PART		
Check	Check the following.		
• EVA	EVAP canister for damage		
EVAP hose between EVAP canister and water separator for clogging or poor connection			
	•	Repair hose or replace EVAP canister.	

13 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

ACTIVE TEST			
PURG VOL CONT/V XXX %			
MONITOR			
ENG SPEED	XXX rpm		
A/F ALPHA-B1	XXX %		
A/F ALPHA-B2	XXX %		
HO2S1 MNTR (B1)	LEAN		
HO2S1 MNTR (B2)	LEAN		
THRTL POS SEN	xxx v		

Vacuum should exist.

SEF984Y

OK or NG

OK ►	GO TO 16.
NG ►	GO TO 15.

14 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK •	GO TO 17.
NG ▶	GO TO 15.

VG33E

Diagnostic Procedure (Cont'd)

15	5 CHECK VACUUM HOSE				
Check	Check vacuum hoses for clogging or disconnection. Refer to "Vacuum Hose Drawing", EC-613.				GI
			OK or NG		
OK (V	Vith CONSULT-II)	>	GO TO 16.		M
OK (V II)	Vithout CONSULT-	•	GO TO 17.		
NG		>	Repair or reconnect the hose.		E

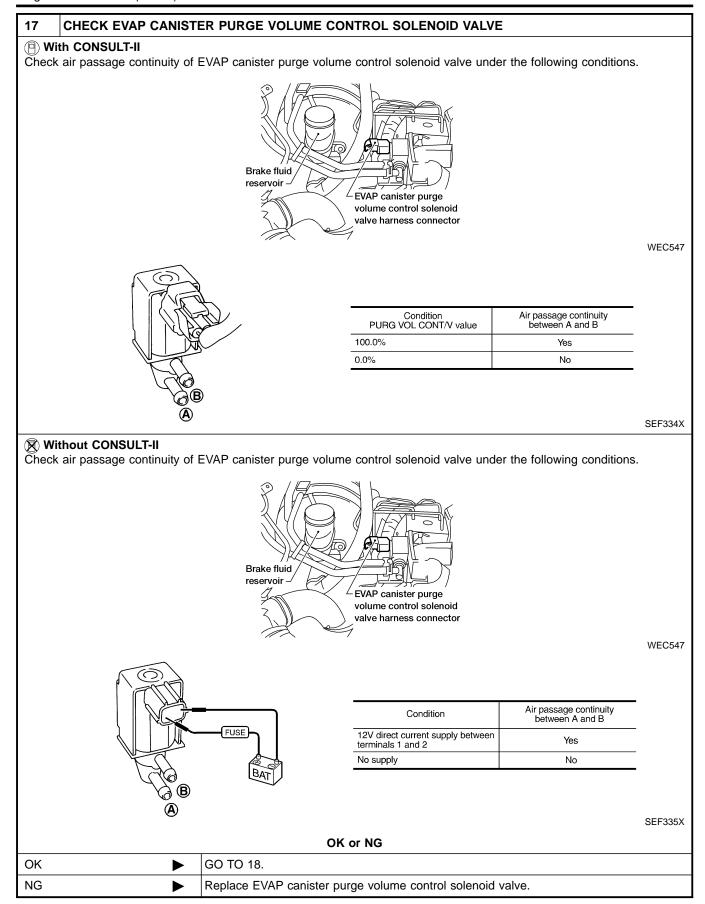
16	CHECK EVAP CANIST	ER PURGE VO	DLUME CONTRO	L SOLE	ENOID VALVE	
1. Sta 2. Pe		V" in "ACTIVE T	EST" mode with C	CONSUL	T-II. Check that engine speed varies according	
το	the valve opening.		ACTIVE TES	т	1	
			PURG VOL CONT/V	0.0%		
			MONITOR ENG SPEED	XXX rpm		(
			A/F ALPHA-B1	XXX %		
			A/F ALPHA-B2	XXX %		
			HO2S1 MNTR (B1)	RICH		
			HO2S1 MNTR (B2) THRTL POS SEN	XXX V		
					SEF985Y	
			OK or NO	3		
K	•	GO TO 18.				1
١G	•	GO TO 17.				1 [

 $\mathbb{A}\mathbb{X}$

SU

BR

ST


RS

BT

HA

SC

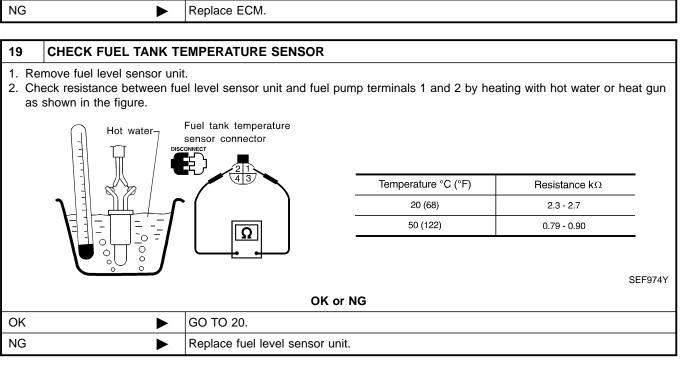
EL

VG33E

GI

MA

EM


LC

EC

GL

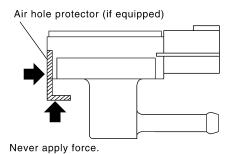
Diagnostic Procedure (Cont'd)

18	8 CHECK ABSOLUTE PRESSURE SENSOR				
(P) Wi	(iii) With CONSULT-II				
1. Tur	rn ignition switch ON.		ı		
2. Sel	lect "SELF DIAG RESULTS	" mode with CONSULT-II.	l		
	uch "ERASE".		ı		
	rform "DTC Confirmation	Procedure".	l		
	e EC-748.		ı		
5. Is t	5. Is the 1st trip DTC P0105 displayed again?				
	OK or NG				
OK	OK • GO TO 19.				
NG	>	Replace ECM.			

MT AT AT TF PD AX SU BR ST RS

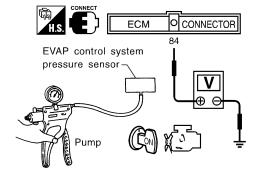
HA

SC


EL

VG33E

Diagnostic Procedure (Cont'd)


20 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

- 1. Remove EVAP control system pressure sensor with its harness connector connected.
 - Never apply force to the air hole protector of the sensor if equipped.

SEF799W

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
 - Always calibrate the vacuum pump gauge when using it.
 - Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 5. Check input voltage between ECM terminal 84 and ground.

Pressure (Relative to atmospheric pressure)	Voltage V
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

SEF342X

CAUTION:

• Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5m (19.7in) onto a hard surface such as a concrete floor; use a new one.

OK •	GO TO 21.
NG ►	Replace EVAP control system pressure sensor.

21	21 CHECK EVAP PURGE LINE				
	Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to "Evaporative Emission System", EC-619.				
	OK or NG				
OK	OK ▶ GO TO 22.				
NG	NG Repair or reconnect the hose.				

22	2 CLEAN EVAP PURGE LINE				
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.				
	▶ GO TO 23.				

VG33E

Diagnostic Procedure (Cont'd)

23	23 CHECK FUEL LEVEL SENSOR				
Refer to EL-XX, "Fuel Level Sensor Unit Check".					
	OK or NG				
OK	OK ▶ GO TO 24.				
NG	NG Replace fuel level sensor unit.				

24	CHECK INTERMITTENT INCIDENT				
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.				
	► INSPECTION END				

MA

GI

 $\mathbb{E}\mathbb{M}$

LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

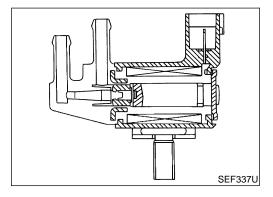
HA

SC

EL

VG33E

Description


Description SYSTEM DESCRIPTION

NGEC0845

NGEC0845S01

Sensor	Input Signal to ECM	ECM function	Actuator
Camshaft position sensor	Engine speed		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Ignition switch	Start signal		
Throttle position sensor	Throttle position	EVAP can- ister purge	EVAP canister purge volume
Throttle position switch	Closed throttle position	flow control	control solenoid valve
Heated oxygen sensors 1 (front)	Density of oxygen in exhaust gas (Mixture ratio feedback signal)		
Fuel tank temperature sensor	Fuel temperature in fuel tank		
Vehicle speed sensor	Vehicle speed		

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

NGEC0845SC

The EVAP canister purge volume control solenoid valve uses a ON/OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0846

MONITOR ITEM	COND	OITION	SPECIFICATION
PURG VOL C/V	Engine: After warming upAir conditioner switch OFF	Idle (Vehicle stopped)	0%
PURG VOL C/V	Shift lever: "N"No-load	2,000 rpm	_

VG33E

ECM Terminals and Reference Value

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NGEC0847

GI

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

ige to t	the ECN	Il's transistor. Use	a ground other than the ECM terminals, su	ich as the ground.	MA
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EM
	ECM rolay (Salf abut		[Engine is running] [Ignition switch OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V	L©
4 OR/B off)	[Ignition switch OFF] • A few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	EC		
				BATTERY VOLTAGE (11 - 14V)	FE
		[Engine is running] ● Idle speed	(V) 40 20 0	CL	
			·	50 ms	M
5	R/Y	EVAP canister purge volume control sole-		SEF994U	AT
		noid valve		BATTERY VOLTAGE (11 - 14V)	5 40
			[Engine is running]	(V) 40 20	TF
			Engine speed is 2,000 rpm	0 50 ms	PD
				SEF995U	AX
67	B/P	B	The state of the s	BATTERY VOLTAGE	
72	B/P	Power supply for ECM	[Ignition switch ON]	(11 - 14V)	SU
117	B/P	Current return	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)	BR

On Board Diagnosis Logic

NGEC0848

Malfunction is detected when the canister purge flow is detected during the specified driving conditions, even when EVAP canister purge volume control solenoid valve is completely closed.

HA

SC

EL

BT

ST

POSSIBLE CAUSE

EVAP control system pressure sensor

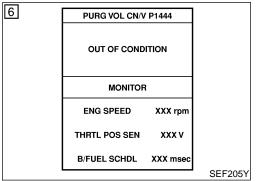
NGEC0848S01

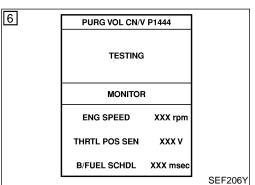
- EVAP canister purge volume control solenoid valve (The valve is stuck open.)
- EVAP canister vent control valve
- EVAP canister

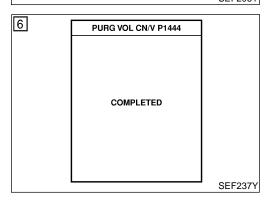
VG33E

 Hoses (Hoses are connected incorrectly or clogged.)

DTC Confirmation Procedure


NGEC0849


NOTE:

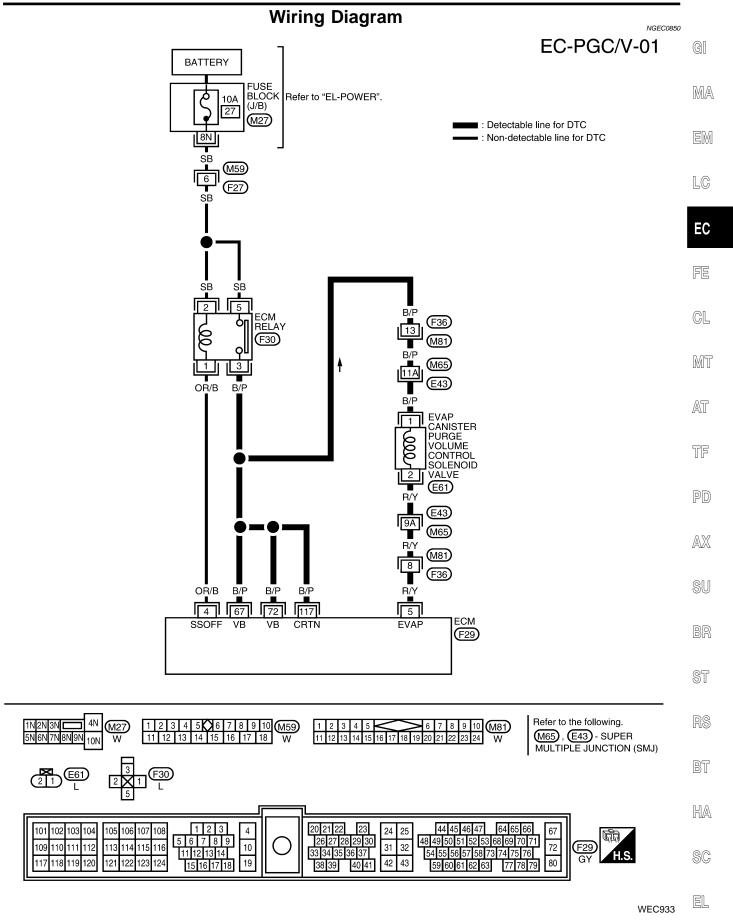

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- Turn ignition switch ON.
- 4) Select "PURG VOL CN/V P1444" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 5) Touch "START".
- Start engine and let it idle until "TESTING" on CONSULT-II changes to "COMPLETED". (It will take for approximately 10 seconds.)


If "TESTING" is not displayed after 5 minutes, retry from step 2.

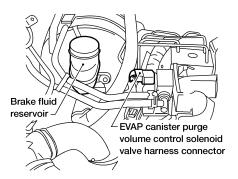
7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-1096.

With GST

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- Start engine and let it idle for at least 20 seconds.
- 4) Select "MODE 7" with GST.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1096.

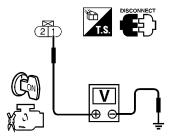
VG33E
Wiring Diagram

Diagnostic Procedure


VG33E

Diagnostic Procedure

NGEC0851


CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 2. Disconnect EVAP canister purge volume control solenoid valve harness connector.

AEC652A

- 3. Turn ignition switch ON.
- 4. Check voltage between terminal 1 and engine ground with CONSULT-II or tester.

SFF646W

Voltage: Battery voltage

OK or NG

OK •	GO TO 3.
NG ►	GO TO 2.

DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F36, M81
- Harness connectors M82, E74
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM relay
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM

Repair harness or connectors.

CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 5 and solenoid valve terminal 2. Refer to Wiring Diagram. Continuity should exist.
- 4. Also check harness for short to ground and short to power.

OK	or	NG

OK •	GO TO 5.
NG ▶	GO TO 4.

VG33E

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

AX

SU

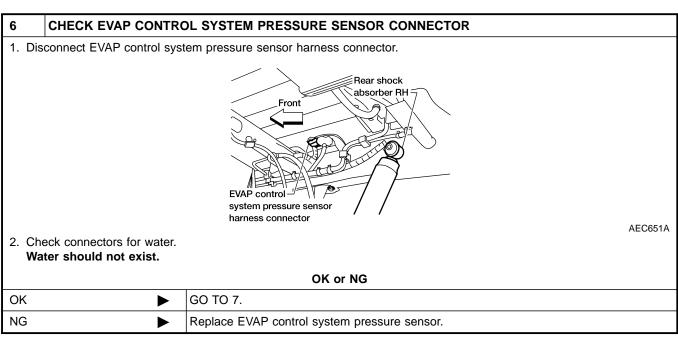
BR

ST

RS

BT

HA

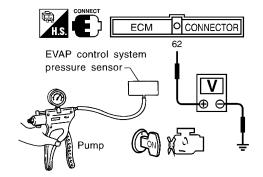

SC

EL

Diagnostic Procedure (Cont'd)

4	DETECT MALFUNCTIONING PART			
 Check the following. Harness connectors E74, M82 Harness connectors M81, F36 Harness for open or short between EVAP canister purge volume control solenoid valve and ECM 				
► Repair open circuit or short to ground or short to power in harness or connectors.				
5 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE				

	CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE		
Check disconnection or improper connection of hose connected to EVAP control system pressure sensor.			
OK or NG			
ОК	>	GO TO 6.	
NG Repair it.			

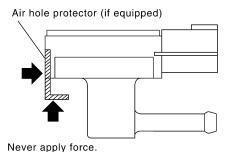


Diagnostic Procedure (Cont'd)

VG33E

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

- 1. Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch ON.
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 5. Check input voltage between ECM terminal 62 and ground.


SEF894U

Pressure (Relative to atmosphericpressure)	Voltage (V)
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

MTBL0246

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below –20 kPa (–150 mmHg, –5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure. CAUTION:
- Never apply force to the air hole protector of the sensor if equipped.

SEE799W

• Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5m (19.7in) onto a hard surface such as a concrete floor; use a new one.

OK (with CONSULT-II)		GO TO 8.
OK (without CONSULT-II)	•	GO TO 9.
NG	>	Replace EVAP control system pressure sensor.

VG33E

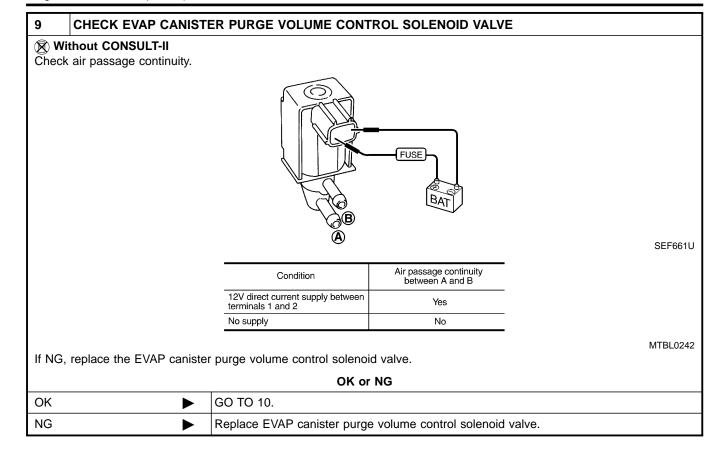
Diagnostic Procedure (Cont'd)

8 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (II) With CONSULT-II GI 1. Start engine. 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. MA **ACTIVE TEST** PURG VOL CONT/V 0.0% MONITOR **ENG SPEED** XXX rpm A/F ALPHA-B1 XXX % LC A/F ALPHA-B2 XXX % RICH HO2S1 MNTR (B1) HO2S1 MNTR (B2) RICH EC THRTL POS SEN XXX V SEF985Y If OK, inspection end. If NG, go to following step. 3. Check air passage continuity. GL MT AT TF SEF660U PD Condition PURG VOL CONT/V value Air passage continuity between A and B 100.0% Yes 0.0% No MTBL0241 If NG, replace the EVAP canister purge volume control solenoid valve.

OK or NG

OK •	GO TO 10.
NG ►	Replace EVAP canister purge volume control solenoid valve.

ST


BT

HA

SC

Diagnostic Procedure (Cont'd)

VG33E

VG33E

GI

MA

EM

LC

EC

GL

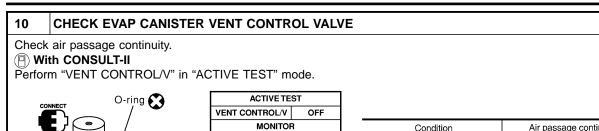
MT

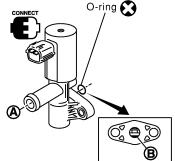
AT

TF

PD

AX


ST


BT

HA

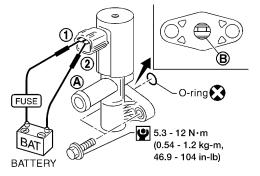
SC

Diagnostic Procedure (Cont'd)

ACTIVE TEST		
VENT CONTROL/V	OFF	
MONITOR	ł	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 (B1)	xxx v	
HO2S1 (B2)	xxx v	
THRTL POS SEN	xxx v	

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

Operation takes less than 1 second.


SEF991Y

Without CONSULT-II

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

MTBL0240

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary. If portion **B** is rusted, replace control valve.

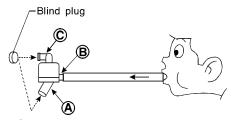
AEC783A

Make sure new O-ring is installed properly.

		ek s. ne
OK J	•	GO TO 11.
NG	▶	Replace EVAP canister vent control valve.

OK or NG

11	11 CHECK RUBBER TUBE		
Check	Check for obstructed rubber tube connected to EVAP canister vent control valve.		
	OK or NG		
OK	•	GO TO 12.	
NG	>	Clean, repair or replace rubber tube.	


EL

Diagnostic Procedure (Cont'd)

VG33E

12 CHECK WATER SEPARATOR

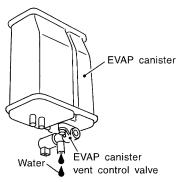
- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that **A** and **C** are not clogged by blowing air into **B** with **A**, and then **C** plugged.

- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - (C): Inlet port (To member)

SEF829T

5. In case of NG in items 2 - 4, replace the parts.

NOTE:


• Do not disassemble water separator.

OK or NG

OK •	GO TO 13.
NG ►	Replace water separator.

13 CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

SEF596U

Yes or No

Yes ▶	GO TO 14.
No •	GO TO 16.

14 CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK	•	GO TO 16.
NG	•	GO TO 15.

VG33E

Diagnostic Procedure (Cont'd)

15 DETECT MALFUNCTIONING PART			
Check the following. • EVAP canister for damage			GI
• EVA	AP hose between EVAP ca	nister and water separator for clogging or poor connection	l
	>	Repair hose or replace EVAP canister.	MA
16	CHECK INTERMITTEN	T INCIDENT	EM
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.			
	>	INSPECTION END	LC

EC

FE

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

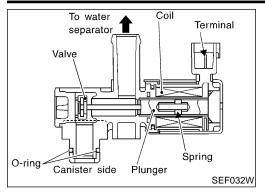
SU

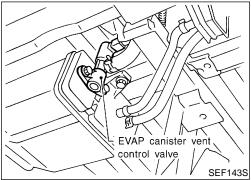
BR

ST

RS

BT


HA


SC

EL

VG33E

Component Description

Component Description

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION	
VENT CONT/V	Ignition switch: ON	OFF	

ECM Terminals and Reference Value

NGEC0854

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
108	R/G	EVAP canister vent control valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)

VG33E On Board Diagnosis Logic

On Board Diagnosis Logic

Malfunction is detected when EVAP canister vent control valve remains closed under specified driving conditions.

GI

POSSIBLE CAUSE

EVAP canister vent control valve

NGEC0855S01 MA

- EVAP control system pressure sensor and the circuit
- Blocked rubber tube to EVAP canister vent control valve
- Water separator

EVAP canister is saturated with water.

LC

DTC Confirmation Procedure

CAUTION:

NGEC0856

Always drive vehicle at a safe speed.

4

DATA MONITOR

VHCL SPEED SE XXX km/h

B/FUEL SCHDL XXX msec

THRTL POS SEN XXX V

NO DTC

XXX rpm

XXX °C

MONITOR

ENG SPEED

COOLAN TEMP/S

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

GL

EC

- (P) With CONSULT-II
- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.

- 3) Start engine.
- 4) Drive vehicle at a speed of approximately 80 km/h (50 MPH) for a maximum of 15 minutes.

AT

MT

SEF201Y

If a malfunction exists, NG result may be displayed quicker.

TF

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1107.

With GST

PD

Follow the procedure "With CONSULT-II".

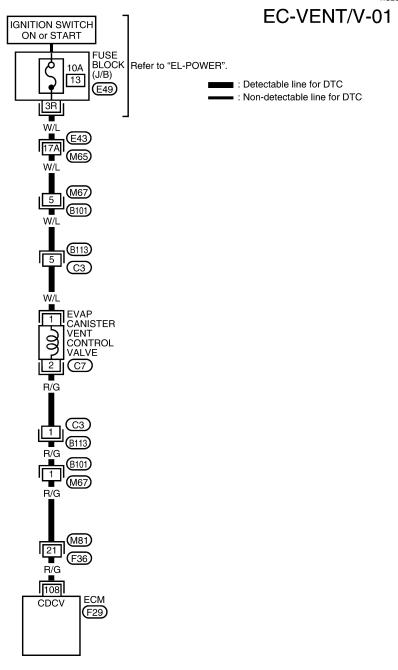
AX

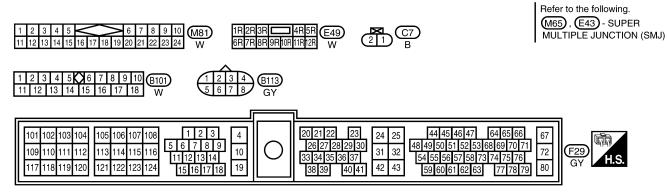
ST

BT

HA

SC


EL


EC-1105

VG33E

Wiring Diagram

NGEC0857

WEC934

VG33E Diagnostic Procedure

GI

MA

LC

EC

GL

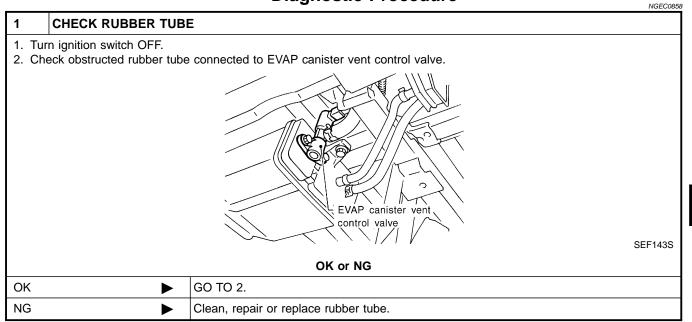
MT

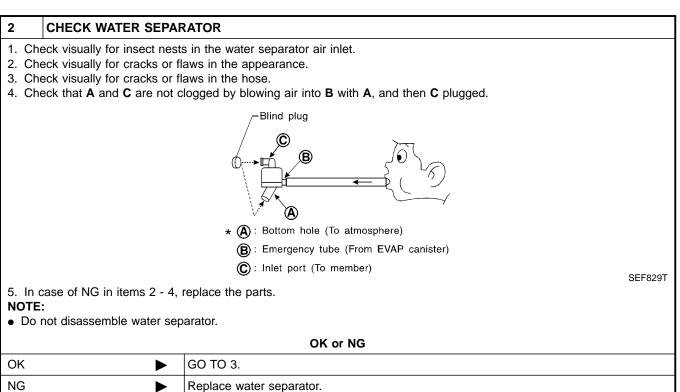
AT

TF

PD

SW


ST


BT

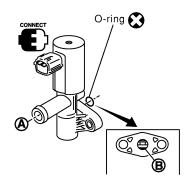
HA

SC

Diagnostic Procedure

Diagnostic Procedure (Cont'd)

VG33E


CHECK EVAP CANISTER VENT CONTROL VALVE AND O-RING

Check air passage continuity.

(I) With CONSULT-II

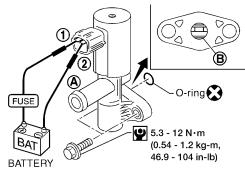
3

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.

ACTIVE TEST		
VENT CONTROL/V OFF		
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 (B1)	xxx v	
HO2S1 (B2)	xxx v	
THRTL POS SEN	xxx v	

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

Operation takes less than 1 second.

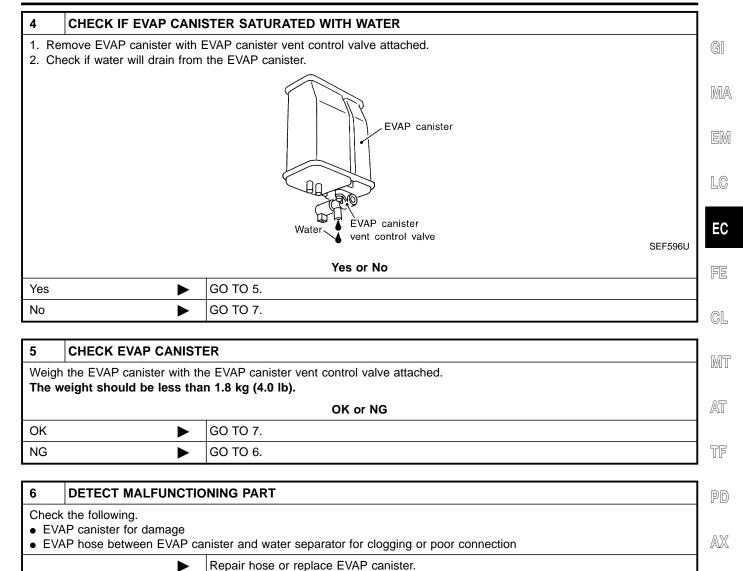

SEF991Y

Without CONSULT-II

Condition	Air passage continuity between A and B	
12V direct current supply between terminals 1 and 2	No	
OFF	Yes	

MTBL0240

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary. If portion **B** is rusted, replace control valve.


AEC783A

Make sure new O-ring is installed properly.

OK •	•	GO TO 4.
NG	•	Replace EVAP canister vent control valve and O-ring.

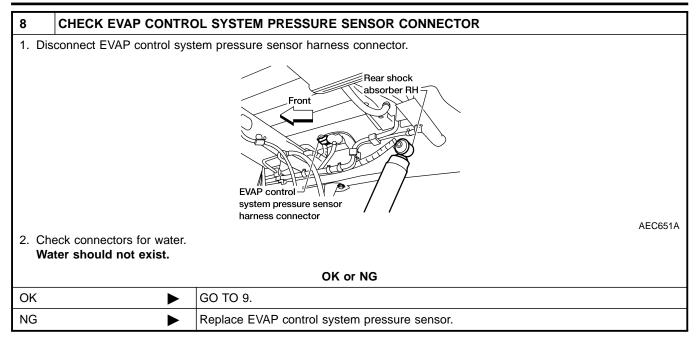
VG33E

Diagnostic Procedure (Cont'd)

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE

GO TO 8.

Repair it.


OK

NG

Check disconnection or improper connection of hose connected to EVAP control system pressure sensor.

VG33E

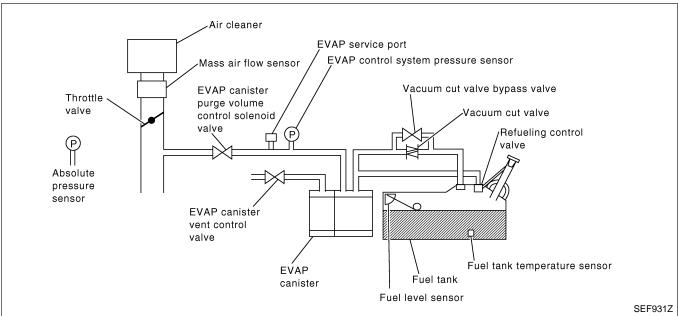
Diagnostic Procedure (Cont'd)

9	CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION			
Refer to "DTC Confirmation Procedure" for DTC P0450, EC-987.				
OK or NG				
ОК	OK ▶ GO TO 10.			
NG	>	Replace EVAP control system pressure sensor.		

10	CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.			
	► INSPECTION END		

DTC P1447 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PURGE FLOW MONITORING

System Description


VG33E

NGEC0859

System Description

NOTE:

If DTC P1447 is displayed with P0510, perform trouble diagnosis for DTC P0510 first. (See EC-1033.)

In this evaporative emission (EVAP) control system, purge flow occurs during non-closed throttle conditions. Purge volume is related to air intake volume. Under normal purge conditions (non-closed throttle), the EVAP canister purge volume control solenoid valve is open. Purge flow exposes the EVAP control system pressure sensor to intake manifold vacuum.

On Board Diagnosis Logic

Under normal conditions (non-closed throttle), sensor output voltage indicates if pressure drop and purge flow are adequate. If not, a fault is determined.

Malfunction is detected when EVAP control system does not operate properly, EVAP control system has a leak between intake manifold and EVAP control system pressure sensor.

POSSIBLE CAUSE

- EVAP canister purge volume control solenoid valve stuck closed
- EVAP control system pressure sensor and the circuit
- Loose, disconnected or improper connection of rubber tube
- Blocked rubber tube
- Blocked or bent rubber tube to MAP/BARO switch solenoid valve
- Cracked EVAP canister
- EVAP canister purge volume control solenoid valve circuit
- Closed throttle position switch
- Blocked purge port
- EVAP canister vent control valve

GI

MA

LC

EC

FE

GL

MT

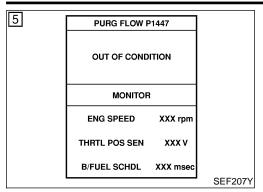
AT

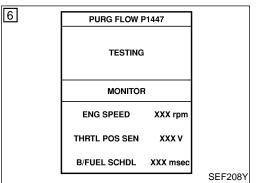
TF

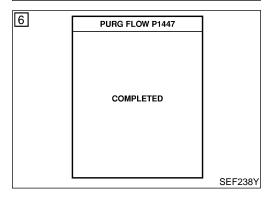
PD

AX

BT


HA


SC


EIL

DTC P1447 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PURGE FLOW MONITORING

On Board Diagnosis Logic (Cont'd)

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

VG33E

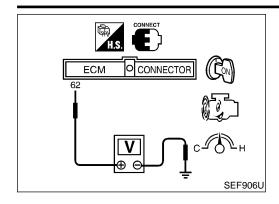
NGEC0861

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch OFF and wait at least 5 seconds.
- 3) Start engine and let it idle for at least 70 seconds.
- 4) Select "PURG FLOW P1447" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START". If "COMPLETED" is displayed, go to step 7.
- 6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 35 seconds.)

Selector lever	Suitable position
Vehicle speed	32 - 120 km/h (20 - 75 MPH)
ENG SPEED	500 - 3,400 rpm
B/FUEL SCHDL	1.0 - 10.0 msec
Engine coolant temperature	70 - 100°C (158 - 212°F)


If "TESTING" is not changed for a long time, retry from step 2.

 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-1114.

DTC P1447 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PURGE FLOW MONITORING

Overall Function Check

VG33E

Overall Function Check

Use this procedure to check the overall monitoring function of the EVAP control system purge flow monitoring. During this check, a 1st trip DTC might not be confirmed.

(R) Without CONSULT-II

- 1) Lift up drive wheels.
- 2) Start engine and warm it up to normal operating temperature.
- 3) Turn ignition switch OFF, wait at least 5 seconds.
- 4) Start engine and wait at least 70 seconds.
- 5) Set voltmeter probes to ECM terminals 62 (EVAP control system pressure sensor signal) and ground.
- Check EVAP control system pressure sensor value at idle speed and note it.
- 7) Establish and maintain the following conditions for at least 1 minute.

Air conditioner switch	ON
Steering wheel	Fully turned
Headlamp switch	ON
Rear window defogger switch	ON
Engine speed	Approx. 3,000 rpm
Gear position	Any position other than "P", "N" or "R"

- 8) Verify that EVAP control system pressure sensor value stays 0.1V less than the value at idle speed (measured at step 6) for at least 1 second.
- 9) If NG, go to "Diagnostic Procedure", EC-1114.

MA

LG

EC

FE

GL

MT

AT

TF

PD

AX

SU

ST

_ _

BT

HA

SC

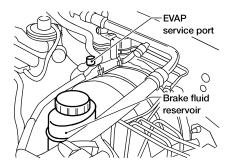
EL

 \mathbb{N}

DTC P1447 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PURGE FLOW MONITORING

Diagnostic Procedure

Diagnostic Procedure


-NGEC0863

VG33E

		→1.4	VGEC0003
1	CHECK EVAP CANISTER		
Turn ignition switch OFF. Check EVAP canister for cracks.			
OK or NG			
OK (With CONSULT-II)	GO TO 2.	
OK (\	Without CONSULT-	GO TO 3.	
NG	•	Replace EVAP canister.	

CHECK PURGE FLOW 2

 With CONSULT-II
 Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge.

AEC649A

- 2. Start engine and let it idle.
- 3. Select "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.
- 4. Rev engine up to 2,000 rpm.
- 5. Touch "Qd" and "Qu" on CONSULT-II screen to adjust "PURG VOL CONT/V" opening.

ACTIVE TEST		
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	
THRTL POS SEN	xxx v	

PURG VOL CONT/V	VACUUM
100.0%	Should exist
0.0%	Should not exist

SEF012Z

OK •	GO TO 7.
NG •	GO TO 4.

DTC P1447 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PURGE FLOW MONITORING VG33E

Diagnostic Procedure (Cont'd)

3 CHECK P	URGE FLOW
Without CONS	
 Start engine an Stop engine. 	nd warm it up to normal operating temperature.
3. Disconnect vac	cuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and
install vacuum	gauge.
	EVAP Consider no d
	service port
	Brake fluid
	reservoir
	AEC649A
	nd let it idle for at least 80 seconds.
	gauge indication when revving engine up to 2,000 rpm.
Vacuum shoul 6. Release the ac	ccelerator pedal fully and let idle.
Vacuum shoul	
	OK or NG
OK	▶ GO TO 7.
NG	► GO TO 4.
4 CHECK E	VAP PURGE LINE
1. Turn ignition sv	
	urge line for improper connection or disconnection. PORATIVE EMISSION LINE DRAWING", EC-623.
	OK or NG
OK	GO TO 5.
NG	Repair it.
	Nepali II.

HA

SC

EL

DTC P1447 EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM PURGE FLOW MONITORING VG33E

Diagnostic Procedure (Cont'd)

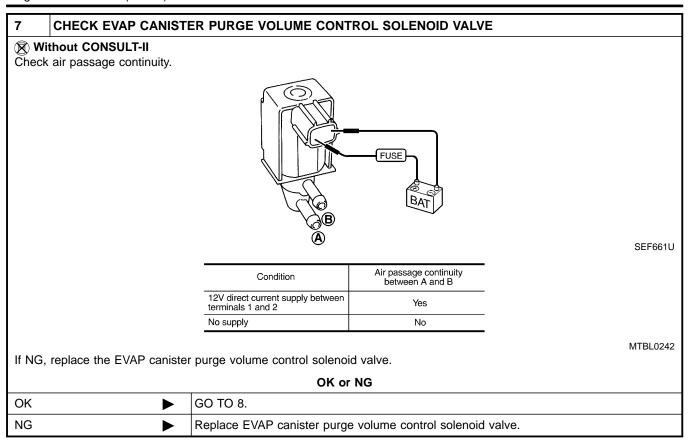
5 **CHECK EVAP PURGE HOSE AND PURGE PORT** 1. Disconnect purge hoses connected to EVAP service port A and EVAP canister purge volume control solenoid valve B. EVAP service port **B** (C)EVAP canister purge volume control solenoid valve Intake manifold SEF367U 2. Blow air into each hose and EVAP purge port C. 3. Check that air flows freely. Intake manifold SEF368U OK or NG

OK (with CONSULT-II)	>	GO TO 6.
OK (without CONSULT-II)	•	GO TO 7.
NG	>	Repair or clean hoses and/or purge port.

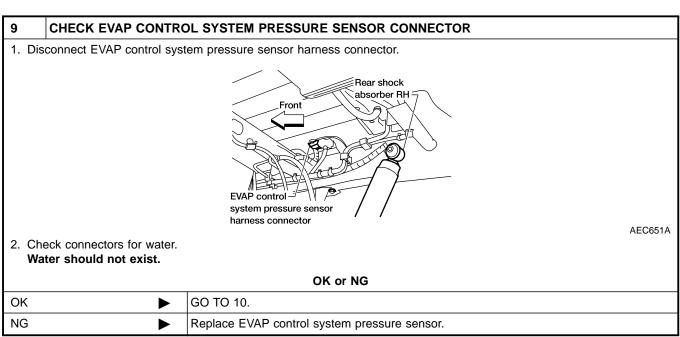
Diagnostic Procedure (Cont'd)

VG33E

6 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (P) With CONSULT-II GI 1. Start engine. 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. MA **ACTIVE TEST** PURG VOL CONT/V 0.0% MONITOR **ENG SPEED** XXX rpm A/F ALPHA-B1 XXX % A/F ALPHA-B2 XXX % HO2S1 MNTR (B1) RICH HO2S1 MNTR (B2) RICH EC THRTL POS SEN XXX V SEF985Y If OK, inspection end. If NG, go to following step. 3. Check air passage continuity. GL MT AT TF SEF660U PD Condition PURG VOL CONT/V value Air passage continuity between A and B 100.0% Yes 0.0% No MTBL0241 If NG, replace the EVAP canister purge volume control solenoid valve. OK or NG GO TO 8. OK NG Replace EVAP canister purge volume control solenoid valve. ST


BT

HA


SC

VG33E

Diagnostic Procedure (Cont'd)

8	CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE		
 Turn ignition switch OFF. Check disconnection or improper connection of hose connected to EVAP control system pressure sensor. OK or NG 			
OK	OK ▶ GO TO 9.		
NG	>	Repair it.	

Diagnostic Procedure (Cont'd)

VG33E

GI

MA

EM

LC

EC

FE

GL

MT

AT

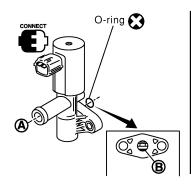
TF

PD

AX

SU

ST


10 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION			
Refer to "DTC Confirmation Procedure" for DTC P0450, EC-987.			
OK or NG			
OK ▶ GO TO 11.			
NG	>	Replace EVAP control system pressure sensor.	

11 CHECK EVAP CANISTER VENT CONTROL VALVE

Check air passage continuity.

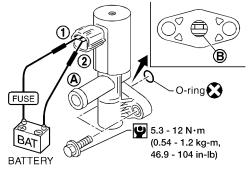
(P) With CONSULT-II

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.

ACTIVE TEST		
VENT CONTROL/V OFF		
MONITOF	ł	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 (B1)	xxx v	
HO2S1 (B2)	xxx v	
THRTL POS SEN	xxx v	

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

Operation takes less than 1 second.


SEF991Y

Without CONSULT-II

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

MTBL0240

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary. If portion ${\bf B}$ is rusted, replace control valve.

Make sure new O-ring is installed properly.

OK	٥r	NC

OK •	GO TO 12.
NG ▶	Replace EVAP canister vent control valve.

AEC783A

HA

BT

SC

EL

Diagnostic Procedure (Cont'd)

12 CHECK CLOSED THROTTLE POSITION SWITCH

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Turn ignition switch ON.
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- 5. Check indication of "CLSD THL/P SW".

Measurement must be made with closed throttle position switch installed in vehicle.

Throttle valve conditions	CLSD THL/P SW
Completely closed	ON
Partially open or completely open	OFF

If NG, adjust closed throttle position switch.

Check the following items. Refer to "Basic Inspection", EC-694.

Items	Specifications
Ignition timing	10° ± 2° BTDC
Base idle speed	700 ± 50 rpm (in "P" or "N" position)
Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.3 mm (0.012 in): ON 0.4 mm (0.016 in): OFF
Target idle speed	750 ± 50 rpm (in "P" or "N" position)

MTBL0576

MTBL0355

6. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace closed throttle position switch.

OK or NG

OK •		GO TO 14.
NG •	>	Replace throttle position switch with throttle position sensor.

Diagnostic Procedure (Cont'd)

VG33E

GI

MA

LC

EC

FE

GL

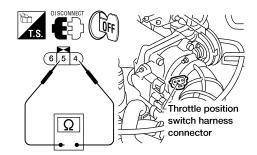
MT

AT

TF

PD

AX


CHECK CLOSED THROTTLE POSITION SWITCH

Without CONSULT-II

13

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect closed throttle position switch harness connector.
- 4. Check continuity between closed throttle position switch terminals 4 and 5.

 Resistance measurement must be made with closed throttle position switch installed in vehicle.

Throttle valve conditions	Continuity
Completely closed	Yes
Partially open or completely open	No

If NG, adjust closed throttle position switch.

Check the following items. Refer to "Basic Inspection", EC-694.

Items	Specifications
Ignition timing	10° ± 2° BTDC
Base idle speed	700 ± 50 rpm (in "P" or "N" position)
Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.3 mm (0.012 in): ON 0.4 mm (0.016 in): OFF
Target idle speed	750 ± 50 rpm (in "P" or "N" position)

MTBL0576

AEC654A

MTBL0247

5. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace closed throttle position switch.

			OK or NG
OK	•	GO TO 14.	

OK		GO TO 14.
NG	>	Replace throttle position switch with throttle position sensor.

14	CHECK EVAP PURGE LINE

Inspect EVAP purge line (pipe and rubber tube). Check for evidence of leaks.

Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-623.

OK	or	NG
----	----	----

OK •	GO TO 15.
NG •	Replace it.

15 CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

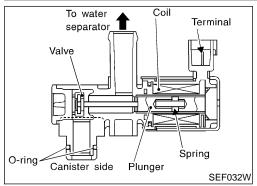
► GO TO 16

EL

SC

BT

HA


Diagnostic Procedure (Cont'd)

16	CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.			
	► INSPECTION END		

VG33E

NGEC0864

Component Description

EVAP canister vent control valve SEF143S

Component Description

If DTC P1448 is displayed with P0440, perform trouble diagnosis for DTC P1448 first.

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

EC

FE

GL

MIT

AT

TF

PD

AX

NGFC0866

CONSULT-II Reference Value in Data Monitor Mode NGEC0865

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	• Ignition switch: ON	OFF

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
108	R/G	EVAP canister vent control valve	Illanition switch ONI	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

Malfunction is detected when EVAP canister vent control valve remains opened under specified driving conditions.

POSSIBLE CAUSE

EVAP canister vent control valve

- EVAP control system pressure sensor and circuit
- Blocked rubber tube to EVAP canister vent control valve
- Water separator
- EVAP canister is saturated with water.
- Vacuum cut valve

BT

HA

SC

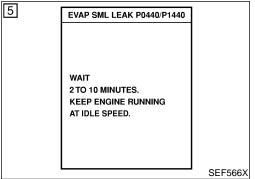
EL

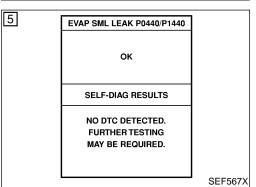
NGEC0867S01

EC-1123

VG33E

NGEC0868


DTC Confirmation Procedure


NOTF:

- If DTC P1448 is displayed with P0440, perform trouble diagnosis for DTC P1448 first.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

1)FOR BEST RSLT,PERFORM
AT FOLLOWING CONDITIONS.
-FUEL LEVEL: 1/4-3/4
-AMBIENT TEMP: 0-30 C(32-86F)
-OPEN ENGINE HOOD.
2)START ENG WITH VHCL
STOPPED. IF ENG IS ON,STOP
FOR 5 SEC. THEN RESTART.
3)TOUCH START.

SEF565X

441			_
Ш	ACTIVE TEST		CONNECT O-ring
	VENT CONTROL/V	OFF	
	MONITOR		
	ENG SPEED	XXX rpm	
	A/F ALPHA-B1	XXX %	B
	A/F ALPHA-B2	XXX %	
	HO2S1 (B1)	xxx v	(A)
	HO2S1 (B2)	xxx v	Q = D
	THRTL POS SEN	xxx v	B
]
1 '			SEF013Z

(II) With CONSULT-II TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is less than 3/4 full and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).
- It is better that the fuel level is low.
- 1) Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 5 seconds.
- 3) Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 4) Make sure that the following conditions are met.

COOLAN TEMP/S	0 - 32°C (32 - 90°F)
INT/A TEMP SE	More than 0°C (32°F)

 Select "EVAP SML LEAK P0440" of "EVAPORATIVE SYS-TEM" in "DTC WORK SUPPORT" mode with CONSULT-II. Follow the instruction displayed.

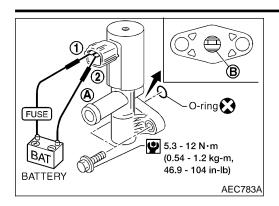
NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to "Basic Inspection", EC-694.

Make sure that "OK" is displayed.
 If "NG" is displayed, go to the following step.

NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.


- Stop engine and wait at least 5 seconds, then turn ON.
- 8) Disconnect hose from water separator.
- 9) Select "VENT CONTROL/V" of "ACTIVE TEST" mode with CONSULT-II.
- 10) Touch ON and OFF alternately.
- Make sure the following.

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

If the result is NG, go to "Diagnostic Procedure", EC-1127. If the result is OK, go to "Diagnostic Procedure" for DTC P0440, EC-958.

VG33E

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the EVAP canister vent control valve circuit. During this check, a DTC might not be confirmed.

not [©]

MA

Without CONSULT-II

- 1) Disconnect hose from water separator.
- Disconnect EVAP canister vent control valve harness connector.
- 3) Verify the following.

Condition	Air passage continuity
12V direct current supply between terminals 1 and 2	No
No supply	Yes

_ LC
_ EC

If the result is NG, go to "Diagnostic Procedure", EC-1127. If the result is OK, go to "Diagnostic Procedure" for DTC P0440, EC-958.

212

FE

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

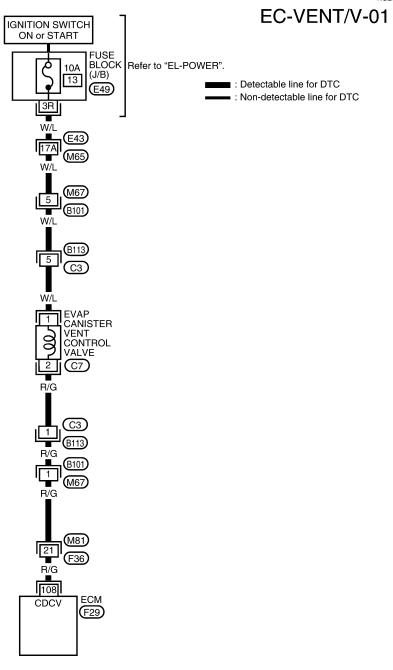
ST

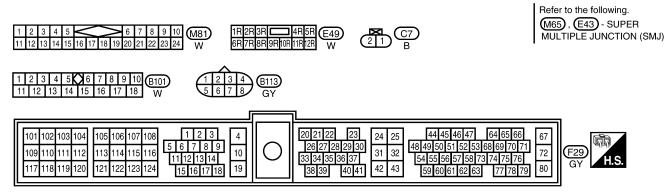
RS

BT

HA

SC


EL


 $\mathbb{D}\mathbb{X}$

VG33E

Wiring Diagram

NGEC0870

WEC934

Diagnostic Procedure

VG33E

GI

MA

LC

EC

GL

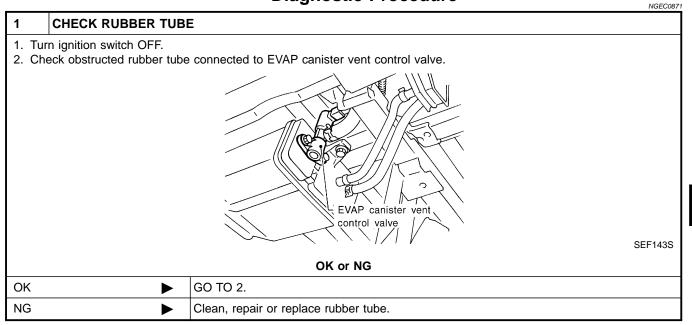
MT

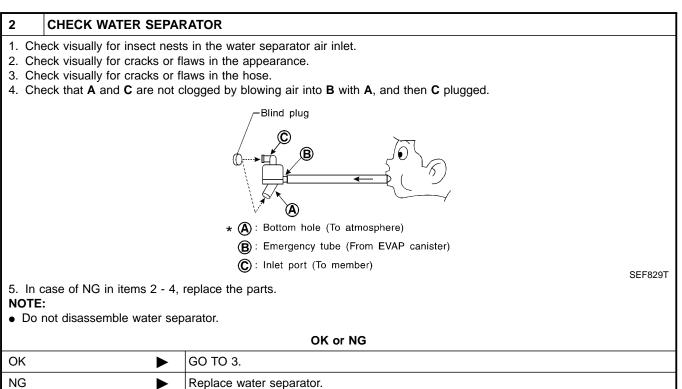
AT

TF

PD

SW


ST

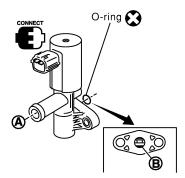

BT

HA

SC

Diagnostic Procedure

Diagnostic Procedure (Cont'd)


VG33E

3 CHECK EVAP CANISTER VENT CONTROL VALVE AND O-RING

Check air passage continuity.

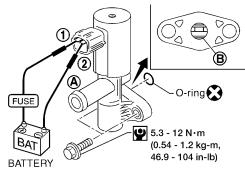
(II) With CONSULT-II

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.

ACTIVE TEST	
VENT CONTROL/V	OFF
MONITOR	
ENG SPEED	XXX rpm
A/F ALPHA-B1	XXX %
A/F ALPHA-B2	XXX %
HO2S1 (B1)	xxx v
HO2S1 (B2)	xxx v
THRTL POS SEN	xxx v

Condition VENT CONTROL/V	Air passage continuity between A and B	
ON	No	
OFF	Yes	

Operation takes less than 1 second.


SEF991Y

Without CONSULT-II

Condition	Air passage continuity between A and B	
12V direct current supply between terminals 1 and 2	No	
OFF	Yes	

MTBL0240

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary. If portion **B** is rusted, replace control valve.

AEC783A

Make sure new O-ring is installed properly.

OK or NG

OK •	GO TO 4.
NG •	Replace EVAP canister vent control valve and O-ring.

Diagnostic Procedure (Cont'd)

VG33E

GI

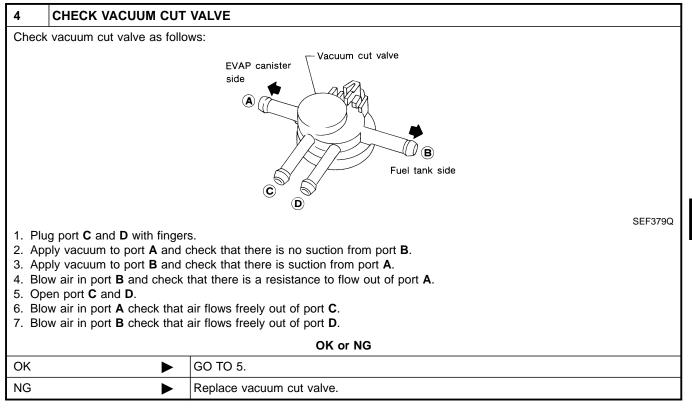
MA

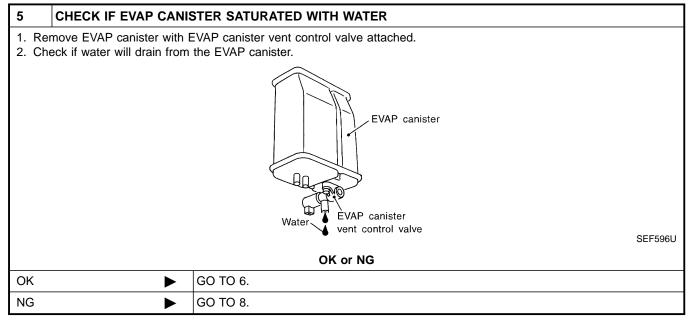
EC

FE

GL

MT


AT


TF

PD

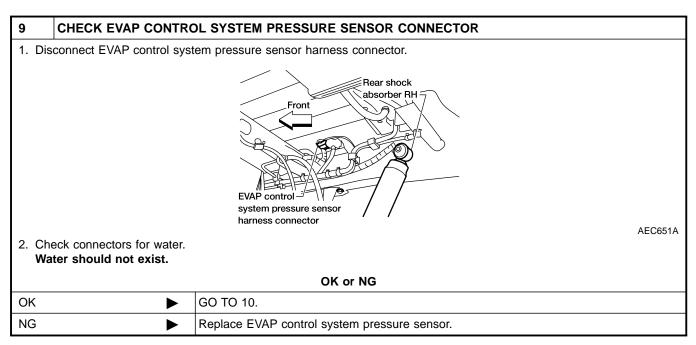
AX

ST

CHECK EVAP CANIST	ER .	Ì	
Weigh the EVAP canister with the EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).			
OK or NG			
•	GO TO 8.]	
>	Replace the EVAP canister.	1	
	the EVAP canister with the eight should be less than	eight should be less than 1.8 kg (4.0 lb). OK or NG	

ΞL

SC

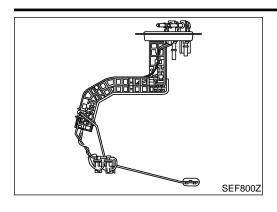

HA

VG33E

Diagnostic Procedure (Cont'd)

7	DETECT MALFUNCTIONING PART		
	k the following. AP canister for damage		
	AP hose between EVAP canister and water separator for clogging or poor connection		
	Repair hose or replace EVAP canister.		

8	CHECK EVAP CONTRO	DL SYSTEM PRESSURE SENSOR HOSE	
Check	Check disconnection or improper connection of hose connected to EVAP control system pressure sensor.		
	OK or NG		
OK	>	GO TO 9.	
NG	>	Repair it.	



10	10 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION		
Refer	Refer to "DTC Confirmation Procedure" for DTC P0450, EC-987.		
	OK or NG		
OK	OK ▶ GO TO 11.		
NG	NG Replace EVAP control system pressure sensor.		

11	CHECK INTERMITTENT	T INCIDENT	
Refer	r to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
► INSPECTION END			

DTC P1464 FUEL LEVEL SENSOR CIRCUIT (GROUND SIGNAL) VG33E

Component Description

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

G[

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

MA

LC

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

000

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

FE

GL

MT

EC

	TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	(
_	46	P/B	Fuel level sensor	[Ignition switch "ON"]	Approximately 0 - 4.8V Output voltage varies with fuel level.	[
	66	В	Fuel level sensor ground	[Engine is running] • Idle speed	Approximately 0V	L

AT

TF

PD

On Board Diagnosis Logic

NGFC0995

ECM receives two signals from the fuel level sensor.

One is fuel level sensor power supply circuit, and the other is fuel level sensor ground circuit.

BF

This diagnosis indicates the latter to detect open circuit malfunction. Malfunction is detected when a high voltage from the sensor is sent to ECM.

ST

POSSIBLE CAUSE

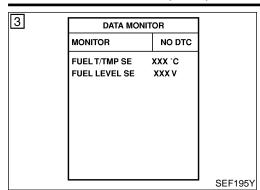
NGEC0995S01

 Fuel level sensor circuit (The fuel level sensor circuit is open or shorted.)

DTC Confirmation Procedure

NOTE:

NGEC0997


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

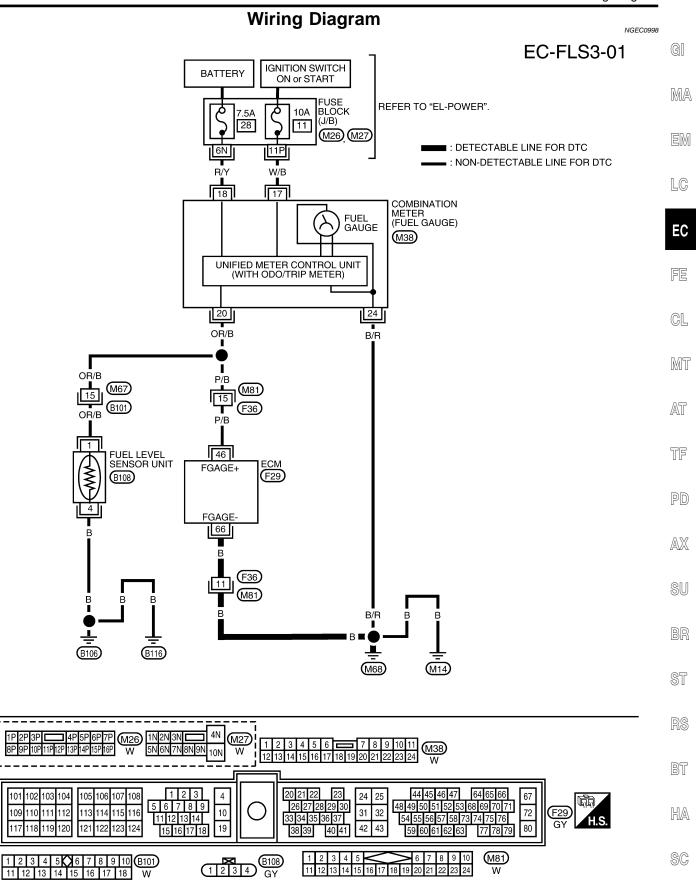
SC

EL

DTC P1464 FUEL LEVEL SENSOR CIRCUIT (GROUND SIGNAL) VG33E

DTC Confirmation Procedure (Cont'd)

® WITH CONSULT-II


NGEC0997S01

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1134.

WITH GST

NGEC0997S02

Follow the procedure "WITH CONSULT-II" above.

EL

LEC524

DTC P1464 FUEL LEVEL SENSOR CIRCUIT (GROUND SIGNAL) VG33E

Diagnostic Procedure

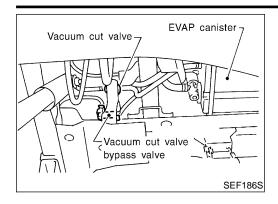
Diagnostic Procedure

=NGEC0999

- 1 CHECK FUEL LEVEL SENSOR GROUND CIRCUIT FOR OPEN AND SHORT
- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 66 and body ground. Refer to Wiring Diagram. Continuity should exist.
- 4. Also check harness for short to power.

OK or NG

ОК	>	GO TO 3.
NG	•	GO TO 2.


DETECT MALFUNCTIONING PART 1. Check the following. Harness connectors F36, M81 Harness for open and short between ECM and body ground Replace open circuit or short to power in harness or connectors.

3	CHECK FUEL LEVEL S	ENSOR			
Refer	Refer to EL-XX, "Fuel Level Sensor Unit Check".				
	OK or NG				
OK	OK ▶ GO TO 4.				
NG	NG Replace fuel level sensor unit.				

4	4 CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732		
	OK or NG		
	► INSPECTION END		

DTC P1490 VACUUM CUT VALVE BYPASS VALVE (CIRCUIT)

Description COMPONENT DESCRIPTION

NGEC0872

VGEC0872501

The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.

MA

The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

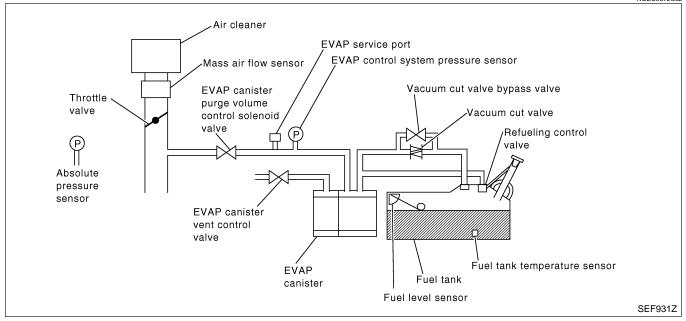
LC

EC

FE

GL

MT


AT

TF

PD

EVAPORATIVE EMISSION SYSTEM DIAGRAM

NGEC0872S02

CONSULT-II Reference Value in Data Monitor Mode

Sl

Specification data are reference values.

NGEC0873

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPASS/V	Ignition switch: ON	OFF

ECM Terminals and Reference ValueSpecification data are reference values and are measured between each terminal and ground.

NGEC0874

CALITION

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

BT

HA

ST

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
120	P/B	Vacuum cut valve bypass valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)

EL

SC

On Board Diagnosis Logic

NGEC0875

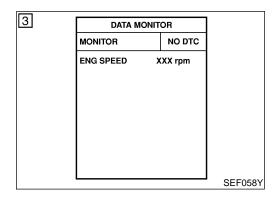
Malfunction is detected when an improper voltage signal is sent to ECM through vacuum cut valve bypass valve.

POSSIBLE CAUSE

NGEC0875S01

- Harness or connectors
 (The vacuum cut valve bypass valve circuit is open or shorted.)
- Vacuum cut valve bypass valve

DTC Confirmation Procedure


NGEC0876

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle speed.

(P) With CONSULT-II

- 1) Turn ignition switch ON.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1138.

Follow the procedure "With CONSULT-II".

DTC P1490 VACUUM CUT VALVE BYPASS VALVE (CIRCUIT)

Wiring Diagram

NGEC0877

GI

MA

LC

EC

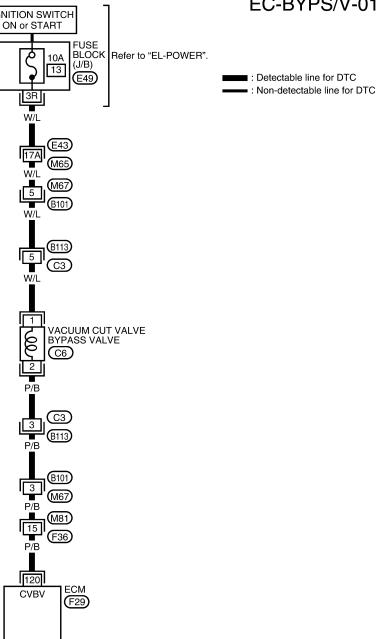
GL

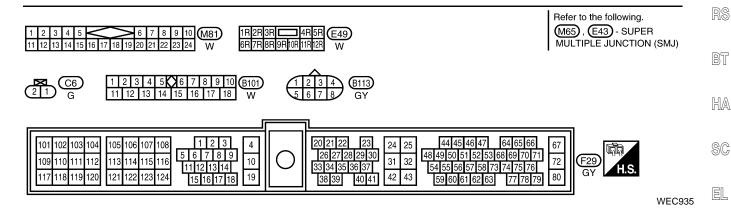
MT

AT

TF

PD


AX


SU

BR

ST

DTC P1490 VACUUM CUT VALVE BYPASS VALVE (CIRCUIT) VG33E

Diagnostic Procedure

NGEC0878

1	INSPECTION START				
Do yo	Do you have CONSULT-II?				
	Yes or No				
Yes	Yes ▶ GO TO 2.				
No	•	GO TO 3.			

CHECK VACUUM CUT VALVE BYPASS VALVE CIRCUIT

With CONSULT-II

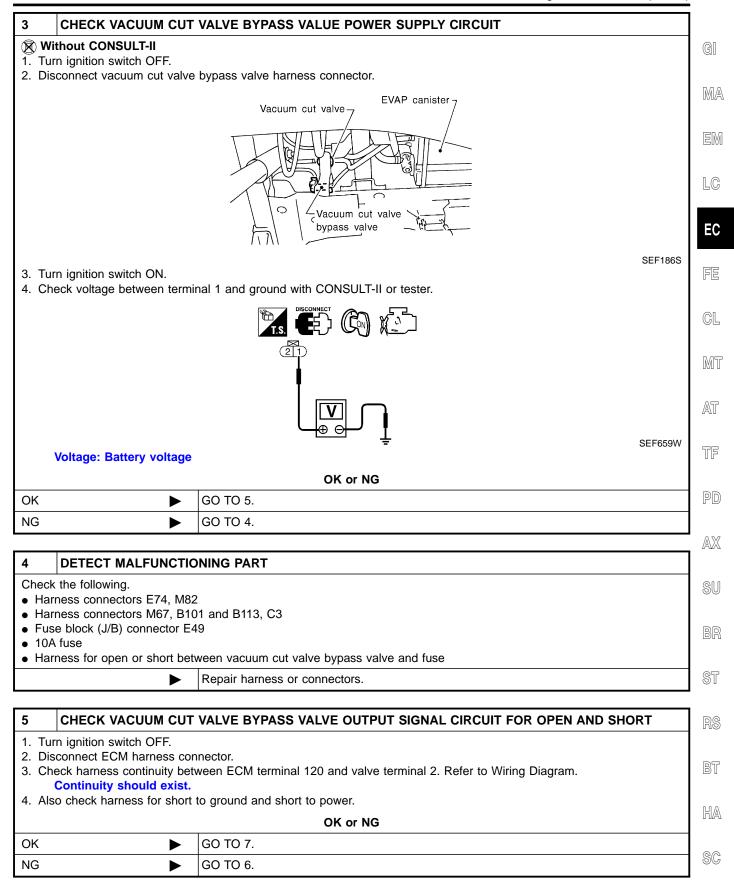
Diagnostic Procedure

- 1. Turn ignition switch OFF and then ON.
- 2. Select "VC/V BYPASS/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Touch "ON/OFF" on CONSULT-II screen.

ACTIVE TEST		
VC/V BYPASS/V	OFF	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1 XXX %		
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	
THRTL POS SEN	xxx v	
_		

SEF014Z

4. Make sure that clicking sound is heard from the vacuum cut valve bypass valve.


OK or NG

OK •	GO TO 7.
NG ►	GO TO 3.

DTC P1490 VACUUM CUT VALVE BYPASS VALVE (CIRCUIT)

VG33E

Diagnostic Procedure (Cont'd)

DTC P1490 VACUUM CUT VALVE BYPASS VALVE (CIRCUIT) VG33E

Diagnostic Procedure (Cont'd)

DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors C3, B113 and B101, M67
- Harness connectors M81, F36
- Harness for open or short between vacuum cut valve bypass valve and ECM

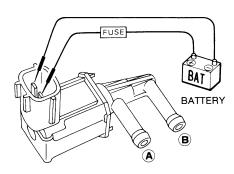
Repair open circuit or short to ground or short to power in harness or connectors.

CHECK VACUUM CUT VALVE BYPASS VALVE

(P) With CONSULT-II

- 1. Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.
- 2. Check air passage continuity and operation delay time under the following conditions.

ACTIVE TEST		
VC/V BYPASS/V	OFF	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	
THRTL POS SEN	xxx v	


Condition VC/V BYPASS/V	Air passage continuity between A and B
ON	Yes
OFF	No

Operation takes less than 1 second.

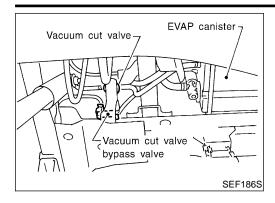
SEF016Z

Without CONSULT-II

1. Check air passage continuity and operation delay time under the following conditions.

SEF351Q

Condition	Air passage continuity between A and B	
12V direct current supply between terminals 1 and 2	Yes	
No supply	No	


MTBL0242

OK or NG

OK •	GO TO 8.
NG ▶	Replace vacuum cut valve bypass valve.

8 **CHECK INTERMITTENT INCIDENT** Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732. **INSPECTION END**

Description COMPONENT DESCRIPTION

NGEC0879

NGEC0879S01

The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.

MA

The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

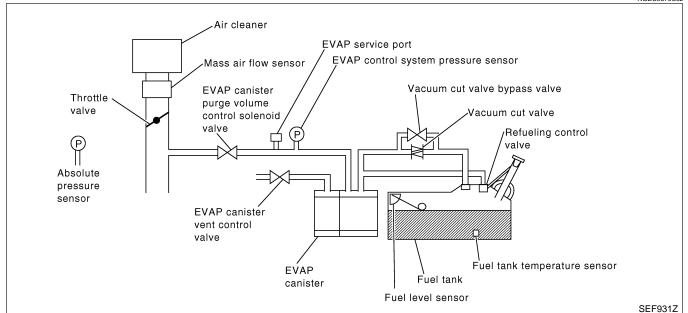
LG

EC

FE

GL

MT


AT

TF

PD

EVAPORATIVE EMISSION SYSTEM DIAGRAM

NGEC0879S02

CONSULT-II Reference Value in Data Monitor Mode

SU

Specification data are reference values.

NGEC0880

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPASS/V	Ignition switch: ON	OFF

<u> </u> მ

ECM Terminals and Reference Value

NGEC0881

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

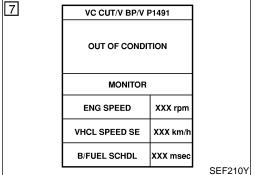
BT

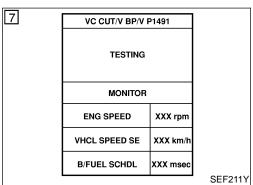
HA

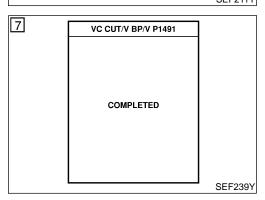
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
120	P/B	Vacuum cut valve bypass valve	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)

EL

SC


On Board Diagnosis Logic


Malfunction is detected when vacuum cut valve bypass valve does not operate properly.


POSSIBLE CAUSE

NGEC0882S01

- Vacuum cut valve bypass valve
- Vacuum cut valve
- Bypass hoses for clogging
- EVAP control system pressure sensor and circuit
- EVAP canister vent control valve
- Hose between fuel tank and vacuum cut valve clogged
- Hose between vacuum cut valve and EVAP canister clogged
- EVAP canister
- EVAP purge port of fuel tank for clogging

DTC Confirmation Procedure

NGEC0883

CAUTION:

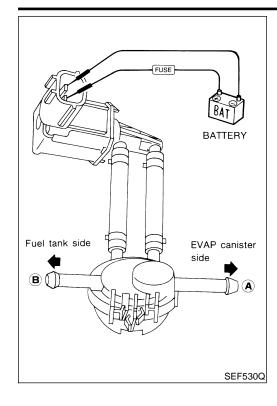
Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5 to 30°C (41 to 86°F). (P) With CONSULT-II


- Turn ignition switch ON.
- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 5 seconds.
- Start engine and let it idle for at least 70 seconds.
- Select "VC CUT/V BP/V P1491" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START".
- When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 30 seconds.)

ENG SPEED	More than 500 rpm
Selector lever	Suitable position
Vehicle speed	More than 37 km/h (23 MPH)
B/FUEL SCHDL	1.0 - 10.0 msec

If "TESTING" is not displayed after 5 minutes, retry from step 3.

Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-1145.

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of vacuum cut valve bypass valve. During this check, the 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

- Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- Apply vacuum to port **A** and check that there is no suction from port **B**.
- Apply vacuum to port B and check that there is suction from port A.
- 4) Blow air in port **B** and check that there is a resistance to flow out of port A.
- Supply battery voltage to the terminal. 5)
- Blow air in port A and check that air flows freely out of port B.
- 7) Blow air in port **B** and check that air flows freely out of port **A**.
- If NG, go to "Diagnostic Procedure", EC-1145. 8)

MA

LC

EC

FE

GL

MT

AT

PD

TF

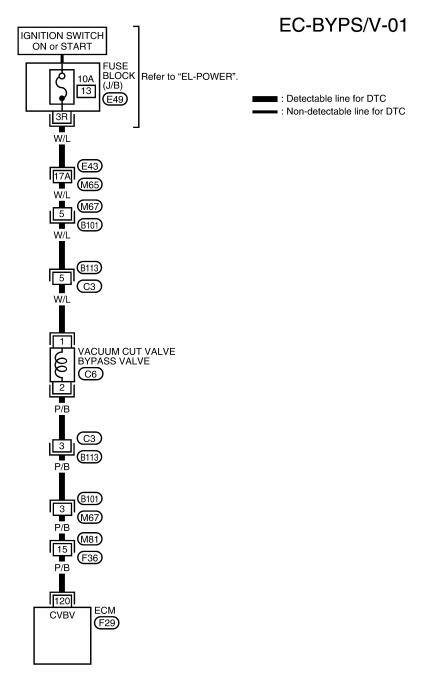
AX

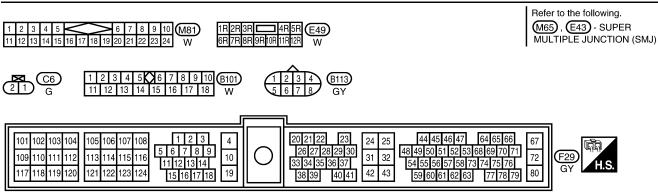
SU

ST

BT

HA


SC

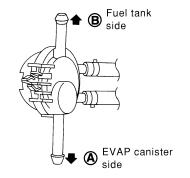

EL

Wiring Diagram

NGEC0885

WEC935

VG33E


Diagnostic Procedure

Diagnostic Procedure

			NGEC0886
1	INSPECTION START		
Do yo	Do you have CONSULT-II?		
	Yes or No		
Yes	>	GO TO 2.	
No	•	GO TO 3.	

No GO TO 3. 2 CHECK VACUUM CUT VALVE BYPASS VALVE OPERATION

- With CONSULT-II
- 1. Turn ignition switch OFF.
- 2. Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- 3. Apply vacuum to port A and check that there is no suction from port B.
- 4. Apply vacuum to port B and check that there is suction from port A.
- 5. Blow air in port B and check that there is a resistance to flow out of port A.
- 6. Turn ignition switch ON.
- 7. Select "VC/V BYPASS/V" in "ACTIVE TEST" mode with CONSULT-II and touch "ON".
- 8. Blow air in port A and check that air flows freely out of port B.
- 9. Blow air in port B and check that air flows freely out of port A.

ACTIVE TEST		
OFF		
XXX rpm		
XXX %		
XXX %		
LEAN		
LEAN		
xxx v		

SEF017Z

OK or NG		
OK •	GO TO 4.	
NG •	GO TO 5.	

GI

MA

EM

 \cup

EC

FE

CL

MT

AT

TF PD

SU

ST

29

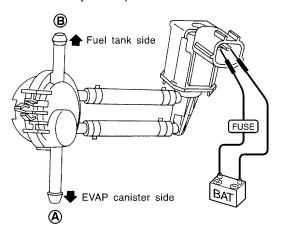
BT

HA

SC

EL

SEF914U


Diagnostic Procedure (Cont'd)

CHECK VACUUM CUT VALVE BYPASS VALVE OPERATION

Without CONSULT-II

3

- 1. Turn ignition switch OFF.
- 2. Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- 3. Apply vacuum to port A and check that there is no suction from port B.
- 4. Apply vacuum to port B and check that there is suction from port A.
- 5. Blow air in port B and check that there is a resistance to flow out of port A.
- 6. Disconnect vacuum cut valve bypass valve harness connector.
- 7. Supply battery voltage to the terminal.
- 8. Blow air in port A and check that air flows freely out of port B.
- 9. Blow air in port B and check that air flows freely out of port A.

OK or NG

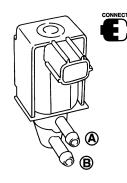
OK ▶	GO TO 4.
NG ►	GO TO 5.

4 CHECK EVAP PURGE LINE

- 1. Check EVAP purge line between EVAP canister and fuel tank for clogging or disconnection.
- 2. Check EVAP purge port of fuel tank for clogging.
- 3. Check EVAP canister. Refer to EC-620.

OK or NG

OK	•	GO TO 8.
NG (Step 1)	•	Repair it.
NG (Step 2)	•	Clean EVAP purge port.
NG (Step 3)	•	Replace EVAP canister.


5	CHECK BYPASS HOSE			
Check bypass hoses for clogging.				
OK or NG				
OK	OK ▶ GO TO 6.			
NG	•	Repair or replace hoses.		

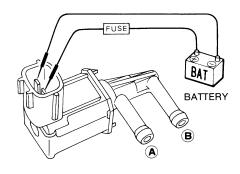
Diagnostic Procedure (Cont'd)

CHECK VACUUM CUT VALVE BYPASS VALVE

(II) With CONSULT-II

- 1. Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.
- 2. Check air passage continuity and operation delay time under the following conditions.

ACTIVE TEST		
VC/V BYPASS/V OFF		
MONITOR	₹	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	
THRTL POS SEN	xxx v	


Condition VC/V BYPASS/V	Air passage continuity between A and B	
ON	Yes	
OFF	No	

Operation takes less than 1 second.

SEF016Z

1. Check air passage continuity and operation delay time under the following conditions.

Without CONSULT-II

SEF351Q

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

MTBL0242

α	or	NG
UN	OI	NG

		I
	OK ►	GO TO 7.
	NG >	Replace vacuum cut valve bypass valve.

GI

MA

EC

GL

MT

AT TF

PD

ST

RS

BT

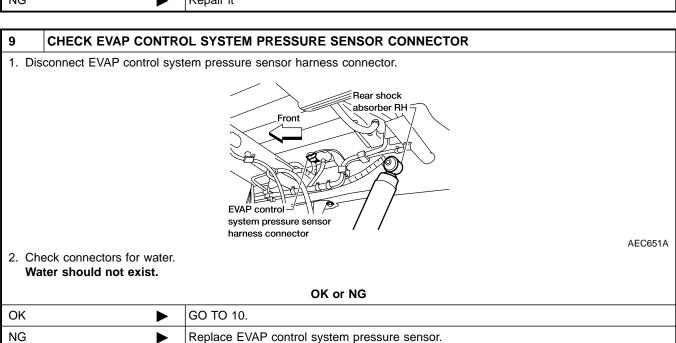
HA

SC

VG33E

Diagnostic Procedure (Cont'd)

OK


NG

Check vacuum cut valve as follows: EVAP canister side Fuel tank side 1. Plug port C and D with fingers. 2. Apply vacuum to port A and check that there is no suction from port B. 3. Apply vacuum to port B and check that there is suction from port A. 4. Blow air in port B and check that there is a resistance to flow out of port A. 5. Open port C and D. 6. Blow air in port A check that air flows freely out of port D. OK or NG

8	8 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE			
	 Turn ignition switch OFF. Check disconnection or improper connection of hose connected to EVAP control system pressure sensor. 			
	OK or NG			
ОК	>	GO TO 9.		
NG	>	Repair it		

GO TO 8.

Replace vacuum cut valve.

VG33E

GI

MA

EM

LC

EC

FE

GL

MT

AT

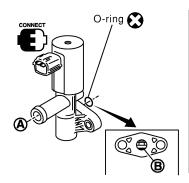
TF

PD

SU

ST

Diagnostic Procedure (Cont'd)


10 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION			
Refer	Refer to "DTC Confirmation Procedure" for DTC P0450, EC-987.		
OK or NG			
ОК	>	GO TO 11.	1
NG	>	Replace EVAP control system pressure sensor.	

11 CHECK EVAP CANISTER VENT CONTROL VALVE

Check air passage continuity.

(P) With CONSULT-II

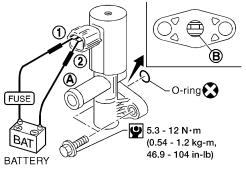
Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.

ACTIVE TEST		
VENT CONTROL/V	OFF	
MONITOR	₹	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 (B1)	xxx v	
HO2S1 (B2)	xxx v	
THRTL POS SEN	xxx v	

Condition VENT CONTROL/V	Air passage continuity between A and B	
ON	No	
OFF	Yes	

Operation takes less than 1 second.

SEF991Y


Without CONSULT-II

Condition	Air passage continuity between A and B	
12V direct current supply between terminals 1 and 2	No	
OFF	Yes	

MTBL0240

AEC783A

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary. If portion ${\bf B}$ is rusted, replace control valve.

Make sure new O-ring is installed properly.

OK	>	GO TO 12.

NG Replace EVAP canister vent control valve.

12	12 CHECK INTERMITTENT INCIDENT			
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.			
► INSPECTION END				

OK or NG

EL

HA

SC

Component Description

Component Description

NGEC088

The malfunction information related to A/T (Automatic Transmission) is transferred through the line (circuit) from TCM (Transmission control module) to ECM. Therefore, be sure to erase the malfunction information such as DTC not only in TCM (Transmission control module) but also ECM after the A/T related repair.

ECM Terminals and Reference Value

NGFC0888

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
7	G/B	I A/I Chack sidhai	[Ignition switch ON] [Engine is running]	0 - 3.0V

On Board Diagnosis Logic

NCECOSSO

Malfunction is detected when an incorrect signal from TCM (Transmission control module) is sent to ECM.

POSSIBLE CAUSE

NGEC0889S01

- Harness or connectors
 [The communication line circuit between ECM and TCM
 (Transmission control module) is open or shorted.]
- Dead (Weak) battery
- TCM (Transmission control module)

			1
[3]	ACTIVE TES		
	PURG VOL CONT/V 0.0%		
	MONITOR		
	ENG SPEED	XXX rpm	
	A/F ALPHA-B1	XXX %	
	A/F ALPHA-B2	XXX %	
	HO2S1 MNTR (B1)	RICH	
	HO2S1 MNTR (B2)	RICH	
	THRTL POS SEN	xxx v	
			SEF985Y

DTC Confirmation Procedure

NGEC0890

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

- (P) With CONSULT-II
- 1) Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and wait at least 40 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1152.

Follow the procedure "With CONSULT-II".

DTC P1605 A/T DIAGNOSIS COMMUNICATION LINE

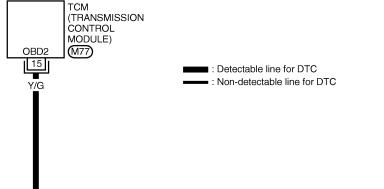
Wiring Diagram

(M58)

(F28)

NGEC0891

GI


EM

LC

EC

EC-ATDIAG-01

FE

CL

MT

AT

PD

TF

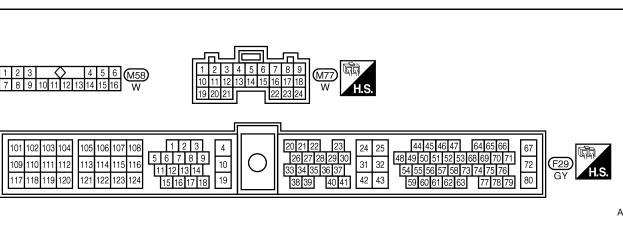
AX

SU

BR

ST

RS


BT

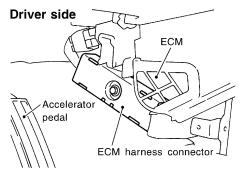
HA

SC

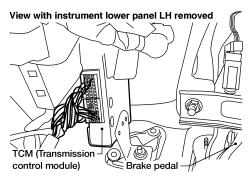
, EL

Y/G

(F29)


Diagnostic Procedure

Diagnostic Procedure


NGEC0892

1 CHECK A/T DIAGNOSIS COMMUNICATION LINE INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF
- 2. Disconnect ECM harness connector and TCM (Transmission Control Module) harness connector.

SEF324V

AEC655A

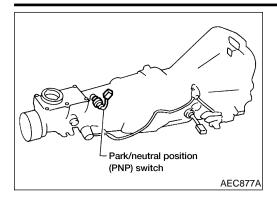
3. Check harness continuity between ECM terminal 7 and TCM (Transmission Control Module) terminal 15. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK	•	GO TO 3.
NG	•	GO TO 2.

2 DETECT MALFUNCTIONING PART


Check the following.

- Harness connectors M58, F28
- Harness for open or short between ECM and TCM (Transmission Control Module)

Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK INTERMITTENT INCIDENT Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732. INSPECTION END

Component Description

Component Description

When the gear position is "P" (A/T models only) or "N", park/neutral position (PNP) switch is "ON".

ECM detects the position because the continuity of the line (the "ON" signal) exists.

For A/T models, the park/neutral position (PNP) switch assembly also includes a transmission range switch to detect selector lever position.

GI

MA

LC

EC

FE

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
P/N POSI SW	Ignition switch: ON	Shift lever: "P" or "N"	ON
		Except above	OFF

ECM Terminals and Reference Value

NGEC0895

MT

AT

GL

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	TF
22 L/B	L/B	Park/neutral position (PNP)	[Ignition switch ON] ■ Gear position is "N" or "P" (A/T models) ■ Gear position is neutral (M/T models)	Approximately 0V	PD
	switch	[Ignition switch ON] • Except the above gear position	Approximately 5V	AX	

SU

ST

BT

On Board Diagnosis Logic

Malfunction is detected when the signal of the park/neutral position (PNP) switch is not changed in the process of engine starting and driving.

HA

POSSIBLE CAUSE

shorted.]

NGEC0896S01

The park/neutral position (PNP) switch circuit is open or

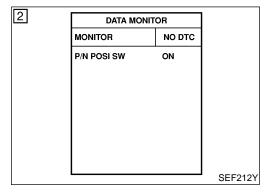
SC

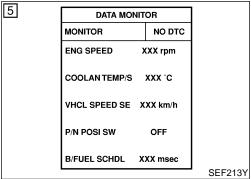
Park/neutral position (PNP) switch

Harness or connectors

EL

NGEC0897


DTC Confirmation Procedure


CAUTION:

Always drive vehicle at a safe speed.

NOTE:

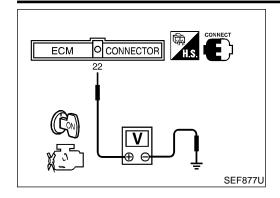
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.

(P) With CONSULT-II

- 1) Turn ignition switch ON.
- Select "P/N POSI SW" in "DATA MONITOR" mode with CON-SULT-II. Then check the "P/N POSI SW" signal under the following conditions.

Position (Selector lever)	Known good signal
"N" and "P" position	ON
Except the above position	OFF

If NG, go to "Diagnostic Procedure", EC-1157. If OK, go to following step.


- 3) Select "DATA MONITOR" mode with CONSULT-II.
- 4) Start engine and warm it up to normal operating temperature.
- Maintain the following conditions for at least 60 consecutive seconds.

ENG SPEED	1,600 - 2,700 rpm
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	3.3 - 13 msec
VHCL SPEED SE	More than 64 km/h (40 MPH)
Selector lever	Suitable position

6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-1157.

VG33E

Overall Function Check

Overall Function Check

Use this procedure to check the overall function of the park/neutral position (PNP) switch circuit. During this check, a 1st trip DTC might not be confirmed.

Without CONSULT-II

- 1) Turn ignition switch ON.
- Check voltage between ECM terminal 22 and body ground under the following conditions.

Condition (Gear position)	Voltage (V) (Known good data)
"P" and "N" position	Approx. 0
Except the above position	Approx. 5

If NG, go to "Diagnostic Procedure", EC-1157.

GI

MA

LC

EC

GL

MT

AT

TF

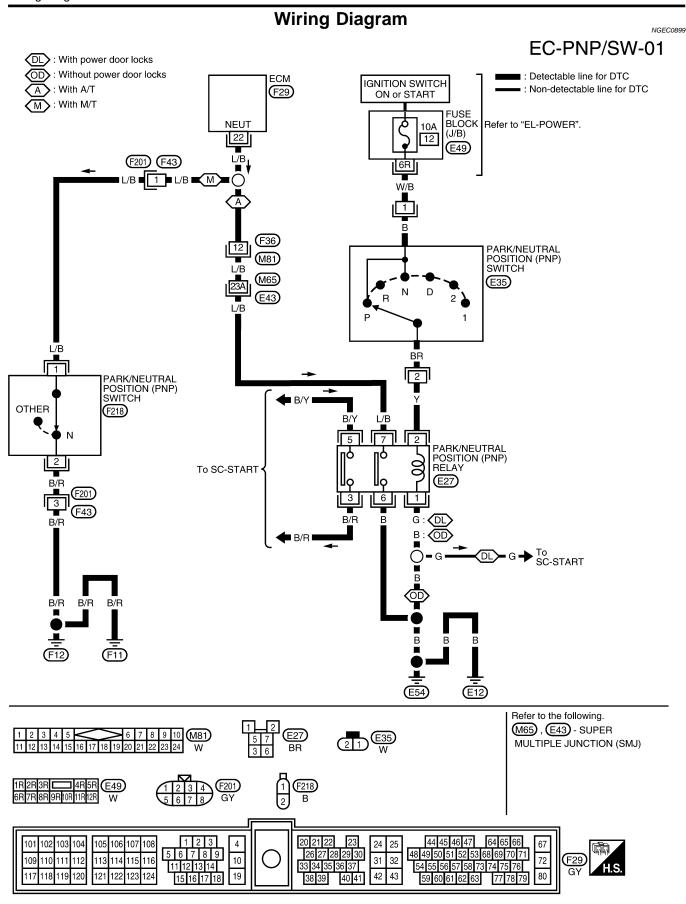
PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST


RS

BT

HA

SC

EL

VG33E

Diagnostic Procedure

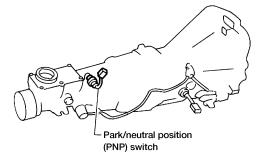
Diagnostic Procedure FOR M/T MODELS

NGEC0900

NGEC0900S01

MA

EC


MT

AT

TF

PD

- 1 CHECK PNP SWITCH GROUND CIRCUIT FOR OPEN AND SHORT
- 1. Turn ignition switch OFF.
- 2. Disconnect park/neutral position (PNP) switch harness connector.

AEC877A

- 3. Check harness continuity between PNP switch terminal 2 and engine ground. Refer to Wiring Diagram. Continuity should exist.
- 4. Also check harness for short to power.

OK or NG

OK •	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F201, F43
- Harness for open between park/neutral position (PNP) switch and engine ground
 - Repair open circuit or short to power in harness or connectors.
- 3 CHECK PNP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT
- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 22 and PNP switch terminal 1. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 5.
NG ►	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F43, F201
- Harness for open or short between ECM and park/neutral position (PNP) switch
 - Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK PARK/NEUTRAL POSITION (PNP) SWITCH

Refer to "Position Switch Check", "ON-VEHICLE SERVICE", MT-8.

OK or NG

OK	>	GO TO 6.
NG	•	Replace park/neutral position (PNP) switch.

HA

\$0

VG33E

Diagnostic Procedure (Cont'd)

6	CHECK INTERMITTENT INCIDENT		
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
	► INSPECTION END		

VG33E

=NGEC0900S02

SEF661W

GI

MA

LC

EC

GL

MT

AT

TF

PD

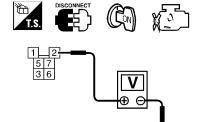
SW

ST

BT

HA

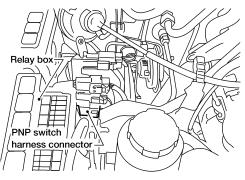
SC


Diagnostic Procedure (Cont'd)

FOR A/T MODELS

CHECK PNP SWITCH POWER SUPPLY CIRCUIT-I

- 2. Disconnect park/neutral position (PNP) relay.
- 3. Turn ignition switch ON.
- 4. Shift selector lever to "P" or "N" position.
- 5. Check voltage between terminal 2 and ground with CONSULT-II or tester.


Voltage: Battery voltage

OK or NG

OK	•	GO TO 6.
NG		GO TO 2.

2 CHECK PNP SWITCH POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch "OFF.
- 2. Disconnect park/neutral position (PNP) switch harness connector.

AEC662A

3. Check harness continuity between park/neutral position (PNP) switch terminal 2 and park/neutral position (PNP) relay terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK		GO TO 3.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK PNP SWITCH POWER SUPPLY CIRCUIT-III

- 1. Turn ignition switch ON.
- 2. Check voltage between park/neutral position (PNP) switch terminal 1 and ground with CONSULT-II or tester. Refer to Wiring Diagram.

Voltage: Battery voltage

OK or NG

OK >	GO TO 5.
NG •	GO TO 4.

 $\mathbb{D}\mathbb{X}$

VG33E

Diagnostic Procedure (Cont'd)

4 DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E49
- 10A fuse
- Harness for open or short between park/neutral position (PNP) switch and fuse
 - Repair open circuit or short to ground or short to power in harness or connectors.

5	CHECK PARK/NEUTRAL POSITION (PNP) SWITCH		
Refer	Refer to "Component Inspection", AT-103.		
		OK or NG	
ОК	OK 🕨 GO TO 11.		
NG	>	Replace park/neutral position (PNP) switch.	

6	CHECK PNP RELAY GROUND CIRCUIT FOR OPEN AND SHORT			
2. Ch	Turn ignition switch OFF. Check harness continuity between relay terminals 1, 6 and body ground. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to power.			
			OK or NG	
OK		•	GO TO 8.	
NG (\ syste	With theft warning m)	>	GO TO 7.	
•	Without theft warn-	>	Repair open circuit or short to power in harness or connectors.	

7	DETECT MALFUNCTIONING PART		
	Check the circuit between park/neutral position (PNP) relay and body ground. Refer to "STARTING SYSTEM", <i>SC-10</i> .		
		OK or NG	
OK	•	GO TO 11.	
NG	>	Repair or replace.	

8	CHECK PNP RELAY INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT		
2. Ch	Disconnect ECM harness connector. Check harness continuity between ECM terminal 22 and relay terminal 7. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power.		
	OK or NG		
OK	>	GO TO 10.	
NG	>	GO TO 9.	

9	DETECT MALFUNCTIO	CTIONING PART	
	Check the following.		
	rness connectors F36, M81		
	rness connectors M65, E43		
• Har	Harness for open or short between ECM and park/neutral position (PNP) relay		
	•	Repair open circuit or short to ground or short to power in harness or connectors.	

VG33E

GI

MA

EM

LC

EC

GL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

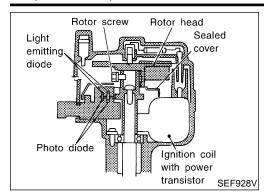
EL

Diagnostic Procedure (Cont'd)

1. Apply 12V direct current between park/neutral position (PNP) relay terminals 1 and 2. 2. Check continuity between park/neutral position (PNP) relay terminals 3 and 5, 6 and 7. 2. Check continuity between park/neutral position (PNP) relay terminals 3 and 5, 6 and 7. 2. Check continuity between park/neutral position (PNP) relay terminals 3 and 5, 6 and 7. 2. Check continuity between park/neutral position (PNP) relay terminals 3 and 5, 6 and 7. 2. Check continuity between park/neutral position (PNP) relay terminals 1 and 2. 2. Check continuity between park/neutral position (PNP) relay terminals 1 and 2. 2. Check continuity should exist. No voltage applied: Continuity should not exist.

11	CHECK INTERMITTENT INCIDENT	
Refer t	to "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-732.
	► INSPECTION END	

OK or NG


Replace park/neutral position (PNP) relay.

GO TO 11.

OK

NG

Component Description

Component Description IGNITION COIL & POWER TRANSISTOR

NGEC0812

NGEC0812S01

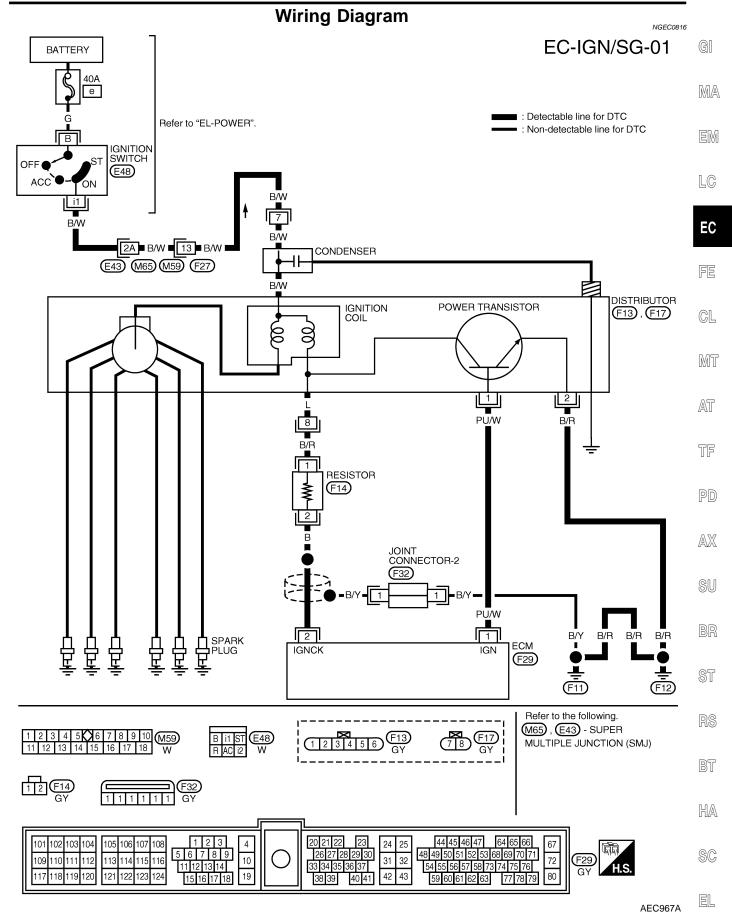
The power transistor switches on and off the ignition coil primary circuit according to the ECM signal. As the primary circuit is turned on and off, the proper high voltage is induced in the secondary circuit. The distributor is not repairable except for the distributor cap and rotor head.

NOTE:

The rotor screw which secures the distributor rotor head to the distributor shaft must be torqued properly.

: 3.6±0.3 N·m (37±3 kg-cm, 32±3 in-lb)

ECM Terminals and Reference Value


NGEC0813

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running] ● Idle speed	Approximately 0.7V (V) 4 2 0 20 ms SEF988U
1	PU/W	Ignition signal	[Engine is running] • Engine speed is 2,000 rpm	1.1 - 1.5V (V) 4 2 0 20 ms SEF989U

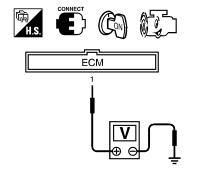
Diagnostic Procedure

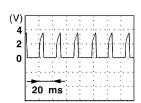
					NGEC0817
1	INSPECTION STA	ART			
	Turn ignition switch OFF, and restart engine. Is engine running?				
				Yes or No	
Yes (\	With CONSULT-II)	>	GO TO 2.		
Yes (\	Without CONSULT-	>	GO TO 3.		
No		>	GO TO 4.		

2 **CHECK OVERALL FUNCTION**

- With CONSULT-IIPerform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 2. Make sure that all circuits do not produce a momentary engine speed drop.

ACTIVE TES	Т
POWER BALANCE	
MONITOR	
ENG SPEED	XXX rpm
MAS A/F SE-B1	xxx v
IACV-AAC/V	XXX %

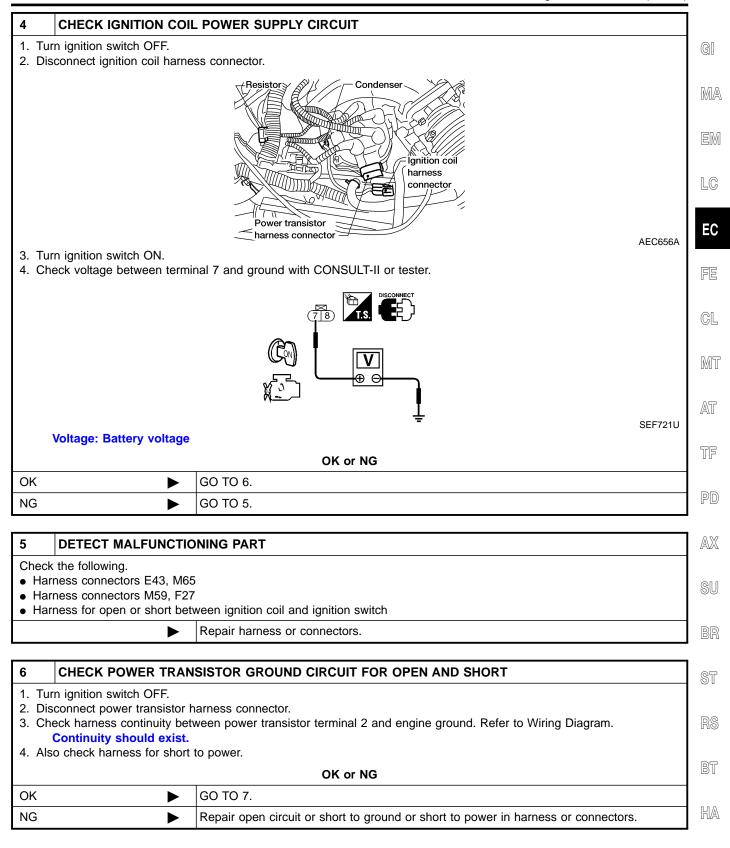

SEF981Z


OK •	INSPECTION END
NG •	GO TO 4.

3 **CHECK OVERALL FUNCTION**

Without CONSULT-II

- 1. Let engine idle.
- 2. Read the voltage signal between ECM terminal 1 and ground with an oscilloscope.
- 3. Verify that the oscilloscope screen shows the signal wave as shown below.


SEC073C

OK •	INSPECTION END
NG ▶	GO TO 4.

IGNITION SIGNAL

VG33E

Diagnostic Procedure (Cont'd)

SC

7	CHECK POWER TRANSISTOR OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT				
1. Dis	Disconnect ECM harness connector.				
	 Check harness continuity between ECM terminal 1 and power transistor terminal 1. Refer to Wiring Diagram. Continuity should exist. 				
O. 7110	3. Also check harness for short to ground and short to power.				
	OK or NG				
OK	>	GO TO 8.			

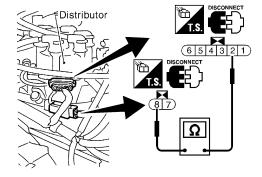
NG Repair open circuit or short to ground or short to power in harness or connectors. **CHECK IGNITION COIL** 8 1. Disconnect ignition coil harness connector. 2. Check resistance as shown in the figure. SEF013S 9 ullet Coil tower metal tip AEC657A Terminal Resistance [at 25°C (77°F)] 7 - 8 (Primary coil) 0.5 - 1.0Ω 7 - 9 (Secondary coil) Approximately 12 $k\Omega$ MTBL0248

For checking secondary coil, remove distributor cap and measure resistance between coil tower metal tip 9 and terminal 7.

OK or NG

OK ►	GO TO 9.
NG ►	Replace distributor assembly.

IGNITION SIGNAL


VG33E

Diagnostic Procedure (Cont'd)

9 CHECK POWER TRANSISTOR

1. Disconnect camshaft position sensor & power transistor harness connector and ignition coil harness connector.

2. Check power transistor resistance between terminals 2 and 8.

Terminals	Resistance	Result
2 and 8	Except 0Ω	OK
	Ω0	NG

MTBL0249

SEF015S

OK or NG	
OK ▶	GO TO 10.
NG ►	Replace distributor assembly.

10	CHECK INTERMITTENT INCIDENT	
Refer	er to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.	
	>	INSPECTION END

GI

MA

EM

LC

EC

FE

 \mathbb{GL}

MT

AT

TF

PD

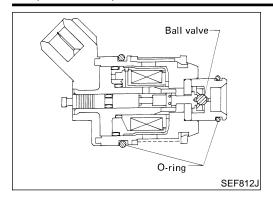
AX

SU

BR

ST

RS


BT

HA

SC

EL

Component Description

The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the injector circuit, the coil in the injector is energized. The energized coil pulls the ball valve back and allows fuel to flow through the injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.

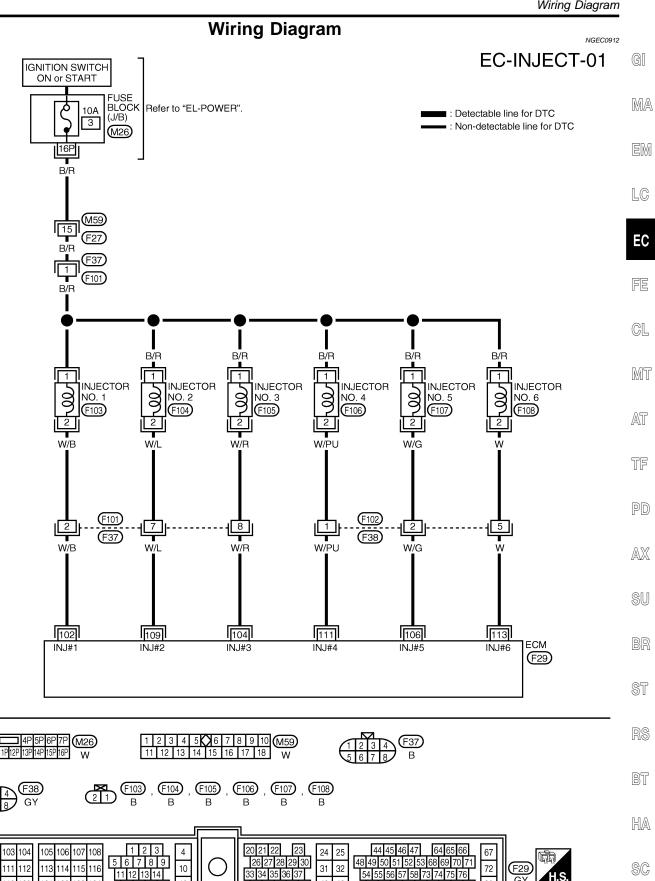
CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0910

MONITOR ITEM	CONE	SPECIFICATION	
INJ PULSE-B2	Engine: After warming upAir conditioner switch: "OFF"	Idle	2.4 - 3.7 msec
INJ PULSE-B1	Shift lever: "N"No-load	2,000 rpm	1.9 - 3.3 msec
B/FUEL SCHDL	ditto	Idle	1.0 - 1.6 msec
	ditto	2,000 rpm	0.7 - 1.4 msec

ECM Terminals and Reference Value


NGEC0911

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
102 104	W/B W/R	Injector No. 1 Injector No. 3	[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms
106 109 111 113	W/G W/L W/PU W	Injector No. 5 Injector No. 2 Injector No. 4 Injector No. 6	[Engine is running] • Warm-up condition • Engine speed is 2,000 rpm	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms SEF008V

AEC974A

72

SC

EL

31 32

42 43

10

19

112

120

114 115 116

109 110 111

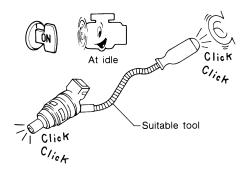
Diagnostic Procedure

1	INSPECTION START	- NGECI		
Turn ignition switch to START. Is any cylinder ignited?				
		Yes or No		
Yes	•	Yes or No GO TO 2.		

2 CHECK OVERALL FUNCTION

(P) With CONSULT-II

- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.

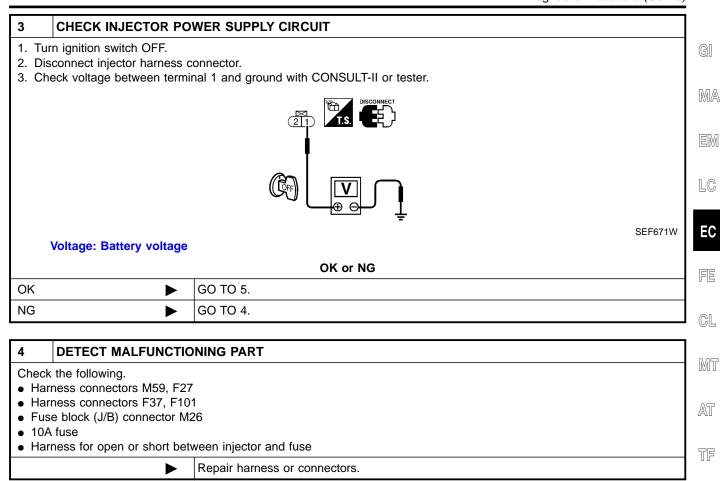

ACTIVE TEST				
POWER BALANCE				
MONITOR	MONITOR			
ENG SPEED	XXX rpm			
MAS AIR/FL SE	xxx v			
IACV-AAC/V	XXX %			

SEF806Z

3. Make sure that each circuit produces a momentary engine speed drop.

Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound.


MEC703B

Clicking noise should be heard.

OK or NG

Ì	OK I		INSPECTION END
	NG	•	GO TO 3.

INJECTOR

5	CHECK INJECTOR OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT			
Disconnect ECM harness connector. Check harness continuity between injector harness connector terminal 2 and ECM terminals 102, 104, 106, 109, 111, 113. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power.				
	OK or NG			
OK	OK ▶ GO TO 7.			
NG	NG GO TO 6.			
6 DETECT MALFUNCTIONING PART				

Check the following.

Check the following.			
Harness connectors F37, F101			
Harness connectors F38, F102			
Harness for open or short between ECM and injector			
Repair open circuit or short to ground or short to power in harness or connectors.			

PD

AX

SU

ST

BT

HA

SC

OK

NG

CHECK INJECTOR Disconnect injector harness connector. Check resistance between terminals as shown in the figure. SEF625V Resistance: 10 - 14Ω [at 25°C (77°F)]

8	CHECK INTERMITTENT	INCIDENT	
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
	•	INSPECTION END	

OK or NG

GO TO 8.

Replace injector.

START SIGNAL

VG33E

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NGEC0914

114	(S)

MA

EM

MONITOR ITEM	CONDITION	SPECIFICATION
START SIGNAL • Ignition switch: $ON \rightarrow START \rightarrow ON$		$OFF \to ON \to OFF$

ECM Terminals and Reference Value

NGEC0915

Specification data are reference values and are measured between each terminal and ground.

10

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

П	110	
L	.Шл	
=		

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Ignition switch ON]	Approximately 0V
20	L/OR	Start signal	[Ignition switch START]	BATTERY VOLTAGE (11 - 14V)

FE

GL

MT

AT

TF PD

AX

SU

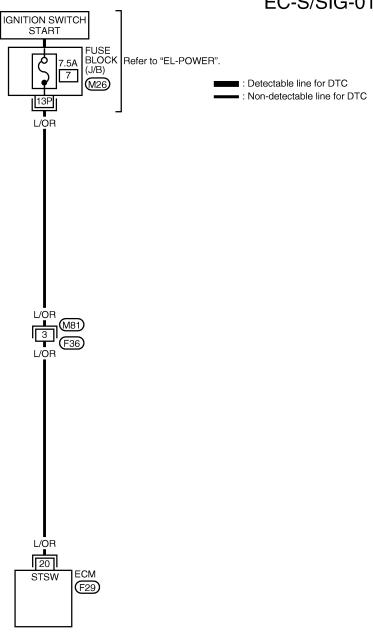
BR

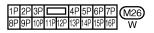
ST

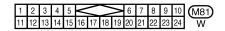
RS

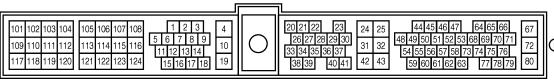
BT

HA


SC


EL


Wiring Diagram


NGEC0916

EC-S/SIG-01

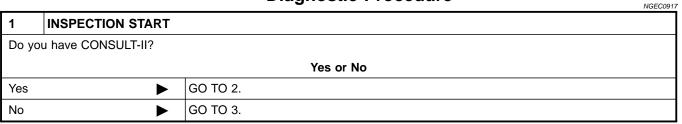
START SIGNAL

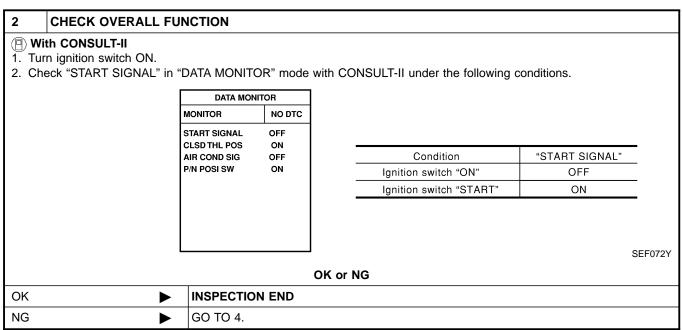
GI

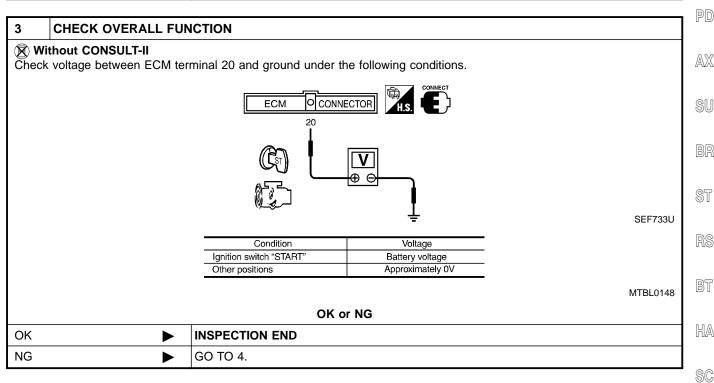
MA

EC

FE


GL


MT


AT

TF

Diagnostic Procedure

4	CHECK STARTING SYS	STEM	
	Turn ignition switch OFF, then turn it to START.		
Does	Does starter motor operate?		
Yes or No			
Yes	>	GO TO 5.	
No	>	Refer to "STARTING SYSTEM", SC-10.	

5	CHECK FUSE			
	1. Turn ignition switch OFF.			
	 Disconnect 7.5A fuse. Check if 7.5A fuse is OK. 			
0. 011				
	OK or NG			
OK	>	GO TO 6.		
NG	•	Replace 7.5A fuse.		

6	CHECK START SIGNAL INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT		
2. Ch	 Disconnect ECM harness connector. Check harness continuity between ECM terminal 20 and fuse block. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power. 		
	OK or NG		
OK	>	GO TO 8.	
NG	>	GO TO 7.	

7	DETECT MALFUNCTIONING PART		
Har	Check the following. • Harness connectors M81, F36 • Harness for open or short between ECM and fuse		
	Repair open circuit or short to ground or short to power in harness or connectors.		

8	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
	► INSPECTION END		

FUEL PUMP

System Description

NGEC0918

Sensor	Input Signal to ECM	ECM func- tion	Actuator	(
Camshaft position sensor	Engine speed	Fuel pump	Fuel pump relay	N
Ignition switch	Start signal	control	Fuel pullip relay	

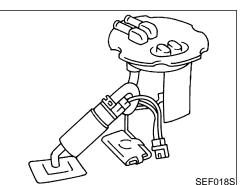
MA

The ECM activates the fuel pump for several seconds after the ignition switch is turned on to improve engine startability. If the ECM receives a 120° signal from the camshaft position sensor, it knows that the engine is rotating, and causes the pump to operate. If the 120° signal is not received when the ignition switch is on, the engine stalls. The ECM stops pump operation and prevents battery discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

EM

LC

Condition	Fuel pump operation	
Ignition switch is turned to ON.	Operates for 5 seconds	
Engine running and cranking	Operates	
When engine is stopped	Stops in 1.5 seconds	
Except as shown above	Stops	


EC

FE

MT

AT

GL

Component Description

The fuel pump with a fuel damper is an in-tank type (the pump and damper are located in the fuel tank).

TF

PD

AX

SU

CONSULT-II Reference Value in Data Monitor Mode

NGEC0920

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
FUEL PUMP RLY	 Ignition switch is turned to ON. (Operates for 5 seconds.) Engine running and cranking 	ON
	Except as shown above	OFF

ST

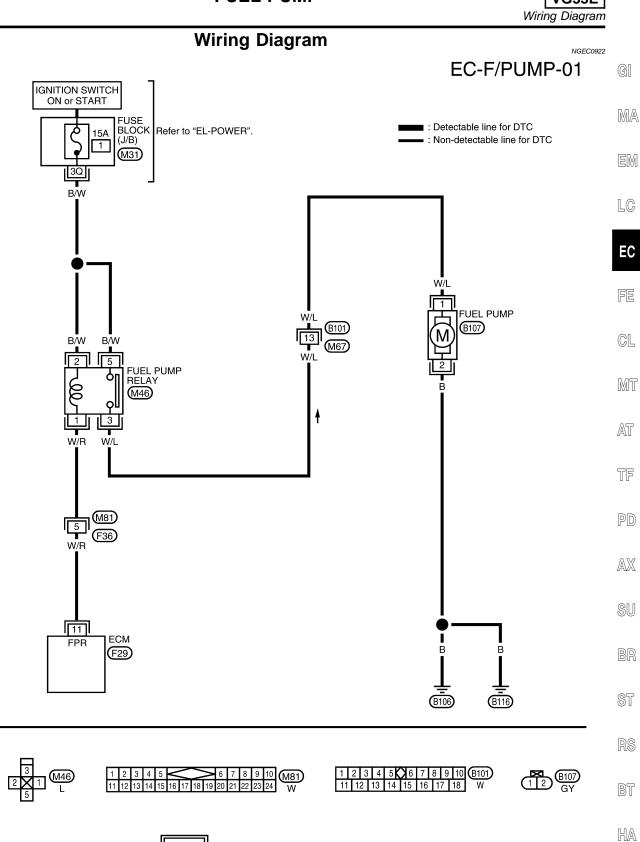
BT

HA

SC

EL

ECM Terminals and Reference Value


Specification data are reference values and are measured between each terminal and ground.

=NGEC0921

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
11 W/I	NA//D		[Ignition switch ON] ● For 5 seconds after turning ignition switch "ON" [Engine is running]	0 - 1V
	W/R		[Ignition switch ON] ■ More than 5 seconds after turning ignition switch ON	BATTERY VOLTAGE (11 - 14V)

LEC509

SC

EL

40 41

26 27 28 29 30 33 34 35 36 37

38 39

24 25

31 32

42 43

48 49 50 51 52 53 68 69 70 71

59 60 61 62 63

72

 $\overline{\mathsf{GY}}$

(M31)

101 102 103 104

109 110 111 112

117 118 119 120

105 106 107 108

113 114 115 116

121 122 123 124

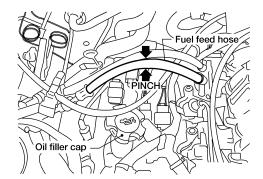
1 2 3

5 6 7 8 9

11 12 13 14 15 16 17 18

4

10



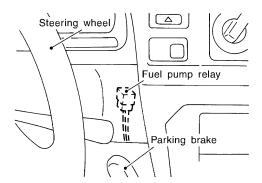
NGEC0923

Diagnostic Procedure

1 CHECK OVERALL FUNCTION

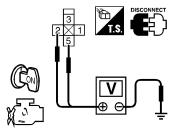
- 1. Turn ignition switch ON.
- 2. Pinch fuel feed hose with fingers.

AEC663A


Fuel pressure pulsation should be felt on the fuel feed hose for 5 seconds after ignition switch is turned ON.

OK or NG

OK		INSPECTION END
NG	•	GO TO 2.


2 CHECK FUEL PUMP RELAY POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect fuel pump relay.

SEF349V

- 3. Turn ignition switch ON.
- 4. Check voltage between terminals 2, 5 and ground with CONSULT-II or tester.

SEF674W

Voltage: Battery voltage

OK or NG

OK •	GO TO 4.
NG ▶	GO TO 3.

GI

MA

EM

EC

FE

MT

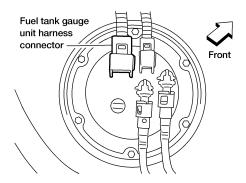
AT

TF

PD

3 DETECT MALFUNCTIONING PART

Check the following.


- Fuse block (J/B) connector M31
- 15A fuse
- Harness for open or short between fuse and fuel pump relay

Repair harness or connectors.

4 CHECK FUEL PUMP POWER SUPPLY AND GROUND CIRCUIT FOR OPEN AND SHORT

1. Turn ignition switch OFF.

2. Disconnect fuel pump harness connector.

AEC933A

3. Check harness continuity between fuel pump terminal 2 and body ground, fuel pump terminal 1 and fuel pump relay terminal 3. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK		GO TO 6.
NG		GO TO 5.

5 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M67, B101
- Harness for open or short between fuel pump and body ground
- Harness for open or short between fuel pump and fuel pump relay

Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK FUEL PUMP RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 11 and fuel pump relay terminal 1. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 8.
NG ▶	GO TO 7.

7 DETECT MALFUNCTIONING PART

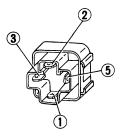
Check the following.

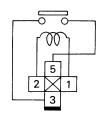
- Harness connectors M81, F36
- Harness for open or short between ECM and fuel pump relay

Repair open circuit or short to ground or short to power in harness or connectors.

\$0

8 **CHECK FUEL PUMP RELAY**


(II) With CONSULT-II


- 1. Reconnect fuel pump relay, fuel pump harness connector and ECM harness connector.
- 2. Turn ignition switch ON.
- 3. Turn fuel pump relay "ON" and "OFF" in "ACTIVE TEST" mode with CONSULT-II and check operating sound.

ACTIVE TEST		
FUEL PUMP RELAY	ON	
MONITOI	7	
ENG SPEED	XXX rpm	

SEF073Y

Without CONSULT-II
Check continuity between terminals 3 and 5.

SEF511P

12V direct current supply between terminals 1 and 2 **Continuity exists**

No current supply

Continuity does not exist

OK or NG

OK •	GO TO 9.
NG ▶	Replace fuel pump relay.

FUEL PUMP

VG33E

GI

MA

EM

LC

EC

FE

GL

MT

AT

TF

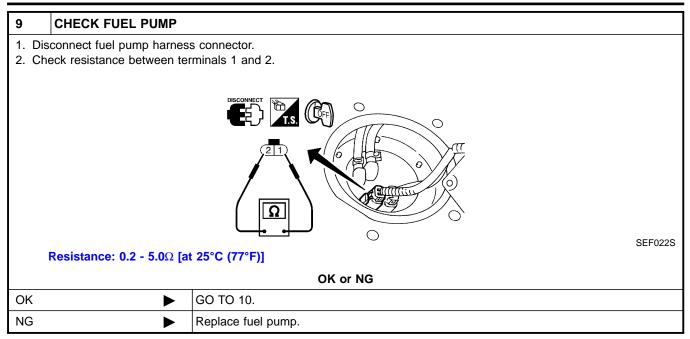
PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

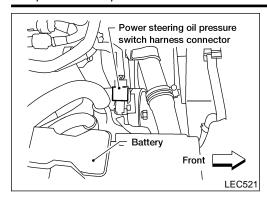

RS

BT

HA

SC

Diagnostic Procedure (Cont'd)


10	CHECK INTERMITTENT INCIDENT				
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.					
	► INSPECTION END				

EL

POWER STEERING OIL PRESSURE SWITCH

VG33E

Component Description

Component Description

The power steering oil pressure switch is attached to the power steering high-pressure tube and detects a power steering load. When a power steering load is detected, it signals the ECM. The ECM adjusts the IACV-AAC valve to increase the idle speed and adjust for the increased load.

CONSULT-II Reference Value in Data Monitor Mode

NGEC0925

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
PW/ST SIGNAL	 Engine: After warming up, idle the engine 	Steering wheel in neutral position (forward direction)	OFF
		The steering wheel is fully turned.	ON

ECM Terminals and Reference Value

NGEC0926

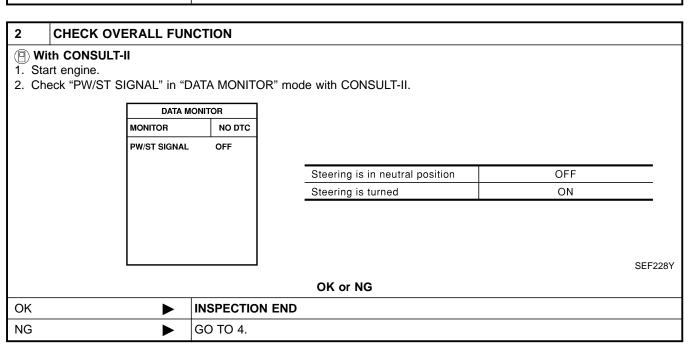
Specification data are reference values and are measured between each terminal and ground.

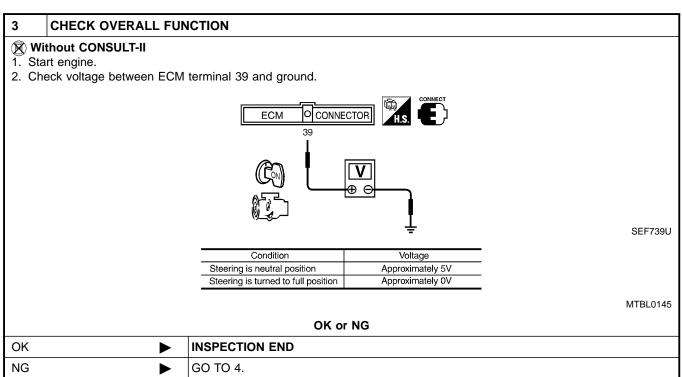

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
39	I (FY/R I	Power steering oil pres-	[Engine is running] • Steering wheel is being fully turned	ov
			[Engine is running] • Steering wheel is not being turned	Approximately 5V

POWER STEERING OIL PRESSURE SWITCH





AEC977A

EL

Diagnostic Procedure

POWER STEERING OIL PRESSURE SWITCH

VG33E

GI

MA

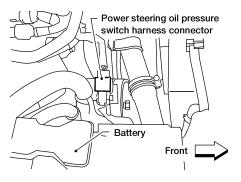
EC

FE

GL

MT

AT


TF

PD

Diagnostic Procedure (Cont'd)

4 CHECK POWER STEERING OIL PRESSURE SWITCH GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect power steering oil pressure switch harness connector.

LEC521

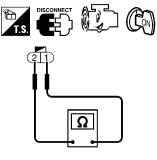
Check harness continuity between switch terminal 2 and engine ground. Refer to Wiring Diagram. Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK •	GO TO 5.
NG ►	Repair open circuit or short to power in harness or connectors.

5 CHECK POWER STEERING OIL PRESSURE SWITCH INPUT SIGNAL CIRCUIT


- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 39 and switch terminal 1. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG

ОК	>	GO TO 6.
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.

6 CHECK POWER STEERING OIL PRESSURE SWITCH

- 1. Disconnect power steering oil pressure switch harness connector then start engine.
- 2. Check continuity between terminals 1 and 2.

SEF679W

Conditions	Continuity
Steering wheel is being fully turned	Yes
Steering wheel is not being turned	No

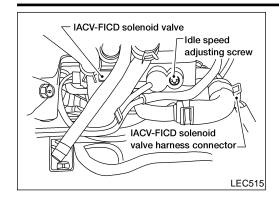
MTBL0254

OK or NG

ОК		GO TO 7.
NG		Replace power steering oil pressure switch.

HA

SC


POWER STEERING OIL PRESSURE SWITCH

VG33E

Diagnostic Procedure (Cont'd)

7	CHECK INTERMITTENT INCIDENT			
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.			
	► INSPECTION END			

IACV-FICD SOLENOID VALVE

Component Description

When the air conditioner is on, the IACV-FICD solenoid valve supplies additional air to adjust to the increased load.

ip-

MA

EM

LC

EC

FE

GL

MT

AT

TF

PD

SU

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

IGEC093

OLOUS.

CAUTION:

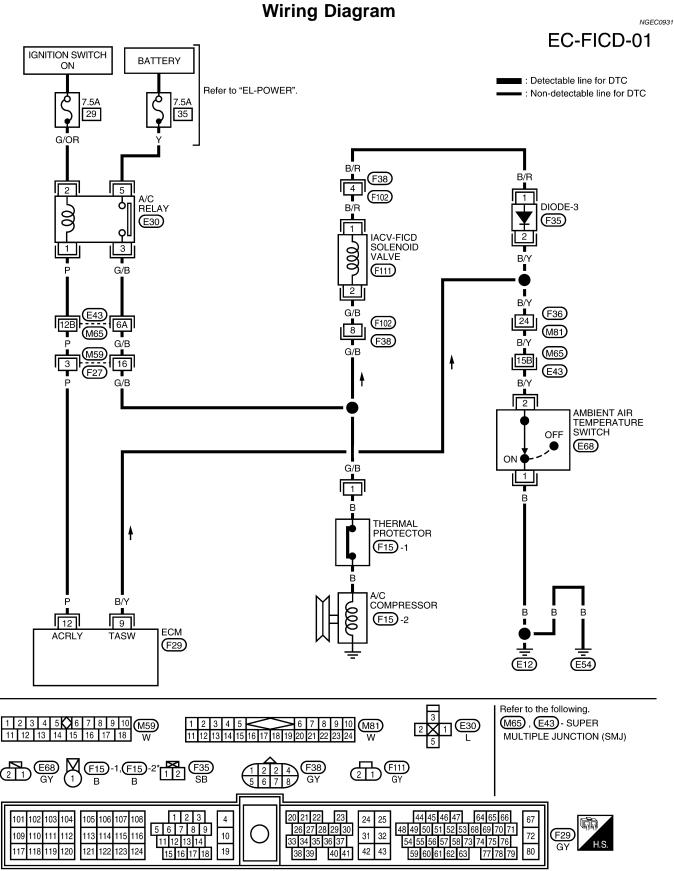
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than the ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			 [Engine is running] Idle speed Ambient air temperature is above 25°C (77°F) Air conditioner is operating 	ov
9	B/Y	Ambient air temperature switch	 [Engine is running] Idle speed Ambient air temperature is below 19°C (66°F) Air conditioner is operating 	BATTERY VOLTAGE (11 - 14V)
			 [Engine is running] Idle speed Ambient air temperature is below 19°C (66°F) Air conditioner is not operating 	Approximately 5V
12	Р	Air condition or valou	[Engine is running] • Both A/C switch and blower fan switch are "ON"*	0 - 1V
12	P	Air conditioner relay	[Engine is running] • A/C switch is "OFF"	BATTERY VOLTAGE (11 - 14V)
21	G/R	Air conditioner switch	[Engine is running] ■ Both A/C switch and blower fan switch are "ON" (Compressor operates)*	Approximately 0V
			[Engine is running] • Air conditioner switch is "OFF"	Approximately 5V

^{*:} Any mode except "OFF", ambient air temperature is above 25°C (77°F).

ST

KS


BT

HA

SC

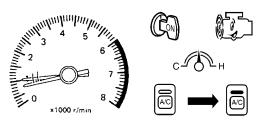
EL

 \mathbb{N}

IACV-FICD SOLENOID VALVE

Diagnostic Procedure

NGEC0932


1 CHECK OVERALL FUNCTION

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed.

750±50 rpm (in "N" position)

If NG, adjust idle speed.

- 3. Turn air conditioner switch and blower fan switch ON.
- 4. Recheck idle speed.

850 rpm or more (in "P" or "N" position)

OK or NG

OK ▶	INSPECTION END
NG ▶	GO TO 2.

2	CHECK AIR CONDITIO	NER FUNCTION	
Checl	Check if air conditioner compressor functions normally.		
	OK or NG		
OK	OK ▶ GO TO 3.		
NG	>	Refer to "Symptom Table", "TROUBLE DIAGNOSES", HA-27.	

GI

MA

LC

EC

FE

SEF742U

CL

MT

AT

TF

PD

 $\mathbb{A}\mathbb{X}$

SU

BR

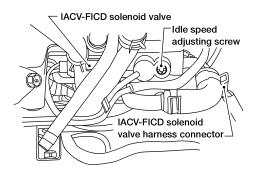
ST

RS

BT

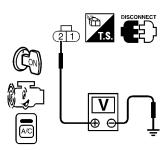
HA

SC


EL

LEC515

SEF680W


3 CHECK IACV-FICD SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn air conditioner switch and blower fan switch OFF.
- 2. Stop engine.
- 3. Disconnect IACV-FICD solenoid valve harness connector.

4. Start engine, then turn air conditioner switch and blower fan switch ON.

5. Check voltage between terminal 2 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK •	GO TO 5.
NG ►	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F38, F102
- Harness for open or short between IACV-FICD solenoid valve and harness connector F27

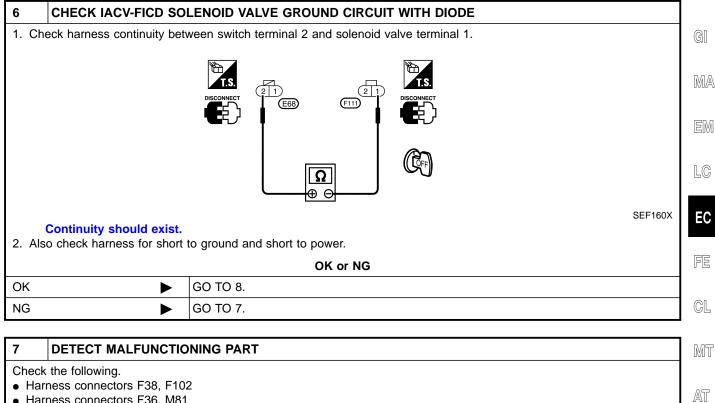
Repair harness or connectors.

5 CHECK IACV-FICD SOLENOID VALVE GROUND CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ambient air temperature switch harness connector.
- 3. Check harness continuity between switch terminal 1 and body ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.


OK or NG

OK •	GO TO 6.
NG ►	GO TO 7.

IACV-FICD SOLENOID VALVE

VG33E

Diagnostic Procedure (Cont'd)

7	DETECT MALFUNCTIO	NING PART	
Chec	Check the following.		
• Ha	Harness connectors F38, F102		
 Ha 	Harness connectors F36, M81		
 Ha 	Harness connectors M65, E43		
• Did	Diode F35		
 Ha 	 Harness for open or short between ambient air temperature switch and body ground 		
 Ha 	 Harness for open or short between IACV-FICD solenoid valve and ambient air temperature switch 		
	Repair open circuit or short to ground or short to power in harness or connectors.		

TF

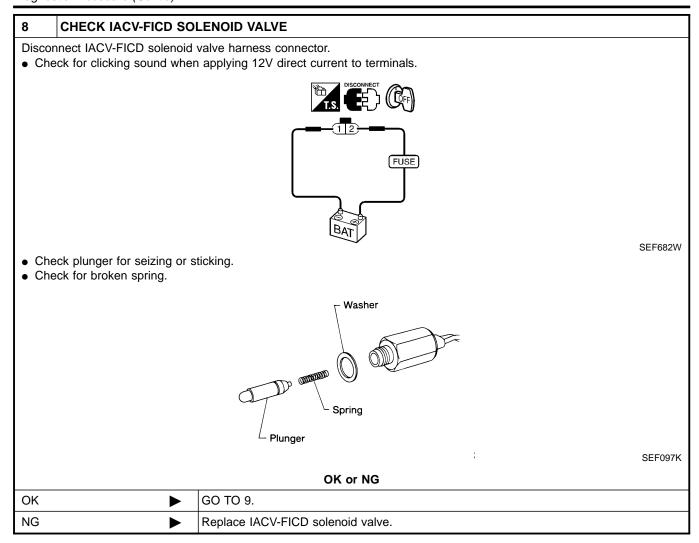
PD

 $\mathbb{A}\mathbb{X}$

SU

BR

ST


RS

BT

HA

SC

EL

9	CHECK INTERMITTENT INCIDENT		
Refer	"TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-732.		
	>	INSPECTION END	

Wiring Diagram

NGEC0933

GI

MA

LC

EC

GL

MT

AT

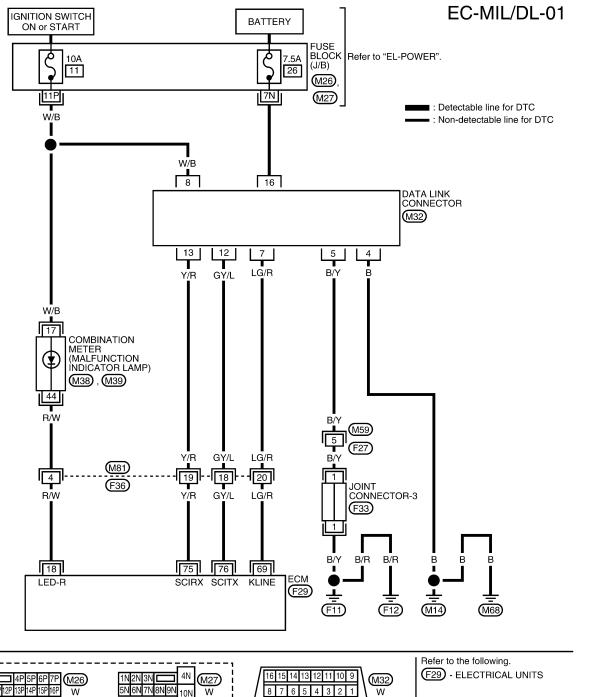
TF

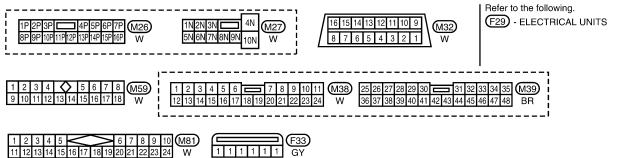
PD

AX

SU

BR


ST


BT

HA

SC

EL

WEC126A

SERVICE DATA AND SPECIFICATIONS (SDS)

VG33E

Fuel Pressure Regulator

	Fuel Pressure Regulator		
Fuel pressure at idling kPa (kg/cm², psi)			
	Vacuum hose is connected	Approximately 235 (2.4, 34)	
	Vacuum hose is disconnected	Approximately 294 (3.0, 43)	

Idle Speed and Ignition Timing

NGEC0935

Base idle speed*1	No-load*4 (in "P" or N" position)	700±50 rpm
Target idle speed*2	No-load*4 (in "P" or N" position)	750±50 rpm
Air conditioner: ON	In "P" or N" position	850 rpm or more
Ignition timing*3	In "P" or N" position	10°±2° BTDC
Throttle position sensor idle position	0.15 - 0.85V	

^{*1:} Throttle position sensor harness connector disconnected or using CONSULT-II "WORK SUPPORT" mode

- Air conditioner switch: OFF
- Electric load: OFF (Lights, heater fan & rear window defogger)
- Steering wheel: Kept in straight-ahead position

Ignition Coil

NGEC0936

Ma	uss Air Flow Sensor
Secondary resistance [at 20°C (68°F)]	Approximately 10 kΩ
Primary resistance [at 20°C (68°F)]	Approximately 1.0Ω
Primary voltage	12V

Supply voltage	Battery voltage (11 - 14)V
Output voltage at idle	1.0 - 1.7*V
Mass air flow (Using CONSULT-II or GST)	3.3 - 4.8 g·m/sec at idle* 12.0 - 14.9 g·m/sec at 2,500 rpm*

^{*:} Engine is warmed up to normal operating temperature and running under no-load.

Engine Coolant Temperature Sensor

NGEC0938

Temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

Heated Oxygen Sensor 1 Heater (Front)

NGEC0940

Resistance [at 25°C (7)	7°F)]	2.3 - 4.3Ω
Resistance (at 25°C (7)	/*F)]	$2.3 - 4.3\Omega$

Fuel Pump

NGEC0941

Resistance [at 25°C (77°F)] 0.2 - 5.0Ω

IACV-AAC Valve

NGEC0942

Resistance [at 20°C (68°F)] Approximately 10.0Ω

^{*2:} Throttle position sensor harness connector connected

^{*3:} Throttle position sensor harness connector disconnected

^{*4:} Under the following conditions:

SERVICE DATA AND SPECIFICATIONS (SDS)

		Injector
Injed	ctor	NGEC0943
Resistance [at 25°C (77°F)]	10 - 14Ω	
Thro	ottle Position Sensor	NGEC0945
Throttle valve conditions	Voltage [at normal operating temperature, engine off, ignition switch ON, (throttle opener disengaged, if so equipped)]	
Completely closed (a)	0.15 - 0.85V	
Partially open	Between (a) and (b)	
Completely open (b)	3.5 - 4.7V	
Calc	ulated Load Value	NGEC0946
	Calculated load value % (Using CONSULT or GST)	
At idle	18.0 - 26.0	
At 2,500 rpm	18.0 - 21.0	
Intal	ke Air Temperature Sensor	NGEC0947
Temperature °C (°F)	Resistance kΩ	
20 (68)	2.1 - 2.9	
80 (176)	0.27 - 0.38	
Heat	ted Oxygen Sensor 2 Heater (Rear)	NGEC0948
Resistance [at 25°C (77°F)]	2.3 - 4.3Ω	
Crar	nkshaft Position Sensor (OBD)	NGEC0949
Resistance [at 20°C (68°F)]	512 - 632Ω	
Fuel	Tank Temperature Sensor	NGEC0950
Temperature °C (°F)	Resistance kΩ	
20 (68)	2.3 - 2.7	
50 (122)	0.79 - 0.90	

RS

BT

HA

SC

EL

NOTES